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Abstract 

Climate change scientific assessments prepared by the Intergovernmental Panel 

on Climate Change (IPCC) face interconnected dual challenges: the exponential 

growth of literature, hindering synthesis efficiency, and the increasing length of its 

reports, impeding accessibility. Building upon the emerging discussion of adopting 

artificial intelligence (AI) tools in scientific assessments, this essay develops specific 

operational and governance frameworks to guide the IPCC’s integration of these 

tools. It makes three distinct contributions. First, it develops a systematic framework 

for AI-augmented evidence synthesis, detailing how machine learning (ML) can be 

integrated into each stage of the assessment workflow. Second, it provides a critical 

analysis of Large Language Models' (LLMs) use for reports communication through 

the lens of ‘addressable’ versus ‘inherent’ limitations, clarifying which risks require 

technical solutions versus those that demand robust governance. Finally, it proposes 

a novel governance structure for the IPCC based on two institutional roles, the ‘pro-

ducer’ and the ‘assessor’ of AI products, to ensure scientific integrity is maintained. 

This essay provides a clear path for the responsible, expert-led integration of AI, 

ensuring it serves to augment, not replace, human expertise.

Introduction

Scientific assessments play a crucial role in identifying and communicating areas of 
consensus within the scientific community. They inform policymakers, stakeholders, 
and the public with the latest scientific findings and the confidence levels assigned 
to them by experts. These assessments therefore promote consensus-driven, 
evidence-based decision-making, and help minimise misinformation by ensuring that 
established scientific understanding is publicly accessible. These assessments also 
foster informed dialogue within the scientific community itself [1–3].

Depending on the strand of the literature, several approaches are used for under-
taking scientific synthesis (In this article, I use scientific synthesis, literature syn-
thesis, and evidence synthesis interchangeably.), each aiming to maximise rigour 
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and minimise susceptibility to bias. These approaches include systematic literature 
reviews (which follow a pre-defined replicable protocol to identify and evaluate all 
relevant research), meta-analyses (which statistically combine results from multiple 
studies), weight-of-evidence approaches (which assess the relative strengths and 
weaknesses of different lines of evidence), and expert elicitation (structured expert 
judgement), collectively offering more structured and robust alternatives to tradi-
tional literature reviews [4–6]. Beyond relying on literature synthesis, climate change 
assessments, such as those by the IPCC, also rely on data-based approaches to 
drive some of their findings such as assessing observational data, paleoclimate 
reconstructions, and ensembles of climate change and techno-economic scenarios 
[7–9].

The IPCC, the leading intergovernmental science-policy interface on climate 
change, regularly produces comprehensive assessments of the scientific basis of 
climate change, the vulnerability and exposure of ecosystems and humans to cli-
mate change impacts and future risks, and options for adaptation and mitigation [10]. 
It combines the expertise of scientists from a wide range of disciplines and policy 
experts worldwide to create consensus-driven assessments. The assessments 
employ various evidence synthesis approaches and data-based methods applied to 
academic and grey literature, supported by IPCC’s Uncertainty Guidance Note [11] 
that contain calibrated uncertainty language to guide the authors in identifying their 
collective confidence level in synthesised findings [12,13]. These reports are drafted 
and reviewed iteratively by lead authors, scientists and policy experts, and review 
editors. They highlight established knowledge, evolving understanding, and multiple 
perspectives within the literature [10,14,15].

Despite these comprehensive, consensus-driven, and uncertainty-calibrated 
production processes, the exponential growth and mounting complexity of scien-
tific literature [16–20] challenge the IPCC’s ability to fulfil its mandate of conducting 
assessments that are ‘comprehensive, objective, open and transparent,’ as required 
by its governing principles [15]. Evidence shows that the ratio of studies cited in IPCC 
reports relative to the total number of climate change studies indexed in the Web of 
Science (WoS) has declined from 60% in its first assessment report (AR1) to around 
15% in AR6 [16]. While this trend may partially reflect a discerning focus by the IPCC 
authors on higher-quality publications, the sheer scale of the literature still presents 
a significant risk that critical findings might be insufficiently weighted or overlooked 
altogether. These concerns are echoed in other criticisms facing the IPCC, such as 
literature diversity gaps [8,21], underrepresentation of alternative knowledge systems 
[22], concerns about methodological transparency [23,24] and production speed [25], 
issues which are arguably intensified by the expanding scale of scientific literature.

IPCC reports are also considerably increasing in length, reflecting both the 
expanding body of scientific literature but also the comprehensive scope set in their 
initial outlines. Each assessment cycle (typically 5–7 years) produces at least three 
main reports and a synthesis report, often accompanied by methodological and 
special reports. In the previous cycle (AR6), the main reports grew substantially, with 
two exceeding 2,000 pages and one exceeding 3,000. Although these reports include 
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summaries for policymakers and technical practitioners and are designed to be consulted selectively (by chapter) rather 
than read in full, navigating such extensive documents to locate specific evidence remains challenging. Key findings, 
particularly those neither highlighted in the summaries nor located in their seemingly “obvious” chapters, can be difficult 
to find and extract. This difficulty in accessing specific information within the reports contributes to the broader challenge 
of effectively communicating their extensive findings while preserving scientific nuance, complexity, and the agreed-upon 
levels of confidence and uncertainty.

These interconnected challenges, managing exponential literature growth and communicating extensive findings, have 
prompted exploration of artificial intelligence as a potential solution. With the IPCC seventh assessment cycle (AR7) 
now underway, the challenge of assessing the increasing volume of literature is being actively considered, with planning 
underway for a workshop titled ‘Methods of Assessment’ [26] that will focus on the use of AI and ML methods for IPCC 
assessments. One of the workshop’s proposed aims is to ‘evaluate whether AI could be integrated into IPCC processes, 
and if so, under what conditions and with what safeguards’ [27]. Meanwhile, the emergence of LLMs, sparked by making 
ChatGPT publicly available late 2022, has brought the use of AI in scientific processes to the forefront of the wider sci-
entific community [28,29] including science communication [30]. For instance, the International Energy Agency recently 
launched a chatbot tool that enables users to interrogate their flagship World Energy Outlook 2024 report through natural 
language queries [31], complementing other emerging climate-focused chatbots based, in parts, on IPCC reports, such as 
ChatClimate [32] and ClimateQA [33].

To that end, in this essay I explore how, and to what extent, existing and emerging AI tools can mitigate these intercon-
nected challenges of managing the exponential growth of literature for robust evidence synthesis and consensus building 
as well as effectively communicating extensive and nuanced findings. Recent developments and increasing adoption of AI 
tools raise important questions: How can AI tools augment human expertise in synthesising and assessing the scientific 
literature? What would an ‘expert-in-the-loop’ AI-augmented processes for climate change assessments look like? How 
can such processes leverage the strengths of both technology and expert judgement, and mitigate against potential weak-
nesses and arising biases? Moreover, what are the potential benefits and limitations of using AI-assisted tools in climate 
science communication?

Addressing these questions requires examining several interconnected dimensions. Recent commentaries have effec-
tively outlined the broad opportunities in this area [28], while new methodological guidance urges a shift from appraising 
primary literature to formal ‘knowledge syntheses’ to manage the information deluge [16]. This essay bridges these con-
versations by providing a specific operational framework for creating and governing the AI-augmented syntheses that this 
new assessment landscape demands.

To do so, it makes three distinct contributions. First, it develops a systematic framework for AI-augmented evidence 
synthesis, detailing how specific ML practices can be integrated into each distinct stage of the assessment workflow 
and codified in a detailed taxonomy (Table 1) (Section 2). Second, it provides a forward-looking critique of LLMs' use for 
science communication, analysing their risks through the lens of ‘addressable’ versus ‘inherent’ limitations (Section 3). 
Finally, it proposes potential hybrid, expert-judgement-led approaches grounded in two alternative options: one where the 
IPCC acts as a ‘producer’ by developing AI tools internally, and another where it acts as a critical ‘assessor’ of externally 
published AI-driven products - i.e. analyses (Section 4). This final section, therefore, explores the overarching governance 
required to maintain scientific integrity for both the synthesis process and for science communication, balancing innova-
tion with expert judgement in an ‘expert-in-the-loop’ system.

AI tools for literature assessment: capabilities and limitations

The exponential growth and mounting complexity of scientific literature challenges the efficiency and comprehensive-
ness of scientific assessments. Continuing to follow traditional evidence synthesis approaches is becoming untenable 
for processing this expanding knowledge base, potentially undermining the robustness of consensus-building processes. 
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This trend has driven increasing interest in using AI tools to augment literature synthesis workflows [16–20]. Consistent 
with the IPCC’s mandate to assess existing literature, the potential integration of AI can be viewed through two primary 
lenses, explored further in Section 4: firstly, the internal application of validated AI tools to generate specific products (like 
evidence maps or screened literature lists) that support the assessment process; and secondly, the critical assessment of 
already AI-generated products published in the scientific literature itself. The systematic framework for AI-augmented evi-
dence synthesis presented in this section, and codified in a detailed taxonomy in Table 1, is foundational to both options, 
providing an operational guide for the IPCC whether it acts as an internal ‘producer’ of AI tools or a critical ‘assessor’ of 
externally published analyses.

While specific implementations vary across applications, the ML-augmented literature synthesis workflow generally mir-
rors the stages of traditional approaches. However, it strategically integrates ML tools to enhance efficiency, scalability, and 
broaden the scope at each stage. These stages typically encompass question formulation, literature query and collection, 
documents screening and selection, knowledge mapping and analysis, and reporting and visualisation. This workflow rep-
resents a practical application of the broader knowledge synthesis methodologies that are becoming essential for climate 
change assessments [16]. Moreover, the specifics of ML tool integration may differ depending on relevant research consider-
ations, such as a particular level of spatial or temporal resolution necessitating different techniques. While question formula-
tion remains primarily expert-led, augmenting subsequent stages in the workflow with ML tools can inform researchers about 
literature breadth and coverage, thereby enabling the identification of knowledge gaps that warrant further research.

The initial stage of literature query and collection often still relies heavily on conventional search methods. Keywords, 
Boolean logic operators (i.e., ‘AND’, ‘OR’), and wildcards are typically used to query established bibliographic databases 
like Web of Science or OpenAlex [19,34,35]. While providing a replicable baseline, these methods can struggle with 
diverse or non-standard terminology, creating a risk of overlooking relevant literature. To enhance comprehensiveness, 
more sophisticated, expert-driven query strategies were tested. Examples include iterative multi-step searching protocols 
that use keyword analysis and synonyms from key papers to refine subsequent searches [36], or approaches combining 
top-down searches (guided by assessment outlines) with subject-specific expert queries to broaden retrieval [37]. How-
ever, such iterative refinements, while valuable for increasing sensitivity, may sometimes retrieve a high proportion of irrel-
evant documents, requiring careful screening [38]. Distinct from refinements of conventional methods, recent advances 
in AI offer alternative approaches. Semantic search, leveraging natural language processing (NLP), aims to overcome 
keyword limitations by discerning the meaning of search terms, potentially identifying relevant papers missed by traditional 
queries. Examples such as Elicit or SciSpace platforms utilise capabilities like semantic search expanding search scope 
beyond initial keywords [39].

The screening and selection stage is crucial for determining which articles are relevant to the research question, based 
on clearly defined inclusion and exclusion criteria. Increasingly, this stage incorporates ML text relevance classifiers to sup-
port and streamline decision-making. A foundational approach involves blending expert judgement with ML, as illustrated 
by Callaghan and colleagues [19] in climate impact attribution studies. In this example, the experts manually label a sample 
of documents, allowing an ML algorithm to learn relevant patterns. Additionally, continuous cross-validation helps ensuring 
robust performance on unseen data. Active learning techniques can also be employed, as demonstrated by [34,40] for 
climate change and health literature. In this approach, the classifier iteratively refines its own predictions based on newly 
screened data, progressively improving its ability to prioritise papers for manual review. ML applications in screening also 
extend beyond simple relevance classification. For instance, Lamb and colleagues [35] used the Geonames database to 
classify geographical contextual information, specifically assigning urban mitigation case studies to typologies, thereby 
revealing geographic research gaps. Further advancements are demonstrated in recent studies by Sietsma and colleagues 
[41] and Callaghan and colleagues [42] who utilise powerful transformer-based language models like ClimateBERT (Cli-
mateBERT is a transformer-based language model specifically pre-trained on climate-related texts to enhance performance 
in understanding and classifying climate discourse.) and SciNCL (SciNCL (Neighbourhood Contrastive Learning) is a 
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transformer-based model that integrates citation network data via contrastive learning, improving its ability to capture the 
nuanced context of scientific literature. In the context of literature assessment, such transformer-based models (Climate-
BERT and SciNCL) are primarily employed for discriminative tasks like classification or representation learning, rather than 
generative tasks such as creating new text.). Because these models are pre-trained on extensive climate-related literature, 
they offer enhanced capabilities in detecting relevant textual nuances and improving the classification of documents.

The stage of knowledge mapping and analysis is increasingly augmented by advanced ML methods used to extract 
latent structures from large literature collections. One key technique is topic modelling, an unsupervised ML approach 
that identifies clusters of co-occurring words, thereby revealing the underlying semantic structure of a literature corpus. 
Complementary to topic modelling, network analysis is deployed to identify citation and co-authorship networks, thereby 
pinpointing influential publications and clustering research communities [37]. These computational techniques operate 
on different dimensions of the literature: topic models extract thematic content, while network analyses reveal relational 
structures between papers and authors. Both approaches help researchers navigate complexity and identify key themes 
or relationships within the evidence base, facilitating expert exploration rather than replacing expert interpretation.

The reporting and visualisation stage translates these analytical outputs into intuitive, accessible formats that guide 
further investigation. The products of ML-driven analysis include interactive topic maps, citation networks, and geospatial 
visualisations that display the structure of literature discovered through computational techniques. For example, Cal-
laghan and colleagues [38] applied topic modelling to produce a topographic map of climate change literature, highlighting 
thematic clusters and disciplinary trends within IPCC reports. Similarly, Lamb and colleagues [35] used these approaches 
on approximately 4,000 urban climate case studies, generating visualisations that revealed thematic clusters by sector 
and exposed geographic research gaps. Creutzig and colleagues [37] coupled narrative analysis with visual mapping to 
illustrate thematic contours of demand-side mitigation literature. More dynamically, Callaghan and colleagues [42] devel-
oped a ‘living systematic map’ of climate policy research that continuously updates visual representations of policy instru-
ments and sectoral trends. These visualisation products serve as exploratory tools within the assessment workflow, aiding 
researchers in navigating complex literature landscapes prior to expert synthesis.

Beyond the tools integrated into formal synthesis workflows, a range of other computational tools, primarily commer-
cial offerings emerging since the advent of ChatGPT, now facilitate broader literature exploration and summarisation by 
leveraging recent advances in NLP. These tools can be broadly divided into three categories. First, academic search and 
visualisation platforms (e.g., LitMaps website) identify networks of interconnected papers based on authorship and citation 
relationships, drawing on data from bibliographic databases like arXiv and Web of Science. Second, query-based sum-
marisation tools (e.g., SciSpace, Elicit platforms) deliver summaries of research findings tailored to user queries, often 
operating on abstracts. Third, publisher-integrated solutions (e.g., Scopus AI, Semantic Scholar’s TLDR – Too Long Didn’t 
Read – feature) embed AI features directly into their databases. More recently, conversational generative AI platforms like 
Perplexity, ChatGPT and Gemini have introduced ‘Deep Research’ functionalities that attempt to synthesise information 
from multiple online sources, often providing citations to overcome the common limitation where many other tools operate 
primarily on metadata or abstracts.

Despite these computational tools’ potential for reducing manual workload and expanding search scope beyond initial 
keywords, they share fundamental limitations. They currently lack the capacity to critically appraise study quality or meth-
odological rigour, nor can they adequately interpret or weigh conflicting findings within the broader scientific context—
steps crucial to the expert judgement process mandated by the IPCC Uncertainty Guidance Note. Outputs from such tools 
require careful expert validation to ensure accuracy and comprehensiveness [39], as summaries may oversimplify com-
plex findings or omit crucial context. Even tools providing citations can sometimes generate inaccuracies or misrepresent 
sources [43]—a phenomenon often referred to as ‘hallucination’ (Check Text Box 1 for further discussion). Consequently, 
whilst these tools may streamline literature navigation and initial topic investigation, thorough engagement with primary 
literature by researchers remains indispensable for robust understanding and synthesis [44].
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AI tools offer considerable advantages in the context of scientific assessments. Notably, they can markedly improve 
efficiency by reducing the time and resources required for literature searching, screening, and visualisation, and poten-
tially enabling continuous monitoring approaches [19,35]. By processing significantly larger volumes of literature than 
traditional methods, these tools can expand the scope of evidence synthesis and decrease the likelihood of overlooking 
relevant studies. Furthermore, the use of consistent, algorithm-driven criteria during screening may help reduce certain 
types of selection bias (e.g., potentially reducing variability introduced by different human screeners applying criteria 
slightly differently), while the clear documentation of computational methods can enhance transparency and replicability 
across assessments.

However, these benefits are counterbalanced by significant limitations and risks. AI tools are highly data-dependent; 
the quality and representativeness of the training data (i.e. WoS, OpenAlex) fundamentally determine their performance. 
Consequently, biases inherent in the underlying datasets – such as the underrepresentation of certain regions, languages, 
or research areas – can be inadvertently amplified [37], potentially worsening existing literature diversity gaps. Moreover, 
while modern NLP techniques excel in pattern recognition, they often lack the nuanced contextual understanding and 
critical appraisal skills of human experts, particularly when assessing methodological rigour or synthesising conflicting 
findings [45]. Equity issues also arise, as access to advanced AI tools and the required computational infrastructure is not 
universal, potentially disadvantaging researchers in resource-constrained settings and exacerbating existing structural 
inequities within the global scientific community [12]. Additionally, many current systems predominantly process text and 
struggle with non-textual data such as figures. It is also crucial to recognise that AI tools do not inherently address broader 
systemic issues such as gender imbalances within research fields or assessment teams [46].

These considerations underline the necessity of a hybrid approach, where AI augments rather than replaces expert 
judgement. The optimal model likely lies on a spectrum: while fully automated systems might maximise coverage and 
speed for certain tasks, expert-guided systems – where domain specialists define parameters, validate outputs, critically 
interpret results, and perform the core synthesis – are essential for ensuring analytical depth, contextual accuracy, and 
overall assessment integrity. Potential frameworks for implementing such hybrid approaches within the IPCC assess-
ment process are explored further in Section 4 below. Table 1 below provides a detailed taxonomy of the AI approaches 

Table 1.  AI augmentation in evidence synthesis workflows.

Workflow 
Stage

AI Augmentation 
Examples

Key Opportunities for 
Assessment Teams

Key Challenges Expert Role Illustrative References

Query and 
collection

Semantic search; 
citation network 
analysis

Broader literature discov-
ery; Identifying influential 
research clusters

Potential bias, miss-
ing niche terms

Define scope, refine strat-
egy, validate relevance

[36,37,39]

Screening 
and selection

ML text classi-
fication; active 
learning

Increased efficiency; 
Handling large volumes; 
Prioritisation assistance

Dependency on train-
ing data, nuance loss, 
potential bias

Define criteria, validate 
classifications, handle 
ambiguity

[19,34,35,41]

Knowledge 
mapping and 
analysis

Topic modelling; 
network analysis

Revealing latent themes/
trends; Mapping research 
landscapes/communities

Requires interpreta-
tion, cannot replace 
critical appraisal/
synthesis

Guide analysis, interpret 
patterns, perform synthesis

[37,38]

Reporting and 
visualisation

Interactive 
evidence maps; 
living maps and 
databases

Enhanced exploration; 
Dynamic updates; Aiding 
interpretation

Potential for 
misinterpretation

Select methods, interpret 
visuals, ensure clear 
communication within 
assessment team

[35,42]

(Cross- 
cutting)

Exploratory tools 
(“summarisers”, 
platforms)

Quick overviews; Initial 
navigation

Superficiality, inac-
curacy/hallucination, 
requires validation

Critical evaluation, use as 
a starting point only and 
rely on primary sources

Examples include: LitMaps; Elicit; 
SciSpace; and ‘deep research’ 
using generative AI platforms 
(e.g., Perplexity, Gemini)

https://doi.org/10.1371/journal.pclm.0000706.t001

https://doi.org/10.1371/journal.pclm.0000706.t001
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discussed thus far in this section, their potential applications within the workflow stages, key limitations, and the critical 
role of expert judgement.

Large language models in science communication: opportunities and risks

The advent of large language models (LLMs), demonstrated by widely accessible chatbots, has generated significant 
interest in their potential application for communicating complex scientific knowledge, including the extensive findings 
within IPCC assessment reports [18,28]. However, their deployment against such authoritative science requires a rigorous 
critique, particularly from the perspective of the non-expert end-user, which is the focus of this section. To provide a clear 
analytical framework for this critique, a distinction is made between ‘addressable’ limitations (technical flaws that may be 
mitigated with better engineering) and ‘inherent’ limitations (problems fundamental to current architectures that demand 
robust governance and user literacy). Understanding this framework is essential for evaluating three core risks users likely 
to face when interpreting IPCC content via LLMs, including the erosion of calibrated uncertainty, the propagation of factual 
inaccuracies, and the amplification of systemic biases. The section concludes by considering emerging advancements 
through this same framework.

A significant concern is the erosion of nuance and calibrated uncertainty. IPCC assessments meticulously employ 
calibrated language to articulate confidence levels and likelihood statements, forming an integral part of the scientific 
finding [11]. LLMs, operating fundamentally as probabilistic text generators optimising for linguistic coherence based on 
training data patterns, may fail to preserve this essential metainformation. Standard LLM outputs may present simplified or 
paraphrased statements stripped of the crucial qualifiers regarding scientific certainty, hence resulting in potential misinter-
pretations of the assessment’s basis and rigour [47,48]. This risk is not merely theoretical; recent experiments have shown 
that even specialised chatbots struggle to correctly interpret nuanced scientific concepts like ‘acceleration’ directly from 
IPCC texts [28]. This difficulty in preserving scientific meaning represents a core, inherent limitation of current generative 
architectures.

Equally concerning are factual inaccuracies and ‘hallucinations.’ LLMs construct responses by predicting statistically 
probable ‘token’ (The basic unit of text processing in LLMs, typically representing parts of words, or whole words. For 
example, the word “unprecedented” might be split into multiple tokens. LLMs process text by converting it into these dis-
crete tokens which are then represented as numerical vectors.) sequences, not by querying a verified knowledge base or 
engaging in logical reasoning. This operational paradigm can result in outputs containing factual errors or ‘hallucinations’ – 
statements that appear plausible and coherent but are incorrect or lack any factual basis [49,50]. When prompted on spe-
cifics within IPCC reports, LLMs might generate inaccurate claims, potentially misleading users who assume fidelity to the 
source material (i.e. IPCC reports). The inherent probabilistic and pattern-completion nature of current generative models 
makes eliminating such errors entirely a significant technical challenge (see Text Box 1). This is where the distinction 
between limitations is key: while simple factual errors may be an addressable limitation that can be mitigated by grounding 
techniques like Retrieval-Augmented Generation (RAG) that ground LLM responses in specific, provided source docu-
ments (e.g., IPCC report PDFs), the fundamental tendency to generate plausible falsehoods is an inherent limitation of 
systems that lack true factual reasoning.

A third critical issue involves the propagation and amplification of biases. LLMs are trained on vast amounts of text 
data, inevitably inheriting societal biases related to geography, language, gender, or perspective embedded within that 
data. While specific impacts on interpreting IPCC reports require further investigation, these inherent biases could subtly 
influence the selection, framing, or emphasis of information presented to users, potentially leading to skewed under-
standing or reinforcing existing inequities [51]. Transparency regarding training data and methods for bias detection and 
mitigation remains crucial. While technical mitigation strategies can make this an addressable issue to some extent, the 
complete elimination of bias is likely impossible, making it a persistent and inherent challenge that requires non-technical 
solutions like expert oversight and critical evaluation of outputs [28].
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While these risks are significant, strategies are being deployed to mitigate them. One example is RAG architectures 
that shift the reliance from the model’s general parametric knowledge to source documents improving factual consistency 
[52]. Implementations like ChatClimate.ai demonstrate this approach, using IPCC AR6 as the primary knowledge source 
and attempting to preserve source references and confidence levels [32]. Such systems typically involve sophisticated 
prompt engineering (The practice of carefully crafting input instructions (prompts) to guide LLM outputs toward desired 
formats, styles, or content constraints. This involves techniques like specifying roles, providing examples, establishing 
constraints, or including specific instructions about how to handle certain types of information.) to constrain the LLM’s 
output behaviour and may incorporate automated fact-checking routines. Nonetheless, even with RAG and careful prompt 
engineering, the inherent limitations of the underlying generative models persist [48].

Although the field is rapidly advancing, each technological frontier introduces specific and complex challenges. 
Reasoning-focused models, for instance, are designed to perform explicit stepwise analysis, which could theoretically 
improve the handling of calibrated uncertainty. However, research reveals this stated reasoning can be ‘unfaithful’: the model 
may construct a plausible post-hoc rationalisation for a correct answer that it actually reached via a hidden, unreliable cue. 
This lack of a verifiable reasoning process means the model cannot be trusted to be correct on subsequent, slightly different 
questions [53,54]. Similarly, the development of multimodal models represents a significant capability extension, offering the 
potential to interpret figures and tables. Yet, their capacity for deep semantic interpretation of complex scientific visuals is 
limited [55]. Even advanced retrieval architectures like GraphRAG, which use knowledge graphs to address ‘global’ sense-
making queries across an entire corpus where standard RAG fails, are critically dependent on the quality of that underlying 
knowledge graph (As described by [56]), a knowledge graph in this context is a structure built by an LLM where the extracted 
entities from the source text become the ‘nodes’ and the identified relationships between them become the ‘edges’ of the 
graph.) [56]. Therefore, while these advancements demonstrate progress on seemingly addressable limitations, they also 
reinforce the inherent challenge of substituting algorithmic processes for genuine expert comprehension.

Consequently, navigating IPCC information via LLM tools demands a high degree of critical literacy from the user. Ver-
ification against original IPCC source documents, particularly the Summaries for Policymakers and Technical Summaries 
is crucial. Users should exercise scepticism towards outputs lacking precise citations or calibrated uncertainty language. 
Developers constructing tools based on IPCC content should prioritise verbatim extraction for key findings, preserve asso-
ciated uncertainty qualifiers, provide clear source attribution, and explicitly communicate the tool’s limitations [32].

Text Box 1: Understanding large language model limitations

To understand the root causes of the risks discussed in this section, it is necessary to examine the fundamental oper-
ational principles of LLMs. This text box breaks down the key technical limitations that give rise to these user-facing 
challenges.

•	 Probabilistic pattern generation: A primary driver of both factual inaccuracies and the erosion of scientific nuance, this 
principle means that LLMs function by predicting the most statistically likely sequence of tokens (words or sub-words) 
given an input prompt and the preceding generated tokens. They leverage complex neural network architectures, 
typically Transformers [57], to model intricate statistical patterns of language learned from massive training datasets. 
Their goal is linguistic coherence based on these patterns, not factual verification or logical deduction. For example, 
when summarising a scientific debate with a majority and minority view, an LLM might incorrectly present the majority 
view as a unanimous consensus because it optimises for the most probable linguistic pattern.

•	 Stochasticity and variability: A fundamental challenge to scientific reproducibility, the token prediction process often 
involves sampling from a probability distribution over possible next token. This inherent stochasticity, controllable 
via parameters like ‘temperature’, means identical prompts can yield different outputs across separate queries [58], 
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challenging reproducibility. This poses a significant challenge for scientific work; for instance, two policymakers asking 
the same question about the IPCC’s findings on permafrost thaw could receive slightly different summaries, leading to 
inconsistent conclusions.

•	 Parametric knowledge limitations: A key source of both outdated information and embedded biases, an LLM’s ‘knowl-
edge’ is implicitly encoded within its model parameters (weights) derived from its training data. This knowledge is 
static (unless retrained), potentially outdated, and may contain biases or inaccuracies present in the underlying 
sources. It cannot actively query external sources or update its knowledge post-training unless specifically designed 
with mechanisms like RAG.

•	 Hallucinations as artefacts: The most direct cause of plausible-sounding misinformation, the generation of plausible 
but false or nonsensical information arise naturally from the generative process. When faced with ambiguity, insuffi-
cient relevant patterns in its training data, or prompts requiring information beyond its scope, an LLM may generate 
text that maintains linguistic flow but deviates from factual accuracy [49]. This is not intentional deception but an 
artefact of optimising for probable sequences. A common failure mode is the invention of sources; an LLM asked for 
evidence on a niche topic might generate a reference to a non-existent but plausible-sounding publication.

Addressable versus inherent limitations

Certain addressable limitations can be mitigated: Retrieval-Augmented Generation (RAG) grounds responses in 
specific documents [52]; more advanced architectures like GraphRAG aim to improve this with better contextual 
understanding; Reinforcement Learning from Human Feedback (RLHF) aligns outputs with human preferences for 
helpfulness and harmlessness [59]; careful prompt engineering guides LLMs output. Furthermore, the field is devel-
oping a sophisticated evaluation ecosystem to systematically benchmark LLM performance. This includes holistic 
multi-dimensional frameworks like HELM, contamination-resistant tests (Benchmarks designed to minimise the risk 
that a model has already been trained on the test questions, a phenomenon known as ‘data contamination’ which can 
artificially inflate performance scores.) such as LiveBench, and large-scale human preference platforms like Chatbot 
Arena [60–62]. A prominent technique is the use of another powerful LLM as an automated evaluator, the ‘LLM-as-a-
judge’ approach, to score complex outputs. Although efficient, this method is susceptible to significant biases, such as 
a preference for verbosity or answer position, and it raises broader concerns about reliability and leaderboard stabil-
ity, reinforcing the need for transparent application and critical human oversight [63,64]. However, the core inherent 
limitation – the lack of genuine comprehension, reasoning, and causal understanding – persist even in advanced 
models. LLMs manipulate linguistic form based on statistical correlations, they do not understand semantic meaning 
or scientific principles in a human sense. Critical evaluation by human users remains crucial.

Expert-led integration: Responsible Options for AI in Scientific Assessments

In the preceding sections, I have established a basis for the responsible integration of AI into IPCC assessments. 
Section 2 presented a systematic framework for using AI to manage the evidence base for robust synthesis, and 
Section 3 provided a critical analysis of the communication risks posed by LLMs, structured around the distinction 
between ‘addressable’ and ‘inherent’ limitations. Building upon these insights, and mindful that the IPCC’s core role 
is to assess the state of scientific knowledge rather than generate new primary research, this concluding section 
proposes a governance framework based on practical options for responsible and effective integration of AI capa-
bilities into current and future assessment cycles, such as the IPCC’s AR7. The key question is not whether AI can 
contribute to the assessment process, but rather how it can best augment human expertise while maintaining scien-
tific integrity.
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Two complementary options emerge for how the IPCC could leverage AI. These can be understood as two distinct 
institutional roles: the IPCC acting as a ‘producer’ by employing validated AI tools to process and analyse the assessed 
literature internally (Option 1), or acting as a critical ‘assessor’ of AI-generated products, such as topic maps, that have 
already been published within the peer-reviewed literature (Option 2). The production and evaluation of such AI-driven 
products align with the call by Ford et al. [16] for assessment bodies to focus more on appraising knowledge syntheses 
rather than primary literature. Their recommendations offer valuable guidance for both options: for the internal develop-
ment of robust tools (option 1) and for author teams needing to judge the quality of externally published AI-driven analyses 
(option 2). Integrating these rapidly evolving technologies effectively, however, requires more than just technical capability; 
it demands understanding their strengths and limitations and, crucially, careful consideration of how they align with IPCC 
principles mandating assessments be ‘comprehensive, objective, open and transparent’ [15].

The first option positions the IPCC as a ‘producer’ (potentially via its Technical Support Units or specific author teams; 
[28]), directly employing AI tools that have been previously validated and documented in the scientific literature. For 
instance, validated ML classifiers could assist in literature screening, or established topic modelling algorithms could gen-
erate evidence maps. This approach would require the operationalisation of the systematic workflow framework detailed 
in Section 2 (Table 1), supported by clear internal protocols for tool selection (ensuring they are state-of-the-art, validated, 
and appropriate for the task), operation (defining inputs, parameters, and execution), and the evaluation of their products 
(e.g., screened lists, maps). Opportunities exist to embed such AI-generated products at various stages, creating a hybrid, 
expert-guided workflow (visualised conceptually in Fig 1). For example, during scoping, AI-generated evidence maps 
[19,35] could offer rapid literature overviews. Topic modelling outputs could assist Lead Authors in structuring drafting 
assignments. Within drafting, interactive evidence map products [42] or filtered literature lists (generated using validated 
screening tools, with human oversight) could aid exploration and analysis, always stopping short of automated synthesis.

The second option positions the IPCC as an ‘assessor’ of AI-generated products (e.g., large-scale literature syntheses, 
complex data visualisations, model-output analyses produced using AI) that are already published in the peer-reviewed 
literature, treating them like any other scientific publication. This aligns directly with the IPCC’s mandate but requires 
authors to possess the necessary expertise to critically evaluate the AI methodologies employed in those publications, 
including their assumptions, limitations, potential biases, and the robustness of their findings. Guidance for author teams 
on how to conduct such critical appraisals of knowledge syntheses is now beginning to emerge [16]. The assessment 
would need to consider the transparency and reproducibility of the published AI methods alongside their findings.

Regardless of the option chosen – whether employing validated tools internally or assessing published AI products 
– careful consideration within the IPCC’s procedural and assessment frameworks is essential, particularly concerning 

Fig 1.  Conceptual integration of AI-generated products into the IPCC assessment workflow.  Fig 1 illustrates potential points of interface where 
AI-generated products (bottom row) could support the established IPCC assessment workflow (top row). The top row depicts key stages from Scoping 
through Drafting to Publication. The bottom row shows examples of AI products relevant to specific stages, such as evidence maps supporting Scoping 
and Drafting, or screened literature lists aiding early drafting. These products could be generated either through the internal application of validated AI 
tools by the IPCC (Option 1) or potentially adapted from published, peer-reviewed AI analyses (Option 2), always serving as inputs for expert judgement 
rather than replacing it.

https://doi.org/10.1371/journal.pclm.0000706.g001

https://doi.org/10.1371/journal.pclm.0000706.g001
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the Uncertainty Guidance Note [11]. The Guidance Note bases confidence levels on evaluations of evidence (type, 
amount, quality, consistency) and the degree of agreement. The key questions remain pertinent: How should author 
teams evaluate the ‘comprehensiveness’ or potential biases introduced by AI tools or reflected in published AI products 
when assessing the overall ‘amount’ and ‘consistency’ of evidence? How does the methodology and validation behind 
an AI tool (Option 1) or a published AI product (Option 2) influence expert judgement regarding the ‘quality’ of the 
evidence base? How might AI-driven structuring of information (e.g., topic maps) influence the dynamics of achieving 
expert ‘agreement’? Addressing these questions ensures that AI integration upholds the integrity of IPCC confidence 
assessments.

Successfully implementing either option requires robust governance frameworks and safeguards. Furthermore, the 
urgency for such frameworks is heightened by the likelihood that many scientists are already using publicly available AI 
tools in an ad-hoc manner. For Option 1 (the IPCC as ‘producer’), clear protocols defining appropriate use-cases, tool 
validation/selection criteria, operational transparency, product evaluation standards, and documentation are essential for 
transparency, like any line of evidence used in IPCC assessments [23]. For Option 2 (the IPCC as ‘assessor’), guidance 
may be needed for authors on critically appraising AI methodologies within the literature. For both, boundaries between 
automated support and indispensable expert judgement – particularly in appraisal, synthesis, and confidence assess-
ment – must be explicit. A precautionary, adaptable approach is also warranted, given how rapidly these technologies are 
evolving. Critically, equity considerations remain central. Ensuring equitable access to necessary AI tools and the skills to 
use / evaluate them (Option 1) or the expertise to critically assess published AI products (Option 2), alongside data and 
computational resources, is vital to avoid exacerbating disparities [12].

Beyond the potential integration of AI tools within the evidence synthesis workflow, the advent of LLMs introduces 
distinct considerations for how assessment findings are communicated and interpreted externally. As elaborated in 
Section 3, the capabilities of LLMs to process and generate text present opportunities for enhancing the accessibility of 
complex reports, they also carry substantial risks, from omitting critical nuances to generating factual inaccuracies. A 
constructive path forward, therefore, requires a dual approach that maps directly onto the distinction between address-
able and inherent limitations. The responsibility for mitigating addressable limitations lies primarily with developers. 
Establishing clear best-practice guidelines for third-party developers, a recommendation emphasised by Muccione and 
colleagues, [28], is crucial. Such guidelines should advocate for transparency regarding model limitations, the use of 
robust RAG architectures strictly grounded in IPCC source texts, and clear source attribution. Conversely, navigating 
the persistent inherent limitations requires empowering users. A crucial element involves promoting critical literacy 
among diverse user groups regarding the fundamental nature of these technologies (See Text Box 1). Users must be 
encouraged to approach LLM-generated summaries with caution, to cross-reference information with authoritative 
IPCC source documents, and to critically assess the fidelity of outputs. This dual focus on developer accountability 
for the solvable problems and user empowerment for the fundamental ones highlights the irreplaceable role of critical 
human interpretation.

In conclusion, integrating artificial intelligence into the demanding processes of the IPCC presents a significant oppor-
tunity but also a substantial challenge that focusing on specific, operational frameworks. This essay has argued that 
enhancing evidence synthesis requires a systematic, workflow-based approach to integrating AI tools. Simultaneously, 
the responsible use of generative AI for science communication necessitates a governance model built on a clear under-
standing of the technology’s ‘addressable’ versus ‘inherent’ limitations. To implement these insights, this essay proposes 
a governance structure based on two institutional roles, the IPCC as an internal ‘producer’ or as a critical ‘assessor’ of 
AI-driven products. Successfully navigating this evolving landscape demands a precautionary yet adaptable strategy, 
consistently prioritising scientific integrity, objectivity, and transparency. Ultimately, the goal is not to replace indispensable 
expert judgement but to augment human capabilities responsibly, ensuring that AI serves to strengthen the credibility and 
impact of scientific assessments in guiding informed decision-making.
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