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Abstract

Meteorological and climatological trends are surely changing the way urban infrastruc-
ture systems need to be operated and maintained. Urban road traffic fluctuates more
significantly under the interference of strong wind-rain weather, especially during trop-
ical cyclones. Deep learning-based methods have significantly improved the accuracy
of traffic prediction under extreme weather, but their robustness still has much room for
improvement. As the frequency of extreme weather events increases due to climate change,
accurately predicting spatiotemporal patterns of urban road traffic is crucial for a resilient
transportation system. The compounding effects of the hazards, environments, and urban
road network determine the spatiotemporal distribution of urban road traffic during an
extreme weather event. In this paper, a novel Knowledge-driven Attribute-Augmented
Attention Spatiotemporal Graph Convolutional Network (KA3STGCN) framework is
proposed to predict urban road traffic under compound hazards. We design a disaster-
knowledge attribute-augmented unit to enhance the model’s ability to perceive real-time
hazard intensity and road vulnerability. The attribute-augmented unit includes the dynamic
hazard attributes and static environment attributes besides the road traffic information.
In addition, we improve feature extraction by combining Graph Convolutional Network,
Gated Recurrent Unit, and the attention mechanism. A real-world dataset in Shenzhen City,
China, was employed to validate the proposed framework. The findings show that the
prediction accuracy of traffic speed can be significantly increased by 12.16%~31.67% with
disaster information supplemented, and the framework performs robustly on different road
vulnerabilities and hazard intensities. The framework can be migrated to other regions and
disaster scenarios in order to strengthen city resilience.

Keywords: traffic prediction; extreme weather; deep learning; disaster knowledge

1. Introduction

The impact of extreme weather results in greater variability in urban road traffic and
poses a significant challenge for traffic prediction and management. In coastal areas, for
example, tropical cyclones often bring extreme weather events, including strong winds
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and heavy rain, resulting in flooding, massive traffic delays, and accidents [1]. It was
reported that the commuting time during rush hours in a typhoon season increased by
30%~60% than the usual workdays in Shenzhen City, China (http:/ /www.sz.gov.cn/en_
szgov/news/notices/content/post_8000824.html, accessed on 13 October 2023). During
Hurricane Sandy in 2012, it took 132 h for traffic in New York City to return to normal [2].
The frequency and intensity of extreme weather events such as tropical cyclones seem to be
increasing due to climate change [3]. Sustainable Development Goal 11 (SDG11) aims to
make cities inclusive, safe, resilient, and sustainable [4]. Predicting spatiotemporal patterns
of urban road traffic accurately under extreme weather is critical to strengthening city
safety and resilience [5,6].

While prior research has extensively examined infrastructure damage [7] and economic
impacts [8,9] from extreme weather, understanding how urban traffic systems dynamically
respond remains a critical research gap. Meteorological factors create multifaceted trans-
portation challenges: precipitation affects road surfaces by reducing friction coefficients
and increasing braking distances, while intense rainfall significantly impairs visibility
and driving conditions. Strong crosswinds present additional hazards to vehicle stability
and control [10]. Beyond direct effects, extreme weather can cause secondary disruptions
through fallen trees, flooding, and infrastructure damage [11], triggering complex ripple
effects across transportation networks [11]. These impacts are further compounded when
navigation systems redirect traffic, potentially overloading alternative routes during peak
periods. The intricate interplay between environmental conditions, infrastructure vul-
nerability, and traffic flow dynamics represents a significant and underexplored area in
transportation research.

The data-driven methods are a trend to improve the performance of traffic prediction.
Classical traffic forecasting models typically focus on extracting the temporal correlation of
traffic flow. Recent cutting-edge studies have demonstrated the feasibility and superiority
of deep learning in traffic prediction. Various algorithms based on Recurrent Neural
Network (RNN) such as Long Short-Term Memory (LSTM) [12], bidirectional LSTM [13],
sequence-to-sequence learning [14,15], Gated Recurrent Unit (GRU) [16], and an attention
mechanism [17] are well-suited for capturing time dependence and widely used in traffic
prediction tasks. Among them, GRU is particularly effective in terms of solution quality
and inference speed [16]. Researchers have also realized the importance of the strong spatial
interaction of transportation networks. As a result, algorithms based on Convolutional
Neural Network (CNN) such as CNN-LSTM [18], Conv-LSTM [19], and 3D CNN [20]
have been developed to extract spatiotemporal features from traffic information. These
methods use Euclidean distance to measure the spatial correlation of raster data. However,
real-world traffic data has a non-Euclidean structure of directional topology. Thus, Graph
Convolution Network (GCN) has been introduced to extract from graph data. GCN-based
deep learning algorithms are a direction for technological improvement.

While deep learning has demonstrated significant capabilities in processing spatiotem-
poral data patterns from large datasets [21,22], current architectures still present notable
limitations requiring further development. First, model architecture remains a critical
factor—optimal structural design directly influences predictive performance when working
with adequate training data [23,24]. This architectural optimization represents a persistent
research challenge across various deep learning applications. Additionally, while traffic
data sequences capture fundamental state characteristics, they often fail to incorporate all
relevant influencing factors [25]. These limitations highlight the need for improvement in
neural network design and feature representation for traffic prediction tasks.

Studies have found that future traffic states are not only dependent on historical traffic
information but also impacted by external factors, such as the natural environment [26],
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surrounding infrastructure [27], and especially weather conditions [28] during extreme
weather. The knowledge-driven information fusion provides us with new ideas to pre-
dict urban traffic under extreme weather. According to the United Nations Office for
Disaster Risk Reduction (UNDRR), the disaster risk results from the complex interaction
between development processes that generate conditions of exposure, vulnerability, and
hazard (https:/ /www.preventionweb.net/understanding-disaster-risk/component-risk/
disaster-risk, accessed on 7 October 2023). Urban roads are critical infrastructures ex-
posed to the natural environment. Extensive research has been carried out on modeling
the spatial-temporal correlation of traffic flow itself or considering insufficient external
factors [29-31]. While previous research has advanced traffic prediction, the specific
compound effects of multi-hazards and varying environmental conditions have not been
thoroughly investigated, especially concerning extreme weather scenarios.

Addressing SDG11, there is a need for a traffic prediction model that combines disaster
knowledge with spatiotemporal correlation to predict traffic status under extreme weather,
which is more practical for building resilient cities.

Therefore, we developed a data-driven and knowledge-driven traffic prediction frame-
work. Our work improves the structures of traffic prediction models, imitates the cognitive
process of experts with respect to real-time changes in traffic, and optimizes the network
to extract spatiotemporal correlation from high-dimensional massive data. Moreover, a
new data fusion module is designed by integrating hazards and environment knowledge.
Here, the two hazards considered are compound precipitation and wind, as they are most
likely to occur in China, particularly in the southeast coastal areas during the summer,
which is related to the frequent occurrence of tropical cyclones [32]. The environment
information includes social environment and natural environment. By identifying these
potential changes in traffic flow early on, particularly for urban road systems that are often
heavily impacted by extreme weather events, the framework can serve as an invaluable tool
for both early warning and traffic management. The ability to anticipate traffic disruptions
can help adapt traffic management strategies quickly and minimize the adverse effects of
such events on urban transportation, such as delays, accidents, and increased travel times.
Opverall, our work has the potential to greatly enhance the resilience and responsiveness of
urban road systems to extreme weather events.

The remainder of this paper is organized as follows. Section 2 outlines the method-
ology employed in the study. Section 3 provides detailed information of the experiment.
Section 4 presents the numerical results and discusses the model’s performance. Section 5
concludes the paper.

2. Methodology
2.1. Framework

This study proposes a novel Knowledge-driven Attribute-Augmented Attention
Spatio-Temporal Graph Convolutional Network (KA3STGCN) framework (Figure 1) for
urban traffic prediction under extreme weather.

We develop a physics-informed attribute-augmented unit that fundamentally ad-
vances beyond traditional feature concatenation approaches through its dynamic coupling
mechanism. This unit uniquely integrates the following: (1) dynamic hazard attributes
including wind speed and precipitation with adaptive weighting based on real-time in-
tensity, (2) static environment attributes, including Points of Interest (POI) and Digital
Elevation Model (DEM), representing social and natural infrastructure vulnerability, and (3)
historical traffic states—all processed through a parallel architecture that preserves feature
distinctiveness while enabling nonlinear interactions.
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Figure 1. The proposed KA3STGCN framework.

The attribute-augmented unit is fed into the deep learning model to capture and
predict the spatiotemporal pattern of urban road traffic. The model comprises three main
components: GCN, GRU, and an attention mechanism. GCN is used to extract spatial
dependence while accounting for hazard-modulated road vulnerabilities. GRU is well-
suited for modeling the temporal dependence of road traffic. Compared with LSTM,
GRU has fewer parameters with faster training speed and convergence, while maintaining
comparable performance. Furthermore, the attention mechanism can be employed to
adjust the relative importance of different horizons. While the components process spatial
and temporal dependencies sequentially, the attribute-augmented unit employs a parallel
architecture. The hazard attributes and traffic data are processed independently before
fusion, thereby preserving their distinct characteristics.

The definitions of variables in Figure 1 are as follows:

Definition 1. Urban road network G. The urban roads are modeled as an unweighted net-
work G = (V, E). V = v1,0p,...,0y is the set of nroads; E = e1,ey,...,ey is the set of
medges connecting different roads. The adjacency matrix A is used to illustrate the connectivity of
Gand composed of 0 and 1, where 1 means the corresponding roads are connected, and 0 otherwise.

Definition 2. Traffic state matrix X. x! denotes the traffic state on the i-th road at time t. The traffic
states are usually described as the road speed, density, or traffic flow. Without loss of generality,
traffic speed is used as an example of traffic information in experiments.

Definition 3. Hazard attribute matrix HA. HA = {HA1,HA;,...,HAw} is a collec-
tion of w different dynamic hazard factors. For j-th hazard attribute HA; = {j1,j2,--., ji},
jelL2... w,ji= {jil,jiz, . ,jit} is the time series of the j-th hazard attribute of the i-th road.
Here, the hazards include two meteorological factors—uwind speed and precipitation.

Definition 4. Environment attribute matrix EA. EA = {EAy,EA,,...,EA,} is a collection of

p different static environment factors. For the j-th environment attribute
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EA; = {j1, jo,---, i}, ] € [L2,...,pl, ji is the j-th environment attribute of the i-th road.
Here, the environment factors include POI and terrain.

The traffic predicting problem aims to learn a function f that is able to predict T future
traffic states given the urban road network G, historical traffic matrix X, the hazard attribute
matrix HA, and the environment attribute matrix EA, as shown in Equation (1).

[Xi21, Xe42, - -, Xei1] = £(G, X|(HA, EA)). 1)

2.2. Attribute-Augmented Unit

The attribute-augmented unit serves as the core innovation of our framework, de-
signed to effectively integrate disaster knowledge with traffic prediction through three
novel technical contributions.

At time ¢, if disaster information is not considered, the input Al can be expressed as
the following:

A = [X'], Ah e R". 2)

The attribute-augmented unit joins traffic speed matrix X and the hazard attributes
HA and environment attributes EA. Notably, we introduce a dynamic cumulative hazard
window mechanism that captures both immediate and delayed disaster impacts. Specif-
ically, for each hazard attribute HA;,i € [1,w], we construct an extended time window
k to model the temporal propagation of disaster effects, where k represents the histor-
ical horizon. This design explicitly accounts for the lagged consequences of extreme
weather events, such as gradual flooding after heavy rainfall., i.e., picking the hazard
attributes HAffk’t = HAf*k, HAffk*l, .. .,HAf} for each submatrix HA; when gener-
ating A". EA € R"*7 is only calculated once and used repeatedly without introducing
additional uncertainty. Finally, the complete attribute-augmented matrix A’ including both
time-variant hazard and time-invariant environment attributes as well as traffic speed at
time ¢ is formed as the following;:

At = X, HATH HAS M, HAG M EALEA, . EA|. 3)

Here, At € RnX (1+p+w*(k+1)) .
Thus, Equation (1) can be transformed as the following:

[Xt+1/ XH-ZI sy XtJrT] = f(G/ At) (4)

Our attribute-augmented unit A’ is not a static feature concatenation, but rather
a physics-informed dynamic coupling mechanism. This parallel design preserves the
distinct characteristics of each feature type while allowing for learned interactions through
subsequent network layers. The transformation in Equation (4) demonstrates how these
augmented features are incorporated into the prediction framework.

2.3. Models

A deep learning model is designed to capture spatiotemporal dependencies by comb-
ing the GCN, GRU, and attention mechanism.

2.3.1. Spatial Dependence Modeling

In this paper, spatial dependency is modeled by GCN. The learning process of graph
convolution is similar to the convolution and coding for node information. It mainly
aggregates neighbor nodes through the adjacency matrix. Parameters are shared during
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the aggregation process [33]. Given an adjacency matrix A and the augmented matrix A of
the road network G, the GCN model constructs a filter in the Fourier domain. The hidden
layers in GCN can be represented as H'™! = f (Hl, A). The hazard and environment

attributes are scaled, where H' includes hazard-modulated road vulnerabilities.
The propagation rule f in spatial domain-based GCN model is defined as follows [34]:

~NT Ay~ A~ Ty

1 1
Hit :0<D “AD 2lel> )

where H'*1 is the output and H? = A!. o(-) is the nonlinear activation function.
A = A+ Iy represents the adjacency matrix with added self-loops, and Iy is the iden-

tity matrix. D = ) ; A;; is the corresponding degree matrix. W' is the trainable weight
matrix of the [-th layer. Equation (5) demonstrates how to normalize the graph into a regular
network, obtain parameters and weights, and then return the output to the following layer.

2.3.2. Temporal Dependence Modeling

The temporal dependency is modeled by GRU after the GCN cell. GRU was regarded
as a simplification and improvement of LSTM [35,36]. GRU solves the problems of gradient
disappearance or gradient explosion in back propagation of long-term memory by using
update gate z; and reset gate r¢ [37]. The “gate” here refers to the matrix multiplication that
selectively controls the flow of information.

At time ¢, the internal processes of a GRU cell are shown below.

Firstly, the update gate z; is calculated as follows:

zt = 0 (Ws-[hy—1,8c(A, AY)] + 1) (6)

where gc(+) represents the graph convolution process and is defined in (5), and gc(A, A') is
the current input. i;_; is the hidden state from the previous node. The activation function
o converts data into values in the range of 0~1 as the gating signal. W, and b, are the
weight and bias. z; is used to limit how much old information is incorporated into the
current data.

Secondly, the reset gate #; is calculated as follows:

re = (W [hi-1,8¢(A, AY)] +by), 7)

P; = tanh(Wz- [re*hi_q,8c(A,AY)] + bﬁ)‘ (8)

Here, W;, W~ and by, b~ are the weight and bias. The activation function tanh converts
data into values in the range of —1~1 to avoid data disappearance or explosion. The old

state would be added into the new state Ptt by the control of ;.
Finally, the current output state /; is calculated based on the new state /i; and last
output i;_1, as follows:
ht = (1 — Zt) * ht—l + z¢ * I’lt. (9)

2.3.3. Attention Mechanism

In the previous calculation process, a large number of feature maps of different chan-
nels was generated. However, the importance of the information transmitted via channels
varies. So, the proposed model employs the attention mechanism to dynamically adjust
the contribution of hazard features based on their predictive utility. Here, a multi-layer
perception is added to the model after GCN and GRU [38].
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Given a query g4 and the hidden layer vector H = [hy,hy, ..., hy], N is the length of
the time series. For each ;, i € [1, N], the probability «; of selecting h; is as follows:

: exp(s(hi, q))
a; = p(z=1|H,q) = softmax(s(h;, = a7, (10)
p(z =ilH,q) = softmax(s(h;,q)) T s(yq)

Here, s(h;,q) is calculated based on the additive model of two hidden layers using
linear transformation [39]. w(;) and b(;) are the weight and bias of the first hidden layer,
and w(;) and b(,) are the weight and bias of the second hidden layer, respectively. The
higher the information relevance with g, the higher the weight of h;. The attention score
was then determined using a weighted average, as follows:

Att(H,q) = Y, aih. (12)

Finally, the full connection layer is used to output the prediction results.

2.3.4. Loss Function

In the training process, the goal is to minimize the error between the real traffic speed
on the roads and the predicted value. Thus, the loss function’s goal is to minimize the
prediction error, as follows:

Loss = ||yt — || + ALpeg- (13)

Here, y+ and y; are real traffic speed and predicted speed, respectively. Lyeg is the L2
regularization term to avoid overfitting, and A is a hyperparameter.

3. Data and Experiments
3.1. Data Description

In our study, the KA3STGCN model is applied to a real-world dataset in Shenzhen
City. Shenzhen is a densely populated and economically developed coastal megacity in
China with a massive and continuously growing transportation infrastructure (Figure 2a).
The city has an area of 1997.47 km?, a permanent population of 13.44 million as of
2019 (https:/ /www.sz.gov.cn/en_szgov/aboutsz/profile/content/post_11666623.html,
accessed on 2 January 2025), a total road mileage of 8066.1 km, and a civilian car ownership
of 3.53 million as of 2020 (http://tjnj.gdstats.gov.cn:8080/tjnj /2021 /directory/15/html/
15-11-0.htm, accessed on 2 January 2025). During summer, Shenzhen is vulnerable to
frequent tropical cyclones with wind and rain in the western Pacific Ocean. In 2018, the
city experienced the most severe damage from tropical cyclones in last decade, including
Typhoon Mangkhut. The time period is from 1 April 2018 to 30 September 2018, which is
the high incidence period of tropical cyclones. Six categories of data were used in this study,
as shown in Table 1, and the multi-source data distributions are presented in Figure 2b—d.

Table 1. The multi-source data description.

Data Data Description
The polyline data (Figure 2b) is provided by DiDi Chuxing (Beijing, China)
G The network of urban roads (https:/ /outreach.didichuxing.com/research/opendata/, accessed on 14 March 2020)

which is the biggest online car-hailing service platform in China.
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Table 1.

Cont.

Data

Data Description

The traffic speeds

The 10 min data is provided by DiDi Chuxing. The road speeds are calculated from
DiDi vehicle trajectories (such as DiDi Express, Premier, and Tax, roughly accounting for
3~10% of the total traffic) for each urban road [40].

HA

Wind speed

The NetCDF data is provided by the National Climate Center
(http:/ /data.cma.cn/data/cdcdetail /dataCode /NAFP_CLDAS2.0_NRT.html,
accessed on 22 August 2020) in 39 grids with resolutions of 0.0625° x 0.0625° and 1 h
(Figure 2b). The meteorological girded data of various hours are combined to produce
the dynamic time-changing hazard information.

Precipitation

Same as wind speed.

DEM

The adf data with spatial resolution of 30 m is provided by Geospatial Data Cloud site
(https:/ /www.gscloud.cn/, accessed on 23 August 2020) (Figure 2c).

EA

POI

The point data is obtained by Amap API
(https:/ /Ibs.amap.com/api/webservice/guide/api/newpoisearch, accessed on
25 August 2020). The 435,113 POIs in Shenzhen are divided into 14 categories as the
following [1,2,...,14]: living services, sports recreation services, food and beverages,
shopping services, transportation facilities, public facilities, financial and insurance
services, medical services, scenic spots, education services, government services,
enterprises, hotels, and accommodations. (Figure 2d shows the kernel density of POIL)

60°E  70°E  80°E  90°E 100°E 110°E 120°E 130°E 140°E 150°E 113°50'E 114°0'E 114°10E 114°20'E 114°30'E
(a) (by
d
//
40°N- ,‘_/‘f‘ 3 _#82°50N
&
(f’w! \L.
s(\ }_C}:'
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\'\A- \ﬁl
B shenzhen ""\I_ff\r\
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0 400 800 km = = S e <{ 0 5 10km DiDi roads‘ .
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o 3.65%107
- ") Shenzhen 0

Figure 2. Case study area: Shenzhen City in China. (a) The geographical location; (b) DiDi urban
roads and the meteorological grids; (¢) DEM; (d) POL.

3.2. Data Preprocessing

To address the heterogeneity of multi-source data with varying formats and standards,

we established a rigorous data consistency framework through the following steps: First,

the urban road network was converted into an adjacency matrix to represent topological

relationships. Second, 10 min traffic speed data were aggregated into hourly averages

to align with the temporal resolution of meteorological data. For environmental feature

extraction, we calculated elevation values averaged across each road segment from 30 m
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resolution DEM data and determined the dominant POI category per road through kernel
density analysis of 14 POI classifications.

Spatial alignment was achieved through a multi-step process: we sampled points
along each road polyline at 10 m intervals, computed the average Euclidean distance to
neighboring meteorological grid centroids, and assigned grid-recorded wind speed and
precipitation values using nearest-neighbor interpolation weighted by these distances.
Temporal alignment incorporated an n-hour cumulative window for hazard attributes
to capture delayed weather impacts, while maintaining static environment features for
each road.

All features underwent Min-Max normalization to [0,1] ranges. The unit can weight
hazard impacts based on real-time intensity and road vulnerability. Missing values were
excluded to ensure data quality. The final attribute-augmented matrix A’ combined these
normalized features through Equation (3), where sliding hazard windows preserved tem-
poral dependencies and distance-based weighting maintained spatial relationships—a
significant advancement over simple concatenation approaches like ASTGCN. All normal-
ized values were denormalized post-prediction for interpretation.

After pre-processing, 1054 road segments were available (two-way roads are regarded
as two road segments). The size of the adjacency matrix was 105 x 1054. The size of
each environment factor was 1054 x 1. The size of each hazard factor was 1054 x 4392
(183 days, 4392 h).

Furthermore, we verified the impact of disaster-related factors on urban road traffic
(Figure 3). Figure 3a shows the changes in traffic speed of one road segment during Typhoon
Mangkhut in 2018 compared with a normal sunny day. It is evident that extreme weather
drastically reduced traffic speed. Figure 3b depicts the traffic speeds of two road segments
dominated by two classes of DEM (Class 1 is lower than Class 2 in altitude). Similar
time-varying traffic condition features were observed in both sample groups; however,
total traffic speeds were lower in DEM Class 1 than in DEM Class 2. Figure 3¢ shows the
traffic speeds of two roads dominated by two types of urban POIL The traffic speed on
roads around living services decreased around 7 a.m. and 6 p.m. The traffic speed on roads
neighboring enterprises reached its valley around 8 a.m. and was lower than that of the
former roads most of the time.

(a) 40+ A normal sunny day (b) 40+ & DEM Class 1 (c) 40 Enterprises

. —#- Typhoon Mangkhut DEM Class 2 —A— Living services

=

= 30 354 30

= m \

% 204 N 30 20 \‘m

&

=

E 10 25+ 10

H
0 T T T 1 20 T T T 1 0 T T T 1
0:00 6:00 12:00 18:00 23:00 0:00 6:00 12:00 18:00 23:00 0:00  6:00 12:00 18:00 23:00

Time Time Time

Figure 3. The impact of disaster-related factors on urban road traffic. (a) Disaster event; (b) DEM;
(c) POL
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3.3. Evaluation Metric

Four metrics were used to evaluate the performance of the KA3STGCN model: Root
mean square error (RMSE), Mean Absolute Percentage Error (MAPE), Accuracy, and Coef-
ficient of Determination (R?), which are defined as follows:

1 M N 2
RMSE = \/Z\/H\sz—l Zi:l (y{ — y{) , (14)

j
100 v o [P
MAPE VN it Y e (15)
1
Accuracy =1 — HY _ YHF, (16)
1Yl
.oaN 2
jl\il i (3/1 - yf)
RZ=1- = (17)

Zin1 Zf\il (3/{ - ?)

where M is the number of time samples; N is the number of roads. yf.' and y{: are the

observation and prediction of the i-th road in j-th time. Y and Y represent the set of yf and

y{:, respectively, and Y is the average of Y. ||-||  is the Frobenius norm.

RMSE measures the average magnitude of prediction errors, penalizing larger devi-
ations more heavily. In the context of extreme weather, where traffic speed fluctuations
can be abrupt and severe such as sudden drops due to rain or wind, RMSE is critical
for quantifying the model’s ability to handle such anomalies. MAPE expresses errors as
a percentage of actual values, making it intuitive for assessing relative accuracy. Under
extreme weather, traffic speeds may drop to near-zero (e.g., road closures). MAPE helps
evaluate whether the model’s relative errors remain acceptable even in such scenarios.
Accuracy reflects the overall proportion of correctly predicted traffic states across the entire
road network. For urban resilience planning, holistic accuracy is key. R? quantifies the
proportion of variance in traffic speeds explained by the model. A high R? indicates that
the model accounts for most variability induced by extreme weather. The chosen metrics
collectively address the unique challenges of traffic forecasting under extreme weather:
RMSE and M APE quantify error magnitudes, Accuracy evaluates network-wide reliability,
and R? validates the model’s explanatory power.

3.4. Parameter Settings

In the model training, some parameters were determined based on the experience
of existing studies [41]: the optimization was Adaptive Moment Estimation (Adam) [42];
the learning rate was 0.001; the batch size was 64; A in loss function was 0.0015; and the
proportion of the training set was 0.8. Other parameters were searched by experiment, as
shown in Figure 4.

(1) Learning horizons. Considering the cumulative effects of hazards on traffic, we
expanded the time window size when constructing the attribute-augmented unit.
Figure 4a shows the model performance for the learning horizons of {1, 2, 3, 4, 5}.
The model performed best considering the last 3 h. The model performance was still
robust when the learning horizon was 4 or 5, while the time cost increased with more
hidden parameters.
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(2) Predicting horizons. Figure 4b shows the model performance when the predicting
horizon was {1, 2, 3}. The short-term prediction is better than the long-term prediction,
which was consistent with the expectation—the longer predicting horizon has a
greater uncertainty.

(3) Training epochs. Figure 4c shows the model performance when the number of training
epochs was {500, 1000, 1500, 2000, 3000, 3500, 4000}. As the training epochs increase,
the change in evaluation metrics tended to be stable, with a turning point of 3000.

(4) Hidden units. Figure 4d shows the model performance when the number of units in
the hidden layer was {8, 16, 32, 64, 100}. With a turning point of 64, the evaluation
metrics’ change tends to be stable as hidden units rise. When there are 128 hidden
units, the memory overflows due to too many parameters.

In conclusion, we identified the optimal configurations for model training: 3 learning
horizons, 1 predicting horizon, 3000 training epochs, and 64 hidden layer units.
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Figure 4. The model performance of different parameters. (a) Learning horizons; (b) predicting
horizons; (c) training epochs; (d) hidden units.

4. Results and Discussion
4.1. The Performance of KA3STGCN Model

The experimental results demonstrate that our KA3STGCN framework achieves ro-
bust performance in predicting urban traffic under extreme weather. Implemented using
TensorFlow, the model converges after 3000 training epochs with the following evalua-
tion metrics: RMSE = 6.92, MAPE = 19.67%, and Accuracy = 0.79, R? = (.78. These
quantitative measures indicate the model’s capability to effectively capture the complex
spatiotemporal patterns of urban traffic during disaster events.

We also conducted a time-aware 5-fold cross-validation considering the spatiotempo-
ral dependencies. The dataset is sequentially partitioned into five temporal blocks, ensuring
each fold maintains continuous time segments. During validation, we preserved temporal
order by using earlier folds for training and subsequent folds for testing. Each fold retained
the complete urban road network topology in all splits and included all traffic patterns
(peak/off-peak, weekdays/weekends). We reported both temporal metrics (time-wise
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RMSE) and spatial metrics (node-level RMSE) across folds, with final performance calcu-
lated as the average of all out-of-fold predictions, demonstrating consistent Accuracy of
0.79 & 0.02 on Shenzhen data.

Figure 5 presents a comparative analysis between observed and predicted traffic
speeds for two representative roads in Shenzhen during both the whole test set (Figure 5a,b)
and Typhoon Mangkhut (Figure 5c,d). First, the model effectively captures fundamental
traffic periodicity and trend patterns across different temporal scales. However, perfor-
mance variations emerge between Road 1 (RMSE = 8.15, MAPE = 22.3%) and Road 2
(RMSE = 6.42, MAPE = 18.1%) during peak typhoon conditions. This divergence primarily
stems from the following: (1) differential implementation of emergency traffic controls
that affected Road 1 more severely; (2) inherent variations in infrastructure vulnerability
between the two roads; and (3) current limitations in modeling compound disaster effects
beyond core meteorological factors.
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Figure 5. Traffic speed prediction results of the KA3STGCN model on two roads. (a) The results of
Road 1 on the whole test set; (b) the results of Road 1 during Typhoon Mangkhut; (c) the results of
Road 2 on the whole test set; (d) the results of Road 2 during Typhoon Mangkhut.

The observed performance differences between test cases highlight important consid-
erations for practical deployment. Most notably, they emphasize the need to incorporate
additional data sources—particularly real-time information about traffic control policies
and infrastructure conditions—to further enhance prediction accuracy during complex
disaster scenarios. We discuss these implementation challenges and potential solutions in
greater depth in Section 4.6.

From an operational perspective, our model demonstrates measurable improvements
for urban traffic management systems. These technical improvements translate to several
concrete benefits: (1) enhanced decision-making for traffic managers through fewer false
alarms when issuing congestion warnings; (2) more precise rerouting recommendations
during floods and strong winds, particularly for high-risk areas like DEM Class 1 roads; and
(3) optimized resource allocation for post-disaster cleanup operations based on improved
traffic resumption predictions.

The framework’s superior performance yields broader societal and economic impacts.
By reducing prediction errors, the model helps mitigate indirect costs including fuel waste
and productivity loss through dynamic signal timing and preemptive lane closures. These
capabilities are particularly valuable for coastal cities like Shenzhen that frequently experi-
ence tropical cyclones. Furthermore, the system supports SDG11 by minimizing disruptions
to critical infrastructure access routes, including roads serving hospitals and other essential
services. The combination of improved accuracy and operational applicability positions our
approach as a valuable tool for enhancing urban resilience against extreme weather events.
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4.2. Model Performance Comparison Results

We contrasted the proposed KA3STGCN model with the following baselines: Histori-
cal Average method (HA), Autoregressive Integrated Moving Average model (ARIMA),
Support Vector Regression model (SVR), eXtreme Gradient Boosting (XGBoost) [43], Tem-
poral Graph Convolution Network model (TGCN) [44], Attention Spatial-Temporal Graph
Convolutional Network (ASTGCN) [39], Attribute-Augmented Spatial-Temporal Graph
Convolutional Network (A2STGCN) [41], physics-informed neural networks [45], and
Bayesian GCN [46]. The hyperparameters in the above baselines were kept consistent with
KA3STGCN. Table 2 shows that our KA3STGCN model performed best among all the
models tested.

Table 2. Performance comparison for different models.

RMSE vs.  Accuracy vs.

Models RMSE MAPE (%) R? Accuracy KA3STGCN KA3STGCN p-Value
HA 9.06 40.55 0.63 0.60 2.14 ~0.19 <0.001
ARIMA 10.59 29.38 0.01 0.63 3.67 ~0.16 <0.001
SVR 8.48 37.79 0.65 0.62 1.56 —0.17 <0.001
XGBoost 7.78 28.45 0.73 0.74 0.86 ~0.05 <0.01
TGCN (GCN + GRU) 7.90 23.66 0.67 0.74 0.98 ~0.05 <0.01
ASTGCN
(GON+GRU sattention) 7.39 24.46 0.71 0.76 0.47 ~0.03 <0.01
A2STGCN (GCN + GRU + —8.92 24.22 0.71 0.59 2.00 ~020 <0.001
attribute-augmented unit)
Physics-informed 7.25 23.33 0.70 0.72 0.33 ~0.07 <0.01
neural networks
Bayesian GCN 7.15 21.30 0.77 0.78 0.23 —0.01 <0.01
KA3STGCN
(GCN + GRU + attention + 6.92 19.67 0.78 0.79 / / /

attribute-augmented unit)

Comparative analysis demonstrates significant performance differences across model
categories. The traditional time series models (HA, ARIMA) exhibit limited predic-
tive capability (Accuracy = 0.60~0.63) owing to their static linear assumptions, which
prove inadequate for modeling the non-stationary traffic patterns characteristic of ex-
treme weather events. While shallow learning-based algorithms (SVR, XGBoost) show
improved performance (Accuracy = 0.62~0.74) through engineered temporal features, their
failure to account for spatial dependencies results in suboptimal performance during
network-wide disruptions.

The evaluation reveals that deep learning architectures consistently outperform other
approaches. Baseline models including TGCN, ASTGCN, and A2STGCN achieve accu-
racy levels exceeding 0.7. These models were the degraded versions of the KA3STGCN
model in terms of attention mechanism and external disaster information fusion, and their
performance was slightly inferior. Through systematic evaluation of four graph-based archi-
tectures, we observe progressive performance improvements that highlight the importance
of different architectural components for extreme weather traffic prediction. The baseline
TGCN (GCN + GRU) achieves an RMSE of 7.90 and MAPE of 23.66%, demonstrating the
fundamental capability of spatiotemporal modeling but showing limitations in handling
sudden weather-induced traffic variations. The ASTGCN (GCN + GRU + attention) model
reduces these metrics to 7.39 RMSE and 24.46% MAPE, with the attention mechanism
proving particularly effective for prioritizing critical temporal segments during weather
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events (6.79% RMSE improvement over TGCN). However, its performance degrades during
prolonged extreme conditions due to insufficient incorporation of environmental context.
A2STGCN (GCN + GRU+ attribute-augmented unit) shows different strengths, achieving
8.92 RMSE but superior attribute-specific performance (12.96% better MAPE than ASTGCN
for DEM Class 1 roads). This suggests that while attribute augmentation improves physical
interpretability, the lack of attention mechanisms limits its ability to dynamically adjust to
rapidly changing conditions.

Our KA3STGCN (GCN + GRU+ attention + attribute-augmented unit) combines the
strengths of both approaches and performs the best in four evaluation metrics. The syner-
gistic combination yields three key advantages: (1) the attention mechanism dynamically
weights important temporal segments during extreme events; (2) the attribute-augmented
unit provides physics-informed feature representation; and (3) their joint operation enables
adaptive focus on both temporal criticality and spatial vulnerability. This is particularly
evident during Typhoon Mangkhut (Figure 5c,d), where KA3STGCN maintains stable per-
formance while other models show significant error spikes during peak wind /rain periods.

In addition, we tested physics-informed neural networks and Bayesian GCN because
they share key characteristics with our approach, particularly their ability to dynamically
weight features based on real-time conditions. The physics-informed neural networks
outperformed most methods; it lagged behind KA3STGCN. The incorporation of phys-
ical laws likely improved its robustness, but it lacked the spatiotemporal attention and
attribute-augmented features of KA3STGCN, which are critical for capturing complex
dependencies in the data. The Bayesian GCN implementation demonstrates robust per-
formance (RMSE = 7.15, MAPE = 21.3%) by effectively quantifying prediction uncertainty
during extreme weather events. However, our KA3STGCN requires 18% less computational
resources. This advantage stems from our physics-informed attribute processing, which
provides more direct modeling of disaster dynamics compared to the purely data-driven
uncertainty estimation in Bayesian approaches.

The comparative results demonstrate that while individual components provide partial
improvements, their integrated implementation in KA3STGCN yields nonlinear perfor-
mance gains for extreme weather prediction. This suggests that effective disaster-aware
traffic modeling requires both dynamic temporal weighting and physics-informed feature
representation working in concert.

4.3. Significant Variables and Interpretations

The ablation experiment aimed to assess the impact of different disaster information
and their combinations. Table 3 presents the model performances of 16 cases, including
no external information (none), hazards (wind, rain), environments (POI, DEM), and
their combinations. The average results of five repeated experiments demonstrated that
traffic prediction under extreme weather could benefit from the combination of hazard and
environment information.

As shown in Table 3, when adding one disaster-related variable, most of the evaluation
metrics worsened by incorporating urban POI, DEM, wind, or rain. The explanation could
be that a single feature is valid only on a small portion of the data, but the complex model
and the insufficient training data result in the feature being ineffective on the whole dataset,
while reducing the generalization effect on the test set. The single disaster-related variable
has minimal effect on urban road traffic and may degrade performance due to sparse
feature utility. This finding highlights the need to explore the compounding effects of
various complex factors on urban road traffic changes.

Considering the impact of two variables, the combination of static environment at-
tributes (POI + DEM) improved the model prediction precision (Accuracy and R?), while the



Appl. Sci. 2025, 15, 9848

15 of 21

combination of dynamic hazard attributes (wind + rain) reduced the model error (RMSE
and MAPE). For the wind, the combinations of rain-wind, DEM-wind, and POI-wind were
better than the wind alone. For the rain, the wind-rain combination had a favorable effect,
followed by POI-rain. However, the DEM-rain combination was the worst, indicating a
synergistic inhibitory effect. The wind-rain coupled hazards can promote the accuracy
of urban road traffic prediction, especially for China, as tropical cyclones that land in
coastal areas of China are mainly wind and rain coexisting [47]. In addition, we found
that supplementing environment information improved prediction accuracy based on the
coupling of wind-rain. When using the POI-DEM-wind-rain combination, the model
outperformed the previous combinations of variables. The model’s ability to capture the
fluctuations in urban road traffic speed was enhanced after considering all the disaster
information. The mechanisms of compounding external factors influencing road traffic
during disasters deserve to be further studied.

Table 3. The results of ablation experiment.

Variables RMSE MAPE (%) Accuracy R? MAPE vs. No Attributes
none 7.39 24.46 0.76 0.71 /
DEM 8.23 25.28 0.73 0.64 3.35%
POI 7.61 22.6 0.75 0.69 —7.60%
rain 9.37 22.79 0.70 0.53 —6.83%
wind 8.32 28.21 0.73 0.63 15.33%
DEM + POI 10.59 21.29 0.78 0.76 —12.96%
DEM + rain 7.13 24.67 0.66 0.40 0.86%
DEM + wind 7.83 21.2 0.75 0.68 —13.33%
POI + rain 8.59 21.72 0.72 0.61 —11.20%
POI + wind 6.66 2091 0.78 0.76 —14.51%
wind + rain 7.37 20.73 0.76 0.71 —15.25%
DEM + wind + rain 6.83 21.22 0.78 0.75 —13.25%
POI + DEM + rain 7.92 22.61 0.74 0.67 —7.56%
POI + DEM + wind 7.39 21.74 0.76 0.71 —11.12%
POI + wind + rain 6.76 20.76 0.78 0.76 —15.13%
POI + DEM + wind + rain 6.92 19.67 0.79 0.78 —19.58%

4.4. Robustness Analyses

The proposed KA3STGCN model aims to predict road traffic response to natural
hazards during disasters. According to the key components of disaster risk, strong winds
and heavy rains induced by tropical cyclones are two main hazards that affect urban roads.
Urban roads are critical infrastructures exposed to the natural environment, and their
technical grade is closely related to their hazard vulnerability. Here, the model sensitivity
is analyzed on different hazard intensities and road vulnerabilities.

Figure 6 shows that the average RMSE on different road grades, precipitation, and
wind intensities was primarily concentrated in 3~8, indicating a robust overall performance.
For different hazard intensities, we matched the average RMSE of all roads in the test set
with the meteorological data including hourly precipitations and wind speeds. Then, we
calculated the average RMSE of four wind speeds: 0-3.4 m/s, 3.4-8 m/s, 8-13.9 m/s, and
13.9-17.2 m/s, and of four hourly precipitations: 0-2.5 mm/h (light rain), 2.5-8 mm/h
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(moderate rain), 8-16 mm/h (heavy rain), and 16-50 mm/h (rainstorm). Figure 6a,b
reveals that the model’s bias increased slightly as the precipitation or wind speed (less
than 13.9 m/s) increased. The RMSE with the wind speed of 13.9-17.2 m/s is lower than
that of 3.4-13.9 m/s. One possible reason is that the bias is caused by the sparse data and
other factors.

N . + Data 1 T
: : [ 125%~75% T 151
0 T J_’ T Range within 1.5IQR 8 é] l i
— Median line 109 &
L Mean ¢ L_ ‘l: i
20 - E J;l _[_ , l | % :;A - =
g ’ 1 3 4 5 5 ; . : 0-25 258 816 1650 ’ | B0 535 50 G50
SO ‘ f : | : :
10 " ; : : . _ E T | i
1 2. 3 4 5 0-25 2.5-8 8-16 16-50 0-34 34-8 8-13.9 13.9-17.2
(a) Road grade (b) Precipitation (mm/h) (©] Wind speed (m/s)
Figure 6. RMSE of the KA3STGCN model under different hazard intensities and road grades. (a) The
wind intensities; (b) the precipitation intensities; (c) the road grades.
For different road vulnerabilities, we classified DiDi roads into five grades by matching
with the open-source OpenStreetMap (OSM), as shown in Table 4. We calculated the
RMSE of each road in all hours of the test set and then determined the average RMSE of
different road grades. Figure 6¢ showed that the difference in RMSE among five urban
road grades was not significant, demonstrating that the proposed KA3STGCN model had
strong robustness in different urban road vulnerabilities.
Table 4. Road classification results.
Corresponding OSM Comments
Grades Numbers OSM Tags (https://wiki.openstreetmap.org/wiki/Map_features, Accessed on
22 August 2020)
Trunk: The most important roads in a country’s system;
1 74 trunk, motorway Motorway: A restricted access major divided highway, normally
with two or more running lanes plus emergency hard shoulder.
5 175 primary The next most important roads in a country’s system. (Often link
larger towns.)
3 332 secondary The next most important 'roads in a country’s system. (Often
link towns.)
4 450 tertiary The next most important roads in a country’s system. (Often link
smaller towns and villages.)
5 54 residential Roads which serve as access to housing, without function of

connecting settlements. (Often lined with housing.)

4.5. Spatiotemporal Differences

Figure 7 shows the KA3STGCN model performances at different hours of the day with
different wind or rain intensities. The red projection showed the outliers of the RMSE were
mainly observed during rush hours (5-9 a.m. and 2-6 p.m.). The extreme values of the
RMSE appeared in the morning rush hour, which could be explained by the concentrated
extreme weather, as shown in the yellow projection. In summer, the temperatures in
coastal cities such as Shenzhen can be very high during the day. When the air near the
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ground receives enough heat from the earth’s surface, the temperature increases, the density
decreases, and finally, it rises. When the warm and humid air with a large amount of water
vapor rises to a certain height, the air temperature drops, especially at night, then the water
vapor condenses into ice crystals or water drops, which are prone to thunderstorms and
strong winds from midnight to morning. Extreme weather and early peaks bring more

uncertainty to traffic changes.

Figure 7. RMSE at different hours with hazards. (a) Wind speed; (b) precipitation. In each subplot,
the red projection is the scatter distribution of RMSE at different hours, the blue projection is the
scatter distribution of RMSE with different hazard intensities, and the yellow projection is the scatter
distribution of hazard intensities at different hours.

Figure 8 shows the prediction RMSE of KA3STGCN (ours) and ASTGCN (without
disaster knowledge) model on different roads. The results indicate that KA3STGCN
performed better than ASTGCN, with most roads having RMSE values below 10. The roads
with RMSE over 10 in the ASTGCN model are long-distance rounding various external
environments, which are mitigated in the KA3STGCN model. This comparison validates
the necessity and illustrates the importance of integrating disaster information into traffic
prediction under extreme weather, especially for accurate urban disaster management.
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Figure 8. RMSE on road segments. (a) RMSE of KA3STGCN; (b) RMSE of ASTGCN.

4.6. Generalizability and Limitations

While the KA3STGCN framework demonstrates strong performance in Shenzhen and
is designed with generalizability in mind—its architecture does not rely on region-specific
assumptions—several limitations warrant discussion regarding its broader applicability.
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First, the current validation is limited to Shenzhen, China, due to data availability con-
straints. The model requires high-resolution meteorological data, road segment-level speed
measurements, and detailed natural and social environment attributes (e.g., DEM, POI),
which are rarely available in consistent formats across different regions. These require-
ments pose significant challenges for implementation in areas with less comprehensive
monitoring infrastructure, particularly during extreme weather events when traditional
monitoring systems may fail.

The integration of multi-source data (traffic, weather, and urban infrastructure) in-
troduces additional challenges of data sparsity and heterogeneity, mirroring common
problems in smart city applications where data gaps during emergencies remain per-
sistent [48,49]. Future implementations could benefit from advanced data imputation
techniques and multi-sensor fusion methods to enhance robustness under incomplete data
conditions. Furthermore, practical deployment faces computational constraints that may
limit real-time applications, especially for large-scale urban networks. The model’s re-
liance on high-resolution spatiotemporal data leads to significant computational demands,
potentially causing latency issues in emergency response scenarios.

Despite these limitations, our framework provides a replicable blueprint for disaster-
aware traffic prediction. The modular design allows adjustments for local data
conditions—for instance, substituting missing hazard variables with proxy indicators
or leveraging coarser-resolution inputs when necessary. While we employed optimiza-
tion strategies like model quantization in our experiments, further work is needed to
develop lightweight versions suitable for edge computing implementations. These techni-
cal limitations, common to many data-intensive urban analytics systems [50,51], highlight
the need for continued research into efficient computation methods without sacrificing
prediction accuracy.

Our future work will prioritize multi-city validation as compatible datasets emerge,
with a focus on standardizing data requirements for global applicability. Moreover, we
will incorporate some more recent models such as hybrid knowledge-infused frameworks,
Granger causality graph [52], or uncertainty-aware Bayesian frameworks [53] to better
capture uncertainties during extreme events. These directions align with recent efforts to
bridge data gaps in smart city research, ensuring the model’s potential for broader adoption
while maintaining robustness under extreme weather scenarios. Addressing these data and
computational challenges will also be crucial for the framework’s adoption across diverse
urban contexts with varying technological capabilities.

5. Conclusions

This paper presents KA3STGCN, a novel framework that advances urban traffic
prediction under extreme weather through three key methodological innovations. First, we
developed a disaster-knowledge attribute augmentation method. This combines dynamic
hazard data with static infrastructure vulnerability data. Such integration helps the model
capture the complex interplay between weather extremes and road network resilience.
Second, our hybrid architecture represents a departure from conventional spatiotemporal
models by simultaneously processing spatial, temporal, and hazard dimensions through
dedicated GCN, GRU, and attention mechanisms. Third, the framework demonstrates the
overall robustness in prediction accuracy across varying hazard intensities, addressing a
critical limitation in existing approaches that often fail during extreme events.

Future research could further integrate traffic flow theory and more accurate informa-
tion into the prediction model. We will commit to multi-city validation as our future work
when additional datasets become available. We expect more accurate weather forecasts,
more samples during early peak hours, or extreme weather in the future. The framework
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could be incorporated into the traffic management system to offer system-level real-time
routing services. Based on weather forecasts and the proposed model, our method can
predict the traffic speed of urban roads in advance, especially under extreme weather, to
provide better decision support for individual drivers’ travel planning and government
agencies’ disaster preparedness. The proposed model has a strong pioneering potential for
coping with extreme weather events and improving transportation resilience at the urban
scale under climate change.
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