
Address: IIASA, Schlossplatz 1, A-2361 Laxenburg, Austria 

Email: permissions@iiasa.ac.at 

 
 

 

 
Working paper 

A neural network architecture for 

disaggregating age-specific population 

projections to the sub-national level 
Andrea Tamburini, tamburini@iiasa.ac.at 

Claudio Bosco, claudio.bosco@ec.europa.eu  

Erich Striessnig, erich.striessnig@univie.ac.at  

 

WP-03-2025 

 

 

 

 

Approved by: 

Name: Anne Goujon 

Program: Population and Just Societies (POPJUS) 

Date: 23 September 2025 

 

 

  



www.iiasa.ac.at 2

Table of contents 
 

Abstract.................................................................................................................................................... 4 
About the authors ..................................................................................................................................... 5 
Acknowledgments ..................................................................................................................................... 5 

1 Introduction ................................................................................................................ 6 

2 Data and model ........................................................................................................ 10 

2.1 SSPs ................................................................................................................................................. 10 
2.2 Empirical Basis .................................................................................................................................. 11 
2.3 Modelling approach ........................................................................................................................... 11 
2.4 The Spatial Dimension ....................................................................................................................... 14 
2.5 Model architecture, fitting and performance ........................................................................................ 18 

3 Results ..................................................................................................................... 21 

4 Discussion and further developments ......................................................................... 24 

References .................................................................................................................. 26 

Supplementary material ................................................................................................ 29 
 

 

 

 



www.iiasa.ac.at 3

  

 

ZVR 524808900 
 
Disclaimer, funding acknowledgment, and copyright information: 

IIASA Working Papers report on research carried out at IIASA and have received only limited review. Views or opinions expressed herein do not necessarily 

represent those of the institute, its Member Organizations, or other organizations supporting the work. 

 

The authors gratefully acknowledge funding from the European Union under grant agreement No 101081369 (SPARCCLE). 

 

 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License. 
For any commercial use please contact permissions@iiasa.ac.at   

 



www.iiasa.ac.at 4

Abstract 

 

Improving our understanding of future risk from climate change requires realistic projections of future 

populations, both in their size and distribution. Distribution refers not only to geographic breakdowns but also 

to the breakdown by important characteristics, such as age. While the location where people will live may 

determine future exposure to hazards, population characteristics also co-determine the degree of vulnerability 

and the capacity to adapt to changing environmental conditions. Despite the importance of these factors, 

there remains a paucity of population projections (or disaggregations thereof) at the sub-national level. We 

develop a machine learning-based model to disaggregate age-specific population projections based on the 

Shared Socioeconomic Pathways (SSPs) to the sub-national NUTS-2 level for 34 European countries. Our 

focus on Europe is driven by its high degree of spatial variability, both in terms of climatic conditions and 

population structure, as well as the rapid pace of climate change and population aging there. 
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1 Introduction 

 

The assessment of climate-related mortality and morbidity risks requires a systematic understanding of 

demographic developments. The composition of the population and its geographical distribution are essential 

to infer about the future impact of extreme climatic events and to estimate the adaptation and mitigation 

capacities of a region’s inhabitants. The impact of climate change is not distributed evenly across geographical 

regions and population subgroups. Even within the same country, physical and socioeconomic characteristics 

of a region and its population can influence the extent of exposure and the degree of vulnerability.  

 

In terms of demographic characteristics, age is probably the most critical factor in climate-related mortality.  

Newborns, children and the youth suffer disproportionately from the effect of anthropogenic climate change, 

from the direct effect on increased neonatal and child mortality to systematically increased stress levels.  

 

Newborns, children, and adolescents are disproportionately affected by anthropogenic climate change (Weeda 

et al. 2024), ranging from elevated risks of neonatal and child mortality (Dimitrova 2021; Thiede and Gray 

2024) to systematically increased stress levels (McMichael 2014). Furthermore, climatic shocks such as floods 

and droughts have been shown to heighten mortality risk in these groups, both directly and indirectly, 

through their impacts on food security and malnutrition (Basu 2009; Freudenreich et al. 2022; Dimitrova 

2021). At the other extreme of the age distribution, numerous studies have consistently identified the elderly 

as a particularly vulnerable group (for a recent survey see Son et al. 2019). Older adults face a higher risk of 

mortality from both heat and cold exposure, potentially due to physiological changes, different activity 

patterns, housing quality, and social factors. The physiological factors may include limited thermoregulatory 

response capabilities, a higher prevalence of pre-existing comorbidities, and reduced access to social services, 

which can exacerbate the impact of extreme temperatures (Rai et al. 2022).  

 

Going forward, recent projections suggest that the number of deaths will be highest among those aged 85 

years and older, an age group that is both more susceptible to extreme temperatures and expected to grow 

substantially in the future (García-León et al. 2024). When considering the overall effect of both cold- and 

heat-related mortality, the balance is expected to remain highly positive for this age group, particularly in 

warmer climate scenarios, with regional disparities in present risks and increases with warming, especially for 

heat-related mortality (Lloyd et al. 2023). The contribution of demographic forces to increased future 

temperature-related mortality is largely driven by population ageing, especially for cold-related mortality due 

to higher relative risks among the elderly. Hotspots of heat-related mortality are often determined by the 

combination of increased susceptibility associated with ageing and increased hazard due to warming 

temperatures.  

 

The combination of the spatial distribution of aging and future climate impacts is, therefore,  important for 

tracking vulnerability (McDermott-Levy et al. 2021; Calleja-Agius et al. 2021).  
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Despite the obvious importance of understanding, not only where people live but also who they are, there 

remains a paucity of projections (or disaggregation thereof) at the sub-national geographical level that also 

include demographic heterogeneity, e.g., age structure. 

 

 

In their most up-to-date population projections, KC et al. (2024) provide age, sex, and education-specific 

population projections in five-year steps until 2100 for 201 countries consistent with the Shared 

Socioeconomic Pathways (SSPs). The SSPs are a set of global scenarios describing alternative trajectories of 

societal development, designed to facilitate the integrated analysis of future climate impacts, vulnerabilities, 

and adaptation or mitigation challenges. They combine assumptions about demographic change, economic 

growth, technological development, and other socioeconomic drivers to produce internally consistent 

narratives and quantitative projections. However, results of these multidimensional population projections are 

only available at the country level. For climate risk assessments, this resolution is too coarse to support the 

identification of vulnerable sub-groups according to regional climatic conditions. Much of the impact of climate 

change on human populations will be locally confined, so a further geographical breakdown is urgently 

needed in the context of environmental and climatic research. This geographical disaggregation of population 

projections and urban land projections has been provided at high spatial resolution by Gao (2020) and Gao 

and Pesaresi (2021), respectively. While these projections shed light on current and future population 

distribution at a highly refined geographical scale (1 square km), they contain no information about 

population composition. Wang, Meng, and Long (2022) introduced an alternative approach for global-scale 

projections, while other works have focused on the country-level (Yimin Chen et al. 2020; Xu et al. 2024) or 

specific urban areas (Kang and Lee 2024).  

 

 

Considerable advancements have been made in recent years regarding attempts to disaggregate the SSPs to 

the subnational level while preserving their multidimensionality. For instance, Yidan Chen et al. (2020) 

developed a dataset of China’s population from 2010 to 2100 at the provincial level, disaggregated by age, 

sex, and seven educational levels under the five SSPs. This study employed a recursive multidimensional 

model that integrates fertility, mortality, migration, and educational progression rates, while also accounting 

for China’s fertility policies and population ceilings in megacities. Furthermore, the model projected 

urbanization rates based on historical trends. Similarly, Hauer (2019) provided highly detailed projections (by 

age, sex, and race) at the county level for the United States. These projections were generated using cohort-

change ratios (CCRs) and cohort-change differences (CCDs) projected through an ARIMA model. In this 

paper, the SSPs play a crucial role in controlling the population projections, but they are not directly 

disaggregated to the county level. Instead, the study uses SSPs as aggregate constraints to ensure the 

projections align with broader socioeconomic scenarios and to prevent unrealistic population growth or 

decline. 

 

 

In contrast, Striessnig et al. (2019) utilized regression trees trained on historical census data (1980–2010) to 

directly downscale national-level SSP projections to the county level. This method accounted for spatial 

variations and historical demographic trends, projecting five broad age groups (0–19, 20–29, 30–54, 55–69, 
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70+). Additional subnational projections are available from national statistics offices, such as those in the 

United Kingdom1 and New Zealand2.  

 

A common pattern observed in all these studies is the trade-off between incorporating detailed population 

characteristics, such as age structure, and maintaining a multi-country scope in the studies and methods 

developed. Methods that disaggregate multi-national projections (e.g., SSPs) primarily focus on global 

narratives, often at the expense of detailed population characteristics. In contrast, single-country or urban-

region studies tend to preserve these characteristics while sacrificing broader geographic coverage. 

 

A subnational age structure projection is essential for assessing climate-related risks at a more granular level, 

as demographic trends, particularly ageing, play a crucial role in shaping vulnerability to climate impacts such 

as heat stress, air pollution, and respiratory illnesses. The European Climate Risk Assessment (European 

Environment Agency. 2024) highlights that Europe’s ageing population is a growing concern, with heat-related 

mortality projected to increase tenfold under 1.5°C warming scenario and thirtyfold under 3°C. Additionally, 

an ageing population combined with existing health conditions is expected to heighten the burden of climate-

related diseases, particularly in regions already experiencing demographic decline. Given that many climate 

risks, including ecosystem disruptions, food security challenges, and infrastructure vulnerabilities, extend 

beyond national borders, a detailed demographic perspective at the subnational level is crucial. It enables 

more precise climate risk assessments, informs adaptation strategies, and supports coordinated policy 

responses across Europe to address shared climate challenges effectively. 

 

For the subnational disaggregation of age-specific populations in European countries, Terama et al. (2019) 

employed a scaling method. This approach downscaled national-level age structure projections, derived from 

a cohort-component model, to subnational regions based on their age structures in the base year. However, 

this method does not account for temporal changes in the relative age distribution across regions. 

 

Eurostat, the statistical office of the European Commission, has developed a product linked to EUROPOP2019, 

the most recent set of population projections for 31 countries. These projections cover all 27 European Union 

(EU) Member States and four European Free Trade Association (EFTA) countries, spanning the period from 

2019 to 2100. Rather than serving as forecasts, these projections represent 'what-if' scenarios, designed to 

illustrate potential future demographic trends based on specific assumptions. Subnational projections are 

provided at the NUTS-3 level for multi-regional countries, with the exception of Cyprus, Luxembourg, and 

Liechtenstein. The Nomenclature of Territorial Units for Statistics (NUTS) is a hierarchical system used to 

divide the economic territory of the EU and the UK, facilitating the collection, harmonization, and analysis of 

regional statistics, socioeconomic research, and the development of EU regional policies. 

 

 

 
 

1 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationprojections/bullet
ins/subnationalpopulationprojectionsforengland/2018based 
2 https://www.stats.govt.nz/information-releases/subnational-population-projections-2018base2048/ 
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This work resulted in a dataset containing yearly projections for single-year age groups for both females and 

males, with unprecedented geographical detail. These projections are based on purely demographic scenarios 

rather than the standardized narratives typically used in climate change research. 

 

The Shared Socioeconomic Pathways (SSPs) offer significant advantages for climate change research and 

policy planning. SSPs provide a coherent framework for exploring alternative futures with varying challenges 

for climate change mitigation and adaptation (Merkle et al. 2023). When combined with Representative 

Concentration Pathways (RCPs), they enable more comprehensive assessments of climate impacts, 

adaptation, and vulnerability (Van Ruijven et al. 2014). Building on this foundation, we directed our efforts 

toward creating a disaggregation approach tailored specifically for the climate change research community. 

The present study aims to develop a machine learning-based model to generate sub-national age-specific 

population projections for 34 European countries at the NUTS-2 level, extending to the year 2100. NUTS-2 

regions represent the relevant geographical framework for implementing EU regional policies (Eurostat, 

2024). This study area ensures a high degree of variability, both in terms of population structure (Kashnitsky 

and Schöley 2018) and climatic conditions (Büntgen et al. 2011; Jylhä et al. 2010). 

 

 

 
Figure 1: Distribution of the population aged over 65 years (left panel) and mean yearly temperature (right 

panel) at the NUTS-2 level. 

 

Section 2 presents the data and modelling framework, including the scenario basis, empirical foundation, 

modelling strategy, spatial dimension, and model architecture. Section 3 reports the results, and Section 4 

provides a discussion of the main findings together with directions for future development. References and 

supplementary material conclude the paper. 
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2 Data and model 

2.1 SSPs 

Providing details on the SSPs framework at the outset of this section is crucial, as the selection of data 

sources and the construction of variables in this study are inherently dependent on the specific SSP scenario 

considered. In what follows, we present the assumptions underlying the population projections for Europe, as 

this constitutes the geographical scope of our analysis. 

 
• SSP1 (Sustainability/ Rapid Social Development): For low-fertility European countries, this scenario assumes 

low10 fertility, low mortality, and medium migration. This combination of very low birth rates and longer 

lifespans, even with some immigration, is likely to lead to significant population aging, although the migration 

might moderate the pace to some extent. 

• SSP2 (Middle-of-the-Road/Continuation): For low-fertility European countries, SSP2 assumes medium 

fertility, medium mortality, and medium migration. While 'medium fertility' might still be below replacement 

level in many European contexts, it suggests a less rapid fertility decline than SSP1. Combined with medium 

mortality and migration, this scenario would likely still result in population aging, but perhaps at a more 

gradual pace compared to scenarios with lower fertility. 

• SSP3 (Fragmentation/Stalled Development): Low-fertility European countries under SSP3 are projected to 

have low fertility, high mortality, and low migration. This combination of low birth rates, shorter lifespans, and 

limited immigration would likely lead to pronounced population decline and significant aging, as fewer young 

people are born and survive to older ages, and emigration is not sufficiently offset by immigration. 

• SSP4 (Inequality): For low-fertility European countries, SSP4 assumes low low fertility, med mortality, and 

high migration. The extremely low birth rates would strongly drive rapid aging. While high migration could 

bring in younger individuals and potentially slow the aging process compared to scenarios with lower 

immigration, the fundamental imbalance of very few births against a backdrop of longer lifespans (implied by 

medium mortality) would likely still result in a significantly older population. 

• SSP5 (Conventional Development): Low-fertility European countries in SSP5 are projected to have low103 

fertility, low mortality, and medium migration. Similar to SSP1, the very low fertility rates, coupled with longer 

lifespans, would contribute significantly to population aging. Medium migration could offer some counteraction 

by adding younger cohorts, but the underlying driver of very low birth rates suggests that aging would still be 

a substantial trend. 

 
In essence, all SSP scenarios indicate that Europe will experience population aging due to low or declining 

fertility and increasing life expectancy. The speed and degree of aging are most significantly influenced by the 

assumed levels of fertility and migration in each scenario. Scenarios with very low fertility and limited 

migration depict the fastest and most pronounced aging.  

 
 

3 The Low10 fertility scenario is an additional low-fertility scenario where education-specific Total Fertility Rates (TFRs) are 10% lower 
than the medium fertility assumptions up to the year 2040, with the difference subsequently increasing to 12.5% lower than the medium 
fertility assumptions by 2060 and remaining at that level until 2100. This scenario is specifically used in SSP1 and SSP5 for low-fertility 
countries. 
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2.2 Empirical Basis 

Our sub-national disaggregation of the SSPs is based on three main data sources, providing population-

related information for Europe:  

 

1- The Eurostat Database4: provides the NUTS-2 breakdown of the age-specific baseline population across 34 

countries. The information is reported yearly starting from 1990 until 2023 and for five-yearly age groups 

from "under 5" up to "75+".  

 

2- The Wittgenstein Centre Data Explorer5 (WCDE): provides SSPs-coherent, age-specific population 

information at the country level for 2020-2100. The projections are available for a total of 200 countries, of 

which 39 in Europe for five-yearly age groups from "under 5" up to "100+" (KC et al. 2024). 

 

3- Harvard Dataverse6: provides the "Global 1-km Downscaled Urban Land Fraction Grids, SSP-Consistent 

Projections and Base Year, v1 (2000 - 2100)" (Gao and Pesaresi 2021) and the "Global 1-km Downscaled 

Population Grids, SSP-Consistent Projections and Base Year, v1.01 (2000 - 2100)" (Gao 2017; 2020). This 

downscaled information can be aggregated to the NUTS-2 level to generate total population counts and urban 

land fractions to be used in the construction of the independent variables. 

 

Population totals derived from the three data sources do not necessarily match, as they are relying on 

different inputs. Even the two SSP-coherent sources of information differ due to (Gao 2017; 2020) being 

based on an earlier version of the human capital projections (Lutz et al. 2014). In light of this, we adjusted 

and standardized all data to align with Eurostat values, using the 2020–2024 Eurostat figures as the reference 

for correcting the other sources, thereby ensuring general coherence for both historical observations and 

future projections through a simple proportional approach. 

 

2.3 Modelling approach 

The SSPs-consistent age-disaggregation is inspired by Striessnig et al. 2019. The approach presented there 

involves developing a set of separate models, one for each selected age group, which predict the share of the 

total population belonging to the respective age group within each county of the US. This proved necessary 

due to the complexity of the overall task and the difference in drivers of population dynamics within different 

 
 

4 https://ec.europa.eu/eurostat/databrowser/explore/all/all_themes?lang=en&display=list&sort=category 
5 https://dataexplorer.wittgensteincentre.org/wcde-v3/ 
6 https://dataverse.harvard.edu/ 
 



www.iiasa.ac.at 12

sub-populations. By breaking down the overall task into smaller, less complex assignments, the aggregate 

results became more accurate and also interpretable.  

 

After conducting extensive exploratory data analysis, we categorized the European population at the NUTS-2 

level into five age groups: under 15, 15–24, 25–44, 45–64, and 65 and above. This classification was 

designed to capture differences in climate change vulnerability and adaptation needs across various societal 

segments while also accounting for the spatial distribution of each group. The distinction between those 

under 15 and those under 25 acknowledges the special characteristics of large university centers, which tend 

to have higher shares of young adult populations and lower labor force participation of the population under 

the age of 25. The 25–44 age group represents younger adults, often in the early stages of family formation, 

whereas the 45–64 age group encompasses individuals at later career stages, leading up to retirement. 

Finally, the open-ended 65+ category represents the population beyond the conventional working age. Based 

on this categorization, we develop a disaggregation model tailored to each age group.  

 

The difficulties related to limited data availability and the need to integrate national-level scenarios, as noted 

by Striessnig et al. (2019) were further amplified in a multinational framework. Since demographic processes 

such as changes in population structure unfolded slowly but had lasting consequences, it was essential to 

apply a modelling strategy that ensured the highest possible predictive accuracy. Artificial neural networks 

(ANNs) provided a clear advantage over regression trees in this regard, as they captured complex non-linear 

relationships, interpolated and extrapolated beyond observed data, modelled smooth continuous trends, and 

generalized effectively (Zou et al. 2008). These features made ANNs particularly well suited to identifying the 

subtle patterns and dynamics that characterized demographic evolution. In our modelling framework, we 

therefore employed a machine-learning architecture based on ANNs, which also allowed for uncertainty 

quantification regarding the predictions. ANNs are computational models inspired by the functioning of the 

human brain, consisting of interconnected layers of artificial neurons—basic computational units that receive 

input signals, apply weighted transformations, and pass the output to subsequent neurons. These connections 

between neurons are governed by learnable weights that determine the strength of the influence one neuron 

has on another. Each neuron typically applies an activation function to introduce non-linearity, enabling the 

network to learn complex relationships within the data. Among the various types of ANNs, feedforward neural 

networks (FNNs) are the simplest and most widely used architecture (Carvalho et al. 2011; Schmidhuber 

2015). In an FNN, information flows in a single direction—from input nodes through hidden layers to output 

nodes—without looping back. The universal approximation theorem, introduced by Hornik, Stinchcombe, and 

White (1990), demonstrated that FNNs with at least one hidden layer and a non-linear activation function can 

approximate any continuous function, given sufficient neurons and proper training. This theorem underscores 

the immense modelling potential of neural networks across a wide range of applications (White 1989). 

Moreover, Rumelhart, Hinton, and Williams (1986) introduced the backpropagation algorithm, a powerful 

technique for efficiently computing the gradients needed to update the weights of network layers, which can 

be efficiently used in combination with gradient descent. This breakthrough fundamentally transformed neural 

network training and facilitated their widespread adoption in research and industry.  

 

ANNs are sensitive to initial weight selection, particularly with small training sets (Nguyen and Widrow 

1990)(add citation). The pattern error surface of ANNs contains numerous local minima, which are deeper 

and more abundant when training samples are limited (Raudys and Skurikhina 1992). This sensitivity can 

impact network performance, as the initial weights influence the training process and final outcome. To 
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address this issue, researchers have proposed various strategies, including adding noise to training vectors 

(Raudys and Skurikhina 1992) using particle swarm optimization for pre-training (Nikelshpur and Tappert 

2013), and employing sensitivity analysis for selective learning (Engelbrecht 2001). Moreover, successful 

training via Stochastic Gradient Descent (SGD) tends to leave the network weights in close proximity to their 

initial configuration (Jesus et al. 2021). These findings highlight the importance of careful weight initialization, 

especially when working with small training sets. To address this point, enhance model performance and 

incorporate a measure of uncertainty while maximizing the use of our limited training data, we employed a 

simplified version of the Selective Improvement Evolutionary Variance Extinction (SIEVE) framework (De Rigo 

et al. 2005) as detailed in Bosco et al. (2018). This approach was applied to our FNNs.  

 

 

Simplified SIEVE  
This framework aims to efficiently select the most promising set of initial weights in a FNN by dynamically 

allocating computational resources during training. Instead of uniformly distributing the training effort across 

all randomly initialized weight sets, the approach progressively focuses on those that demonstrate superior 

performance in terms of mean absolute error (MAE), dedicating an increasing number of epochs—where one 

epoch corresponds to a complete pass through the entire training dataset—to their optimization. The MAE 

was chosen over RMSE because it is less sensitive to large outliers, providing a robust measure of average 

prediction error in the original units of the dependent variable (Willmott and Matsuura 2005). 

 

To apply the simplified SIEVE approach to our problem of finding the optimal sub-national distribution by age 

of available national-level projections, we estimated a collection of models for each selected age group 

(“under 15,” “15–24,” “25–44,” “45–64,” and “65+”). Following an initial correlation analysis and 

hyperparameter optimization, we adopted a three-round (selections) simplified SIEVE approach with an initial 

training phase of 5 epochs: 

1. Initialization: We generated 625 different sets of initial weights and trained each model for 5 epochs. 
2. First selection: The top 125 models (25 per age group), based on performance, were selected and 

further trained for 25 epochs. 
3. Second selection: From these, the 25 best-performing models were chosen and trained for 125 

epochs. 
4. Third selection: The 5 highest-performing models were retained. 

The procedure, summarized in the following pseudo-code, is repeated 20 times. In each iteration, the 

performance of the models is evaluated via MAE on both training and validation sets, and the top 100 best-

performing models for each age group are selected. This results in a collection of 100 models per age group 

after completing all iterations. 

 
Step 0: Initialize and train first set of models 

models = initialize_models(625)  # 625 different initial weight sets 

train(models, epochs=5) 

performance = evaluate(models) 

 

Step 1: Select top 125 models and continue training 

top_125 = select_top_models(models, performance, top_k=125) 

train(top_125, epochs=25) 

performance = evaluate(top_125) 
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Step 2: Select top 25 models and continue training 

top_25 = select_top_models(top_125, performance, top_k=25) 

train(top_25, epochs=125) 

performance = evaluate(top_25) 

 

Step 3: Select the top 5 models 

top_5 = select_top_models(top_25, performance, top_k=5) 

 

 

2.4 The Spatial Dimension 

Several attempts were made to enrich the disaggregation model with a spatial dimension. While the case 

addressed in Striessnig et al. 2019 requires only the modelling of spatial differences within one country (the 

United States), we are faced with the challenges of modelling multi-country data from European NUTS 

regions. Besides influencing the choice of the dependent variable, this also adds a challenge in terms of the 

learning potential of the model. Given the diverse context of Europe, we are faced with issues related to 

heterogeneous data availability and the necessity to efficiently make use of what harmonized information is 

available. As an initial step, we computed Moran’s I for the spatial distribution of population in 5-year age 

groups at different time points in the past. This initial analysis did result in moderate levels of positive spatial 

autocorrelation7, which never exceeded 0.2. This is likely due to two main reasons: 

 

1. Border regions: NUTS-2 regions that share at least one border with a NUTS-2 region from a 

different country represent a challenge to spatial analysis. Due to the diverse population structures of 

neighbouring countries, a simple queen-style approach to defining neighbourhood, or any other 

approach that does not account for country-specific characteristics, is inadequate for our needs. 

Therefore, alternative methods need to be explored to account for the complex spatial relationships 

between regions. As an example, Figure 2 depicts the marked discontinuity in terms of the proportion 

of population aged 65+ between Germany and some of its neighbouring countries, particularly in the 

East of Europe. 

 

 

 
 

7 Considering the polygonal geometry of the spatial entities we opted for a Queen neighbourhood definition 
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Figure 2: An example of bordering regions. Here we show the proportion of the total population in the age 

group ‘65+’ in the interval 2015-2019 focusing on the regions in eastern Germany, Poland and Czechia. 

 

 

2. Large agglomerations: these are regions that exhibit a distinctive structure in comparison to others, 

typically due to their high degree of urbanization, which is often associated with being a main or 

capital city (and the immediately surrounding area). As shown in Figure 3, Hamburg and Berlin in 

Germany are two such “outlier” regions characterized by population structures, which are a result of 

their unique economic and political conditions. 

 

 

 

 



www.iiasa.ac.at 16

 
Figure 3: An example of "urban islands". Here we show the proportion of the total population in the age 

group ‘65+’ in the interval 2015-2019 focusing on the NUTS-2 regions of Berlin and Hamburg compared to 

the ones surrounding them. 

 

 

To tackle the problems posed by different countries in our sub-national analysis, we take advantage of the 

communal structure observed among trans-border clusters of regions. We assume that regions belonging to 

different countries might be more similar in terms of population structure than non-adjacent regions in the 

same country. As an initial attempt, we defined hierarchical clusters of NUTS-2 regions based on a 5-

dimensional vector representing the population structure, with respect to the national one, over the 2015-

2019 period. To ensure equal contribution from each dimension of the vector, we first normalized the data, 

addressing the potential for disproportionate influence among the age group proportions. Following this, we 

apply Principal Component Analysis (PCA) to reduce the number of dimensions while retaining the primary 

sources of variation in the dataset. By selecting the first three principal components, we also minimize the 

noise, simplifying the clustering process using Ward’s method (Ward 1963). After examining the resulting 

dendrogram, we chose to cut the tree at three clusters, as this provides a balance between cluster size and 

interpretability. Ultimately, the clustering procedure was applied to 306 regions, which were grouped into 

three clusters of sizes 154, 96, and 56, respectively. The combination of normalization, PCA, and hierarchical 

clustering allows us to uncover natural groupings of regions based on the evolution of their population 

structure, providing valuable insights into the spatial patterns of demographic changes across countries. 

Figures 4 represents the results of the clustering exercise geographically. Clearly, clusters are not just 

delineated by national borders. 
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Figure 4: Clusters of regions based on the evolution of age structure. The map displays the three clusters 

identified using a hierarchical clustering procedure, with colors indicating cluster membership. 

 

Figure 5 presents the evolution of the ratios between the regional- and the national-level age-group 

proportion (linearly approximated across all regions within each cluster). Cluster 1, the largest, includes 

regions where the age structure closely aligns with the national-level pattern. Cluster 2 primarily consists of 

regions encompassing capital cities or major economic centers, which exhibit a significantly higher share of 

younger population—particularly in the first three age groups—indicating potentially higher fertility rates. In 

contrast, Cluster 3 comprises regions characterized by an older demographic structure, with the population 

aged 45 and above consistently exceeding the national-level proportion. 
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Figure 5: Region to country proportions by age group and cluster, European NUTS-2 region, 2000-2024. 

2.5 Model architecture, fitting and performance 

Given that our study focuses on the disaggregation of existing totals from previous projection efforts, rather 

than on absolute values, we emphasize proportions of population within different age-groups. Consequently, 

our quantities of interest—our dependent variables—are defined as the ratios between the population share of 

a specific age group at the subnational level and the corresponding national-level share (within the same 

country). These ratios are straightforward to interpret: values above 1 indicate a higher proportion of the 

population in a given age group compared to the national average, whereas values below 1 indicate a lower 

proportion. Furthermore, these ratios can be easily converted into absolute population figures using the 

existing, sub-national totals derived from the original SSPs (Gao 2020). In sum, this approach enables us to 

combine the existing, high-resolution total population projections at the subnational level and the multi-

dimensional one at the national level. Moreover, this formulation makes the inclusion of the different scenario 

pathways straightforward. 

 

We denote the proportion of the population of age-group 𝑎 at time 𝑡 in the NUTS-2 region 𝑖 as 𝑃𝑟𝑜𝑝௔,௜
௧ . The 

same portion at the national level is denoted as 𝑃𝑟𝑜𝑝௔,௖௧௥௬
௧ . Thus, the dependent variable is defined as  

 

𝑦௔,௜
௧  = 

௉௥௢௣ೌ,೔
೟

௉௥௢௣ೌ,೎೟ೝ೤
೟  

 

As the set of age-groups is fixed, we drop the corresponding subscript from the notation for readability. 
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For each age group, the set of covariates includes the complete historical evolution of the region’s age 

structure over the preceding 10 years. This is achieved with 5 and 10 years lagged variables, capturing 

changes in age group proportions over time. Additionally, it incorporates regional-level characteristics such as 

the degree of urbanization, the total population and its growth/decline, national-level age-structure 

information (e.g.: age group proportions at the national level), and the region’s cluster assignment. This 

results in a total of 53 covariates which are listed in Table A1. For each age-group, we obtain a data set in 

tabular format of 1245 observations.  

 

The large number of explanatory variables, coupled with a limited number of training points, required the 

careful application of a thorough preprocessing strategy. This aimed to improve training efficiency by reducing 

redundancy while enhancing model interpretability—addressing the common perception of neural networks as 

black-box models. The simplified-SIEVE procedure played a crucial role in optimizing the use of limited 

training data. Preprocessing involved removing redundant columns and calculating pairwise correlations to 

filter highly correlated predictors, initially using a Pearson correlation threshold of 0.9. To capture more 

general dependencies, a distance correlation matrix (Székely et al. 2007) was computed, flagging variables 

exceeding a threshold of 0.65 for further investigation. Unlike Pearson correlation, which primarily detects 

linear relationships and can be zero even when variables are indeed strongly connected in other ways, 

distance correlation is zero if and only if the variables are truly independent, making it a more comprehensive 

measure of dependence. 

 

To ensure a balanced representation of all clusters and time periods in each age-specific subset, the dataset 

was stratified—i.e., partitioned, such that the distribution of these factors was preserved across splits. Using 

random subsampling, the data were then divided into training, validation, and test sets in proportions of 70%, 

15%, and 15%, respectively. Standardization, which scales input features to have zero mean and unit 

variance, was applied to prevent data leakage, ensuring consistency across all splits. Hyperparameter tuning 

was performed via grid search to optimize the number of hidden units, defined as the neurons in the 

network’s hidden layers, learning rate, and activation function. To refine variable selection, a Jackknife-style 

procedure iteratively excluded one of each pair of highly correlated variables, retaining the one contributing 

more to explained variance. The final model was then trained with the selected covariates according to the 

simplified-SIEVE procedure and evaluated on the test set using the median of the forecasted values as 

estimates. This approach ensured robust performance while minimizing overfitting and maintaining the 

representativeness, consistency, and reliability of the dataset during the modelling process.  

 

Model performance was assessed using both the explained variance (Exp.Var.), and the RMSE and its 

performance was compared to the one of two simple models. A trivial model, which repeats the last available 

ratio observation as forecast (“repeater”) and a slightly more sophisticated one, which returns the mean of 

the previously observed ratios as forecast (“meaner”). Table 1 reports the Exp.Var. and RMSE values for the 

model that was selected (Simp-SIEVE-NN) compared to the simple models for the 5 different age groups for 

the rescaled values, i.e., the population proportions at the sub-national level, which are our final quantities of 

interest, and not the ratios directly obtained from the modelling exercise. 
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Age group Model Test-Exp.Var. Test-RMSE 

Under 15 Simp-SIEVE-NN 0.937 0.020 
 repeater 0.814 0.0345 
 meaner 0.753 0.045 

15 - 24 Simp-SIEVE-NN 0.857 0.030 
 repeater 0.803 0.035 
 meaner 0.430 0.062 

25 - 44 Simp-SIEVE-NN 0.967 0.012 
 repeater 0.942 0.016 
 meaner 0.795 0.029 

45 - 64 Simp-SIEVE-NN 0.932 0.012 
 repeater 0.862 0.016 
 meaner 0.616 0.030 

65+ Simp-SIEVE-NN 0.974 0.018 
 repeater 0.943 0.026 
 meaner 0.887 0.044 

Table 1: model performance in the test set with comparisons. 

 

The Simp-SIEVE-NN technique demonstrates a high level of explained variance across all age groups, 

consistently exceeding 0.9, except for the 15–24 age group, where Exp.Var. remains strong at 0.857. This 

lower performance is likely due to the high spatial mobility within this age group, which includes both high 

school students and highly mobile students in higher education. Notably, even trivial models struggle with this 

age group. Despite this challenge, the model outperforms both trivial models, although the repeater model 

maintains a relatively strong performance. This is an important aspect to consider, as the model is designed 

to forecast population structure changes over five-year intervals. Given the slow and, in some cases, stable 

nature of demographic shifts in Europe, simply repeating the last observed value can yield reasonably 

accurate predictions. 

 

However, the precision of our model reassures us of its ability to interpret and capture the interplay between 

covariates and detect subtle variations. Such sensitivity is crucial in demographic processes, where small shifts 

can lead to significant long-term effects. Moreover, this capability makes the model well-suited for integrating 

scenario narratives, allowing it to reflect potential shifts in population structure due to external influences. 

 

Another key feature of our projection model is its uncertainty quantification, which is inherited from the 

Simplified SIEVE approach. Instead of producing a single predictive model, this method generates a family of 

models (in our case, 100), allowing us to assess the stability of different neural networks in forecasting the 

proportion ratios. 
 

Figure 6 presents faceted caterpillar plots of our predictions, where the line extremes represent the 0.025 and 

0.975 quantiles for each predicted value across different test sets and age groups. The green dots indicate 

the median predictions, while the true values are marked with red crosses. This visualization not only 

highlights the model’s ability to closely estimate test set ratios, but also demonstrates that, in nearly all cases, 

the true values fall within the predicted quantile intervals, confirming the model's robustness in capturing age 

structure variations. 
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Figure 6: Caterpillar plots. The figure shows the 100 predictions from the SIEVE-NN models (median, 2.5% 

quantile, and 97.5% quantile in green), ordered by magnitude for readability. True values for the test set are 

indicated by red crosses. 

 

 

 

 

3 Results 
 
 

Our sub-national projections are developed as a disaggregation of the Wittgenstein Centre's global population 

and human capital projections at the national level. These projections based on the Shared Socioeconomic 

Pathways (SSPs), are primarily shaped by assumptions regarding fertility and migration, highlighting the 

significant role of demographic dynamics in future population structures. 

 

Having this as starting point, we used the national level population structure, the NUTS-2 SSP-specific 

projections for the total population and the urbanization percentage, obtained aggregating the 1-km2 SSP-

consistent downscaled projection grids, and applied the 5 age-group-specific estimated models to recursively 

produce a set of subnational (NUTS-2) disaggregation of the national level results.  

 



www.iiasa.ac.at 22

 
Figure 7: scatter plot of existing WCDE projections and our results when grouped according to the age group. 

 

We validate our projection results in several steps. First, we compared regional-level outcomes according to 

their respective countries to the existing results from the national-level, cohort-component-based projections. 

As shown in Figure 7, the results are reassuring: a strong alignment with the diagonal indicates high 

accuracy. The age group '65+' exhibits the greatest variations, particularly under SSP 5. This is likely due to 

its open-ended nature, which encompasses a broader population range, as well as the pronounced aging 

patterns that our model captures in certain regions. Importantly, we deliberately chose not to apply a 

constraining step—such as Iterative Proportional Fitting (IPF)—that could have ensured even greater 

adherence to national-level results. Instead, we prioritized the development of subnational patterns over 

absolute coherence with national-level projections. While absolute coherence was ensured by construction in 

terms of total population at the regional level, we did not impose the constraint that age-specific regional 

populations must sum exactly to the corresponding national totals. This choice allowed the model greater 

flexibility to capture subnational trends, enabling age structures to be modelled more directly and with fewer 

externally imposed boundaries. 
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Figure 8: Population projections, age group proportions for the age groups ‘Under 15’ and ‘65+’ for SSP 2. 

 

Secondly, we validate the results from a geographical perspective (Figure 8). Here we can clearly reaffirm 

that Europe will experience significant population aging across all its NUTS-2 regions. At the same time, the 

socio-economic characteristics of different regions play a crucial role in determining both the intensity and 

pace of this process. Regions that contain or correspond to a country's major urban centers tend to 

experience a slower increase in population aging. This pattern is particularly evident in countries such as 

Austria and the Czech Republic, where the capital city is not only the largest urban center—without any 

comparable counterpart within the country—but also corresponds administratively to an entire NUTS-2 region. 

 

This trend is also highly pronounced in the United Kingdom, Scandinavia, and the regions that formerly 

constituted the German Democratic Republic. In contrast, Southern European countries, including Italy, Spain, 

Portugal, and Greece, exhibit extreme levels of population aging. 

 

Italy presents an interesting case, as urbanization levels do not appear to play a significant role in shaping 

aging patterns in the central and northern regions, in contrast to many other European areas. Additionally, 

the case of Alto Adige/Südtirol stands out, as this region exhibits higher fertility rates and a slower decline in 

the 'Under 15' age group compared to the national trend.  

 

Another key feature of our results is their alignment with the SSPs narratives. As shown in Figure 9, the 

different national-level scenarios influence general development trends and aging intensity at the subnational 

level. Although it may not be immediately apparent at this finer spatial resolution, subnational SSP 
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projections—such as those for urbanization percentages—do, in fact, drive the age structure projections. At 

the same time, national-level age structures exhibit variations depending on the specific SSP considered, and 

these differences are observable at the subnational level as well. Importantly, it is not just the range 

differences in the legends that stand out; the distinct gradient distribution in the plots underscores the added 

value of SSP-coherent projections, highlighting their ability to capture complex, nuanced patterns across 

scales. 

 

 

 
Figure 9: Population projections, age group ‘65+’ according to SSP 1, SSP 2, SSP 3 and period. 

 

 

4 Discussion and further developments 
This study makes two major contributions: (1) a methodological innovation; and (2) projections of future 

population trajectories until the year 2100, broken down by age at the NUTS-2 level for 34 European 

countries. The disaggregation is developed in a manner that ensures applicability to different time–space 

settings. Specifically, we introduced and tested new methodology for geographically disaggregating 

population projections to the subnational level, using European NUTS-2 regions as our test case. The model is 

based on an artificial neural network architecture, selected for its flexibility and predictive power. The careful 
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variables selection process, combined with the application of the Simplified-SIEVE approach, was performed 

to enhance the interpretability of the results while explicitly accounting for uncertainty. By leveraging this 

approach, we are able to generate subnational population projections that maintain coherence with the SSPs 

(Shared Socioeconomic Pathways). The SSPs offer five distinct pathways that reflect varying levels of 

development, challenges to adaptation, and mitigation, integrating essential factors such as population 

growth, technological progress, and societal equity. This scenario-based approach allows for a holistic 

understanding of how different forces interact and provides reliable, consistent projections across multiple 

models, which is crucial for informing long-term policy decisions. 

 

In addition to the methodological advancement presented, we also add to the existing literature by providing 

a spatial disaggregation of existing, national-level age structure projections for Europe. The ability to align 

these projections with the SSPs lends added credibility and robustness to the results, especially considering 

the long temporal span of the data, which spans 35 years of observed data and includes projections up to the 

end of the 21st century. However, we also acknowledge that the coherence with SSPs may be both a strength 

and a limitation. The different publication years and calibration periods for various datasets, as well as the 

SSPs' focus primarily on national-level projections, leave certain gaps in the subnational dimension, presenting 

both challenges and opportunities for future research. Additionally, working with administrative boundaries 

such as the NUTS regions, which have undergone changes over the 35-year period, introduces further 

complexity in the analysis. Despite these challenges, this work represents an important first step in advancing 

both the geographical scope and the socioeconomic dimensions of population projections. The regional 

disparities underlined by our results underscore the need for targeted policy interventions that account for 

local demographic dynamics. Addressing the challenges posed by population aging requires tailored 

approaches to service provision, labor market planning, and social welfare policies that reflect the specific 

needs of different regions. Such interventions would additionally benefit from more precise and informative 

data; to this end, we aim to refine the methodology by extending the geographical resolution to the NUTS-3 

level and incorporating additional socioeconomic dimensions, such as more granular age groups, sex, and 

educational attainment, while leveraging a broader set of covariates. This potentially adding to the accuracy 

and relevance of the projections and provide a more nuanced understanding of regional population dynamics 

in Europe. 
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Figure 4: test-set scatterplot 
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Table A1.1 – Variables list 

 
Variable Code Variable Meaning 

g.pop.NUTS2 Growth of the population in NUTS-2 region 
lag1.tot_pop_NUTS2 5-years lag tot. pop. In NUTS-2 region 
lag2.tot_pop_NUTS2 10-years lag tot. pop. In NUTS-2 region 
lag1ratio.tot_pop_NUTS2 Ratio of 5- and 10-years lag tot. pop. in NUTS-2 region 
lag1_under15 5-years lag under 15 pop 
lag1_15_24 5-years lag under 15-24 pop 
lag1_25_44 5-years lag under 25-44 pop 
lag1_45_64 5-years lag under 45-64 pop 
lag1_65 5-years lag under 65+ pop 
lag2_under15 10-years lag under 15 pop 
lag2_15_24 10-years lag 15-24 pop 
lag2_25_44 10-years lag 25-44 pop 
lag2_45_64 10-years lag 45-64 pop 
lag2_65 10-years lag 65+ pop 
lag1_g_under15 5-years lag growth under 15 pop 
lag1_g_15_24 5-years lag growth 15-24 pop 
lag1_g_25_44 5-years lag growth 25-44 pop 
lag1_g_45_64 5-years lag growth 45-64 pop 
lag1_g_65 5-years lag growth 65+ pop 
lag1_quot_under15 Ratio between regional and national proportion, age under 15, 5-years lag.  
lag1_quot_15_24 Ratio between regional and national proportion, age 15-24, 5-years lag. 
lag1_quot_25_44 Ratio between regional and national proportion, age 25-44, 5-years lag. 
lag1_quot_45_64 Ratio between regional and national proportion, age 45-64, 5-years lag. 
lag1_quot_65 Ratio between regional and national proportion, age 65+, 5-years lag. 
lag2_quot_under15 Ratio between regional and national proportion, age under 15, 10-years lag.  
lag2_quot_15_24 Ratio between regional and national proportion, age 15-24, 10-years lag. 
lag2_quot_25_44 Ratio between regional and national proportion, age 25-44, 10-years lag. 
lag2_quot_45_64 Ratio between regional and national proportion, age 45-64, 10-years lag. 
lag2_quot_65 Ratio between regional and national proportion, age 65+, 10-years lag. 
ctry_prop_under15 Proportion at the country level 
ctry_prop_15_24 Proportion at the country level 
ctry_prop_25_44 Proportion at the country level 
ctry_prop_45_64 Proportion at the country level 
ctry_prop_65 Proportion at the country level 
lag1_ctry_prop_under15 Proportion at the country level, 5-years lag 
lag1_ctry_prop_15_24 Proportion at the country level, 5-years lag 
lag1_ctry_prop_25_44 Proportion at the country level, 5-years lag 
lag1_ctry_prop_45_64 Proportion at the country level, 5-years lag 
lag1_ctry_prop_65 Proportion at the country level, 5-years lag 
lag2_ctry_prop_under15 Proportion at the country level, 10-years lag 
lag2_ctry_prop_15_24 Proportion at the country level, 10-years lag 
lag2_ctry_prop_25_44 Proportion at the country level, 10-years lag 
lag2_ctry_prop_45_64 Proportion at the country level, 10-years lag 
lag2_ctry_prop_65 Proportion at the country level, 10-years lag 
lag1_ctry_pop_g_under15 Proportional growth of the country population, age under 15, 5 years lag. 
lag1_ctry_pop_g_15_24 Proportional growth of the country population, 15-24, 5 years lag. 
lag1_ctry_pop_g_25_44 Proportional growth of the country population, 25-44, 5 years lag. 
lag1_ctry_pop_g_45_64 Proportional growth of the country population, 45-64 5 years lag. 
lag1_ctry_pop_g_65 Proportional growth of the country population, 65+, 5 years lag. 
cluster_1 Belongs to cluster 1 (dichotomous variable) 
cluster_2 Belongs to cluster 2 (dichotomous variable) 
cluster_3 Belongs to cluster 3 (dichotomous variable) 
urb_frac Percentage of urbanised surface in the NUTS-2 region.  
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  SSP1 SSP2 SSP3 SSP4 SSP5 

Country Grouping  

  HiFert LoFert 
  

HiFert LoFert HiFert LoFert 

Population    

Fertility Low  Low10  Med  High  High  Low  Low  Low10  

Mortality Low  Med  High  High  Med  Low  

Migration Med  Med  Low  Med  High  

 

 

 Note: 
• The classification of European countries into 'High-Fertility' and 'Low-Fertility' groups for the purpose of 

these assumptions can be found in Appendix Table Af1 of the source document. 

• For SSP 2, there are additional variants (not shown here for brevity) that consider double and zero net 

migration. 

• The terms 'Low10' and the specific mortality levels (e.g., Med, High) refer to defined scenarios within the 

WIC projection methodology, the details of which are elaborated in Section 2 of the source document. 

 
      
 

 

 


