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Abstract

As the climate warms, interacting weather extremes such as sequential heat events pose complex
risks to societies. Regarding global agriculture, laboratory experiments suggest that early crop

exposure to heat may either confer tolerance or enhance vulnerability to subsequent heat during
the critical crop flowering stage. We show that warm early-seasons improve crop yield potential,
particularly for soybean and maize, but also increase the impacts of subsequent heat by 5%-55%

compared to years with average early-season temperatures. The impacts of this increased yield
sensitivity outweigh the benefits of early season heat when mid-season temperature anomalies
exceed 0.7°C-5°C (depending on the crop). Analyzing projected temperatures under the Shared
Socioeconomic Pathway 3-7.0, we find a tenfold increase in the likelihood of experiencing
sequential heat in early and mid-season crop growth stages, defined as a joint 90th percentile event.
Accounting for the interactive effects of early and mid-season warming increases projected
temperature-related crop yield losses by 2%—44%, depending on crop and region. These results
underline the emerging nonlinear risks from sequential heat extremes to food systems, which can
largely be avoided when limiting warming to 1.5°C globally.

1. Introduction

Climate and weather extremes often have detrimental
effects on crop production (Lesk et al 2016, Vogel
et al 2021), especially when multiple extremes occur
within the same growing season (Zscheischler et al
2018). While the compounding impacts of com-
bined heat and drought on crops have drawn sub-
stantial attention (Hamed et al 2021, Lesk et al
2021), the occurrence of more complex combina-
tions of weather and climate extremes is becoming

© 2025 The Author(s). Published by IOP Publishing Ltd

increasingly likely as the climate warms. Sequential
(in other words, consecutive or temporally com-
pounding) heat extremes are a particularly salient
example, as they are projected to become more
likely and reach greater intensities as growing sea-
sons get warmer and begin earlier (Baldwin ez al 2019,
Raymond et al 2022).

The likelihood of sequential heat extremes is
expected to increase as individual seasons warm
due to the thermodynamic response to rising green-
house gas concentrations (Robinson et al 2021).
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Additionally, more complex climate change effects
involve potential changes in the dependence between
seasonal heat (Weiland et al 2021). For example,
warmer springs will likely feature lower soil moisture
due to the direct drying effect of spring heat com-
bined with the indirect effects of earlier snowmelt
and vegetation green-up. A drier land surface dur-
ing spring can prime the surface energy balance and
boundary layer in ways that enhance the causal con-
nection between sequential heat events, increasing
their likelihood by more than what would be expected
from warming alone (Gloege et al 2022).

While thermal limitations in crop species are well
studied, little is known about the impact of sequential
hot seasons on crops at the scale of regional produc-
tion. In small-scale experiments, early crop exposure
to heat stress triggers myriad physiological responses
with lasting effects on vegetative growth, yield pro-
cesses, and stress signaling and response pathways
(Mittler et al 2012, Antoniou et al 2016, Hossain et al
2018). Competing responses to early heat exposure
can confer tolerance (acclimation) or worsen suscept-
ibility (accumulating or compounding stress) to sub-
sequent heat (Wang et al 2017, Nadeem et al 2018, Liu
etal 2022), and may be dependent on region and crop
type. As a result, it is unclear whether the cumulative
effect of these inter-seasonal heat responses helps or
hinders crops confronted by consecutive heat stress.

Here, we clarify the impact of sequential warm
seasons on yields for staple crops at local and regional
production scales across the United States (US) and
Europe (EU) over the past four decades. We intro-
duce a statistical model that isolates the interact-
ive effect of sequential heat on observed maize,
soybean, barley, and wheat yields. We then invest-
igate future frequency changes in sequential heat
using Coupled Model Intercomparison Project 6
(CMIP6) model experiments under different emis-
sion scenarios. Finally, we compute the associated
expected future crop yield losses, including impacts
from compounding sequential heat events. We con-
clude by highlighting the urgent need to consider
enhanced non-linear impacts to crops resulting from
the increased intensity and likelihood of sequential
heat events. This is essential for a more accurate
estimation of future risks to the food system, facilitat-
ing the adaptation of cropping systems to increasingly
sequential extremes.

2. Data and methods

2.1. A statistical model to attribute yield losses to
univariate and compound weather conditions
across seasons

We use crop- and region-specific mixed-effects mod-
els to relate crop yield ch) in county ¢ and year ¢
(1980-2020) to seasonal climate anomalies and tem-
poral trends. The fixed effects include linear and
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quadratic terms for mean maximum temperature (T)
and soil moisture (M) during early (e) and mid-
season (m) growth stages, along with interaction
terms for sequential temperature effects and com-
pound heat-moisture stress. A linear time trend ¢ cap-
tures gradual changes from climate and technolo-
gical progress. To account for spatial heterogeneity,
we include county-level random intercepts u(()c) and

random slopes uif) t. The full model is specified as:

2
Y =B+ BT + BT+ B (1)
2
+ 81 (Ti0) "+ BsMED + BeML
2 2
+ 57 (Mgct)> + B8 (Mﬁlj)t)

+ 8o (TE)T0,) + Bro (TokMED,)

+511t+u(()c)+“gc)t+5§£) (1)

We weight each observation by harvested area so
that high-production counties exert proportionally
greater influence on fixed-effect estimates. To ensure
agronomic comparability, we include only counties
where cropping calendars align with the following cri-
teria: soybean and maize are planted in April-May
and wheat and barley reach maturity in June—July.
Accordingly, we define the early and mid-seasons as
April-May and July—August for soybean and maize,
and January—February and April-May for wheat and
barley. We further limit the sample to counties that
are at least 90% rain-fed to avoid confounding effects
from irrigation (figure S8), and require a minimum
of 25years of yield and weather data per county to
enable robust statistical inference. Crop calendars and
irrigation status are derived from the MIRCA-OS
dataset (Kebede et al 2025).

2.2. Historic crop and climate data

County-level yield (metric tons per hectare, t/ha) and
harvested area (hectares, ha) data for soy, maize, and
wheat in the US from 1980 to 2020 are obtained
from the USDA dataset https://quickstats.nass.usda.
gov/, last access: 15 November 2022). Sub-regional
yield (t/ha) and harvested area (ha) for soft wheat,
winter barley and maize in the EU from 1980 to 2020
are sourced from the EUROSTAT dataset (https://
ec.europa.eu/eurostat/web/agriculture/, last access: 1
May 2024). Harvested area is utilized as weights both
in fitting the model and for spatial averaging across
crop regions.

Root zone soil moisture and maximum tem-
perature variables are obtained from GLEAM v3.5a
(Martens et al 2017) and CPC datasets (CPC Global
Unified Temperature data provided by the NOAA
PSL, Boulder, Colorado, USA, from their website
at https://psl.noaa.gov), respectively. GLEAM is a
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model-based dataset forced with satellite and reana-
lysis data, while CPC leverages station-based obser-
vations. We filter these datasets for the study period
and average them over two-month intervals to repres-
ent early and mid-season weather conditions. These
intervals roughly align with the dominant regional
vegetative and flowering crop stages identified in
the Crop Calendar Dataset (Sacks et al 2010).
Soil moisture is standardized at the county level to
reflect local drought conditions, similar to the SPEI
approach (Stagge et al 2015). All climate variables are
spatially averaged to correspond to sub-regional crop
yield administrative units.

2.3. Projecting changes in the frequency of
sequential heat extremes

To analyze changes in frequency of sequential heat
extremes, we make use of CMIP6 projections for four
different emission scenarios: SSP1-1.9 (9 models) and
SSP1-2.6 (22 models), SSP2-4.5 (15 models), SSP3-
7.0 (15 models). The choice of models per scenario
are described in table S3.

We set the 90th percentile of the joint early and
mid-season temperature ranks during the historic
period as our baseline to define sequential extreme
heat events (i.e. the warmest 10% of sequential heat
years). For each year i, the count threshold is com-
puted as

n
C = Z 1 {Tearly,i = Tearly,jand Tmid,i P Tmid,j}
j=1
(2)

where 1{-} is the indicator function that equals 1 if
the condition holds and 0 otherwise, and 7 is the total
number of years in the dataset. A year is classified as
extreme if its C; exceeds the historical 90th percentile.

We then compute the frequency of extreme events
for each combination of ssp scenario, model, and crop
pair and derive a likelihood multiplication factor by
comparing these frequencies to the historic baseline.

In addition, we calculate count thresholds C;
independently for each period and assess changes in
the relative frequency of extreme events compared
to the historic period. This complementary approach
provides insights into potential shifts in the tail beha-
vior and dependence structure between early and
mid-season temperatures.

2.4. Projecting compound crop impacts from
sequential spring and summer warming
We calculate 40 year yield estimates for both a histor-
ical period (1975-2015) and a future period (2060—
2100) using each CMIP6 model. This forms the basis
to analyze changes in mean yields, which are weighted
by harvested area as per period (2010-2020).

We first compute changes in average maximum
temperature ATE for each season s (early (e) and

3
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mid (m)) and county ¢ between the historic (1975—
2015) and future (2060-2100) 40year periods for
each CMIP6 model. Second, we combine these delta
changes with the historical estimated model coeffi-
cients (see section 2.1) to project future yield changes
(AY?, equation (3)) — function of early-season, mid-
season and interactive temperature effects.

AY =B AT, 4 35 AT + B, AT, + B4 AT,
+ B AT, AT,,. (3)

3. Results

3.1. Negative effects of sequential hot conditions on
crop yields

Our prime objective in this study is to quantify the
effects of sequential heat on crop yields. In particu-
lar, we are interested in the interactive effect of early
and mid-season temperature conditions beyond the
impacts of each separately. For this, we develop crop-
and region-specific mixed-effects models linking crop
yields to mean maximum temperature and soil mois-
ture anomalies during early and mid-season crop
growth stages (see Methods). For soybean and maize,
the early season is April-May and the mid-season
July—August; for wheat and barley, the early sea-
son is January—February and the mid-season April-
May (see Methods). Non-linear responses are cap-
tured with linear and quadratic terms for each vari-
able in both seasons. Interaction terms between mid-
season temperature and soil moisture represent well-
documented impacts of compound hot and dry con-
ditions on crop yields (Lesk et al 2022), while interac-
tions between early- and mid-season temperature test
for sequential heat effects.

Explicitly including soil moisture is in line with
recent efforts aimed at better disentangling water and
heat stress in statistical models (Rigden et al 2020,
Proctor et al 2022). Separating moisture and heat
stress is important as their impacts reflect distinct
physiological mechanisms and therefore would even-
tually require different adaptation strategies (Suzuki
etal 2014). Figure 1 illustrates the fitted relationships;
full coefficient estimates appear in tables S1 and S2.
Our statistical model explains roughly half of the vari-
ability in soybean and maize yields (soybean-US:59%,
maize-US:66%, maize-EU: 42%) and 24% of barley
in the EU. The predictability for wheat in both the
US and the EU is considerably lower (wheat-US: 17%,
wheat-EU: 5%).

Our statistical model detects yield effects of tem-
perature and soil moisture within the early-season
and mid-season periods. Warm early-season tem-
peratures generally enhance yield potential, but for
wheat and barley, above-average early-season warmth
reduces yields (figure S1). Wet early-season condi-
tions lower yields for soybean, maize, and barley, but
benefit wheat in both the EU and US (figure S2).
In the mid-season, heat consistently reduces yields
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Figure 1. Impacts of compound temperature and soil moisture extremes on crop yields. Straight arrows represent univariate
effects of temperature (1 early-season, 2 mid-season) and soil moisture (3 early-season, 4 mid-season). Circular arrows represent
the interactive effects of mid-season co-occurring interactive effects of temperature and soil moisture and sequential early and late
seasonal temperature anomalies (arrow 6). The interactive effect of sequential early- and mid-season temperature (arrow 6) is the
core focus of this study, while we control for the effects represented by the remaining gray arrows.

across all crops (figure S3). Wet conditions gener-
ally boost yields, except for wheat and barley in the
EU, where excess moisture leads to losses. Notably,
extreme wet conditions negatively affect all crops
(figure S4). We also find that co-occurring hot and
dry conditions produce synergistic impacts that sig-
nificantly amplify yield losses for all crops beyond the
simple additive effects of temperature and soil mois-
ture anomalies (figure S5). The varying sensitivities
of crops to early- and mid-season temperature and
moisture conditions are consistent with results high-
lighted in previous work (Butler and Huybers 2015,
Ortiz-Bobea et al 2019), along with the compounding
effects of hot and dry conditions (Hamed et al 2021,
Lesk et al 2021).

However, we also find an additional compound-
ing impact from interactions between early- and mid-
season temperatures (figure 1, arrow 6). These inter-
actions are negative for all crops and regions, though
they are less pronounced for wheat. This suggests
that crop yield sensitivity to mid-season temperat-
ure depends on the temperature experienced during
the early season. Specifically, while high early-season
temperatures are generally beneficial, they appear to
prime crops for stronger negative responses to heat
later in the season. These effects are not captured by
early- or mid-season temperature alone and emerge
despite controlling for soil moisture and compound
heat-moisture interactions.

The important effect of early-season heat in pre-
conditioning crop yield responses to subsequent mid-
season heat is confirmed by both yield and climate
observations (bins, figure 2), and by our statist-
ical models (contours, figure 2) for crops both in
the US and EU. Yields exhibit non-linear bivari-
ate dependence structures with respect to early- and
mid-season temperatures. We express yield changes
relative to the trend-based expected yield. Notably,
the strongest negative yield anomalies occur when
hot mid-seasons follow warmer-than-average early-
seasons (upper right quadrants, figure 2). In such
growing seasons, yield losses are approximately four
times larger compared to hot mid-seasons follow-
ing an early season with average to below-average
temperatures (bottom right quadrant, figures 2(A)
and (B)). While years with warm springs are more
likely to be dry, the statistical results in figure 2 isol-
ate the interactive effect of inter-seasonal temperature
using controls on early- and mid-season soil mois-
ture. This result thus highlights sequential early- and
mid-season heat as a notable climate risk to crop
yields over recent decades.

The nonlinear relationship between crop yields
and temperature anomalies reveals that sensitiv-
ity to mid-season heat is modulated by early-
season temperatures. To illustrate this, we show yield
responses to mid-season temperatures under the 5th
(cold), 50th (normal), and 95th (hot) percentiles of
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Figure 2. Yield sensitivity to early and mid-season mean maximum temperature. Observed yield anomalies relative to the
trend-based expected yield are stratified by different early- and mid-season temperature levels (shaded bins; bin size = 0.7 °C).
Contour lines represent yield anomalies based on the statistical model. The dotted black curve shows joint early and mid-season
conditions conducive to average yield estimates. Dotted blue and red lines represent the 5th and 95th percentiles of early-season
temperature conditions. Solid black lines indicate the average early- and mid-season temperature conditions.

early-season temperature (figure 3). Yields decline
more steeply with rising mid-season temperatures
following a hot early-season compared to normal
early conditions (red vs. gray lines, figure 3). This
increased sensitivity varies by crop and region: soy-
bean shows a 36% higher sensitivity, maize 25% (US)
and 16% (EU), and barley the most at 56%. In con-
trast, wheat shows only a marginal increase (5%) in
both regions. The differences roughly double when
comparing cold versus hot early-season precondi-
tions (blue vs. red lines, figure 3). While mid-season
heat has long been recognized as a key driver of yield
loss, these results show that its impact is amplified by
preceding early-season warmth.

Yield benefits from warm early-seasons (red vs.
blue lines, figure 3) only materialize under cool-
to-normal mid-season conditions and are largely
canceled out when followed by hot mid-seasons.
We identify crop-specific mid-season temperature

thresholds beyond which early-season warmth res-
ults in net yield losses: 5°C for US maize, 3.6°C for
US soybean, 3.5°C for EU maize, and just 0.7°C for
EU barley (vertical red dashed line, figure 3). Beyond
these thresholds, early-season warmth amplifies mid-
season heat sensitivity enough to negate the yield
benefits of early-season heat. This pattern reflects
an interactive effect, where early-season conditions
alter mid-season yield responses, rather than a simple
additive effect of temperature across the two periods.
In contrast, wheat shows neither benefits from warm
early-seasons nor a clear modulation of mid-season
sensitivity (figures 3(D) and (E)).

3.2. Amplified risks of sequential heat events
beyond 4-1.5 °C of global warming

Prior projections of crop yields under climate change
generally conclude that yield losses from warmer
mid-seasons outstrip the benefits of early-season
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warming, except in the coldest cropping regions
(Butler and Huybers 2015, Ortiz-Bobea et al 2019,
Ray et al 2019). However, our findings suggest
that this balance may further depend on the con-
ditioned influence of early-season temperatures on
crop responses to subsequent mid-season heat. This
insight implies that future yield projections depend
on the relative seasonal rates of warming and con-
currence of early- and mid-season heat anomalies.
To assess future risks of sequential heat events, we
use climate projections from CMIP6 model experi-
ments (see table S3) under emission scenarios com-
patible with the 1.5 degree guardrail stated in the Paris
Agreement (mitigation scenarios SSP1-1.9 and SSP1-
2.6), the current-policy scenario (SSP2-4.5), and a
high-emissions scenario (SSP3-7.0). Note that the
number of models differs between SSP scenarios (see
table S3), but that we do provide results also for the 8
climate models shared across scenarios (figure S6).

Temperature increases become more pronounced
under higher emission scenarios. Under SSP2-4.5,
we project additional warming of 2.7°C in the early
season and 3.5°C in the mid-season over soybean
and maize growing areas in the US by the end of
the century. For wheat, the increase is 2.9°C and
2.8°C, respectively, compared to historical condi-
tions from 1975 to 2015. In the EU, maize is projec-
ted to experience 2.2 °C of early-season and 3.9 °C of
mid-season warming, while wheat and barley show
smaller increases of 2 °C in both growth stage periods
(figure S7). These differences between crops within
the same region are mainly due to variations in the
timing of early- and mid-season growth stages. That
is, early-season conditions for wheat and barley occur
in February and March, whereas for soybean and
maize, they fall in April and May.

The frequency of sequential heat extremes,
defined as the 10 percent most extreme combinations
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Figure 4. Projected frequency changes in sequential heat events for the time period 2060-2100 under different emission scenarios:
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(1975-2015), (2) frequency change relative to future climatology (2060-2100). Bars show average climate model projections,

while error bars show the spread across models.

of early- and mid-season heat during the historical
period (see section 2), increases substantially with
emissions. We find that sequential heat extremes are
10 times more likely under a high-emission scenario
(SSP3-7.0), 8 times more likely under SSP2-4.5, and
5 times more likely even under stringent mitigation
(SSP1-1.9) (figure 4).

To account for changes in the climate baseline, we
also examine frequency shifts using a relative defini-
tion of sequential heat extremes that adjusts to future
climatological conditions (figure 4). This approach
allows us to detect changes in the dependence
between early- and mid-season heat, beyond expec-
ted increases in absolute temperatures. Under this
definition, relative event frequency remains largely
unchanged across emission scenarios. However, mod-
els show persistent disagreement on the direction of
change, indicating high uncertainty in projections of
relative sequential heat risk. This uncertainty is likely
linked to uncertainties in land-atmosphere feedback
or circulation changes under forcing (Shepherd 2014,
Sippel et al 2017, Dong et al 2022).

3.3. Enhanced impacts on yield production from
increasingly sequential heat events under future
emission scenarios

To evaluate crop risks from projected warming in the
context of interactive seasonal temperature effects,
we apply our crop-climate models using early- and
mid-season temperature projections. Under SSP2-
4.5, soybean and maize yields decline by 13%-19%
on average (up to 35% in some models), while wheat

and barley losses are smaller (around 4%-5%), with
consistent sign agreement across all CMIP6 models
(figure 5). These results suggest that crop type, rather
than region, is the dominant factor shaping total yield
sensitivity to warming.

However, the yield impacts of early- and mid-
season temperature anomalies, and their interaction,
varies across crops and regions. Early-season warm-
ing benefits soybean and maize, especially in the US,
but has little effect on wheat and barley in either
the US and EU (figure 5). Joint warming of early
and mid-seasons substantially amplifies yield losses
for maize, soybean, and barley (figures 5(A)—(C) and
(F)), but has minimal impact on wheat (figures 5(D)
and (E)). In many cases, the losses from this inter-
seasonal interaction effect cancel out or even exceed
the gains from warmer early seasons under the SSP2-
4.5 scenario and beyond. Ignoring this interaction
under SSP3-7.0 leads to underestimated losses of 2%—
3% for wheat (EU, US), 19%-22% for maize (EU,
US), 33% for US soybean, and 44% for EU barley
(figure 5, comparing total including and excluding
the contribution of the temperature interaction). This
highlights the importance of accounting for the inter-
seasonal dependence of yield sensitivities to heat in
future crop-climate risk assessments.

Importantly, our results show that nonlinear yield
losses from sequential heat can be substantially mitig-
ated by limiting global warming to 1.5°C (SSP1-1.9),
where projected losses are restricted to 1%—6% com-
pared to expected yield, albeit with significant model
uncertainty (figure 5).
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Figure 5. Projected crop production changes for the future period (2060-2100) compared to historic (1975-2015) under different
emission scenarios: SSP1-1.9 (number models n = 9), SSP1-2.6 (n = 22), SSP2-4.5 (n = 15), SSP3-7.0(n = 15). Average crop
yield losses are attributed to early- and mid-season temperature changes and their interaction. Bar show average projected losses,
while error bars show the 5%—-95% range accounting for regression and model projection uncertainties.

4, Discussion and conclusion

Sequential heat extremes are a growing climate risk
with potentially non-linear impacts on natural and
societal systems. In this study, we assess the sensitiv-
ity of several crop types to sequential temperature and
soil moisture anomalies using a statistical framework.
Relying on observations avoids the key limitations of
current process-based crop models, which struggle
to capture extreme heat impacts and do not expli-
citly simulate interactions between key stress stimuli
(Asseng et al 2015, Schewe et al 2019, Heinicke et al
2022, Néia Janior et al 2025), leading to an under-
estimation of projected yield losses (Kornhuber et al
2023). Although our model does not capture the full
range of agronomic factors affecting yield, the inclu-
sion of terms ¢ and u allows us to account for some
of these influences (equation (1)). Specifically, the
t term reflects long-term trends in yield, which is
extensively used as a proxy for technological advance-
ments, adoption of new cultivars, and the CO, fertil-
ization effect during the study period (Liu et al 2016).
The u term captures systematic, time-invariant differ-
ences between counties, including baseline manage-
ment practices and soil quality. However, in future
projections, we only study the effects on yields driven
by sequential heat events, assuming changes in agro-
nomic factors, and sensitivities to environmental con-
ditions remain at their observed historical levels.
This ignores potential adaptation measures that could
contribute significantly to future yields (Aggarwal
etal 2019).

Within the climate system, both spring warmth
(Gloege et al 2022) and the interrelationship between
temperature and soil moisture (Miralles et al 2014)

can drive heat extremes during summertime. Here,
we control for soil moisture and its interaction with
mid-season temperature. Additionally, we control for
a potential direct, non-linear heat response in both
seasons separately by including quadratic temperat-
ure terms. This approach pinpoints the influence of
early-season heat exposure on crop responses dur-
ing the mid-season, independent of both the poten-
tial physical coupling between temperature in both
seasons and the non-linear impacts of soil moisture
and its interplay with temperature on crop yields. We
focus on temperature and soil moisture across seasons
as principal drivers of crop yields (Butler and Huybers
2015, Ortiz-Bobea et al 2019) and disregard other
correlated climatic factors such as radiation, wind,
humidity, and CO,, which also play distinct, but sec-
ondary roles. Future research can further disentangle
these drivers for more detailed process attribution
and improved representation in yield projections.
We find amplified yield losses from mid-season
heat preceded by warm early seasons. This interaction
is consistent across crops and regions, though weaker
for wheat. The results reveal an underappreciated
climate risk to crops beyond 1.5°C warming, with
important implications for compound stress assess-
ments and adaptation planning. In field and laborat-
ory experiments, certain crop responses to early heat
exposure have been shown to confer acquired ther-
motolerance (or ‘heat priming’). Key physiological
tolerances such as cell membrane stability and water-
use efficiency at high temperatures can be enhanced
when young crops experience heat (Wang et al 2017,
Nadeem et al 2018, Liu et al 2022). However, our res-
ults suggest that at regional crop-production scales,
these yield-benefiting responses are outweighed by
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compounding stress interactions (Mittler et al 2012,
Antoniou et al 2016, Hossain et al 2018). For instance,
the accumulation of reactive oxygen species due to
early-season heat may raise baseline plant stress,
and thus heat sensitivity, during the flowering stage
(Choudhury et al 2017). Moreover, warm early con-
ditions may also promote pathogen development,
increasing crop susceptibility to later-season heat
stress (Dixit et al 2024).

The structure of interactive heat effects high-
lights the balance between early-season gains and
mid-season heat damage. Warmer early-season con-
ditions increase net yield for all crops except bar-
ley and wheat, which show signs of early-season heat
stress above average levels, particularly in the EU
(figures 5(D) and (E)). These responses are consist-
ent with prior findings on regional sensitivity (Ben-
Ari et al 2018) and reported impacts of early heat
stress on photosynthesis and tissue development in
barley and wheat (Mendanha et al 2018, Nadeem et al
2018). For soybean and maize, however, yield gains
due to warmer early-season temperatures are negated
by exacerbated losses from mid-season heat. We inter-
pret these losses as due to enhanced mid-season yield
sensitivity to heat, consistent with physiological liter-
ature. An alternative explanation is that mid-season
heat prevents crops from realizing the benefits of
early-season warming such as improved germination
rates (Butler et al 2014), a potential gain in yield that
can only be realized alongside favorable mid-season
conditions.

While the overall direction of sequential heat
impacts is consistent across regions, the temperature
thresholds at which benefits of early heat are com-
pletely negated by the increased sensitivity to mid-
season heat differ. For example, maize yields decline
under sequential heat in both the EU and the US,
but the mid-season temperature at which interac-
tion losses outweigh early-season gains is lower in the
EU (28°C) than in the US (35°C), corresponding to
anomalies of 3.6°C and 5 °C, respectively. This sug-
gests that although the response direction is consist-
ent, regional differences in cultivar, management, or
baseline climate modulate the interactive effects of
early- and mid-season heat.

A notable difference is the response of wheat to
sequential heat, which is weaker than that of barley,
even though both share similar planting and harvest-
ing windows. This contrast may stem from physiolo-
gical and developmental differences. Experimental
evidence shows that both wheat and barley are
highly sensitive to heat during reproductive develop-
ment, particularly around anthesis and grain filling.
In addition, both wheat and barley are sensitive
to early-season heat, which can delay inflorescence
development and reduce spikelet formation (Jacott
and Boden 2020). However, wheat more frequently
exhibits accelerated phenology and greater acclima-
tion capacity (Jacott and Boden 2020), which may
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enable partial recovery from early-season stress. For
example, in Germany, warmer springs have advanced
wheat heading by up to 14 days over recent decades,
a shift estimated to almost fully offset the warming-
induced increase in anthesis heat stress, with poten-
tial impacts being 60% greater if phenology did not
advance (Rezaei et al 2015). Globally, wheat grow-
ing seasons have shortened and heading dates have
advanced by ~2 days per decade on average (Hu
et al 2005, Ren et al 2019), highlighting the wide-
spread acceleration of wheat phenology under warm-
ing. Barley may lack such phenological flexibility,
which is consistent with the stronger sequential heat
interaction effects observed for this crop in our ana-
lysis. Some of the differences in wheat’s sequential
heat sensitivity may also reflect differences in model
skill between crops. More broadly, our findings sug-
gest that the impacts of sequential heat exposure
vary across crops, reflecting underlying genetic and
physiological traits (Jagadish et al 2021), and may also
vary across regions for a given crop due to differences
in climate, management, or soils.

Our core conclusion is that increasingly sequen-
tial heat events will have non-linear and compound-
ing impacts on crop yields under higher levels of
warming. Projected yield losses from sequential heat
often offset, and in some cases exceed, the benefits of
warmer early-season conditions under high emission
scenarios (SSP2-4.5 and SSP3-7.0). This study isolates
the effects of sequential heat in a warming climate,
rather than providing a full assessment of future cli-
mate change impacts. While we control for soil mois-
ture in our models, we do not account for projec-
ted changes in moisture availability, which remain
highly uncertain compared to temperature projec-
tions (Cheng et al 2017). However, future soil mois-
ture changes could further amplify losses, both dir-
ectly and through enhanced heat-drought interac-
tions (Hamed et al 2025).

Given the key role of soil moisture in modu-
lating crop yields and surface temperature, future
work could integrate scenario-based moisture path-
ways to explore potential yield outcomes. This would
help better characterize both aleatoric and epistemic
uncertainty in projections. One example is the 2023
Dutch climate scenarios (KNMI’23), which include
wet and dry variants for each emission pathway
(Bessembinder et al 2023). Such storyline frameworks
offer a valuable approach for improving prepared-
ness under a wide range of plausible futures. Similarly,
irrigation can substantially alter crop responses to
heat (Troy et al 2015) and robustly accounting for
future irrigation availability is an important avenue
for future research.

To conclude, our analysis underlines the need
for anticipating nonlinear crop production impacts
from sequential heat, a form of temporally com-
pound extreme that merits further attention. Qur
results also highlight how reducing emissions can
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limit these risks within relatively manageable mar-
gins. Furthermore, our findings underscore the need
to improve our understanding of interacting impact
mechanisms, and enhance the resilience of crop vari-
eties and the global food system to effectively adapt
to future complex climate risks. For instance, our
findings suggest that climate-adaptive crop devel-
opment may achieve greater yields under warm-
ing by selectively breeding not only for mid-season
heat tolerance, but for tolerance to combinations of
early- and mid-season heat. This approach may help
capture potential benefits of warmer early seasons,
especially in combination with agronomic devel-
opments, such as earlier sowing. Along with mit-
igation efforts, our results illustrate the import-
ance of bridging the detailed physiological insights
arising from small-scale experiments with emer-
ging, production-relevant insights available from
regional statistical analyses for effective adaptation
planning.

Data availability statement

All used data sets are described in the Methods
section.

e USDA dataset: https://quickstats.nass.usda.gov/,
last access: 15 November 2022

e European crops: Ronchetti et al (2024)
(https://doi.org/10.2905/6859491f-56de-4646-
a8df-844b5bb5f835)

e EUROSTAT dataset: https://ec.europa.eu/eurostat/
web/agriculture/

e CPC Global Unified Temperature data provided
by the NOAA PSL, Boulder, Colorado, USA, from
their website at https://psl.noaa.gov

e Jcons used in figure 1 are sourced from the
noun project (https://thenounproject.com), down-
loaded on the pro-membership carmenbeat-
riz.steinmann. Image numbers include icons with
Image number 4028435 (heat); 4546214 (soil
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(crops).

All data that support the findings of this study are
included within the article (and any supplementary
files).
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