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SUMMARY

Achieving health equity is a key mission of the United Nations Sustainable Development Goals (SDGs). This 

study integrated epidemiological models for both acute and chronic health outcomes with climate, demo

graphic, and cause-specific mortality data. It assessed province-level health inequalities and their drivers 

across China (2000–2023), focusing on short- and long-term exposures to air pollution (PM2.5, ozone) and 

climate-related events (heatwaves, cold spells). The results show that China’s clean air initiatives have signif

icantly reduced PM2.5 levels, improving short-term exposure risks and narrowing ozone-related health in

equalities. However, densely populated and aging regions in northern and central China continue to bear 

disproportionate health burdens. A hidden inequality also emerges in the west, where low mortality counts 

mask high mortality rates. Approximately 80% of the health benefits accrue to just 13.5%–19.0% of the pop

ulation, while older adults – only 10% of the population—bear over 70% of the health burden. The analysis 

identifies three key drivers contributing to health inequality: accelerated population aging, inequities in 

healthcare access, and heightened vulnerability to climate change. The multi-risk factor analysis reveals 

persistent significant inequalities in health risks and benefits across regions and demographic groups.

INTRODUCTION

The United Nations Sustainable Development Goals (SDGs) are 

committed to advancing health equity, but progress is hindered 

by disparities in exposure to air pollution (SDG 3.9) and climate 

change (SDG 13) driven by socioeconomic inequality. Since 

2013, China has implemented its most stringent clean air action 

policy, with the two phases of the policy, phase I (2013–2017) 

and phase II (2018–2020), significantly reducing PM2.5 concen

trations.1 However, societal changes, such as accelerating pop

ulation aging, have offset the health benefits from air quality im

provements, resulting in no significant decline in premature 

deaths.2,3 Meanwhile, despite the implementation of preliminary 

ozone control measures in phase II, its concentration and asso

ciated mortality have continued to rise.4,5 Previous studies have 

shown that single-pollutant analysis underestimates cumulative 

health risks and leads to uneven policy effectiveness (the 

‘‘whack-a-mole effect’’),6,7 and a recent multi-pollutant (PM2.5 

and ozone) study overlooked key spatiotemporal population 

dynamics and short-term exposure risks,8 while short-term 

exposure significantly increases the risk of acute diseases.9–11

However, existing studies on short-term exposure have either 

not considered provincial-level differences and ozone pollution12

or have used only single-year data, making them unable to effec

tively assess the long-term health impacts of policy interven

tions.13 Finally, climate risk factors like extreme temperatures 

directly threaten health14,15 and also induce pollution-mediated 

cascading risks by affecting air quality,16,17 but their cascading 

health risks have not been fully analyzed. Therefore, this study 

aims to more effectively assess health inequality by comprehen

sively analyzing the health risks of PM2.5, ozone, and extreme 

climate, and incorporating spatiotemporal population dynamics.

Despite advancing global air quality improvements and 

climate governance, regional health risk disparities continue to 

widen.18 Previous studies demonstrate that environmental expo

sure inequality remains pervasive across nations.19,20 Sub-na

tional-level analyses reveal pronounced regional heterogene

ities: Western research tends to prioritize racial exposure 

disparities,21 while Chinese studies largely focus on the urban- 

rural dichotomies.22–24 A common thread in these studies is their 

focus on health inequalities arising from different socioeconomic 

status (SES). Some studies also explore intersecting dimensions 
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such as education level,25,26 the built environment,27 and digital 

finance.28 Concurrently, disparities in environmental exposure, 

in turn, shape the long-term migration decisions of the popula

tion.29 However, persistent gaps remain in understanding 

how exposure inequality translates into health risk disparities— 

particularly regarding interprovincial variations in health 

inequality across China. This gap is critical given emerging evi

dence suggesting that differences in sociodemographic factors, 

such as (e.g., aging populations, baseline mortality) may have a 

greater influence on health burdens than differences in exposure 

levels themselves.30 China’s interprovincial sociodemographic 

divergence far exceeds its urban-rural disparities, indicating 

that traditional urban-rural frameworks likely underestimate the 

extent of regional heterogeneity in shaping health outcome. 

Admittedly, provincial-level analysis may not fully capture intra- 

provincial gradient differences (e.g., urban-rural disparities); 

however, existing research indicates that inter-provincial differ

ences remain the dominant contributor to regional disparities 

in air pollution exposure in China (compared to urban-rural 

gaps).31 For instance, in the average mortality rates for various 

diseases caused by PM2.5 exposure, the urban-rural disparity 

is approximately 1.6-fold,22 whereas the difference between 

provinces can be as high as 3.4-fold (Hainan and Xinjiang).32

This profound inter-provincial heterogeneity is a primary driver 

of national-level health inequality and represents a key scale 

for environmental and health policy interventions within China’s 

governance context.

Current research exhibits two critical limitations. First, the lack 

of systematic integration of multiple risk factors, as well as the 

concurrent assessment of multi-pathway exposures, leads to 

health risk underestimation, and consequently, results in over

looked synergistic policy effects. Second, prevailing health ineq

uity analyses constrained by urban-rural frameworks fail to cap

ture provincial sociodemographic heterogeneity’s latent impacts 

on health risks, making it difficult to explain the vast inter-provin

cial heterogeneity and its dominant role in shaping national 

health risk disparities. Based on the shortcomings of prior 

research, we aim to address two key questions: How do provin

cial health inequalities, driven by exposure to various risk factors 

(such as air pollution and climate risks factors), evolve under pol

icy interventions and sociodemographic dynamics? What are 

the underlying mechanisms driving these health inequalities?

Through an integration of epidemiological modeling with 

climate, socioeconomic, demographic, and cause-specific mor

tality datasets, this study aims to offers valuable insights into 

spatial and temporal disparities of PM2.5, ozone, and tempera

ture extremes at the provincial level in China. On this basis, the 

synergistic mechanisms of health inequalities—such as different 

driving factors (sociodemographic change) and multiple risk fac

tors (climate-pollution synergies)—were identified and analyzed. 

Thus, the underlying tension regarding the imbalanced distribu

tion of health benefits under multi-objective environmental pol

icies is revealed.

RESULTS

This study employs a novel analytical framework titled ‘‘Multiple 

factors—Integrated assessment—Synergistic analysis’’ for the 

evaluation of health inequalities due to environmental risk fac

tors. This framework has three integral parts (Figure 1) and the 

framework has three integral parts:

(1) Multiple risk factors data input. High-resolution datasets 

were utilized for key environmental risk factors, including 

air pollution (PM2.5, ozone) and climate extremes (heat

waves, cold spells). For air pollution risk factors, popula

tion-weighted exposure levels were calculated by inte

grating these data with high-resolution population data. 

For climate risk factors, the number of heatwave and 

cold spell days was quantified based on extreme temper

ature thresholds.

(2) Integrated assessment of health inequality. Multiple 

epidemiological models were established for various 

risk factors, considering both long-term and short-term 

exposure. These models were designed to quantify the 

health burdens and economic losses attributable to these 

multiple risk factors, thereby allowing for an integrated 

assessment of health inequality.

(3) Synergistic mechanism Analysis. To quantify the synergy 

of various driving factors, the Global Burden of Dis

ease (GBD) factor decomposition method is employed 

(supplementary information S1). To address the synergy 

of multiple risk factors, this study first identifies their cor

relation laws through an analysis of historical evolution 

characteristics, and then corroborates the underlying 

mechanisms by referencing established literature in the 

field.

Further methodological details, including data sources (used 

to explain data processing methods in detail), parameter settings 

(used to estimate health burdens and economic losses), the Gini 

coefficient calculation method (used to measure the level of 

inequality), are provided in the supplementary information 

S2–S5.

Integrated assessment of health inequality

This section evaluates health inequities induced by multiple risk 

factors through dual dimensions: physical metrics (disease 

burden) and monetary valuation (health economic losses).

Health risks of air pollution

PM2.5 short- and long-term exposure. Between 2000 and 

2013, PM2.5 concentrations across China and its provinces ex

hibited a fluctuating upward trend. By 2013, 27 provinces ex

ceeded the Grade II National Ambient Air Quality Standard 

(35 μg/m3). This corresponds to about 90% of China’s provinces 

suffering from severe fine particulate pollution (Figures 2A and 

2B). China’s Clean Air Action achieved substantial PM2.5 reduc

tions, with the national annual average concentration first falling 

below the 35 μg/m3 standard in 2018 (Figure 3A). Notably, the 

Beijing-Tianjin-Hebei region, Yangtze River Delta, and Pearl 

River Delta exhibited marked air quality improvements. Howev

er, seven provinces (Hebei, Shanxi, Anhui, Shandong, Henan, 

Xinjiang, and Tianjin) in North and Central China persisted in 

exceeding the national standard by 2023 (Figure 2C), character

ized by higher industrial output shares, elevated population den

sity, and larger vehicle fleets. Compounded by economic 
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development pressures and weaker environmental governance 

capacity, interprovincial economic disparities have exacerbated 

regional PM2.5 exposure disparities inequality.

Health risks of short-term exposure to PM2.5 significantly 

improved, but inequalities embedded in health benefits. Prior 

to 2013, short-term PM2.5 exposure caused 1041.5 thousand 

(574.4–1531.8 thousand) premature deaths (Figure 3A), concen

trated predominantly in Shandong, Henan, and Hebei provinces. 

These regions, representing 19.5% of the population, accounted 

for 40% of total health losses (Figure 2A). Emergency room visits 

(ERV) attributable to short-term PM2.5 exposure surged from 

35.3 million (28.9–39.6 million) in 2000 to 226.8 million (192.1– 

248.5 million) in 2013—a 6.5-fold increase (Figure 3B). China’s 

two-phase Clean Air Action implemented post-2013 achieved 

significant progress: deaths attributable to PM2.5 pollution 

(DAPP) declined by 94% by 2023 compared to 2013 levels, 

while PM2.5-related ERV decreased by 89% (Figures 2C, 3A, 

and 3B). Specifically, during phase I (APPCAP), 169.7 thousand 

(93.8–249.0) premature deaths were averted, benefiting 50.6% 

of the national population. Phase II (FAP) further prevented 

244.3 thousand (134.9–358.8) deaths, extending to 92.7% of 

population. However, the distribution of health benefits remained 

highly uneven (Figure 2E). In phase I, about 80% of the gains 

were clustered among only 13.5% of the population. This 

disparity reflects a complex interplay of structural factors, 

including: (1) regions with the most severe baseline pollution, 

where interventions could yield rapid gains; (2) an administrative 

focus on officially designated key regions (e.g., the Beijing- 

Tianjin-Hebei region); and (3) the greater governance capacity 

of more economically developed provinces. Although the situa

tion improved marginally in phase II, with the beneficiary popula

tion expanding to 19.0% as seven provinces experienced 

Figure 1. Research framework
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Figure 2. Spatiotemporal dynamics of population-weighted PM2.5 concentrations and DAPP 

(A) PM2.5 concentrations and deaths in 2000. 

(B) PM2.5 concentrations and deaths in 2013. 

(C) PM2.5 concentrations and deaths in 2023. 

(D) Age distribution of PM2.5 deaths in 2023. 

(E) Cumulative health benefits and total population. Standard map production based on GS (2019) 756 with no modifications to the base map boundaries.
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benefits for the first time, the distribution of these benefits re

mained unequal.

The continuous decline in PM2.5 concentration has not led to a 

substantial improvement in the health risks associated with long- 

term exposure. During phase I (APPCAP), the annual growth rate 

of DAPP decreased from 3.0% (2.8–3.2) pre-policy to 0.9% 

(0.6–1.3). However, the overall upward trend in DAPP persisted. 

In phase II (FAP), strengthened PM2.5 controls reduced DAPP by 

0.8% (− 0.8–0.0), notably curbing rapid deterioration of respira

tory diseases (Table S5). However, the policy effects were not 

sustained, with DAPP rebounding post-2021. By 2023, DAPP 

increased by 43.3 (35.8–118.1) thousand compared to 2013’s 

peak PM2.5 levels (Figure 3C). Eighteen provinces exhibited ris

ing DAPP trends, notably Henan, Shandong, and Liaoning— 

collectively accounting for 52.2% of national DAPP increments 

despite comprising only 17.3% of the population. These prov

inces share high population density and accelerated aging: 

Henan and Shandong rank second and third nationally in total 

population, while Liaoning is the highest proportion of residents 

aged 65 and older in China. These findings suggest partial suc

cess of the Clean Air Action, yet underscore the need for 

enhanced policy implementation.

Overall, the health benefits from the improvement in short-term 

exposure are not sufficient to offset the increased health risks 

caused by long-term exposure, and the overall health inequality 

has not been alleviated (Figure 3D) (To ensure the robustness of 

the results, we summarized six studies employing the same expo

sure response function and comparing their estimates of pre- 

existing deaths attributable to long-term PM2.5 exposure, demon

strating that the estimates come from our study fall within a 

reasonable range [supplementary information S2]). Previous 

studies have assessed phase I,2,3 while we further evaluated the 

benefits of phase II and found that the second-phase policies 

are still insufficient to reverse the rising trend of PM2.5-related 

risks. Moreover, the inequality within the health risks has wors

ened, with a small portion of the elderly population (14.9%) shoul

dering the majority of health losses (81.9%) (Figure 2D). Given 

China’s aging population trend, this situation may become 

increasingly severe in the future.

Ozone short- and long-term exposure. Rapidly rising ozone 

concentrations have led to escalating health risks, with short- 

term exposure risks now surpassing those of PM2.5. As shown 

in Figure 3A, annual mean ozone concentrations remained stable 

(variation <3 μg/m3) during 2000–2016, then surged from 

86 μg/m3 in 2017 to 103 μg/m3 by 2019. This marked the first ex

ceedance of WHO’s MDA8-based safety threshold (100 μg/m3), 

with an annual growth rate 6-fold higher than the preceding 

17-year average. Benefiting from phase II pollution control 

Figure 3. Health risks of short-term exposure and long-term exposure to PM2.5 

(A) Deaths attributed to short-term exposure to PM2.5. The 2th standard is the Grade II National Ambient Air Quality Standard. 

(B) ERV attributable to short-term exposure to PM2.5. Emergency room visit (ERV). 

(C) Deaths attributable to long-term exposure to PM2.5. Proportion of total deaths attributed to PM2.5 (PDAPP). 

(D) Health inequality index of PM2.5 pollution. The calculation method of Gini index is shown in supplementary information S4. Error bars refer to the 95% 

confidence intervals. Phase I focuses on the control of PM10 and PM2.5, phase II sets emission reduction targets for SO2, NOx, and VOCs, and phase III has not yet 

reached its planned deadline, so it is not considered in this study.
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policies targeting coordinated NOx and VOCs precursor reduc

tions, ozone concentration growth rates moderated post-2019. 

However, exceedances persisted during 2022–2023. In 2023, 

long- and short-term DAOP reached 136.5 (17.3–250.2) thou

sand and 83.6 (34.9–121.6) thousand, respectively—a 2-fold 

and 3-fold increase from 2000 levels. While long-term deaths 

attributable to ozone pollution (DAOP) remain substantially lower 

than DAPP, short-term ozone exposure risks now exhibit a sur

passing trend. This highlights that the acute health risks associ

ated with ozone pollution warrant greater attention.

The Clean Air Action has mitigated health inequality associ

ated with ozone pollution. Spatially, the highest DAOP occurred 

in Shandong, Jiangsu, and Henan provinces (Figure 4B), were 

high population density and intense traffic result in elevated 

pollution exposure and vehicular emissions. Conversely, Ning

xia, Qinghai, and Tibet—despite ozone concentrations 

exceeding 100 μg/m3—exhibited lower health burdens due to 

sparse populations and reduced exposure levels. Unlike 

PM2.5-driven disparities, ozone pollution demonstrates weaker 

regional health inequality. Specifically, during Phase I when air 

pollution control focused on PM2.5 mitigation, health inequality 

from ozone pollution remained high (GI = 0.28), peaking in 

2015 (GI = 0.35). In phase II, ozone control measures were 

progressively implemented. Although ozone concentrations 

continued rising, inequality significantly improved (GI = 0.23) 

(Figure 4C). However, pronounced health inequality persisted: 

78.2% of total health losses were borne by a minority elderly 

population (14.9%), with this inequality being particularly acute 

in provinces experiencing accelerated aging (Figure 3D).

Health economic losses due to air pollution. As shown in 

Figure 5A, air pollution cumulatively caused 59219 billion CNY 

in economic losses over 24 years—equivalent to half of China’s 

2023 GDP, with PM2.5 and ozone contributing 51475 billion CNY 

and 7,744 billion CNY, respectively. Long-term PM2.5 exposure 

drove the majority of losses, rising from 672 billion CNY (2000) 

to 3523 billion CNY (2023). The 2023 PM2.5-related losses alone 

accounted for 2.8% of China’s GDP. Although ozone-related 

economic losses were comparatively lower, they surged 8-fold 

from 96 billion CNY (2000) to 775 billion CNY (2023). Under 

persistent ozone concentration increases, ozone-induced health 

economic burdens are projected to escalate further.

Aging populations and regional development disparities exac

erbate interprovincial inequality in health-related economic los

ses. As shown in Figure 5B, regions with higher economic losses 

Figure 4. Health risks of short-term and long-term ozone exposure 

(A) Time trend: deaths from long-term and short-term ozone exposure. 

(B) Spatial distribution: deaths from long-short-term ozone exposure in 2023. 

(C) Health inequality index of ozone pollution. 

(D) Age distribution of ozone deaths. Error bars refer to the 95% confidence intervals. Standard map production based on GS (2019) 756 with no modifications to 

the base map boundaries.
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generally exhibit more pronounced population aging, aligning with 

existing research.33 Building on this, we reveal provincial-level 

spatial heterogeneity in China’s health-related economic losses. 

Based on aging demographics and economic development, prov

inces cluster into four typologies: high-risk pressure, moderate 

composite, low-risk potential, and high-risk spillover. (1) High- 

risk pressure type predominantly characterizes eastern coastal 

regions (e.g., Shanghai, Beijing, Tianjin, and Jiangsu). These 

economically advanced, densely populated urban clusters face 

elevated environmental exposure risks due to accelerated indus

trialization and urbanization, creating a compounding ‘‘economic 

prosperity-advanced-age vulnerability’’ effect that amplifies 

health-related economic losses. (2) Moderate composite type 

predominantly characterizes central regions (e.g., Shandong, Hu

bei, and Hunan). As demographic giants in transitional economic 

and aging stages, these provinces confront dual challenges: un

even distribution of medical resources and progressive population 

aging. Despite moderate pollutant levels, they experience dispro

portionate health-related economic losses. (3) Low-risk potential 

type prevails in western China (e.g., Tibet, Qinghai, and Xinjiang). 

Characterized by low economic development and aging rates, 

their health losses primarily stem from inadequate infrastructure 

and insufficient public health services. However, latent risks esca

late with demographic shifts and climate change intensification. 

(4) High-risk spillover type predominantly occurs in northeastern 

and northern China (e.g., Liaoning, Hebei). These provinces face 

dual pressures of challenging economic transitions and acceler

ated aging. The decline of traditional industries has triggered 

outmigration of working-age populations, exacerbating health- 

related economic losses that spill over to adjacent regions and 

amplify regional health crises.

Health risks of climate change

Health risks from extreme heat events have surpassed historical 

levels and impacts from cold spells. Under the global warming 

trend, climate change is intensifying ‘‘temperature volatility,’’ 

leading to frequent extreme temperature events. During 2000– 

2023, heatwaves and cold spells caused 105.0 thousand and 

191.7 thousand excess deaths, with economic losses of 276 

billion CNY and 401 billion CNY, respectively. Notably, heat

wave-related fatalities in the recent five years (2019–2023) 

equaled the cumulative total of the preceding two decades 

and were 1.5 times higher than cold spell impacts. Over the 

past two years, heatwave-attributable excess deaths and eco

nomic losses surged 2.5-fold and 6-fold compared to the previ

Figure 5. Spatiotemporal characterization 

of health economic losses 

(A) Economic losses from varying levels of air 

pollution exposure. 

(B) Long-term PM2.5 exposure economic losses in 

2023. The size of the circle represents the abso

lute value of the change in economic loss.

ous decade (2022: 30.4 thousand deaths/ 

97 billion CNY; 2023: 12.9 thousand 

deaths/41 billion CNY) (Figure 6).

Extreme temperatures and socio- 

demographic characteristics forming a 

compound amplification effect, causing health inequality to exhibit 

a ‘‘Bipolar’’ characteristic. On one hand, older adults (aged 65 

years and older) face the most pronounced risks, exhibiting 

3-fold and 2-fold higher excess mortality rates compared to the 

0–14 and 15–64 age groups, respectively. This disparity is closely 

linked to the high prevalence of underlying diseases among older 

adults and extreme temperature-triggered cardiovascular/respira

tory decompensation mechanisms. Notably, working-age popula

tions (15–64 years) still bear twice the mortality risk of children, pri

marily driven by systemic exposure to occupational heat stress 

(e.g., outdoor labor) and cold-related injuries.34 On the other 

hand, western China exhibits a phenomenon of ‘‘Low mortality 

count—high mortality rate’’: despite lower absolute deaths, 

excess mortality rates associated with extreme temperatures are 

30% and 14% higher than those in eastern and central China. 

This latent inequality in mortality risk has long been overlooked in 

previous research (Table S6). This can be attributed to the com

bined effect of two core factors: healthcare accessibility and 

climate vulnerability. An empirical analysis was conducted to link 

mortality rates with these two factors (supplementary information 

S3). First, regarding healthcare resources, western regions signif

icantly lag behind in medical service quality and infrastructure 

coverage.35 This disparity implies that residents experiencing ill

nesses induced by extreme weather are at greater risk of mortality 

due to delayed and insufficient medical treatment. Second, 

concerning climate vulnerability, the western regions’ inherent so

cioeconomic and geographical disadvantages—such as slower 

economic development and limited penetration of adaptive infra

structure (e.g., air conditioning)—increase exposure risks and 

reduce adaptive capacity.36 Consequently, populations in these 

areas tend to suffer more severe health impact when exposed to 

extreme weather events of comparable intensity.

Synergistic mechanisms analysis

Synergy of different driving factors

Although air pollution and climate change could affect human 

health, which are not the root cause. From the perspective 

of social epidemiology’s ‘‘Fundamental Cause Theory,’’ deep- 

seated socioeconomic factors are the ultimate drivers of 

health inequality. Therefore, a decomposition method from GBD 

study was applied to separate the contributions of three key 

drivers: population size, age structure, and disease mortality 

rate.37 Among these factors, variations in the disease mortality 

rate are considered to reflect disparities in social medical factors.
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In population size, China’s total population exhibited slowing 

growth followed by decline during 2000–2023, yet remained sub

stantial in scale (Figure 7B). Notably, Henan, Hunan, and Hubei 

provinces—occupying merely 6% of national territory—reside 

16% of China’s population,38 contributing over 50% of DAPP 

(Figure 2). This concentration creates pronounced ‘‘high pollu

tion-high vulnerability’’ dual pressures in central China (Shanxi, 

Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, and 

Chongqing). The demographic-environmental carrying capacity 

imbalance not only intensifies pollution emission density per 

unit area but also amplifies PM2.5 exposure through high-density 

settlement patterns, forming regionally clustered environmental 

health risks. In age structure, from 2000 to 2023, China’s elderly 

population surged by 51.4%, accounting for 14.9% of the total 

population (Figure 7C). Their proportion of DAPP rose from 

71.1% to 84.4% (Figure 2D), highlighting intergenerational health 

inequities amid rapid aging. Due to declining physiological resil

ience and cumulative chronic diseases, older adults exhibit 

heightened vulnerability to PM2.5 exposure, resulting in signifi

cantly elevated premature mortality rates compared to other 

age groups.

Geographic disparities in disease mortality further expose 

structural inequities in healthcare resource allocation. Analysis 

reveals that while disease risks from long-term PM2.5 exposure 

declined significantly with decreasing PM2.5 concentrations 

(Figure 7A), case fatality rates for four PM2⋅5-related diseases re

mained markedly lower in eastern China compared to central- 

western regions (Figure 6D). This spatial gradient implies an 

uneven distribution of high-quality medical resources across re

gions. Decomposition analysis indicates that reducing disease 

mortality in central-western China to eastern benchmarks could 

theoretically avert 2565.2 (1129.0–3936.2) thousand premature 

deaths (2000–2020). This numerical gap quantifies the substan

tial impact of imbalanced healthcare resource allocation on 

health equity (Figure 8A). Notably, while PM2.5 reductions 

achieved an annual decline of 157.3 (154.7–247.7) thousand in 

national DAPP (2018–2020). Aging-driven structural pressures 

intensified, from 2000 to 2020, DAPP increased by 3736.8 

(1633.2–5130.7) thousand, with annual growth rising from 

241.7 (105.8–350.0) to 345.7 (149.8–468.1) thousand, resulting 

in partial offsetting of environmental governance gains by accel

erated aging (Figure 8B).

Synergy of multiple risk factors

This section analyzes the synergistic effects among multiple risk 

factors, including the synergy between air pollution and climate 

risk factors, as well as the synergy among different air pollution 

risk factors themselves.

Cold spells exacerbate the disease burden attributable to 

short-term PM2.5 exposure. Theoretically, extreme cold in

creases heating demand—particularly through coal combus

tion—elevating PM2.5 concentrations and subsequent public 

health impacts. Centralized heating in China’s northern regions 

kicks off in mid-November, and coal consumption due to heating 

will peak during that time frame. This study analyzed winter heat

ing provinces exclusively, lagging cold spell-attributable excess 

deaths (CED) by one period and comparing CED trends with 

annual DAPP variation rates. We revealed synchronized fluctua

tions between short-term DAPP and CED (Figure 9A), indicating 

that PM2.5 spikes from coal-based heating during extreme cold 

intensify short-term health risks. Existing studies demonstrate 

Figure 6. Cold- and heat-related excess deaths and economic loss (2000–2023) 

The value of the ‘‘Age’’ element is the standardized mortality rate. The unit is the number of deaths per 100,000 population.
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that northern China’s free heating policy increased winter PM2.5 

by 4.6 μg/m3 annually, elevating cardiopulmonary mortality and 

reducing life expectancy by 3.1 years.39,40 Although China’s 

clean heating policies are progressing, coal-dependent systems 

exhibit infrastructure inertia and vested interests. Transitioning to 

clean energy requires substantial investments, with economi

cally disadvantaged regions lagging due to fiscal constraints, 

perpetuating persistent regional health inequities.

Heat waves exacerbate the disease burden attributable 

to ozone exposure. Heatwaves are intrinsically linked to 

Figure 7. Changing Drivers of DAPP 

(A) PM2.5 concentration and attribute fraction. 

(B) Population size. 

(C) Age structure. 

(D) Benchmark mortality rates in different regions.

Figure 8. Contribution of different drivers to DAPP 

(A) Total effect of different drivers on DAPP. 

(B) Average effect of different drivers on DAPP. Error bars refer to the 95% confidence intervals.
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ozone formation: when temperatures exceed 28◦C, ozone 

concentrations exhibit significant growth—particularly within 

28◦C–38◦C, where ozone increases linearly at rates up to 

4–5 ppb/K.16 A 21-year observational study further revealed 

17.2% higher daily ozone concentrations during heatwaves.17

Comparing annual variation rates of heatwave-attributable 

excess deaths (HED) and DAOP from 2000 to 2023, we iden

tified synchronized surges in ozone-related mortality during 

heatwave episodes (Figure 9B). For instance, during the 

2022 extreme heat event, HED increased by 85% and DAOP 

by 15.7% compared to 2021, reaching historical mortality 

peaks. These findings indicate that heatwaves during extreme 

heat episodes stimulate photochemical reactions and ozone 

formation, thereby exacerbating health risks. As climate 

change intensifies, global co-occurrences of heatwaves and 

ozone pollution are projected to surge, worsening exposure 

inequalities.41 This synergy will disproportionately escalate 

health inequalities in climate-sensitive regions and among 

vulnerable populations.

A substantial 74.9% of the health benefits from PM2.5 mitiga

tion were offset by escalating ozone-related health risks. The 

Clean Air Action averted 700.9 thousand (387.1–1029.3) 

short-term exposure-related premature deaths from 2013 to 

2023 through PM2.5 reduction. However, near-surface ozone 

concentrations surged post-2016 (Figure 4A, supplementary 

information S5), with ozone pollution causing an additional 

553.3 thousand (127.4–934.6) premature deaths from 2017 to 

2023 compared to 2016 baselines. This ozone-driven health 

offset reduced the net health gains to 25.1%. Phase II (2018– 

2020) mandated a 15% reduction in total NOx emissions, slowing 

ozone concentration growth but proving insufficient to counter

balance ozone formation potential driven by rising VOCs emis

sions and precursor synergies.

This result demonstrates the critical importance of a sys

tematic joint analysis of PM2.5 and ozone, as their formation 

mechanisms, spatiotemporal characteristics, and health path

ways have profound intrinsic connections and significant dif

ferences. (1) In terms of formation mechanisms, the two share 

a complex nonlinear chemical relationship. This study found 

that while PM2.5 concentrations dropped significantly, ozone 

levels paradoxically rose; in this regard, Li et al.42 used a com

plex atmospheric chemical transport model (WRF-Chem) to 

quantify and discover that the decrease in PM2.5 during the 

clean air actions weakened aerosol-ozone interactions, 

causing changes in meteorological conditions and an increase 

in photolysis rates, which in turn led to higher ozone concen

trations. (2) In terms of spatiotemporal distribution and sour

ces, their characteristics are distinctly different. This study 

found that PM2.5 pollution is more severe in Central and North 

China, especially during the winter heating season, whereas 

ozone pollution is more severe in the western regions, partic

ularly in the summer. This difference illustrates that single- 

pollutant strategies are inadequate, thus necessitating the 

implementation of coordinated controls across regions and 

seasons. (3) In terms of health effect pathways, they have 

different focuses, but their harms are compounded. This study 

found that PM2.5 can penetrate deep into the lungs and enter 

the bloodstream, with long-term exposure posing greater 

harm and readily causing chronic damage to the cardiovascu

lar and cerebrovascular systems. In contrast, ozone, as a 

strong oxidant, poses a greater risk from short-term exposure, 

easily triggering acute respiratory diseases. Although these 

two pollutants affect health through different pathways, their 

combined presence creates a synergistic effect that inten

sifies the overall damage. Consequently, overreliance on 

PM2.5 controls risks entrenching a ‘‘pollution displacement 

trap’’, where disadvantaged groups or regions bear dispro

portionate health burden disparities. The findings of this study 

provide an important reference for the synergistic control of 

PM2.5 and ozone that the Chinese government is currently 

advancing: future policymaking must not only jointly control 

precursors like NOx and VOCs based on their formation mech

anisms but also implement precise, regionalized management 

according to their different spatiotemporal characteristics and 

health effects.

DISCUSSION

This study employs a ‘‘Multiple factors—Integrated assess

ment—Synergistic analysis’’ framework to reveal the effect of 

health inequality and the underlying mechanisms driven by 

various risk factors. Our analysis identifies stark regional 

disparity, with densely populated, aging provinces in the north 

and central China (e.g., Henan, Shandong) bearing dispropor

tionate health burdens. This is consistent with existing research,3

but what distinguishes our work is the further revelation of a 

‘‘hidden health inequality’’ in China’s western regions—where a 

low ‘‘absolute number’’ of premature deaths masks an extremely 

high ‘‘mortality rate.’’ This finding indicates that beneath the 

veneer of a sparse population, individuals in the western regions 

Figure 9. The interactive effects of air pollu

tion and extreme temperatures 

(A) PM2.5 and cold spell interactions. CED lags one 

period. The sample is centralized winter heating 

areas in China, including Beijing, Tianjin, Hebei, 

Shanxi, Inner Mongolia, Liaoning, Jilin, Hei

longjiang, Shandong, Henan, Shaanxi, Gansu, 

Qinghai, Ningxia, and Xinjiang. 

(B) Ozone and heat waves interactions.
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face potentially more severe health risks, and these areas have 

often been overlooked in previous policy focus. The future allo

cation of policy resources could move beyond traditional models 

centered on absolute population or GDP and introduce an indi

cator system that considers health equity, tilting resources to

ward high-risk, low-resilience regions, with a focus on strength

ening their primary healthcare services and climate change 

adaptation capacity building.

While existing studies have shown that current clean air action 

policies have brought significant health benefits, they also indi

cate that these benefits are still insufficient to offset the exacer

bated health risks caused by factors such as population aging.2,3

We further found an imbalanced distribution of policy benefits 

and an uneven burden of health losses. The Clean Air Action 

Plan, despite having widespread coverage, has benefited only 

13.5%–19.0% of the population. While older adults make up to 

only 10% of the total population, they account for over 70% of 

the health losses associated with air pollution. This unequal de

mographic distribution signifies an exacerbation of health dis

parities since aging populations disproportionately carry envi

ronmental risk. Furthermore, inter-provincial disparities in 

health-related economic losses were compounded by aging 

and uneven regional development trends. The government could 

establish a refined public health protection system. For example, 

by linking air pollution and extreme weather early warnings with 

community-based elderly care systems and chronic disease 

management apps, it can provide senior citizens with timely, 

personalized health risk alerts, protective guidance, and emer

gency shelter support.

Based on the analysis of health inequality, we further system

atically identified the pathways that drive this inequality. While 

clean air actions have significantly reduced the health risks of 

short-term PM2.5 exposure, the concurrent increase in ozone 

levels has negated 74.9% of these health gains. Meanwhile, 

even while short-term exposure decreases, long-term PM2.5 

exposure risks are still on the rise, driven by population aging 

and interregional development disparities, requiring more 

comprehensive and longer-term policy measures. In addition, 

the coupling of extreme temperatures—both heatwaves and 

cold spells—and air pollution has yielded synergistic health im

pacts, amplifying existing health inequalities. The synergistic ef

fect elevates the health burden, particularly in vulnerable popu

lations, and necessitates the need for integrated solutions that 

tackle the combined effects of multiple environmental stressors. 

In pollution prevention and control, the government could prior

itize the synergistic emission reduction of VOCs and NOx to curb 

the compound pollution of PM2.5 and ozone; in urban develop

ment, it must coordinate the dual objectives of cooling (e.g., by 

increasing green spaces) and reducing pollution (e.g., by opti

mizing layouts).

In summary, this study demonstrates that although environ

mental policy interventions have effectively reduced exposure 

risks—realizing an annual reduction of 36.5 thousand DAPP in 

phase I, to 157.3 thousand DAPP in phase II—they have failed 

to fully bridge health inequities stemming from regional devel

opment disparities and demographic heterogeneity. The com

pound effects of densely populated central provinces and a 

rapidly aging population pose unique challenges to China’s 

environmental health governance. China’s experience offers 

critical cautionary insights for global air quality management 

strategies. It emphasizes the limitations of relying solely on 

pollutant concentration objectives to limit health risks, espe

cially under the context of rapid demographic transforma

tions. These findings reflect a ‘‘dual inequality trap’’ pervasive 

in environmental governance across developing economies— 

where health inequities are compounded by the double effect 

of unbalanced regional development and population change. 

This study calls for the core objective of environmental health 

governance to shift from simply pursuing the reduction of 

pollutant concentrations to a focus on minimizing health 

inequality and its associated economic losses. This requires 

that future policy evaluations (such as the effectiveness 

assessment of the new round of the ‘‘Air Pollution Prevention 

and Control Action Plan’’) consider health equity based on de

mographic structure and regional disparities, helping China 

and other developing economies worldwide to escape the 

‘‘double inequality trap.’’

Amplified by climate change, these compounded inequities 

represent growing systemic threats to global health and sustain

able development. Overcoming this challenge will be critical to 

the achievement of Sustainable Development Goals (SDG) 

3.9 (reducing health impacts from hazardous chemicals and 

pollution), 10 (reducing inequalities), and 13 (Climate Action). A 

transition toward multi-factor, equity-oriented governance 

frameworks is necessary to close the gap between minimizing 

environmental risks and health equity.

Limitations of the study

This study has several limitations. First, the additional health risk 

of combined exposure to multiple environmental stressors is not 

measured. Future studies should establish a compound expo

sure index system to assess interactive scenarios (e.g., heat

wave-ozone and cold spell-PM2.5 compound exposures). Sec

ond, modification effects of extreme temperatures on air 

pollution involve complex meteorological and chemical pro

cesses. Atmospheric chemistry transport models could assess 

air quality changes under extreme temperature scenarios. Third, 

this study disaggregated mortality and age structure data to the 

provincial level, revealing regional health inequality at the na

tional scale; however, provincial-scale estimates may not cap

ture intra-provincial heterogeneity, especially those between ur

ban and rural areas or among different counties and districts. 

This may result in either underestimation or overestimation of 

health risks in densely populated, heavily polluted regions, 

particularly in provinces with highly uneven pollution distribu

tions. For example, in those provinces with highly concentrated 

pollution sources and relatively dispersed populations, the pro

vincial average exposure level might underestimate the health 

risks for residents near highly polluted areas; conversely, it might 

also overestimate the risks for residents in cleaner areas. More

over, since the intra-provincial distribution of PM2.5 is typically 

more uneven than that of ozone, it may produce more uncer

tainties. If the higher-resolution health data such as relative risk 

of cause-specific mortality become available, a more in-depth 

and downscaled analysis of typical provinces will be conducted 

in the future.
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METHOD DETAILS

Disease burden estimation of air pollution risk factors

Exposure to air pollution exacerbates disease risks, leading to premature death. The deaths attributable to PM2.5 pollution (DAPP) 

and ozone pollution (DAOP) are calculated as follows:

DAPPi;t =
∑

a;d

(
PAFa;d;i;t ×Popi;t ×Ratea;d;i;t ×Agea;t

)
(Equation 1) 

DOPPi;t =
∑

a;d

(
OAFa;d;i;t ×Popi;t ×Ratea;d;i;t ×Agea;t

)
(Equation 2) 

In Equations 1 and 2, DAPPi;t/ DOPPi;t is the deaths attributable to PM2.5/ozone pollution. PAFa;d;i;t/ OAFa;d;i;t is the proportion of 

deaths attributed to PM2.5/ozone pollution caused by disease d in a population with age a at province i in year t; Popi;t is the pop

ulation at province i in year t; Ratea;d;i;t is the death rate of disease d for people with age a at province i in year t; Agea;t is the per

centage of population with age a to the total population in year t. PAFa;d;i;t/ OAFa;d;i;t was calculated PAFa;d;i;t=OAFa;d;i;t =
RRa;d;i;t − 1

RRa;d;i;t 
, 

RRa;d;i;t is the relative risk for the population with age a and have the disease d at province i in year t.

Equations 1 and 2 require three datasets: relative risk (RR) values, pollutant exposure levels, and baseline health data. The meth

odologies for these datasets are as follows:

RR values derive from exposure-response functions (ERFs) quantifying pollutant concentration-health endpoints associations. In 

air pollution-related health impacts, health endpoints vary depending on exposure duration. Long-term exposure to pollutants can 

lead to increased risk of chronic diseases causing premature deaths. For chronic health endpoints, PM2.5 exposure considers 

ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), and lung cancer (LC); ozone exposure involves 

cardiovascular disease (CVD) and respiratory disease (RD). Short-term exposures result in more complex risk of acute diseases. For 

acute health endpoints, both PM2.5 and ozone exposure were considered solely for all-cause mortality risk, with additional consid

eration of PM2.5-associated emergency room visits (ERV). Following Burnett et al.,43 RR associated with long-term PM2.5 exposure 

was estimated using the Integrated Exposure-Response (IER) model. The IER model has been widely adopted in health risk assess

ments of air pollutants due to its structural universality and better alignment with China’s context. Although the GEMM model, devel

oped by the same research team, incorporates updated data, this study retained the IER model as the primary risk quantification 

basis2,44 to ensure comparability with existing research outcomes. The GEMM model was additionally employed in uncertainty an

alyses for supplementary evaluation.

RRa;d;i;t =

⎧
⎨

⎩
1 + αa;d

(

1 − e
− γa;d

(
Ci;t − C0a;d

)δa;d)

; Ci;t > C0a;d

1; Ci;t ≤ C0a;d

(Equation 3) 

For short-term PM2.5 and long-/short-term ozone exposures, this study employed log-linear exposure-response functions 

following the GBD 2017 methodology (Equation 4). The calculation formula is as follows:

RRa;d;i;t = eβa;d(C − C0) (Equation 4) 

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

See supplementary information S9 for all 

data used in this paper

This paper N/A

Software and algorithms

Python PyCharm Community 

Edition 2022.1.4

https://www.jetbrains.com/zh-cn/pycharm/

ArcGIS ArcMap 10.8 https://desktop.arcgis.com/zh-cn/arcmap/index.html

Excel Microsoft https://www.microsoft.com/en-ca/microsoft-365/excel

Stata Stata 17.0 https://www.stata.com/stata17/
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In Equations 3 and 4, Ci;t is the PM2.5 concentration at province i in year t; αa;d, γa;d, δa;d, βa;d and C0a;d 
are the parameters of ERFs 

(supplementary information S6).

Pollutant exposure levels were assessed using the latest PM2.5 and ozone concentration data (spatial resolution: 1 km, units: 

μg/m3) from the China High Air Pollutants (CHAP) dataset. Ozone levels were based on the Maximum Daily 8–Hour Average 

(MDA8) metric.45–47 However, CHAP data do not account for population exposure heterogeneity. We further calculated the popula

tion weighted PM2.5/ozone concentration for each province.

Baseline health data encompass demographic statistics, disease-specific mortality rates, and hospital visitation data. Previous 

studies often assume nationally homogeneous or temporally static disease mortality and age structures.2,8,48 This study advances 

these approaches by: (1) Differentiating disease categories, we integrated region-specific and age-stratified mortality data from the 

China Cause of Death Surveillance Dataset with age-specific attributable mortality proportion data from the Global Burden of Disease 

(GBD) database, thereby developing provincial age-specific baseline mortality rates across multiple years; (2) differentiating time- 

varying provincial age structures using national population census data.

Disease burden estimation of climate risk factors

Climate risk factors primarily focus on extreme temperature events, including heatwaves (extreme high temperatures) and cold spells 

(extreme low temperatures). These events elevate relative risks of cardiovascular, cerebrovascular, and respiratory diseases, result

ing in temperature-attributable excess death (ED). Provincial-level excess death from extreme temperatures was calculated as 

follows:

EDi;t = Ni;t × ER × Di;t (Equation 5) 

In Equation 5, EDi is the excess deaths attributable to extreme temperature events at province i in year t; Ni is the average daily non- 

accidental deaths at province i in year t; ER is the excess risk15; Di;t are days of extreme temperature events in year t. Threshold 

definitions for extreme temperatures referenced established criteria from prior studies (Extreme heat events: Daily Tmax >99th 

percentile for ≥2 consecutive days; Extreme cold events: Daily Tmin <5th percentile for ≥7 consecutive days.).15

Monetized estimation of disease burden

To measure the health economic loss due to premature death, it is necessary to convert the physical quantities of various health end

points into monetary terms. Referring to West et al.,49 the value of statistical life (VSL) is first calculated using willingness to pay (WTP) 

and the unit risk probability (p), and then VSL is used to quantify the monetary value of each health endpoint (supplementary 

information S7). The calculation formula is as follows:

VSL =
ΔWTP

Δp
(Equation 6) 

VHRi;t = VSLi;t ×Deathsi;t ×

(
GDPi;t

GDP′′China′′ ;′′2017′′

)0:5

(Equation 7) 

In Equations 6 and 7, WTP is the amount of money that residents are willing to pay to avoid a unit of death risk; p is the unit risk 

probability. VHRi;t is the monetized value of health risks at province i in year t; VSLi;t is the residents’ extra costs to avoid health risks at 

province i in year t, and adjusted by the GDP of province i in year t, the elasticity coefficient is set to 0.550; Deathsi;t is the premature 

deaths attributed to different events at province i in year t.

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimate the contributions of different driving factors

Based on adjustments to the formula for estimating the disease burden of air pollution risk factors, we estimated the contributions of 

changes in PM2.5 concentration, population size, age structure, and mortality rate. Specifically, these were adjusted using the 

following four methods: (1) PM2.5 concentration was fixed to 2013 values; (2) The population size was set to the value in the base 

year 2000; (3) The age structure was set to the value of the base year 2000; (4) The benchmark mortality rate was set to the value 

for the eastern region.

Synergy of climate and air pollution risk factors

Cold spells and PM2.5: Considering that centralized heating in northern China begins in mid-November, when coal consumption 

for heating peaks, we lagged cold spell-attributable excess deaths (CED) by one period and compared their trend with the 

annual variation rate of the disease burden attributable to short-term PM2.5 exposure (DAPP) to determine if a common trend 

exists.

Heat waves and ozone: We conducted a comparative analysis of the annual variation rates of heatwave-attributable excess deaths 

(HED) and the disease burden attributable to ozone exposure (DAOP) from 2000 to 2023 to determine if a common trend exists.
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Uncertainty analysis

To address inherent uncertainties in epidemiological models and unforeseen exogenous shocks, this study conducted a tripartite 

uncertainty analysis: parameter uncertainty, model discrepancy, and public health emergencies, thereby ensuring the robustness 

of health impact assessments (supplementary information S8).

(1) Uncertainty in epidemiological models primarily stems from ERF estimation. For varying exposure durations, we employed the 

GBD study’s IER model and log-linear ERF to calculate health risks. Plausible health risk ranges were derived using the upper 

(95th) and lower (5th) bounds of parameter estimates from both models. Furthermore, unlike prior studies,2 we incorporated 

province-specific age structures and mortality rates, enabling more precise quantification of aging impacts. This granular 

approach elucidates why long-term exposure-associated DAPP remains unmitigated despite policy interventions. Age- 

related vulnerability was captured using age-specific baseline mortality rates. Therefore, the uncertainty of the age-stratified 

RR values was not further explored. Additionally, we have defined new extreme temperature thresholds and re-estimated the 

excess mortality attributable to climate change. The magnitude of change in the results under the new threshold definitions is 

approximately 5%, which remains robust.

(2) Considering the model discrepancy, we conducted cross-validation using the GEMM. Although GEMM yielded higher esti

mates for long-term exposure-associated DAPP compared to the IER model, a pattern consistent with prior findings,51

both models demonstrated concordant change trends, preserving the validity of our core conclusions.

(3) In 2020, China intensified public health interventions in one-third of cities to mitigate COVID-19 transmission risks, implement

ing phased social activity restrictions. Lockdown measures (January–April 2020) reduced annual PM2.5 levels by 1.5 μg/m3,52

potentially overestimating Phase II policy impacts. We recalculated PM2.5 concentrations excluding COVID-19 effects show 

Phase II averted 437.4 thousand premature deaths (vs. 471.8 thousand without COVID-19 adjustment), yielding an annualized 

reduction of 145.8 thousand deaths (vs. 157.3 thousand). These results confirm Phase II’s significant health benefits and the 

robustness of our conclusions.

Although the aforementioned analysis corrected the direct impacts of the COVID-19 pandemic on PM2.5 concentrations, other 

confounding factors including healthcare accessibility, pollution exposure and baseline mortality rates arising from the pandemic dis

ruptions between 2020 and 2023 have not been fully encompassed due to data availability. However, these factors could introduce 

potential biases into the health benefit assessment from multiple aspects: for example, limitations in healthcare services caused by 

the pandemic may imply the conservative assessment of the policy’s benefits. At the same time, changes in residents’ spatiotem

poral activity patterns (such as working from home) could underestimate individuals’ actual pollution exposure levels. For the base

line mortality rate, considering the underlying data are systematically compiled by the National Bureau of Statistics from various sour

ces, including household registrations, death reports from medical facilities, and population censuses or surveys, it may already 

incorporate the mortality impact of the COVID-19 pandemic. In summary, despite the underestimations mentioned above, there 

are still positive health benefits in Phase II. The further discussions are shown in supplementary information S8.
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