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Objective: Understanding these factors is key for projecting future cropping patterns, refining agricultural policy,
and improving crop models that often oversimplify rotation practices. This study identifies the drivers influ-
encing operational crop rotations across Central Europe and projects future cropping patterns in the region.
Methods: We analyse over 16 million field-year combinations from Germany, Austria, and the Czech Republic.
Using a random forest algorithm, we determine feature importance and apply a novel machine learning approach
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that incorporates uncertainty in farmers’ decision-making to provide a potential outlook on cropping patterns

until 2070.

Results and Conclusions: Historical cropping patterns, agronomic practices, and legume commodity prices
significantly shaped crop rotations across the region. Projections indicate a substantial increase in legume
cultivation over the coming decades, with implications for nitrogen budgets, dietary transitions, and in-silico

upscaling.

Significance: Rather than optimizing rotations, this study identifies key drivers of operational crop rotations in
Central Europe. The findings provide the basis for large-scale simulations that represent cropping patterns more
realistically. To the best of our knowledge, the data set compiled here is the most extensive yet analysed in the
context of operational crop rotation management.

1. Introduction

Growing different crops in a repeating sequence on the same field —
frequently referred to as crop rotation — is an agricultural practice that
has been used for thousands of years (Yates, 1954; Bogaard et al., 1999).
Crop rotations have various benefits over monocropping, including an
increase in nitrogen supply to crops (Watson et al., 2002; Reckling et al.,
2016; Notz et al., 2023), improved control of weeds (Barberi, 2002), and
soil-borne pests and diseases (Vereijken, 1997; Zinati, 2002), enhanced
resource use efficiency (Bachinger and Stein-Bachinger, 2000), and in
summary, an increase in crop yield overall (Bullock, 1992; Barbieri
et al., 2019; Reckling et al., 2022). High-level stakeholders, such as the
Intergovernmental Panel on Climate Change (IPCC, 2022) and the Food
and Agriculture Organization of the United Nations (FAO, 2022),
therefore emphasise the importance and benefits of diversified crop
rotations in the context of climate change adaptation and mitigation.

The agronomic theory behind designing optimal crop rotations is
well established and planning tools are widely available (Bachinger and
Zander, 2007; Schonhart et al., 2011; Pahmeyer et al., 2021). Best
practice rotations often include cultivation breaks of six to seven years
between the same crop for phytosanitary reasons (Jeangros and Cour-
voisier, 2019), or a higher proportion of legumes (Hufnagel et al., 2020;
Reckling et al., 2022) for biological nitrogen fixation or as green
manure. These optimal approaches are based on logical rules and best
practice examples, but the implementation of real-world crop rotations
may not follow these approaches exclusively. Environmental conditions,
farmers’ individual cultivation preferences, market price incentives (e.g.
for oilseeds from production depressions in Ukraine (agrarheute, 2022;
Bloomberg, 2022), and agro-political decisions can change cropping
frequencies and thus crop rotations operationally. Such opportunistic
decisions, and more generally, factors other than best practice ap-
proaches or stylised sequences have rarely) been taken into account
when analysing crop rotation patterns. Stein and Steinmann (2018)
focused the importance of socioeconomic factors for shaping less diverse
crop rotation types in Germany in the recent past. Dupuis et al. (2023)
and Upcott et al. (2023) used cropping habits to predict crop rotations in
Canada and the UK, respectively. And Revoyron et al. (2022) showed
that agronomic, economic or work-related factors motivate or hinder
crop diversification. Beyond this, a joint analysis of environmental,
agronomic, economic, and political drivers and cropping habits to un-
derstand and project space- and time-specific cropping decisions has
been missing so far. The research question of this study therefore was
which of the above drivers shape operational crop rotations at large
spatial coverage, and how the respective dynamic could translate into
future cropping practices across the study region.

Advancing the present understanding of “real-world” rotational
cropping would be crucially important, especially for the following two
aspects. Firstly, in the context of climate change adaptation and miti-
gation, the benefits of diversified crop rotations have received
increasing political attention from high-level institutions such as the
Intergovernmental Panel on Climate Change (IPCC, 2022) and the Food
and Agriculture Organization of the United Nations. And in the Euro-
pean Union (EU), subsidy payments for diversification measures have
long been part of the Common Agricultural Policy (CAP) (EU, 2022;

Galioto and Nino, 2023). Understanding the drivers that shape crop
rotations would provide a means to assess agro-political measure effi-
cacy and a lever for designing such measures to promote crop diversi-
fication goals. And secondly, crop and bio-economic modelling studies,
which scale up farming practices and also inform integrated assessments
and policy decisions, mostly ignore crop rotations or use simplified
practices for their simulations, commonly assuming monocropping
across all agricultural land and over the time period of interest. Some
studies have started to put individual crops in the context of their
rotation but still use stylised assumptions or best practice examples
(Stella et al., 2019; Faye et al., 2023; Nendel et al., 2023; Kik et al.,
2024). The fact that operational cropping patterns may look very
different from optimised rotations, and that they may also change over
time, has not been considered in this context yet. To better account for
the multiple benefits of rotations when scaled up in-silico, an under-
standing and representation of related drivers, and a projection of real-
world conditions based on this understanding is therefore urgently
needed (Basso et al., 2015; Kollas et al., 2015; Teixeira et al., 2015;
Pohankova et al., 2024; Timlin et al., 2024).

As outlined earlier, relying on traditional tools for designing optimal
rotations based on fixed agronomic rules may not capture the reality of
operational crop rotation decisions. Machine learning (ML), on the other
hand, can extract practical rules and identify key drivers from real-world
observational data of past cropping patterns (Ryo and Rillig, 2017).
Previous studies have demonstrated the potential of using ML to classify
rotations in Great Britain (Upcott et al., 2023) or to predict the next crop
in a rotation in France (Osman et al., 2015).

While these studies focused on pattern recognition, the aim of the
present study was to identify drivers for operational crop rotation
management across multiple countries in central Europe (Germany,
Austria, and the Czech Republic). To the best of our knowledge, this
study provides the most extensive analysis of operational crop rotation
management so far, especially considering more than one country.

We analysed over 16 million operational field-year records and
hypothesised that rotational decisions are based on:

o field-specific cropping history and neighbouring rotations (section
2.1.1)

agronomic rules for good rotation practice (section 2.1.2)
prevailing environmental conditions (section 2.1.3)

crop commodity prices (section 2.1.4), and

agricultural policies and subsidy measures (section 2.1.5).

We used a random forest (RF), a powerful bot not overly complex ML
algorithm (Liakos et al., 2018; Ryo, 2022) that solves classification
problems based on majority votes from an ensemble of decision trees
and has been used for crop type identification before (Blickensdorfer
et al., 2022). We applied spatio-temporal cross-validation and forward
feature selection (Meyer et al., 2018; Meyer et al., 2019) considering
uncertainties inherent in farmers’ decision-making and -based on that-
generated a potential outlook on cropping developments until 2070.
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2. Methods
2.1. Data sets and respective features

In the following, we describe different data sets and related features
that provided the necessary basis for our analysis. Table 3 gives a
comprehensive overview of all features included. A summary of links to
all publicly available data sets can be found in the Data availability
section at the end of the manuscript.

2.1.1. Field-level rotation records

We used data from the Geo-spatial Application (GSA) (Leonhardt
et al., 2024) of the EU’s Integrated Administration and Control System
(IACS) (Toth and Kucas, 2016) across Germany, Austria, and the Czech
Republic (Fig. 1).

The TACS data lists all agricultural fields for which farmers have
applied for CAP subsidies, containing (at least) the location and size of
the field, and the main crop of the respective year in shapefile format
(the availability of additional information differs between regions and
years). For this study, we had access to IACS data from nine German
federal states (Bavaria, Brandenburg, Lower Saxony, Mecklenburg-
Western Pomerania, North Rhine-Westphalia, Rhineland-Palatinate,
Saarland, Saxony, and Thuringia; 13,589,421 field-year combinations in
total), Austria (2,384,993 field-years), and the Czech Republic (167,957
field-years). Table 1 provides an overview of their regional availability.
Non-publicly available data sets were retrieved through bilateral,
project-based exchange with responsible officers at the providing
institution.

To aggregate the data from individual years and states to a full set of
sequential cropping information for distinctly identifiable fields over the
entire study domain, we had to overcome the challenge that the shape
and number of fields in the original IACS data potentially change from
one year to the next. Janicke et al. (2022) applied an area-based fitting
to address such interannual discrepancies. As we did not consider field
size for this study, we instead (i) calculated the centroid for each field in
the latest available year of each state (see Table 1), (ii) extracted CTypes
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Table 1

Overview of the IACS data sets included in this study. Publicly available data sets
are marked with (*). Respective links can be found in the Data availability
section at the end of the manuscript.

State Available Provider
years
Austria (¥) 2015-2023 Agrarmarkt Austria (2025)
Brandenburg (*) 2005-2023 Ministerium fiir Land- und
Ernahrungswirtschaft, Umwelt und
Verbraucherschutz (2024)
Bavaria 2005-2023 Bayerisches Staatsministerium fiir
Erndhrung, Landwirtschaft, Forsten und
Tourismus
Czech Republic (*) 2019-2023 Ministerstvo zemédélstvi Ceské republiky
(2025)
Lower Saxony (*) 2009-2023 ML/SLA Niedersachsen (2025)
Mecklenburg- 2016-2023 Ministerium fiir Landwirtschaft und Umwelt
Western
Pomerania
North Rhine- 2019-2023 Landwirtschaftskammer Nordrhein-
Westphalia (*) Westfalen (2025)
Rhineland- 2005-2021 Ministerium fiir Wirtschaft, Verkehr,
Palatinate Landwirtschaft und Weinbau
Saarland 2012-2023 Landesamt fiir Vermessung, Geoinformation
und Landentwicklung
Saxony 2015-2023 Séchsisches Staatsministerium fiir Energie,
Klimaschutz, Umwelt und Landwirtschaft
Thuringia 2010-2014 Thiiringer Landesamt fiir Landwirtschaft und

Landlichen Raum

from all previous years that overlapped with these centroids, and (iii)
assigned a unique identifier for each individual field after combining all
years per field and all fields across each state into one data set. Although
the original IACS data includes a field identifier, this index only con-
siders fields within a state and a small percentage of fields are duplicated
or overlap close to borders.

Crop descriptions vary between regions and between years within a
region. Therefore, we harmonised all crop descriptions into 17 crop
types (CType, Table 2), as used in previous studies (Blickensdorfer et al.,
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Fig. 1. Study regions. The shaded points show all the fields in nine German federal states, Austria, and the Czech Republic that were used to train and test the crop
rotation model. Germany and Austria in shades of red show the training area for the alternative model, excluding all features selected for the first model. (b) IACS
data showing the diversity of crop types using the example of the German state of Brandenburg in 2023. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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2022; Janicke et al., 2022). With the focus on crop rotations, we g5 e -
excluded permanent grassland (12 %), and fields with perennial crops zg & EleTn88unin8RRLER5829
(e.g. orchards or vineyards), speciality crops (e.g., herbs or ornamental =S < & = ©°°eccs°eScocc005055S
o
flowers), or crops not part of the 17 CTypes (36 % for all of the latter &; R
Sy . 3 8
three) beforehand. To avoid giving any hints about the current CType g if ]
(known as the “data leakage” problem), we considered the current 2% g = £ g e8 &
for each field and . . £2g |Plzziesiszziizizezs
CType for each field and year (CTypey, y = 2009:2023 (y:2005.?008 =L E 2533825355833 883583%
appear as PCType; (see next) for y = 2009)) as the dependent variable o E E A = = == =
only. Instead, we used CType of the four previous years (PCType;j, i = 2 _;5 3
1:4) and the most common PCType; within a radius of 5 km (NPCType;, E & é‘
i = 1:4) as predictive features. The NPCType; serves as a proxy for gg clefecreecsEwasgg 2.
ighbouri i 271 |G| EEEEEEEEEEEEEEREE
neighbouring crop rotations. 2 § = S|C2SEEEEECCRECSERR
Sz g
228
2.1.2. Agronomic rules § E 5|
. . . . . . o o
Be§t practice guidelines for oPtlmal crop rotations are extensive g 2 E _g SEEEEdd g
(Bachinger and Zander, 2007; Schonhart et al., 2011; Pahmeyer et al., ~ 3 sl HHREEEEEEEREREERE 2
8 . .y 59 g E|lZ 2 88T T3 easladss
2021; Fenz et al., 2023a). For practical reasons and operational rele- = §] 'é 8 sssSsss¢s s
vance with regional context, we included agronomic rules from Jean- 2752
gros and Courvoisier, 2019 and the Landwirtschaftskammer Nordrhein- E % § )
Westfalen (2015). We assigned the following features to each PCType; S 288|%
o . <50u§‘_{$g’)wwmu I .2220902020208
(see Table 2 for a crop-specific overview): 23g8|8|mr>> > LZzZzZzZzZZZ
= =
e Winter vs. spring crop: a binary “Yes” or “No” feature according to g 8 & §
the sowing time A B E 2| oy
. . fag = o & PN @
e Cereal vs. leafy crops: a binary “Yes” or “No” feature, depending on 2 g g if § £2838882228222222°2
whether the crop is gramineous or not £ 3 g b
e Nutritional demand: classified as “Low”, “Medium”, or “High”, s 8§ E %
depending on the respective demand for nutrients (Jeangros and g _u§ £ g "
Courvoisier (2019) and Landwirtschaftskammer Nordrhein- 5 Té g ,E; qé
-
Westfalen (2015)) B e § iz &
e Organ: classified as “Grain”, “Biomass”, or “Root”, depending on the g g ; % g
respective organ for primary yield £ 88 £ S
P . . =l =
e Drought tolerance: classified as “Low”, “Medium”, or “High”, % g gz g
depending on the respective drought tolerance (Jeangros and & g = ks 2
Courvoisier (2019) ,<:3 2 g = 3
e Fraction: indicates the recommended maximum cultivation fraction g g \? ; g
of each crop in the rotation. A value of 1 would refer to unprob- ] g 23 g
lematic monocropping. The smaller the value the longer the rec- < g 2 ? g
ommended cultivation break (Jeangros and Courvoisier (2019) and k= g 32 _g‘
Landwirtschaftskammer Nordrhein-Westfalen (2015)). g i E—j S 5
= £ = ‘5 =
v~ ¢ 3 g
g < 2 =
Following the methodology described by Stein and Steinmann ‘é 5 gcg =
(2018) and Janicke et al. (2022), we further assigned each field-year to g2 S ! §
1%}
a category of structural (struc) and functional (func) diversity. Struc is g § % gc %
. PR o— Q @
the ratio of transitions (Tr, the number of CType changes) to the number 290 8§ g
. . By ) =)
of crops (Cn), and categories of func are derived from the leafy-to-cereal g § 5" 2 5
—_ 9 -~
(LC) and the winter-to-spring (WS) crop ratio per field. The former can T 5 S E FER:
: . . e . = s
be interpreted as a measure for agricultural intensification, while the 3 g 'So g E 525 &
latter has been reported to be beneficial for interrupting the accumu- % ° _;;j g 2 £ 8
lation of weed communities, pests, and diseases. -a ; z § 5 ; ; g
Stein and Steinmann (2018) originally used their typology to clas- SE® § g| 3 ERER
= ) =)
sify seven-year crop rotations, which was not applicable to most fields g = g E z = &8 £
-
included in this study. Therefore, we had to adjust the classification of g‘ £9%8
o— =
Tr into “High”, “Middle” and “Low” (Eq. 1), and the calculation of LC 5= & —2
(Eq. 2) and WS (Eq. 3) depending on the availability of IACS data for g 3 g S I
each country (n, Germany: 19 (2005-2023), Austria: 9 (2015-2023), g E E jS %
. s . 5 g [2)
and Czech Republic: 5 (2019-2023)). For classifying Tr, we used their 2L 53 5=
. . . T o
original numbers (High: 5-6, Middle: 3-4, Low: 1-2) and multiplied it & é ‘g E = 2‘ o)
with the ratio (I) between n and Stein and Steinmann’s (2018) seven- S g go g %’ | = g
© — -
year rotation length. SHa g g g 8
25 ew cpE8 _Tig & 2
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We included the same number of CTypes. Therefore, Cn remained
unchanged and struc was classified according to Cn and the adjusted Tr
values. The classification of func in principle also remained the same,
based on the relative LC and WS values, however. For a graphical rep-
resentation of the general struc and func matrices, we refer to Fig. 2 in
Stein and Steinmann (2018).

2.1.3. Environmental conditions

We obtained elevation and slope data from the German (Bundesamt
fiir Kartographie und Geodasie, 2016)/Austrian (geoland.at, 2015)
Digital Terrain Model DGM10 (10 m resolution). We extracted the
organic carbon content (Corg) of the first soil layer and the sand, silt, and
clay content of the second soil layer from the German land use-specific
soil map (based on Bundesanstalt fiir Geowissenschaften und Rohstoffe
(2008), 100 m resolution). For Austria, we used the digital soil map
(Bundesforschungs- und Ausbildungszentrum fiir Wald, Naturgefahren
und Landschaft, 2023), 1 km resolution), which only provides values for
the full profile. We retrieved the humus, sand, silt, and clay contents and
divided the original values by 1.725 (converting humus to Corg) and
100 (sand, silt, clay) to match the units of the German soil data.

We used daily temperature and precipitation data from 1 km gridded
products from the German Weather Service (Deutscher Wetterdienst,
2024) and GeoSphere Austria (2025). To mimic the “climate memory” of
farmers’, which we assumed to cover the last five years, we aggregated
daily values to monthly averages and calculated monthly averages from
the previous five years over three major growth periods: March to
August (TempMA and PrecMA), April to May (TempAM and PrecAM),
and June to July (TempJJ and PrecJJ).

To address the complexity of the environmental conditions while
simplifying their magnitude, we used an unsupervised K-means (n = 25)
clustering approach via Principal Component Analysis (PCA), covering
89.9 % of the observed environmental variance. We assigned each field-
year to the cluster based on the five most important PCs, which reduced
the number of related features from 12 (elevation, slope, Corg, sand, silt,
clay, TempMA, TempAM, TempJJ, PrecMA, PrecAM, and PrecJJ) to one
(the respective cluster) and facilitated efficient model training.

2.1.4. Commodity prices

In line with the climate memory of farmers, we calculated the
average price of the previous five years for each CType and year
(average) from FAOSTAT producer prices (FAO, 2025). We also calcu-
lated the difference between averageP and last year’s CType price as a
short-term economic stimulus (deltaP). In case price data was not
available for a specific year, we used prices from the last available year.
No legume (LEG) prices were available for the Czech Republic. We
therefore used prices for Austria instead. We only used last year’s price
to avoid any kind of data leakage. Producer prices are usually set after
the harvest and are therefore not available to farmers at the time of
decision (= planting). Further, we excluded prices for silage maize as it
is largely grown as a fodder or energy crop without official market
prices.

To generate an outlook on potential cropping patterns in the future,
we used commodity price developments from the global biosphere
management model (GLOBIOM) (Havlik et al., 2014; Ermolieva et al.,
2015). GLOBIOM is a partial equilibrium model that represents global
agricultural markets by overall welfare maximisation at regional and
global levels. The model integrates a detailed representation of land-use,
agricultural market, and productivity changes to assess their impact on
prices. Key drivers such as climate change, population growth, dietary
shifts, and bioenergy demand influence long-term price trends.
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Commodity prices fluctuate due to global supply and demand in-
teractions, production costs, and trade dynamics, acting as a feedback
mechanism that shapes producer and consumer behaviour.

To calculate average LEG and deltaP_LEG (as features required to
apply the crop rotation model, see Results) we further made the
following assumptions. We considered projected prices only for soybean
and peas. While FAOSTAT also reports prices for chickpeas and beans,
these correspond to post-harvest dried products, resulting in prices up to
10 times higher than those of soybean and peas, which exclude post-
processing. GLOBIOM prices for different emissions scenarios deviated
by + — 0.5 USD tonne ! over the projection period only. Therefore, we
did not run scenario-specific projections but calculated the average price
development overall. Further, as GLOBIOM provides decadal price
development, we interpolated the prices between two consecutive de-
cades through a linear fit to retrieve annual values.

Table S. 1 to Table S. 3 in the Supplementary Material provide
summarises of price data used for this study.

2.1.5. Agricultural policies and subsidies

To reflect the effect of agricultural subsidies or other policy measures
on cropping decisions, we included a “Positive”, “Negative”, or “None”
feature for each field-year, depending on whether any of the following
measures were in place or not, and whether they encouraged or

discouraged the cultivation certain crops (listed chronologically):

e Energy crop premium (“ECP”, Energiepflanzenpramie): effective in
Germany from 2003 to 2009, providing subsidies for energy crops (e.
g. silage maize)
Renewable Energy Sources Act (“REL”, Erneuerbare-Energien-Gesetz
2014): effective in Germany until 2014, providing additional sub-
sidies for energy crops
Protein crop promotion strategy (“PCP”, EiweiBpflanzenstrategie):
effective in Germany from 2014 and in Austria from 2020, promoting
the cultivation of legumes at the policy level
Ban on the use of seed treatments (“BST”, Beizverbot): effective from
2014
Greening: effective during the CAP period from 2014 to 2022, where
legumes qualified as ecological priority areas, which are compulsory
for subsidy payments
Diversification of crop production (“DCP”): effective during the CAP
period from 2014 to 2022 on top of Greening measures (see previ-
ous) in nine German federal states (Bavaria, Baden-Wiirttemberg,
Hesse, Mecklenburg-Western Pomerania, North Rhine-Westphalia,
Rhineland-Palatinate, Saxony-Anhalt, Schleswig-Holstein, and Thur-
ingia; the federal states relevant for this study are marked in italics).
DCP provides subsidies if crop production at farm level includes a
minimum of 10 % legumes and a maximum of 65 % cereals. DCP also
includes crop rotation and crop diversification measures as part of
the conditionality of the most recent CAP period (2023-2027), which
is only relevant to the last year of IACS data used for this study,
however.
e Abolition of sugar quota (“ESQ”, Wegfall der Zuckerquote): effective
from 2017
e Ban on the use of neonicotinoids (“BNN”): effective from 2019

2.2. Model training

We used a random forest (RF) ML algorithm (Breiman, 2001) and
trained it to predict the CType for each field-year combination using the
features listed in Table 3, with the exception of “OBJECTID”, to be
transferable to other fields.

The difficulty with the present data set was its inherent spatio-
temporal dependencies. For machine learning problems, this
commonly leads to overfitted models that are hardly able to make pre-
dictions beyond the location and time considered in the reference data,
as well as an overly optimistic error assessment (Meyer and Pebesma,



Table 3
Overview of all features.

Feature Description Value Notes

General

OBJECTID Unique identifier for each field included in the dataset 1-15,811,713

State IACS data was available for the nine German federal states, Austria, and the Czech Republic =~ BV, BB, LS, MWP, NRW, RP, SA, SAX, TH, AT, CZ

Year Current cropping year 2005 (earliest) — 2023 (latest) For each state, the first four years were included via PCType; only
Cropping history

CType The crop type grown in each year CType is the dependent variable

PCType; The crop type grown i years ago See Table 2 for a description of the CType
NPCType; The most common PCType; type within a radius of 5 km i=1,234

Environmental conditions

Cluster The growing environmental cluster, 1-25

based on the following growing conditions:

Elev The elevation of each field (m a.s.l.)

Slope The slope of each field (%)

Sand The sand content of each field’s soil (%)

Silt The silt content of each field’s soil (%)

Clay The clay content of each field’s soil (%)

Corg The organic carbon content of each field’s soil (%)

TempMA Average temperature from March to August over the last five years (°C)
TempAM Average temperature from April to May over the last five years (°C)

TempJJ Average temperature from June to July over the last five years (°C)

PrecMA Average monthly precipitation from March to August over the last five years (mm)
PrecAM Average monthly precipitation from April to May over the last five years (mm)
PrecJJ Average monthly precipitation from June to July over the last five years (mm)

Agronomic rules (see Table 2 for crop-specific classification)

Winter_PCType; Differentiation between winter vs. spring crops

Cereal PCType; Differentiation between cereal and leafy crops
Demand_PCType;  Nutritional demand

Organ_ PCType; Organ for primary yield

Drought_ PCType;  Drought tolerance

Fraction_ PCType;  The recommended cultivation fraction of PCType; in a rotation

Struc The structural diversity of each field
Func The functional diversity of each field
Prices

averageP_CType The five-year average producer price of CType
deltaP_CType The difference between the averageP_CType and last year’s CType price
Policies and subsidies

ECP Energy crop premium

REL Renewable Energy Sources Act
PCP Protein crop promotion

BST Ban on the use of seed treatments
Greening CAP 2014-2022 greening measures
DCP Diversification of crop production
ESQ Abolition of sugar quota

BNN Ban on the use of neonicotinoids

10th Percentile ~ Median

0.0 372.5
0.0 4.6
1.0 30.0
1.0 40.0
0.0 21.0
0.0 1.7
12.8 13.4
8.4 9.1
11.9 12.5
54.4 67.8
41.2 54.7
51.8 64.7
Yes/No

Yes/No
Low/Medium/High
Grain/Biomass/Root
Low/Medium/High

0-1

A-1

1-9

Positive/Negative/None
Positive/Negative/None
Positive/Negative/None
Positive/Negative/None
Positive/Negative/None
Positive/Negative/None
Positive/Negative/None
Positive/Negative/None

90th Percentile
469.3
7.5
60.0
58.0
30.0
1.7
14.9
10.5
14.0
90.8
75.0
87.4

See Stein and Steinmann (2018)

For details see Table S. 1 to Table S. 3 in the Supplementary Material

Only for Germany
Only for Germany

Only for some German states
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2021; Meyer et al., 2018; Meyer et al., 2019). To overcome this, we
applied a three-step model training:

1. For a first exploratory analysis, we ran a rf model from the R caret
package (Kuhn, 2008) with a random split between 80 % and 20 % of
all data from Germany and Austria (where all environmental features
were available) for training and testing. As described, this led to
substantial overfitting.

2. To overcome this, we continued with 10-fold spatio-temporal CV and
forward feature selection via the ffs function from the R package
CAST (Meyer et al., 2018). CV folds were created based on the
“Cluster” and “Year” features, for space and time, respectively. In
combination with spatio-temporal CV, ffs selects those features that
in combination lead to the highest classification performance of a RF
by excluding all features that lead to overfitting when validated
against the left-out Cluster-Year CV-fold. ffs first trains a RF model
using all possible feature pairs, keeps the best performing model and
iteratively adds each remaining until no additional performance in-
crease is achieved. For this study, spatio-temporal CV was especially
important to estimate model transferability to other neighbouring
regions such as the Czech Republic and to use the model for gener-
ating future projections.

While ffs is the current best practice in training transferable RF
models and to overcome overfitting, it is computationally
demanding. Given the size of our final dataset, we therefore used a
random sample of 159,744 field-year combinations from Germany
and Austria with constant hyperparameters (mtry = 2, ntree = 25).

3. Using the selected features from 3., we then trained our final crop
rotation RF model with ten-fold spatio-temporal CV using data from
all three countries with mtry = 5 and ntree = 60 after no increase in
accuracy was achieved.

Our aim was to arrive at a model that explains the data reasonably
well while allowing us to get an understanding of the main drivers
determining operational crop rotational decision-making.

To better understand what drives the individual cropping history
(according to the rotation model, the most important driver; see Re-
sults), we additionally trained an alternative follow-up model, that
explicitly excluded all features related to previous crops but used the
individual, non-clustered environmental features, again with ten-fold
spatio-temporal CV and the same sample from Germany and Austria
as for step 2.

We assessed model performance using training and test classification
accuracy, confusion matrices, and feature importance values which
indicate to what extent the prediction accuracy of the RF would drop if
the respective feature would not be considered as a predictor. In reverse,
a high feature importance indicates that a feature contributes to a high
model accuracy. As ffs selects those features that in combination work
best, feature importances may not be interpreted individually. Addi-
tionally, features highly correlated with the selected ones might appear
as unimportant or not be selected overall, which however helped to
identify the true underlying drivers.

2.3. Cropping projections

Based on the final model, which predicts the next CType in the
rotation based on the selected drivers, we generated a potential outlook
of cropping patterns at field level until 2070, the year to which com-
modity prices are available from GLOBIOM. Many climate change
assessment studies project e.g. crop yields into the future. Since we
foresee the consideration of real-world crop rotations a generated here
as beneficial for such studies, we included a projection period that would
align.

For every new year in the projection, PCType; to PCTypes were
derived from CType and PCType; to CTypes from the previous year. All
other features (Cereal PCTypey, deltaP_LEG (based on GLOBIOM price
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projections), Demand PCType; 4, Drought PCType4, Fraction PC-
Type1 3,4, func, Organ_PCTypey4, and Winter PCTypey; see section 3.1 in
the Results) were calculated and assigned to each field accordingly, and
the new CType was predicted based on the final RF model. To limit
unwanted convergence due to systematic bias from uncertain classifi-
cations, which would otherwise lead to the extinction of less important
crops and the overrepresentation of dominant ones, we introduced
stochasticity into the projections. This also accounts for opportunistic
cropping choices which are inherent in human behaviour. Specifically,
we first assigned the CType with the highest classification probability
given the new conditions of each field and year. And second, in very
ambiguous cases where the classification probability of the assigned
CType fell below the first quantile of classification probabilities across
the 17 other CTypes, we assigned a random CType instead of the orig-
inally assigned one. In addition, because WW was the most dominant
crop overall and more easily confused with other CTypes (see Fig. 4 in
the Results), we reassigned a random CType in 22 % of the cases where
WW would have been selected. We chose 22 % as a threshold under the
assumption that half of the unexplained variance (see Results) reflects
opportunistic farmer behaviour, while the other half remains unex-
plained due to missing data.

Based on this final RF model, we generated a new data set of pro-
jected CTypes for each field and each year until 2070, without ac-
counting for potential future changes in field boundaries. We aggregated
field-level results to crop share developments per country and across the
study region.

3. Results
3.1. Rotation drivers

Out first RF training attempt, using all potential prediction features
and a random split of the data set into 80 %—20 % for training and testing
showed a close to perfect (0.99) training accuracy, but only 0.48 for
testing (Fig. 2). This large difference between training and testing ac-
curacy indicated severe overfitting of the model. Without targeted CV or
feature selection, this RF was heavily dependent on the cluster of envi-
ronmental features and crop rotations on neighbouring fields, while the
importance of agricultural policies and subsidy measures was negligible.

Recognising this, our final model with spatio-temporal CV and for-
ward feature selection (Fig. 3 (a)) omitted overfitting with CType clas-
sification accuracy of 0.58 and 0.56 for training and testing,
respectively. Further, it reduced the initial set of 75 predictors (Table 3)
to 15, grouped into four main categories: most importantly, (i) the field-
specific cropping history (PCType;_4), followed by (ii) agronomic rules
related to this cropping history (Fraction PCTypes, Demand_PCTypej,
Fraction PCType;, Demand PCTypes, Drought PCTypes, Organ -
PCTypey, Fraction_PCType4, Winter_PCTypey, Cereal PCTypey), (iii) the
functional diversity of the rotation (func), and (iv) the development of
legume prices (deltaP_LEG). Interestingly, none of the environmental
features, policy measures, or neighbouring information were finally
selected. We interpreted these results as a showcase of a “tried-and-
tested” behaviour where farmers focus their choices in rotation design
on past experience, rather than future opportunity or climate change
adaptation potential.

Since it is reasonable to assume that certain crops can and will only
be cultivated under conditions that at least enable (if not promote)
growth and yield, we hypothesised that the individual cropping history
(which was ranked most important) is already a representation of the
prevailing environmental conditions. While the alternative model, that
explicitly excluded all features related to previous crops but used the
individual non-clustered environmental features (Fig. 3 (b)), reduced
the train (0.64) and test accuracy (0.34), this follow-up model did
indeed reveal the importance of the environmental growing conditions,
including the temperature average during summer (TemJJ), silt, func,
the state, and the Greening measures of the past CAP. Similarly to the
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Fig. 3. The feature importance of different random forest models. Panel (a) shows the features selected for the random forest model in this study, ranked by
importance. Panel (b) shows selected features of the alternative model, excluding all features selected for the first model. The alternative model was used to confirm
the hypothesis that the individual cropping history from the crop rotation model is a representation of the prevailing environmental conditions. Features are grouped

according to Table 3, also indicating full feature descriptions.

representation of environmental conditions through the cropping his-
tory, three out of the eight policy and subsidy measures considered here
targeted legume cultivation, either directly (DCP and PCP) or indirectly
through qualifying as ecological priority areas (Greening, Table 3). This
may have contributed to the development of legume prices and thus to
the choice of crop in the rotation, as shown in the first model.

With an overall test accuracy of 0.56, the model predicted the largest
share of each CType correctly (indicated by the percentages in the 1:1
diagonal of Fig. 4). We found differing performances for predicting in-
dividual CTypes. Winter wheat and silage maize were the most promi-
nent CTypes in the data set and showed the highest accuracies (0.64 and
0.60, respectively). The accuracy for predicting grain maize (0.56) and
legumes (0.56) was comparable, however. Further, the model showed a
higher degree of confusion of underrepresented CTypes such as carrots
(CA), onions (ON), or spring oats (SO), and among CTypes with similar
agronomic features e.g. within cereals or leafy crops. A negligible share
was confused with carrots, onions, sunflowers, or other leafy vegetables.

3.2. Cropping projections

To provide a potential outlook on future cropping patterns until 2070
(Fig. 5), we used the final crop rotation model with the 15 selected
features, taking into account the stochasticity inherent in farmers’
decision-making. Until 2023, rotations were characterised by a high
proportion of winter wheat, silage maize, and winter barley. Thereafter,
the projections show a more even distribution of crops, with a continued
high proportion of winter wheat and silage maize. While the area under
winter barley decreases, the area under legumes increases substantially.
Legumes have long been promoted, both for their agronomic advantages
and for the growing demand for plant-based diets (Drinkwater et al.,
1998; Reckling et al., 2016a; Reckling et al., 2016b; Zander et al., 2016;
Hazra et al., 2019; Liu et al., 2020; Costa et al., 2021; Notz et al., 2023;
Qiao et al., 2024). The development of higher legume cultivation in the
recent past, resulting from both price incentives and the gradual change
of individual cropping histories, can explain the legume dynamics in the
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Fig. 4. Confusion matrix for predicting different crop types (CType; MG: grain maize; MS: silage maize; WW: winter wheat; WB: winter barley; WR: winter rye; WTS:
winter triticale and spelt; SWTS: spring wheat, triticale, and spelt; SB: spring barley, SO: spring oats; WOR: winter oilseed rape; SU: sugar beet; PO: potato; LEG:
legumes; VEG: leafy vegetables; SUN: sunflower; ON: onion; CA: carrot). Numbers within tiles indicate the percentage of actual CTypes predicted as predicted CType.
Tinted tiles in y-direction refer to the predicted CType for each actual CType, vice versa for the tiles in x-direction. The 1:1 diagonal represents correct predictions.

projections. We also find higher proportions of winter rye in the future,
also referred to as a “resilient crop” (Riedesel et al., 2024), possibly at
the expense of winter barley with similar agronomic features (Table 2).
Onions and carrots disappear from the projections, which we attribute to
their negligible occurrence in our study region.

The projections also show clear differences between the three
countries, with differences in growing conditions and past cropping
history as the main drivers of crop rotations. Most of the fields were
located in Germany (Fig. 1). Therefore, the development of relative crop
proportions is in line with the overall distribution in the study region. In
Austria, the past distribution of crops differs from the German cropping
patterns. While winter wheat was also the most important crop, grain
maize came second, followed by potatoes. In the projections, silage
maize gains significantly in importance, possibly at the expense of grain
maize. We attribute this to a dynamic similar to that of winter wheat and
winter barley, with overlapping agronomic features, and partly also to
the decreasing proportion of potatoes, while legumes are exceptionally
increasing. In the Czech Republic, we find a pronounced importance of
winter wheat throughout the projection period, while the remaining
crop shares closely follow the distribution of the entire study region.

In addition to the aggregated crop shares, Fig. 6 illustrates an
example of future cropping patterns at the field level. Although the
newly generated dataset contains CTypes for each field and year up to
2070, we present the example in ten-year intervals for the sake of clarity.

4. Discussion and conclusion

By analysing over 16 million data points and 76 covariates using
current ML best practices for modelling spatio-temporal data, we iden-
tified drivers of operational crop rotation management and provided an
outlook on potential future cropping across Central Europe. We found
that historical cropping patterns, agronomic rules, and legume com-
modity prices play a decisive role in shaping crop rotations in the region.

In general, the popularity of ML stems from its ability to achieve high
accuracy when analysing complex datasets. Research applications often
focus not only on achieving the highest possible prediction accuracies,
but also on understanding the dynamics that drive these results. We
applied an RF algorithm. Compared to current developments in deep
learning (Dupuis et al., 2023), the RF algorithm is considered less
complex. However, rather than seeking a more powerful algorithm or
tuning the RF for greater accuracy in predicting the type of crop to come,
our objective was to identify the key drivers that shape operational crop
rotations and based on that to provide a potential outlook on future
cropping patterns under unknown space-time conditions. Without tar-
geted training, ML models often replicate relationships well in a specific
training dataset but tend to perform poorly when tested on independent
data (=overfitting). This often occurs because a model responds
disproportionately strongly to feature dynamics that are not indepen-
dent of the target application—in our case, providing spatio-temporally
accurate predictions (Viana et al., 2021; Meyer and Pebesma, 2022). The
dataset we used in this study was a prime example. In the initial model,
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Fig. 6. Field specific cropping patterns in ten-year intervals for an example region in Brandenburg, Germany.

the environmental cluster was identified as the most important feature.
Since it represents annual weather patterns and site-specific soil con-
ditions, the cluster feature was, of course, highly spatio-temporally
dependent. After targeted training, we found our overall accuracy to
be comparable to other studies using a similar RF training approach
(Meyer et al., 2019; Meyer and Pebesma, 2022), especially given the
high resolution of crops into 17 different types. Upcott et al., 2023, for
example, reported an accuracy of about 0.7. However, when they
excluded long-term grassland from the analysis as we did, the score
dropped to 0.4, which is lower than the accuracy we obtained in this
study. Another study from France reported coefficients around 0.4-0.6
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(Osman et al., 2015), which are comparable to the present ones. Due to
data restrictions, we were not able to include whether the fields were
part of the same farm or classified as organic or conventional. Previous
studies have suggested that organic crop rotations are different from
conventional ones (Barbieri et al., 2017; Reumaux et al., 2023) and that
rotation planning is not usually done at field level but at farm level
(Schonhart et al., 2011; Stein and Steinmann, 2018). Inclusion of these
factors may have increased the accuracy in the present study, as may
other factors (e.g. farm and field size, livestock density, consumer
behaviour, import/export numbers, etc.). However, our aim to generate
a model for cropping projections over large spatial and temporal scales
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meant that only features available at these scales were used.

We found the individual cropping history as the most important
driver for shaping crop rotations. As a result of the spatio-temporal
dependencies between potential drivers, environmental conditions,
market prices and subsidies are likely to have influenced individual
cropping histories and were therefore not selected as driving features of
our crop rotation model. In line with previous findings (Alfandari et al.,
2015; Upcott et al., 2023), our results suggest an average rotation length
of four years, as indicated by the importance of the crops grown in the
previous four years and the associated agronomic rules. Once a rotation
is established, farmers follow this pattern and changes in growing con-
ditions do not significantly affect their crop choices. We interpreted
these results as a showcase of a “tried-and-tested” behaviour where
farmers focus their choices in rotation design on past experience, rather
than future opportunity or climate change adaptation potential.
Breaking this habit, for example to increase rotational diversity, appears
to remain a challenge (Sietz et al., 2022; Brannan et al., 2023). On the
other hand, when the next crop type differed from the one that would be
next according to the four-year pattern, we found that agronomic rules
played an important role. The availability of planning software
(Bachinger and Zander, 2007; Schonhart et al., 2011; Fenz et al., 2023a;
Fenz et al., 2023b), easily accessible mobile applications, and the pro-
motion of best practice rules by extension services should therefore not
be underestimated. Since individual cropping history plays a decisive
role, our findings support farmer engagement and individual crop
rotation choices to promote diversified crop rotations (Notz et al., 2023).
The four-year rotation length we found is also substantially shorter than
the six to eight-year rotations suggested by best practice and differs from
the stylised rotations used in crop model simulations for climate change
assessment studies. As a result, these studies are likely to underestimate
the various benefits and climate change adaptation and mitigation po-
tentials of operational crop rotations and, in particular, higher pro-
portions of legumes (Barbieri et al., 2019). Crop model simulations have
been shown to differ significantly when rotation practices are or are not
considered (Teixeira et al., 2015; Teixeira et al., 2018; Faye et al., 2023).
The effects were particularly pronounced for soil-related variables such
as nitrogen fixation amounts, crop residue management, soil organic
carbon build-up, and water retention capacity - all important contribu-
tors to sustainable and resilient cropping systems — but also for crop
yield and greenhouse gas emissions. To arrive at simulations and
adaptation studies that better account for these different benefits, we
therefore advocate simulation methods that place individual crops in the
context of their operational rotation. Our newly generated data set
provides one CType for every field and year in the projection period up
to 2070. This information can be used directly to inform crop rotation
practices for field-level simulations or aggregated into real-world crop
masks for gridded crop model applications, for example by assigning
each simulation pixel to the crop with the largest area within that pixel.
The shapefile data structure makes it possible to generate these crop
maps at virtually any resolution. In addition to feeding these derived
future patterns into crop models, bio-economic farm or optimization
models (Janssen and van Ittersum, 2007; Ermolieva et al., 2015) could
directly benefit from constraining the design of their internal crop
choices with the drivers we identified. This will ultimately help to design
and analyse economic and agronomic scenarios for successfully adapt-
ing crop production to a changing climate (Yang et al., 2024).

Additionally, we found that the development of legume prices played
arole in determining the type of crop planted next. As legumes gradually
became more popular, they played a more important role in the crop-
ping history. They likely became more popular because of their agro-
nomic benefits, including N fixation, and recent increases in legume
commodity prices due to higher demand and N (fertilizer price) dy-
namics. Previous studies have emphasised the trade-off between agro-
nomic and economic benefits of legume cultivation (Preissel et al., 2015;
Stagnari et al., 2017; Tzemi et al., 2025) and the potential of price in-
centives to increase legume cropping (Michalis et al., 2025).
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Three out of the eight policy and subsidy measures considered the
cultivation of legumes. This may also have contributed to the develop-
ment of legume prices and thus to the choice of crop type in the rotation
as well, highlighting an important lever for promoting more resilient
rotations at political level. While the effect of subsidy measures may not
be readily apparent and the uptake of new crops may be somewhat
delayed (due to the layered identification of rotation drivers and the
individual cropping histories as described above), Galioto and Nino
(2023) have already shown the importance of financial instruments to
encourage crop diversification practices under the CAP reform in
Europe. With the introduction of conditional payments under the CAP
2023-2027 (EU, 2022), an estimated 86 % of the EU’s arable land is or
will be subject to compulsory crop rotations or diversification measures.
Providing economic incentives, e.g. in the form of cultivation subsidies
for under-represented crops with agronomic advantages for which there
is currently no market (such as sorghum, hemp seed, or other minor
legumes, could be worthwhile to promote diverse crop rotations across
the EU.

For future projections, we developed a simple but effective algorithm
that avoids unwanted projection convergence (e.g. limiting the extinc-
tion of rare crop types and dominance of a single crop type) by incor-
porating stochasticity into model time series predictions. However, we
recognise that the projections are subject to uncertainty and come with a
number of limitations, offering room for future improvements. We had
to rely on past knowledge to produce cropping projections. Generational
shifts in farmer demographics could gradually change individual pref-
erences and cropping histories. Our crop rotation model may also still
confuse crops with similar agronomic features or currently underrep-
resented crops, such as carrot and onion which, in principle, are
economically attractive. The same applies to the projected increase in
legume cropping. While a substitution is justifiable from an agronomic
or technological perspective, and in addition to the reasons for increased
legume cropping as discussed above, projected legumes might still be
confused with other spring crops such as silage maize, potatoes, or sugar
beet which are projected to decrease. In the case of winter barley, in
addition to the justifiable substitution, the decreasing trends might be
too pronounced due to confusion with other winter cereals such as
winter wheat or winter rye that are on the rise. The underrepresentation
of onion and carrot might also be a result of excluding fields with
speciality crops, such as herbs or ornamental flowers, which are likely
part of horticultural farms where also onion and carrot are grown.
Further, we used legume price simulations from the GLOBIOM model,
which introduced another layer of uncertainty. GLOBIOM prices showed
to behave very differently from past price dynamics, as e.g. unforeseen
market shocks are not considered. However, in our model we considered
the development of legume prices only as one out of 15 drivers. Using a
very restrictive spatio-temporal CV strategy and integrating stochastic
decision making, we perceive the present modelling approach as the
best-available projection option besides the listed limitations.

Due to the importance of field-specific cropping histories, the
application our data-driven analysis and projection of cropping patterns
has been limited to regions or countries where well-curated operational
cultivation data sets exist, i.e. the IACS data in our case. Yet, recent
advancements in remote sensing have shown promising potential for
extending our approach to regions where observational crop type data is
scarce or not accessible. New products can now estimate crop types at a
10 m resolution over a large geographic extent (Blickensdorfer et al.,
2022; Lawes et al., 2022). Ultimately, this will bring new opportunities
for crop rotation research as we present here at geographic extents
exceeding our present study region.

Data availability and processing

Open-source IACS data can be found here:
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e Austria (years 2015-2023): https://www.data.gv.at/suche/?kat
Filter%5B0%5D=httppublicationseuropaeuresourceauthoritydata
-themeagri&searchterm&typeFilter%5B0%5D=dataset&nr=1&ta
gFilter%5B0%5D=INVEKOS

e Brandenburg (years 2010-2023): https://geobroker.geobasis-bb.
de/gbss.php?MODE=GetProductInformation&PRODUCTID=996
f8fd1-c662-4975-b680-3b611fcb5d1f

e Czech Republic (years 2019-2023): https://mze.gov.cz/public/
app/lpisext/lpis/verejny2/plpis/

e Lower-Saxony (years 2021-2023): https://sla.niedersachsen.de/la
ndentwicklung/LEA/

e North Rhine-Westphalia (years 2019-2023): https://www.op
engeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwi
rtschaft/

Digital terrain data is available via https://gdz.bkg.bund.de/index.
php/default/digitale-geodaten/digitale-gelandemodelle/digitale
s-gelandemodell-gitterweite-10-m-dgm10.html and https://www.data.
gv.at/katalog/dataset/dgm.

Digital soil maps can be found at https://github.com/zalf-rpm/Bu
ek200_by_CLC and https://bodenkarte.at.

Gridded weather data is available via https://www.dwd.de/DE/le
istungen/cdc/cdc_ueberblick-klimadaten.html and https://data.hub.
geosphere.at/dataset/spartacus-v2-1d-1km.

FAO producer prices can be found at
org/faostat/en/#data/PP.

Data processing and analysis were performed in the R programming
language (R Core Team, 2022, R version 4.2.2) using tidyverse
(Wickham et al., 2019), dtplyr (Wickham et al., 2023), sf (Pebesma,
2018), terra (Hijmans et al., 2025), caret (Kuhn, 2008), and CAST
(Meyer et al., 2025) packages.

https://www.fao.
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