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Juliana Arbeláez Gaviria c,h, Masahiro Ryo a,e

a Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
b Institute of Biochemistry and Biology, University of Potsdam, Am Mühlendamm 3, 14476 Potsdam, Golm, Germany
c Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
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• This study identifies drivers that deter
mine operational crop rotation 
practices.

• Past cropping, agronomic recommenda
tions, and legume prices shape crop 
rotations.

• The analysis is based on over 16 million 
field records over Central Europe.

• Rotation projections at field level reflect 
farmers’ uncertain decision-making.

• The importance of legume cropping is 
expected to increase in the future.
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A B S T R A C T

Context: Crop rotations provide agronomic benefits over monocropping, such as enhanced nitrogen supply, 
improved weed and pest control, and higher yields. Although the theoretical understanding of optimal rotations 
has advanced, little is known about their real-world implementation and the factors influencing rotation de
cisions on large scales.
Objective: Understanding these factors is key for projecting future cropping patterns, refining agricultural policy, 
and improving crop models that often oversimplify rotation practices. This study identifies the drivers influ
encing operational crop rotations across Central Europe and projects future cropping patterns in the region.
Methods: We analyse over 16 million field-year combinations from Germany, Austria, and the Czech Republic. 
Using a random forest algorithm, we determine feature importance and apply a novel machine learning approach 
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that incorporates uncertainty in farmers’ decision-making to provide a potential outlook on cropping patterns 
until 2070.
Results and Conclusions: Historical cropping patterns, agronomic practices, and legume commodity prices 
significantly shaped crop rotations across the region. Projections indicate a substantial increase in legume 
cultivation over the coming decades, with implications for nitrogen budgets, dietary transitions, and in-silico 
upscaling.
Significance: Rather than optimizing rotations, this study identifies key drivers of operational crop rotations in 
Central Europe. The findings provide the basis for large-scale simulations that represent cropping patterns more 
realistically. To the best of our knowledge, the data set compiled here is the most extensive yet analysed in the 
context of operational crop rotation management.

1. Introduction

Growing different crops in a repeating sequence on the same field – 
frequently referred to as crop rotation – is an agricultural practice that 
has been used for thousands of years (Yates, 1954; Bogaard et al., 1999). 
Crop rotations have various benefits over monocropping, including an 
increase in nitrogen supply to crops (Watson et al., 2002; Reckling et al., 
2016; Notz et al., 2023), improved control of weeds (Bàrberi, 2002), and 
soil-borne pests and diseases (Vereijken, 1997; Zinati, 2002), enhanced 
resource use efficiency (Bachinger and Stein-Bachinger, 2000), and in 
summary, an increase in crop yield overall (Bullock, 1992; Barbieri 
et al., 2019; Reckling et al., 2022). High-level stakeholders, such as the 
Intergovernmental Panel on Climate Change (IPCC, 2022) and the Food 
and Agriculture Organization of the United Nations (FAO, 2022), 
therefore emphasise the importance and benefits of diversified crop 
rotations in the context of climate change adaptation and mitigation.

The agronomic theory behind designing optimal crop rotations is 
well established and planning tools are widely available (Bachinger and 
Zander, 2007; Schönhart et al., 2011; Pahmeyer et al., 2021). Best 
practice rotations often include cultivation breaks of six to seven years 
between the same crop for phytosanitary reasons (Jeangros and Cour
voisier, 2019), or a higher proportion of legumes (Hufnagel et al., 2020; 
Reckling et al., 2022) for biological nitrogen fixation or as green 
manure. These optimal approaches are based on logical rules and best 
practice examples, but the implementation of real-world crop rotations 
may not follow these approaches exclusively. Environmental conditions, 
farmers’ individual cultivation preferences, market price incentives (e.g. 
for oilseeds from production depressions in Ukraine (agrarheute, 2022; 
Bloomberg, 2022), and agro-political decisions can change cropping 
frequencies and thus crop rotations operationally. Such opportunistic 
decisions, and more generally, factors other than best practice ap
proaches or stylised sequences have rarely) been taken into account 
when analysing crop rotation patterns. Stein and Steinmann (2018)
focused the importance of socioeconomic factors for shaping less diverse 
crop rotation types in Germany in the recent past. Dupuis et al. (2023)
and Upcott et al. (2023) used cropping habits to predict crop rotations in 
Canada and the UK, respectively. And Revoyron et al. (2022) showed 
that agronomic, economic or work-related factors motivate or hinder 
crop diversification. Beyond this, a joint analysis of environmental, 
agronomic, economic, and political drivers and cropping habits to un
derstand and project space- and time-specific cropping decisions has 
been missing so far. The research question of this study therefore was 
which of the above drivers shape operational crop rotations at large 
spatial coverage, and how the respective dynamic could translate into 
future cropping practices across the study region.

Advancing the present understanding of “real-world” rotational 
cropping would be crucially important, especially for the following two 
aspects. Firstly, in the context of climate change adaptation and miti
gation, the benefits of diversified crop rotations have received 
increasing political attention from high-level institutions such as the 
Intergovernmental Panel on Climate Change (IPCC, 2022) and the Food 
and Agriculture Organization of the United Nations. And in the Euro
pean Union (EU), subsidy payments for diversification measures have 
long been part of the Common Agricultural Policy (CAP) (EU, 2022; 

Galioto and Nino, 2023). Understanding the drivers that shape crop 
rotations would provide a means to assess agro-political measure effi
cacy and a lever for designing such measures to promote crop diversi
fication goals. And secondly, crop and bio-economic modelling studies, 
which scale up farming practices and also inform integrated assessments 
and policy decisions, mostly ignore crop rotations or use simplified 
practices for their simulations, commonly assuming monocropping 
across all agricultural land and over the time period of interest. Some 
studies have started to put individual crops in the context of their 
rotation but still use stylised assumptions or best practice examples 
(Stella et al., 2019; Faye et al., 2023; Nendel et al., 2023; Kik et al., 
2024). The fact that operational cropping patterns may look very 
different from optimised rotations, and that they may also change over 
time, has not been considered in this context yet. To better account for 
the multiple benefits of rotations when scaled up in-silico, an under
standing and representation of related drivers, and a projection of real- 
world conditions based on this understanding is therefore urgently 
needed (Basso et al., 2015; Kollas et al., 2015; Teixeira et al., 2015; 
Pohanková et al., 2024; Timlin et al., 2024).

As outlined earlier, relying on traditional tools for designing optimal 
rotations based on fixed agronomic rules may not capture the reality of 
operational crop rotation decisions. Machine learning (ML), on the other 
hand, can extract practical rules and identify key drivers from real-world 
observational data of past cropping patterns (Ryo and Rillig, 2017). 
Previous studies have demonstrated the potential of using ML to classify 
rotations in Great Britain (Upcott et al., 2023) or to predict the next crop 
in a rotation in France (Osman et al., 2015).

While these studies focused on pattern recognition, the aim of the 
present study was to identify drivers for operational crop rotation 
management across multiple countries in central Europe (Germany, 
Austria, and the Czech Republic). To the best of our knowledge, this 
study provides the most extensive analysis of operational crop rotation 
management so far, especially considering more than one country.

We analysed over 16 million operational field-year records and 
hypothesised that rotational decisions are based on: 

• field-specific cropping history and neighbouring rotations (section 
2.1.1)

• agronomic rules for good rotation practice (section 2.1.2)
• prevailing environmental conditions (section 2.1.3)
• crop commodity prices (section 2.1.4), and
• agricultural policies and subsidy measures (section 2.1.5).

We used a random forest (RF), a powerful bot not overly complex ML 
algorithm (Liakos et al., 2018; Ryo, 2022) that solves classification 
problems based on majority votes from an ensemble of decision trees 
and has been used for crop type identification before (Blickensdörfer 
et al., 2022). We applied spatio-temporal cross-validation and forward 
feature selection (Meyer et al., 2018; Meyer et al., 2019) considering 
uncertainties inherent in farmers’ decision-making and -based on that- 
generated a potential outlook on cropping developments until 2070.
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2. Methods

2.1. Data sets and respective features

In the following, we describe different data sets and related features 
that provided the necessary basis for our analysis. Table 3 gives a 
comprehensive overview of all features included. A summary of links to 
all publicly available data sets can be found in the Data availability 
section at the end of the manuscript.

2.1.1. Field-level rotation records
We used data from the Geo-spatial Application (GSA) (Leonhardt 

et al., 2024) of the EU’s Integrated Administration and Control System 
(IACS) (Tóth and Kučas, 2016) across Germany, Austria, and the Czech 
Republic (Fig. 1).

The IACS data lists all agricultural fields for which farmers have 
applied for CAP subsidies, containing (at least) the location and size of 
the field, and the main crop of the respective year in shapefile format 
(the availability of additional information differs between regions and 
years). For this study, we had access to IACS data from nine German 
federal states (Bavaria, Brandenburg, Lower Saxony, Mecklenburg- 
Western Pomerania, North Rhine-Westphalia, Rhineland-Palatinate, 
Saarland, Saxony, and Thuringia; 13,589,421 field-year combinations in 
total), Austria (2,384,993 field-years), and the Czech Republic (167,957 
field-years). Table 1 provides an overview of their regional availability. 
Non-publicly available data sets were retrieved through bilateral, 
project-based exchange with responsible officers at the providing 
institution.

To aggregate the data from individual years and states to a full set of 
sequential cropping information for distinctly identifiable fields over the 
entire study domain, we had to overcome the challenge that the shape 
and number of fields in the original IACS data potentially change from 
one year to the next. Jänicke et al. (2022) applied an area-based fitting 
to address such interannual discrepancies. As we did not consider field 
size for this study, we instead (i) calculated the centroid for each field in 
the latest available year of each state (see Table 1), (ii) extracted CTypes 

from all previous years that overlapped with these centroids, and (iii) 
assigned a unique identifier for each individual field after combining all 
years per field and all fields across each state into one data set. Although 
the original IACS data includes a field identifier, this index only con
siders fields within a state and a small percentage of fields are duplicated 
or overlap close to borders.

Crop descriptions vary between regions and between years within a 
region. Therefore, we harmonised all crop descriptions into 17 crop 
types (CType, Table 2), as used in previous studies (Blickensdörfer et al., 

Fig. 1. Study regions. The shaded points show all the fields in nine German federal states, Austria, and the Czech Republic that were used to train and test the crop 
rotation model. Germany and Austria in shades of red show the training area for the alternative model, excluding all features selected for the first model. (b) IACS 
data showing the diversity of crop types using the example of the German state of Brandenburg in 2023. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Table 1 
Overview of the IACS data sets included in this study. Publicly available data sets 
are marked with (*). Respective links can be found in the Data availability 
section at the end of the manuscript.

State Available 
years

Provider

Austria (*) 2015–2023 Agrarmarkt Austria (2025)
Brandenburg (*) 2005–2023 Ministerium für Land- und 

Ernährungswirtschaft, Umwelt und 
Verbraucherschutz (2024)

Bavaria 2005–2023 Bayerisches Staatsministerium für 
Ernährung, Landwirtschaft, Forsten und 
Tourismus

Czech Republic (*) 2019–2023 Ministerstvo zemědělství České republiky 
(2025)

Lower Saxony (*) 2009–2023 ML/SLA Niedersachsen (2025)
Mecklenburg- 

Western 
Pomerania

2016–2023 Ministerium für Landwirtschaft und Umwelt

North Rhine- 
Westphalia (*)

2019–2023 Landwirtschaftskammer Nordrhein- 
Westfalen (2025)

Rhineland- 
Palatinate

2005–2021 Ministerium für Wirtschaft, Verkehr, 
Landwirtschaft und Weinbau

Saarland 2012–2023 Landesamt für Vermessung, Geoinformation 
und Landentwicklung

Saxony 2015–2023 Sächsisches Staatsministerium für Energie, 
Klimaschutz, Umwelt und Landwirtschaft

Thuringia 2010–2014 Thüringer Landesamt für Landwirtschaft und 
Ländlichen Raum
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2022; Jänicke et al., 2022). With the focus on crop rotations, we 
excluded permanent grassland (12 %), and fields with perennial crops 
(e.g. orchards or vineyards), speciality crops (e.g., herbs or ornamental 
flowers), or crops not part of the 17 CTypes (36 % for all of the latter 
three) beforehand. To avoid giving any hints about the current CType 
(known as the “data leakage” problem), we considered the current 
CType for each field and year (CTypey, y = 2009:2023 (y = 2005:2008 
appear as PCTypei (see next) for y = 2009)) as the dependent variable 
only. Instead, we used CType of the four previous years (PCTypei, i =
1:4) and the most common PCTypei within a radius of 5 km (NPCTypei, 
i = 1:4) as predictive features. The NPCTypei serves as a proxy for 
neighbouring crop rotations.

2.1.2. Agronomic rules
Best practice guidelines for optimal crop rotations are extensive 

(Bachinger and Zander, 2007; Schönhart et al., 2011; Pahmeyer et al., 
2021; Fenz et al., 2023a). For practical reasons and operational rele
vance with regional context, we included agronomic rules from Jean
gros and Courvoisier, 2019 and the Landwirtschaftskammer Nordrhein- 
Westfalen (2015). We assigned the following features to each PCTypei 
(see Table 2 for a crop-specific overview): 

• Winter vs. spring crop: a binary “Yes” or “No” feature according to 
the sowing time

• Cereal vs. leafy crops: a binary “Yes” or “No” feature, depending on 
whether the crop is gramineous or not

• Nutritional demand: classified as “Low”, “Medium”, or “High”, 
depending on the respective demand for nutrients (Jeangros and 
Courvoisier (2019) and Landwirtschaftskammer Nordrhein- 
Westfalen (2015))

• Organ: classified as “Grain”, “Biomass”, or “Root”, depending on the 
respective organ for primary yield

• Drought tolerance: classified as “Low”, “Medium”, or “High”, 
depending on the respective drought tolerance (Jeangros and 
Courvoisier (2019)

• Fraction: indicates the recommended maximum cultivation fraction 
of each crop in the rotation. A value of 1 would refer to unprob
lematic monocropping. The smaller the value the longer the rec
ommended cultivation break (Jeangros and Courvoisier (2019) and 
Landwirtschaftskammer Nordrhein-Westfalen (2015)).

Following the methodology described by Stein and Steinmann 
(2018) and Jänicke et al. (2022), we further assigned each field-year to 
a category of structural (struc) and functional (func) diversity. Struc is 
the ratio of transitions (Tr, the number of CType changes) to the number 
of crops (Cn), and categories of func are derived from the leafy-to-cereal 
(LC) and the winter-to-spring (WS) crop ratio per field. The former can 
be interpreted as a measure for agricultural intensification, while the 
latter has been reported to be beneficial for interrupting the accumu
lation of weed communities, pests, and diseases.

Stein and Steinmann (2018) originally used their typology to clas
sify seven-year crop rotations, which was not applicable to most fields 
included in this study. Therefore, we had to adjust the classification of 
Tr into “High”, “Middle” and “Low” (Eq. 1), and the calculation of LC 
(Eq. 2) and WS (Eq. 3) depending on the availability of IACS data for 
each country (n, Germany: 19 (2005–2023), Austria: 9 (2015–2023), 
and Czech Republic: 5 (2019–2023)). For classifying Tr, we used their 
original numbers (High: 5–6, Middle: 3–4, Low: 1–2) and multiplied it 
with the ratio (l) between n and Stein and Steinmann’s (2018) seven- 
year rotation length. 

Tr =

⎧
⎨
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(1) 

Ta
bl

e 
2 

O
ve

rv
ie

w
 o

f c
ro

p 
ty

pe
s (

CT
yp

e)
 u

se
d 

to
 g

ro
up

 th
e 

or
ig

in
al

 c
ro

p 
de

sc
ri

pt
io

ns
 fr

om
 th

e 
fr

om
 th

e 
G

eo
-s

pa
tia

l A
pp

lic
at

io
n 

(G
SA

) d
at

a 
of

 th
e 

EU
’s

 In
te

gr
at

ed
 A

dm
in

is
tr

at
io

n 
an

d 
Co

nt
ro

l S
ys

te
m

 (I
A

CS
) i

n 
th

e 
st

ud
y 

re
gi

on
, a

nd
 

th
e 

co
rr

es
po

nd
in

g 
ag

ro
no

m
ic

 fe
at

ur
es

 (W
in

te
r: 

w
in

te
r v

s.
 sp

ri
ng

 c
ro

p,
 C

er
ea

l: 
ce

re
al

 v
s.

 n
on

-c
er

ea
l c

ro
p,

 D
em

an
d:

 n
ut

ri
tio

na
l d

em
an

d 
(J

ea
ng

ro
s a

nd
 C

ou
rv

oi
si

er
 (2

01
9)

an
d 

La
nd

w
ir

ts
ch

af
ts

ka
m

m
er

 N
or

dr
he

in
-W

es
tfa

le
n 

(2
01

5)
), 

O
rg

an
: c

ro
p 

or
ga

n 
fo

r p
ri

m
ar

y 
yi

el
d,

 D
ro

ug
ht

: d
ro

ug
ht

 to
le

ra
nc

e 
(J

ea
ng

ro
s a

nd
 C

ou
rv

oi
si

er
 (2

01
9)

, F
ra

ct
io

n:
 re

co
m

m
en

de
d 

m
ax

im
um

 fr
ac

tio
n 

of
 e

ac
h 

cr
op

 in
 th

e 
ro

ta
tio

n 
(1

 =
un

pr
ob

le
m

at
ic

 m
on

oc
ro

pp
in

g;
 th

e 
sm

al
le

r 
th

e 
va

lu
e 

th
e 

lo
ng

er
 c

ul
tiv

at
io

n 
br

ea
ks

 a
re

 r
ec

om
m

en
de

d,
 J

ea
ng

ro
s 

an
d 

Co
ur

vo
is

ie
r 

(2
01

9)
an

d 
La

nd
w

ir
ts

ch
af

ts
ka

m
m

er
 N

or
dr

he
in

-W
es

tfa
le

n 
(2

01
5)

))
.

CT
yp

e
N

ot
es

W
in

te
r

Ce
re

al
D

em
an

d
O

rg
an

D
ro

ug
ht

Fr
ac

tio
n

G
ra

in
 m

ai
ze

 (
M

G
)

N
o

Ye
s

H
ig

h
G

ra
in

Lo
w

0.
4

Si
la

ge
 m

ai
ze

 (M
S)

In
cl

ud
es

 s
or

gh
um

N
o

Ye
s

H
ig

h
Bi

om
as

s
Lo

w
0.

4
W

in
te

r 
w

he
at

 (
W

W
)

Ye
s

Ye
s

M
ed

iu
m

G
ra

in
M

ed
iu

m
0.

5
W

in
te

r 
ba

rl
ey

 (
W

B)
Ye

s
Ye

s
M

ed
iu

m
G

ra
in

H
ig

h
0.

66
W

in
te

r 
ry

e 
(W

R)
Ye

s
Ye

s
M

ed
iu

m
G

ra
in

H
ig

h
0.

66
W

in
te

r 
tr

iti
ca

le
 a

nd
 s

pe
lt 

(W
TS

)
Ye

s
Ye

s
M

ed
iu

m
G

ra
in

M
ed

iu
m

0.
5

Sp
ri

ng
 w

he
at

, t
ri

tic
al

e,
 a

nd
 s

pe
lt 

(S
W

TS
)

N
o

Ye
s

M
ed

iu
m

G
ra

in
Lo

w
0.

5
Sp

ri
ng

 b
ar

le
y 

(S
B)

N
o

Ye
s

M
ed

iu
m

G
ra

in
Lo

w
0.

66
Sp

ri
ng

 o
at

 (
SO

)
N

o
Ye

s
M

ed
iu

m
G

ra
in

Lo
w

0.
25

W
in

te
r 

oi
ls

ee
d 

ra
pe

 (
W

O
R)

In
cl

ud
es

 o
th

er
 b

ra
ss

ic
as

Ye
s

N
o

H
ig

h
G

ra
in

M
ed

iu
m

0.
25

Su
ga

r 
be

et
 (

SU
)

In
cl

ud
es

 o
th

er
 b

ee
ts

N
o

N
o

H
ig

h
Ro

ot
M

ed
iu

m
0.

25
Po

ta
to

 (P
O

)
N

o
N

o
H

ig
h

Ro
ot

Lo
w

0.
25

Le
gu

m
es

 (
LE

G
)

In
cl

ud
es

 p
ea

s,
 b

ea
ns

, l
up

in
, s

oy
be

an
, l

en
til

, c
hi

ck
pe

a,
 lu

ce
rn

e,
 c

lo
ve

r, 
an

d 
ot

he
r 

le
gu

m
es

N
o

N
o

Lo
w

G
ra

in
M

ed
iu

m
0.

23
O

th
er

 le
af

y 
ve

ge
ta

bl
es

 (
VE

G
)

N
o

N
o

H
ig

h
G

ra
in

Lo
w

0.
25

Su
nfl

ow
er

 (
SU

N
)

N
o

N
o

H
ig

h
G

ra
in

Lo
w

0.
25

O
ni

on
 (O

N
)

N
o

N
o

Lo
w

Ro
ot

Lo
w

0.
43

Ca
rr

ot
 (C

A
)

N
o

N
o

M
ed

iu
m

Ro
ot

Lo
w

0.
43

M. Palka et al.                                                                                                                                                                                                                                   Agricultural Systems 231 (2026) 104522 

4 



LC =
1

n − 1
∑

CType > 9 (2) 

WS =
1

n − 1
∑

CType ∈ {1,2, 7,8, 9,11,…,19} (3) 

We included the same number of CTypes. Therefore, Cn remained 
unchanged and struc was classified according to Cn and the adjusted Tr 
values. The classification of func in principle also remained the same, 
based on the relative LC and WS values, however. For a graphical rep
resentation of the general struc and func matrices, we refer to Fig. 2 in 
Stein and Steinmann (2018).

2.1.3. Environmental conditions
We obtained elevation and slope data from the German (Bundesamt 

für Kartographie und Geodäsie, 2016)/Austrian (geoland.at, 2015) 
Digital Terrain Model DGM10 (10 m resolution). We extracted the 
organic carbon content (Corg) of the first soil layer and the sand, silt, and 
clay content of the second soil layer from the German land use-specific 
soil map (based on Bundesanstalt für Geowissenschaften und Rohstoffe 
(2008), 100 m resolution). For Austria, we used the digital soil map 
(Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren 
und Landschaft, 2023), 1 km resolution), which only provides values for 
the full profile. We retrieved the humus, sand, silt, and clay contents and 
divided the original values by 1.725 (converting humus to Corg) and 
100 (sand, silt, clay) to match the units of the German soil data.

We used daily temperature and precipitation data from 1 km gridded 
products from the German Weather Service (Deutscher Wetterdienst, 
2024) and GeoSphere Austria (2025). To mimic the “climate memory” of 
farmers’, which we assumed to cover the last five years, we aggregated 
daily values to monthly averages and calculated monthly averages from 
the previous five years over three major growth periods: March to 
August (TempMA and PrecMA), April to May (TempAM and PrecAM), 
and June to July (TempJJ and PrecJJ).

To address the complexity of the environmental conditions while 
simplifying their magnitude, we used an unsupervised K-means (n = 25) 
clustering approach via Principal Component Analysis (PCA), covering 
89.9 % of the observed environmental variance. We assigned each field- 
year to the cluster based on the five most important PCs, which reduced 
the number of related features from 12 (elevation, slope, Corg, sand, silt, 
clay, TempMA, TempAM, TempJJ, PrecMA, PrecAM, and PrecJJ) to one 
(the respective cluster) and facilitated efficient model training.

2.1.4. Commodity prices
In line with the climate memory of farmers, we calculated the 

average price of the previous five years for each CType and year 
(average) from FAOSTAT producer prices (FAO, 2025). We also calcu
lated the difference between averageP and last year’s CType price as a 
short-term economic stimulus (deltaP). In case price data was not 
available for a specific year, we used prices from the last available year. 
No legume (LEG) prices were available for the Czech Republic. We 
therefore used prices for Austria instead. We only used last year’s price 
to avoid any kind of data leakage. Producer prices are usually set after 
the harvest and are therefore not available to farmers at the time of 
decision (= planting). Further, we excluded prices for silage maize as it 
is largely grown as a fodder or energy crop without official market 
prices.

To generate an outlook on potential cropping patterns in the future, 
we used commodity price developments from the global biosphere 
management model (GLOBIOM) (Havlík et al., 2014; Ermolieva et al., 
2015). GLOBIOM is a partial equilibrium model that represents global 
agricultural markets by overall welfare maximisation at regional and 
global levels. The model integrates a detailed representation of land-use, 
agricultural market, and productivity changes to assess their impact on 
prices. Key drivers such as climate change, population growth, dietary 
shifts, and bioenergy demand influence long-term price trends. 

Commodity prices fluctuate due to global supply and demand in
teractions, production costs, and trade dynamics, acting as a feedback 
mechanism that shapes producer and consumer behaviour.

To calculate average_LEG and deltaP_LEG (as features required to 
apply the crop rotation model, see Results) we further made the 
following assumptions. We considered projected prices only for soybean 
and peas. While FAOSTAT also reports prices for chickpeas and beans, 
these correspond to post-harvest dried products, resulting in prices up to 
10 times higher than those of soybean and peas, which exclude post- 
processing. GLOBIOM prices for different emissions scenarios deviated 
by + − 0.5 USD tonne− 1 over the projection period only. Therefore, we 
did not run scenario-specific projections but calculated the average price 
development overall. Further, as GLOBIOM provides decadal price 
development, we interpolated the prices between two consecutive de
cades through a linear fit to retrieve annual values.

Table S. 1 to Table S. 3 in the Supplementary Material provide 
summarises of price data used for this study.

2.1.5. Agricultural policies and subsidies
To reflect the effect of agricultural subsidies or other policy measures 

on cropping decisions, we included a “Positive”, “Negative”, or “None” 
feature for each field-year, depending on whether any of the following 
measures were in place or not, and whether they encouraged or 
discouraged the cultivation certain crops (listed chronologically): 

• Energy crop premium (“ECP”, Energiepflanzenprämie): effective in 
Germany from 2003 to 2009, providing subsidies for energy crops (e. 
g. silage maize)

• Renewable Energy Sources Act (“REL”, Erneuerbare-Energien-Gesetz 
2014): effective in Germany until 2014, providing additional sub
sidies for energy crops

• Protein crop promotion strategy (“PCP”, Eiweißpflanzenstrategie): 
effective in Germany from 2014 and in Austria from 2020, promoting 
the cultivation of legumes at the policy level

• Ban on the use of seed treatments (“BST”, Beizverbot): effective from 
2014

• Greening: effective during the CAP period from 2014 to 2022, where 
legumes qualified as ecological priority areas, which are compulsory 
for subsidy payments

• Diversification of crop production (“DCP”): effective during the CAP 
period from 2014 to 2022 on top of Greening measures (see previ
ous) in nine German federal states (Bavaria, Baden-Württemberg, 
Hesse, Mecklenburg-Western Pomerania, North Rhine-Westphalia, 
Rhineland-Palatinate, Saxony-Anhalt, Schleswig-Holstein, and Thur
ingia; the federal states relevant for this study are marked in italics). 
DCP provides subsidies if crop production at farm level includes a 
minimum of 10 % legumes and a maximum of 65 % cereals. DCP also 
includes crop rotation and crop diversification measures as part of 
the conditionality of the most recent CAP period (2023-2027), which 
is only relevant to the last year of IACS data used for this study, 
however.

• Abolition of sugar quota (“ESQ”, Wegfall der Zuckerquote): effective 
from 2017

• Ban on the use of neonicotinoids (“BNN”): effective from 2019

2.2. Model training

We used a random forest (RF) ML algorithm (Breiman, 2001) and 
trained it to predict the CType for each field-year combination using the 
features listed in Table 3, with the exception of “OBJECTID”, to be 
transferable to other fields.

The difficulty with the present data set was its inherent spatio- 
temporal dependencies. For machine learning problems, this 
commonly leads to overfitted models that are hardly able to make pre
dictions beyond the location and time considered in the reference data, 
as well as an overly optimistic error assessment (Meyer and Pebesma, 
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Table 3 
Overview of all features.

Feature Description Value Notes

General
OBJECTID Unique identifier for each field included in the dataset 1–15,811,713
State IACS data was available for the nine German federal states, Austria, and the Czech Republic BV, BB, LS, MWP, NRW, RP, SA, SAX, TH, AT, CZ
Year Current cropping year 2005 (earliest) – 2023 (latest) For each state, the first four years were included via PCTypei only
Cropping history
CType The crop type grown in each year CType is the dependent variable 

See Table 2 for a description of the CType 
i = 1,2,3,4

PCTypei The crop type grown i years ago
NPCTypei The most common PCTypei type within a radius of 5 km
Environmental conditions
Cluster The growing environmental cluster, 

based on the following growing conditions:
1–25

10th Percentile Median 90th Percentile
Elev The elevation of each field (m a.s.l.) 0.0 372.5 469.3
Slope The slope of each field (%) 0.0 4.6 7.5
Sand The sand content of each field’s soil (%) 1.0 30.0 60.0
Silt The silt content of each field’s soil (%) 1.0 40.0 58.0
Clay The clay content of each field’s soil (%) 0.0 21.0 30.0
Corg The organic carbon content of each field’s soil (%) 0.0 1.7 1.7
TempMA Average temperature from March to August over the last five years (◦C) 12.8 13.4 14.9
TempAM Average temperature from April to May over the last five years (◦C) 8.4 9.1 10.5
TempJJ Average temperature from June to July over the last five years (◦C) 11.9 12.5 14.0
PrecMA Average monthly precipitation from March to August over the last five years (mm) 54.4 67.8 90.8
PrecAM Average monthly precipitation from April to May over the last five years (mm) 41.2 54.7 75.0
PrecJJ Average monthly precipitation from June to July over the last five years (mm) 51.8 64.7 87.4
Agronomic rules (see Table 2 for crop-specific classification)
Winter_PCTypei Differentiation between winter vs. spring crops Yes/No
Cereal_PCTypei Differentiation between cereal and leafy crops Yes/No
Demand_ PCTypei Nutritional demand Low/Medium/High
Organ_ PCTypei Organ for primary yield Grain/Biomass/Root
Drought_ PCTypei Drought tolerance Low/Medium/High
Fraction_ PCTypei The recommended cultivation fraction of PCTypei in a rotation 0–1
Struc The structural diversity of each field A-I See Stein and Steinmann (2018)
Func The functional diversity of each field 1–9
Prices
averageP_CType The five-year average producer price of CType For details see Table S. 1 to Table S. 3 in the Supplementary Material
deltaP_CType The difference between the averageP_CType and last year’s CType price
Policies and subsidies
ECP Energy crop premium Positive/Negative/None Only for Germany
REL Renewable Energy Sources Act Positive/Negative/None Only for Germany
PCP Protein crop promotion Positive/Negative/None
BST Ban on the use of seed treatments Positive/Negative/None
Greening CAP 2014–2022 greening measures Positive/Negative/None
DCP Diversification of crop production Positive/Negative/None Only for some German states
ESQ Abolition of sugar quota Positive/Negative/None
BNN Ban on the use of neonicotinoids Positive/Negative/None
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2021; Meyer et al., 2018; Meyer et al., 2019). To overcome this, we 
applied a three-step model training: 

1. For a first exploratory analysis, we ran a rf model from the R caret 
package (Kuhn, 2008) with a random split between 80 % and 20 % of 
all data from Germany and Austria (where all environmental features 
were available) for training and testing. As described, this led to 
substantial overfitting.

2. To overcome this, we continued with 10-fold spatio-temporal CV and 
forward feature selection via the ffs function from the R package 
CAST (Meyer et al., 2018). CV folds were created based on the 
“Cluster” and “Year” features, for space and time, respectively. In 
combination with spatio-temporal CV, ffs selects those features that 
in combination lead to the highest classification performance of a RF 
by excluding all features that lead to overfitting when validated 
against the left-out Cluster-Year CV-fold. ffs first trains a RF model 
using all possible feature pairs, keeps the best performing model and 
iteratively adds each remaining until no additional performance in
crease is achieved. For this study, spatio-temporal CV was especially 
important to estimate model transferability to other neighbouring 
regions such as the Czech Republic and to use the model for gener
ating future projections. 

While ffs is the current best practice in training transferable RF 
models and to overcome overfitting, it is computationally 
demanding. Given the size of our final dataset, we therefore used a 
random sample of 159,744 field-year combinations from Germany 
and Austria with constant hyperparameters (mtry = 2, ntree = 25).

3. Using the selected features from 3., we then trained our final crop 
rotation RF model with ten-fold spatio-temporal CV using data from 
all three countries with mtry = 5 and ntree = 60 after no increase in 
accuracy was achieved.

Our aim was to arrive at a model that explains the data reasonably 
well while allowing us to get an understanding of the main drivers 
determining operational crop rotational decision-making.

To better understand what drives the individual cropping history 
(according to the rotation model, the most important driver; see Re
sults), we additionally trained an alternative follow-up model, that 
explicitly excluded all features related to previous crops but used the 
individual, non-clustered environmental features, again with ten-fold 
spatio-temporal CV and the same sample from Germany and Austria 
as for step 2.

We assessed model performance using training and test classification 
accuracy, confusion matrices, and feature importance values which 
indicate to what extent the prediction accuracy of the RF would drop if 
the respective feature would not be considered as a predictor. In reverse, 
a high feature importance indicates that a feature contributes to a high 
model accuracy. As ffs selects those features that in combination work 
best, feature importances may not be interpreted individually. Addi
tionally, features highly correlated with the selected ones might appear 
as unimportant or not be selected overall, which however helped to 
identify the true underlying drivers.

2.3. Cropping projections

Based on the final model, which predicts the next CType in the 
rotation based on the selected drivers, we generated a potential outlook 
of cropping patterns at field level until 2070, the year to which com
modity prices are available from GLOBIOM. Many climate change 
assessment studies project e.g. crop yields into the future. Since we 
foresee the consideration of real-world crop rotations a generated here 
as beneficial for such studies, we included a projection period that would 
align.

For every new year in the projection, PCType1 to PCType4 were 
derived from CType and PCType1 to CType3 from the previous year. All 
other features (Cereal_PCType4, deltaP_LEG (based on GLOBIOM price 

projections), Demand_PCType1,4, Drought_PCType4, Fraction_PC
Type1,3,4, func, Organ_PCType4, and Winter_PCType4; see section 3.1 in 
the Results) were calculated and assigned to each field accordingly, and 
the new CType was predicted based on the final RF model. To limit 
unwanted convergence due to systematic bias from uncertain classifi
cations, which would otherwise lead to the extinction of less important 
crops and the overrepresentation of dominant ones, we introduced 
stochasticity into the projections. This also accounts for opportunistic 
cropping choices which are inherent in human behaviour. Specifically, 
we first assigned the CType with the highest classification probability 
given the new conditions of each field and year. And second, in very 
ambiguous cases where the classification probability of the assigned 
CType fell below the first quantile of classification probabilities across 
the 17 other CTypes, we assigned a random CType instead of the orig
inally assigned one. In addition, because WW was the most dominant 
crop overall and more easily confused with other CTypes (see Fig. 4 in 
the Results), we reassigned a random CType in 22 % of the cases where 
WW would have been selected. We chose 22 % as a threshold under the 
assumption that half of the unexplained variance (see Results) reflects 
opportunistic farmer behaviour, while the other half remains unex
plained due to missing data.

Based on this final RF model, we generated a new data set of pro
jected CTypes for each field and each year until 2070, without ac
counting for potential future changes in field boundaries. We aggregated 
field-level results to crop share developments per country and across the 
study region.

3. Results

3.1. Rotation drivers

Out first RF training attempt, using all potential prediction features 
and a random split of the data set into 80 %–20 % for training and testing 
showed a close to perfect (0.99) training accuracy, but only 0.48 for 
testing (Fig. 2). This large difference between training and testing ac
curacy indicated severe overfitting of the model. Without targeted CV or 
feature selection, this RF was heavily dependent on the cluster of envi
ronmental features and crop rotations on neighbouring fields, while the 
importance of agricultural policies and subsidy measures was negligible.

Recognising this, our final model with spatio-temporal CV and for
ward feature selection (Fig. 3 (a)) omitted overfitting with CType clas
sification accuracy of 0.58 and 0.56 for training and testing, 
respectively. Further, it reduced the initial set of 75 predictors (Table 3) 
to 15, grouped into four main categories: most importantly, (i) the field- 
specific cropping history (PCType1–4), followed by (ii) agronomic rules 
related to this cropping history (Fraction_PCType3, Demand_PCType1, 
Fraction_PCType1, Demand_PCType4, Drought_PCType4, Organ_
PCType4, Fraction_PCType4, Winter_PCType4, Cereal_PCType4), (iii) the 
functional diversity of the rotation (func), and (iv) the development of 
legume prices (deltaP_LEG). Interestingly, none of the environmental 
features, policy measures, or neighbouring information were finally 
selected. We interpreted these results as a showcase of a “tried-and- 
tested” behaviour where farmers focus their choices in rotation design 
on past experience, rather than future opportunity or climate change 
adaptation potential.

Since it is reasonable to assume that certain crops can and will only 
be cultivated under conditions that at least enable (if not promote) 
growth and yield, we hypothesised that the individual cropping history 
(which was ranked most important) is already a representation of the 
prevailing environmental conditions. While the alternative model, that 
explicitly excluded all features related to previous crops but used the 
individual non-clustered environmental features (Fig. 3 (b)), reduced 
the train (0.64) and test accuracy (0.34), this follow-up model did 
indeed reveal the importance of the environmental growing conditions, 
including the temperature average during summer (TemJJ), silt, func, 
the state, and the Greening measures of the past CAP. Similarly to the 
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representation of environmental conditions through the cropping his
tory, three out of the eight policy and subsidy measures considered here 
targeted legume cultivation, either directly (DCP and PCP) or indirectly 
through qualifying as ecological priority areas (Greening, Table 3). This 
may have contributed to the development of legume prices and thus to 
the choice of crop in the rotation, as shown in the first model.

With an overall test accuracy of 0.56, the model predicted the largest 
share of each CType correctly (indicated by the percentages in the 1:1 
diagonal of Fig. 4). We found differing performances for predicting in
dividual CTypes. Winter wheat and silage maize were the most promi
nent CTypes in the data set and showed the highest accuracies (0.64 and 
0.60, respectively). The accuracy for predicting grain maize (0.56) and 
legumes (0.56) was comparable, however. Further, the model showed a 
higher degree of confusion of underrepresented CTypes such as carrots 
(CA), onions (ON), or spring oats (SO), and among CTypes with similar 
agronomic features e.g. within cereals or leafy crops. A negligible share 
was confused with carrots, onions, sunflowers, or other leafy vegetables.

3.2. Cropping projections

To provide a potential outlook on future cropping patterns until 2070 
(Fig. 5), we used the final crop rotation model with the 15 selected 
features, taking into account the stochasticity inherent in farmers’ 
decision-making. Until 2023, rotations were characterised by a high 
proportion of winter wheat, silage maize, and winter barley. Thereafter, 
the projections show a more even distribution of crops, with a continued 
high proportion of winter wheat and silage maize. While the area under 
winter barley decreases, the area under legumes increases substantially. 
Legumes have long been promoted, both for their agronomic advantages 
and for the growing demand for plant-based diets (Drinkwater et al., 
1998; Reckling et al., 2016a; Reckling et al., 2016b; Zander et al., 2016; 
Hazra et al., 2019; Liu et al., 2020; Costa et al., 2021; Notz et al., 2023; 
Qiao et al., 2024). The development of higher legume cultivation in the 
recent past, resulting from both price incentives and the gradual change 
of individual cropping histories, can explain the legume dynamics in the 

Fig. 2. The feature importance of the random forest model without spatio-temporal cross-validation. Features are grouped according to Table 3, also indicating full 
feature descriptions.

Fig. 3. The feature importance of different random forest models. Panel (a) shows the features selected for the random forest model in this study, ranked by 
importance. Panel (b) shows selected features of the alternative model, excluding all features selected for the first model. The alternative model was used to confirm 
the hypothesis that the individual cropping history from the crop rotation model is a representation of the prevailing environmental conditions. Features are grouped 
according to Table 3, also indicating full feature descriptions.
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projections. We also find higher proportions of winter rye in the future, 
also referred to as a “resilient crop” (Riedesel et al., 2024), possibly at 
the expense of winter barley with similar agronomic features (Table 2). 
Onions and carrots disappear from the projections, which we attribute to 
their negligible occurrence in our study region.

The projections also show clear differences between the three 
countries, with differences in growing conditions and past cropping 
history as the main drivers of crop rotations. Most of the fields were 
located in Germany (Fig. 1). Therefore, the development of relative crop 
proportions is in line with the overall distribution in the study region. In 
Austria, the past distribution of crops differs from the German cropping 
patterns. While winter wheat was also the most important crop, grain 
maize came second, followed by potatoes. In the projections, silage 
maize gains significantly in importance, possibly at the expense of grain 
maize. We attribute this to a dynamic similar to that of winter wheat and 
winter barley, with overlapping agronomic features, and partly also to 
the decreasing proportion of potatoes, while legumes are exceptionally 
increasing. In the Czech Republic, we find a pronounced importance of 
winter wheat throughout the projection period, while the remaining 
crop shares closely follow the distribution of the entire study region.

In addition to the aggregated crop shares, Fig. 6 illustrates an 
example of future cropping patterns at the field level. Although the 
newly generated dataset contains CTypes for each field and year up to 
2070, we present the example in ten-year intervals for the sake of clarity.

4. Discussion and conclusion

By analysing over 16 million data points and 76 covariates using 
current ML best practices for modelling spatio-temporal data, we iden
tified drivers of operational crop rotation management and provided an 
outlook on potential future cropping across Central Europe. We found 
that historical cropping patterns, agronomic rules, and legume com
modity prices play a decisive role in shaping crop rotations in the region.

In general, the popularity of ML stems from its ability to achieve high 
accuracy when analysing complex datasets. Research applications often 
focus not only on achieving the highest possible prediction accuracies, 
but also on understanding the dynamics that drive these results. We 
applied an RF algorithm. Compared to current developments in deep 
learning (Dupuis et al., 2023), the RF algorithm is considered less 
complex. However, rather than seeking a more powerful algorithm or 
tuning the RF for greater accuracy in predicting the type of crop to come, 
our objective was to identify the key drivers that shape operational crop 
rotations and based on that to provide a potential outlook on future 
cropping patterns under unknown space–time conditions. Without tar
geted training, ML models often replicate relationships well in a specific 
training dataset but tend to perform poorly when tested on independent 
data (=overfitting). This often occurs because a model responds 
disproportionately strongly to feature dynamics that are not indepen
dent of the target application—in our case, providing spatio-temporally 
accurate predictions (Viana et al., 2021; Meyer and Pebesma, 2022). The 
dataset we used in this study was a prime example. In the initial model, 

Fig. 4. Confusion matrix for predicting different crop types (CType; MG: grain maize; MS: silage maize; WW: winter wheat; WB: winter barley; WR: winter rye; WTS: 
winter triticale and spelt; SWTS: spring wheat, triticale, and spelt; SB: spring barley, SO: spring oats; WOR: winter oilseed rape; SU: sugar beet; PO: potato; LEG: 
legumes; VEG: leafy vegetables; SUN: sunflower; ON: onion; CA: carrot). Numbers within tiles indicate the percentage of actual CTypes predicted as predicted CType. 
Tinted tiles in y-direction refer to the predicted CType for each actual CType, vice versa for the tiles in x-direction. The 1:1 diagonal represents correct predictions.
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the environmental cluster was identified as the most important feature. 
Since it represents annual weather patterns and site-specific soil con
ditions, the cluster feature was, of course, highly spatio-temporally 
dependent. After targeted training, we found our overall accuracy to 
be comparable to other studies using a similar RF training approach 
(Meyer et al., 2019; Meyer and Pebesma, 2022), especially given the 
high resolution of crops into 17 different types. Upcott et al., 2023, for 
example, reported an accuracy of about 0.7. However, when they 
excluded long-term grassland from the analysis as we did, the score 
dropped to 0.4, which is lower than the accuracy we obtained in this 
study. Another study from France reported coefficients around 0.4–0.6 

(Osman et al., 2015), which are comparable to the present ones. Due to 
data restrictions, we were not able to include whether the fields were 
part of the same farm or classified as organic or conventional. Previous 
studies have suggested that organic crop rotations are different from 
conventional ones (Barbieri et al., 2017; Reumaux et al., 2023) and that 
rotation planning is not usually done at field level but at farm level 
(Schönhart et al., 2011; Stein and Steinmann, 2018). Inclusion of these 
factors may have increased the accuracy in the present study, as may 
other factors (e.g. farm and field size, livestock density, consumer 
behaviour, import/export numbers, etc.). However, our aim to generate 
a model for cropping projections over large spatial and temporal scales 

Fig. 5. Crop share projections for the study region. Panel (a) shows the projected crop type distribution, with an expected increase in legumes in red. Panels (b) to (d) 
show country-specific development across the study region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 6. Field specific cropping patterns in ten-year intervals for an example region in Brandenburg, Germany.
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meant that only features available at these scales were used.
We found the individual cropping history as the most important 

driver for shaping crop rotations. As a result of the spatio-temporal 
dependencies between potential drivers, environmental conditions, 
market prices and subsidies are likely to have influenced individual 
cropping histories and were therefore not selected as driving features of 
our crop rotation model. In line with previous findings (Alfandari et al., 
2015; Upcott et al., 2023), our results suggest an average rotation length 
of four years, as indicated by the importance of the crops grown in the 
previous four years and the associated agronomic rules. Once a rotation 
is established, farmers follow this pattern and changes in growing con
ditions do not significantly affect their crop choices. We interpreted 
these results as a showcase of a “tried-and-tested” behaviour where 
farmers focus their choices in rotation design on past experience, rather 
than future opportunity or climate change adaptation potential. 
Breaking this habit, for example to increase rotational diversity, appears 
to remain a challenge (Sietz et al., 2022; Brannan et al., 2023). On the 
other hand, when the next crop type differed from the one that would be 
next according to the four-year pattern, we found that agronomic rules 
played an important role. The availability of planning software 
(Bachinger and Zander, 2007; Schönhart et al., 2011; Fenz et al., 2023a; 
Fenz et al., 2023b), easily accessible mobile applications, and the pro
motion of best practice rules by extension services should therefore not 
be underestimated. Since individual cropping history plays a decisive 
role, our findings support farmer engagement and individual crop 
rotation choices to promote diversified crop rotations (Notz et al., 2023). 
The four-year rotation length we found is also substantially shorter than 
the six to eight-year rotations suggested by best practice and differs from 
the stylised rotations used in crop model simulations for climate change 
assessment studies. As a result, these studies are likely to underestimate 
the various benefits and climate change adaptation and mitigation po
tentials of operational crop rotations and, in particular, higher pro
portions of legumes (Barbieri et al., 2019). Crop model simulations have 
been shown to differ significantly when rotation practices are or are not 
considered (Teixeira et al., 2015; Teixeira et al., 2018; Faye et al., 2023). 
The effects were particularly pronounced for soil-related variables such 
as nitrogen fixation amounts, crop residue management, soil organic 
carbon build-up, and water retention capacity - all important contribu
tors to sustainable and resilient cropping systems – but also for crop 
yield and greenhouse gas emissions. To arrive at simulations and 
adaptation studies that better account for these different benefits, we 
therefore advocate simulation methods that place individual crops in the 
context of their operational rotation. Our newly generated data set 
provides one CType for every field and year in the projection period up 
to 2070. This information can be used directly to inform crop rotation 
practices for field-level simulations or aggregated into real-world crop 
masks for gridded crop model applications, for example by assigning 
each simulation pixel to the crop with the largest area within that pixel. 
The shapefile data structure makes it possible to generate these crop 
maps at virtually any resolution. In addition to feeding these derived 
future patterns into crop models, bio-economic farm or optimization 
models (Janssen and van Ittersum, 2007; Ermolieva et al., 2015) could 
directly benefit from constraining the design of their internal crop 
choices with the drivers we identified. This will ultimately help to design 
and analyse economic and agronomic scenarios for successfully adapt
ing crop production to a changing climate (Yang et al., 2024).

Additionally, we found that the development of legume prices played 
a role in determining the type of crop planted next. As legumes gradually 
became more popular, they played a more important role in the crop
ping history. They likely became more popular because of their agro
nomic benefits, including N fixation, and recent increases in legume 
commodity prices due to higher demand and N (fertilizer price) dy
namics. Previous studies have emphasised the trade-off between agro
nomic and economic benefits of legume cultivation (Preissel et al., 2015; 
Stagnari et al., 2017; Tzemi et al., 2025) and the potential of price in
centives to increase legume cropping (Michalis et al., 2025).

Three out of the eight policy and subsidy measures considered the 
cultivation of legumes. This may also have contributed to the develop
ment of legume prices and thus to the choice of crop type in the rotation 
as well, highlighting an important lever for promoting more resilient 
rotations at political level. While the effect of subsidy measures may not 
be readily apparent and the uptake of new crops may be somewhat 
delayed (due to the layered identification of rotation drivers and the 
individual cropping histories as described above), Galioto and Nino 
(2023) have already shown the importance of financial instruments to 
encourage crop diversification practices under the CAP reform in 
Europe. With the introduction of conditional payments under the CAP 
2023–2027 (EU, 2022), an estimated 86 % of the EU’s arable land is or 
will be subject to compulsory crop rotations or diversification measures. 
Providing economic incentives, e.g. in the form of cultivation subsidies 
for under-represented crops with agronomic advantages for which there 
is currently no market (such as sorghum, hemp seed, or other minor 
legumes, could be worthwhile to promote diverse crop rotations across 
the EU.

For future projections, we developed a simple but effective algorithm 
that avoids unwanted projection convergence (e.g. limiting the extinc
tion of rare crop types and dominance of a single crop type) by incor
porating stochasticity into model time series predictions. However, we 
recognise that the projections are subject to uncertainty and come with a 
number of limitations, offering room for future improvements. We had 
to rely on past knowledge to produce cropping projections. Generational 
shifts in farmer demographics could gradually change individual pref
erences and cropping histories. Our crop rotation model may also still 
confuse crops with similar agronomic features or currently underrep
resented crops, such as carrot and onion which, in principle, are 
economically attractive. The same applies to the projected increase in 
legume cropping. While a substitution is justifiable from an agronomic 
or technological perspective, and in addition to the reasons for increased 
legume cropping as discussed above, projected legumes might still be 
confused with other spring crops such as silage maize, potatoes, or sugar 
beet which are projected to decrease. In the case of winter barley, in 
addition to the justifiable substitution, the decreasing trends might be 
too pronounced due to confusion with other winter cereals such as 
winter wheat or winter rye that are on the rise. The underrepresentation 
of onion and carrot might also be a result of excluding fields with 
speciality crops, such as herbs or ornamental flowers, which are likely 
part of horticultural farms where also onion and carrot are grown. 
Further, we used legume price simulations from the GLOBIOM model, 
which introduced another layer of uncertainty. GLOBIOM prices showed 
to behave very differently from past price dynamics, as e.g. unforeseen 
market shocks are not considered. However, in our model we considered 
the development of legume prices only as one out of 15 drivers. Using a 
very restrictive spatio-temporal CV strategy and integrating stochastic 
decision making, we perceive the present modelling approach as the 
best-available projection option besides the listed limitations.

Due to the importance of field-specific cropping histories, the 
application our data-driven analysis and projection of cropping patterns 
has been limited to regions or countries where well-curated operational 
cultivation data sets exist, i.e. the IACS data in our case. Yet, recent 
advancements in remote sensing have shown promising potential for 
extending our approach to regions where observational crop type data is 
scarce or not accessible. New products can now estimate crop types at a 
10 m resolution over a large geographic extent (Blickensdörfer et al., 
2022; Lawes et al., 2022). Ultimately, this will bring new opportunities 
for crop rotation research as we present here at geographic extents 
exceeding our present study region.

Data availability and processing

Open-source IACS data can be found here: 
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• Austria (years 2015–2023): https://www.data.gv.at/suche/?kat 
Filter%5B0%5D=httppublicationseuropaeuresourceauthoritydata 
-themeagri&searchterm&typeFilter%5B0%5D=dataset&nr=1&ta 
gFilter%5B0%5D=INVEKOS

• Brandenburg (years 2010–2023): https://geobroker.geobasis-bb. 
de/gbss.php?MODE=GetProductInformation&PRODUCTID=996 
f8fd1-c662-4975-b680-3b611fcb5d1f

• Czech Republic (years 2019–2023): https://mze.gov.cz/public/ 
app/lpisext/lpis/verejny2/plpis/

• Lower-Saxony (years 2021–2023): https://sla.niedersachsen.de/la 
ndentwicklung/LEA/

• North Rhine-Westphalia (years 2019–2023): https://www.op 
engeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwi 
rtschaft/

Digital terrain data is available via https://gdz.bkg.bund.de/index. 
php/default/digitale-geodaten/digitale-gelandemodelle/digitale 
s-gelandemodell-gitterweite-10-m-dgm10.html and https://www.data. 
gv.at/katalog/dataset/dgm.

Digital soil maps can be found at https://github.com/zalf-rpm/Bu 
ek200_by_CLC and https://bodenkarte.at.

Gridded weather data is available via https://www.dwd.de/DE/le 
istungen/cdc/cdc_ueberblick-klimadaten.html and https://data.hub. 
geosphere.at/dataset/spartacus-v2-1d-1km.

FAO producer prices can be found at https://www.fao. 
org/faostat/en/#data/PP.

Data processing and analysis were performed in the R programming 
language (R Core Team, 2022, R version 4.2.2) using tidyverse 
(Wickham et al., 2019), dtplyr (Wickham et al., 2023), sf (Pebesma, 
2018), terra (Hijmans et al., 2025), caret (Kuhn, 2008), and CAST 
(Meyer et al., 2025) packages.
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10 m (DGM10). Available at: https://gdz.bkg.bund.de/index.php/default/digitale 
-geodaten/digitale-gelandemodelle/digitales-gelandemodell-gitterweite-10-m-d 
gm10.html.

Bundesanstalt für Geowissenschaften und Rohstoffe, 2008. Bodenübersichtskarte 1: 
200.000 (BÜK200).

Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaftzx, 
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Pohanková, E., Hlavinka, P., Kersebaum, K.C., Nendel, C., Rodríguez, A., Balek, J., 
Dubrovský, M., Gobin, A., Hoogenboom, G., Moriondo, M., Olesen, E.J., Rötter, R., 
Ruiz-Ramos, M., Shelia, V., Stella, T., Hoffmann, M.P., Takáč, J., Eitzinger, J., 
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Riedesel, L., Möller, M., Piepho, H.P., Rentel, D., Lichthardt, C., Golla, B., Kautz, T., 
Feike, T., 2024. Site conditions determine heat and drought induced yield losses in 
wheat and rye in Germany. Environ. Res. Lett. 19.

Ryo, M., 2022. Explainable artificial intelligence and interpretable machine learning for 
agricultural data analysis. Artificial Intellig. Agricult. 6, 257–265.

Ryo, M., Rillig, M.C., 2017. Statistically reinforced machine learning for nonlinear 
patterns and variable interactions. Ecosphere 8, e01976.

Schönhart, M., Schmid, E., Schneider, U.A., 2011. CropRota – a crop rotation model to 
support integrated land use assessments. Eur. J. Agron. 34, 263–277.

Sietz, D., Klimek, S., Dauber, J., 2022. Tailored pathways toward revived farmland 
biodiversity can inspire agroecological action and policy to transform agriculture. 
Communicat. Earth & Environ. 3, 211.

Stagnari, F., Maggio, A., Galieni, A., Pisante, M., 2017. Multiple benefits of legumes for 
agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4, 2.

Stein, S., Steinmann, H.H., 2018. Identifying crop rotation practice by the typification of 
crop sequence patterns for arable farming systems – a case study from Central 
Europe. Eur. J. Agron. 92, 30–40.

Stella, T., Mouratiadou, I., Gaiser, T., Berg-Mohnicke, M., Wallor, E., Ewert, F., 
Nendel, C., 2019. Estimating the contribution of crop residues to soil organic carbon 
conservation. Environ. Res. Lett. 14, 094008.

Teixeira, E.I., Brown, H.E., Sharp, J., Meenken, E.D., Ewert, F., 2015. Evaluating methods 
to simulate crop rotations for climate impact assessments – a case study on the 
Canterbury plains of New Zealand. Environ. Model Softw. 72, 304–313.

M. Palka et al.                                                                                                                                                                                                                                   Agricultural Systems 231 (2026) 104522 

13 

http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0115
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0115
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0120
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0125
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0125
https://www.fao.org/faostat/en/#data/PP
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0135
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0135
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0135
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0135
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0140
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0140
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0145
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0145
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0150
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0150
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0150
https://www.data.gv.at/katalog/dataset/dgm
https://www.data.gv.at/katalog/dataset/dgm
https://data.hub.geosphere.at/dataset/spartacus-v2-1d-1km
https://data.hub.geosphere.at/dataset/spartacus-v2-1d-1km
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0170
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0170
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0170
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0170
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0175
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0175
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0175
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0175
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0185
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0185
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0185
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0190
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0190
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0195
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0195
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0195
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0200
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0200
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0200
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0205
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0205
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0210
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0210
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0215
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0215
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0215
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0220
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0225
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0225
https://www.landwirtschaftskammer.de/Landwirtschaft/ackerbau/fruchtfolge/index.htm
https://www.landwirtschaftskammer.de/Landwirtschaft/ackerbau/fruchtfolge/index.htm
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/
https://www.opengeodata.nrw.de/produkte/umwelt_klima/bodennutzung/landwirtschaft/
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0240
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0240
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0240
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0245
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0245
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0245
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0245
https://doi.org/10.3390/s18082674
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0260
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0260
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0260
http://refhub.elsevier.com/S0308-521X(25)00262-8/opt52HiDuQ8ME
http://refhub.elsevier.com/S0308-521X(25)00262-8/opt52HiDuQ8ME
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0270
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0270
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0275
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0275
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0275
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0280
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0280
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0280
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0285
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0285
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0285
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0290
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0290
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0290
https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&amp;PRODUCTID=996f8fd1-c662-4975-b680-3b611fcb5d1f
https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&amp;PRODUCTID=996f8fd1-c662-4975-b680-3b611fcb5d1f
https://geobroker.geobasis-bb.de/gbss.php?MODE=GetProductInformation&amp;PRODUCTID=996f8fd1-c662-4975-b680-3b611fcb5d1f
https://mze.gov.cz/public/app/lpisext/lpis/verejny2/plpis/
https://mze.gov.cz/public/app/lpisext/lpis/verejny2/plpis/
https://sla.niedersachsen.de/landentwicklung/LEA/
https://sla.niedersachsen.de/landentwicklung/LEA/
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0310
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0310
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0310
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0310
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0310
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0320
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0320
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0320
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0320
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0320
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0325
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0325
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0330
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0330
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0330
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0335
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0335
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0340
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0345
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0345
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0345
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0350
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0350
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0350
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0355
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0355
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0355
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0355
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0360
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0360
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0360
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0360
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0365
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0365
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0365
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0370
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0370
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0370
http://refhub.elsevier.com/S0308-521X(25)00262-8/optABeNBZWVAU
http://refhub.elsevier.com/S0308-521X(25)00262-8/optABeNBZWVAU
http://refhub.elsevier.com/S0308-521X(25)00262-8/optABeNBZWVAU
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0375
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0375
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0375
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0380
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0380
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0385
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0385
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0390
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0390
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0395
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0395
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0395
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0400
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0400
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0405
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0405
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0405
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0410
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0410
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0410
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0415
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0415
http://refhub.elsevier.com/S0308-521X(25)00262-8/rf0415


Teixeira, E.I., de Ruiter, J., Ausseil, A.G., Daigneault, A., Johnstone, P., Holmes, A., 
Tait, A., Ewert, F., 2018. Adapting crop rotations to climate change in regional 
impact modelling assessments. Sci. Total Environ. 616-617, 785–795.

Timlin, D., Paff, K., Han, E., 2024. The role of crop simulation modeling in assessing 
potential climate change impacts. Agrosyst. Geosci. Environ. 7, e20453.
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