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Abstract 27 
 28 
Global gridded crop models (GGCMs) are important tools for assessing climate impacts on 29 
agriculture, yet significant divergence in their projections limits interpretability, and impact studies 30 
often treat GGCMs as black boxes. Targeted ensemble sensitivity analyses are demanding and not 31 
transferable to different ensembles. Here, we comprehensively evaluate climatic and soil drivers of 32 
crop yield anomalies in a state-of-the-art GGCM ensemble, using maize as a representative crop. 33 
Gradient boosting classifiers detect anomalies, SHapley Additive exPlanations (SHAP) values quantify 34 
feature importance, and methods are applied to a recent GGCM experiment driven by reanalysis 35 
climate data. We find broadly similar climatic drivers across the ensemble, though feature 36 
importance distributions differ. Low precipitation dominates under rainfed conditions, while solar 37 
radiation typically ranks second, highlighting that drought impacts depend on atmospheric water 38 
demand often omitted from sensitivity analyses. In some GGCMs, excess rather than insufficient 39 
water drives anomalies. With irrigation, low solar radiation or adverse temperatures become the 40 
main drivers. In (semi-)arid regions, some GGCMs respond more to cool conditions, others to warm 41 
ones. Soil features usually rank lowest but can be moderately important in some models. Our 42 
findings demonstrate that evaluating opportunistic data—experiments produced for other 43 
purposes—yields vital insights into GGCM divergence in impact studies. Code is publicly available on 44 
GitHub to support future attribution analyses and inform broad audiences about drivers of observed 45 
results. 46 
 47 
Key points 48 
 49 

 We present a toolset for evaluating anomaly drivers in model ensembles based on SHAP 50 
value distributions and novel visualization methods. 51 

 Results indicate that solar radiation, low temperatures, and excess water are thus far 52 
neglected climatic drivers in some regions and models. 53 

 While some drivers dominate the ensemble, most GGCMs show characteristic feature 54 
importances for specific drivers and regions.   55 
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Plain Language Summary 56 
 57 
Computer models are often used to study how climate affects crop production worldwide. These 58 
models, called global gridded crop models (GGCMs), sometimes give very different results, which 59 
makes it hard to understand and compare their predictions. Usually, studies do not explain why 60 
models disagree, and detailed sensitivity tests are hard to compute and specific to models. In this 61 
study, we analyzed an existing set of GGCM results for maize to determine which weather and soil 62 
conditions cause unusually low yields. We used machine-learning methods to detect these yield 63 
anomalies and to measure the importance of different climate and soil factors. We found that while 64 
most models agree on the general role of climate drivers, they differ in how strongly they weigh 65 
each one. For example, lack of rainfall is usually the main driver under rainfed conditions, followed 66 
by solar radiation, showing that drought is influenced not only by rainfall but also by atmospheric 67 
water demand. Conversely, in some models, too much water is the main problem. Soil properties 68 
usually matter less but can be important in certain models or regions. Our findings show that 69 
existing datasets can already be used to explain why crop models disagree, without running new, 70 
resource-intensive experiments. 71 
 72 
  73 
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1. Introduction 74 

 75 
Global gridded crop models (GGCMs) are typically a combination of a process-based core model that 76 
estimates crop growth, yield formation, and a varying range of agro-ecosystem processes, and a 77 
spatial computational framework that provides input data for each pixel in a defined region. Similar 78 
approaches are implemented in ecosystem models (Müller et al., 2019). Over the past decades, 79 
GGCMs have become key tools in global and large-scale agricultural climate impact assessments 80 
(Balkovič et al., 2014; Frieler et al., 2017; Jägermeyr et al., 2021; Rosenzweig et al., 2014; Schewe et 81 
al., 2019; Schleussner et al., 2018), provide input data for agro-economic and land-use change 82 
studies (e.g., Molina Bacca et al., 2023; Orlov et al., 2024) and inform policy-making processes 83 
(Schmidt-Traub et al., 2019). They also fill a critical role within the Agricultural Model 84 
Intercomparison and Improvement Project (AgMIP) contributing to model intercomparison and 85 
climate impact ensemble studies (Rosenzweig et al., 2013; Ruane et al., 2017). 86 
 87 
With a growing number of GGCMs being applied and apparent disagreement in their projections 88 
(Müller et al. 2021, Müller et al 2024), ensemble studies have emerged as an approach to 89 
harmonizing forcing data and scenarios and thereby rendering divergence in outcomes subject to 90 
differences in model processes and setups (Elliott et al., 2015; Folberth et al., 2019; Franke et al., 91 
2019; Frieler et al., 2024; Müller et al., 2021). While such ensemble studies have been found to 92 
improve robustness in outcomes compared to observations (Martre et al., 2015), climate impact 93 
studies still show tremendous deviations among GGCM responses to increasingly altered climate and 94 
atmospheric conditions (Jägermeyr et al., 2020, 2021; Rosenzweig et al., 2014) with often limited 95 
agreement even on the direction of change in parts of the world. 96 
 97 
Although atmospheric CO2 concentration ([CO2]) has been identified as a key driver in this 98 
divergence under high concentration scenarios, using counterfactual scenarios (Jägermeyr et al., 99 
2021), various studies have found large discrepancies in GGCM responses to high temperatures, 100 
drought, or extreme wetness. Most often, they compared GGCM responses to observations as a 101 
form of benchmarking. For example, Schauberger et al. (2017) evaluated GGCM yield responses to 102 
high temperature against observed yields in the US and found overall good agreement but a large 103 
spread among models. Similarly, (Li et al., 2019) compared GGCM outcomes to US yield records for 104 
extreme precipitation impacts and found very mixed responses, but an overall underestimation. The 105 
most comprehensive evaluation of GGCM sensitivities to climate, [CO2], and nutrient supply, thus 106 
far, has been performed by (Müller et al., 2024). The authors used a cube of global systematic 107 
perturbations in temperature, precipitation, [CO2], and N fertilizer inputs, which revealed again a 108 
large divergence in GGCM sensitivities – even for GGCMs based on the same or a closely related core 109 
model. Yet, the fact that the experiment these evaluations were based on was highly demanding, 110 
with > 700 global simulations per crop for the full set of perturbations (Franke et al., 2020), and that 111 
it cannot be transferred to the latest developments in GGCMs, ensembles, and experiments 112 
(Jägermeyr et al., 2021), highlights that approaches to sensitivity analysis or feature importance 113 
attribution are required that can be applied ad hoc to GGCM experiments as these are performed.  114 
 115 
In research on observation-based crop yield-weather relationships, a diverse range of methods has 116 
been applied over the years, with a recent shift towards explainable machine-learning approaches. 117 
(Ben-Ari et al., 2018) evaluated an extreme wheat yield shock in France, focusing on compound 118 
events, and used logistic regressions for the quantification of drivers. While cold shocks have 119 
received overall little attention, (Xiao et al., 2018) use linear regression to quantify the impact of 120 
spring frosts on wheat yield losses in China. More recently, (Zhu et al., 2021) trained Random Forest 121 
(RF) models as classifiers for wheat yield shocks in Europe and combined these with SHapley 122 
Additive exPlanations (SHAP) (Lundberg and Lee, 2017) to identify their climatic drivers. This has also 123 
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been proposed as a more general approach to further process-understanding in geosciences (Jiang 124 
et al., 2024). 125 
 126 
In this study, we assess the sensitivities of GGCMs to climatic and non-climatic features driving crop 127 
yield anomalies, using similar methodological approaches but applied to simulations rather than 128 
observations. Crop yield anomalies are defined as occurrences less than or equal -15% from the 129 
detrended mean. We train classifier models per GGCM to predict yield anomalies for major Köppen-130 
Geiger climate regions and subsequently evaluate feature importances using SHAP values. We define 131 
sets of growing season climate features that may cause anomalies either through (I) transient effects 132 
(e.g., sum of growing season precipitation) or (II) extremes (e.g., fraction of heating degree days), 133 
and cover all types of adverse weather – hot, cold, dry, and wet. In this first assessment, we focus on 134 
the transient effects as these are agnostic to potentially model-specific thresholds and cover all 135 
relevant climate variables. For solar radiation, for example, no extreme indicator has been defined 136 
thus far, but it is key in understanding the role of atmospheric water demand for droughts 137 
(Gebrechorkos et al., 2025). We use the set of extreme features as a source for secondary 138 
evaluations to assess their importance for yield anomalies. Albeit global data on crop yield 139 
anomalies have frequently been shown not to be driven by weather only (Cottrell et al., 2019; Vogel 140 
et al., 2019; Wei et al., 2023) we include observations in our evaluation to put our findings in 141 
context. 142 
 143 

2. Methods 144 

 145 

2.1. Study design and data 146 

 147 
The study design and analytical approach are presented in Figure 1. In short, we train eXtreme 148 
Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) classifiers to predict yield anomalies 149 
occurring in crop yield simulations of GGCMs. We then evaluate the XGBoost models’ feature 150 
importances and their interactions using SHAP (Lundberg and Lee, 2017) to identify drivers of crop 151 
yield anomalies. Further details are provided in the subsequent sections. Model versions and key 152 
references are provided in Supplementary Table S 1. For reproducibility and further use, the Python 153 
code corresponding to this pipeline is available on GitHub (https://github.com/iiasa/ggcm-feature-154 
importance).  155 
 156 
All data were obtained at, or harmonized to, a spatial resolution of 0.5° x 0.5° (approx. 55 km x 55 157 
km near the equator) and for the period 1971-2015 in the case of simulated crop yields and climate 158 
data. We use climate and soil data for feature importance attribution that were used as forcings in 159 
GGCM simulations. Crop yield estimates were sourced from 13 GGCMs of the Global Gridded Crop 160 
Model Intercomparison Project (GGCMI) contributing to the phase 3a simulation ensemble 161 
(Jägermeyr et al., 2021). Historical reanalysis climate data (GSWP3-W5E5, Cucchi et al., 2020; Lange, 162 
2019) were provided by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieler et 163 
al., 2024). Precipitation, surface downwelling shortwave radiation, and minimum and maximum 164 
temperature were selected as climate variables ubiquitously used in all GGCMs and aggregated over 165 
the growing season (GS) to produce generic or extreme features (see sect. 2.3). Further explanatory 166 
features are soil attributes (sand, silt, organic carbon, and available water capacity) reflecting texture 167 
and hydrologic characteristics based on the Harmonized World Soil Database v1.2 (FAO et al., 2012; 168 
Volkholz and Müller, 2020).  169 
 170 
Absolute yields were detrended for the time series per pixel, and relative yields below -15% from the 171 
detrended mean are defined as anomalies (see section 2.2). This serves as the training and test set 172 
for XGBoost classification models with classes anomaly or no anomaly (see section 2.4). The 173 
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resulting metamodels form the basis for the calculation of SHAP values for individual features (see 174 
section 2.5) as well as interactions (see section 2.6). 175 
 176 
As crop yield-climate relationships and resulting anomalies can differ substantially between broad 177 
climate domains, metamodels were trained by major Köppen-Geiger classes, namely A (tropical), B 178 
(arid), C (temperate), D (cold), and E (polar), based on Beck et al. (2018). To concentrate the analysis 179 
on regions relevant for crop cultivation, we remove pixels without harvested area for a particular 180 
crop, based on the Spatial Production Allocation Model (SPAM) 2010 v2r0 (International Food Policy 181 
Research Institute, 2020; Yu et al., 2020) in line with earlier ensemble studies (Jägermeyr et al., 182 
2021). Herein, we focus on maize as a ubiquitously grown model crop and include soybean as a 183 
contrasting crop in the supplementary information.  184 
 185 

 186 
Figure 1: Schematic of the study design. Starting from climate and soil data used as forcings in GGCM crop yield 187 
simulations, features are derived for use in machine learning models. These are integrated with masks for climate domains 188 
and harvested areas to train XGBoost classifiers that predict yield anomalies. Subsequently, SHAP values are estimated for 189 
each feature as a measure of importance in predicting anomalies. We eventually analyze their distributions and response 190 
patterns across the ensemble. See sect. 2.1 for details. 191 

While we focus on evaluating feature importances of GGCMs, we include a global reference dataset 192 
of reported and spatially disaggregated crop yields: the Global Dataset of Historical Yields (GDHY) for 193 
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major crops spanning the time period 1982-2016 (Iizumi and Sakai, 2020). As opposed to simulated 194 
yields, these data are subject to potential bias in spatial attribution of crops, changes in crop 195 
management over time, quality in data reporting, and other limitations. Therefore, we consider this 196 
comparison tentative and include it in the SI only. 197 
 198 

2.2. Yield data detrending 199 

 200 
To account for the effects of technological, management, and climate change, we apply Locally 201 
Weighted Scatterplot Smoothing (LOWESS) to the observational yield data and equally to those 202 
simulated by GGCMs, albeit these have static technology and management. LOWESS, or the almost 203 
identical LOESS (Locally Estimated Scatterplot Smoothing), is a common choice in yield detrending 204 
that can be parameterized to different timescales and expected fluctuations (Ben-Ari et al., 2018; 205 
Zhu et al., 2021). The relative yield is then expressed as the distance of the actual observation to the 206 
regression line, i.e., the expected value. 207 
 208 

𝑎̅𝑖,𝑡 =
𝑦𝑖,𝑡−𝜇𝑖,𝑡

𝜇𝑖,𝑡
          (Equation 1) 209 

 210 
Where 𝑎̅ is the relative yield anomaly, 𝑦𝑖,𝑡 the observed yield and 𝜇𝑖,𝑡 the expected value at the 211 

location 𝑖 and time 𝑡. This formulation of relative yields is agnostic to the actual detrending 212 
procedure employed, as it only references the expected value 𝜇𝑖,𝑡. The choice of detrending method 213 

is strongly related to the goal of the analysis. For example, if the goal is to determine the impact of 214 
climate change on yield anomalies, it would be counterproductive to remove the trend at this stage. 215 
We chose LOWESS with a ‘fraction’ parameter set to 0.5 and no reweighting, a choice for which 216 
visual inspection of randomly selected pixels showed good agreement with what should be 217 
considered a yield anomaly. Furthermore, the method and parameters were validated against 218 
known anomalies, such as the 2016 extreme yield loss on the French breadbasket (Ben-Ari et al., 219 
2018).    220 
 221 

2.3. Feature selection 222 

 223 
As the selection of features is one of the most important choices in importance attribution, several 224 
versions and derivations of climate variables were investigated for suitability. Primarily, two types of 225 
features were compared: simple growing-season aggregates, such as average temperature, 226 
precipitation sum, etc., and features that are constructed by counting days within the growing 227 
season that satisfy certain criteria, e.g., number of wet days. The latter type is more common in the 228 
analysis of extreme events (Mistry, 2019) and they are expressed as fractions of growing season days 229 
to account for longer or shorter growing periods across the world, depending on GS temperatures. 230 
However, for their simplicity and improved interpretability across GGCMs, we chose GS-aggregates 231 
as our main feature set for the results presented in section 3. The climate feature data is then 232 
merged with soil, site, and management features and further reduced to avoid correlations (see 233 
Supplementary Text S2). Table 1 provides an overview of all features considered herein.  234 
 235 
Table 1: Overview of features used in importance attribution. Climate features are grouped into a main set and an 236 
alternative set. Thresholds for features expressed as fractions of growing season days were sourced from earlier 237 
publications (McErlich et al., 2023; Mistry, 2019; Schauberger et al., 2017). 238 

Short name Description 

Growing season aggregates 

solar radiation Sum of solar radiation within the growing season [MJ m-2] 

max. temperature Average maximum temperature [°C] 

min. temperature Average minimum temperature [°C] 
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precipitation Sum of precipitation [mm] 

Features expressed as fractions of growing season days 

wet days Number of wet days (precipitation > 1mm) 

heating degree days Heating degree days (maximum daily temperature >= 30°C) 

killing degree days Killing degree days (maximum daily temperature >= 39°C) 

frost days Frost days (minimum daily temperature <= 0°C) 

ice days Ice days (maximum daily temperature <= 0°C) 

heavy precipitation Number of days with heavy precipitation (precipitation >= 10mm) 

consecutive wet days Number of consecutive wet days (precipitation > 1mm) 

consecutive dry days Number of consecutive dry days (precipitation <= 1mm) 

Soil features 

sand Sand content in topsoil [%] 

silt Silt content in topsoil [%] 

AWC Total plant available water capacity (AWC) [m3 m-3] 

OC Organic carbon (OC) content [%] 

 239 
Results for the extreme feature set are provided in Figure S3. In designing the two types of feature 240 
sets, we account for potential impacts of hot, cold, wet, and dry weather on yield anomalies. 241 
Accordingly, GS-aggregated and GS-fraction features mostly express similar effects, but with 242 
different conceptualizations and quantifications. The choice of GS-aggregate features as the priority 243 
set was motivated by their robustness against model-specific thresholds and due to the inclusion of 244 
solar radiation. 245 
 246 

2.4. Classifier model training 247 

 248 
In its most direct form, accurate importance attribution is achieved by altering the inputs of a system 249 
and investigating how the change affects the output. Formally, this can be expressed globally, i.e., 250 
with a single metric per feature, and as a change in variance. This approach falls within the statistical 251 
domain of sensitivity analysis, which comprises a variety of methods that are adaptable to many 252 
different situations (Saltelli, 2008). However, we chose an alternative route for this analysis due to 253 
the following constraints and requirements. 254 
 255 

1. Computation: The simulation of GGCM yields for the global timeseries data requires major 256 
work and computational efforts. Therefore, ad hoc analysis is difficult to perform on GGCMs 257 
directly. 258 

2. Harmonization: Different models require different inputs and operate on different 259 
timescales. To enable a comparison, inputs need to be harmonized, here in the form of 260 
growing season aggregates. 261 

3. Organization: We want to introduce a method that can be applied to an already existing data 262 
sample without the need for GGCM teams to opt into a specific project, run separate 263 
simulations, etc. 264 

4. Explanation fidelity: While easy to communicate, global estimators, by definition, do not 265 
explain model behavior across the whole input domain and can be ambiguous and 266 
misleading, even for relatively simple models (Molnar et al., 2022). 267 

 268 
To satisfy these constraints, we use a data-driven metamodel as a proxy for GGCMs, and SHAP 269 
values as local importance estimators, calculated for 1000 uniformly sampled data points across the 270 
input space (for details regarding SHAP, see next section). As the metamodel, we employ XGBoost, a 271 
highly scalable gradient boosting algorithm that yields a regularized random forest model (Chen and 272 
Guestrin, 2016). Based on best practices for threshold-based importance attribution, specifically in 273 
the binary case (Hastie et al., 2009), and previous work on attributing yield anomalies to climate 274 
variables (Ben-Ari et al., 2018), we train a binary classification model for each KG region and GGCM 275 
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on whether a GGCM output is considered a yield anomaly. Classification models are generally based 276 
on probabilities and thereby provide the additional benefit of quantifying some of the uncertainty 277 
involved in the prediction. 278 
 279 
To avoid overfitting, hyperparameters (num. trees, learning rate, depth, min. child weight, gamma) 280 
were tuned using a randomized grid search and 10-fold cross-validation (CV) with stratified sampling 281 
that keeps the proportion of output classes constant across CV data slices. While predictive 282 
performance is not the primary interest here, overfitting to the training set can lead to inaccurate 283 
attribution of feature importance (Zhao et al., 2024). Training data size, the parameter values for the 284 
best estimators found in CV, and their discriminative performance in the form of the AUROC (Area 285 
under Receiver Operating Statistic curve) statistic are provided in supplementary tables Table S 2 - 286 
Table S 4. For interpretability and comparability of feature sensitivities (see section 2.7), it is 287 
important that the expected value of the classification model reflects the yield anomaly probability 288 
in the data, which is different per GGCM and region (Figure 2). Therefore, no reweighting of class 289 
probabilities is performed in model training. For the relative yield anomaly threshold, we choose a 290 
threshold of -15% from the expected yield, similar to previous work on yield anomalies (Ben-Ari et 291 
al., 2018). All data points less than or equal to that threshold are marked as yield anomalies. 292 
Furthermore, we only consider yield losses as anomalies, i.e., we do not investigate drivers of 293 
positive yield anomalies. 294 
 295 

2.5. SHapley Additive exPlanations 296 

 297 
Feature importances are derived from SHAP values and calculated by the Python module with the 298 
same name (Lundberg and Lee, 2017). SHAP was chosen for its expressiveness, mature formulation 299 
and implementation for machine-learning applications, and capacity to quantify feature interaction 300 
strength. Moreover, as a local estimator of importance, SHAP values facilitate an analysis that does 301 
not reduce feature importance to a single number. This is important for the analysis of complex 302 
input-output relationships, such as in the process-based models analyzed here. Shapley values are 303 
defined for a single data point 𝑥 and feature i as: 304 
 305 

𝜙𝑖(𝑓, 𝑥) = ∑
|𝑧′|(𝑀−|𝑧′|−1)!

𝑀!
(𝑓

𝑥
(𝑧′) − 𝑓

x
(𝑧′\𝑖))𝑧′⊆𝑥′      (Equation 2) 306 

 307 
where 𝜙𝑖 denotes the Shapley value, 𝑥′ ∈ {0, 1} the coalition vector indicating whether an element 308 
of 𝑥 is included in the coalition or not, 𝑧′ a subset of features within that coalition, 𝑀 the maximum 309 
coalition size, 𝑓𝑥(𝑧′) the model output, including feature 𝑖 and 𝑓x(𝑧′\𝑖) the model output excluding 310 
feature 𝑖. Note that Equation 2 requires all possible feature combinations to be exhausted for every 311 
data point, which makes computation challenging. SHAP provides several efficient approximations. 312 
For the analysis presented in this paper, we choose KernelSHAP as the approximation method, which 313 
reduces the combinatorial problem to a weighted least-squares fit that can be solved efficiently: 314 
 315 

𝐿(𝑓, 𝑔, 𝜋𝑥′) = ∑ [𝑓(ℎ𝑥(𝑧′)) − 𝑔(𝑧′)]
2 𝑀−1

(𝑀 𝑐ℎ𝑜𝑜𝑠𝑒 |𝑧′|)|𝑧′|(𝑀−|𝑧′|)𝑧′⊆𝑥′    (Equation 3) 316 

 317 
More intuitively, the SHAP value is the average change in model prediction resulting from including 318 
feature 𝑖, evaluated over all possible feature combinations, and herein indicates the contribution of 319 
feature values to the probability that a GGCM produces a yield anomaly. 320 
 321 
One of the most important mathematical properties it satisfies is local accuracy, expressed as a 322 
linear, additive explanation model: 323 
 324 
𝑓(𝑥) = 𝑔(𝑥′) = 𝜙0 + ∑ 𝜙𝑖𝑥𝑖

′𝑀
𝑖=1         (Equation 4) 325 
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 326 
Here, 𝜙0 is the Shapley value for including no features in the coalition, which is simply the expected 327 
value of model predictions for the data of interest 𝑋, or 𝜙0 = 𝐸(𝑓(𝑥)|𝑋). A consequence of this 328 
additive property is that SHAP values are expressed as an offset of the average prediction value. 329 
 330 

2.6. Interaction importance 331 

 332 
While two individual features might only have a minor effect on the anomaly probability, their 333 
combined effect can be substantial if one reinforces the other. Shapley interaction values quantify 334 
the contribution of interactions alone, independent of the individual contributions. In other words, 335 
two features with high Shapley values by themselves can have an interaction value of zero if they do 336 
not interact. One example of interactions in crop models is the handling of different climate stresses. 337 
In the EPIC crop model, both heat and water deficit affect biomass development individually, and 338 
high temperatures can increase atmospheric water demand, exacerbating droughts. But the mutual 339 
exclusiveness of stresses in the model can also cause one to outweigh the other if physiologic heat 340 
stress and drought occur simultaneously (J. R. Williams et al., 1989). This applies to the majority of 341 
crop models and stresses, with few exceptions that consider co-occurring stress, for example, 342 
through multiplicative functions (Webber et al., 2022). 343 
 344 
Shapley values can be used to quantify the strength of feature interactions as the difference of the 345 
interaction effect to the sum of main effects, i.e., the effect on the model prediction of including 346 
both minus the effect of including either. This implies a Shapley value of zero for non-interacting 347 
features – a desirable property for analysis. The definition of SHAP values, described in the section 348 
2.5, is easily extended to include the strength of interactions between two features 𝑖 and 𝑗 with 𝑖 ≠ 𝑗 349 
(Lundberg et al., 2018): 350 
 351 

𝜙𝑖,𝑗(𝑓, 𝑥) = ∑
|𝑧′|(𝑀−|𝑧′|−2)!

2(𝑀−1)!
(𝑓

𝑥
(𝑧′) − 𝑓

x
(𝑧′\𝑖) − 𝑓

x
(𝑧′\𝑗 ) + 𝑓

x
(𝑧′\{𝑖, 𝑗} ))𝑧′⊆𝑥′  (Equation 5) 352 

 353 
The right-hand term essentially expresses the difference between including the two features 354 
individually and including them simultaneously. If this difference is zero, it is assumed that there is 355 
no interaction between features that affects the model response, while nonzero values indicate that 356 
one feature either facilitates (positive) or impedes (negative) the other. 357 
 358 

2.7. Normalization and Importance Score 359 

 360 
To facilitate comparability between results for different GGCMs, some properties of models and data 361 
need to be considered. Inputs for metamodels, such as climate and soil, can be assumed to follow 362 
similar distributions and, as classification models, their output always expresses a probability. While 363 
this does not mean that metamodels necessarily share the same learned relationship between input 364 
and output, SHAP values are derived by evaluating contributions of all possible feature combinations 365 
across the input domain, and sensitivities can be considered agnostic towards the actual form of the 366 
relationship. This makes such feature contributions comparable in principle. However, because SHAP 367 
values are expressed as the offset from an expected value, here, the baseline anomaly probability in 368 
the data, another problem is introduced, as this baseline can differ per GGCM. To enable a 369 
comparison of feature sensitivities in section 3, regardless of the expected value, we define a 370 
normalized importance score as: 371 
 372 

𝜙̃𝑖 =
𝜙𝑖

𝑓(𝑥)−𝐸[𝑓(𝑥)]
=

𝜙𝑖

∑ |𝜙𝑗|
𝑝
𝑗

         (Equation 6) 373 

 374 
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Where 𝜙̃𝑖 is the score for feature 𝑖, 𝑝 the number of features and 𝐸[𝑓(𝑥)] the expected value. The 375 
normalized value, bounded within [−1, 1], expresses the importance of a feature as the fraction of 376 
all feature contributions for a single data instance and eliminates the impact of different baselines 377 
and probability scales across models. It can be interpreted as “What fraction of the total deviation 378 
from the baseline does feature 𝑖 account for?”. Note that this only holds true for a single data point. 379 
The symbols indicating the importance of a single GGCM in Figure 3 are an aggregation of the top 5% 380 
of importance scores per feature. Therefore, they do not sum to one across features. 381 
 382 

2.8. Clustering method 383 

 384 
To highlight similarities between GGCMs as well as outliers in terms of feature importance, we 385 
present clustering results in section 3.4. For the hierarchical, agglomerative clustering algorithm 386 
(Müllner, 2011), each GGCM is characterized by its SHAP and corresponding feature values. These 387 
are treated as a bivariate distribution to calculate 2D Wasserstein, or “earth movers” distances for 388 
all GGCM combinations. The metric is a measure of dissimilarity between probability distributions 389 
and essentially captures the cost of moving a source to a target distribution (Villani, 2009). For 390 
multivariate distributions, this is not a trivial task, and special considerations regarding computation 391 
and interpolation need to be considered (Bonneel et al., 2011). We use the package Python Optimal 392 
Transport (POT) to calculate the distance matrix for clustering (Flamary et al., 2021).  393 
 394 
To provide a rough grouping of GGCMs per KG region, edges of “well-separated” clusters are colored 395 
differently in the dendrograms. This separation is determined by manually setting a distance 396 
threshold of 0.5, which was chosen because it yields a balanced number of groups for this particular 397 
dataset. GGCMs with edges joining at Wasserstein distances (y-axis) below this threshold are 398 
considered a group. 399 

3. Results and Discussion 400 

 401 

3.1. Occurrence of maize yield anomalies in GGCMs 402 

 403 
The tendency of models to produce anomalies per se varies strongly within and across major 404 
Köppen-Geiger climate regions and GGCMs, ranging from 3% to almost 50% (Figure 2a). The highest 405 
median occurrence of yield anomalies is found for (semi-)arid climates, followed by polar, and the 406 
lowest for tropical climates. Among the ensemble members, CYGMA1p74 and SIMPLACE show the 407 
highest occurrence of yield anomalies, and LPJmL, LPJ-GUESS, and ISAM the lowest. Some GGCMs 408 
have higher or lower rates of yield anomalies in specific climates. E.g., rates for PROMET are high in 409 
polar and low in arid climates, while for LDNDC, anomalies are more frequent in arid climates but 410 
otherwise low. Reported yields from GDHY are mostly bracketed by the GGCM ensemble, suggesting 411 
that the ensemble as a whole does not systematically  under- or overestimate anomaly occurrence. 412 
 413 
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414 

 415 
Figure 2: (a) Proportion of maize yield anomalies (≤ -15% from the expected value) per GGCM and Köppen-Geiger region. 416 
The proportion of harvested area for rainfed maize that falls within each region is shown in brackets. GDHY refers to the 417 
yield observation dataset by (Iizumi and Sakai, 2020). Only locations with rainfed maize harvested area according to the 418 
Spatial Production Allocation Model (SPAM) 2010 version 2r0 (Yu et al., 2020) are included. (b) Number of GGCMs per pixel 419 
for which at least one maize yield anomaly was detected in the time series. The data are masked by rainfed maize 420 
harvested area according to SPAM. Pixels hatched in white indicate the occurrence of yield anomalies in the GDHY dataset. 421 

Spatially, the ensemble members tend to produce anomalies in the same geographic regions, with 422 
deviations mostly in climate regions that have overall low anomaly occurrence (Figure 2b). These 423 
include large parts of the tropics where pronounced drought and heat waves are less common, but 424 
also in the temperate climates of Southern and Central China. Observations don’t necessarily follow 425 
the pattern of agreement among GGCMs, indicating anomalies, for example, in Southeast Asia and 426 
northern South America, but not in Eastern Europe, Russia, or India, among others. 427 
 428 

a 

b 
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3.2. Drivers of yield anomalies within the GGCMI ensemble 429 

 430 
Across all climates and GGCMs, yield anomalies for rainfed maize can mostly be attributed to 431 
precipitation, expressed here as the sum over the growing season (Figure 3). Low precipitation is 432 
associated with higher yield anomaly probability, as indicated by the symbol colors and position 433 
along the x-axis. Also, their position at the lower half of the y-axis hints at a linear relationship 434 
between importance scores and feature values from low to high. CYGMAp74 presents an exception, 435 
where large volumes of growing season precipitation are associated with an increased anomaly 436 
probability in the tropics (A) and less so in cold (D) climates. This indicates that the model is more 437 
sensitive to excess water stress compared to the remainder of the ensemble, which is more sensitive 438 
to water limitations. CROVER shows a similar behavior but with a lower importance score. The 439 
clearest ensemble response is found for (semi-)arid climates (B), where excess precipitation hardly 440 
occurs by definition. Overall, sensitivities show strong variation in their contributions to yield 441 
anomalies across GGCMs, especially for high-ranking features where scores can vary by half of the 442 
available range and cover typically a quarter of it. While the overall ranking of features is fairly 443 
homogeneous, this underscores the heterogeneity of GGCMs in the ensemble when it comes to how 444 
different features are utilized in yield simulations and to what degree, which is of particular 445 
importance for extreme cases as seen here. 446 
 447 
Shortwave solar radiation is the second most important factor in tropical (A) and temperate (C) 448 
climates, and ranks third elsewhere, following closely behind maximum temperature. The responses 449 
to solar radiation are already far less clear compared to precipitation, indicating substantial 450 
differences among the ensemble members. In all climate regions, about half of the ensemble shows 451 
anomalies in cases of high solar radiation, and the remainder in cases of low solar radiation or 452 
without a clear direction. While none of the ensemble members has a representation of solar 453 
radiation damage, radiation affects crop yields in two main ways, (I) as the key driver photosynthesis 454 
where low radiation causes low biomass overall and (II) as a driving term of atmospheric water 455 
demand where high solar radiation causes high demand in those GGCMs that use potential 456 
evapotranspiration (PET) functions considering this variable (e.g., Penman-Monteith). Accordingly, 457 
the high ranking of high solar radiation underpins recent findings for wheat crop models and field 458 
experiments, suggesting that simulation of atmospheric water demand requires more attention in 459 
crop model evaluations (Webber et al., 2025). 460 
 461 
Maximum temperature ranks either second or third among climate regions, and minimum 462 
temperature is the lowest ranking climate feature. This underpins that responses to water deficit, 463 
incl. atmospheric water demand through high radiation, are more important across the ensemble 464 
than temperatures. The GGCM most sensitive to excess temperatures is CYGMA, most evidently in 465 
the warmer climate regions A and partiallyB. High maximum temperatures prevail as drivers of yield 466 
anomalies across GGCMs and climate regions, with few mixed signals. Low values drive the response 467 
of LPJ-GUESS in climate regions A, B, and C, and that of PEPIC in cold climates. For minimum 468 
temperature, the picture is less clear with a larger number of GGCMs showing either mixed 469 
responses or responding to low values. This pattern scales with cooler climates from A over C to D, 470 
whereas B climates cover both hot and cold domains, as elaborated further below in a more detailed 471 
assessment. Notably, the responses per climate region are also subject to the prevailing climate 472 
regimes, and it is hence not surprising that cold weather impacts dominate in colder climate regions. 473 
As with maximum temperature, CYGMA shows a high response to minimum temperature across 474 
regions A to C. 475 
 476 
Soil properties contribute little to yield anomalies but are notable for a few GGCMs and climates. 477 
Across the ensemble, soil texture is relevant foremost in (semi-)arid climates where it contributes to 478 
soil hydrology and drought sensitivity, but the directionality of silt and sand fractions across models 479 
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varies greatly, indicating strong divergence in how they affect the soil water balance. SIMPLACE is 480 
the most sensitive to low precipitation, with Available Water Capacity (AWC) as the dominant soil 481 
feature in all non-arid climates. 482 
 483 
Polar climates (E; including here foremost high mountain areas; Supplementary Figure S 2) comprise 484 
very low sample numbers and small harvested areas, which is why they are excluded from the main 485 
analysis and figures. Climate features in these regions follow largely a similar ranking, but with a 486 
more pronounced contribution of low temperatures and low solar radiation. Minimum temperature 487 
ranks higher than maximum temperature and is the main driver for only a few GGCMs.  488 
 489 
While we include observation-based gridded crop yield anomalies solely as a tentative reference due 490 
to limited comparability with simulation results (see sect. 2.2), we still compare their derived 491 
importance scores at large (Supplementary Figure S 2). This shows that the score gradient (i.e., high 492 
or low values causing anomalies) mostly corresponds to the ensemble majority for top-ranking 493 
features, except for polar climates (E), where observations are likely too sparse and no clear 494 
direction can be identified. In most cases, importances for the GDHY data are bracketed by the 495 
ensemble, indicating a rough agreement between simulations and observations. Exceptions are 496 
precipitation in the tropics that hardly cause yield anomalies in GDHY, and high scores for solar 497 
radiation in (semi-)arid and temperate climates. This suggests that droughts in observed yields are 498 
driven by atmospheric water demand more than by water supply. However, this interpretation 499 
needs to be treated with caution, especially in the tropics, where changes in farming practices, 500 
impacts of pests and diseases, and other factors not accounted for in the models limit comparability. 501 
Targeted benchmarking studies should hence make use of observations sourced from data that are 502 
free from such potential biases. 503 
 504 

 505 
Figure 3: Drivers of yield anomalies per GGCM. Individual features are listed on the y-axis per panel and sorted by mean 506 
absolute SHAP value. The x-axis shows the mean of the top 5% of importance scores per feature (2.7). Symbol colors 507 
indicate whether low (blue) or high (red) feature values are associated with the anomaly, or if the top 5% of SHAP values do 508 
not capture a clear trend (grey). A symbol’s vertical position within the feature band shows positive (top), negative 509 
(bottom), or no (middle) monotonic correlation between importance score and feature values, and roughly indicates the 510 
type and degree of linearity. See methods section 2.7 for defaults on the importance score, section 2.3 for feature 511 
descriptions, and Supplementary Text S1 for technical details about the plot. 512 



14 
 

A simulation scenario with sufficient irrigation virtually eliminates drought impacts, and thereby 513 
allows for a more nuanced evaluation of other climate variables under these particular conditions 514 
(Figure S4 - Figure S 6). In this set of simulations, solar radiation ranks first in tropical and temperate 515 
climates and third and second in (semi-)arid and cold climates, respectively. Furthermore, low 516 
radiation values tend to cause anomalies, which underpins that solar radiation may contribute to 517 
drought under rainfed (water-limited) conditions, but here predominantly drives anomalies through 518 
reduced radiation. For maximum temperatures, the picture is more mixed, and especially (semi-)arid 519 
climates show a divide among GGCMs with responsiveness to high values and others to low or mixed 520 
signals. Notably, the latter have an overall low tendency to produce anomalies under conditions of 521 
sufficient water supply (Figure S 7), or do so rather in cold arid regions, while the first have higher 522 
fractions of anomalies in hot arid regions. The most pronounced impact of high temperatures, on 523 
average, is again found for CYGMA, rendering it the most heat-sensitive ensemble member. 524 
Interestingly, AWC exhibits a high impact on anomalies for SIMPLACE across all climates and the 525 
EPIC-based GGCMs in the tropics (climate A). This shows that even with sufficient irrigation soil 526 
attributes are an important contributor to yield anomalies although the underlying processes that 527 
may relate to rooting depth, nutrient retention, or water logging among others cannot readily be 528 
interpreted without targeted experiments. 529 
 530 

3.3. Alternative climate features 531 

 532 
Using an alternative set of climate features that are based on fractions of days within the growing 533 
season exceeding specific thresholds (see Figure S3) shows highly comparable results, but a more 534 
pronounced picture where extremes may be explicitly represented in GGCMs. Interestingly, days 535 
with heavy precipitation emerge as the most important feature in all climates, which may be 536 
because this is the only feature reflecting specific volumes of precipitation. If these are low, the 537 
climate feature serves as a drought indicator. In most climate regions, other precipitation-related 538 
features rank second and third, showing that a single one of these extreme indicators may not be 539 
sufficient to explain yield anomalies. Heating degree days is the most important temperature-related 540 
feature, whereas killing degree days show limited impact. In cold climates (D), frost days become the 541 
most important feature for EPIC-IIASA and ISAM, and the overall most important feature in polar 542 
climates (E). Soil features show the same impacts as with the generic climate features, placed 543 
consistently in the lower half of the feature ranks. 544 
 545 

3.4. Clustering of model responses 546 

 547 
Results are grouped by their SHAP and corresponding feature values to identify patterns of response 548 
types within the ensemble and potential clusters (Figure 4). The clustering is performed on the full 549 
sample of 1000 data points used for importance attribution, whereas SHAP and feature values are 550 
treated as two dimensions of a bivariate distribution to calculate distances between GGCMs (see 551 
section 2.8 for details). This is done to provide a computational equivalent to a visual analysis of 552 
scatterplots (Figure S 20 - Figure S 23), which cannot fully capture all details of these distributions. 553 
This is especially true in the final assignment of clusters shown as different colors in the 554 
dendrograms. Therefore, we recommend consulting the scatterplots provided in the supplementary 555 
information, while the dendrograms below provide an aggregate overview of GGCM groupings. 556 
 557 
For precipitation in region A, most GGCMs are placed in the same cluster showing high importance 558 
scores at low values, strong decay, and flattening as precipitation increases (Figure S 20). CROVER, 559 
CYGMA, DSSAT-Pythia, and SIMPLACE are exempt. Visual analysis of the scatterplots indicates a 560 
more hyperbolic response and a rebound in importance with the increase in total precipitation for 561 
CYGMA. This is less pronounced for CROVER, resulting in similar results for the aggregate top 562 
contributors shown in Figure 3A, while the overall response is more in line with the remainder of the 563 
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ensemble. In region B, responses agree well across the ensemble, though LPJ-GUESS is singled out by 564 
the clustering, which is in part due to a lower score for growing season precipitation. For region C, 565 
CYGMA and DSSAT-Pythia are placed in a separate group, which shows a slightly more abrupt 566 
decrease in importance for precipitation, as indicated in the scatterplots. Additionally, importances 567 
tend to increase for CYGMA with higher precipitation for a few data points. CROVER is not included 568 
in any group as it shows a rather flat response. Neither is LPJ-GUESS, where data points are clustered 569 
around the lower end of the precipitation scale. Responses in region D are split into three groups in 570 
the dendrogram. However, the split between the first and second group is close to the cutoff 571 
threshold, and visual inspection shows that both contain GGCMs with a parabolic response (ACEA, 572 
DSSAT-Pythia, pDSSAT, LDNDC, SIMPLACE in the first, EPIC-IIASA, PEPIC, and PROMET in the second). 573 
The third group is comprised of models with a rather flat shape (CROVER, ISAM, LPJmL). CYGMA and 574 
LPJ-GUESS are excluded from the groups as their distribution of precipitation data points is clustered 575 
toward the lower end of the scale compared to other models. 576 
 577 
For solar radiation in region A, CYGMA, DSSAT-Pythia, LPJ-GUESS, and SIMPLACE are not assigned to 578 
the main group. CYGMA and DSSAT-Pythia show distinct response shapes with low variance (Figure S 579 
21), while LPJ-GUESS contains some outliers with very high precipitation values in the scatterplot. 580 
Radiation importances for ISAM and LPJmL are very low throughout the range. Sensitivities for 581 
GGCMs in the main group are more spread out and oftentimes flat or with a slight upward trend. In 582 
regions B and C, scores for CYGMA are similarly condensed as in region A. DSSAT-Pythia shows a 583 
unique, substantially decreasing trend, indicating that only low or moderately low values contribute 584 
to anomalies. In region D, SHAP values for all GGCMs are clustered into a small range, and 585 
distributions are more varied, as indicated by the large number of models not assigned to a group. 586 
Here, the coloring due to the cutoff point at 0.5 is less informative, and the main branches of the 587 
dendrogram should be considered. CROVER, ISAM, DSSAT-Pythia, LDNDC, and pDSSAT are assigned 588 
to a group with data points that show no clear trend, and ACEA, LPJmL, EPIC-IIASA, PROMET, PEPIC, 589 
and SIMPLACE to a cluster with increasing importance. CYGMA and LPJ-GUESS are not assigned to 590 
any group based on their SHAP/feature distributions. 591 
 592 
Sensitivities of temperature responses are quite similar across most of the ensemble. However, 593 
CYGMA shows a unique response with a quadratically increasing trend as the most temperature-594 
sensitive GGCM. LPJ-GUESS shows partly inverse behavior to the ensemble in regions A-C, with a 595 
decreasing trend for maximum temperature. This is also true but less pronounced for DSSAT-Pythia 596 
in region C, where the two GGCMs are excluded from the main group. EPIC-IIASA, PEPIC, and 597 
PROMET show a clear hyperbolic response to maximum temperature in D climates and are assigned 598 
to a separate group. LPJ-GUESS is excluded from the clusters, probably due to outliers in the lower 599 
range of maximum temperatures. 600 
 601 
Patterns and clusters for minimum temperature are largely similar to those of maximum 602 
temperature. CYGMA and LPJ-GUESS are excluded from the main groups in regions A and C due to 603 
their slightly increasing trend. In region B, two clusters emerge from the dendrogram: one with a 604 
decreasing trend, comprised of ACEA, CROVER, ISAM, LDNDC, LPJmL, pDSSAT, and PROMET, and one 605 
with a flat or increasing trend in CYGMA, EPIC-IIASA, PEPIC, LPG-GUESS, and SIMPLACE. DSSAT-606 
Pythia is excluded because it is the only model with a strong, decreasing trend in importance. Again, 607 
region D shows the least agreement between GGCM distributions. A group of models with flat 608 
responses was identified, containing ACEA, CROVER, CYGMA, LPJmL, and LDNDC. EPIC-IIASA, 609 
pDSSAT, and ISAM show high importance of lower values, and DSSAT-Pythia shows a clear 610 
decreasing trend. PEPIC and PROMET were found to have a similar distribution, and LPJ-GUESS and 611 
SIMPLACE were excluded from any cluster. 612 
 613 
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 614 
Figure 4. Dendrograms of GGCM responses to individual climate features per climate region. Distances between models are 615 
quantified as Wasserstein distances and include both SHAP and feature values (see sect. 2.8 for details). The y-axis shows 616 
the distance, i.e., the similarity between models. GGCMs with similar behavior merge at lower positions on the y-axis, while 617 
groups merging on top of the plots are less similar. The clustering is performed individually for each of the climatic drivers, 618 
and link lines are colored differently when groups can be clearly discriminated. See Supplementary Information X for scatter 619 
plots of SHAP vs. climate feature values. 620 

Under fully irrigated conditions, clustering results are less clear, and the number of clusters below 621 
the distance threshold of 0.5 is generally higher (Figure S 6). However, for solar radiation, the most 622 
important feature in this scenario, the overall pattern of GGCMs included and excluded from main 623 
groups is similar: In regions A-C, DSSAT-Pythia and CYGMA are singled out, the same as in the results 624 
for rainfed maize. Results for the cold region (D) are partly different, with PEPIC, PROMET, and the 625 
two DSSAT GGCMs being separated from the ensemble.  626 
 627 
For precipitation, which is notably of low importance in this scenario (Figure S4), the DSSAT models 628 
form a cluster of increasing importance in the tropics, whereas no clear trend can be seen for the 629 
other models (not shown). In (semi-)arid regions, the distribution of scores is quite varied. However, 630 
results of CYGMA, DSSAT-Pythia, and ISAM are of note as they are the only models with a decreasing 631 
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trend. CYGMA and DSSAT-Pythia form a cluster in temperate climates with slightly increased scores, 632 
whereas importances in region D are highly varied, and no clear clusters can be discerned. 633 
 634 
For maximum temperatures, CYGMA is singled out due to the exceptionally high importance of high 635 
temperatures in all climates but cold regimes. There, a cluster of models shows high anomaly 636 
probability under low temperatures and virtually none under high, whereas the remainder of the 637 
ensemble tends towards a hyperbolic or flat response. DSSAT-Pythia shows similar behavior to 638 
CYGMA in region A, with increasing importance for higher temperatures. Because of some data 639 
points with very high and very low max. temperature, LPJ-GUESS is excluded from the main groups 640 
in region B-D.   641 
 642 
For minimum temperature, CYGMA shows essentially the same behavior as for max temperature, 643 
with importances increasing for higher values in regions A and C, whereas scores for the remainder 644 
of the ensemble are close to zero. In semi-arid climates, DSSAT-Pythia emerges as the GGCM most 645 
sensitive to low temperatures (see also Supplementary Figure S4) and is also the model showing the 646 
largest fraction of anomalies (see Supplementary Figure S5). CYGMA and ISAM also indicate 647 
increased importance for higher values. In cold climate, the DSSAT models show the strongest 648 
response to minimum temperature, with values clustered around 5°C – 10°C.   649 
 650 
Some of the differences between GGCMs identified in the clustering are due to different ranges of 651 
feature values. As feature values are growing season aggregates, they are highly affected by the 652 
growing season length, i.e., the planting and harvesting date of the crop. For example, for rainfed 653 
maize in KG region A, solar radiation for CYGMA and DSSAT-Pythia is more concentrated toward the 654 
lower end of values. Albeit planting dates and the duration of the growing season were harmonized 655 
in the underlying experiment, we find that maturity still differs greatly across the ensemble, with 656 
some models showing very early maturation in some regions and others delayed maturity (Figure S 657 
24A-D). While we expect this not to affect the robustness of the importance analysis per se, it affects 658 
the clustering in particular (see also section 3.7). 659 
 660 

3.5. Interactions among anomaly drivers 661 

  662 
Incorporating SHAP interactions allows for evaluating interplays of features as another dimension of 663 
anomaly drivers. Due to their complexity and in part heterogeneity across the ensemble, only the 664 
top three are presented in Figure 5. Numeric results for all interactions are provided in 665 
Supplementary Table S 5 - Table S 6. The interaction between precipitation and solar radiation 666 
emerges clearly as the most dominant modulator of yield anomaly probability, both in terms of 667 
facilitating anomalies and mitigation. This is the case across all regions and GGCMs except CYGMA, 668 
where precipitation × maximum temperature interactions show higher importance scores. On 669 
average, the latter takes the second place, and precipitation × minimum temperature the third 670 
place. The order is flipped for some GGCMs and regions, such as for DSSAT-Pythia and EPIC-IIASA in 671 
region B or LDNDC in region D, where the interaction with minimum temperature clearly yields 672 
higher SHAP values. Overall, interactions with the maximum temperature are more sensitive, 673 
analogous to the results for standard SHAP values. 674 
 675 
Note that the figure only shows the frequency, not the magnitude of interaction sensitivities. To 676 
present outlier-robust values for the average mitigating and facilitating effect, we report the first 677 
and third quartiles of the SHAP value distribution (Table S 7 - Table S 8). These can be substantial, 678 
ranging from -6.1% (mitigating) to +7.4% (facilitating), added to the overall anomaly probability. 679 
Finally, as discussed in section 2.6, computation of SHAP interaction values is highly susceptible to 680 
correlations, flagged here with an asterisk. While the key interactions are uncorrelated in most 681 
regions and models, they are in some instances and must be interpreted with caution. However, the 682 
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large number of uncorrelated occurrences suggests that the findings are sufficiently robust. Highly 683 
correlated interactions, such as minimum × maximum temperature, have been excluded from the 684 
analysis a priori. 685 
 686 

 687 
Figure 5. Percentage of the top three most dominant interactions in the set of 1000 sampled SHAP values. Here, both 688 
facilitating (contributing towards yield anomalies; dark hues) as well as mitigating (reducing the yield anomaly probability; 689 
light hues) sensitivities are shown as stacked bars. An asterisk above the bars indicates that the data for the GGCM x KG x 690 
interaction combination is subject to correlations above 0.1, which might affect the robustness of the SHAP interaction 691 
value. 692 

 693 

3.6. Differences among model crops 694 

 695 
Results for soybean show patterns comparable to those for maize (Supplementary Figure S9 to 696 
Figure S13). Differences in model responses may be partly due to differences in growing areas for 697 
maize and soybean, which are used for masking out regions in which growing a crop may be 698 
unsuitable. Furthermore, soybean is a C3 crop compared to C4 maize, which results in differences in 699 
photosynthesis, transpiration, and CO2 responses, aside from general differences in crop physiology 700 
such as temperature thresholds for optimal growth. 701 
 702 
In short, under rainfed conditions, the ranking of features remains largely the same as for rainfed 703 
maize with marginal shifts for solar radiation and maximum temperature. In contrast to maize, no 704 
increase in the importance of excess water in rainfed conditions was found. With sufficient 705 
irrigation, the impacts of high maximum temperature become pronounced for a wider range of 706 
GGCMs, but low maximum temperatures become more dominant in (semi-)arid and cold regions. 707 
Clustering of the ensemble members by their response shapes indicates a more homogenous 708 
majority with similar GGCMs showing rather unique responses, e.g., CYGMA, PROMET, LPG-GUESS, 709 
SIMPLACE. Note that for soybean, no simulation results are available for DSSAT-Pythia, which is why 710 
the model is excluded from the analyses.  711 
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 712 

3.7. Limitations and outlook 713 

 714 
The feature importances presented herein characterize the input-output relationships of highly 715 
heterogeneous models, and they are derived by applying data-driven, metamodel-based importance 716 
attribution to an existing GGCM ensemble experiment. This approach is inherently subject to 717 
limitations due to assumptions and generalizations that have to be borne in mind when interpreting 718 
the results. 719 
 720 
The machine-learning-based metamodels at the core of the analysis are trained on growing-season 721 
aggregates of crop model input and output data. Thereby, information is lost about how these 722 
quantities affect the accumulated daily timestep yield response in the original models. Thus, inputs 723 
that might strongly affect the yield in one part of the growing season but are compensated for in 724 
another are lost to aggregation, and so are other subtle effects. Also, weather conditions before the 725 
start of the growing season, specifically precipitation affecting soil moisture, are not captured by this 726 
approach (Sweet et al. 2025). Apart from aggregate features, we employ domain-specific feature 727 
engineering, such as the fraction of days within a growing season that exceed specific thresholds for 728 
temperature or precipitation. Both enable the training of expressive meta-models with good 729 
generalization performance (see Supplementary Table S4), indicating that feature effects are well 730 
captured on average with either approach. Future work could develop data-driven meta-models that 731 
are better aligned with the process model’s structure, e.g., accumulate yield predictions in daily time 732 
steps. This would reduce generalization and conserve more detail of the processes. While not 733 
necessarily more accurate and computationally more expensive, such models generally allow for 734 
better interpretability (Ljung, 1999). 735 
 736 
The data used in the ensemble experiment were not specifically designed to identify feature effects. 737 
They do not constitute a factorial or any common experimental design and are hence associated 738 
with the experiment they were derived from, i.e., climate reanalysis for the recent past with a 739 
business-as-usual management. While we trust that these already provide valuable insights into  740 
GGCMs’ sensitivities for the evolving domain of yield anomalies, we stress that the results should not 741 
be used directly to interpret results from climate projections, where CO2 effects can affect outcomes 742 
substantially (Toreti et al. 2020, Jägermeyr et al. 2021). We rather suggest applying the code 743 
published alongside this study for targeted assessments for GGCM sensitivities in such experiments. 744 
 745 
In part, features herein are subject to correlations, which can distort the derived sensitivities (Aas et 746 
al., 2021), especially those of interactions. To limit this effect, correlated features were removed as 747 
far as possible in the analysis (see Supplementary Text S2) and otherwise flagged. 748 
 749 
Finally, crop cultivars and maturation implemented in the simulations vary substantially across 750 
GGCMs (Figure S 24), and the resulting difference in growing season length has an impact on the 751 
distribution of climate features. These are derived from aggregating daily values by either calculating 752 
the mean (temperatures) or the sum (precipitation, solar radiation) across the growing season. 753 
Especially the latter is affected when this timeframe is particularly short, changing the mean of the 754 
distribution and potentially limiting comparability, especially for clustering. This needs to be 755 
considered when interpreting the findings in this article and other impact studies produced based on 756 
the ensemble. Further harmonizing the crop cultivars in future simulations could pave the way for a 757 
more precise comparison of ensemble members, albeit differences in the conceptualization of crop 758 
phenology in models are an intrinsic feature of the ensemble and a characteristic of uncertainty in 759 
process-implementation. 760 
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4. Conclusions 761 

 762 
Our analysis identifies precipitation as the dominant variable affecting negative yield anomalies 763 
across a GGCM ensemble. Solar radiation and temperature-related features rank second. Radiation 764 
has thus far received limited attention in climate attribution, despite its central position in driving 765 
both photosynthesis and atmospheric water demand. We find that GGCMs vary strongly in their 766 
importance attribution to radiation as a driver of yield anomalies, highlighting its central role in 767 
understanding model-induced uncertainty in crop yield simulations. This should hence be accounted 768 
for in both factorial sensitivity analyses that could extend to the process-level for further insights on 769 
model response mechanisms and in the interpretation of impact studies. Similarly, we found highly 770 
varied responses to minimum and maximum temperatures, including higher anomaly probabilities 771 
for low values for a sub-group of models, which may inform temperature ranges for future analysis 772 
that have thus far focused on warming. Lastly, the presented method allows for identifying GGCMs 773 
with very specific responses under certain climatic conditions, which can inform further model 774 
development and the selection of ensemble members for specific applications. Overall, the results 775 
indicate that our method of importance attribution provides a means for quantitative evaluation of 776 
dominant GGCM features, using existing data from experiments such as reanalysis forcings or 777 
climate impact studies. Beyond earlier studies, it also includes interactions with non-climatic GGCM 778 
inputs, such as soil texture, that can catalyze climate impacts. Future research may seek to combine 779 
our method applied to an opportunistic sample herein with structured GGCM simulations as used in 780 
earlier studies that could eventually be reduced in volume with smart sampling approaches. We also 781 
expect our methodology to be of value in the analysis of GGCM experiments for which importance 782 
attribution is typically not performed, such as cooling and wetting from nuclear winter, 783 
geoengineering, and ocean current disturbance. 784 
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