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Beyond the limit: The estimated air pollution damages
of overshooting the temperature target

Claudia Rodés-Bachs'?*, Laurent Drouet??, Peter Rafaj4, Massimo Tavoni®3°, Lara Aleluia Reis*3

Exposure to outdoor air pollution results in millions of premature deaths and ilinesses that are associated with
substantial economic loss. According to the Global Burden of Disease, outdoor air pollution was responsible for
4.7 million deaths in 2021. Climate change mitigation policies could provide cobenefits by reducing air pollution.
The Intergovernmental Panel on Climate Change ARG report explores scenarios using an updated carbon budget
approach—the net-zero pathways—designed to avoid temporary overshoot of the 1.5°C temperature limit. We
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assess whether net-zero pathways consistently improve air pollution outcomes using a global source-receptor air
pollution model to estimate concentrations, health impacts, and economic damages. To analyze key uncertainties,
we apply multiple relative risk functions and economic damage models. Our findings show that stringent climate
policies, avoiding overshoot and keeping below 2°C, offer substantial health and economic cobenefits, particu-
larly for China and India, and avoid 207,000 premature deaths and 2269 billion USD2020 in damages by 2030.

INTRODUCTION

Outdoor air pollution is the leading environmental health risk fac-
tor, responsible for more than 4.7 million premature deaths globally
in 2021 (1, 2). Beyond its mortality impact, outdoor air pollution is
strongly associated with a broad spectrum of serious illnesses and
economic losses (3-7). Many of these adverse outcomes can be miti-
gated through climate change policies because the reduction of
greenhouse gas emissions not only addresses global warming but
can also lower concentrations of harmful air pollutants, such as fine
particulate matter (PM,5) and ozone (O3). Therefore, climate miti-
gation policies have the potential to yield substantial cobenefits for
air pollution reduction, resulting in substantial public health and
economic advantages (8-14).

The latest generation of scenarios from the Intergovernmental
Panel on Climate Change (IPCC) (AR6) (15) introduced an innova-
tive approach to climate change mitigation: the global net-zero (NZ)
pathways. These pathways, developed using integrated assessment
models (IAMs), are primarily designed for evaluating mitigation
strategies. Traditionally, these scenarios focus on the global cost-
effectiveness of achieving a specific temperature target by the end
of the century (16). However, this method can lead to overshooting
trajectories (17), where global temperatures temporarily exceed the
set limits before stabilizing at the target level. Addressing this over-
shoot requires a phase of net-negative carbon emissions in the latter
half of the century to compensate for the initial exceedance (18). This
approach not only heightens climate-related risks (19) but also
depends heavily on the large-scale deployment of carbon dioxide
removal (CDR) technologies (20, 21).

Often, the IAMs used to project future climate scenarios do not
explicitly account for air pollution. Thus, additional methods are re-
quired to estimate the effects of changes in levels of outdoor air pol-
lution. This estimation involves a complex multistep process filled
with various sources of uncertainty that can affect the projected
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impacts. When the air pollution impacts are reduced because of cli-
mate mitigation policies, they are referred to as cobenefits.

In this study, we investigate whether the climate policies aimed at
avoiding temperature overshoot can consistently deliver robust air
pollution cobenefits despite the uncertainties inherent in the esti-
mation process. By systematically addressing these uncertainties, we
aim to enhance the reliability of cobenefit projections and support
the development of more effective and resilient climate policies.

Study design

We use a wide range of IAM emission scenario pathways, present in
the AR6 database (22), and focus on 10 macroregions frequently used
by the IPCC (see fig. S3 and table S1). The scenarios are produced by
six JAMs: AIM CGE (23, 24), IMAGE (25), MESSAGEix-GLOBIOM
(26), POLES-JRC (27), REMIND-MAgPIE (28, 29), and WITCH
(30, 31). These models are well established in evaluating global cli-
mate change mitigation pathways (16, 21, 32, 33) and represent a
broad spectrum of modeling approaches. Each model provides de-
tailed representations of power and land-use systems and offers
various decarbonization options. When used together, these models
generate a comprehensive ensemble of pathways that capture a wide
range of potential technological developments. This ensemble allows
us to assess the robustness of the results and identify scenarios with
significant “fat tail” risks, where the probability of extreme impacts
is substantially higher than in a normal distribution (19, 34).

We focus on the scenarios from the ENGAGE (Exploring
National and Global Actions to reduce Greenhouse gas Emissions)
project. Each model followed the same protocol to ensure compara-
bility of results, as detailed in Methods and Riahi et al. (21). The
models were designed to fit a carbon budget ranging from 200 to
3000 billion tonnes (Gt) of CO,, which represents the cumulative
CO; emissions from 2018 to 2100 aligned with specific long-term
temperature targets for the two scenario designs. The end-of-century
(EoC) pathway uses the carbon budget without restrictions, often
resulting in delayed mitigation efforts and reliance on CDR tech-
nologies in the latter half of the century. This can lead to temporary
temperature overshoot, which is later offset by net-negative emis-
sions. In contrast, the NZ pathway uses the remaining carbon budget
until CO, emissions are reduced to NZ. Once this target is achieved,
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CO; emissions are maintained at zero, thus avoiding any overshoot
and managing to prevent substantial temperature increases. The
baseline scenario represents the continuation of current national
policies up to 2100. The effects of the policy impacts are considered
to occur in the same year as the reduction in emissions, aligning
with the immediate nature of the policy interventions. Detailed sce-
nario specifications are provided in Methods and Riahi et al. (21).

Our goal is to estimate the health and economic benefits of air
pollution reduction in NZ pathways, accounting for the main sources
of uncertainty. To achieve this, we identify these uncertainties through-
out the multistep estimation process for air pollution cobenefits, il-
lustrated in Fig. 1. This process starts with data acquisition from
the ENGAGE scenario database (35), which provides air pollution
emission data and other outputs from the IAM scenarios referenced
above. Uncertainty stems from the choice of IAMs (36, 37), as they
each result in distinct pathways for air pollution emissions. Then, we
use an R version of the TM5-FASST Scenario Screening Tool (TM5-
FASST) (38) to estimate the concentrations of PM, 5 and O3 based
on the emission data. These concentration estimates are crucial for
assessing the health impacts. To ensure accuracy and minimize ad-
ditional assumptions, we use the number of premature deaths asso-
ciated with air pollution exposure—a direct and widely accepted
metric for health impacts (2, 10, 13, 39-43)—as our primary health-
related measure. This metric relies on the relative risk (RR) value,
commonly used to quantify the risk increase attributable to changes
in pollutant concentrations. We consider uncertainties related to the
choice and calibration of the RR function (13, 44). Last, we estimate
the economic damages resulting from the health impacts of air pollu-
tion. There are two main approaches to defining the economic dam-
age function: one based on the number of premature deaths and the
other on the concentration. Each approach introduces distinct un-
certainties, which we account for in the final output (45). In addition,
the parameters of the economic damage functions are derived from
empirical studies that focus on a single macroregion and do not spe-
cifically apply to all global regions. To extrapolate these to other
areas worldwide, we consider three different regional extrapolation
parameters—low (0.8), medium (1), and high (1.2) income elasticities
(details available in section S4).

To address the complexity and inherent uncertainty in model se-
lection and function parameterization (46), we reviewed a broad ar-
ray of functions and calibration values from the literature, as shown
in Table 1. Although we are aware that some of these functions are
more state of the art than others, all have been widely used at differ-
ent points in time, and their inclusion allows us to better understand

ENGAGE database
Set of 1AM outputs

Emission pathways
NO,, SO,, VOC, BC, OC CH,...

Fig. 1. Schematic workflow of the methodology.
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Pollutant concentration
PM, 5, O3

the evolution of the air pollution impact literature. In this study, we
assessed the individual cobenefits associated with each uncertainty
source, but for clearer presentation, we grouped the results into ag-
gregated categories. Moreover, we organized the modeled carbon
budgets into three distinct categories, detailed in table S2, recogniz-
ing the critical role of temperature in assessing climate impacts.

This article focuses on scenarios with carbon budgets below
1000 Gt of CO,, which correspond to a global mean temperature
increase of well below 2°C, unless otherwise noted. Figures corre-
sponding to other carbon budget clusters are available in the Sup-
plementary Materials. The reported values are provided as a range
from minimum to maximum, covering all scenarios. This range in-
cludes variations in RR and economic damage functions, along with
their parameters, unless otherwise specified.

To qualitatively assess the impact of pathway designs, such as NZ
and EoC, under uncertainty, we use empirical probability distribu-
tions and cumulative probability functions. These statistical tools
are effective in visualizing data distributions and estimating the like-
lihood of outcomes, which assists in understanding variability and
assessing risks within the pathway scenarios. Moreover, we apply the
nonparametric two-sided Kolmogorov-Smirnov test (47), which
evaluates the likelihood that two sample sets originate from the
same (but unknown) distribution. As further detailed in the “Policy
design impact analysis” section, P values below 0.05 indicate that the
two pathway designs have statistically different empirical probability
distributions, demonstrating that the pathway choice substantially
affects the output (i.e., emissions, concentrations, premature deaths,
or economic impacts). In addition, we examine the probability of
exceeding high mortality rates or economic cobenefits across cli-
mate pathways, highlighting low-probability but high-consequence
scenarios. Last, we examine how outputs vary when all key parame-
ters, counterfactual values, elasticity assumptions, and model choices
are held constant, except for one.

RESULTS

Health cobenefits

In this study, we estimate premature mortality considering PM, 5 adult-
related deaths from ischemic heart disease, chronic obstructive pul-
monary disease, lung cancer, and stroke, also called cerebrovascular
disease, that comprehends ischemic stroke and hemorrhagic stroke
(3, 42, 48); PM, 5 children-related deaths from acute lower respiratory
illness (42, 48); and O3 adult-related deaths from chronic obstructive
pulmonary disease (48). All these impact metrics have mathematical

Economic impact
Economic damage

Health impact
Premature deaths

Damage function

Health impact

based on concentrations

- - - Uncertainty source
— No uncertainty source
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Table 1. Details of the sources of uncertainty, options, and calibration settings.

Uncertainty source

Sensitivity

Air pollution emission’s pathways

IAMs: AIM CGE, IMAGE, MESSAGEix-GLOBIOM, POLES-JRC, REMIND-MAGgPIE,
WITCH

Scenarios

Mitigation pathway: EoC (overshooting) or NZ (nonovershooting)

Carbon budget: fi

Short-term policy: current national policy or nationally determined contri-
bution policy

Health impact function

RR function: GEMM, IER, log-linear

Parameters of the RR'f'unction: d'escribed in TabIeS4 D

Counterfactual value of thé 'R'R fu n‘cf‘ion: descuribe.d‘ in.Ta‘b‘Ié.S.A.I. o

Damage impact function

forms that are based on the estimation of the RR. The formulation of
the RR itself can take on different structures and includes several
parameters and a counterfactual value, all of which contributes to
the output uncertainty (49-54). In this study, we use parameters and
counterfactual values from the literature, as detailed in table S4.

To see whether the two types of mitigation routes—EoC and NZ—
are statistically different in terms of air pollution outcomes, we use the
Kolmogorov-Smirnov two-sided statistical test (47) (fig. S4C). In line
with previous studies (19, 21), it shows that it is for more stringent
scenarios (carbon budget < 1000 Gt of CO,) where the mitigation
route choice is more decisive. It is especially relevant for O3 prema-
ture deaths, mainly driven by NO, emissions, which are very re-
sponsive to the climate policy design (fig. S4A). For high carbon
budgets, the mitigation design does not play any role. This can be
seen in figs. S11 and S12, where the estimated premature deaths are
not statistically different between the mitigation policy designs. This
is explained by the fact that under mild climate policies, the energy
system is left with more technology options as the global carbon tax
is less extreme. This gives more room to fulfill carbon budgets and
allows for the deployment of advanced technological alternatives
later in the century. Similar results were found for climate risks
(19). Here, we focus on 2030 not only for its policy relevance but
also because it represents the point of greatest divergence between
NZ and EoC and thus a higher impact (see section S5 for further de-
tails and an analysis of the year 2050). This happens because avoid-
ing overshoot of temperature anticipates climate mitigation, thereby
yielding greater air pollution benefits in the early years.

Analyzing the regional distribution of health cobenefits from re-
duced temperature overshoot, as shown in Fig. 2A, we find that
China and India experience the greatest reduction in air pollution-
related premature mortality following the NZ pathway rather than
the EoC pathway, the estimated reductions in premature deaths by
2030 are 84,000 (ranging from 40 to 144,000) in China and 73,000
(ranging from 43,000 to 111,000) in India, as depicted in Fig. 2A.
This finding emphasizes two crucial points: (i) The effectiveness of
global climate policies heavily depends on these two major develop-
ing economies to decarbonize; (ii) these regions, potentially through
funding provided by the sixth article of the Paris Agreement, have
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On the basis of pollutant concentration: Dechezleprétre et al. (58) and Dong
eta

On the basis of premature

Elasticity value: high (1.2), medium (1), low (0.8)

the opportunity to reduce their carbon emissions and simultaneously
reap health benefits from improved air quality.

As shown in Fig. 2B, the estimated premature deaths vary de-
pending on the chosen RR function, its parameters, and the coun-
terfactual values used for calibration. Nevertheless, the NZ pathway
consistently dominates the EoC, shifting the empirical cumulative
distribution function (eCDF) estimates to the left in both 2030 and
2050 (Fig. 2C and figs. S11 and S12), i.e., delivering consistently
less premature mortality. This pattern holds across all normative
assumptions, with the NZ pathway reliably delivering lower mortal-
ity estimates (further details in section S10).

When evaluating the main contributors to uncertainty in prema-
ture death estimates from air pollution, our analysis, as illustrated
in Fig. 3 (A and B), examined the contributions of each factor. We
identified two distinct regional groups, each affected differently by
these sources of uncertainty. The first group consists of Europe, Latin
America, North America, Pacific-OECD, and reforming economies
(regions’ details in table S1), which are generally high- to medium-
income countries. In these regions, the primary source of uncer-
tainty is sensitivity to parameter choices, as illustrated in Fig. 3A.
This is evident from the greater difference between medians (repre-
sented by bullets) of the same color compared to those with the same
line type, indicating that parameter selection plays a substantial role
in driving uncertainty. The second group includes Africa, China,
India, the Middle East, and the rest of Asia (regions” details in
table S1), which are primarily low- to medium-income countries
with larger populations. Here, the primary source of uncertainty is
the counterfactual value, which determines the threshold at which
air pollutants are considered harmful. This is shown in Fig. 3B, where
the difference between medians with the same line type is more pro-
nounced than between medians with the same color. This indicates
that variations in the counterfactual value contribute more to the
overall uncertainty, particularly in densely populated regions (fur-
ther details in section S11).

Another substantial source of uncertainty arises from the emis-
sion pathways estimated by the IAMs, as shown in Fig. 3C. This figure
displays the empirical probability density distribution function for
each TAM considering the various RR functions with their parameters
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Fig. 2. Global health cobenefits of reduced overshoot for the year 2030. The distribution ranges include the various RR functions, their parameters and counterfac-
tual value ranges, and the various emission pathways generated by the IAM scenarios. The green and blue colors indicate the policy design (EoC or NZ). The line type
distinguishes the confidence interval (Cl) percentile generated by combining the RR functions with their different parameters and counterfactual values (ZCF). (A) Esti-
mated 2.5th, 50th, and 97.5th percentiles of avoided premature deaths per 100,000 population, normalized when following the NZ mitigation pathway instead of the EoC
pathway. (B) Empirical probability density functions (ePDFs) of the estimated premature deaths expressed in millions of people. The vertical dashed line indicates the
median. (C) Empirical cumulative probability functions of the estimated premature deaths expressed in millions of people.

and counterfactual values set to the median. The distribution of avoided
deaths under nonovershooting temperature policies shows consistent
shapes and median values, ranging from 3.13 to 3.77 million, across the
different IAMs. In contrast, Fig. 3D highlights the empirical prob-
ability density functions (ePDFs) for the various RR functions applied
to the emission pathways generated by the IAMs. Here, the estimated
medians vary substantially across the RR functions, ranging from
2.84 to 5.05 million, and the shapes of the ePDFs differ as well. This
indicates that when estimating the health impacts of air pollution,
the choice and calibration of the RR function are more critical than
the choice of the IAM. Further details on the sources of uncertainty
and how they propagate are provided in section S6.

Figure 3D also captures the progression of RR functions throughout
time. The integrated exposure-response (IER) function [Burnett ef al.
(50) and GBD in 2015 (55)] exhibits low tails and estimates. How-
ever, when using the more recent RR functions [Burnett et al. (49)]
following the Global Exposure Mortality Method (GEMM), the
estimates and tails increase sharply. This helps to interpret the dif-
ference in the outcomes of some health impact studies performed
during those years. All the functions and their parameters for the
different cohorts (e.g., low, medium, high, with, and without) are
detailed in section S3 and summarized in table S4.

Last, we investigated the probability of exceeding “high” mortality
rates and conducted empirical tests to determine whether these prob-
abilities differ between the NZ and EoC pathways, following the ap-
proach outlined in (19). Given the lack of observations in our case,
we defined the high value as the 90th percentile of premature mor-
talities under the NZ pathway over the century. This threshold helps
to understand how the exceeding probability evolves over time. Our
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findings indicate that NZ policies considerably reduce the likelihood
of extremely high premature death estimates across all regions, mak-
ing these outcomes less probable (extended details in section S7).
However, an exception exists with the IER function, where both
EoC and NZ policies yield similar results. This is due to a constant
counterfactual factor in the IER function, which makes the results
less sensitive to concentration changes compared to the other func-
tions considered in this study. Further details on the RR functions
are provided in the “Premature mortality” section and section S3.

Economic cobenefits

Previous literature has extensively analyzed the macroeconomic long-
term impacts of climate change (56, 57). The projections are very sen-
sitive to the considered methods and assumptions, and there are clear
methodological limitations to quantify climate-related economic
damages. Thus, the economic evaluation should only be used to en-
hance the health impact study, as in (19). Here, we considered four
different methods to estimate the economic damages of air pollu-
tion. Two of these methods correlate gross domestic product (GDP)
with air pollution concentrations, proposed by Dechezleprétre et al.
(58) and Dong et al. (59). The other two methods rely on premature
mortality data: the value of statistical life (VSL) (43) and the human
capital loss (HCL) (60). Consequently, these latter two methods—
the VSL and the HCL—are susceptible to the uncertainties inherent
in estimating premature deaths (as detailed in the “Economic dam-
ages” section and section S4). None of these functions account for
reduced pollution control costs, meaning that they do not explicitly
include policy costs in their equation. However, the costs associated
with reduced overshoot are implicitly captured in the IAMs’ GDP
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Fig. 3. Health cobenefits uncertainty for the year 2030 when following the NZ policy design. Data are expressed in millions of people. (A and B) Uncertainty interval
of the estimated premature deaths (2.5th to 50th to 97.5th percentile range) driven by the RR functions’ parameters, indicated with the color, and the RR functions’ coun-
terfactual value, indicated with the line type. The representative regions are (A) North America and (B) China. The distribution ranges include the various RR functions, the
multiple emission pathways generated by the IAM scenarios, and either the parameters or the counterfactual value range. (C and D) Empirical probability density distribu-
tion functions of the estimated premature deaths by (C) IAM and (D) RR function. The vertical dashed line represents the median. The distribution functions are set over

the median counterfactual and parameters values of the RR functions.

projections. As a result, the HCL and Dong et al. (59) methods indi-
rectly account for mitigation costs because their calculations explic-
itly include GDP or GDP growth in their formulas.

Applying the same analytic methods as for the health impacts,
we find that the NZ policy design delivers consistently more coben-
efits in all regions relative to the EoC design, not only for more strin-
gent carbon budgets but also for medium carbon budgets, because
the P values of the Kolmogorov-Smirnov test are under the signifi-
cance level (fig. $4D). China experiences the major economic cobe-
nefits, avoiding 922 billion USD2020 (range 849 to 1077 billion) in
2030 and 383 billion USD2020 (range 366 to 766 billion) in 2050,
when following the NZ mitigation pathway instead of the EoC path-
way (Fig. 4A and fig. S14). All regions, except Latin America, benefit
from the NZ policy design despite the uncertainty range in the elas-
ticity values. The elasticity value has only a small impact (globally)
on the total avoided economic damage, and it does not affect the
heaviness of the tails (Fig. 4, B and C). The negative impact that
Latin America experiences happens in 2050 when using the eco-
nomic damage function of Dechezleprétre et al. (58) with medium
elasticity (fig. S14). This occurs because the NZ policy design is
more costly than that of the EoC, resulting in a lower per capita in-
come in NZ. This results in fewer health benefits under the NZ path-
way compared to the EoC pathway, as the impact of air pollution is

Rodés-Bachs et al., Sci. Adv. 11, eadu7590 (2025) 17 October 2025

estimated by extrapolating from this lower per capita income. It is
also worth noticing that Latin America has one of the lowest air pol-
lution reduction due to decarbonization (Fig. 4A).

The VSL method appears to be considerably more sensitive to
variations in the RR function compared to the HCL. This is evi-
denced by the stability of the median and the 2.5th to 97.5th percentile
range across different concentration-response functions, as shown
in Fig. 5 (A to D). This occurs because the HCL method considers
the years of life lost, while the VSL approach assigns a single value to
the loss of life, regardless of when it occurs. Moreover, the VSL
method is substantially influenced by regional elasticity assump-
tions, which causes a wide variation in the uncertainty range based
on the chosen elasticity values, as depicted in Fig. 5 (A to D). This
variability underscores how heavily the economic impact assessments
of air pollution reduction policies depend on the relationship be-
tween air pollution and per capita income, as modeled by the VSL.

The response to VSL elasticity varies by region. Most regions
show a direct correlation with the elasticity values, i.e., increasing
elasticity values leads to increasing cobenefits. The exceptions are
Africa, India, reference economies, and the rest of Asia. In these re-
gions, the response is inverse because their per capita incomes in
future years are lower than the OECD calibration value used for VSL
calculations (as detailed in sections S4 and S13). Apart from the VSL

50f12

GZ0Z ‘02 4800100 U0 BI080US 105" MMM//:SANY WO.J PaPE0 lUMOQ



SCIENCE ADVANCES | RESEARCH ARTICLE

US billion - .

530 1061
B c
1.00
Cl for damage functions  Policy design >
R R 2
2 405 (elasticities and RR) - E 0.75
3 == | High o
z = NZ 050
3 m— Medium 2
§ 2605 2
& == Low E025
[&]
0e+00 0.00
0 10,000 20,000 30,000 40,000 0 10,000 20,000 30,000 40,000
US billion US billion
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Fig. 5. Economic cobenefits uncertainty for the year 2030 following the NZ policy design. Data are expressed in billion USD2020. (A to D) Uncertainty intervals of the
estimated economic cobenefits (2.5th to 50th to 97.5th percentile range) per economic damage function driven by the RR function, indicated with the color, and the
elasticity value, indicated with the line type. The representative regions are (A) India, (B) Latin America, (C) Europe, and (D) North America. The distribution ranges include
the various emission pathways generated by the IAM scenarios and either the economic damage functions, the RR functions with their parameters and counterfactual
value variability, or the elasticity value of the economic damage functions. (E and F) Empirical probability density distribution functions of the estimated avoided eco-
nomic damages by each (E) IAM and (F) economic damage function. The vertical dashed line represents the median. The distribution functions are set over the median
counterfactual and parameters values of the RR functions.
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method, the HCL, Dong et al., and Dechezleprétre et al. methods dem-
onstrate robustness in their estimations of the economic cobenefits, as
evidenced by stable median values and 2.5th to 97.5th percentile ranges
across various elasticities and RR functions (Fig. 5, A to D).

Figure 5E illustrates the empirical probability distribution of eco-
nomic cobenefits for each IAM, considering (i) the four economic
damage functions, (ii) the various RR functions with their parame-
ters and counterfactual value set to the median, and (iii) the differ-
ent elasticities. The distribution of cobenefits from nonovershooting
temperature pathways varies substantially across models, with dif-
ferent shapes and median values ranging from 1531 to 29,057 billion
USD2020, with the AIM CGE model showing the highest economic
cobenefit. In contrast, Fig. 5F displays the empirical distribution
functions for economic cobenefits across the different economic
damage methods, considering (i) the various integrated assessment
emission scenarios, (ii) the various RR functions with their parameters
and counterfactual value set to the median, and (iii) the varying elas-
ticities. The median estimated economic cobenefit of the NZ policy
design across these damage functions falls within a narrower range
of 6457 to 17,237 billion USD2020, with the Dong et al. method
providing the lowest estimate and the VSL method the highest. Thus,
despite the large tails in the distributions for the HCL and Dong et al.
methods, the primary source of uncertainty in estimating economic
damages is identified as the IAMs. Further details on this are provided
in section S6.

A closer look at the empirical probability density of the HCL and
Dong et al. economic damage functions reveals that their shapes are
quite similar. Both methods estimate avoided economic damage by
considering the cost of mitigation, using GDP estimates from IAMs
that incorporate climate mitigation costs. In these approaches, the
design of the climate mitigation policy—NZ or EoC—not only re-
duces mortality due to air pollution but also lowers the magnitude
of the parameters in the economic impact function. Specifically, in
the Dong et al. methodology, the reduced GDP from mitigation costs
leads to a decrease in the parameter that influences GDP growth due to
air pollution. Similarly, for the HCL method, lower GDP due to mitiga-
tion costs results in reduced income levels, which, in turn, lowers the
HCL. This method differentiates by age, incorporating remaining life
expectancy across population groups, whereas the other three methods
apply a single value per region, irrespective of age demographic dif-
ferences. On the other hand, the economic damage avoided through
the VSL and Dechezleprétre et al. methods accounts for the impact
of air pollution on GDP but does not consider the cost of mitigation
in any form. Detailed descriptions of these methods can be found in
section S4.

Last, using the exact Pearson-Klopper method (detailed in the “Tail
heaviness analysis” section) with the 90th percentile of economic cobe-
nefits under the NZ pathway as the threshold for high values, we ob-
serve that the NZ policy design results in heavier tails, indicating a
higher likelihood of substantial economic cobenefits compared to the
EoC policy design. This effect is particularly pronounced when apply-
ing the HCL or Dong et al. functions, as detailed in section S7. The lim-
ited observations necessitate this approach, but the findings underscore
the greater potential for substantial cobenefits under the NZ pathway.

DISCUSSION
The analysis presented here has explored the health and macroeco-
nomic impacts of outdoor air pollution of the latest generation of
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IPCC climate mitigation pathways. This work enlarges the results
found by Drouet et al. (19) by providing a thorough analysis of the
health and economic damages and risks of air pollutants when over-
shooting the temperature target.

While several studies have examined the effects of nonovershoot-
ing scenarios, most have overlooked the regional impacts of outdoor
air pollution and the uncertainties inherent in their estimation. In
this work, we address these gaps by incorporating a broad range of
uncertainties in estimating health and economic damages across fu-
ture scenario pathways. The large scenario ensemble used in this study
strengthens the robustness of the results, demonstrating that the ad-
vantages of nonovershooting pathways remain consistent across vari-
ous uncertainty factors such as the models, functions, or calibration
values applied in the estimation process. Our findings highlight the
importance of the scenario design in shaping effective mitigation
policies. These decarbonization strategies can not only curb global
warming but can also offer substantial cobenefits, in particular im-
proved public health and enhanced economic prosperity.

Although multimodeling studies are recurrent in the IAM litera-
ture (61, 62), to the best of our knowledge, no previous studies have
considered such a wide range of computational methods to estimate
premature mortality and economic damages. This analysis proves that
anticipating mitigation efforts through nonovershooting scenarios
benefits both the near future (2030) and mid-century (2050), which
is in line with previous research (19, 21). In terms of health cobenefits,
it reduces the expected premature mortalities and lowers the proba-
bility of high mortality outcomes. From the economic point of view,
it reduces the economic cost of air pollution and increases the prob-
ability of high economic cobenefits. The sensitivity analysis demon-
strates that health estimates related to air pollution are highly influenced
by the choice of the RR function, underscoring the need for substan-
tial advancements in this area. Notably, the key sources of uncer-
tainty within these functions vary by region, with distinct patterns
emerging between low- and middle-income regions versus higher-
and middle-income regions. In contrast, economic damage estimates
are more sensitive to the selection of the IJAM because these models
have strong assumptions about air pollution policies, technology
portfolios, and methods for calculating GDP losses. These findings
emphasize the critical importance of further research into the spa-
tially detailed income effects and distributional impacts of air pollu-
tion, particularly in developing countries.

Our results show that China and India stand to gain the most
from nonovershooting climate policies. These policies require sub-
stantial reductions in greenhouse gas emissions from these regions,
leading to substantial cobenefits in terms of air pollution reduction,
fewer premature deaths, and lower economic losses. At the same
time, these countries face important equity challenges. While they con-
tribute a large share of current global emissions, they also endure
some of the highest health burdens from air pollution (5, 63, 64).
However, their historical responsibility for climate change remains
lower than that of developed nations. Allocating mitigation efforts
based on historical responsibility could help distribute costs more
fairly while still delivering substantial air pollution benefits in these
highly affected regions. Mechanisms such as funding through article 6
of the Paris Agreement (65) could provide much-needed financial
and technological support, helping them transition to cleaner energy
sources while improving air quality. This dual benefit would not only
mitigate environmental and health disparities but also promote a
more just and equitable shift toward a low-carbon future.
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The modeling framework used in this study has some limitations
that can be addressed in future research. The considered scenario
ensemble considers more restrictive carbon budgets for overshoot-
ing pathways than for nonovershooting pathways (details in table S3),
which might lead to somewhat conservative results. Although we con-
sider various sources of uncertainty, we did not include in this analy-
sis the uncertainty and sensitivity of the air pollution model selection
and the baseline mortality estimates. Future updates to the model
will incorporate the most recent datasets as they become available.
According to literature sources (I, 66), these updates are expected to
increase premature death estimates, as recently available data indi-
cate rising baseline mortality rates in almost all regions. Similarly, the
scope of diseases considered could be expanded to include conditions
such as lower respiratory infections in adults and diabetes, potentially
leading to higher estimates of premature mortality. Furthermore, meth-
odological differences in economic loss estimation from air pollu-
tion play an important role in generating heavy tails and uncertainty,
as discussed in section S4. Last, we did not include MR-BRT (meta-
regression-Bayesian, regularized, trimmed) mortality functions used
in recent GBD studies (67) due to constraints in deriving their param-
eters. However, the existing literature (5, 68, 69) suggests that estimates
based on the adoption of MR-BRT yield substantially lower mortality
impacts than earlier [ER and GEMM functions. This discrepancy stems
from differences in the pollution sources and disease categories ac-
counted for in the calibration of these functions. Future research could
further investigate the implications of these functions and their un-
derlying assumptions for macroeconomic impact assessments.

Despite its limitations, this study offers timely and valuable in-
sights for both the scientific community and global and regional
stakeholders. While air pollution damages are not systematically
considered in most IAM-based studies, our findings demonstrate
that their inclusion can considerably influence results, which can be
sensitive to both the mitigation policy pathway and the computa-
tional assumptions used. Incorporating human health and economic
impacts into climate policy design could have influenced the out-
comes of previously published research. Air pollution, recognized
as the leading environmental health risk by multiple institutes and
global studies (70, 71), is a critical factor in this context. Our results
contribute to this literature, emphasizing the need for mitigation
policies that not only address global warming but also enhance pub-
lic health and economic well-being. To produce reliable and precise
estimates, our study highlights the necessity of refining estimation
methods to account for the unique circumstances and specific regional
conditions. Future research could also consider including both climate
and air pollution damages for a fully integrated assessment of cobe-
nefits and/or cross-benefits.

MATERIALS AND METHODS
The workflow undertaken in this study is summarized in Fig. 1.

Model scenarios

For this analysis, we consider the outputs of six IAMs from the EN-
GAGE project database (35) with enough pollutants to estimate the
concentrations of PM, 5 and Os: AIM CGE (23, 24), IMAGE (25),
MESSAGEix-GLOBIOM (26), POLES-JRC (27), REMIND-MAgPIE
(28, 29),and WITCH (30, 31). Using two climate policies—EoC, which
allowed for temperature overshoot, and NZ, which did not—these
models produced emission trajectories compatible with a wide variety

Rodés-Bachs et al., Sci. Adv. 11, eadu7590 (2025) 17 October 2025

of carbon budgets (i.e., cumulative CO, emissions). Each modeling
team followed the same protocol to ensure comparative results.
Models also implemented country-specific current regulations, such
as carbon fees, restrictions on fossil fuels, standards for renewable en-
ergy sources, etc. The COVID-19 pandemic’s impact is not accounted
for in this study. The NPi2100 is considered as the reference scenario,
which represents the continuation of the current national policies up
to 2100. For further details, see table S3.

From these models, among other outputs, we consider emissions
from eight pollutants that contribute to the formation of PM, 5 and
0s: BC, OC, NO,, SO,, CO, CHy, NH3, and VOC. All the impacts
are computed by the R10 regions’ cluster: Africa, China, Europe,
India, Latin America, the Middle East, North America, Pacific-OECD,
reforming economies, and the rest of Asia (fig. S3 and table S1). The
modeling procedure and the model scenarios are fully described by
Riahi et al. (21).

PM, s and O3 concentrations

To estimate the concentrations of PM, 5 and O3 from the emissions
provided by the ENGAGE scenario database, we use an R version of
the TM5-FASST Scenario Screening Tool [TM5-FASST] (38). Itis a
global reduced-form air quality source-receptor model from the TM5
chemical transport model that makes use of precomputed emission-
concentration transfer matrices between pollutant source regions
and receptor regions. These matrices emulate underlying meteoro-
logical and chemical atmospheric processes for a predefined set of
meteorological and emission data and have the advantage that con-
centration responses to emission changes are obtained by a simple
matrix multiplication, avoiding expensive numerical computations
(38). In particular, we obtain the PM, 5 annual average daily expo-
sure and the O3 seasonal—both 6- and 3-month—hourly maximum
concentrations, as in (38). For further details, see section S3.2 and
the model’s reference paper (38).

Premature mortality

The premature deaths are estimated from AMort = y, - PAF - pop,
where y, is the cause-specific baseline mortality, pop is the exposed
population, and PAF is the population-attributable fraction. This
last item is based on the RR value, which can be computed through
different RR functions. In this study, we consider RR functions used
in the past decade in outdoor air pollution studies, being different
IER functions [published by Burnett ef al. (50) and the GBD in 2015
(55)] and various GEMM functions [published by Burnett et al. (49)]
for PM, 5 and two log-linear functions [published by Jerrett et al.
(41) and the GBD in 2015 (55)] for Os. Each literature source pro-
vided the global calibration parameters and, in some cases, also de-
fined the uncertainty range (details in table S4).

Our calculation of premature mortality has a limitation: It does
not account for the potential reductions in mortality that the policy
itself might generate, as suggested in (72). This oversight could lead
to an underestimation of the policy’s benefits because the policy
could increase both the proportion of elderly individuals and the
total population size. For further details on the RR functions, mor-
tality baselines, age stratification, and spatial scales, see section S3.

Economic damages

This study uses four different methods to estimate the economic dam-
age of air pollution: the well-known VSL (43), two causal estimation
methods based on empirical models, suggested by Dong et al. (59)
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and Dechezleprétre et al. (58), and the HCL (60). Because the last three
methods were designed using only PM, 5 data, we only estimate the
PM, 5 avoided economic damage, i.e., the economic gain derived from
applying climate policies—NZ or EoC—relative to the reference. To
see the damage functions and further analysis, see section S4.

Policy design impact analysis

To study how the climate policy design—NZ or EoC—affects the pre-
mature deaths or the economic damage estimates, we rely on different
statistical methods. First, we use the ePDF and the eCDE The former
shows the likelihood of obtaining a given value for a variable of interest,
in our case, the estimated premature deaths or the economic damage.
By analyzing the ePDF shapes by climate policy design, we can iden-
tify which policy design predicts higher values for our variables, of-
ten using the median for simplicity. Moreover, the qualitative analysis
of the ePDF is used to discuss the tail heaviness. To complement the
ePDF analysis, we use the eCDEF. The eCDF is a useful tool for analyz-
ing differences between the distributions of the NZ and EoC policy
design outcomes. For instance, if the eCDF of premature mortality
under the NZ policy design is consistently to the left of that under the
EoC policy design, then it indicates that, for the same probability, the
NZ policy design consistently predicts lower premature mortality. Fur-
thermore, considering the eCDF function by elasticity value or confi-
dence interval (CI) percentile of the RR functions’ parameters allows
us to analyze the impact of these choices on the final output. This can be
done by observing the relative position of the eCDF functions and their
different slopes. Detailed figures for all regions, years, and scenario
groups can be found in sections S8 to S10 and S12. Second, we consid-
ered the Kolmogorov-Smirnov two-sample test to quantify the dif-
ference between climate policies. As further detailed in section S5, if
the P value exceeds 0.05, we accept the null hypothesis, indicating that
both empirical distribution functions (with and without overshooting)
originate from the same data and are statistically indistinguishable.

Uncertainty analysis

Several sources of uncertainty are taken into account: the uncertainty
associated with emissions, derived by the range of IAMs; the uncer-
tainty associated with the premature mortality estimates, derived by
the RR functions and their parameters and counterfactual values; and
the uncertainty associated with the economic damages of air pollution,
derived by the economic methods and their elasticity values. Figure S5
lists these sources of uncertainty and provides a representation of the
uncertainty propagation. Moreover, in section S6, we detail the uncer-
tainty contribution of each source and the uncertainty propagation.

Tail heaviness analysis

Statistical tests are conducted to assess the likelihood of heavy tails in
the ePDFs of premature mortality and avoided economic damages.
This type of analysis is relevant for understanding the policy risks
associated with extreme undesirable outcomes (e.g., very high mor-
tality). In section S7, the method and assumptions for the tail heavi-
ness analysis are described in great depth.
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Figs.S1to S15
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