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Beyond the limit: The estimated air pollution damages 
of overshooting the temperature target
Clàudia Rodés-Bachs1,2*, Laurent Drouet2,3, Peter Rafaj4, Massimo Tavoni2,3,5, Lara Aleluia Reis2,3

Exposure to outdoor air pollution results in millions of premature deaths and illnesses that are associated with 
substantial economic loss. According to the Global Burden of Disease, outdoor air pollution was responsible for 
4.7 million deaths in 2021. Climate change mitigation policies could provide cobenefits by reducing air pollution. 
The Intergovernmental Panel on Climate Change AR6 report explores scenarios using an updated carbon budget 
approach—the net-zero pathways—designed to avoid temporary overshoot of the 1.5°C temperature limit. We 
assess whether net-zero pathways consistently improve air pollution outcomes using a global source-receptor air 
pollution model to estimate concentrations, health impacts, and economic damages. To analyze key uncertainties, 
we apply multiple relative risk functions and economic damage models. Our findings show that stringent climate 
policies, avoiding overshoot and keeping below 2°C, offer substantial health and economic cobenefits, particu-
larly for China and India, and avoid 207,000 premature deaths and 2269 billion USD2020 in damages by 2030.

INTRODUCTION
Outdoor air pollution is the leading environmental health risk fac-
tor, responsible for more than 4.7 million premature deaths globally 
in 2021 (1, 2). Beyond its mortality impact, outdoor air pollution is 
strongly associated with a broad spectrum of serious illnesses and 
economic losses (3–7). Many of these adverse outcomes can be miti-
gated through climate change policies because the reduction of 
greenhouse gas emissions not only addresses global warming but 
can also lower concentrations of harmful air pollutants, such as fine 
particulate matter (PM2.5) and ozone (O3). Therefore, climate miti-
gation policies have the potential to yield substantial cobenefits for 
air pollution reduction, resulting in substantial public health and 
economic advantages (8–14).

The latest generation of scenarios from the Intergovernmental 
Panel on Climate Change (IPCC) (AR6) (15) introduced an innova-
tive approach to climate change mitigation: the global net-zero (NZ) 
pathways. These pathways, developed using integrated assessment 
models (IAMs), are primarily designed for evaluating mitigation 
strategies. Traditionally, these scenarios focus on the global cost-
effectiveness of achieving a specific temperature target by the end 
of the century (16). However, this method can lead to overshooting 
trajectories (17), where global temperatures temporarily exceed the 
set limits before stabilizing at the target level. Addressing this over-
shoot requires a phase of net-negative carbon emissions in the latter 
half of the century to compensate for the initial exceedance (18). This 
approach not only heightens climate-related risks (19) but also 
depends heavily on the large-scale deployment of carbon dioxide 
removal (CDR) technologies (20, 21).

Often, the IAMs used to project future climate scenarios do not 
explicitly account for air pollution. Thus, additional methods are re-
quired to estimate the effects of changes in levels of outdoor air pol-
lution. This estimation involves a complex multistep process filled 
with various sources of uncertainty that can affect the projected 

impacts. When the air pollution impacts are reduced because of cli-
mate mitigation policies, they are referred to as cobenefits.

In this study, we investigate whether the climate policies aimed at 
avoiding temperature overshoot can consistently deliver robust air 
pollution cobenefits despite the uncertainties inherent in the esti-
mation process. By systematically addressing these uncertainties, we 
aim to enhance the reliability of cobenefit projections and support 
the development of more effective and resilient climate policies.

Study design
We use a wide range of IAM emission scenario pathways, present in 
the AR6 database (22), and focus on 10 macroregions frequently used 
by the IPCC (see fig. S3 and table S1). The scenarios are produced by 
six IAMs: AIM CGE (23, 24), IMAGE (25), MESSAGEix-GLOBIOM 
(26), POLES-JRC (27), REMIND-MAgPIE (28, 29), and WITCH 
(30, 31). These models are well established in evaluating global cli-
mate change mitigation pathways (16, 21, 32, 33) and represent a 
broad spectrum of modeling approaches. Each model provides de-
tailed representations of power and land-use systems and offers 
various decarbonization options. When used together, these models 
generate a comprehensive ensemble of pathways that capture a wide 
range of potential technological developments. This ensemble allows 
us to assess the robustness of the results and identify scenarios with 
significant “fat tail” risks, where the probability of extreme impacts 
is substantially higher than in a normal distribution (19, 34).

We focus on the scenarios from the ENGAGE (Exploring 
National and Global Actions to reduce Greenhouse gas Emissions) 
project. Each model followed the same protocol to ensure compara-
bility of results, as detailed in Methods and Riahi et al. (21). The 
models were designed to fit a carbon budget ranging from 200 to 
3000 billion tonnes (Gt) of CO2, which represents the cumulative 
CO2 emissions from 2018 to 2100 aligned with specific long-term 
temperature targets for the two scenario designs. The end-of-century 
(EoC) pathway uses the carbon budget without restrictions, often 
resulting in delayed mitigation efforts and reliance on CDR tech-
nologies in the latter half of the century. This can lead to temporary 
temperature overshoot, which is later offset by net-negative emis-
sions. In contrast, the NZ pathway uses the remaining carbon budget 
until CO2 emissions are reduced to NZ. Once this target is achieved, 
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CO2 emissions are maintained at zero, thus avoiding any overshoot 
and managing to prevent substantial temperature increases. The 
baseline scenario represents the continuation of current national 
policies up to 2100. The effects of the policy impacts are considered 
to occur in the same year as the reduction in emissions, aligning 
with the immediate nature of the policy interventions. Detailed sce-
nario specifications are provided in Methods and Riahi et al. (21).

Our goal is to estimate the health and economic benefits of air 
pollution reduction in NZ pathways, accounting for the main sources 
of uncertainty. To achieve this, we identify these uncertainties through-
out the multistep estimation process for air pollution cobenefits, il-
lustrated in Fig. 1. This process starts with data acquisition from 
the ENGAGE scenario database (35), which provides air pollution 
emission data and other outputs from the IAM scenarios referenced 
above. Uncertainty stems from the choice of IAMs (36, 37), as they 
each result in distinct pathways for air pollution emissions. Then, we 
use an R version of the TM5-FASST Scenario Screening Tool (TM5-
FASST) (38) to estimate the concentrations of PM2.5 and O3 based 
on the emission data. These concentration estimates are crucial for 
assessing the health impacts. To ensure accuracy and minimize ad-
ditional assumptions, we use the number of premature deaths asso-
ciated with air pollution exposure—a direct and widely accepted 
metric for health impacts (2, 10, 13, 39–43)—as our primary health-
related measure. This metric relies on the relative risk (RR) value, 
commonly used to quantify the risk increase attributable to changes 
in pollutant concentrations. We consider uncertainties related to the 
choice and calibration of the RR function (13, 44). Last, we estimate 
the economic damages resulting from the health impacts of air pollu-
tion. There are two main approaches to defining the economic dam-
age function: one based on the number of premature deaths and the 
other on the concentration. Each approach introduces distinct un-
certainties, which we account for in the final output (45). In addition, 
the parameters of the economic damage functions are derived from 
empirical studies that focus on a single macroregion and do not spe-
cifically apply to all global regions. To extrapolate these to other 
areas worldwide, we consider three different regional extrapolation 
parameters—low (0.8), medium (1), and high (1.2) income elasticities 
(details available in section S4).

To address the complexity and inherent uncertainty in model se-
lection and function parameterization (46), we reviewed a broad ar-
ray of functions and calibration values from the literature, as shown 
in Table 1. Although we are aware that some of these functions are 
more state of the art than others, all have been widely used at differ-
ent points in time, and their inclusion allows us to better understand 

the evolution of the air pollution impact literature. In this study, we 
assessed the individual cobenefits associated with each uncertainty 
source, but for clearer presentation, we grouped the results into ag-
gregated categories. Moreover, we organized the modeled carbon 
budgets into three distinct categories, detailed in table S2, recogniz-
ing the critical role of temperature in assessing climate impacts.

This article focuses on scenarios with carbon budgets below 
1000 Gt of CO2, which correspond to a global mean temperature 
increase of well below 2°C, unless otherwise noted. Figures corre-
sponding to other carbon budget clusters are available in the Sup-
plementary Materials. The reported values are provided as a range 
from minimum to maximum, covering all scenarios. This range in-
cludes variations in RR and economic damage functions, along with 
their parameters, unless otherwise specified.

To qualitatively assess the impact of pathway designs, such as NZ 
and EoC, under uncertainty, we use empirical probability distribu-
tions and cumulative probability functions. These statistical tools 
are effective in visualizing data distributions and estimating the like-
lihood of outcomes, which assists in understanding variability and 
assessing risks within the pathway scenarios. Moreover, we apply the 
nonparametric two-sided Kolmogorov-Smirnov test (47), which 
evaluates the likelihood that two sample sets originate from the 
same (but unknown) distribution. As further detailed in the “Policy 
design impact analysis” section, P values below 0.05 indicate that the 
two pathway designs have statistically different empirical probability 
distributions, demonstrating that the pathway choice substantially 
affects the output (i.e., emissions, concentrations, premature deaths, 
or economic impacts). In addition, we examine the probability of 
exceeding high mortality rates or economic cobenefits across cli-
mate pathways, highlighting low-probability but high-consequence 
scenarios. Last, we examine how outputs vary when all key parame-
ters, counterfactual values, elasticity assumptions, and model choices 
are held constant, except for one.

RESULTS
Health cobenefits
In this study, we estimate premature mortality considering PM2.5 adult-
related deaths from ischemic heart disease, chronic obstructive pul-
monary disease, lung cancer, and stroke, also called cerebrovascular 
disease, that comprehends ischemic stroke and hemorrhagic stroke 
(3, 42, 48); PM2.5 children-related deaths from acute lower respiratory 
illness (42, 48); and O3 adult-related deaths from chronic obstructive 
pulmonary disease (48). All these impact metrics have mathematical 

Fig. 1. Schematic workflow of the methodology. 
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forms that are based on the estimation of the RR. The formulation of 
the RR itself can take on different structures and includes several 
parameters and a counterfactual value, all of which contributes to 
the output uncertainty (49–54). In this study, we use parameters and 
counterfactual values from the literature, as detailed in table S4.

To see whether the two types of mitigation routes—EoC and NZ—
are statistically different in terms of air pollution outcomes, we use the 
Kolmogorov-Smirnov two-sided statistical test (47) (fig. S4C). In line 
with previous studies (19, 21), it shows that it is for more stringent 
scenarios (carbon budget < 1000 Gt of CO2) where the mitigation 
route choice is more decisive. It is especially relevant for O3 prema-
ture deaths, mainly driven by NOx emissions, which are very re-
sponsive to the climate policy design (fig. S4A). For high carbon 
budgets, the mitigation design does not play any role. This can be 
seen in figs. S11 and S12, where the estimated premature deaths are 
not statistically different between the mitigation policy designs. This 
is explained by the fact that under mild climate policies, the energy 
system is left with more technology options as the global carbon tax 
is less extreme. This gives more room to fulfill carbon budgets and 
allows for the deployment of advanced technological alternatives 
later in the century. Similar results were found for climate risks 
(19). Here, we focus on 2030 not only for its policy relevance but 
also because it represents the point of greatest divergence between 
NZ and EoC and thus a higher impact (see section S5 for further de-
tails and an analysis of the year 2050). This happens because avoid-
ing overshoot of temperature anticipates climate mitigation, thereby 
yielding greater air pollution benefits in the early years.

Analyzing the regional distribution of health cobenefits from re-
duced temperature overshoot, as shown in Fig. 2A, we find that 
China and India experience the greatest reduction in air pollution–
related premature mortality following the NZ pathway rather than 
the EoC pathway, the estimated reductions in premature deaths by 
2030 are 84,000 (ranging from 40 to 144,000) in China and 73,000 
(ranging from 43,000 to 111,000) in India, as depicted in Fig. 2A. 
This finding emphasizes two crucial points: (i) The effectiveness of 
global climate policies heavily depends on these two major develop-
ing economies to decarbonize; (ii) these regions, potentially through 
funding provided by the sixth article of the Paris Agreement, have 

the opportunity to reduce their carbon emissions and simultaneously 
reap health benefits from improved air quality.

As shown in Fig. 2B, the estimated premature deaths vary de-
pending on the chosen RR function, its parameters, and the coun-
terfactual values used for calibration. Nevertheless, the NZ pathway 
consistently dominates the EoC, shifting the empirical cumulative 
distribution function (eCDF) estimates to the left in both 2030 and 
2050 (Fig. 2C and figs. S11 and S12), i.e., delivering consistently 
less premature mortality. This pattern holds across all normative 
assumptions, with the NZ pathway reliably delivering lower mortal-
ity estimates (further details in section S10).

When evaluating the main contributors to uncertainty in prema-
ture death estimates from air pollution, our analysis, as illustrated 
in Fig. 3 (A and B), examined the contributions of each factor. We 
identified two distinct regional groups, each affected differently by 
these sources of uncertainty. The first group consists of Europe, Latin 
America, North America, Pacific-OECD, and reforming economies 
(regions’ details in table S1), which are generally high- to medium-
income countries. In these regions, the primary source of uncer-
tainty is sensitivity to parameter choices, as illustrated in Fig. 3A. 
This is evident from the greater difference between medians (repre-
sented by bullets) of the same color compared to those with the same 
line type, indicating that parameter selection plays a substantial role 
in driving uncertainty. The second group includes Africa, China, 
India, the Middle East, and the rest of Asia (regions’ details in 
table S1), which are primarily low- to medium-income countries 
with larger populations. Here, the primary source of uncertainty is 
the counterfactual value, which determines the threshold at which 
air pollutants are considered harmful. This is shown in Fig. 3B, where 
the difference between medians with the same line type is more pro-
nounced than between medians with the same color. This indicates 
that variations in the counterfactual value contribute more to the 
overall uncertainty, particularly in densely populated regions (fur-
ther details in section S11).

Another substantial source of uncertainty arises from the emis-
sion pathways estimated by the IAMs, as shown in Fig. 3C. This figure 
displays the empirical probability density distribution function for 
each IAM considering the various RR functions with their parameters 

Table 1. Details of the sources of uncertainty, options, and calibration settings. 

Uncertainty source Sensitivity

 Air pollution emission’s pathways IAMs: AIM CGE, IMAGE, MESSAGEix-GLOBIOM, POLES-JRC, REMIND-MAgPIE, 
WITCH

Scenarios

  Mitigation pathway: EoC (overshooting) or NZ (nonovershooting)

 C arbon budget: from 200 to 3000 Gt of CO2

  Short-term policy: current national policy or nationally determined contri-
bution policy

Health impact function RR function: GEMM, IER, log-linear

Parameters of the RR function: described in Table S4

Counterfactual value of the RR function: described in Table S4

Damage impact function On the basis of pollutant concentration: Dechezleprêtre et al. (58) and Dong 
et al. (59)

On the basis of premature mortality: VSL (43) and HCL (60)

Elasticity value: high (1.2), medium (1), low (0.8)
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and counterfactual values set to the median. The distribution of avoided 
deaths under nonovershooting temperature policies shows consistent 
shapes and median values, ranging from 3.13 to 3.77 million, across the 
different IAMs. In contrast, Fig. 3D highlights the empirical prob-
ability density functions (ePDFs) for the various RR functions applied 
to the emission pathways generated by the IAMs. Here, the estimated 
medians vary substantially across the RR functions, ranging from 
2.84 to 5.05 million, and the shapes of the ePDFs differ as well. This 
indicates that when estimating the health impacts of air pollution, 
the choice and calibration of the RR function are more critical than 
the choice of the IAM. Further details on the sources of uncertainty 
and how they propagate are provided in section S6.

Figure 3D also captures the progression of RR functions throughout 
time. The integrated exposure-response (IER) function [Burnett et al. 
(50) and GBD in 2015 (55)] exhibits low tails and estimates. How-
ever, when using the more recent RR functions [Burnett et al. (49)] 
following the Global Exposure Mortality Method (GEMM), the 
estimates and tails increase sharply. This helps to interpret the dif-
ference in the outcomes of some health impact studies performed 
during those years. All the functions and their parameters for the 
different cohorts (e.g., low, medium, high, with, and without) are 
detailed in section S3 and summarized in table S4.

Last, we investigated the probability of exceeding “high” mortality 
rates and conducted empirical tests to determine whether these prob-
abilities differ between the NZ and EoC pathways, following the ap-
proach outlined in (19). Given the lack of observations in our case, 
we defined the high value as the 90th percentile of premature mor-
talities under the NZ pathway over the century. This threshold helps 
to understand how the exceeding probability evolves over time. Our 

findings indicate that NZ policies considerably reduce the likelihood 
of extremely high premature death estimates across all regions, mak-
ing these outcomes less probable (extended details in section S7). 
However, an exception exists with the IER function, where both 
EoC and NZ policies yield similar results. This is due to a constant 
counterfactual factor in the IER function, which makes the results 
less sensitive to concentration changes compared to the other func-
tions considered in this study. Further details on the RR functions 
are provided in the “Premature mortality” section and section S3.

Economic cobenefits
Previous literature has extensively analyzed the macroeconomic long-
term impacts of climate change (56, 57). The projections are very sen-
sitive to the considered methods and assumptions, and there are clear 
methodological limitations to quantify climate-related economic 
damages. Thus, the economic evaluation should only be used to en-
hance the health impact study, as in (19). Here, we considered four 
different methods to estimate the economic damages of air pollu-
tion. Two of these methods correlate gross domestic product (GDP) 
with air pollution concentrations, proposed by Dechezleprêtre et al. 
(58) and Dong et al. (59). The other two methods rely on premature 
mortality data: the value of statistical life (VSL) (43) and the human 
capital loss (HCL) (60). Consequently, these latter two methods—
the VSL and the HCL—are susceptible to the uncertainties inherent 
in estimating premature deaths (as detailed in the “Economic dam-
ages” section and section S4). None of these functions account for 
reduced pollution control costs, meaning that they do not explicitly 
include policy costs in their equation. However, the costs associated 
with reduced overshoot are implicitly captured in the IAMs’ GDP 

Fig. 2. Global health cobenefits of reduced overshoot for the year 2030. The distribution ranges include the various RR functions, their parameters and counterfac-
tual value ranges, and the various emission pathways generated by the IAM scenarios. The green and blue colors indicate the policy design (EoC or NZ). The line type 
distinguishes the confidence interval (CI) percentile generated by combining the RR functions with their different parameters and counterfactual values (ZCF). (A) Esti-
mated 2.5th, 50th, and 97.5th percentiles of avoided premature deaths per 100,000 population, normalized when following the NZ mitigation pathway instead of the EoC 
pathway. (B) Empirical probability density functions (ePDFs) of the estimated premature deaths expressed in millions of people. The vertical dashed line indicates the 
median. (C) Empirical cumulative probability functions of the estimated premature deaths expressed in millions of people.
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projections. As a result, the HCL and Dong et al. (59) methods indi-
rectly account for mitigation costs because their calculations explic-
itly include GDP or GDP growth in their formulas.

Applying the same analytic methods as for the health impacts, 
we find that the NZ policy design delivers consistently more coben-
efits in all regions relative to the EoC design, not only for more strin-
gent carbon budgets but also for medium carbon budgets, because 
the P values of the Kolmogorov-Smirnov test are under the signifi-
cance level (fig. S4D). China experiences the major economic cobe-
nefits, avoiding 922 billion USD2020 (range 849 to 1077 billion) in 
2030 and 383 billion USD2020 (range 366 to 766 billion) in 2050, 
when following the NZ mitigation pathway instead of the EoC path-
way (Fig. 4A and fig. S14). All regions, except Latin America, benefit 
from the NZ policy design despite the uncertainty range in the elas-
ticity values. The elasticity value has only a small impact (globally) 
on the total avoided economic damage, and it does not affect the 
heaviness of the tails (Fig. 4, B and C). The negative impact that 
Latin America experiences happens in 2050 when using the eco-
nomic damage function of Dechezleprêtre et al. (58) with medium 
elasticity (fig. S14). This occurs because the NZ policy design is 
more costly than that of the EoC, resulting in a lower per capita in-
come in NZ. This results in fewer health benefits under the NZ path-
way compared to the EoC pathway, as the impact of air pollution is 

estimated by extrapolating from this lower per capita income. It is 
also worth noticing that Latin America has one of the lowest air pol-
lution reduction due to decarbonization (Fig. 4A).

The VSL method appears to be considerably more sensitive to 
variations in the RR function compared to the HCL. This is evi-
denced by the stability of the median and the 2.5th to 97.5th percentile 
range across different concentration-response functions, as shown 
in Fig. 5 (A to D). This occurs because the HCL method considers 
the years of life lost, while the VSL approach assigns a single value to 
the loss of life, regardless of when it occurs. Moreover, the VSL 
method is substantially influenced by regional elasticity assump-
tions, which causes a wide variation in the uncertainty range based 
on the chosen elasticity values, as depicted in Fig. 5 (A to D). This 
variability underscores how heavily the economic impact assessments 
of air pollution reduction policies depend on the relationship be-
tween air pollution and per capita income, as modeled by the VSL.

The response to VSL elasticity varies by region. Most regions 
show a direct correlation with the elasticity values, i.e., increasing 
elasticity values leads to increasing cobenefits. The exceptions are 
Africa, India, reference economies, and the rest of Asia. In these re-
gions, the response is inverse because their per capita incomes in 
future years are lower than the OECD calibration value used for VSL 
calculations (as detailed in sections S4 and S13). Apart from the VSL 
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Fig. 3. Health cobenefits uncertainty for the year 2030 when following the NZ policy design. Data are expressed in millions of people. (A and B) Uncertainty interval 
of the estimated premature deaths (2.5th to 50th to 97.5th percentile range) driven by the RR functions’ parameters, indicated with the color, and the RR functions’ coun-
terfactual value, indicated with the line type. The representative regions are (A) North America and (B) China. The distribution ranges include the various RR functions, the 
multiple emission pathways generated by the IAM scenarios, and either the parameters or the counterfactual value range. (C and D) Empirical probability density distribu-
tion functions of the estimated premature deaths by (C) IAM and (D) RR function. The vertical dashed line represents the median. The distribution functions are set over 
the median counterfactual and parameters values of the RR functions.
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Fig. 4. Global economic cobenefits of reduced overshoot for the year 2030. Data are expressed in billion USD2020. The distributional ranges include the various 
economic damage functions with their various elasticity values, the various RR functions with their parameters and counterfactual value ranges, and the various emission 
pathways generated by the IAM scenarios. The green and blue colors indicate the policy design (EoC or NZ). The line type distinguishes the elasticity value choice (low, 
medium, and high) of the economic damage functions. (A) Estimated 2.5th, 50th, and 97.5th percentiles of economic cobenefits when following the NZ mitigation path-
way instead of the EoC pathway. (B) ePDFs of the estimated economic cobenefits. The vertical lines represent the median. (C) Empirical cumulative probability functions 
of the estimated economic cobenefits.
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Fig. 5. Economic cobenefits uncertainty for the year 2030 following the NZ policy design. Data are expressed in billion USD2020. (A to D) Uncertainty intervals of the 
estimated economic cobenefits (2.5th to 50th to 97.5th percentile range) per economic damage function driven by the RR function, indicated with the color, and the 
elasticity value, indicated with the line type. The representative regions are (A) India, (B) Latin America, (C) Europe, and (D) North America. The distribution ranges include 
the various emission pathways generated by the IAM scenarios and either the economic damage functions, the RR functions with their parameters and counterfactual 
value variability, or the elasticity value of the economic damage functions. (E and F) Empirical probability density distribution functions of the estimated avoided eco-
nomic damages by each (E) IAM and (F) economic damage function. The vertical dashed line represents the median. The distribution functions are set over the median 
counterfactual and parameters values of the RR functions.
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method, the HCL, Dong et al., and Dechezleprêtre et al. methods dem-
onstrate robustness in their estimations of the economic cobenefits, as 
evidenced by stable median values and 2.5th to 97.5th percentile ranges 
across various elasticities and RR functions (Fig. 5, A to D).

Figure 5E illustrates the empirical probability distribution of eco-
nomic cobenefits for each IAM, considering (i) the four economic 
damage functions, (ii) the various RR functions with their parame-
ters and counterfactual value set to the median, and (iii) the differ-
ent elasticities. The distribution of cobenefits from nonovershooting 
temperature pathways varies substantially across models, with dif-
ferent shapes and median values ranging from 1531 to 29,057 billion 
USD2020, with the AIM CGE model showing the highest economic 
cobenefit. In contrast, Fig. 5F displays the empirical distribution 
functions for economic cobenefits across the different economic 
damage methods, considering (i) the various integrated assessment 
emission scenarios, (ii) the various RR functions with their parameters 
and counterfactual value set to the median, and (iii) the varying elas-
ticities. The median estimated economic cobenefit of the NZ policy 
design across these damage functions falls within a narrower range 
of 6457 to 17,237 billion USD2020, with the Dong et al. method 
providing the lowest estimate and the VSL method the highest. Thus, 
despite the large tails in the distributions for the HCL and Dong et al. 
methods, the primary source of uncertainty in estimating economic 
damages is identified as the IAMs. Further details on this are provided 
in section S6.

A closer look at the empirical probability density of the HCL and 
Dong et al. economic damage functions reveals that their shapes are 
quite similar. Both methods estimate avoided economic damage by 
considering the cost of mitigation, using GDP estimates from IAMs 
that incorporate climate mitigation costs. In these approaches, the 
design of the climate mitigation policy—NZ or EoC—not only re-
duces mortality due to air pollution but also lowers the magnitude 
of the parameters in the economic impact function. Specifically, in 
the Dong et al. methodology, the reduced GDP from mitigation costs 
leads to a decrease in the parameter that influences GDP growth due to 
air pollution. Similarly, for the HCL method, lower GDP due to mitiga-
tion costs results in reduced income levels, which, in turn, lowers the 
HCL. This method differentiates by age, incorporating remaining life 
expectancy across population groups, whereas the other three methods 
apply a single value per region, irrespective of age demographic dif-
ferences. On the other hand, the economic damage avoided through 
the VSL and Dechezleprêtre et al. methods accounts for the impact 
of air pollution on GDP but does not consider the cost of mitigation 
in any form. Detailed descriptions of these methods can be found in 
section S4.

Last, using the exact Pearson-Klopper method (detailed in the “Tail 
heaviness analysis” section) with the 90th percentile of economic cobe-
nefits under the NZ pathway as the threshold for high values, we ob-
serve that the NZ policy design results in heavier tails, indicating a 
higher likelihood of substantial economic cobenefits compared to the 
EoC policy design. This effect is particularly pronounced when apply-
ing the HCL or Dong et al. functions, as detailed in section S7. The lim-
ited observations necessitate this approach, but the findings underscore 
the greater potential for substantial cobenefits under the NZ pathway.

DISCUSSION
The analysis presented here has explored the health and macroeco-
nomic impacts of outdoor air pollution of the latest generation of 

IPCC climate mitigation pathways. This work enlarges the results 
found by Drouet et al. (19) by providing a thorough analysis of the 
health and economic damages and risks of air pollutants when over-
shooting the temperature target.

While several studies have examined the effects of nonovershoot-
ing scenarios, most have overlooked the regional impacts of outdoor 
air pollution and the uncertainties inherent in their estimation. In 
this work, we address these gaps by incorporating a broad range of 
uncertainties in estimating health and economic damages across fu-
ture scenario pathways. The large scenario ensemble used in this study 
strengthens the robustness of the results, demonstrating that the ad-
vantages of nonovershooting pathways remain consistent across vari-
ous uncertainty factors such as the models, functions, or calibration 
values applied in the estimation process. Our findings highlight the 
importance of the scenario design in shaping effective mitigation 
policies. These decarbonization strategies can not only curb global 
warming but can also offer substantial cobenefits, in particular im-
proved public health and enhanced economic prosperity.

Although multimodeling studies are recurrent in the IAM litera-
ture (61, 62), to the best of our knowledge, no previous studies have 
considered such a wide range of computational methods to estimate 
premature mortality and economic damages. This analysis proves that 
anticipating mitigation efforts through nonovershooting scenarios 
benefits both the near future (2030) and mid-century (2050), which 
is in line with previous research (19, 21). In terms of health cobenefits, 
it reduces the expected premature mortalities and lowers the proba-
bility of high mortality outcomes. From the economic point of view, 
it reduces the economic cost of air pollution and increases the prob-
ability of high economic cobenefits. The sensitivity analysis demon-
strates that health estimates related to air pollution are highly influenced 
by the choice of the RR function, underscoring the need for substan-
tial advancements in this area. Notably, the key sources of uncer-
tainty within these functions vary by region, with distinct patterns 
emerging between low- and middle-income regions versus higher- 
and middle-income regions. In contrast, economic damage estimates 
are more sensitive to the selection of the IAM because these models 
have strong assumptions about air pollution policies, technology 
portfolios, and methods for calculating GDP losses. These findings 
emphasize the critical importance of further research into the spa-
tially detailed income effects and distributional impacts of air pollu-
tion, particularly in developing countries.

Our results show that China and India stand to gain the most 
from nonovershooting climate policies. These policies require sub-
stantial reductions in greenhouse gas emissions from these regions, 
leading to substantial cobenefits in terms of air pollution reduction, 
fewer premature deaths, and lower economic losses. At the same 
time, these countries face important equity challenges. While they con-
tribute a large share of current global emissions, they also endure 
some of the highest health burdens from air pollution (5, 63, 64). 
However, their historical responsibility for climate change remains 
lower than that of developed nations. Allocating mitigation efforts 
based on historical responsibility could help distribute costs more 
fairly while still delivering substantial air pollution benefits in these 
highly affected regions. Mechanisms such as funding through article 6 
of the Paris Agreement (65) could provide much-needed financial 
and technological support, helping them transition to cleaner energy 
sources while improving air quality. This dual benefit would not only 
mitigate environmental and health disparities but also promote a 
more just and equitable shift toward a low-carbon future.
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The modeling framework used in this study has some limitations 
that can be addressed in future research. The considered scenario 
ensemble considers more restrictive carbon budgets for overshoot-
ing pathways than for nonovershooting pathways (details in table S3), 
which might lead to somewhat conservative results. Although we con-
sider various sources of uncertainty, we did not include in this analy-
sis the uncertainty and sensitivity of the air pollution model selection 
and the baseline mortality estimates. Future updates to the model 
will incorporate the most recent datasets as they become available. 
According to literature sources (1, 66), these updates are expected to 
increase premature death estimates, as recently available data indi-
cate rising baseline mortality rates in almost all regions. Similarly, the 
scope of diseases considered could be expanded to include conditions 
such as lower respiratory infections in adults and diabetes, potentially 
leading to higher estimates of premature mortality. Furthermore, meth-
odological differences in economic loss estimation from air pollu-
tion play an important role in generating heavy tails and uncertainty, 
as discussed in section S4. Last, we did not include MR-BRT (meta- 
regression–Bayesian, regularized, trimmed) mortality functions used 
in recent GBD studies (67) due to constraints in deriving their param-
eters. However, the existing literature (5, 68, 69) suggests that estimates 
based on the adoption of MR-BRT yield substantially lower mortality 
impacts than earlier IER and GEMM functions. This discrepancy stems 
from differences in the pollution sources and disease categories ac-
counted for in the calibration of these functions. Future research could 
further investigate the implications of these functions and their un-
derlying assumptions for macroeconomic impact assessments.

Despite its limitations, this study offers timely and valuable in-
sights for both the scientific community and global and regional 
stakeholders. While air pollution damages are not systematically 
considered in most IAM-based studies, our findings demonstrate 
that their inclusion can considerably influence results, which can be 
sensitive to both the mitigation policy pathway and the computa-
tional assumptions used. Incorporating human health and economic 
impacts into climate policy design could have influenced the out-
comes of previously published research. Air pollution, recognized 
as the leading environmental health risk by multiple institutes and 
global studies (70, 71), is a critical factor in this context. Our results 
contribute to this literature, emphasizing the need for mitigation 
policies that not only address global warming but also enhance pub-
lic health and economic well-being. To produce reliable and precise 
estimates, our study highlights the necessity of refining estimation 
methods to account for the unique circumstances and specific regional 
conditions. Future research could also consider including both climate 
and air pollution damages for a fully integrated assessment of cobe-
nefits and/or cross-benefits.

MATERIALS AND METHODS
The workflow undertaken in this study is summarized in Fig. 1.

Model scenarios
For this analysis, we consider the outputs of six IAMs from the EN-
GAGE project database (35) with enough pollutants to estimate the 
concentrations of PM2.5 and O3: AIM CGE (23, 24), IMAGE (25), 
MESSAGEix-GLOBIOM (26), POLES-JRC (27), REMIND-MAgPIE 
(28, 29), and WITCH (30, 31). Using two climate policies—EoC, which 
allowed for temperature overshoot, and NZ, which did not—these 
models produced emission trajectories compatible with a wide variety 

of carbon budgets (i.e., cumulative CO2 emissions). Each modeling 
team followed the same protocol to ensure comparative results. 
Models also implemented country-specific current regulations, such 
as carbon fees, restrictions on fossil fuels, standards for renewable en-
ergy sources, etc. The COVID-19 pandemic’s impact is not accounted 
for in this study. The NPi2100 is considered as the reference scenario, 
which represents the continuation of the current national policies up 
to 2100. For further details, see table S3.

From these models, among other outputs, we consider emissions 
from eight pollutants that contribute to the formation of PM2.5 and 
O3: BC, OC, NOx, SO2, CO, CH4, NH3, and VOC. All the impacts 
are computed by the R10 regions’ cluster: Africa, China, Europe, 
India, Latin America, the Middle East, North America, Pacific-OECD, 
reforming economies, and the rest of Asia (fig. S3 and table S1). The 
modeling procedure and the model scenarios are fully described by 
Riahi et al. (21).

PM2.5 and O3 concentrations
To estimate the concentrations of PM2.5 and O3 from the emissions 
provided by the ENGAGE scenario database, we use an R version of 
the TM5-FASST Scenario Screening Tool [TM5-FASST] (38). It is a 
global reduced-form air quality source-receptor model from the TM5 
chemical transport model that makes use of precomputed emission-
concentration transfer matrices between pollutant source regions 
and receptor regions. These matrices emulate underlying meteoro-
logical and chemical atmospheric processes for a predefined set of 
meteorological and emission data and have the advantage that con-
centration responses to emission changes are obtained by a simple 
matrix multiplication, avoiding expensive numerical computations 
(38). In particular, we obtain the PM2.5 annual average daily expo-
sure and the O3 seasonal—both 6- and 3-month—hourly maximum 
concentrations, as in (38). For further details, see section S3.2 and 
the model’s reference paper (38).

Premature mortality
The premature deaths are estimated from ΔMort = y0 ⋅ PAF ⋅ pop , 
where y0 is the cause-specific baseline mortality, pop is the exposed 
population, and PAF is the population-attributable fraction. This 
last item is based on the RR value, which can be computed through 
different RR functions. In this study, we consider RR functions used 
in the past decade in outdoor air pollution studies, being different 
IER functions [published by Burnett et al. (50) and the GBD in 2015 
(55)] and various GEMM functions [published by Burnett et al. (49)] 
for PM2.5 and two log-linear functions [published by Jerrett et al. 
(41) and the GBD in 2015 (55)] for O3. Each literature source pro-
vided the global calibration parameters and, in some cases, also de-
fined the uncertainty range (details in table S4).

Our calculation of premature mortality has a limitation: It does 
not account for the potential reductions in mortality that the policy 
itself might generate, as suggested in (72). This oversight could lead 
to an underestimation of the policy’s benefits because the policy 
could increase both the proportion of elderly individuals and the 
total population size. For further details on the RR functions, mor-
tality baselines, age stratification, and spatial scales, see section S3.

Economic damages
This study uses four different methods to estimate the economic dam-
age of air pollution: the well-known VSL (43), two causal estimation 
methods based on empirical models, suggested by Dong et al. (59) 
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and Dechezleprêtre et al. (58), and the HCL (60). Because the last three 
methods were designed using only PM2.5 data, we only estimate the 
PM2.5 avoided economic damage, i.e., the economic gain derived from 
applying climate policies—NZ or EoC—relative to the reference. To 
see the damage functions and further analysis, see section S4.

Policy design impact analysis
To study how the climate policy design—NZ or EoC—affects the pre-
mature deaths or the economic damage estimates, we rely on different 
statistical methods. First, we use the ePDF and the eCDF. The former 
shows the likelihood of obtaining a given value for a variable of interest, 
in our case, the estimated premature deaths or the economic damage. 
By analyzing the ePDF shapes by climate policy design, we can iden-
tify which policy design predicts higher values for our variables, of-
ten using the median for simplicity. Moreover, the qualitative analysis 
of the ePDF is used to discuss the tail heaviness. To complement the 
ePDF analysis, we use the eCDF. The eCDF is a useful tool for analyz-
ing differences between the distributions of the NZ and EoC policy 
design outcomes. For instance, if the eCDF of premature mortality 
under the NZ policy design is consistently to the left of that under the 
EoC policy design, then it indicates that, for the same probability, the 
NZ policy design consistently predicts lower premature mortality. Fur-
thermore, considering the eCDF function by elasticity value or confi-
dence interval (CI) percentile of the RR functions’ parameters allows 
us to analyze the impact of these choices on the final output. This can be 
done by observing the relative position of the eCDF functions and their 
different slopes. Detailed figures for all regions, years, and scenario 
groups can be found in sections S8 to S10 and S12. Second, we consid-
ered the Kolmogorov-Smirnov two-sample test to quantify the dif-
ference between climate policies. As further detailed in section S5, if 
the P value exceeds 0.05, we accept the null hypothesis, indicating that 
both empirical distribution functions (with and without overshooting) 
originate from the same data and are statistically indistinguishable.

Uncertainty analysis
Several sources of uncertainty are taken into account: the uncertainty 
associated with emissions, derived by the range of IAMs; the uncer-
tainty associated with the premature mortality estimates, derived by 
the RR functions and their parameters and counterfactual values; and 
the uncertainty associated with the economic damages of air pollution, 
derived by the economic methods and their elasticity values. Figure S5 
lists these sources of uncertainty and provides a representation of the 
uncertainty propagation. Moreover, in section S6, we detail the uncer-
tainty contribution of each source and the uncertainty propagation.

Tail heaviness analysis
Statistical tests are conducted to assess the likelihood of heavy tails in 
the ePDFs of premature mortality and avoided economic damages. 
This type of analysis is relevant for understanding the policy risks 
associated with extreme undesirable outcomes (e.g., very high mor-
tality). In section S7, the method and assumptions for the tail heavi-
ness analysis are described in great depth.
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