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In the context of rapid human-caused climate change, regular updates of the
state of knowledge of current and future climate are needed. New statistical
methods using observational constraints underpinned estimates of present-
day human-induced warming and projected future warming in the most recent
IPCC report. As time goes by, and new updated observational records become
available, how should estimates of the current and projected human-caused
climate change be updated? Here, we use a perfect model framework and
show that incorporating observations from every new year in observationally
constrained projections improves their accuracy, without causing major year-
to-year spurious variability on outcomes. The forced warming estimated for

the current year also exhibits high enough stability to be considered as a
robust indicator of the state of the climate system.

As current warming is approaching the lower, 1.5 °C limit of the Paris
Agreement long-term temperature goal, there is a growing appetite to
understand how climate change is unfolding and how fast it actually
changes, in near real time. From this perspective, regular updates to
the current state of the climate at global, regional or national scales are
extremely useful. Several organisations carry out regular climate
monitoring on a global scale, describing temperature variations across
the globe on a yearly, monthly or even daily basis>. However, the
observed temperature is the result of internal variability (up to a few
tenths of a degree on the global average, and even more regionally,
including interannual to multidecadal fluctuations) superimposed on
top of the forced response®*. A specific estimation of the forced
component is required to characterise climate change to date, and to
compare its current state with long-term global warming levels used in
international climate negotiations® . Separation of human and natural
forced drivers of climate change, as well as internal variability, is also
useful for understanding recent observations of surface temperature
change. It is also important to understand what are the implications of
the forced response to date for future climate.

The 6th Assessment Report’ (AR6) of Working Group I (WGI) of
the Intergovernmental Panel on Climate Change (IPCC) used the
average warming over the last observed 10 or 20 years to char-
acterise the current state of the climate system™. In a context of
rapid warming, this choice may not be optimal’", as the estimated
warming level lags behind the changes that have occurred to date.
It also has policy and communication implications as the world is
getting closer to the 1.5°C global warming limit included in the
Paris Agreement. A recent update" estimated both the human-
induced warming over the last 10 years (+1.19 [1.0 to 1.4] °C over
2014-2023, hereafter the 10-year estimate), and 1.31 [1.1 to 1.7]°C
for the year 2023 (hereafter the 1-year estimate). The difference
between these two estimates suggests a (human-induced) warming
of about 0.1°C higher in 2023 than in the preceding decade,
2014-2023, a result fully aligned with the estimated decadal global
warming rate of about 0.26 °C/decade over 2014-2023"" This
difference raises the question: which of these two estimators is the
most accurate at characterising the forced warming experienced at
present?
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Updating forced warming estimates is also applicable to projec-
tions of the future climate. Until AR6, climate projections for the 21st
century and beyond typically relied on raw simulations from climate
models, with no direct use of observations”. The AR6 saw a change of
approach, with a narrowing of the large range of CMIP6 climate
responses based on historical observations and independently asses-
sed climate sensitivity ranges grounded in multiple lines of
evidence?". Assessed global projections thus rely on observational
constraints, i.e., the filtering of relevant climate responses on the basis
of available observations®. Through this mechanism, constrained cli-
mate projections also become a function of recent observations. This
naturally raises the possibility of regular updates of observationally-
constrained projections, alongside other key indicators based on
observations”. As a recent example, the very high global-mean surface
temperature (GST) of the second half of 2023 and 2024 has raised fair
questions about their long-term implications, and is already the sub-
ject of a large body of literature™2°: are such warm years consistent
with the previously estimated forced warming trajectory? or should
this trajectory be revised upwards? These questions regarding the
current and future climate response are of high policy relevance.

As the IPCC reports are usually published in cycles of 5-7 years,
and the AR7 WGI Reports would be published only in the last years of
this decade, more regular updates are needed. These could help
authors to trace recent developments, to contextualise the latest
observations, and to assess remaining carbon budgets with increased
accuracy. A recent initiative™* provided annual updates of several key
indicators of the state of the global climate system for the first time,
covering both societal (e.g., greenhouse gas emissions) and physical
aspects (e.g., updated estimates of global surface temperature, radia-
tive forcings, total forced and human-induced warmings, Earth’s
energy imbalance). Updates for this set of indicators will be published
annually and are presented in an accompanying dashboard to provide
an up-to-date description of the state of the climate.

In order to support and extend this effort, we investigate two
intertwined questions. First, is the estimated forced warming to date a
robust indicator? Second, should long-term projections be con-
strained by the latest available observations? Here, we investigate the

influence of year-to-year internal variability*, both at the global and
regional scales, to assess the strength and limitations of using these
indicators in near real time.

Our analysis is based on an observational constraint method,
called Kriging for Climate Change (KCC), that seamlessly estimates
past, present and future forced warming in response to different
emission scenarios”?* (see Fig. 1 and “Methods”). This method
involves mainly a Kalman filter (or Kriging) of a range of climate model
projections. Its implementation requires a careful estimation of the
uncertainties related to climate models and observations (see Meth-
ods). This technique was one of the techniques assessed and applied in
the attribution and projection chapters of the AR6'" and in sub-
sequent updates™?. Nevertheless, key conclusions of this study are
expected to also hold for other statistical methods used to constrain
projections®® or estimate attributable warming’*.

Results

Forced warming to date

Here, we focus on total forced warming in response to both anthro-
pogenic and natural forcings. The total forced warming was very close
to the human-induced warming over the last decade'®"**>?°, and will
remain so in the future except in the aftermath of major volcanic
eruptions, so our conclusions on the stability of estimators would also
apply to human-induced warming. By warming to date, we mean the
forced warming for the last observed (i.e., preceding) year relative to
preindustrial”****, Considering the current year would also be possi-
ble and defensible, and would not substantially affect the key results of
this study. We investigate how to best estimate the warming to date,
and in particular, we compare the 10-year and 1-year estimates dis-
cussed above. These estimators are both derived from an attribution
method, aimed at separating forced response and internal variability -
they are not just the observed warming over 1-year or 10-year. Recent
attribution methods do provide 1-year estimates, i.e., an estimate of
the influence of a subset of external forcings for one specific year’ ",
This calculation is distinct from the linear extrapolation used in the
IPCC SR1.5*° - the end point of a linear trend fitted to the observations
over the most recent 15 years - but results in extremely similar values
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Fig. 1| Illustration of the observational constraint procedure. This illustration is
based on global mean surface temperature (GST) pseudo-observations taken from
the CNRM-CM6-1, r4ilplf2 historical and SSP2-4.5 simulations. Pseudo-
observations are assumed to be available over the period 1850-2030, as an illus-
tration to help distinguish between “2023” and “current year”, which in this case
means 2030. These pseudo-observations are shown as orange dots. The prior on
the forced warming illustrates the spread of CMIP6 models (light blue line and light

2000 2050 2100

Year

blue shading stand respectively for the prior mean and 5-95% confidence range).
The posterior illustrates the estimated warming range given available pseudo-
observations (light green line and light green shading stand respectively for the
posterior mean and 5-95% confidence range). Key variables of interest in this study
involve: the estimated or projected warming in 2023, 2050 and 2100, and the
forced warming to date, i.e., at the end of the pseudo-observed period—here in
2030 (respectively the dark blue, blue, orange and dark red vertical bars).
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Fig. 2| Warming to date estimate and its changes over time. The forced warming
is estimated for the ‘current’ year (x-axis), via a Bayesian observational constraint,
using all observations available at that time (i.e., over the period from 1850 up to the
shifting date given in the x-axis), corresponding to the 1-year estimate. Calculations
are done in a perfect model framework (using the CNRM-CM6-1 r4ilp1f2 historical
and SSP2-4.5 simulations as pseudo-observations, panel (a), using real world Had-
CRUTS observations as available in 2024 panel (b), and using datasets that were

available at the date studied (including earlier versions of the HadCRUT dataset,
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and various CMIP generations, panel c). The observational constraint uses an
ensemble of climate models as a prior (“Un-constrained”, 5-95% confidence ranges,
blue): the CMIP6 ensemble panels (a, b) or various CMIP ensembles panel (c). The
result of the estimation procedure is the posterior given observations (“Con-
strained”, best-estimate and 5-95% confidence range, green). This estimate is
compared to the constrained estimate of the forced warming over the previous 10-
year period (“Constrained 10-year”, pink, best-estimate only). Observations or
pseudo-observations are shown in orange.

over recent years". If the lagged 10-year estimate is considered as an
estimator of the current forced warming level, then the time-lag
translates into a statistical bias, raising the question of whether this
estimator is the most appropriate. The 1-year estimate avoids any time-
lag, but it carries the risk of being overly influenced by the latest years
observed, and thus of being too unstable. From a statistical point of
view, this is a classic bias-variance compromise. Similar issues have
been discussed, for example, for estimating climate normals in the
context of climate change® .

We show how the 1-year and 10-year warming estimates evolve as
new data become available, both in climate model simulations (using a
so-called perfect model approach, Fig. 2a and S1), and in observations
(Fig. 2b). The uncertainty affecting these estimators can be decom-
posed in terms of mean and variance. We look at the variance first to
assess their stability. For global mean temperature in the perfect
model framework, we find a standard deviation of only 0.044 °C for
the 1-year estimator (multi-model median, see “Methods” and Table S1;
the smoothing applied to the forced response with our method tends
to make this standard deviation relatively small). The variance of the
10-year estimator is almost the same: 0.045 °C. Regarding the bias, i.e.,
the average error between an estimator and the true forced warming,
the 1-year estimate is almost unbiased (-0.02 °C), while the 10-year
average exhibits a bias of about —0.13 °C. As a result, in terms of root-
mean-square error, the 1-year estimate is much more accurate than the
10-year estimate for characterising the current forced warming of the
climate system, given the strong underlying and continuing decadal
warming trend. In terms of inter-annual variations, the occurrence of a
particularly cold year due to internal variability typically induces a
stabilisation of the 1-year estimate between year N and N+1 - i.e., the
downward revision of the estimator is offset by the average warming
trend (Fig. 2b). On the other hand, the 1-year estimate has increased by
0.05 °C between 2022 and 2023, due to the very high observed GST in
2023—this increase is close to twice the current warming rate (0.25 °C/
decade)*?, Overall, the additional revision from a particularly hot /
cold year is quite symmetric if the long-term trend is removed. This
revision is small compared to the magnitude of the inter-annual
variability that causes the revision, and it is small compared to the
overall uncertainty on forced warming estimates. Even in terms of

inter-annual variations, the use of a 10-year average provides no added
value since both estimators show virtually the same year-to-year
variability (Fig. 2a, b).

Similar results are found on a regional scale (Figs S2, S3 and
Table S2, “Methods”): the 1-year estimator exhibits a higher accuracy
than the 10-year estimator. This result supports using the 1-year esti-
mate as the most relevant estimate of the current regional warming.
However, a downward revision of the estimated warming to date
between years N and N +1 occurs occasionally in this case, due to a
lower signal-to-noise ratio at the regional scale.

This analysis suggests that the current warming (1-year) estimate
obtained from the KCC approach is accurate (unbiased, with a modest
variance) and stable. This finding is consistent with those previously
reported with the Global Warming Index (GWI), e.g., “the GWI is rela-
tively insensitive to the end date as well as short-term GMST
fluctuations™. It supports the use of the current year (1-year) estimate
as the best indicator of the current warming level.

However, the above analysis is carried out within an idealised
framework, which does not incorporate all the sources of uncertainty
affecting the warming to date estimate. In the real world, observed
datasets evolve as a result of progress in recovering past observations,
homogenisation, and other methodological advances. For example,
since 2005, 4 versions of the HadCRUT datasets*” (one source of
observed GST estimates) and three climate model generations®®™*°
have been used (see Methods). How is the warming to date estimate
affected by these changes?

Figure 2c shows a replay of the current warming estimate over the
last 20 years, based on the datasets available at each point in time. This
retrospective analysis shows that changes in reference datasets
(observed and simulated) can induce non-negligible variations in the
current warming estimate, typically from a few hundredths to almost a
tenth of a degree. These sources of uncertainty can thus be larger than
the variations induced by the addition of one more observed year.
However, the 10-year average estimate is as sensitive to these changes
as the 1-year estimate. Consequently, uncertainty related to the input
datasets can be considered as mainly irreducible by the statistical
method, and should be incorporated explicitly as much as possible (as
done here with measurement uncertainty).
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Fig. 3 | Changes in observationally constrained projections as new observa-
tions become available. Changes in observationally constrained projections are
shown in a perfect model framework (using the CNRM-CM6-1 r4ilp1f2 historical
and SSP2-4.5 simulations as pseudo-observations, (a, ¢), and in the real world (using
HadCRUTS observations, (b, d) All observational constraints make use of obser-
vations or pseudo-observations from 1850 up to a shifting date given in the x-axis.
The analysis is replicated at the global scale (top) and over France (bottom) as an
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illustration of a regional scale. Observationally constrained projections are shown
for 2023 (dark blue), 2050 (orange) and 2100 (dark red). All confidence ranges are
5-95%, with the best-estimate (median) shown as a solid line. Confidence ranges on
the left margin of each panel correspond to the CMIP6 unconstrained confidence
ranges. In the perfect model framework, horizontal dashed lines show the best
estimate of the warming in 2050 and 2100 in the CNRM-CMé6-1 model, as derived
from the full ensemble of 10 SSP2-4.5 members from this model.

Constrained projections

To assess the benefit of annual updates on projections, we illustrate
how estimates of future forced warming and their uncertainty range
evolve as new observed years become available. A first assessment is
made in a perfect model framework that uses model simulations cov-
ering the entire 21st century as pseudo-observations (Fig. 3a and S1).
Then, the same assessment is made using real-world observations,
available up to 2023 (Fig. 3b). The two analyses are performed using an
intermediate emissions scenario SSP2-4.5, and so do not cover scenario
uncertainty”. Importantly, our focus remains on the forced response:
although recent observations are used, we do not seek to deliver
“initialised” projections, nor predict a specific state of internal
variability.

Both analyses suggest that, in the current era, the estimation of
future warming becomes continuously more accurate by incorporat-
ing new observed data. We find that adding new observed data helps to
refine the projections, and that, over time, constrained ranges come
closer to the true’ response of each model—although convergence is
less good for models which appear as outliers within the whole CMIP6
range (Fig S4). The constrained projected warming range for a given
date continues to shrink even after that date. This simply shows that

estimation of the forced warming for a given date benefits from
observations made after that date. Moreover, the added value of one
individual year remains modest for projections: in Fig. 3a, in the early
21st century, the best-estimate 2100 warming typically shifts by
+/-0.07 °C (mean absolute error) if one additional year is added, and
the corresponding confidence interval shrinks by 1.5%. The modest
revision from one year to the next suggests that the constrained esti-
mate is relatively stable with respect to inter-annual observed varia-
bility, with no overfitting to the last observed values. Our results also
show that uncertainty associated with 2050 and 2100 warming, in
response to an intermediate SSP2-4.5 scenario, has already decreased
significantly over the last 2 decades (Fig. 3b, d), consistent with earlier
expectations®. In terms of the global average, there was a very gradual
downward revision during the global warming slowdown period,
between 1998 and 2014, with the 2100 SSP2-4.5 warming best-
estimate shifted by -0.8 °C between these two dates, followed by
a+0.2°C revision induced by the strong El Nino episode in 2015-16,
and then a further downward revision (Fig. 3b).

Carrying out the same analysis at the regional scale leads to
qualitatively similar results regarding the gradual improvement in
accuracy of the constrained projections (Fig. 3c, d and S5). However,
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due to a lower signal-to-noise ratio, the convergence is slower, and
uncertainty on the amount of forced warming at a given date (e.g.,
2050) remains substantial even after that date.

These results suggest that updating climate projections on an
annual basis is worthwhile in order to provide the most accurate
estimate of future warming.

Discussion

Taken as a whole, our results provide support for updating estimates
of current and future (observationally constrained) warming on a
yearly basis by incorporating the latest available observations. Our
results also demonstrate the robustness of estimating the forced
warming to date for the current year, specifically, thus avoiding any
time-lag. This is particularly relevant to provide an up-to-date picture
of forced global warming. These findings support the provision of
regular updates of present and future warming, on both global and
regional scales, consistent with other indicators (e.g., emissions, car-
bon cycle, radiative forcing). This study also highlights the benefits of
using observational constraint methods to provide a consistent,
seamless estimate of past, present and future warming. Unlike alter-
native proposed approaches’, our method accounts for (CMIP) mod-
elling uncertainty, and does not require regular updates of climate
simulations in order to update this estimate, ensuring traceability.
These properties make it particularly attractive.

These results also bring new challenges and new opportunities.

This study uses scenario simulations (SSP2-4.5) after the end of
the historical CMIP6 simulations, i.e., after 2014. A first challenge
concerns the forcings used in numerical simulations over recent years.
The forcings prescribed in the scenario simulations may differ sub-
stantially from those in the real world over the same period, in parti-
cular for short-lived climate forcers and natural forcings. Two recent
examples are the eruption of the Hunga-Tonga volcano***, or the
decline in shipping aerosol emissions’***—noting also that anthro-
pogenic aerosol emissions as a whole remain fairly uncertain®. If a
major volcanic eruption occurs, this discrepancy could become large.
Then, the method used in this article would have to be adapted to
account for new forcing estimates, as done with simple climate
models’. As a result, accurately estimating the human influence on
climate and the current state of the system would also depend on
progress in estimating these forcings.

Our study demonstrates the value of regular updates and the
robustness of the results using our method within a perfect model
framework based on CMIP6 models. However, our method assumes
that “models are statistically indistinguishable from the truth”, and
might deliver biased results if all models were consistently biased.
Method evaluation suggests that the presence of models with a high
climate sensitivity within the CMIP6 ensemble** does not hamper the
capacity of the method to properly estimate the forced response.
Other recent studies have highlighted the difficulties current models
have in realistically simulating some features of observed climate
change, such as the warming pattern*’ or the trend in Earth’s energy
imbalance*®, with possible consequences for the use of observational
constraints**~*, This is part of a general debate on the realism of CMIP
models and the potential role of internal variability or some feedbacks
in explaining some discrepancies between models and observations, a
debate that has not yet been settled”™. Eventually, these dis-
crepancies could make observational constraints less effective, e.g., if
the magnitude of observed GST internal variability were revised
upward, or if the statistical relationship between past and future
warming were weaker than current models suggest. Ultimately and
qualitatively speaking, the value of annual updates and their relative
stability as new observations are taken into account, as shown here,
will not necessarily be challenged.

In terms of opportunities, the regular integration of observed data
is similar to data assimilation. It is carried out here in a specific context

since it does not require simulations to be rerun. Critical methodolo-
gical progress could be made by implementing state-of-the-art data
assimilation techniques in the climate context. The updating of con-
strained climate projections could easily be extended to update esti-
mates of climate sensitivity, while remaining aware of limitations
related to the pattern effect uncertainty. Lastly, regular updates as
described in this study could benefit projections of many other vari-
ables, including variables for which observational constraints are
already effective (e.g., ocean heat content, sea level, Arctic sea ice
extent>®), and new variables, as climate change strengthens (e.g.,
hydroclimate, atmospheric circulation, etc).

The integration of the latest available observations in the esti-
mation of projections, as proposed here, reflects a warming world in
which observations are providing increasingly accurate information on
the features of climate change. In this context, regular updates of the
physical climate system response could usefully complement indica-
tors of human influence itself (e.g., inventories of emissions and sinks
of well-mixed greenhouse gases and short-lived climate forcers, as well
as current national mitigation policies and nationally determined
contributions, which are also assessed on an annual basis), in order to
advance estimates of the expected warming over the next few years/
decades or remaining carbon budgets”. Such updates would also be
extremely helpful for authors of the forthcoming Intergovernmental
Panel on Climate Change AR7 reports, by providing solid, near-real-
time information aggregating multiple lines of evidence.

Methods

Statistical methods

Observational constraint. This study relies on the Kriging for Climate
Change (KCC) statistical method, first introduced to constrain Global
mean Surface Temperature (GST)*, and subsequently extended to
tackle regional to local temperatures®***. This method seeks to esti-
mate the forced warming, both in the past (1850 to present) and the
future (present to 2100, for a given emission scenario), through an
observational constraint approach that combines model data and
observations. Here we provide a summary of the key elements of this
method, but refer to the corresponding publications®** for a com-
prehensive description.

The KCC method is basically a Bayesian estimation method, and as
such involves the formulation of an a priori distribution of the forced
response. It works in three steps, and is described here for a given
emission scenario.

First, the forced response of a range of climate models is esti-
mated for the period 1850-2100. This calculation is based on the
response to natural forcings, as estimated using a simple climate
model*, as well as a smoothing procedure for the remaining human-
induced forced response.

Second, the sample of the forced responses from available CMIP6
climate models is used to formulate a Gaussian prior of the real-world
forced response, under the assumption that “models are statistically
indistinguishable from the truth”. Denoting the time-series of the real-
world forced response over 1850-2100 as x (i.e., X is a vector of length
251), the prior distribution for X is:

T(X)=N(Hp, Z1m) @

where N stands for the multivariate Gaussian distribution, and p,, and
X, are taken as the empirical mean and covariance of the CMIP6
models’ forced response. As a result, this prior includes physical
information from climate models and is representative of model
uncertainty ().

Third, observations are used to derive a posterior distribution of
the past and future forced response given observations, in a Bayesian
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way. We assume that
y=Hx+g¢, with e ~N(0,Z,) 2)

where y denotes observations (a vector from, e.g., 1850 to 2023), X is
still the forced response from 1850 TO 2100, H denotes an observa-
tional operator (not all years in x have a corresponding observation in
y), € denotes random noise (a vector) corresponding to internal
variability and measurement errors, and X, denotes its covariance
matrix. In this way, the raw observations y are considered to be
observations of the forced response, subject to some uncertainty
(mainly arising from internal variability and measurement errors).
Given these assumptions, the posterior can be derived as

p(Xly) ~ N(p,, 2;) 3

with the posterior mean p, and the posterior covariance matrix X,
available in closed forms.

As a result, this method provides observationally constrained
estimates of past, present and future forced warming (i.e., the entire
vector X), including projections.

The analyses presented here are identical to those previously
published for GST*? (except for the larger set of CMIP6 models used),
and France®. This approach differs from the Global Warming Index
(GWI)’ in terms of both the physical models used (CMIP models here vs
a2-box Energy Balance Model), and the statistical procedure used to fit
observations (Bayesian inference here vs linear regression as used in
optimal fingerprinting).

It is important to notice that, despite the use of recent observa-
tions, KCC (like other observational constraint methods) does not
produce “initialised” projections. It is not intended to account for or
predict a specific state of internal variability, such as ENSO variability.
Observations are only used to improve the estimation of the forced
response.

Method evaluation
The reliability of the KCC method has been evaluated in several ways.

First, for GST only, a perfect model framework was used to eval-
uate the method for future projections?. This evaluation suggested
that the method was not overly confident, as the coverage probability
(i.e., the frequency with which the estimated constrained range con-
tains the true value of interest) was estimated to be 91% in 2100 over a
sample of 66 CMIP6 simulations. This is very consistent with the
expected nominal value of 90%. The evaluation also illustrated the fact
that models with a particularly high (eg, hot models) or low warming
were correctly predicted. This result was obtained using all CMIP6
models to derive the prior, and so suggests that the presence of hot
models does not bias the outputs of our method.

Second, a similar perfect model framework was used to assess the
reliability of the method for regional temperature®. Again, the repor-
ted coverage probabilities suggested the method was reliable and not
overly confident.

Third, the specific calculations performed in the current study
provide additional evidence regarding the reliability of KCC in esti-
mating both the forced warming to date (see Figs. S1 and S3 for the
global and regional scales, respectively) and the projected forced
warming (see Figs. S4 and S5, again for the global and regional scales,
respectively). These figures show a perfect model evaluation: one
simulation (historical and SSP2-4.5) from one CMIP6 model is used as a
pseudo-observation, and the KCC method is applied to it. They illus-
trate how our estimates change over time as new pseudo-observed
years become available. The estimated range is then compared to the
best possible estimate of the particular model’s forced response -
derived using all available members (ensemble mean), the pseudo-
observations for the entire 1850-2100 period, and a smoothing

method. Consistent with previous evaluations, the results show that
the KCC method is able to correctly estimate both the current and
future forced responses, as the “true” value lies within the estimated
confidence range in most cases. This finding applies to a broad range
of CMIP6 models, including some with a relatively low or high sensi-
tivity, and some with relatively low or high responses to the aerosol
forcing. Additionally, this finding was made using all CMIP6 models in
the prior, including the hottest ones.

Finally, these various lines of evidence show that KCC is a reliable
method to estimate the present and future forced response, provided
that key assumptions are satisfied, in particular “models are statisti-
cally indistinguishable from the truth”, meaning that all models are not
consistently biased.

Bias and variance of the warming to date estimators

The statistical properties (bias, standard deviation, root mean square
error) of the 1-year and 10-year estimators of the warming to date are
shown in Tables S1 and S2. This simple calculation is based on the
analysis of the perfect model framework and on all the model runs
analysed in Fig. 2a and S1. First, we derive a best estimate of the forced
response in each CMIP model. This is done by averaging over all
available members (the ensemble size varies across models, but all of
the models used have 7 members or more of historical simulations and
SSP2-4.5 scenarios), and then applying a filtering procedure? in which
the anthropogenic response is smoothed over time to eliminate most
of the remaining internal variability. This best-estimate is then con-
sidered as the true forced response, and is compared to the estimated
warming to date using the pseudo-observations from one specific
member (global scale, as illustrated in Fig. 2a and S1) or 4 members
(regional scale, as illustrated in Fig S3 with one single member; the
number of members used to calculate the bias and variance is
increased in order to ensure the robustness of the results, despite the
lower signal-to-noise ratio at the regional scale). The difference
between these two quantities is considered as the error in the warming
to date estimator. From the sample of errors over the period
2015-2100, we can easily derive indicators such as bias, standard
deviation, and RMSE.

Observed data

The observed global temperature data are taken from the infilled

version of the HadCRUTS5* dataset; only the annual and global means

are used. This dataset covers the period 1850-2023. HadCRUTS mea-
surement errors are estimated using the set of 200 members provided
by this dataset, assuming Gaussian error. Following recent studies?,
we assume that the Global Surface Temperature (GST, mixing surface
atmospheric temperature over land and sea surface temperature over
oceans) warming assessed in this dataset is representative of GSAT

(surface atmosphere temperature everywhere) changes, although this

is still a matter of debate.

In Fig. 2c shows the results of a retrospective calculation based on
the data available for each year. We use various earlier versions of this
dataset:

- From 2006 to 2012, we used the HadCRUT3v dataset, which is a
statistically adjusted version of HadCRUT3. This dataset com-
bines land (CRUTEM3) and ocean (HadSST2) data at a 5 x 5° reso-
lution since 1850.

- From 2012 to 2014, the HadCRUT4 dataset**. HadCRUT4 combines
land surface temperature data from CRUTEM4 and sea surface
temperature data from HadSST3. HadCRUT4 measurement errors
are estimated from a set of 100 equiprobable realisations.

- From 2014 to 2020, a new version of HadCRUT4 was used, based
on a better reconstruction and fusion of land and ocean surface
temperatures. This version is referred to as HadCRUT4-CW*.
Similar to HadCRUT4, this dataset provides an ensemble of 100
equiprobable members to assess measurement uncertainty.
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- From 2020 onwards, the HadCRUTS dataset, i.e., the current
version, was used. As this version was published in 2021, it is used
here from the year 2020 onwards. This is based on the assumption
that the analysis is carried out in the year following the last year of
observations used, similar to the approach of Forster et al. (2023).

The results shown in Fig. 2c suggest that revisions of these
observed datasets all resulted in small breaks in the estimated warm-
ing. Over the last 20 years, all revisions have been upwards.

The observed temperature data for France comes from Météo-
France®. These are monthly temperatures over mainland France since
1899, derived as the average of observations from 30 homogenised
stations evenly distributed across the country.

Model data

All analyses but Fig. 2c are based on a sample of 45 CMIP6
models*’—see the detailed list below. To improve the estimation of
the forced response, we use historical and SSP2-4.5 scenario
simulations and take the average over all available members. For
Fig. 2c, we additionally use the previous CMIP3*® and CMIP5*
generations. In each case, we use intermediate emission scenarios
to extend historical simulations (consistent with the use of SSP2-4.5
in CMIP6): A1B for CMIP3, and RCP4.5 for CMIPS. Results in Fig. 2¢
suggest that the transitions from CMIP5 to CMIP6 was very smooth
in terms of estimating the current warming, unlike the previous
transition (from CMIP3 to CMIP5).

The processing of model data involves the following steps. The
mean temperature of each model is calculated by considering the
annual mean surface air temperature (SAT). For global analyses, we
compute the Global mean SAT (GSAT) and assume that it is equal to
GST. To illustrate regional analyses, we use temperature data over
France, which are interpolated onto a 0.25°x 0.25° grid covering
mainland France, and then averaged over continental grid-points
(consistent with Ribes et al., 2022). At both the global and regional
scales, the subsequent processing of the model data is consistent with
that described in the reference papers describing the statistical
method®**, which involves in particular a smoothing procedure to
reduce internal variability.

The following CMIP6 models (SSP2-4.5 scenario) were used for
GST analyses (Figs. 1, 2, 3a,b, S1 and S4; 45 models): ACCESS-CM2,
ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CAS-
ESM2-0, CESM2, CESM2-WACCM, CIESM, CMCC-CM2-SR5, CMCC-
ESM2, CNRM-CMé6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, CanESMS,
CanESMS5-CanOE, EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-
Veg-LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0, GFDL-CM4, GFDL-
ESM4, GISS-E2-1-G, GISS-E2-1-H, HadGEM3-GC31-LL, [ITM-ESM, INM-
CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, KIOST-ESM, MCM-
UA-1-0, MIROC-ES2L, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-
ESM2-0, NESM3, NorESM2-LM, NorESM2-MM, TaiESM1, UKESM1-0O-LL.

The following CMIP6 models (SSP2-4.5 scenario) were used for
regional analyses (Fig. 3c, d, S2, S3 and S5; 27 models; same models as
in Ribes et al®): ACCESS-CM2, ACCESS-ESMI1-5, AWI-CM-1-1-MR,
CAMS-CSM1-0, CanESM5-CanOE, CanESM5, CESM2, CESM2-WACCM,
CMCC-CM2-SR5, CNRM-CM6-1-HR, CNRM-CM6-1, CNRM-ESM2-1, EC-
Earth3-Veg, FGOALS-f3-L, FGOALS-g3, GISS-E2-1-G, INM-CM4-8, IPSL-
CM6A-LR, MIROC6, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR,
MRI-ESM2-0, NorESM2-LM, NorESM2-MM, TaiESM1, UKESM1-0O-LL.

The following CMIP5 models were used (Fig. 2c; RCP4.5 sce-
nario; 31 models): BNU-ESM, CESM1-CAMS5, FGOALS-s2, MRI-CGCM3,
MIROC-ESM, MIROCS, MIROC-ESM-CHEM, GISS-E2-R, GISS-E2-H,
MPI-ESM-MR, MPI-ESM-LR, CanESM2, CNRM-CMS5, EC-EARTH, FIO-
ESM, bcc-csml-1-m, bcc-csmi-1, NorESM1-ME, NorESM1-M, CSIRO-
Mk3-6-0, CCSM4, IPSL-CM5A-LR, IPSL-CM5A-MR, ACCESSI-3,
ACCESS1-0, CESMI1-BGC, GISS-E2-R-CC, GISS-E2-H-CC, inmcm4,
CMCC-CMS, IPSL-CMS5B-LR.

The following CMIP3 models were used (Fig. 2c; AIB scenario; 23
models): BCCR, CCCMAO, CCCMA, CNRM, CSIROO, CSIRO, GISSA,
HCM, INM, IPSL, MRI, CCSM, ECHO, FGOALS, GFDLO, GFDL, GISSH,
GISSR, HGEM, INGV, MIROCO, MIROC, MPI, PCM.

Data availability

The pre-processed CMIP6 data used to perform this study are available
under the following https://doi.org/10.5281/zenodo.14859923. Key
results generated by our observational constraint calculation are also
available in the same database. The full description of observed and
model raw data used in this study is provided above (Method section).

Code availability

The kriging for climate change R package used to produce this analysis
is available at https:/gitlab.com/saidqasmi/KCC; https://zenodo.org/
records/5233947
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