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ARTICLE INFO ABSTRACT

Keywords: Linking existing models to extend energy system and integrated assessment analysis is an increasingly common
Integrated assessment models practice. Despite this, and unlike in the field of environmental and earth sciences, little attention has so far been
IAM

paid to the details of it, to the trade-offs involved and the way in which the model linking affects the inter-
pretation of the outcomes of the interlinked model system. Our aim in this paper is to first focus on a set of key
technical and methodological problems that are common in model linking and suggest how these could be
approached in different model linking contexts. We then further explore how model linking may affect the nature
of the knowledge produced, and how this should be considered in the model linking process. Reflecting our
literature driven assessment of the issues and possible solutions, we compile “a check list” to assist in the process
of decision making for model linking.

Energy system models
Model linking
Model interpretation

1. Introduction various climate goals, developing pathways consistent with specific
climate goals, and assessing the effectiveness of specific mitigation

Energy-system models (ESMs) and integrated assessment models portfolios. Their strength lies in their ability to assess system-wide,
(IAMs) have been key tools for assessing the progress towards achieving cross-system developments, by covering the major components of
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climate-economy dynamics—including the energy system, the economy,
typically an aggregate representation of the climate system, and to
different extents land use—while reflecting the impacts of their in-
teractions within and across the different subsystems [1]. The models
have extensively influenced decision-making at national and interna-
tional levels (e.g., Refs. [2-4]), while also playing a central role in
producing the scientific evidence underlying climate negotiations and
underpinning the agreed climate goals [5,6].

The initial focus of modelling and long-term scenarios was pre-
dominantly on technical assessments of the energy system [7,8]. In time,
however, and with increasing awareness of the urgency of climate ac-
tion, the importance of covering more relevant sectors—and the inter-
linkages between them—has increased (e.g. Refs. [9-13]), and so has
the computational capacity to cover these sectors and their interlinkages
in more detail, thereby leading to increasingly complex and computa-
tionally intensive models. As extending the model boundaries would
further complicate the models, a common approach to enabling ever
broader and more detailed assessments is to create linkages between
existing models, and to endogenise the cross-system interactions
through these linkages (e.g. Refs. [14-17]). Some IAMs have, over de-
cades, evolved from models with a limited disciplinary focus, such as
energy systems, by linking to additional models, modules and extensions
for land systems, the economy, the environment, and the climate system
(e.g. see Refs. [18,19]). Similarly, model linking has been used for sec-
toral “deep dives”—i.e., to provide greater detail about a subsector
already covered by the larger, system-level model (e.g., Ref. [20])—or
for capturing effects of climate action from a sustainability perspective
[21]. Model linking has thus not only allowed the model-based analysis
to make explicit and cover the impacts of cross-system interactions,
which in turn enables more integrated analysis of energy, climate, and
sustainability challenges, but also adds a level of detail and granularity
previously unavailable. Thus, it can be argued, the benefits of model
linking are clear and persuasive.

As common as model linking is for IAMs and ESMs, however, there
are no straightforward, standardised, commonly accepted processes to
do it; in fact, fairly little attention has been paid to the details, specifi-
cations, and requirements associated with model linking. Individual
models have been created for different purposes, often with different
internal rationales, overlapping system boundaries, and context specific
variable definitions. Linking models simply by exchanging chosen var-
iables between them is feasible, and thus often done, but overlooks the
significant complexities that closer scrutiny would reveal. For example,
does the parameterisation of interlinked models reflect similar as-
sumptions about how exogenous factors of the future will unfold? Do the
models truly overlap only for the variables that are being exchanged
and, if not, should linking take place for all the shared variables for the
modelling to be internally consistent-and how should one define which
model takes precedence for a given variable? How should one link
models that consider time, either for horizon or granularity, differently?
If one model aims to find an optimal solution across the given time
frame, and another myopically simulates system behaviour based on
historical data, how should the results of the combined model be
interpreted? Rarely can such methodological choices in model linking be
defensible purely on scientific grounds, and trade-offs need to be
accepted in practically all model linking exercises. Modellers must often
make pragmatic decisions based on a combination of scientific princi-
ples, practical constraints, and expert judgment, but the rationale and
trade-offs involved in this decision-making have not been at the center of
the model-linking exercises, nor in the communication thereof. Our aim
in this paper is to focus the attention on the practice of model linking to
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assess low-carbon transitions, and carry out a narrative review to
identify and discuss a set of key problems that should be addressed when
linking models, as well as how these may depend on the characteristics
of the specific models involved. We use the outcomes of this review and
analysis to propose a practical check-list, to be used when planning a
model linking activity.

While model linking has traditionally been mostly a pragmatic
endeavor, there also exists research focussing more on the model linking
process itself. Some studies have discussed the issue explicitly or addi-
tionally in the context of the energy and economic systems (e.g. Refs. [9,
22-24]), but these papers are typically general and conceptual, without
directly addressing the practical complexities of carrying out the actual
model linking. A recent paper [25], while focused on exploring the
benefits of linking three specific model types (agent based models, CGE
models and IAMs), does also offer an insightful, albeit short, discussion
of model linking issues related to e.g. scales, interoperability, and model
calibration.

Model linking within the environmental and earth sciences, how-
ever, has a much richer literature on model linking as a problem by it-
self. Models such as Earth System Models, Vegetation Demographic
Models, and Land Use Change Models (LUC) generally focus on the
biophysical characteristics of the systems, such as atmospheric and
ocean physics and chemistry and land cover, ecology and dynamic
vegetation growth [26,27].Verburg et al. [28], for example, highlight
model linking in the context of their broader discussion of what is
needed for modelling the socio-ecological dynamics of the Anthro-
pocene. Although they touch upon many issues discussed also in this
paper, such as the problem of “reconciling epistemologies”, their main
focus is different: what should be captured, and how, to model the
Anthropocene. Tan et al. [29], in turn, explore the ways in which earth
system models and IAMs have been linked, especially focussing on the
way in which the feedbacks are captured across space and time. In their
discussion of remaining gaps and challenges, they briefly highlight is-
sues such as reconciling different spatiotemporal scales and variable
definitions but do not further elaborate on them and their associated
challenges, nor suggest ways forward. Similarly, Van Vuuren et al. [27]
also discuss linking earth system models and IAMs, with the focus on the
nature of the linkage (e.g., one-way linkage or full coupling, the latter
interpreted in this paper to imply full integration of an IAM within the
earth system model), and the trade-offs the different options bring. They
note some general problems that full coupling might bring, drawing on
the specific types of models discussed in the paper, and provide some
insightful advice about the conditions under which specific linking op-
tions may be preferable. Robinson et al. [26], in turn, discuss
human-natural systems model coupling, i.e. tools that link models
focused on human decision-making with those describing e.g. the bio-
physical processes in detail. Their paper zooms in on land use and the
type of model links used, and draws eight lessons that, - while reflecting
the very specific examples used, - are broadly applicable in any model
linking activity. Several of the lessons are relevant also for our dis-
cussion—reflecting issues related to, e.g., spatiotemporal differences
and system boundaries—while also providing practical advice about the
way in which aspects such as data exchange and variable naming can be
organised.

The technical implementation of model linking, often related to
linking the type of models discussed above, also features in the litera-
ture. Belete et al. [30], for example, primarily discuss the technical and
software side of model linking, although their take on pre-integration
assessment and data interoperability provides important observations,
e.g., about variable definitions and purpose of the model integration.
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Similarly, Usher and Russell [31] present a framework for integrating
infrastructure models - in their case defined as “Models of transport,
energy, solid waste, water supply and digital communications [...]” - but
with the focus strictly on software implementation, and only briefly
noting problems related to model linking across temporal scales.

Finally, and as noted above, many of the potential complications
related to model linking are driven by the differences e.g. in the struc-
ture, internal rationale and scope of models to be linked, typically in
various dimensions. The dimensions across which models may vary are
so numerous that there is a wide body of papers dedicated only to
establishing the different ways in which the models can be catego-
rized—see e.g. Refs. [32-34], as well as Keppo et al. [35] and the ref-
erences within. Such “model typologies” can help in understanding how
given models to be linked differ, in which dimensions the differences are
particularly important, and how the differences affect the interpretation
of the modelling outcomes.

In the following sections we will first discuss the technical consid-
erations for model linking in three key areas emerging from the litera-
ture (Section 2), which serves as a foundation for the subsequent
discussion on before continuing to discuss how model linking may affect
the interpretation of the knowledge derived with the linked model sys-
tem(Section 3). We conclude by providing our checklist for establishing
links between models (Section 4).

2. Technical considerations for model linking

Here, we will discuss three families of model linking-related tech-
nical problems, exploring the nature of the problem, approaches found
in the literature, and possible avenues to mitigate the identified issues.

2.1. Temporal and spatial scales

Linking models that feature different spatial and temporal resolution
allows the analysis of challenges at different geographical and gover-
nance scales. For instance, by doing so, one can extract insights into
technological transitions that include high penetration of variable re-
newables, demand response mechanisms, and/or other flexibility op-
tions [36], explore distinct solution spaces and sets of uncertainties for
different contexts [37], and, overall, address the diversity of short-
comings associated with exercises of limited spatiotemporal detail in
IAMs [38]. The aim, however, may not always be to benefit from the
difference in scales, but to seek other gains — e.g., in terms of sector-
al/technological complementarities, robustness, etc. —and in the process
find ways of integrating the tools across different spatial and temporal
resolutions. There may also exist trade-offs between the different ap-
proaches in the literature for downscaling or upscaling results from one
model to the other, typically in the form of providing better consistency
at the cost of being computationally intensive, or vice versa. More
complex methods also require more human resources for their
development.

The first order of trade-offs concerns the extent of linking (such as
hard linking or soft linking) used for linking across spatial and temporal
scales. Soft-linking typically means a linking process in which results are
transferred from one model to another more manually, with direct user
control, whereas hard-linked models typically run in parallel, constantly
exchange data based on predefined algorithms and produce one set of
results [39].

For instance, Fattahi et al. [36] suggest hard-linking ESMs with
market models as one way to analyse the flexibility potential of
cross-border trade in competition with domestic flexibility options.
However, since market models typically use mixed-integer linear pro-
gramming (MILP) to track unit commitment, the energy system-market
model combination resulting from the hard-linking would be compu-
tationally unmanageable. An emerging body of literature instigates
soft-linking among IAMs and/or ESMs with different spatial and tem-
poral resolutions. Gong et al. [40], for example, address the lack of
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temporal detail in an IAM (REMIND) by an iterative soft linkage with an
annual, single-region, hourly power system model (DIETER),
exchanging data on annual costs and capacities (from REMIND) and
average market values (DIETER) until convergence in electricity-prices
and quantities is reached. The analysis, however, lacks spatial detail
and the scope is limited to one region (Germany). Frysztacki et al. [41]
highlight the strong effect that spatial network resolution in electricity
system models has on key variables, such as least-cost penetration of
variable renewables: If ESMs with low temporal or spatial resolution are
soft-linked with high-resolution electricity system models (e.g., hourly
dispatch models with numerous nodes to represent an electricity grid),
the capacity expansion results from the former may be too low-resolved
and sub-optimal, making the dispatch analysis less reliable. Kumar et al.
[42] attempt to increase both the temporal and spatial detail in an ESM,
by first increasing the temporal resolution of the model itself and then
soft-linking it with a geospatial tool for district heating network opti-
misation, albeit again doing so for a limited geographical scope.

Rather than linking models [43-45], increase the spatial detail in
ESMs by clustering regions with similar demand and/or supply char-
acteristics. Such an approach has the benefit of keeping the computa-
tional load manageable, but it loses the information on the topology of
infrastructure, making it unsuitable for network-focused analyses.
Sahoo et al. [46], on the other hand, break down a province-scale model
into geographic regions (municipalities and high-density areas within
them), thus retaining a certain level of information on the network to-
pology. The level of granularity achievable by regionalising a model
with a feasible computational load, however, depends on the scale of the
model. If the model is at national or continental scale, the level of
granularity achieved by Sahoo et al. will require significantly higher
computational load. Similarly, coupling complex General Circulation
Models (GCMs) with IAMs of different complexity and temporal reso-
lution has been addressed by means of different statistical methods (e.g.,
emulators, machine learning, etc.) [47]. The simplification of processes
using averaged relationships in emulators might not, however, be able to
capture the nonlinear feedbacks and may generally limit the capability
of the models to assess extreme scenarios. One linking challenge lies in
ensuring that climate-driven economic and energy system responses in
space and time remain consistent across models. Misalignments between
GCMs and IAM scenario assumptions may lead to unrealistic policy in-
sights [48].

The second order of trade-offs concerns how the spatial disaggregation
is treated in model links. Cultice et al. [49] highlight that spatial granu-
larity is necessary in IAMs for representing spatial economic interactions
at local and meso scales (the former intended as the set of economic and
environmental interactions happening in the order of 1 km, the latter as
the processes and dynamics linking local to global realities), and to
capture their effects on global dynamics. They also discuss recent
progress in detailing spatial economic and biophysical dynamics using
multi-scale, multi-module’ IAMs. However, this level of detail often
comes at the cost of reaching spatial equilibrium (i.e. a state at which no
agent is better off relocating anymore, given the decisions of other
agents [49]), due to the high computational power and time required.
On the other hand, when using a single model, the spatial and
cross-system detail that can be achieved is usually limited. Using a
global IAM (GCAM) but focussing on dynamics within an individual
study region, Kyle et al. [50] demonstrate that different spatial resolu-
tions in the IAM may lead to different magnitudes of land use changes,
essentially suggesting that land use changes (and related emissions) may
also depend on the IAM’s resolution, when coupled with a land alloca-
tion model. Another challenge in rule-based downscaling is the limited
representation of drivers and dynamics of land use changes. This in-
cludes for instance lack of constraints related to protected lands or

! In the literature term “module” is typically used when referring to a smaller
component of the full model, often explicitly designed for the model.
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productivity [51], inability to show land use changes in each direction
[52], or averaging errors and misrepresentation of localised effects such
as heterogeneous soil fertility or water availability (as in the case of a
link between the economic land-use optimisation model MAgPIE and the
detailed biophysical model LPJmL [53]). There exist country-scale
model applications that use integrated resource management optimisa-
tion techniques to determine land use changes at higher spatial resolu-
tion and clustering techniques to reduce computational load [54]. The
land allocation results from such applications could be fed back to the
IAM as land allocation rules; however, when doing so, the modellers
must be aware of and provide guidance for how the potentially different
rationales underlying the models affect the interpretation of the linked
model system (see Section 3). Reconciling differences in spatial resolu-
tion while ensuring computational feasibility is also a challenge when
linking GCMs and IAMs: despite enhancing regional impact analysis,
incorporating high-resolution climate projections into IAMs also in-
creases complexity, computational costs, and inconsistencies due to
differences in model structures and assumptions (see also Section 2.2).
Downscaling techniques can improve the spatial detail of climate
modules but may also introduce uncertainties. Pattern scaling is one of
the simplest such techniques, which can be improved by including more
predictors beyond “global mean temperature” such as “land-sea” tem-
perature contrast; for example [55,56], suggest a hybrid approach
combining statistical downscaling with dynamic feedbacks to balance
consistency and efficiency.

The third order of trade-offs concerns the model horizons of the linked
models. While coupling models with the same approach to foresight
provides internal consistency, this may not always be feasible, when
linking existing, stand-alone models. Much like stakeholders in societal
contexts where decisions are made, strictly formalised modelling
frameworks often apply different foresight for their decision-making.
While different foresights of linked models can complicate the linking
process, it can also be beneficial in better reflecting some aspects of real-
world dynamics; decisions made by the agents with short-term foresight
(e.g., prioritising immediate gains) will affect also the agents with longer
decision horizons (e.g., long-term strategic planning). As an example of
linking across time horizons, Leimbach et al. [57] input global tradable
energy commodity prices and carbon prices from a perfect-foresight IAM
into two myopic-foresight trade models. The latter are further linked to a
household model, to examine the differences between the distributional
effects of climate policy and the distributional effects resulting from
macroeconomic structural changes. Different foresights are also com-
mon in modelling electricity system capacity planning and dispatch.
Kleanthis et al. [58], for example, present a methodological framework
in which the capacity expansion tool first plans the system for a longer
time horizon and a dispatch tool is then used to test and refine the
flexibility options deployed. In the last step, the capacity expansion
model is run again, with the additional flexibility options included. This
approach does not, however, necessarily lead to an optimal system, as
the temporally more granular modelling optimizes flexibility in the
context of a specific initial design — and the design can, by definition, not
consider possible flexibility issues.

The more feedbacks and variables exchanged between models with
different foresights, however, the more complicated and iterative the
linking process becomes. Does one, for example, run a model with a
longer decision horizon first, to provide boundary conditions for the
short-term tools, and then recalculate those boundary conditions once
the short-terms models have been run? Depending on the temporal
granularity of the myopic tools, this can lead to an extensive set of
iteration loops (see also section 2.3, on model convergence).

In synthesis, when seeking higher spatial and temporal granularity,
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whether by disaggregating one model or by soft-linking models, the
clustering of geospatial data can introduce detail in the more aggregated
models with limited computational load added. However, clustering
methods alone are not suited for analyses where infrastructure networks
are in focus, because information on the network topology is essential. In
such cases, the aggregated model must feature a level of granularity that
preserves the key topological features of the infrastructure—that is, it
needs to be regionalised (as done by Sahoo et al. [46], see the discussion
above). This is more feasible the smaller the scale of the original model.
For one-off links, the use of coupling tools that disaggregate certain
datasets of the aggregated model may be more practical. As computa-
tional power may be the core constraint, before engaging in the linking
process, it may be valuable to carry out a simplified test application to
observe how sensitive the results are to the detail added through linking.
Finally, linking models with different foresight horizons can improve the
representation of real-world dynamics, but attention should be paid to
how the data exchange can be carried out effectively (see the later
section).

2.2. System boundaries, variable definitions, and harmonisation

For model linking to be feasible, model system boundaries need to
overlap at least to the extent that some “contact point”~minimum one
shared parameter or variable-is included in both models. The most
straightforward and easiest case of model linking is when system
boundaries do not overlap and contact points are limited to one or more
variables that are exogenous to one model and endogenous to another.
Examples in the literature include linkages between sectoral models, in
which models of the mobility, housing, or industry sectors calculate
electricity demands of the respective sector, which are then used as
input variables of a power sector model (e.g., Ref. [59]). The output of
many IAMs is used as input into simple climate models for climate as-
sessments, with various harmonisation and infilling steps required to
make a consistent assessment [60]. More integrated examples are ESMs
linked with land-use models and simple climate models, such as the
coupling of REMIND with the MAgPIE land-use model and the MAGICC
simple climate model to provide fully integrated assessments of the
energy-economy-land-climate system [14] or the economic integration
of the WITCH IAM with the FASST(R) air pollution model to internalise
health-economic impacts of air pollution into climate policy [61].

More complex linking exercises involve partially or fully overlapping
system boundaries resulting in larger sets of contact points formed by
variables that are endogenous in both models and multiple flows of in-
formation between the models. In these cases, one needs to decide which
model(s) determine endogenously the values, and which model(s) use
these values as exogenous input. This typically implies very complicated
linking exercises and potentially the need to do significant changes to
one or more participating models to accommodate exogenous input,
where formerly endogenous variables would be used in the model’s al-
gorithms. In any case, it can be expected that compromises in terms of
the consistency between the tools may be necessary. Examples include
the soft-linking of the TIMES-Sweden model with the EMEC model in a
Swedish case [62], the soft-linking between PRIMES and other national
energy system models with the global Computable General Equilibrium
GEM-E3 Model [63] and linking the ESM EU-TIMES with the NEMESIS
macroeconometric model [64]. In these cases, for example, the energy
systems are fully encompassed in the economic descriptions, but the
latter are more aggregated and abstracted for many of the variables of
the former. As a consequence, extensive mappings between variables
representing energy and macroeconomy in the involved models need to
be created that account for diverging sector boundaries and the
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representation of variables (e.g. physical units vs. monetary units).

In all cases, attention must be paid to the definition of the shared
variables, i.e., whether these are defined identically (content as well as
units of measurement) or not. Even similarly named variables may
reflect slightly different real-world entities. For example, when calcu-
lating the energy demand of the industry sector, industrial CHP and
power plants may be modelled as integral parts of industrial sites in an
industry model and their power demand calculated as net balance (i.e.,
what needs to be provided by the power grid). But, for an energy supply
model that is calibrated with statistical data, power generation in these
plants and associated primary energy used could be (implicitly)
considered as part of the power sector. Another example would be in-
vestment costs of industrial plants calculated by an industry model to be
used as input into a macro-economic model. The definition of invest-
ment costs could differ between both, ranging from pure equipment
costs through inclusion of installation costs to also including costs for
permits.

Another important consideration is that the results of linked models
are often mutually dependent, even if the specific variables are not
directly shared. In the above example of a linkage between demand
sector models and an electricity provision model, part of the electricity
demand- e.g., if some processes in industry are electrified or not-will
depend on price signals from the energy sector, while the price of
electricity calculated by the electricity system model in turn depends on
demand levels calculated by the industry, mobility, and housing models.
Challenges also arise if the flow of information goes from a more
aggregated variable in one model to a more fine-grained one in another
model and thus disaggregation of data is required (see Section 2.1). For
example, an IAM (or ESM) endogenously calculates, among other out-
puts, electricity supply on an annual scale and uses resulting electricity
costs for endogenously calculating electricity demand based on demand
curves; if electricity supply is passed onto an electricity sector model
with hourly resolution, e.g., in order to better understand the mix of
electricity production technologies required or of grid-related aspects,
the electricity costs arising from the electricity sector model may well
differ from the ones calculated by the IAM—but if different costs had
been assumed in the IAM, demand (and thus supply) would have
differed as well, which would in turn change the input to the electricity
model. Similar aggregation issues can exist for any variables—e.g., one
model may describe all electric vehicles with one technology, while the
other one may distinguish them based on size, cost, or other
characteristics.

Furthermore, attention should be paid to background assumptions
underlying the model parameterisation, also considering that these may
not be found prominently in the models themselves, or in their docu-
mentation. Typical examples of such background assumptions are sce-
narios used for GDP development, population (number and structural
composition), international trade, technology costs, climate policies,
and weather conditions. If such background assumptions drive key pa-
rameters in different models (e.g., assumed weather conditions may
influence both agricultural yield and the needs for heating and cooling
in housing), ignoring them can create inconsistencies.

An important element in the process of model linking therefore is the
harmonisation of common assumptions and variables. This includes
comparison and alignment of underlying narratives and data sources
(see also Section 2.3)—to the extent that it is possible. Challenges for
harmonisation include that the definitions of given input parameters
may not be entirely consistent between linked models, which may cause
significant efforts to identify a consistent mapping of these variables
between the models. Practical problems may also arise; for example, if
models have large overlaps, the harmonisation of these overlaps re-
quires a significant amount of work. Adopting variable values from a
harmonisation exercise can also potentially lead to model instability, if it
implies that a model enters untested parts of the solution space [65].
Finally, in absence of full harmonisation, one can try to link models
using relative changes (rather than absolute values, see e.g. Ref. [63]),
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although this naturally harms consistency across the models.

Since variable definitions tend to be model-specific, no one-size-fits-all
solution exists for the above sketched challenges that arise from
diverging variable definitions. The IAM community’s work regarding
data management and protocols [66] as well as the IAMC scenario
submission template (also in context of contributing to the IPCC WGIII
assessment—see Ref. [67]) can help in harmonising similar system
boundaries and variables (including units of measurement) as an
intermediary between two models. Other approaches, such as Open
Energy Ontology” for ESMs and Functional Mock-up Interface for
simulation tools, serve a similar purpose.® The best practices for dealing
with the above sketched issues are (i) encompassing, clear, and detailed
model documentation on the one hand and (ii) taking sufficient time as
part of model exercises to discuss and report the details of variable
definitions and to create consistent model interfaces on the other.

One strategy to mitigate inconsistencies from mutual dependency of
dynamics in linked models is to ensure that feedbacks are captured and
models are iterated until convergence is reached [68]. Exchanging
relevant data between models, in both directions and multiple times in a
cascading soft-linking setup, can typically be used to approximate the
mutual dependency. However, convergence will not be guaranteed, and
it may not always be trivial to communicate the information in a way
that allows the other model to react—see also Section 2.1 as well as [26,
27,29] for previous work on various approaches to linking and how the
information flows between the models.

2.3. Data exchange implementation

The practical implementation of data exchange between models can
also present many challenges. This is unsurprising, since the exchange
process depends on a multiplicity of factors such as the development and
structure of the models, the programming language used, the avail-
ability of model interfaces for interoperability, and the type of inter-
linkages needed between the models [30]. The latter plays a critical role,
as the needs for data exchange are radically different between ap-
proaches such as soft links and hard links (see Section 2.1). Since
hard-linking is usually significantly more time- and resource-consuming
[201, soft links have been traditionally used to connect IAMs and ESMs
with various types of models, inter alia macroeconomic [69-71],
Multi-Regional Input and Output [72], technology diffusion [73], or
power systems models [74].

For IAMs, this exchange has been facilitated by standards such as the
IAMC template,* which offers a structured format for exchanging
modelling results and has been established in the community through
large model intercomparisons, feeding into IPCC assessments [66].
However, this template does not provide a common ontology to use for
model exchange, thereby often requiring hard-coded conversions of data
from one model to the other. What’s more, the specific template may be
less suitable for some models, making it burdensome to use [67]. While
many efforts to harmonise result variables or region names are under-
way—e.g., see Ref. [75], the nomenclature Python package,” and
automated data validation applications®—data exchange between
linked models often requires manual efforts and the development of
ad-hoc scripts for data processing.

An additional challenge is that the linked models are often run by
different institutes; thus, practical reasons may force compromises on
the linking set up that would not be made in the case of models that are
developed and interlinked by the same institute, e.g., MESSAGE and
GLOBIOM [19]. This can be partly addressed by building specific

https://openenergyplatform.org/ontology/.
https://modelon.com/blog/functional-mock-up-interface-fmi/.
https://data.ene.iiasa.ac.at/database/.
https://nomenclature-iamc.readthedocs.io/en/stable/.
https://github.com/ciceroOslo/iamcompact-validation-ui.

o U A W N


https://openenergyplatform.org/ontology/
https://modelon.com/blog/functional-mock-up-interface-fmi/
https://data.ene.iiasa.ac.at/database/
https://nomenclature-iamc.readthedocs.io/en/stable/
https://github.com/ciceroOslo/iamcompact-validation-ui

1. Keppo et al.

platforms to coordinate the model linking. Such platforms already exist
in other research fields, such as the Pegasus system [76], which has been
used for over a decade to manage the computational workflows and data
exchange between models in astronomy, bioinformatics, physics, and
elsewhere. A Pegasus workflow is built by defining the inputs and out-
puts of different tasks within the model linking application (e.g., run
model A based on inputs from model B), which are then executed based
on a directed acyclic graph and without requiring a common ontology
between models. Recently, Pegasus has been used to coordinate model
linking in an IAM [77], albeit without establishing a paradigm for the
IAM community.

Even with a dedicated platform, running the models and passing the
data onwards can be a laborious exercise, especially when the portfolio
of models is large and the contact points between the models are many.
A solution would be to transition to a “model as a service” approach
[30], where models are built directly as web services or are exposing an
application programming interface (API). For instance, models can be
uploaded as Docker containers with explicit APIs (as standardised as
possible), allowing any user to run them and request specific data for
model linking. This could be further combined with user interfaces for
orchestrating API communication. APIs could be also used to facilitate
harmonisation processes [78] or to deliver data to non-modelling
stakeholders in order to validate them [79]. There are several exam-
ples of web interfaces showing modelling results to experts and
non-experts, such as the 1AM PARIS platform [80], the Senses Toolkit
[81], or the upcoming Scenario Compass,” which could potentially
connect to API-enabled models and visualise their results.

Model APIs could be especially interesting in bi-directional soft
linking, where models run iteratively, using data outputs from one
model as data inputs to another, until the results of all models converge
between iterations (see e.g., Ref. [71]). The more models are involved,
the more contact points (and therefore convergence criteria) they have,
the more laborious the practical linking mechanisms are, and the more
difficult it is to reach convergence between the tools. This is further
complicated in case of exchanging data manually, leading the iteration
to omit any convergence considerations. Model convergence could be
significantly accelerated by using frameworks such as Pegasus to
orchestrate the computational workflow between models, especially
when combined with APIs to streamline data exchange. Such a struc-
tured process could also integrate automated testing using established
model diagnostics (e.g., Ref. [82]), which would also ensure the quality
of the model linking [30]. For instance, the final results derived from
models linked for a mitigation study could be used to create diagnostic
indicators such as the relative abatement index [82] and compared
against benchmarks for feasibility, similar to the vetting process of the
6th Assessment Report of the IPCC.

To sum up, there is ample room for improving current data exchange
methodologies for model linking by using standardisation and automa-
tion processes. At the very least, modelling teams should opt for a
standardised data format such as the IAMC template and agree on the set
of variables that will be included. If possible, automated tools such as the
nomenclature Python package should be employed to ensure that vari-
able names, units, and regions are consistent among modelling teams.
When extensive data linking is expected (e.g., in bi-directional soft
linking), the use of standardised interfaces such as the Pegasus system or
APIs could potentially reduce errors and ensure the quality of the ex-
change. While APIs can be time-consuming to develop and many
modelling teams may not have the capacity to do so, they can serve as a
long-term investment for model developers. Ensuring that a model is
easily linkable can potentially increase the likelihood of its use in model
linking and other exercises, similar to the way that open-source models
such as 0SeMOSYS, GCAM, and Calliope have been used and expanded
by multiple modelling teams beyond their original developers.

7 https://scenariocompass.org/process.
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3. Model linking as an epistemological problem

The structure of individual models embeds implicit assumptions that
shape how their results should be interpreted (e.g. Ref. [83]). Different
model types incorporate distinct epistemic values and trade-offs in areas
like accuracy, simplicity, and system representation [84]. For instance, the
choice of system boundaries, spatiotemporal scales, and variable defi-
nitions—not to mention the complexity of model linking processes (see
Section 2)—all shape the nature and validity of knowledge that an in-
dividual model can generate. These structural elements often reflect the
modeller’s conceptualization of the system and can introduce biases or
limitations in the knowledge generated [85,86]. A model that assumes
constant technological progress, for example, may overlook potential
disruptive innovations [87], leading to overly optimistic or pessimistic
projections of renewable energy adoption. Model-specific biases are
likely to vary from one model to another, which further complicates the
interpretation of ensemble data generated through multiple models
[88].

Beyond the technical hurdles outlined in Section 2, linking models
raises deeper epistemological questions, that is, fundamental issues
concerning the nature, validity, and interpretation of the knowledge
produced across complex, multi-model systems. By combining diverse
conceptual and methodological approaches, model linking introduces
three challenges: (1) synthesising distinct knowledge strands, (2) under-
standing how errors and biases propagate through interconnected frame-
works, and (3) interpreting the emergent properties that arise when multiple
models are linked. This section explores these three challenges inherent in
model linking and proposes frameworks for addressing them.

Interpreting how the outcomes of a specific model and modelling
exercise should be understood is nontrivial (e.g. Refs. [89-92]). When
models are linked, the synthesis of disparate knowledge strands becomes
ever more challenging. For example, coupling a prescriptive,
perfect-foresight optimisation ESM (e.g., TIMES [93]) with a descrip-
tive, myopic macroeconomic simulation model (e.g., E3ME [94]) pro-
duces a  hybrid system with different and conflicting
economic-engineering and economic solution paradigms. This raises
questions about how to synthesise, interpret, and reconcile knowledge
produced under fundamentally different, yet linked, modelling para-
digms. One option to addressing this synthesis challenge is to develop
explicit frameworks for mapping and documenting the key differences
underlying each model component, enabling systematic analysis of
where knowledge claims may conflict or complement each other. Model
typologies [35] can assist in this, as they are designed to differentiate
models based on the various dimensions in which they may differ, thus
providing an initial, more aggregated mapping for the previous.

Model linking can compound errors and biases across interconnected
models or even introduce novel ones [95]. As data and assumptions flow
between models, inaccuracies may be amplified more than in any in-
dividual model alone. For example, biased renewable energy cost pro-
jections in one model could significantly impact investment decisions in
linked models, creating compounded errors throughout the system.
Furthermore, the interactions between models can create emergent
properties that introduce new sources of errors and biases, which are not
present in the original models individually. Thus far, there are various
studies (see Refs. [96-102]) that use various methods, such as decom-
position and sensitivity analysis, to systematically attribute variations in
mitigation scenario outcomes to different drivers, socioeconomic as-
sumptions, model differences, and their interactions, with the aim to
improve the robustness of scenario interpretation for policymakers.
However, these methods primarily focus on analysing variations in final
outcomes, whether for individual or linked models, rather than tracking
how errors and biases propagate through the linking process itself, or
how they arise and are amplified across linked models. Developing
robust methodologies specifically designed to track and quantify the
propagation and potential amplification of uncertainties, errors, and
biases through the sequential steps and interfaces of model linking
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represents a key challenge and an important area for future research.

Linked models can result in new emergent properties of the linked
systems, such as their ability to capture cross-sector interactions or
produce internally consistent narratives across multiple domains.
Indeed, achieving such emergent results may be a key aim of linking
models. However, the complex interactions between models can also
produce outputs not easily traceable to any single input or assumption,
complicating both validation and policy interpretation. For example,
linking an ESM that focuses on centralised electricity generation with a
land-use model focused on ecosystem services might reveal trade-offs
between energy policy goals and land-use constraints (and, in turn,
between climate and environmental objectives)—insights that neither
model could offer independently. In such a combined system, it may be
difficult to attribute results to any single input or assumption because
the interplay of energy infrastructure, land availability, and ecological
integrity emerges only when both models operate together. This
complexity can enrich our understanding of cross-sectoral dynamics
while simultaneously complicating interpretability and policy guidance.

Looking ahead, it is important to develop a framework that assesses
the validity of model linking exercises. This framework should address
knowledge synthesis, the propagation of errors and biases, and the
interpretation of emergent properties of linked systems, all in the light of
the intended purpose of model linking and the potential new insights
that it can generate. Key components of this framework would include
detailed documentation of linking procedures and assumptions; devel-
oping methods for identifying and evaluating errors and biases and
understanding how they may propagate through the linked system; and
an explicit interpretation stage for the combined model system (simi-
larly to other disciplines—e.g., Ref. [103]). As Silvast et al. [84] observe,
the epistemic values of models are often negotiated alongside
non-epistemic values, particularly in applied contexts. In some in-
stances, a model’s perceived utility for policy decisions may override
considerations of physical accuracy. This interplay between epistemic
and non-epistemic values adds another layer of complexity to the
interpretation and application of linked models. The selection and
interpretation of linked model systems should be considered during the
initial design phase, ensuring philosophical compatibility between
chosen models and their alignment with the real-world dynamics they
aim to represent, thereby minimising conflicts in underlying
assumptions.

Practitioners instigating model linking exercises should consider the
following steps systematically. First, they should explicitly map the
epistemic foundations of each model, including their temporal and
spatial scales, key determining assumptions, and methodological ap-
proaches; such mapping can enable early identification of potential
paradigmatic conflicts and areas where knowledge synthesis might
prove challenging. Second, they should assess the potential for error
propagation by identifying critical data exchange points between
models and by understanding whether and how these may be addressed
or at least acknowledged when interpreting the outcomes of the linked
systems. Third, they should carefully consider whether the emergent
properties from the linked models align with their research objectives
and whether they can be adequately validated against empirical data.
Throughout this process, modellers should consider trade-offs between
complexity vs. tractability, comprehensive system representation vs.
result interpretability, and theoretical rigour vs. pragmatic applicability
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of the modelling framework. These trade-offs should be explicitly
documented and justified based on the specific research or policy
questions being addressed, including clear limitations of the linked
system and guidance as to how results should, and importantly should
not, be interpreted by end users.

4. Conclusions and a way forward

Model linking for energy-system analysis and integrated assessments
in support of energy, climate, and sustainability policy should be
motivated and thus driven by an explicit need to (better) answer a
particular question. This need may be directly associated with the scope
of a specific study, meaning that model linking is required only in
relation to that study (one-off applications), or it can trace to an ongoing
branch of scientific research in the long run, meaning that model linking
should result in a strategic modelling framework to be continuously used
and further developed. Whichever the case, our focus in this paper has
been to highlight the key areas in which decisions about model linking
are not trivial, and to emphasise the significance of the decisions, the
documentation of the rationale behind them, and the communication of
the implications of the choices and model linkages for interpreting the
results.

Based on our discussion and the reviewed literature, we propose a
general checklist that can be used for making initial decisions about
linking models. As no two models—and thus no two linking tasks—are
identical, this checklist is intentionally general: the questions must be
addressed and the recommendations interpreted within the context of
the specific linking task at hand. When relevant, we acknowledge
different requirements and considerations in case the establishment of
model links is strategic and long-term rather than a circumstantial, one-
off activity—acknowledging that the former case requires additional
considerations and guardrails. With that said, the one-off suggestions are
also a minimum baseline for the strategic linking recommendation,
when no new advice is offered for the same topic in the latter. We also
refrain here from discussing the specific linking approaches (hard link-
ing, bi-directional and unidirectional soft linking, etc.), as these have
been previously discussed extensively (see, e.g., Ref. [27]).

The recommendations included in our checklist in Table 1 assume
that the trade-offs associated with the model linking process have been
considered and deemed beneficial. This means that the level of robust-
ness required for the linking process has been considered, to avoid
compromising the integrity of the results or the benefits that can be
achieved; this is especially important for long-term/strategic model
linking, which requires considering the level of added complexity, the
increase in opaqueness of model dynamics, and the volume of applica-
tions that truly need the explicit representation of the cross-model dy-
namics. Not linking the models should be kept as an option, as the above
conditions will not be fulfilled for many model linking possibilities.
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Table 1
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Checklist for establishing links among sectoral and IAM modelling tools.

Type of considerations

Checklist

Linking across temporal and spatial scales

System boundaries, variable definitions and
harmonisation

Data exchange implementation

Model linking as an epistemological problem

i) If the aim of the linking is not to increase the spatial or temporal granularity of the analysis, and there is an option to link models

of similar temporal and/or spatial scope or granularity, then practitioners should prioritise linking such models.

ii) Model linking explicitly aiming to increase the spatial or temporal granularity of the analysis requires significantly more robust
approaches than if the core purpose of the linking exercise is to simply overcome the spatial and temporal differences that exist in
two models linked for other purposes.

iii) Upscaling and downscaling approaches (e.g. clustering) can be useful for moving data from one model to another — but with
limitations (see (v) below).

iv) If models with different foresight assumptions are linked, attention should be paid to the design and process of the data exchange.

In cases of strategic model-linking for long-term application:

v) Limitations to upscaling and downscaling due to important relative positions of data points (in time or space) could render more
extensive changes necessary for at least one model

vi) The extent to which the spatial and temporal dimensions of the models to be linked can be harmonized should be considered, and
the model(s) modified accordingly.

vii) Ascomputational power may be the core constraint, a preliminary simplified test application could offer important insights into
the sensitivity of model results to the attained increase of detail, and thus to the added value of engaging in the model linking
process to begin with.

viii) Common assumptions, key variable definitions, and underlying scenario narratives must be harmonized to the extent possible.
When interpreting results, the lack of full harmonisation across all model assumptions must be transparently reflected in the

analysis. This includes paying close attention to how variables have been defined in the models to be linked, to ensure the
definitions do not differ.

ix) Detailed model documentation should be developed and then used during the model linking, to better understand the model
assumptions made for model structure, variables and parametrization. Adequate time within the linking process should be
devoted to discussing such assumptions and definitions across modelling teams.

In cases of strategic model-linking for long-term application:

x) A full mapping of assumptions (explicit and otherwise) and their drivers for the models to be linked can facilitate the process of
harmonising assumptions and variable definitions, ensuring consistency across both explicit and background assumptions across
the linked model system, and legitimising the produced model framework and its results.

xi) Standardisation (e.g., of data templates and automating processes) can be decisive. The use of dedicated tools developed by the
energy-/climate-economy modelling community can help with data exchange, as well as add transparency for variable
definitions, model structure, and assumptions.

In cases of strategic model-linking for long-term application:

xii) Using standardised interfaces or APIs may be more resource-intensive but is highly beneficial, as it can reduce errors and provide
a distinct part of the linked model system.

xiii) Before linking, the epistemic foundations of the models must be mapped to assess where the rationale of the models may be in
conflict; if the areas appear critical, and serious inconsistencies unavoidable, the usefulness of the model linking activity may
need to be reconsidered.

xiv) Documenting the linking process itself can contribute to understanding how the model results should be understood, as well as

to legitimising the exercise, in terms of both scientific rigour and policy credibility.

Practitioners may need to assess how critical data exchange points (e.g., inconsistencies between variable definitions, or

compromises made to facilitate data exchange) may introduce errors as well as how these errors may propagate, especially when

two-way feedbacks are considered between the models (as the latter increase non-linearity and variability); this will help them
explicitly discuss and highlight potential issues when interpreting model results.

xvi) A separate interpretation stage should be included to explicitly consider and discuss how the potentially different model
rationales and various compromises made during the model linking should be interpreted for the results. Special attention
should be paid to the emergent properties from the linked system, in terms of whether they can be validated against empirical
data.

In cases of strategic model-linking for long-term application:

xvii) In the light of the epistemological points discussed, for strategic model linking the inconsistencies should be minimized a priori,
even at the cost of having to alter one or more of the models — or changing the models to be linked. It is inadvisable to create
“permanent” models for which the interpretation of results has obvious ambiguities.
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