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A B S T R A C T

Linking existing models to extend energy system and integrated assessment analysis is an increasingly common 
practice. Despite this, and unlike in the field of environmental and earth sciences, little attention has so far been 
paid to the details of it, to the trade-offs involved and the way in which the model linking affects the inter
pretation of the outcomes of the interlinked model system. Our aim in this paper is to first focus on a set of key 
technical and methodological problems that are common in model linking and suggest how these could be 
approached in different model linking contexts. We then further explore how model linking may affect the nature 
of the knowledge produced, and how this should be considered in the model linking process. Reflecting our 
literature driven assessment of the issues and possible solutions, we compile “a check list” to assist in the process 
of decision making for model linking.

1. Introduction

Energy-system models (ESMs) and integrated assessment models 
(IAMs) have been key tools for assessing the progress towards achieving 

various climate goals, developing pathways consistent with specific 
climate goals, and assessing the effectiveness of specific mitigation 
portfolios. Their strength lies in their ability to assess system-wide, 
cross-system developments, by covering the major components of 
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climate-economy dynamics—including the energy system, the economy, 
typically an aggregate representation of the climate system, and to 
different extents land use—while reflecting the impacts of their in
teractions within and across the different subsystems [1]. The models 
have extensively influenced decision-making at national and interna
tional levels (e.g., Refs. [2–4]), while also playing a central role in 
producing the scientific evidence underlying climate negotiations and 
underpinning the agreed climate goals [5,6].

The initial focus of modelling and long-term scenarios was pre
dominantly on technical assessments of the energy system [7,8]. In time, 
however, and with increasing awareness of the urgency of climate ac
tion, the importance of covering more relevant sectors—and the inter
linkages between them—has increased (e.g. Refs. [9–13]), and so has 
the computational capacity to cover these sectors and their interlinkages 
in more detail, thereby leading to increasingly complex and computa
tionally intensive models. As extending the model boundaries would 
further complicate the models, a common approach to enabling ever 
broader and more detailed assessments is to create linkages between 
existing models, and to endogenise the cross-system interactions 
through these linkages (e.g. Refs. [14–17]). Some IAMs have, over de
cades, evolved from models with a limited disciplinary focus, such as 
energy systems, by linking to additional models, modules and extensions 
for land systems, the economy, the environment, and the climate system 
(e.g. see Refs. [18,19]). Similarly, model linking has been used for sec
toral “deep dives”—i.e., to provide greater detail about a subsector 
already covered by the larger, system-level model (e.g., Ref. [20])—or 
for capturing effects of climate action from a sustainability perspective 
[21]. Model linking has thus not only allowed the model-based analysis 
to make explicit and cover the impacts of cross-system interactions, 
which in turn enables more integrated analysis of energy, climate, and 
sustainability challenges, but also adds a level of detail and granularity 
previously unavailable. Thus, it can be argued, the benefits of model 
linking are clear and persuasive.

As common as model linking is for IAMs and ESMs, however, there 
are no straightforward, standardised, commonly accepted processes to 
do it; in fact, fairly little attention has been paid to the details, specifi
cations, and requirements associated with model linking. Individual 
models have been created for different purposes, often with different 
internal rationales, overlapping system boundaries, and context specific 
variable definitions. Linking models simply by exchanging chosen var
iables between them is feasible, and thus often done, but overlooks the 
significant complexities that closer scrutiny would reveal. For example, 
does the parameterisation of interlinked models reflect similar as
sumptions about how exogenous factors of the future will unfold? Do the 
models truly overlap only for the variables that are being exchanged 
and, if not, should linking take place for all the shared variables for the 
modelling to be internally consistent–and how should one define which 
model takes precedence for a given variable? How should one link 
models that consider time, either for horizon or granularity, differently? 
If one model aims to find an optimal solution across the given time 
frame, and another myopically simulates system behaviour based on 
historical data, how should the results of the combined model be 
interpreted? Rarely can such methodological choices in model linking be 
defensible purely on scientific grounds, and trade-offs need to be 
accepted in practically all model linking exercises. Modellers must often 
make pragmatic decisions based on a combination of scientific princi
ples, practical constraints, and expert judgment, but the rationale and 
trade-offs involved in this decision-making have not been at the center of 
the model-linking exercises, nor in the communication thereof. Our aim 
in this paper is to focus the attention on the practice of model linking to 

assess low-carbon transitions, and carry out a narrative review to 
identify and discuss a set of key problems that should be addressed when 
linking models, as well as how these may depend on the characteristics 
of the specific models involved. We use the outcomes of this review and 
analysis to propose a practical check-list, to be used when planning a 
model linking activity.

While model linking has traditionally been mostly a pragmatic 
endeavor, there also exists research focussing more on the model linking 
process itself. Some studies have discussed the issue explicitly or addi
tionally in the context of the energy and economic systems (e.g. Refs. [9,
22–24]), but these papers are typically general and conceptual, without 
directly addressing the practical complexities of carrying out the actual 
model linking. A recent paper [25], while focused on exploring the 
benefits of linking three specific model types (agent based models, CGE 
models and IAMs), does also offer an insightful, albeit short, discussion 
of model linking issues related to e.g. scales, interoperability, and model 
calibration.

Model linking within the environmental and earth sciences, how
ever, has a much richer literature on model linking as a problem by it
self. Models such as Earth System Models, Vegetation Demographic 
Models, and Land Use Change Models (LUC) generally focus on the 
biophysical characteristics of the systems, such as atmospheric and 
ocean physics and chemistry and land cover, ecology and dynamic 
vegetation growth [26,27].Verburg et al. [28], for example, highlight 
model linking in the context of their broader discussion of what is 
needed for modelling the socio-ecological dynamics of the Anthro
pocene. Although they touch upon many issues discussed also in this 
paper, such as the problem of “reconciling epistemologies”, their main 
focus is different: what should be captured, and how, to model the 
Anthropocene. Tan et al. [29], in turn, explore the ways in which earth 
system models and IAMs have been linked, especially focussing on the 
way in which the feedbacks are captured across space and time. In their 
discussion of remaining gaps and challenges, they briefly highlight is
sues such as reconciling different spatiotemporal scales and variable 
definitions but do not further elaborate on them and their associated 
challenges, nor suggest ways forward. Similarly, Van Vuuren et al. [27] 
also discuss linking earth system models and IAMs, with the focus on the 
nature of the linkage (e.g., one-way linkage or full coupling, the latter 
interpreted in this paper to imply full integration of an IAM within the 
earth system model), and the trade-offs the different options bring. They 
note some general problems that full coupling might bring, drawing on 
the specific types of models discussed in the paper, and provide some 
insightful advice about the conditions under which specific linking op
tions may be preferable. Robinson et al. [26], in turn, discuss 
human-natural systems model coupling, i.e. tools that link models 
focused on human decision-making with those describing e.g. the bio
physical processes in detail. Their paper zooms in on land use and the 
type of model links used, and draws eight lessons that, - while reflecting 
the very specific examples used, - are broadly applicable in any model 
linking activity. Several of the lessons are relevant also for our dis
cussion—reflecting issues related to, e.g., spatiotemporal differences 
and system boundaries—while also providing practical advice about the 
way in which aspects such as data exchange and variable naming can be 
organised.

The technical implementation of model linking, often related to 
linking the type of models discussed above, also features in the litera
ture. Belete et al. [30], for example, primarily discuss the technical and 
software side of model linking, although their take on pre-integration 
assessment and data interoperability provides important observations, 
e.g., about variable definitions and purpose of the model integration. 
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Similarly, Usher and Russell [31] present a framework for integrating 
infrastructure models - in their case defined as “Models of transport, 
energy, solid waste, water supply and digital communications […]” - but 
with the focus strictly on software implementation, and only briefly 
noting problems related to model linking across temporal scales.

Finally, and as noted above, many of the potential complications 
related to model linking are driven by the differences e.g. in the struc
ture, internal rationale and scope of models to be linked, typically in 
various dimensions. The dimensions across which models may vary are 
so numerous that there is a wide body of papers dedicated only to 
establishing the different ways in which the models can be catego
rized—see e.g. Refs. [32–34], as well as Keppo et al. [35] and the ref
erences within. Such “model typologies” can help in understanding how 
given models to be linked differ, in which dimensions the differences are 
particularly important, and how the differences affect the interpretation 
of the modelling outcomes.

In the following sections we will first discuss the technical consid
erations for model linking in three key areas emerging from the litera
ture (Section 2), which serves as a foundation for the subsequent 
discussion on before continuing to discuss how model linking may affect 
the interpretation of the knowledge derived with the linked model sys
tem(Section 3). We conclude by providing our checklist for establishing 
links between models (Section 4).

2. Technical considerations for model linking

Here, we will discuss three families of model linking-related tech
nical problems, exploring the nature of the problem, approaches found 
in the literature, and possible avenues to mitigate the identified issues.

2.1. Temporal and spatial scales

Linking models that feature different spatial and temporal resolution 
allows the analysis of challenges at different geographical and gover
nance scales. For instance, by doing so, one can extract insights into 
technological transitions that include high penetration of variable re
newables, demand response mechanisms, and/or other flexibility op
tions [36], explore distinct solution spaces and sets of uncertainties for 
different contexts [37], and, overall, address the diversity of short
comings associated with exercises of limited spatiotemporal detail in 
IAMs [38]. The aim, however, may not always be to benefit from the 
difference in scales, but to seek other gains — e.g., in terms of sector
al/technological complementarities, robustness, etc. – and in the process 
find ways of integrating the tools across different spatial and temporal 
resolutions. There may also exist trade-offs between the different ap
proaches in the literature for downscaling or upscaling results from one 
model to the other, typically in the form of providing better consistency 
at the cost of being computationally intensive, or vice versa. More 
complex methods also require more human resources for their 
development.

The first order of trade-offs concerns the extent of linking (such as 
hard linking or soft linking) used for linking across spatial and temporal 
scales. Soft-linking typically means a linking process in which results are 
transferred from one model to another more manually, with direct user 
control, whereas hard-linked models typically run in parallel, constantly 
exchange data based on predefined algorithms and produce one set of 
results [39].

For instance, Fattahi et al. [36] suggest hard-linking ESMs with 
market models as one way to analyse the flexibility potential of 
cross-border trade in competition with domestic flexibility options. 
However, since market models typically use mixed-integer linear pro
gramming (MILP) to track unit commitment, the energy system-market 
model combination resulting from the hard-linking would be compu
tationally unmanageable. An emerging body of literature instigates 
soft-linking among IAMs and/or ESMs with different spatial and tem
poral resolutions. Gong et al. [40], for example, address the lack of 

temporal detail in an IAM (REMIND) by an iterative soft linkage with an 
annual, single-region, hourly power system model (DIETER), 
exchanging data on annual costs and capacities (from REMIND) and 
average market values (DIETER) until convergence in electricity-prices 
and quantities is reached. The analysis, however, lacks spatial detail 
and the scope is limited to one region (Germany). Frysztacki et al. [41] 
highlight the strong effect that spatial network resolution in electricity 
system models has on key variables, such as least-cost penetration of 
variable renewables: If ESMs with low temporal or spatial resolution are 
soft-linked with high-resolution electricity system models (e.g., hourly 
dispatch models with numerous nodes to represent an electricity grid), 
the capacity expansion results from the former may be too low-resolved 
and sub-optimal, making the dispatch analysis less reliable. Kumar et al. 
[42] attempt to increase both the temporal and spatial detail in an ESM, 
by first increasing the temporal resolution of the model itself and then 
soft-linking it with a geospatial tool for district heating network opti
misation, albeit again doing so for a limited geographical scope.

Rather than linking models [43–45], increase the spatial detail in 
ESMs by clustering regions with similar demand and/or supply char
acteristics. Such an approach has the benefit of keeping the computa
tional load manageable, but it loses the information on the topology of 
infrastructure, making it unsuitable for network-focused analyses. 
Sahoo et al. [46], on the other hand, break down a province-scale model 
into geographic regions (municipalities and high-density areas within 
them), thus retaining a certain level of information on the network to
pology. The level of granularity achievable by regionalising a model 
with a feasible computational load, however, depends on the scale of the 
model. If the model is at national or continental scale, the level of 
granularity achieved by Sahoo et al. will require significantly higher 
computational load. Similarly, coupling complex General Circulation 
Models (GCMs) with IAMs of different complexity and temporal reso
lution has been addressed by means of different statistical methods (e.g., 
emulators, machine learning, etc.) [47]. The simplification of processes 
using averaged relationships in emulators might not, however, be able to 
capture the nonlinear feedbacks and may generally limit the capability 
of the models to assess extreme scenarios. One linking challenge lies in 
ensuring that climate-driven economic and energy system responses in 
space and time remain consistent across models. Misalignments between 
GCMs and IAM scenario assumptions may lead to unrealistic policy in
sights [48].

The second order of trade-offs concerns how the spatial disaggregation 
is treated in model links. Cultice et al. [49] highlight that spatial granu
larity is necessary in IAMs for representing spatial economic interactions 
at local and meso scales (the former intended as the set of economic and 
environmental interactions happening in the order of 1 km, the latter as 
the processes and dynamics linking local to global realities), and to 
capture their effects on global dynamics. They also discuss recent 
progress in detailing spatial economic and biophysical dynamics using 
multi-scale, multi-module1 IAMs. However, this level of detail often 
comes at the cost of reaching spatial equilibrium (i.e. a state at which no 
agent is better off relocating anymore, given the decisions of other 
agents [49]), due to the high computational power and time required. 
On the other hand, when using a single model, the spatial and 
cross-system detail that can be achieved is usually limited. Using a 
global IAM (GCAM) but focussing on dynamics within an individual 
study region, Kyle et al. [50] demonstrate that different spatial resolu
tions in the IAM may lead to different magnitudes of land use changes, 
essentially suggesting that land use changes (and related emissions) may 
also depend on the IAM’s resolution, when coupled with a land alloca
tion model. Another challenge in rule-based downscaling is the limited 
representation of drivers and dynamics of land use changes. This in
cludes for instance lack of constraints related to protected lands or 

1 In the literature term “module” is typically used when referring to a smaller 
component of the full model, often explicitly designed for the model.
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productivity [51], inability to show land use changes in each direction 
[52], or averaging errors and misrepresentation of localised effects such 
as heterogeneous soil fertility or water availability (as in the case of a 
link between the economic land-use optimisation model MAgPIE and the 
detailed biophysical model LPJmL [53]). There exist country-scale 
model applications that use integrated resource management optimisa
tion techniques to determine land use changes at higher spatial resolu
tion and clustering techniques to reduce computational load [54]. The 
land allocation results from such applications could be fed back to the 
IAM as land allocation rules; however, when doing so, the modellers 
must be aware of and provide guidance for how the potentially different 
rationales underlying the models affect the interpretation of the linked 
model system (see Section 3). Reconciling differences in spatial resolu
tion while ensuring computational feasibility is also a challenge when 
linking GCMs and IAMs: despite enhancing regional impact analysis, 
incorporating high-resolution climate projections into IAMs also in
creases complexity, computational costs, and inconsistencies due to 
differences in model structures and assumptions (see also Section 2.2). 
Downscaling techniques can improve the spatial detail of climate 
modules but may also introduce uncertainties. Pattern scaling is one of 
the simplest such techniques, which can be improved by including more 
predictors beyond “global mean temperature” such as “land-sea” tem
perature contrast; for example [55,56], suggest a hybrid approach 
combining statistical downscaling with dynamic feedbacks to balance 
consistency and efficiency.

The third order of trade-offs concerns the model horizons of the linked 
models. While coupling models with the same approach to foresight 
provides internal consistency, this may not always be feasible, when 
linking existing, stand-alone models. Much like stakeholders in societal 
contexts where decisions are made, strictly formalised modelling 
frameworks often apply different foresight for their decision-making. 
While different foresights of linked models can complicate the linking 
process, it can also be beneficial in better reflecting some aspects of real- 
world dynamics; decisions made by the agents with short-term foresight 
(e.g., prioritising immediate gains) will affect also the agents with longer 
decision horizons (e.g., long-term strategic planning). As an example of 
linking across time horizons, Leimbach et al. [57] input global tradable 
energy commodity prices and carbon prices from a perfect-foresight IAM 
into two myopic-foresight trade models. The latter are further linked to a 
household model, to examine the differences between the distributional 
effects of climate policy and the distributional effects resulting from 
macroeconomic structural changes. Different foresights are also com
mon in modelling electricity system capacity planning and dispatch. 
Kleanthis et al. [58], for example, present a methodological framework 
in which the capacity expansion tool first plans the system for a longer 
time horizon and a dispatch tool is then used to test and refine the 
flexibility options deployed. In the last step, the capacity expansion 
model is run again, with the additional flexibility options included. This 
approach does not, however, necessarily lead to an optimal system, as 
the temporally more granular modelling optimizes flexibility in the 
context of a specific initial design – and the design can, by definition, not 
consider possible flexibility issues.

The more feedbacks and variables exchanged between models with 
different foresights, however, the more complicated and iterative the 
linking process becomes. Does one, for example, run a model with a 
longer decision horizon first, to provide boundary conditions for the 
short-term tools, and then recalculate those boundary conditions once 
the short-terms models have been run? Depending on the temporal 
granularity of the myopic tools, this can lead to an extensive set of 
iteration loops (see also section 2.3, on model convergence).

In synthesis, when seeking higher spatial and temporal granularity, 

whether by disaggregating one model or by soft-linking models, the 
clustering of geospatial data can introduce detail in the more aggregated 
models with limited computational load added. However, clustering 
methods alone are not suited for analyses where infrastructure networks 
are in focus, because information on the network topology is essential. In 
such cases, the aggregated model must feature a level of granularity that 
preserves the key topological features of the infrastructure—that is, it 
needs to be regionalised (as done by Sahoo et al. [46], see the discussion 
above). This is more feasible the smaller the scale of the original model. 
For one-off links, the use of coupling tools that disaggregate certain 
datasets of the aggregated model may be more practical. As computa
tional power may be the core constraint, before engaging in the linking 
process, it may be valuable to carry out a simplified test application to 
observe how sensitive the results are to the detail added through linking. 
Finally, linking models with different foresight horizons can improve the 
representation of real-world dynamics, but attention should be paid to 
how the data exchange can be carried out effectively (see the later 
section).

2.2. System boundaries, variable definitions, and harmonisation

For model linking to be feasible, model system boundaries need to 
overlap at least to the extent that some “contact point”–minimum one 
shared parameter or variable–is included in both models. The most 
straightforward and easiest case of model linking is when system 
boundaries do not overlap and contact points are limited to one or more 
variables that are exogenous to one model and endogenous to another. 
Examples in the literature include linkages between sectoral models, in 
which models of the mobility, housing, or industry sectors calculate 
electricity demands of the respective sector, which are then used as 
input variables of a power sector model (e.g., Ref. [59]). The output of 
many IAMs is used as input into simple climate models for climate as
sessments, with various harmonisation and infilling steps required to 
make a consistent assessment [60]. More integrated examples are ESMs 
linked with land-use models and simple climate models, such as the 
coupling of REMIND with the MAgPIE land-use model and the MAGICC 
simple climate model to provide fully integrated assessments of the 
energy-economy-land-climate system [14] or the economic integration 
of the WITCH IAM with the FASST(R) air pollution model to internalise 
health-economic impacts of air pollution into climate policy [61].

More complex linking exercises involve partially or fully overlapping 
system boundaries resulting in larger sets of contact points formed by 
variables that are endogenous in both models and multiple flows of in
formation between the models. In these cases, one needs to decide which 
model(s) determine endogenously the values, and which model(s) use 
these values as exogenous input. This typically implies very complicated 
linking exercises and potentially the need to do significant changes to 
one or more participating models to accommodate exogenous input, 
where formerly endogenous variables would be used in the model’s al
gorithms. In any case, it can be expected that compromises in terms of 
the consistency between the tools may be necessary. Examples include 
the soft-linking of the TIMES-Sweden model with the EMEC model in a 
Swedish case [62], the soft-linking between PRIMES and other national 
energy system models with the global Computable General Equilibrium 
GEM-E3 Model [63] and linking the ESM EU-TIMES with the NEMESIS 
macroeconometric model [64]. In these cases, for example, the energy 
systems are fully encompassed in the economic descriptions, but the 
latter are more aggregated and abstracted for many of the variables of 
the former. As a consequence, extensive mappings between variables 
representing energy and macroeconomy in the involved models need to 
be created that account for diverging sector boundaries and the 
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representation of variables (e.g. physical units vs. monetary units).
In all cases, attention must be paid to the definition of the shared 

variables, i.e., whether these are defined identically (content as well as 
units of measurement) or not. Even similarly named variables may 
reflect slightly different real-world entities. For example, when calcu
lating the energy demand of the industry sector, industrial CHP and 
power plants may be modelled as integral parts of industrial sites in an 
industry model and their power demand calculated as net balance (i.e., 
what needs to be provided by the power grid). But, for an energy supply 
model that is calibrated with statistical data, power generation in these 
plants and associated primary energy used could be (implicitly) 
considered as part of the power sector. Another example would be in
vestment costs of industrial plants calculated by an industry model to be 
used as input into a macro-economic model. The definition of invest
ment costs could differ between both, ranging from pure equipment 
costs through inclusion of installation costs to also including costs for 
permits.

Another important consideration is that the results of linked models 
are often mutually dependent, even if the specific variables are not 
directly shared. In the above example of a linkage between demand 
sector models and an electricity provision model, part of the electricity 
demand– e.g., if some processes in industry are electrified or not–will 
depend on price signals from the energy sector, while the price of 
electricity calculated by the electricity system model in turn depends on 
demand levels calculated by the industry, mobility, and housing models. 
Challenges also arise if the flow of information goes from a more 
aggregated variable in one model to a more fine-grained one in another 
model and thus disaggregation of data is required (see Section 2.1). For 
example, an IAM (or ESM) endogenously calculates, among other out
puts, electricity supply on an annual scale and uses resulting electricity 
costs for endogenously calculating electricity demand based on demand 
curves; if electricity supply is passed onto an electricity sector model 
with hourly resolution, e.g., in order to better understand the mix of 
electricity production technologies required or of grid-related aspects, 
the electricity costs arising from the electricity sector model may well 
differ from the ones calculated by the IAM—but if different costs had 
been assumed in the IAM, demand (and thus supply) would have 
differed as well, which would in turn change the input to the electricity 
model. Similar aggregation issues can exist for any variables—e.g., one 
model may describe all electric vehicles with one technology, while the 
other one may distinguish them based on size, cost, or other 
characteristics.

Furthermore, attention should be paid to background assumptions 
underlying the model parameterisation, also considering that these may 
not be found prominently in the models themselves, or in their docu
mentation. Typical examples of such background assumptions are sce
narios used for GDP development, population (number and structural 
composition), international trade, technology costs, climate policies, 
and weather conditions. If such background assumptions drive key pa
rameters in different models (e.g., assumed weather conditions may 
influence both agricultural yield and the needs for heating and cooling 
in housing), ignoring them can create inconsistencies.

An important element in the process of model linking therefore is the 
harmonisation of common assumptions and variables. This includes 
comparison and alignment of underlying narratives and data sources 
(see also Section 2.3)—to the extent that it is possible. Challenges for 
harmonisation include that the definitions of given input parameters 
may not be entirely consistent between linked models, which may cause 
significant efforts to identify a consistent mapping of these variables 
between the models. Practical problems may also arise; for example, if 
models have large overlaps, the harmonisation of these overlaps re
quires a significant amount of work. Adopting variable values from a 
harmonisation exercise can also potentially lead to model instability, if it 
implies that a model enters untested parts of the solution space [65]. 
Finally, in absence of full harmonisation, one can try to link models 
using relative changes (rather than absolute values, see e.g. Ref. [63]), 

although this naturally harms consistency across the models.
Since variable definitions tend to be model-specific, no one-size-fits-all 

solution exists for the above sketched challenges that arise from 
diverging variable definitions. The IAM community’s work regarding 
data management and protocols [66] as well as the IAMC scenario 
submission template (also in context of contributing to the IPCC WGIII 
assessment—see Ref. [67]) can help in harmonising similar system 
boundaries and variables (including units of measurement) as an 
intermediary between two models. Other approaches, such as Open 
Energy Ontology2 for ESMs and Functional Mock-up Interface for 
simulation tools, serve a similar purpose.3 The best practices for dealing 
with the above sketched issues are (i) encompassing, clear, and detailed 
model documentation on the one hand and (ii) taking sufficient time as 
part of model exercises to discuss and report the details of variable 
definitions and to create consistent model interfaces on the other.

One strategy to mitigate inconsistencies from mutual dependency of 
dynamics in linked models is to ensure that feedbacks are captured and 
models are iterated until convergence is reached [68]. Exchanging 
relevant data between models, in both directions and multiple times in a 
cascading soft-linking setup, can typically be used to approximate the 
mutual dependency. However, convergence will not be guaranteed, and 
it may not always be trivial to communicate the information in a way 
that allows the other model to react—see also Section 2.1 as well as [26,
27,29] for previous work on various approaches to linking and how the 
information flows between the models.

2.3. Data exchange implementation

The practical implementation of data exchange between models can 
also present many challenges. This is unsurprising, since the exchange 
process depends on a multiplicity of factors such as the development and 
structure of the models, the programming language used, the avail
ability of model interfaces for interoperability, and the type of inter
linkages needed between the models [30]. The latter plays a critical role, 
as the needs for data exchange are radically different between ap
proaches such as soft links and hard links (see Section 2.1). Since 
hard-linking is usually significantly more time- and resource-consuming 
[20], soft links have been traditionally used to connect IAMs and ESMs 
with various types of models, inter alia macroeconomic [69–71], 
Multi-Regional Input and Output [72], technology diffusion [73], or 
power systems models [74].

For IAMs, this exchange has been facilitated by standards such as the 
IAMC template,4 which offers a structured format for exchanging 
modelling results and has been established in the community through 
large model intercomparisons, feeding into IPCC assessments [66]. 
However, this template does not provide a common ontology to use for 
model exchange, thereby often requiring hard-coded conversions of data 
from one model to the other. What’s more, the specific template may be 
less suitable for some models, making it burdensome to use [67]. While 
many efforts to harmonise result variables or region names are under
way—e.g., see Ref. [75], the nomenclature Python package,5 and 
automated data validation applications6—data exchange between 
linked models often requires manual efforts and the development of 
ad-hoc scripts for data processing.

An additional challenge is that the linked models are often run by 
different institutes; thus, practical reasons may force compromises on 
the linking set up that would not be made in the case of models that are 
developed and interlinked by the same institute, e.g., MESSAGE and 
GLOBIOM [19]. This can be partly addressed by building specific 

2 https://openenergyplatform.org/ontology/.
3 https://modelon.com/blog/functional-mock-up-interface-fmi/.
4 https://data.ene.iiasa.ac.at/database/.
5 https://nomenclature-iamc.readthedocs.io/en/stable/.
6 https://github.com/ciceroOslo/iamcompact-validation-ui.
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platforms to coordinate the model linking. Such platforms already exist 
in other research fields, such as the Pegasus system [76], which has been 
used for over a decade to manage the computational workflows and data 
exchange between models in astronomy, bioinformatics, physics, and 
elsewhere. A Pegasus workflow is built by defining the inputs and out
puts of different tasks within the model linking application (e.g., run 
model A based on inputs from model B), which are then executed based 
on a directed acyclic graph and without requiring a common ontology 
between models. Recently, Pegasus has been used to coordinate model 
linking in an IAM [77], albeit without establishing a paradigm for the 
IAM community.

Even with a dedicated platform, running the models and passing the 
data onwards can be a laborious exercise, especially when the portfolio 
of models is large and the contact points between the models are many. 
A solution would be to transition to a “model as a service” approach 
[30], where models are built directly as web services or are exposing an 
application programming interface (API). For instance, models can be 
uploaded as Docker containers with explicit APIs (as standardised as 
possible), allowing any user to run them and request specific data for 
model linking. This could be further combined with user interfaces for 
orchestrating API communication. APIs could be also used to facilitate 
harmonisation processes [78] or to deliver data to non-modelling 
stakeholders in order to validate them [79]. There are several exam
ples of web interfaces showing modelling results to experts and 
non-experts, such as the I2AM PARIS platform [80], the Senses Toolkit 
[81], or the upcoming Scenario Compass,7 which could potentially 
connect to API-enabled models and visualise their results.

Model APIs could be especially interesting in bi-directional soft 
linking, where models run iteratively, using data outputs from one 
model as data inputs to another, until the results of all models converge 
between iterations (see e.g., Ref. [71]). The more models are involved, 
the more contact points (and therefore convergence criteria) they have, 
the more laborious the practical linking mechanisms are, and the more 
difficult it is to reach convergence between the tools. This is further 
complicated in case of exchanging data manually, leading the iteration 
to omit any convergence considerations. Model convergence could be 
significantly accelerated by using frameworks such as Pegasus to 
orchestrate the computational workflow between models, especially 
when combined with APIs to streamline data exchange. Such a struc
tured process could also integrate automated testing using established 
model diagnostics (e.g., Ref. [82]), which would also ensure the quality 
of the model linking [30]. For instance, the final results derived from 
models linked for a mitigation study could be used to create diagnostic 
indicators such as the relative abatement index [82] and compared 
against benchmarks for feasibility, similar to the vetting process of the 
6th Assessment Report of the IPCC.

To sum up, there is ample room for improving current data exchange 
methodologies for model linking by using standardisation and automa
tion processes. At the very least, modelling teams should opt for a 
standardised data format such as the IAMC template and agree on the set 
of variables that will be included. If possible, automated tools such as the 
nomenclature Python package should be employed to ensure that vari
able names, units, and regions are consistent among modelling teams. 
When extensive data linking is expected (e.g., in bi-directional soft 
linking), the use of standardised interfaces such as the Pegasus system or 
APIs could potentially reduce errors and ensure the quality of the ex
change. While APIs can be time-consuming to develop and many 
modelling teams may not have the capacity to do so, they can serve as a 
long-term investment for model developers. Ensuring that a model is 
easily linkable can potentially increase the likelihood of its use in model 
linking and other exercises, similar to the way that open-source models 
such as OSeMOSYS, GCAM, and Calliope have been used and expanded 
by multiple modelling teams beyond their original developers.

3. Model linking as an epistemological problem

The structure of individual models embeds implicit assumptions that 
shape how their results should be interpreted (e.g. Ref. [83]). Different 
model types incorporate distinct epistemic values and trade-offs in areas 
like accuracy, simplicity, and system representation [84]. For instance, the 
choice of system boundaries, spatiotemporal scales, and variable defi
nitions—not to mention the complexity of model linking processes (see 
Section 2)—all shape the nature and validity of knowledge that an in
dividual model can generate. These structural elements often reflect the 
modeller’s conceptualization of the system and can introduce biases or 
limitations in the knowledge generated [85,86]. A model that assumes 
constant technological progress, for example, may overlook potential 
disruptive innovations [87], leading to overly optimistic or pessimistic 
projections of renewable energy adoption. Model-specific biases are 
likely to vary from one model to another, which further complicates the 
interpretation of ensemble data generated through multiple models 
[88].

Beyond the technical hurdles outlined in Section 2, linking models 
raises deeper epistemological questions, that is, fundamental issues 
concerning the nature, validity, and interpretation of the knowledge 
produced across complex, multi-model systems. By combining diverse 
conceptual and methodological approaches, model linking introduces 
three challenges: (1) synthesising distinct knowledge strands, (2) under
standing how errors and biases propagate through interconnected frame
works, and (3) interpreting the emergent properties that arise when multiple 
models are linked. This section explores these three challenges inherent in 
model linking and proposes frameworks for addressing them.

Interpreting how the outcomes of a specific model and modelling 
exercise should be understood is nontrivial (e.g. Refs. [89–92]). When 
models are linked, the synthesis of disparate knowledge strands becomes 
ever more challenging. For example, coupling a prescriptive, 
perfect-foresight optimisation ESM (e.g., TIMES [93]) with a descrip
tive, myopic macroeconomic simulation model (e.g., E3ME [94]) pro
duces a hybrid system with different and conflicting 
economic-engineering and economic solution paradigms. This raises 
questions about how to synthesise, interpret, and reconcile knowledge 
produced under fundamentally different, yet linked, modelling para
digms. One option to addressing this synthesis challenge is to develop 
explicit frameworks for mapping and documenting the key differences 
underlying each model component, enabling systematic analysis of 
where knowledge claims may conflict or complement each other. Model 
typologies [35] can assist in this, as they are designed to differentiate 
models based on the various dimensions in which they may differ, thus 
providing an initial, more aggregated mapping for the previous.

Model linking can compound errors and biases across interconnected 
models or even introduce novel ones [95]. As data and assumptions flow 
between models, inaccuracies may be amplified more than in any in
dividual model alone. For example, biased renewable energy cost pro
jections in one model could significantly impact investment decisions in 
linked models, creating compounded errors throughout the system. 
Furthermore, the interactions between models can create emergent 
properties that introduce new sources of errors and biases, which are not 
present in the original models individually. Thus far, there are various 
studies (see Refs. [96–102]) that use various methods, such as decom
position and sensitivity analysis, to systematically attribute variations in 
mitigation scenario outcomes to different drivers, socioeconomic as
sumptions, model differences, and their interactions, with the aim to 
improve the robustness of scenario interpretation for policymakers. 
However, these methods primarily focus on analysing variations in final 
outcomes, whether for individual or linked models, rather than tracking 
how errors and biases propagate through the linking process itself, or 
how they arise and are amplified across linked models. Developing 
robust methodologies specifically designed to track and quantify the 
propagation and potential amplification of uncertainties, errors, and 
biases through the sequential steps and interfaces of model linking 7 https://scenariocompass.org/process.
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represents a key challenge and an important area for future research.
Linked models can result in new emergent properties of the linked 

systems, such as their ability to capture cross-sector interactions or 
produce internally consistent narratives across multiple domains. 
Indeed, achieving such emergent results may be a key aim of linking 
models. However, the complex interactions between models can also 
produce outputs not easily traceable to any single input or assumption, 
complicating both validation and policy interpretation. For example, 
linking an ESM that focuses on centralised electricity generation with a 
land-use model focused on ecosystem services might reveal trade-offs 
between energy policy goals and land-use constraints (and, in turn, 
between climate and environmental objectives)—insights that neither 
model could offer independently. In such a combined system, it may be 
difficult to attribute results to any single input or assumption because 
the interplay of energy infrastructure, land availability, and ecological 
integrity emerges only when both models operate together. This 
complexity can enrich our understanding of cross-sectoral dynamics 
while simultaneously complicating interpretability and policy guidance.

Looking ahead, it is important to develop a framework that assesses 
the validity of model linking exercises. This framework should address 
knowledge synthesis, the propagation of errors and biases, and the 
interpretation of emergent properties of linked systems, all in the light of 
the intended purpose of model linking and the potential new insights 
that it can generate. Key components of this framework would include 
detailed documentation of linking procedures and assumptions; devel
oping methods for identifying and evaluating errors and biases and 
understanding how they may propagate through the linked system; and 
an explicit interpretation stage for the combined model system (simi
larly to other disciplines—e.g., Ref. [103]). As Silvast et al. [84] observe, 
the epistemic values of models are often negotiated alongside 
non-epistemic values, particularly in applied contexts. In some in
stances, a model’s perceived utility for policy decisions may override 
considerations of physical accuracy. This interplay between epistemic 
and non-epistemic values adds another layer of complexity to the 
interpretation and application of linked models. The selection and 
interpretation of linked model systems should be considered during the 
initial design phase, ensuring philosophical compatibility between 
chosen models and their alignment with the real-world dynamics they 
aim to represent, thereby minimising conflicts in underlying 
assumptions.

Practitioners instigating model linking exercises should consider the 
following steps systematically. First, they should explicitly map the 
epistemic foundations of each model, including their temporal and 
spatial scales, key determining assumptions, and methodological ap
proaches; such mapping can enable early identification of potential 
paradigmatic conflicts and areas where knowledge synthesis might 
prove challenging. Second, they should assess the potential for error 
propagation by identifying critical data exchange points between 
models and by understanding whether and how these may be addressed 
or at least acknowledged when interpreting the outcomes of the linked 
systems. Third, they should carefully consider whether the emergent 
properties from the linked models align with their research objectives 
and whether they can be adequately validated against empirical data. 
Throughout this process, modellers should consider trade-offs between 
complexity vs. tractability, comprehensive system representation vs. 
result interpretability, and theoretical rigour vs. pragmatic applicability 

of the modelling framework. These trade-offs should be explicitly 
documented and justified based on the specific research or policy 
questions being addressed, including clear limitations of the linked 
system and guidance as to how results should, and importantly should 
not, be interpreted by end users.

4. Conclusions and a way forward

Model linking for energy-system analysis and integrated assessments 
in support of energy, climate, and sustainability policy should be 
motivated and thus driven by an explicit need to (better) answer a 
particular question. This need may be directly associated with the scope 
of a specific study, meaning that model linking is required only in 
relation to that study (one-off applications), or it can trace to an ongoing 
branch of scientific research in the long run, meaning that model linking 
should result in a strategic modelling framework to be continuously used 
and further developed. Whichever the case, our focus in this paper has 
been to highlight the key areas in which decisions about model linking 
are not trivial, and to emphasise the significance of the decisions, the 
documentation of the rationale behind them, and the communication of 
the implications of the choices and model linkages for interpreting the 
results.

Based on our discussion and the reviewed literature, we propose a 
general checklist that can be used for making initial decisions about 
linking models. As no two models—and thus no two linking tasks—are 
identical, this checklist is intentionally general: the questions must be 
addressed and the recommendations interpreted within the context of 
the specific linking task at hand. When relevant, we acknowledge 
different requirements and considerations in case the establishment of 
model links is strategic and long-term rather than a circumstantial, one- 
off activity—acknowledging that the former case requires additional 
considerations and guardrails. With that said, the one-off suggestions are 
also a minimum baseline for the strategic linking recommendation, 
when no new advice is offered for the same topic in the latter. We also 
refrain here from discussing the specific linking approaches (hard link
ing, bi-directional and unidirectional soft linking, etc.), as these have 
been previously discussed extensively (see, e.g., Ref. [27]).

The recommendations included in our checklist in Table 1 assume 
that the trade-offs associated with the model linking process have been 
considered and deemed beneficial. This means that the level of robust
ness required for the linking process has been considered, to avoid 
compromising the integrity of the results or the benefits that can be 
achieved; this is especially important for long-term/strategic model 
linking, which requires considering the level of added complexity, the 
increase in opaqueness of model dynamics, and the volume of applica
tions that truly need the explicit representation of the cross-model dy
namics. Not linking the models should be kept as an option, as the above 
conditions will not be fulfilled for many model linking possibilities.
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[68] Kumbaroğlu G, Madlener R. Energy and climate policy analysis with the hybrid 
bottom-up computable general equilibrium model SCREEN: the case of the Swiss 
CO2 act. Ann Oper Res 2003;121:181–203. https://doi.org/10.1023/A: 
1023311420542.

[69] Fujimori S, Oshiro K, Nishiura O, Hasegawa T, Shiraki H. Integration of a 
computable general equilibrium model with an energy system model: application 
of the AIM global model. Environ Model Software Jul 2024;178:106087. https:// 
doi.org/10.1016/j.envsoft.2024.106087 (in English).

[70] Messner S, Schrattenholzer L. MESSAGE-MACRO: linking an energy supply model 
with a macroeconomic module and solving it iteratively. Energy Mar 2000;25(3): 
267–82. https://doi.org/10.1016/S0360-5442(99)00063-8 (in English).

[71] Nishiura O, Krey V, Fricko O, van Ruijven B, Fujimori S. Integration of energy 
system and computable general equilibrium models: an approach complementing 
energy and economic representations for mitigation analysis. Energy Jun 1 2024; 
296:131039. https://doi.org/10.1016/j.energy.2024.131039 (in English).

[72] Budzinski M, Wood R, Zakeri B, Krey V, Strømman AH. Coupling energy system 
models with multi-regional input-output models based on the make and use 

framework–insights from MESSAGEix and EXIOBASE. Econ Syst Res 2024;36(4): 
508–26. https://doi.org/10.1080/09535314.2022.2158065.

[73] Odenweller A. Climate mitigation under S-shaped energy technology diffusion: 
leveraging synergies of optimisation and simulation models. Technol Forecast Soc 
Change May 2022;178:121568. https://doi.org/10.1016/j.techfore.2022.121568 
(in English).

[74] Deane JP, Chiodi A, Gargiulo M, Gallachóir BPO. Soft-linking of a power systems 
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