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A near-real time daily European 
Power Consumption and Carbon 
Intensity Dataset (ECON-PowerCI)
Shujie Zhang1,13, Wenli Zhao   2,3,4,5,13 ✉, Biqing Zhu   6, Chunhua Yan7, Xuanren Song   8, 
Hou Jiang   9, Jianing Fang   2, Philippe Ciais10, Ning Xuan1, Pierre Gentine   2,  
Steven J. Davis   11, Zhu Liu   12 & Guo Yu Qiu1 ✉

We present a near-real-time daily European Consumption-based Power Carbon Intensity Dataset 
(ECON-PowerCI), developed from the CarbonMonitor power production dataset for Europe. Spanning 
from January 2015 to December 2024, the dataset encompasses 35 European countries, with daily 
updates and a one-day latency. ECON-PowerCI provides consumption-based power carbon intensity at 
the national level, accounting for cross-border electricity net imports in the country of consumption. By 
integrating ENTSO-E (The European Network of Transmission System Operators for Electricity) data, 
ECON-PowerCI enables comprehensive analysis of carbon intensity trends shaped by cross-border 
transmissions, extreme weather events, and disruptions like the COVID-19 pandemic and geopolitical 
conflicts. This dataset facilitates in-depth study of the effect of cross-border electricity flows on national 
carbon footprints, providing insights for energy policy and climate resilience. The dataset also holds 
extensive research potential for power-related analyses and policy-making in Europe’s interconnected 
power systems.

Background & Summary
Energy has emerged as a pivotal concern for European nations, engaged in phasing out coal and fossil fuels while 
facing geopolitical challenges such as higher gas prices since the war in Ukraine1,2. The region grapples with the 
dual challenges of maintaining energy security and adapting to the climate change that intensifies power demand 
while simultaneously affecting generation capacities3. Extreme events such as winter storms, heatwaves, drought 
exacerbate this dilemma with extreme cold temperature spiking the heating demand and potentially reducing the 
wind power generation due to the frozen turbines4. Conversely, extreme heat can amplify cooling demand, and 
may limit the operational efficiency of thermal power plants and solar photovoltaics5–7. Droughts can decrease 
the hydroelectric generation8,9. This critical issue is further complicated by societal upheavals — illustrated by 
fluctuating fuel costs and supply disruptions since the war between Russia and Ukraine—and behavioural shifts 
during global health crises like COVID-19 pandemic, prompting abrupt shifts in energy systems10,11.

Developing high temporal resolution datasets for monitoring of power production and consumption is cru-
cial for timely tracking of the security, resilience and sustainability of the European power system12. Previous 
datasets, with lower latency and coarse temporal resolution, falter in capturing the immediacy of power sys-
tems response to climate change and socioeconomic events13–15. The CarbonMonitor-Power database provides 
near-real-time daily and hourly power generation data, including total generation, source attribution and the 
carbon intensity of power generated16. It has been used in previous studies to understand the variations from 
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daily periodical activities, weekends, seasonal cycles, regular and irregular events (i.e., holidays) and extreme 
events (e.g., COVID-19 pandemic, extreme hot/cold days)3,17,18.

Nonetheless, with active cross-border power transmission between European countries, power generation 
is not in balance with power consumption at country scale19. According to the latest data from ENTSO-E 
(The European Network of Transmission System Operators for Electricity), the annual mean percentage of 
imported power relative to total power generation across 35 European countries ranges from 7.9% to 538.0%. 
Similarly, the annual mean exported power ratio to the total power generations varies from 0.48% to 157.1%. 
Cross-border electricity transmission extend beyond market regulated electricity sales costs; it also advances 
the pursuit of a more resilient, interconnected system capable of withstanding extreme events20,21. Numerous 
studies substantiate the premise that regional integration of power systems can be strengthened in the face 
of heatwaves, winter storms, droughts22–24 during which the demand in an affected region can increase and 
requires more supply from inter-connected regions. Transmission within an interconnected network can serve 
as a mitigating solution, particularly when the surging demand outstrips available generations. For instance, 
reduced wind and solar resources in Great Britain could necessitate substantial power imports from France25. 
Conversely, when renewable power generations exceed demand within Germany, the surplus energy can be 
exported to the interconnected neighboring countries26–28. The expansive interconnected grid spanning Europe 
suggests that a comprehensive understanding of power dynamics requires data both on the power generated 
and the power consumed, the latter being not covered by the current CarbonMonitor-Power-Europe data.

To fill this gap, we developed the Carbon Transport and Equilibrium Model for European Electricity 
generation-transportation-consumption network as depicted in Fig. 1 to expand the CarbonMonitor-Power-Europe 
database by including cross-border transmission and power consumption. The expanded dataset provides 
country-level consumption-based power carbon intensity and power consumption data, with near-real-time 
update capacities and a latency of just one day. This significant enhancement enables us to attribute carbon emis-
sions associated with power transmitted through interconnected power grids across European country borders. 
This updated database enhances our understanding of the environmental impact on Europe’s power sector, along-
side a more precise allocation of responsibility for carbon emissions associated with power consumption within 
each country.

Methods
Data acquisition.  We compiled a dataset from 35 countries within the pan-European domain from 
ENTSO-E (https://transparency.entsoe.eu/). ENTSO-E encompasses nation-level actual electricity generation 
delineated by production type, observed electrical loads, cross-border electricity exchanges, and aggregated 
data on hydraulic reservoirs and pumped storage facilities. The 35 countries are Austria, Belgium, Bosnia and 
Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, 
Hungary, Ireland, Italy, Kosovo, Latvia, Lithuania, Luxembourg, Moldova, Montenegro, Netherlands, North 
Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, and the 
United Kingdom. The raw data are collected at the highest temporal resolution —15-minute or 30-minute inter-
vals, hourly, daily, or weekly intervals — depending on source availability.

Data preprocessing.  Given noise, outliers and missing values in the raw data, the data filtering procedure 
follows a standard approach as described in Zhu et al.16, summarized as follows: Firstly, we use the density-based 
clustering algorithm (DBSCAN) to filter out noise29. Secondly, manual processing was applied to evaluate 
whether abnormal values should be removed or retained. Some extreme values that coincide with periods 
marked by significant social disruptions (such as COVID-19 lockdowns) or natural disasters (like extreme hot/
cold events and storms) are retained because these events have a real and abrupt effect on the power system. 
Finally, we filled the missing values with linear interpolation. We provided a quality flag (‘Filtered’ (F) for filled 
values and ‘Normal’ (N) for original values) to indicate the status of the values during the filling process. The 
proportion of “F” labelled data is 0.39% for generation, 1.75% for consumption, and 0.03% for cross-border 
transmission.

Table 1 presents the data statistics before and after preprocessing. This table details, for each country and each 
data type, the number and percentage of data points that were filtered out (due to missing values or outliers) as 
well as the number and percentage of data points that were imputed (filled in).

Consumption carbon intensity calculation.  This section outlines the calculation of consumption-based 
power carbon intensity (as shown in Fig. 1). The development of the dataset involves four key steps. All the abbre-
viations have been summarized in Table 2.

Step 1: Calculating of the Country-Level Daily Carbon Intensity of Electricity Production

For each country, the daily carbon intensity of electricity production (CO2 emission per unit of electricity 
generated) is calculated based on Eq. (1)30. The raw data includes 20 types of electricity production, grouped into 
8 categories: coal, gas, oil, nuclear, hydro, wind, solar and other.

CI
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c c
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Ef c,α
 indicates the carbon emissions per MWh of electricity generated and varies based on the type of genera-

tion, natural resources, and technological levels in different countries. In this study, we adopt the carbon emis-
sion factors computed in previous research16, which have been summarized in the Table 3. The fuel-specific 
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emission factors are calculated as corrected emission factors based on IPCC emission factors corrected to base-
line value (same baseline value applied in the first CarbonMonitor power emission dataset31, with the following 
equation:

Fig. 1  Data acquisition and processing framework. Hourly updated data on power generation types, physical 
electricity flows between countries (imports & exports), load, and storage from the ENTSO-E website are 
downloaded and preprocessed. These data are used as inputs for the electricity equilibrium and carbon 
equilibrium models to produce a near-real-time, daily consumption-based power carbon intensity dataset for 
each country in the European power interconnected network (Methods).
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where EF *i j,  is the corrected emission factor used in this study, for country i and for fuel j. EFj
IPCC is the IPCC 

emission factor for fuel j, Emisi
baseline2019−  is the reference baseline total power emissions from country i in the 

year 2019. ADi j,
2019 is the electricity generation for country i, fuel j in the year 2019.

Step 2: Develop an Energy Balance Model for Production and Consumption
According to the methods in a previous approach17, we assume that electricity production and consumption 

for any given country c on any given day are balanced, as described in Eq. (3). The electricity equilibrium model 
applies to countries with available data on electricity generation, consumption, imports, and exports. Note that 
Eq. (3) includes no loss term, as the ENTSO-E Transparency Platform already accounts for transmission losses 
in each country’s electricity consumption.
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Here, Gc, Ic i, , Lc and Ec i,  are directly sourced from ENTSO-E, while Sc ,0 and Sc ,1 are estimated using weekly res-
ervoir filling rates (MWh) from ENTSO-E, interpolated to daily resolution. m represents the total number coun-
tries that have electricity imports or exports with the specified country c. This is based on the dominance of 

Country

Generation Consumption Transmission

Count Percentage Count Percentage Count Percentage

Austria 7 0.19% 3 0.08% 10 0.05%

Belgium 8 0.22% 0 0.00% 0 0.00%

Bosnia and Herz. 12 0.33% 14 0.49% 0 0.00%

Bulgaria 7 0.19% 5 0.14% 0 0.00%

Croatia 21 0.57% 11 0.30% 5 0.03%

Czech Republic 22 0.60% 3 0.08% 11 0.08%

Denmark 4 0.11% 2 0.05% 0 0.00%

Estonia 10 0.27% 5 0.14% 5 0.05%

Finland 4 0.11% 3 0.08% 17 0.12%

France 14 0.38% 9 0.25% 1 0.00%

Georgia 1 0.03% 39 3.56% 0 0.00%

Germany 21 0.57% 3 0.08% 1 0.00%

Greece 15 0.41% 1 0.03% 4 0.02%

Hungary 18 0.49% 1 0.03% 11 0.04%

Ireland 11 0.30% 397 10.87% 0 0.00%

Italy 1 0.03% 5 0.14% 22 0.09%

Kosovo 4 0.11% 11 0.30% 0 0.00%

Latvia 18 0.49% 7 0.19% 9 0.08%

Lithuania 8 0.22% 9 0.25% 7 0.04%

Luxembourg 11 0.30% 9 0.25% 8 0.11%

Moldova 14 0.38% 358 19.93% 2 0.03%

Montenegro 1 0.03% 13 0.36% 5 0.03%

Netherlands 15 0.41% 4 0.11% 0 0.00%

North Macedonia 7 0.22% 132 3.61% 10 0.07%

Norway 39 1.07% 2 0.05% 0 0.00%

Poland 17 0.47% 4 0.11% 8 0.04%

Portugal 4 0.11% 11 0.30% 0 0.00%

Romania 5 0.14% 8 0.22% 5 0.03%

Serbia 59 1.62% 48 1.31% 3 0.01%

Slovakia 9 0.25% 1 0.03% 5 0.03%

Slovenia 7 0.19% 12 0.33% 3 0.02%

Spain 2 0.05% 3 0.08% 0 0.00%

Sweden 12 0.33% 3 0.08% 0 0.00%

Switzerland 3 0.08% 6 0.16% 1 0.01%

United Kingdom 20 0.55% 577 15.80% 0 0.00%

Table 1.  Summary of Filtered and Imputed Data Points by Country and Data Type.
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Pumped Hydro Energy Storage (PHES), which accounts for 95–97% of global storage capacity and 99% of total 
energy storage32,33.

Step 3: Develop a Carbon Intensity Balance Model for Production and Consumption
Building on the electricity equilibrium model in Eq. (3), we further constructed a model for the carbon 

intensity of production and consumption for each eligible country c.

∑ ∑+ + = + +
= =

G CI I CI S CI L CI E CI S CI (4)c G c i
m

c i L i c S c c L c i
m

c i E c c S c, 1 , , ,0 , ,0 , 1 , , ,1 , ,1

Here, CIG c,  denotes the generation-based carbon intensity of electricity for country c, while CIL c, , CIE c, , CIS c, ,, and 
CIS c, ,1 represent the consumption-based carbon intensity, the carbon intensity of exported electricity, the carbon 
intensity of stored electricity before the start of the day, and the carbon intensity of stored electricity after the end 
of the day, respectively. The value of CIG c,  is calculated based on Eq. (1).
We assume that, for a given country c, the consumption-based carbon intensity (CIL c, ) is equal to both the car-
bon intensity of exported electricity (CIE c, ) and the post-storage carbon intensity at the end of the day (CIS c, ,1). 
That is,

= =CI CI CI (5)L c E c S c, , , ,1

Under this assumption, CIL c,  (or equivalently CIE c,  and CIS c, ,1) can be factored out from the right-hand side of Eq. 
(3), allowing the equation to be simplified into Eq. (6). The values of CIL c, , CIE c, , CIS c, ,, and CIS c, ,1 are estimated by 
fitting Eq. (6) with publicly available energy flow and generation data from ENTSO-E.

∑ ∑+ + − = +
= =( )L E S CI I CI G CI S CI (6)c i

m
c i c L c i

m
c i L i c G c c S c1 , ,1 , 1 , , , ,0 , ,0

Given that the carbon intensities of electricity consumption (CIL c, ), exported electricity (CIE c, ) and new electric-
ity storage (CIS c, ) are identical values on any given day for any country c in the European interconnected power 
network (Fig. 1), we can express Eq. (6) in matrix form:

= −X BA (7)1

Where:
X  denotes the unknown consumption carbon intensity of each country c.

A ∈ Rm are defined as:

= ⋅ + ⋅b G CI S CIj j G j j S j, ,0 , ,0

A ∈ Rm×m are defined as:

Abbreviations Full name Unit

c Any given country.

α The different energy sources, here, Coal, Natural gas, Nuclear, Oil, Solar, Hydro, Wind, Other.

Gc The total electricity generation of country c on any given day. MWh

Gc,α The electricity generation for α in country c. MWh

αEf c,
The carbon emission factor for type α in country c. kg CO2/MWh

CIG c, The production-based carbon intensity of electricity for country c. kg CO2/MWh

i A set of all countries that engage in electricity cross-border transmission (imports or exports) 
with country c.

Ic i, The electricity imported by country c from country i on any given day. MWh

Ec i, The electricity exported by country c to country i on any given day. MWh

Sc,0 The electricity reserve of country c before the start of the given day. MWh

Sc,1 The electricity reserve of country c at the end of the given day. MWh

Lc The electricity consumption of country c on any given day. MWh

CIS c, ,0 The carbon intensity of storage electricity for country c before the start of the given day. kg CO2/MWh

CIL c, The consumption-based carbon intensity of electricity for country c. kg CO2/MWh

CIE c, The carbon intensity of electricity exported by country c to other countries. kg CO2/MWh

CIS c, ,1 The carbon intensity of storage electricity for country c at the end of the given day. kg CO2/MWh

Table 2.  List of Abbreviations.
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j,k are the row and column indices in the matrix and then represent the corresponding country.
Solving Eq. (7) yields the daily consumption-based power carbon intensity for each European country (CIL c, ).

Calculation example: spain, france, portugal and italy on a hypothetical day.  To clarify the cal-
culation procedure, we provide a step-by-step example for Spain, France, Italy, and Portugal on a specific day. For 
simplicity, we assume a hypothetical interconnected power system that includes only these four countries. While 
real-world systems may involve more complex interconnections, this simplification does not affect the structure 
or logic of the calculation process described below.

	 1.	 Hypothetical Data Table

Suppose the following values (all energy units in MWh, carbon intensity in kg CO₂/MWh):

Country Coal Gas Oil Hydro Nuclear Wind Solar Other renewables

Austria 820 1385 700 0 0 0 0 0

Belgium 820 777 700 0 0 0 0 0

Bosnia and Herz. 820 490 700 0 0 0 0 0

Bulgaria 1093 653 700 0 0 0 0 0

Croatia 990 591 700 0 0 0 0 0

Czech Republic 1309 782 1038 0 0 0 0 0

Denmark 1272 760 1008 0 0 0 0 0

Estonia 2758 1648 2186 0 0 0 0 0

Finland 1407 840 1115 0 0 0 0 0

France 1164 695 922 0 0 0 0 0

Georgia 820 490 700 0 0 0 0 0

Germany 1285 768 1018 0 0 0 0 0

Greece 1111 664 700 0 0 0 0 0

Hungary 1275 762 700 0 0 0 0 0

Ireland 948 566 752 0 0 0 0 0

Italy 1025 613 813 0 0 0 0 0

Kosovo 820 490 700 0 0 0 0 0

Latvia 820 677 700 0 0 0 0 0

Lithuania 820 3839 5093 0 0 0 0 0

Luxembourg 820 490 700 0 0 0 0 0

Moldova 820 490 700 0 0 0 0 0

Montenegro 820 490 700 0 0 0 0 0

Netherlands 1009 603 700 0 0 0 0 0

Norway 820 830 700 0 0 0 0 0

North Macedonia 820 490 700 0 0 0 0 0

Poland 1150 687 911 0 0 0 0 0

Portugal 885 529 700 0 0 0 0 0

Romania 1229 734 700 0 0 0 0 0

Serbia 820 490 700 0 0 0 0 0

Slovakia 1937 1157 1535 0 0 0 0 0

Slovenia 1072 640 700 0 0 0 0 0

Spain 965 577 765 0 0 0 0 0

Sweden 820 490 700 0 0 0 0 0

Switzerland 820 490 700 0 0 0 0 0

United Kingdom 1028 614 814 0 0 0 0 0

Table 3.  Summary of Emission Factors of Each Country (in kg CO2/MWh).
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	 2.	 Constructing the Matrix

EquationFor each country c:
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Assembled for all four countries, this leads to a matrix formulation:

AX B=

where X is the vector of unknown consumption-based carbon intensities (specifically, CIL c,  and CIL i, . Matrix A 
captures the relationships among countries in the interconnected power system, including each country’s 
electricity load (Lc), total electricity exports to other countries ( Ei

m
c i1 ,∑ = ), electricity storage at the end of the day 

(Sc ,1), and electricity imports from other countries (Ij k, ). Vector B represents the carbon emissions associated 
with both electricity generation and initially stored electricity, calculated as the products of electricity quantities 
and their respective carbon intensities.

The structures of matrix A and vector B are illustrated as follows:

	 2.1.	 Matrix A
Diagonal elements ( j k= ):

∑= + +a L E Sj j j j i j, , ,1

Off-diagonal elements ( ≠j k):

a Ij k j k, ,= −

In this case, they should be calculated and then get results as below.

•	 A(ES,ES): 11,000 + (200 + 1,100 + 500) + 600 = 13,400 (Total electricity consumption in Spain including 
load, export and storage.)

•	 A(ES,FR): −1,000 (FR → ES)
•	 A(ES,PT): −300 (PT → ES)
•	 A(ES,IT): −400 (IT → ES)
•	 A(FR,ES): −1,100 (ES → FR)
•	 A(FR,FR): 10,500 + (1,000 + 900 + 600) + 500 = 13,500 (Total electricity consumption in France including 

load, export and storage.)
•	 A(FR,PT): −200 (PT → FR)
•	 A(FR,IT): −700 (IT → FR)
•	 A(PT,ES): −200 (ES → PT)
•	 A(PT,FR): −900 (FR → PT)
•	 A(PT,PT): 5,500 + (300 + 200 + 150) + 350 = 6,500 (Total electricity consumption in Portugal including load, 

export and storage.)
•	 A(PT,IT): −250(IT → PT)
•	 A(IT,ES): −500(ES → IT)
•	 A(IT,FR): −600(FR → IT)
•	 A(IT,PT): −150(PT → IT)
•	 A(IT,IT): 8,500 + (400 + 700 + 250) + 700 = 10,550 (Total electricity consumption in Italy including load, 

export and storage).

Country Spain (ES) France (FR) Portugal (PT) Italy (IT)

Generation (G) 10,000 12,000 5,000 8,000

Consumption (L) 11,000 10,500 5,500 8,500

Import (I) from others
PT → ES: 300
FR → ES: 1,000
IT → ES: 400

ES → FR: 1,100
PT → FR: 200
IT → FR: 700

ES → PT: 200
FR → PT: 900
PT → IT: 250

ES → IT:500
FR → IT: 600
PT → IT: 150

Export (E) to others
ES → PT: 200
ES → FR: 1,100
ES → IT: 500

FR → ES: 1,000
FR → PT: 900
FR → IT: 600

PT → ES: 300
PT → FR: 200
PT → IT: 150

IT → ES:400
IT → FR: 700
IT → PT: 250

Storage at Start (S0)) 500 400 300 600

Storage at End (S1) 600 500 350 700

Generation CI (CIG) 250 100 400 350

Initial Storage CI (CIS c, ,0) 270 120 410 340

https://doi.org/10.1038/s41597-025-05978-7
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	 2.2.	 Vector B

= ⋅ + ⋅b G CI S CIj j G j j S j, ,0 , ,0

•	 ES: 10,000 × 250 + 500 × 270 = 2,635,000
•	 FR: 12,000 × 100 + 400 × 120 = 1,248,000
•	 PT: 5,000 × 400 + 300 × 410 = 2,123,000
•	 IT: 8,000 × 350 + 600 × 340 = 3,004,000

B

2,635,000
1,248,000
2,123,000
3,004,000

=





















3. Solving for Consumption-Based Carbon Intensities
The matrix equation:
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Solving the matrix equation yields the consumption-based carbon intensity for each country.
4. Result Interpretation

•	 Spain’s consumption-based carbon intensity: ~223 kg CO₂/MWh
•	 France’s consumption-based carbon intensity: ~132 kg CO₂/MWh
•	 Portugal’s consumption-based carbon intensity: ~363 kg CO₂/MWh
•	 Italy’s consumption-based carbon intensity: ~308 kg CO₂/MWh

In summary, Spain, Portugal and Italy show lower consumption-based carbon intensities compared to 
their generation-based values, while France shows higher values. This example demonstrates how the model 
accounts for electricity cross-border transmission, generation mix, and storage, and enables the calculation of 
country-specific, consumption-based carbon intensities on a daily basis.

Data Records
The dataset has been deposited to Zenodo34 (https://doi.org/10.5281/zenodo.15987717). The dataset covers 
3,653 days (from January 1, 2015, to December 31, 2024) for 35 countries. It contains a total of 113,247 records, 
each representing the daily consumption-based power carbon intensity (measured in kg CO2/MWh) at the 
country level. Timestamps enable temporal identification by servers.

We provide a quality flag in the “FLAG” column to indicate the status of each value during the data filling 
process: “Normal” (N) for original values and “Filtered” (F) for filled values.

Due to limitations in the availability of original data, several countries exhibit gaps during certain time peri-
ods. We have listed the available data periods for these countries in Table 4. For simplicity, countries with com-
plete data coverage from 2015.01.01 to 2024.12.31 are not listed in the table.

Technical Validation
This section presents an uncertainty quantifications, correlation analysis with the reference dataset, and a com-
parative analysis of our consumption-based carbon intensity dataset with the production-based carbon intensity 
dataset. We also examine the seasonality, interannual trends, variability, of consumption-based carbon intensity 
from ECO-PowerCI. In addition, we assess the robustness of the ECON-PowerCI dataset in capturing abrupt 
changes in carbon intensity during extreme weather events and geopolitical incidents.

ES FR PT IT

ES 13,400 −1,000 −300 −400

FR −1,100 13,500 −200 −700

PT −200 −900 6,500 −250

IT −500 −600 −150 10,550
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Uncertainties.  To validate the reliability and accuracy of our dataset, comparative analysis with existing ref-
erence datasets is essential. However, publicly available datasets for consumption-based power carbon intensities 
calculations remain limited, especially those with comprehensive temporal and spatial coverage across European 
countries. Given this constraint, we conduct an uncertainty analysis based on Monte Carlo simulations.

The uncertainty of our dataset arises from various sources. According to the IPCC35, potential sources of 
uncertainty include activity data, emission factors, data completeness, data availability, and measurement errors. 
Some of these uncertainties, such as measurement errors — whether random or systematic — are not quanti-
fiable36. These may stem from inaccuracies in measurement, recording, transmission, or from approximated 
constants and parameters obtained from external sources35, and are present throughout the carbon accounting 
process.

In this study, we focus on the uncertainty introduced by activity data, specifically electricity generation, 
which represents the most quantifiable uncertainty in ECON-PowerCI dataset. Electricity generation is one of 
the most important drivers of uncertainty in both emissions and carbon intensity estimations.

We applied Monte Carlo simulation, which is a technique recommended by the IPCC35 to propagate the 
uncertainties from activity data and emission factors. The technique first assumes distributions (probability den-
sity function) for variable under consideration. In our study, we assume that electricity generation is the primary 
source of uncertainty and model it using a normal distribution37. The mean of its distribution is derived from 
actual generation data, while the standard deviation is defined by the coefficient of variation (CV) set at 10%. We 
then generate 100,000 random samples of electricity generation, resulting in 100,000 independent estimations 
of emissions36. These simulations yield a distribution of estimated consumption-based carbon intensity values 
for each country. From this distribution, key statistics such as the mean and confidence intervals are derived. 
Specifically, the 97.5% uncertainty range is calculated as the 97.5% confidence interval of the 100,000 simulated 
estimates, reflecting uncertainty in electricity generation and providing a credible range within which the true 
carbon intensity is likely to fall.

For illustration, Fig. 2 shows the 97.5% confidence interval (shaded in gray) for Netherlands. To isolate 
the uncertainty of each country, we simulate its uncertainty while holding other countries’ data constant. 

Country Start Date Latest Date

Bosnia and Herz. 2017.03.01 2024.12.31

Croatia 2019.01.01 2024.12.31

Georgia 2022.01.01 2024.12.31

Italy 2016.01.01 2024.12.31

Kosovo 2021.09.01 2024.12.31

Luxembourg 2021.06.01 2024.12.31

Moldova 2020.02.01 2024.12.31

North Macedonia 2016.06.01 2024.12.31

Serbia 2017.01.01 2024.12.31

United Kingdom 2015.01.01 2021.05.31

Table 4.  Data Availability Periods for Countries with Incomplete Coverage in the ECON-PowerCI Dataset.

Fig. 2  Uncertainty characterization of the ECON-PowerCI dataset for the Netherlands. (a) Shows the daily 
temporal distribution of relative uncertainty, while (b) displays its 30-day moving average. The solid lines 
represent the original ECON-PowerCI consumption-based carbon intensity estimates; shaded regions denote 
the 97.5% confidence intervals. The inset plot presents the frequency distribution of relative uncertainty across 
the time series.
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Country-specific results indicate that the 97.5% confidence intervals of consumption-based carbon intensity are, 
for example, as follows: Austria (−4.7% to +5.6%), Belgium (−16.0% to +16.2%), Bulgaria (−4.1% to +4.4%), 
Czech Republic (−17.3% to +17.3%), Denmark (−16.8% to +16.9%), Finland (−6.5% to +7.6%), France 
(−9.4% to +9.8%), Germany (−19.2% to +19.2%), Hungary (−12.6% to + 13.2%), Latvia (−7.9% to +8.5%), 
Lithuania (−10.3% to+10.4%), and the Netherlands (−17.4% to +17.5%).

Comparisons with reference data.  We compared our dataset with a reference database 
(consumption-based carbon intensity provided by Electricity Map (https://www.electricitymap.org)) over the 
overlapping period from 2017 to 2024. The reference dataset uses a flow-tracing methodology38 to track the 
origin of electricity, primarily based on the ENTSO-E database, which is consistent with the data source used 
in ECON-PowerCI. Previous studies using Electricity Map data have demonstrated its reliability39,40. Overall, 
the results show that our data generally agree well with the reference dataset at both annual and monthly scales 
(Fig. 3). For the multi-year average consumption-based carbon intensity, the ECON-PowerCI database shows 
good agreement with the reference dataset for most countries (R² = 0.78). For multi-monthly averages, there is 
also strong consistency, with R² values ranging from 0.76 to 0.85, and most countries distributed closely along 
the 1:1 line. The inter-annual variability (as indicated by the error bars) further demonstrates that the agreement 
between the two datasets remains within a reasonable and acceptable range (Fig. 3). These results indicate that, in 
aggregate terms, the consumption-based carbon intensities provided by ECON-PowerCI are broadly consistent 
with the reference dataset.

However, two countries, Montenegro and Estonia, show notably higher values in ECON-PowerCI com-
pared to the reference. This discrepancy mainly stems from differences in the emission factor calculations used 
for these countries. For coal, gas, and oil in EU countries, Electricity Map applies a thermal power plant-level 
matching approach, directly linking verified emissions with actual generation, which enables more transpar-
ent and higher-resolution carbon intensity signal41. ECON-PowerCI applies emission factors of 820, 490, and 
700 kg CO₂/MWh (coal, gas, oil) for Montenegro and 2758, 1648, and 2186 for Estonia, whereas Electricity Map 
reports 820, 490, and 650 for Montenegro, and significantly lower values of 1097, 530, and 885 for Estonia. This 
highlights that ECON-PowerCI could potentially benefit from incorporating more precise plant-level emission 
factors and country-specific power system efficiencies.

Flow-tracing methodology (as implemented by Electricity Maps) provides a physically detailed attribution 
of carbon intensity by tracing electricity flows from each generator to consumer zones across the transmission 
network42. This method can even account for loop-flows and regional imports/exports, capturing the actual 
electricity mix available in each region. In contrast, our methodology adopts a more data-parsimonious, prag-
matic framework that avoids the need for granular mapping of generation sources to flows or complex grid 
simulations. This simplification improves computational efficiency and transparency, making it especially suit-
able for near-real-time scientific and policy-oriented analyses. Moreover, in alignment with the mission of the 
Carbon Monitor platform—an international initiative providing the first science-based, regularly updated daily 
CO₂ emission estimates—our dataset is fully open and comprehensively documented, significantly improving 
reproducibility and utility over existing tools like Electricity Maps.

Comparisons of daily production-based and consumption-based power carbon intensi-
ties.  Our near-real-time daily carbon intensity dataset for electricity consumption can be used for analyz-
ing daily and seasonal dynamics of consumption-based carbon intensity across various countries. Typically, 
consumption-based power carbon intensity, which accounts for cross-border electricity exchanges, differs from 
production-based carbon intensity, which considers only domestic power generation (Fig. 4). These differences 
can be attributed to varying socio-economic factors and active cross-border transmissions.

For instance, Italy exhibits lower consumption-based power carbon intensity due to its substantial imports 
of less carbon intensive electricity from France (accounting for an annual average ratio of 7.5%) and Switzerland 
(0%)43. Hereafter, percentages are annual averages. Despite fossil fuels accounting for around 41.88% of Italy’s 
electricity production, its consumption-based power carbon intensity is mitigated by these cleaner energy 
imports. On the other hand, France, despite having a low carbon domestic electricity generation profile—
with only 7.5% derived from fossil fuels—displays a higher consumption-based power carbon intensity than 
production-based carbon intensity. France exports significant clean electricity to the United Kingdom, Spain, 
Germany, Italy, and other countries while also importing electricity from neighboring countries, many of 
which are more reliant on fossil fuels (62.0%, 68.9%, 89.1%, 32.8%, 43.4%, 56.2% power generated from fos-
sil fuels for interconnected UK, ES, LU, BE, DE, IT, respectively). This results in a slight increase in France’s 
consumption-based power carbon intensity, with an annual mean rise of 5 t CO₂/GWh (Fig. 4). Germany, 
with a relatively high reliance on fossil fuels for electricity production, imports nuclear power from France. 
As a major electricity exporter within the EU, Germany’s consumption-based power carbon intensity is lower 
than its production-based intensity. Similarly, Spain’s consumption-based power carbon intensity is reduced 
compared to its production-based intensity, partly due to its significant electricity imports from France’s clean 
energy sources44. Meanwhile, Poland (85.7% of power generated from fossil fuels), which relies heavily on fos-
sil fuels generated electricity, generally shows a lower consumption-based power carbon intensity after tak-
ing lower carbon cross-border power transmissions into consideration. The annual mean differences between 
production-based and consumption-based power carbon intensities underscore the impact of interconnected 
cross-border transmissions.

These comparisons illustrate the critical differences between consumption-based and production-based 
power carbon intensities, highlighting the significance of cross-border electricity exchanges. By factoring in 
these exchanges, we can more accurately assess the carbon intensity of electricity consumed within each country, 
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revealing the interconnected nature of Europe’s power systems and the influence of imports and exports on 
national carbon footprints.

Fig. 3  Comparisons with reference data. This figure presents a comparison between ECON-PowerCI and the 
reference dataset (consumption-based carbon intensity from Electricity Map.This figure presents a comparison 
between ECON-PowerCI and the reference dataset (consumption-based carbon intensity from Electricity Map. 
Panel (a) shows the multi-yearly averages, while Panel (b) displays the multi-monthly averages. Horizontal and 
vertical error bars indicate the standard deviations for ECON-PowerCI and Electricity Map, respectively, for the 
period 2017–2023. For clarity, not all labels are displayed to avoid overlapping.
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Fig. 4  Consumption-based Power Carbon Intensity for European Countries. This figure illustrates the 
interconnected power network within European countries. The arrows and lines indicate the average import or 
export of electricity during the period from 2015 to 2023. The size of each marker reflects the annual average 
of import and export for each country. The thicker end of each arrow denotes the exporting country, while the 
thinner end points to the importing country. All arrows are unidirectional, showing the direction of cross-
border electricity flow from exporter to importer. Surrounding the map, boxplots compare the production-
based carbon intensity (gen_CI) with the consumption-based power carbon intensity (con_CI) for selected 
European countries. In each boxplot, the central line shows the median value, the box edges mark the 25th and 
75th percentiles (interquartile range, IQR) and the whiskers extend to 1.5 times the IQR. Individual data points 
are displayed as dots, while the probability density distribution is shown alongside each boxplot for reference. 
Data points beyond the whiskers are classified as outliers (black dots). The inset plots highlight the annual 
mean difference between consumption-based and production-based power carbon intensities (con_CI minus 
gen_CI), shown as a blue dot with the country abbreviation. The upper and lower whiskers represent the range 
from the 25th to the 75th percentile. These inset plots emphasize the impact of cross-border electricity transfers 
on carbon intensity, illustrating the tendency after accounting for these cross-border power transmission.
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Limitations.  One limitation of the ECON-PowerCI is its daily temporal resolution, which may overlook 
important sub-daily dynamics in electricity systems. Electricity generation, consumption, and cross-border flows 
exhibit substantial intraday variability. For example, surplus renewable electricity, particularly from solar PV, is 
often exported during midday hours when solar output peak28. Conversely, evening peak demand periods may 
coincide with increased reliance on fossil-fuel-based generation45. These intraday dynamics are not captured in 
the present daily consumption-based carbon intensity estimates. If an hourly-resolution dataset is developed, it 
will enable a more detailed characterization of short-term variations in consumption-based carbon intensity and 
provide deeper insights into diurnal energy and carbon flow patterns.

Another limitation lies in the use of fixed emission factors for thermal power generation. While this choice 
ensures consistency with previous Carbon Monitor products, it does not account for variations in power plant 
operations, technology vintages, or fuel quality across countries and over time. For instance, emission factors may 
change during ramping events due to declining thermal efficiency and differ across plants with varying technol-
ogies and ages in each country. Additionally, the carbon content and combustion efficiency of fuels, such as coal, 
natural gas, and oil, can vary significantly by country, depending on sourcing practices and regulatory standards46.

If dynamic and country-specific emission factors that better reflect operational and technological differ-
ences are incorporated, it will be possible to include plant-level characteristics, fuel composition data, and 
load-dependent efficiency curves where available.

The dataset does not incorporate dynamic and country-specific emission factors that capture operational 
and technological heterogeneity. Specifically, information on plant-level characteristics, fuel composition data, 
and load-dependent efficiency curves is not included. The absence of these factors may limit the accuracy of 
emission estimates for individual plants or regions where such variations are substantial.

Furthermore, while this dataset currently focuses solely on CO₂ emissions, we acknowledge that other 
emission species—such as methane (CH₄), nitrous oxides (N₂O), sulfur dioxide (SO₂), and particulate matter 
(PM)—are also important contributors to climate change and air pollution.

Data availability
The dataset has been deposited to Zenodo34 (https://doi.org/10.5281/zenodo.15987717).

Code availability
The codes for producing the datasets are available publicly from: https://doi.org/10.5281/zenodo.16934373.
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