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OPEN A near-real time daily European
patapescripTor | Power Consumption and Carbon
Intensity Dataset (ECON-PowerCl)

Shujie Zhang*3, Wenli Zhao (%3453, Biqing Zhu(®¢®, ChunhuaYan’, Xuanren Song(®?,
Hou Jiang®?%, Jianing Fang®?, Philippe Ciais'®, Ning Xuan?, Pierre Gentine(®?,

Steven J. Davis(®, Zhu Liu®*? & Guo Yu Qiu*™

: We present a near-real-time daily European Consumption-based Power Carbon Intensity Dataset

: (ECON-PowerCl), developed from the CarbonMonitor power production dataset for Europe. Spanning

. from January 2015 to December 2024, the dataset encompasses 35 European countries, with daily

. updates and a one-day latency. ECON-PowerCl provides consumption-based power carbon intensity at

: the national level, accounting for cross-border electricity net imports in the country of consumption. By
integrating ENTSO-E (The European Network of Transmission System Operators for Electricity) data,

: ECON-PowerCl enables comprehensive analysis of carbon intensity trends shaped by cross-border

. transmissions, extreme weather events, and disruptions like the COVID-19 pandemic and geopolitical
conflicts. This dataset facilitates in-depth study of the effect of cross-border electricity flows on national
carbon footprints, providing insights for energy policy and climate resilience. The dataset also holds
extensive research potential for power-related analyses and policy-making in Europe’s interconnected
power systems.

Background & Summary
Energy has emerged as a pivotal concern for European nations, engaged in phasing out coal and fossil fuels while
facing geopolitical challenges such as higher gas prices since the war in Ukraine'”. The region grapples with the
. dual challenges of maintaining energy security and adapting to the climate change that intensifies power demand
: while simultaneously affecting generation capacities®. Extreme events such as winter storms, heatwaves, drought
: exacerbate this dilemma with extreme cold temperature spiking the heating demand and potentially reducing the
. wind power generation due to the frozen turbines*. Conversely, extreme heat can amplify cooling demand, and
© may limit the operational efficiency of thermal power plants and solar photovoltaics®”. Droughts can decrease
© the hydroelectric generation®®. This critical issue is further complicated by societal upheavals — illustrated by
fluctuating fuel costs and supply disruptions since the war between Russia and Ukraine—and behavioural shifts
during global health crises like COVID-19 pandemic, prompting abrupt shifts in energy systems!®!!.
Developing high temporal resolution datasets for monitoring of power production and consumption is cru-
cial for timely tracking of the security, resilience and sustainability of the European power system!2. Previous
. datasets, with lower latency and coarse temporal resolution, falter in capturing the immediacy of power sys-
: tems response to climate change and socioeconomic events'*~'°. The CarbonMonitor-Power database provides
. near-real-time daily and hourly power generation data, including total generation, source attribution and the
carbon intensity of power generated!®. It has been used in previous studies to understand the variations from
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daily periodical activities, weekends, seasonal cycles, regular and irregular events (i.e., holidays) and extreme
events (e.g., COVID-19 pandemic, extreme hot/cold days)>!"!8.

Nonetheless, with active cross-border power transmission between European countries, power generation
is not in balance with power consumption at country scale'. According to the latest data from ENTSO-E
(The European Network of Transmission System Operators for Electricity), the annual mean percentage of
imported power relative to total power generation across 35 European countries ranges from 7.9% to 538.0%.
Similarly, the annual mean exported power ratio to the total power generations varies from 0.48% to 157.1%.
Cross-border electricity transmission extend beyond market regulated electricity sales costs; it also advances
the pursuit of a more resilient, interconnected system capable of withstanding extreme events?*?!. Numerous
studies substantiate the premise that regional integration of power systems can be strengthened in the face
of heatwaves, winter storms, droughts**~?* during which the demand in an affected region can increase and
requires more supply from inter-connected regions. Transmission within an interconnected network can serve
as a mitigating solution, particularly when the surging demand outstrips available generations. For instance,
reduced wind and solar resources in Great Britain could necessitate substantial power imports from France?®.
Conversely, when renewable power generations exceed demand within Germany, the surplus energy can be
exported to the interconnected neighboring countries®*-2. The expansive interconnected grid spanning Europe
suggests that a comprehensive understanding of power dynamics requires data both on the power generated
and the power consumed, the latter being not covered by the current CarbonMonitor-Power-Europe data.

To fill this gap, we developed the Carbon Transport and Equilibrium Model for European Electricity
generation-transportation-consumption network as depicted in Fig. 1 to expand the CarbonMonitor-Power-Europe
database by including cross-border transmission and power consumption. The expanded dataset provides
country-level consumption-based power carbon intensity and power consumption data, with near-real-time
update capacities and a latency of just one day. This significant enhancement enables us to attribute carbon emis-
sions associated with power transmitted through interconnected power grids across European country borders.
This updated database enhances our understanding of the environmental impact on Europe’s power sector, along-
side a more precise allocation of responsibility for carbon emissions associated with power consumption within
each country.

Methods

Data acquisition. We compiled a dataset from 35 countries within the pan-European domain from
ENTSO-E (https://transparency.entsoe.eu/). ENTSO-E encompasses nation-level actual electricity generation
delineated by production type, observed electrical loads, cross-border electricity exchanges, and aggregated
data on hydraulic reservoirs and pumped storage facilities. The 35 countries are Austria, Belgium, Bosnia and
Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece,
Hungary, Ireland, Italy, Kosovo, Latvia, Lithuania, Luxembourg, Moldova, Montenegro, Netherlands, North
Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, and the
United Kingdom. The raw data are collected at the highest temporal resolution —15-minute or 30-minute inter-
vals, hourly, daily, or weekly intervals — depending on source availability.

Data preprocessing. Given noise, outliers and missing values in the raw data, the data filtering procedure
follows a standard approach as described in Zhu et al.’, summarized as follows: Firstly, we use the density-based
clustering algorithm (DBSCAN) to filter out noise*. Secondly, manual processing was applied to evaluate
whether abnormal values should be removed or retained. Some extreme values that coincide with periods
marked by significant social disruptions (such as COVID-19 lockdowns) or natural disasters (like extreme hot/
cold events and storms) are retained because these events have a real and abrupt effect on the power system.
Finally, we filled the missing values with linear interpolation. We provided a quality flag (‘Filtered’ (F) for filled
values and ‘Normal’ (N) for original values) to indicate the status of the values during the filling process. The
proportion of “F” labelled data is 0.39% for generation, 1.75% for consumption, and 0.03% for cross-border
transmission.

Table 1 presents the data statistics before and after preprocessing. This table details, for each country and each
data type, the number and percentage of data points that were filtered out (due to missing values or outliers) as
well as the number and percentage of data points that were imputed (filled in).

Consumption carbon intensity calculation.  This section outlines the calculation of consumption-based
power carbon intensity (as shown in Fig. 1). The development of the dataset involves four key steps. All the abbre-
viations have been summarized in Table 2.

Step 1: Calculating of the Country-Level Daily Carbon Intensity of Electricity Production

For each country, the daily carbon intensity of electricity production (CO, emission per unit of electricity
generated) is calculated based on Eq. (1)*°. The raw data includes 20 types of electricity production, grouped into
8 categories: coal, gas, oil, nuclear, hydro, wind, solar and other.

EuGc,(y Ef a.c
Z [XGC,(M ( 1)
Ef _indicates the carbon emissions per MWh of electricity generated and varies based on the type of genera-

tion, natural resources, and technological levels in different countries. In this study, we adopt the carbon emis-
sion factors computed in previous research!®, which have been summarized in the Table 3. The fuel-specific
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Fig. 1 Data acquisition and processing framework. Hourly updated data on power generation types, physical
electricity flows between countries (imports & exports), load, and storage from the ENTSO-E website are
downloaded and preprocessed. These data are used as inputs for the electricity equilibrium and carbon
equilibrium models to produce a near-real-time, daily consumption-based power carbon intensity dataset for
each country in the European power interconnected network (Methods).

emission factors are calculated as corrected emission factors based on IPCC emission factors corrected to base-
line value (same baseline value applied in the first CarbonMonitor power emission dataset®!, with the following
equation:
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Generation Consumption Transmission
Country Count | Percentage Count | Percentage Count | Percentage
Austria 7 0.19% 3 0.08% 10 0.05%
Belgium 8 0.22% 0 0.00% 0 0.00%
Bosnia and Herz. 12 0.33% 14 0.49% 0 0.00%
Bulgaria 7 0.19% 5 0.14% 0 0.00%
Croatia 21 0.57% 11 0.30% 5 0.03%
Czech Republic 22 0.60% 3 0.08% 11 0.08%
Denmark 4 0.11% 2 0.05% 0 0.00%
Estonia 10 0.27% 5 0.14% 5 0.05%
Finland 4 0.11% 3 0.08% 17 0.12%
France 14 0.38% 9 0.25% 1 0.00%
Georgia 1 0.03% 39 3.56% 0 0.00%
Germany 21 0.57% 3 0.08% 1 0.00%
Greece 15 0.41% 1 0.03% 4 0.02%
Hungary 18 0.49% 1 0.03% 11 0.04%
Ireland 11 0.30% 397 10.87% 0 0.00%
Italy 1 0.03% 5 0.14% 22 0.09%
Kosovo 4 0.11% 11 0.30% 0 0.00%
Latvia 18 0.49% 7 0.19% 9 0.08%
Lithuania 8 0.22% 9 0.25% 7 0.04%
Luxembourg 11 0.30% 9 0.25% 8 0.11%
Moldova 14 0.38% 358 19.93% 2 0.03%
Montenegro 1 0.03% 13 0.36% 5 0.03%
Netherlands 15 0.41% 4 0.11% 0 0.00%
North Macedonia 7 0.22% 132 3.61% 10 0.07%
Norway 39 1.07% 2 0.05% 0 0.00%
Poland 17 0.47% 4 0.11% 8 0.04%
Portugal 4 0.11% 11 0.30% 0 0.00%
Romania 5 0.14% 8 0.22% 5 0.03%
Serbia 59 1.62% 48 1.31% 3 0.01%
Slovakia 9 0.25% 1 0.03% 5 0.03%
Slovenia 7 0.19% 12 0.33% 3 0.02%
Spain 2 0.05% 3 0.08% 0 0.00%
Sweden 12 0.33% 3 0.08% 0 0.00%
Switzerland 3 0.08% 6 0.16% 1 0.01%
United Kingdom 20 0.55% 577 15.80% 0 0.00%

Table 1. Summary of Filtered and Imputed Data Points by Country and Data Type.

201
Emls 019 —baseline

S (AD}}" x EF") ©)

EF}, = EF["C x

where EF/; is the corrected emission factor used in this study, for country i and for fuel j. EF; IPCC i5 the IPCC
emission factor for fuel j, Emis?°'® b4l is the reference baseline total power emissions from country i in the
year 2019. AD?"? is the electr1c1ty generation for country i, fuel j in the year 2019.

Step 2: Develop an Energy Balance Model for Production and Consumption

According to the methods in a previous approach!’, we assume that electricity production and consumption
for any given country c on any given day are balanced, as described in Eq. (3). The electricity equilibrium model
applies to countries with available data on electricity generation, consumption, imports, and exports. Note that
Eq. (3) includes no loss term, as the ENTSO-E Transparency Platform already accounts for transmission losses
in each country’s electricity consumption.

m m
Gc + Elc,i + SC,O = Lc + ZEc,i + Sc,l (3)
i= i=1

Here,G,, I, , L, and E_ ; are directly sourced from ENTSO-E, while S, ; and S, | are estimated using weekly res-
ervoir ﬁlhng rates (MWh) from ENTSO-E, interpolated to daily resolutlon m represents the total number coun-
tries that have electricity imports or exports with the specified country c. This is based on the dominance of
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Abbreviations Full name Unit
c Any given country.
et The different energy sources, here, Coal, Natural gas, Nuclear, Oil, Solar, Hydro, Wind, Other.
G, The total electricity generation of country ¢ on any given day. MWh
G, The electricity generation for o in country c. MWh
Ef . The carbon emission factor for type o in country c. kg CO,/MWh
Clg., The production-based carbon intensity of electricity for country c. kg CO,/MWh
; A set of all countries that engage in electricity cross-border transmission (imports or exports)
with country c.
I; The electricity imported by country ¢ from country i on any given day. MWh
E; The electricity exported by country ¢ to country i on any given day. MWh
S.o The electricity reserve of country ¢ before the start of the given day. MWh
Se1 The electricity reserve of country c at the end of the given day. MWh
L, The electricity consumption of country ¢ on any given day. MWh
Clg .o The carbon intensity of storage electricity for country ¢ before the start of the given day. kg CO,/MWh
CI,, The consumption-based carbon intensity of electricity for country c. kg CO,/MWh
Clg,, The carbon intensity of electricity exported by country ¢ to other countries. kg CO,/MWh
Clg . The carbon intensity of storage electricity for country c at the end of the given day. kg CO,/MWh

Table 2. List of Abbreviations.

Pumped Hydro Energy Storage (PHES), which accounts for 95-97% of global storage capacity and 99% of total
energy storage®>>.

Step 3: Develop a Carbon Intensity Balance Model for Production and Consumption

Building on the electricity equilibrium model in Eq. (3), we further constructed a model for the carbon
intensity of production and consumption for each eligible country c.

GCCIG,C + Z:n:llc,iCIL,i + Sc,OCIS,c,O = LcCIL,c + Z:ilEc,iCIE,c+sc,1CIS,c,l (4)

Here, CIG, . denotes the generation-based carbon intensity of electricity for country ¢, while CI Lo CI Eo CI. S, and
CI; . represent the consumption-based carbon intensity, the carbon intensity of exported electricity, the carbon
intensity of stored electricity before the start of the day, and the carbon intensity of stored electricity after the end
of the day, respectively. The value of CI; . is calculated based on Eq. (1).

We assume that, for a given country c, the consumption-based carbon intensity (CI; ) is equal to both the car-

bon intensity of exported electricity (CI .) and the post-storage carbon intensity at the end of the day (CI . ).
That is,

CIL,C = CIE,C = CIS,C,I (5)

Under this assumption, CI, . (or equivalently CI; . and CI; . ;) can be factored out from the right-hand side of Eq.
(3), allowing the equation to be simplified into Eq. (6). The values of CI; ,CI; ,CI; ., and CI . , are estimated by
fitting Eq. (6) with publicly available energy flow and generation data from ENTSO-E.

(Lc + Z::lEc,i + Sc,l) CIL,C - Z:n:llc,iCIL,i = GECIG,C + SC,OCIS,C,O (6)
Given that the carbon intensities of electricity consumption (CI; ), exported electricity (CI; .) and new electric-

ity storage (CI ) are identical values on any given day for any country c in the European interconnected power
network (Fig. 1), we can express Eq. (6) in matrix form:

X =BA"' 7)
Where:
X denotes the unknown consumption carbon intensity of each countryc.
A € R™ are defined as:
b =G, Clg;+ S Cls;,
A € R™™ gre defined as:
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Country Coal |Gas |Oil |Hydro |Nuclear | Wind | Solar | Other renewables
Austria 820 1385 | 700 0 0 0 0 0
Belgium 820 777 700 0 0 0 0 0
Bosnia and Herz. 820 490 700 0 0 0 0 0
Bulgaria 1093 | 653 700 0 0 0 0 0
Croatia 990 591 700 0 0 0 0 0
Czech Republic 1309 | 782 1038 |0 0 0 0 0
Denmark 1272 | 760 1008 |0 0 0 0 0
Estonia 2758 | 1648 |2186 |0 0 0 0 0
Finland 1407 | 840 1115 |0 0 0 0 0
France 1164 | 695 922 0 0 0 0 0
Georgia 820 490 700 0 0 0 0 0
Germany 1285 | 768 1018 |0 0 0 0 0
Greece 1111 | 664 700 0 0 0 0 0
Hungary 1275 | 762 700 0 0 0 0 0
Ireland 948 566 752 0 0 0 0 0
Ttaly 1025 | 613 813 0 0 0 0 0
Kosovo 820 490 700 0 0 0 0 0
Latvia 820 |677 |700 |0 0 0 0 0
Lithuania 820 3839 5093 |0 0 0 0 0
Luxembourg 820 490 700 0 0 0 0 0
Moldova 820 490 700 0 0 0 0 0
Montenegro 820 490 700 0 0 0 0 0
Netherlands 1009 | 603 700 0 0 0 0 0
Norway 820 830 700 0 0 0 0 0
North Macedonia | 820 490 [700 |0 0 0 0 0
Poland 1150 | 687 911 0 0 0 0 0
Portugal 885 |529 |700 |0 0 0 0 0
Romania 1229 | 734 700 0 0 0 0 0
Serbia 820 490 700 0 0 0 0 0
Slovakia 1937 | 1157 [1535 |0 0 0 0 0
Slovenia 1072 | 640 700 0 0 0 0 0
Spain 965 577 765 0 0 0 0 0
Sweden 820 490 700 0 0 0 0 0
Switzerland 820 490 700 0 0 0 0 0
United Kingdom 1028 | 614 814 0 0 0 0 0

Table 3. Summary of Emission Factors of Each Country (in kg CO,/MWh).

ik j=k

j,k are the row and column indices in the matrix and then represent the corresponding country.
Solving Eq. (7) yields the daily consumption-based power carbon intensity for each European country (CI; ).

Calculation example: spain, france, portugal and italy on a hypothetical day. To clarify the cal-
culation procedure, we provide a step-by-step example for Spain, France, Italy, and Portugal on a specific day. For
simplicity, we assume a hypothetical interconnected power system that includes only these four countries. While
real-world systems may involve more complex interconnections, this simplification does not affect the structure
or logic of the calculation process described below.

1. Hypothetical Data Table

Suppose the following values (all energy units in MWh, carbon intensity in kg CO,/MWh):
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Country Spain (ES) France (FR) Portugal (PT) Italy (IT)

Generation (G) 10,000 12,000 5,000 8,000

Consumption (L) 11,000 10,500 5,500 8,500
PT—ES: 300 ES— FR: 1,100 ES — PT: 200 ES —IT:500

Import (I) from others FR — ES: 1,000 PT — FR: 200 FR — PT: 900 FR—IT: 600
IT — ES: 400 IT — FR: 700 PT —1IT: 250 PT —IT: 150
ES—PT: 200 FR — ES: 1,000 PT — ES: 300 IT — ES:400

Export (E) to others ES—FR: 1,100 FR — PT: 900 PT — FR: 200 IT — FR: 700
ES—IT: 500 FR—IT: 600 PT—IT: 150 IT —PT: 250

Storage at Start (S)) 500 400 300 600

Storage at End (S,) 600 500 350 700

Generation CI (CI;) 250 100 400 350

Initial Storage CI (CI; . ) 270 120 410 340

2. Constructing the Matrix

EquationFor each country c:

m m
Lc + ZEc,i + Sc,l] CIL,C - ZIc,iCIL,i = GCCIG,C + SC,OCIS,C,O

i=1 i=1
Assembled for all four countries, this leads to a matrix formulation:
AX =B

where X is the vector of unknown consumption-based carbon intensities (specifically, CI; . and CI; ;. Matrix A
captures the relationships among countries in the interconnected power system, including each country’s
electricity load (L ), total electricity exports to other countries (31 |E, ,), electricity storage at the end of the day
(., and electricity imports from other countries (I, ). Vector B represents the carbon emissions associated
with both electricity generation and initially stored electr1c1ty, calculated as the products of electricity quantities
and their respective carbon intensities.

The structures of matrix A and vector B are illustrated as follows:

2.1. Matrix A
Diagonal elements (j = k):

a; =L+ 3 + S
Oft-diagonal elements (j = k):
aj’k = — Ij,k
In this case, they should be calculated and then get results as below.

o A(ES,ES): 11,000+ (200 + 1,100 4 500) 4+ 600 = 13,400 (Total electricity consumption in Spain including
load, export and storage.)

« A(ES,FR): —1,000 (R — ES)

«  A(ES,PT): —300 (PT —ES)

« A(ESIT): —400 (IT —ES)

«  A(FR.ES): —1,100 (ES— FR)

o A(FR,FR): 10,500+ (1,000 4900 4 600) + 500 = 13,500 (Total electricity consumption in France including
load, export and storage.)

« A(FR,PT): —200 (PT — FR)

« A(FRIT): —700 (IT — FR)

« A(PT.ES): —200 (ES — PT)

« A(PTFR): —900 (FR — PT)

o A(PTPT): 5,500+ (300 + 200 + 150) + 350 = 6,500 (Total electricity consumption in Portugal including load,
export and storage.)

«  A(PTIT): —250(IT — PT)

o A(IT,ES): —500(ES —IT)

« A(TFR): —600(FR —IT)

e A(IT,PT): —150(PT —IT)

o A(ITIT): 8,500+ (400 4 700+ 250) 4+ 700 = 10,550 (Total electricity consumption in Italy including load,
export and storage).
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ES FR PT IT
ES 13,400 —1,000 —300 —400
FR —1,100 13,500 —200 —700
PT —200 —900 6,500 —250
IT —500 —600 —150 10,550

13400 —1,000 —300 —400
—1,100 13,500 —200 —700
—200 —900 6500 —250

—500 —600 —150 10550
2.2. Vector B

by =G;- Clg; + Sjo - Clg;

» ES:10,000 x 250 4-500 x 270 = 2,635,000
« FR:12,000 x 100+ 400 x 120 = 1,248,000
« PT:5,000 x 400+ 300 x 410 =2,123,000
o IT:8,000 x 350 4 600 x 340 = 3,004,000

2,635,000
11,248,000
" 12,123,000

3,004,000

3. Solving for Consumption-Based Carbon Intensities
The matrix equation:

13400 —1,000 —300 —400]|CMEs| 2,635,000
~1,100 13500 —200 —700 | ClLrr| _ |1,248,000
—200 —900 6500 —250||CL pr| |2,123,000
—500  —600 —150 10550 cr, .|  [3.004,000

Solving the matrix equation yields the consumption-based carbon intensity for each country.
4. Result Interpretation

+ Spain’s consumption-based carbon intensity: ~223 kg CO,/MWh

o France’s consumption-based carbon intensity: ~132kg CO,/MWh

o Portugal’s consumption-based carbon intensity: ~363 kg CO,/MWh
o Italy’s consumption-based carbon intensity: ~308 kg CO,/MWh

In summary, Spain, Portugal and Italy show lower consumption-based carbon intensities compared to
their generation-based values, while France shows higher values. This example demonstrates how the model
accounts for electricity cross-border transmission, generation mix, and storage, and enables the calculation of
country-specific, consumption-based carbon intensities on a daily basis.

Data Records
The dataset has been deposited to Zenodo* (https://doi.org/10.5281/zenodo.15987717). The dataset covers
3,653 days (from January 1, 2015, to December 31, 2024) for 35 countries. It contains a total of 113,247 records,
each representing the daily consumption-based power carbon intensity (measured in kg CO,/MWh) at the
country level. Timestamps enable temporal identification by servers.

We provide a quality flag in the “FLAG” column to indicate the status of each value during the data filling
process: “Normal” (N) for original values and “Filtered” (F) for filled values.

Due to limitations in the availability of original data, several countries exhibit gaps during certain time peri-
ods. We have listed the available data periods for these countries in Table 4. For simplicity, countries with com-
plete data coverage from 2015.01.01 to 2024.12.31 are not listed in the table.

Technical Validation

This section presents an uncertainty quantifications, correlation analysis with the reference dataset, and a com-
parative analysis of our consumption-based carbon intensity dataset with the production-based carbon intensity
dataset. We also examine the seasonality, interannual trends, variability, of consumption-based carbon intensity
from ECO-PowerClI. In addition, we assess the robustness of the ECON-PowerCI dataset in capturing abrupt
changes in carbon intensity during extreme weather events and geopolitical incidents.
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Country Start Date Latest Date
Bosnia and Herz. 2017.03.01 2024.12.31
Croatia 2019.01.01 2024.12.31
Georgia 2022.01.01 2024.12.31
Italy 2016.01.01 2024.12.31
Kosovo 2021.09.01 2024.12.31
Luxembourg 2021.06.01 2024.12.31
Moldova 2020.02.01 2024.12.31
North Macedonia 2016.06.01 2024.12.31
Serbia 2017.01.01 2024.12.31
United Kingdom 2015.01.01 2021.05.31

Table 4. Data Availability Periods for Countries with Incomplete Coverage in the ECON-PowerCI Dataset.
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Fig. 2 Uncertainty characterization of the ECON-PowerCI dataset for the Netherlands. (a) Shows the daily
temporal distribution of relative uncertainty, while (b) displays its 30-day moving average. The solid lines
represent the original ECON-PowerCI consumption-based carbon intensity estimates; shaded regions denote
the 97.5% confidence intervals. The inset plot presents the frequency distribution of relative uncertainty across
the time series.

Uncertainties. To validate the reliability and accuracy of our dataset, comparative analysis with existing ref-
erence datasets is essential. However, publicly available datasets for consumption-based power carbon intensities
calculations remain limited, especially those with comprehensive temporal and spatial coverage across European
countries. Given this constraint, we conduct an uncertainty analysis based on Monte Carlo simulations.

The uncertainty of our dataset arises from various sources. According to the IPCC?*, potential sources of
uncertainty include activity data, emission factors, data completeness, data availability, and measurement errors.
Some of these uncertainties, such as measurement errors — whether random or systematic — are not quanti-
fiable®®. These may stem from inaccuracies in measurement, recording, transmission, or from approximated
constants and parameters obtained from external sources*, and are present throughout the carbon accounting
process.

In this study, we focus on the uncertainty introduced by activity data, specifically electricity generation,
which represents the most quantifiable uncertainty in ECON-PowerCI dataset. Electricity generation is one of
the most important drivers of uncertainty in both emissions and carbon intensity estimations.

We applied Monte Carlo simulation, which is a technique recommended by the IPCC* to propagate the
uncertainties from activity data and emission factors. The technique first assumes distributions (probability den-
sity function) for variable under consideration. In our study, we assume that electricity generation is the primary
source of uncertainty and model it using a normal distribution®’. The mean of its distribution is derived from
actual generation data, while the standard deviation is defined by the coeflicient of variation (CV) set at 10%. We
then generate 100,000 random samples of electricity generation, resulting in 100,000 independent estimations
of emissions®®. These simulations yield a distribution of estimated consumption-based carbon intensity values
for each country. From this distribution, key statistics such as the mean and confidence intervals are derived.
Specifically, the 97.5% uncertainty range is calculated as the 97.5% confidence interval of the 100,000 simulated
estimates, reflecting uncertainty in electricity generation and providing a credible range within which the true
carbon intensity is likely to fall.

For illustration, Fig. 2 shows the 97.5% confidence interval (shaded in gray) for Netherlands. To isolate
the uncertainty of each country, we simulate its uncertainty while holding other countries’ data constant.
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Country-specific results indicate that the 97.5% confidence intervals of consumption-based carbon intensity are,
for example, as follows: Austria (—4.7% to +5.6%), Belgium (—16.0% to +16.2%), Bulgaria (—4.1% to +4.4%),
Czech Republic (—17.3% to+17.3%), Denmark (—16.8% to+16.9%), Finland (—6.5% to +7.6%), France
(—9.4% to+9.8%), Germany (—19.2% to +19.2%), Hungary (—12.6% to + 13.2%), Latvia (—7.9% to +8.5%),
Lithuania (—10.3% to+10.4%), and the Netherlands (—17.4% to +17.5%).

Comparisons with reference data. We compared our dataset with a reference database
(consumption-based carbon intensity provided by Electricity Map (https://www.electricitymap.org)) over the
overlapping period from 2017 to 2024. The reference dataset uses a flow-tracing methodology®® to track the
origin of electricity, primarily based on the ENTSO-E database, which is consistent with the data source used
in ECON-PowerCI. Previous studies using Electricity Map data have demonstrated its reliability***’. Overall,
the results show that our data generally agree well with the reference dataset at both annual and monthly scales
(Fig. 3). For the multi-year average consumption-based carbon intensity, the ECON-PowerCI database shows
good agreement with the reference dataset for most countries (R*=0.78). For multi-monthly averages, there is
also strong consistency, with R values ranging from 0.76 to 0.85, and most countries distributed closely along
the 1:1 line. The inter-annual variability (as indicated by the error bars) further demonstrates that the agreement
between the two datasets remains within a reasonable and acceptable range (Fig. 3). These results indicate that, in
aggregate terms, the consumption-based carbon intensities provided by ECON-PowerCI are broadly consistent
with the reference dataset.

However, two countries, Montenegro and Estonia, show notably higher values in ECON-PowerCI com-
pared to the reference. This discrepancy mainly stems from differences in the emission factor calculations used
for these countries. For coal, gas, and oil in EU countries, Electricity Map applies a thermal power plant-level
matching approach, directly linking verified emissions with actual generation, which enables more transpar-
ent and higher-resolution carbon intensity signal*'. ECON-PowerCI applies emission factors of 820, 490, and
700kg CO,/MWh (coal, gas, oil) for Montenegro and 2758, 1648, and 2186 for Estonia, whereas Electricity Map
reports 820, 490, and 650 for Montenegro, and significantly lower values of 1097, 530, and 885 for Estonia. This
highlights that ECON-PowerCI could potentially benefit from incorporating more precise plant-level emission
factors and country-specific power system efficiencies.

Flow-tracing methodology (as implemented by Electricity Maps) provides a physically detailed attribution
of carbon intensity by tracing electricity flows from each generator to consumer zones across the transmission
network?*?. This method can even account for loop-flows and regional imports/exports, capturing the actual
electricity mix available in each region. In contrast, our methodology adopts a more data-parsimonious, prag-
matic framework that avoids the need for granular mapping of generation sources to flows or complex grid
simulations. This simplification improves computational efficiency and transparency, making it especially suit-
able for near-real-time scientific and policy-oriented analyses. Moreover, in alignment with the mission of the
Carbon Monitor platform—an international initiative providing the first science-based, regularly updated daily
CO, emission estimates—our dataset is fully open and comprehensively documented, significantly improving
reproducibility and utility over existing tools like Electricity Maps.

Comparisons of daily production-based and consumption-based power carbon intensi-
ties. Our near-real-time daily carbon intensity dataset for electricity consumption can be used for analyz-
ing daily and seasonal dynamics of consumption-based carbon intensity across various countries. Typically,
consumption-based power carbon intensity, which accounts for cross-border electricity exchanges, differs from
production-based carbon intensity, which considers only domestic power generation (Fig. 4). These differences
can be attributed to varying socio-economic factors and active cross-border transmissions.

For instance, Italy exhibits lower consumption-based power carbon intensity due to its substantial imports
of less carbon intensive electricity from France (accounting for an annual average ratio of 7.5%) and Switzerland
(0%)*. Hereafter, percentages are annual averages. Despite fossil fuels accounting for around 41.88% of Italy’s
electricity production, its consumption-based power carbon intensity is mitigated by these cleaner energy
imports. On the other hand, France, despite having a low carbon domestic electricity generation profile—
with only 7.5% derived from fossil fuels—displays a higher consumption-based power carbon intensity than
production-based carbon intensity. France exports significant clean electricity to the United Kingdom, Spain,
Germany, Italy, and other countries while also importing electricity from neighboring countries, many of
which are more reliant on fossil fuels (62.0%, 68.9%, 89.1%, 32.8%, 43.4%, 56.2% power generated from fos-
sil fuels for interconnected UK, ES, LU, BE, DE, IT, respectively). This results in a slight increase in France’s
consumption-based power carbon intensity, with an annual mean rise of 5 t CO,/GWh (Fig. 4). Germany,
with a relatively high reliance on fossil fuels for electricity production, imports nuclear power from France.
As a major electricity exporter within the EU, Germany’s consumption-based power carbon intensity is lower
than its production-based intensity. Similarly, Spain’s consumption-based power carbon intensity is reduced
compared to its production-based intensity, partly due to its significant electricity imports from France’s clean
energy sources**. Meanwhile, Poland (85.7% of power generated from fossil fuels), which relies heavily on fos-
sil fuels generated electricity, generally shows a lower consumption-based power carbon intensity after tak-
ing lower carbon cross-border power transmissions into consideration. The annual mean differences between
production-based and consumption-based power carbon intensities underscore the impact of interconnected
cross-border transmissions.

These comparisons illustrate the critical differences between consumption-based and production-based
power carbon intensities, highlighting the significance of cross-border electricity exchanges. By factoring in
these exchanges, we can more accurately assess the carbon intensity of electricity consumed within each country,
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Fig. 3 Comparisons with reference data. This figure presents a comparison between ECON-PowerCI and the
reference dataset (consumption-based carbon intensity from Electricity Map.This figure presents a comparison
between ECON-PowerCI and the reference dataset (consumption-based carbon intensity from Electricity Map.
Panel (a) shows the multi-yearly averages, while Panel (b) displays the multi-monthly averages. Horizontal and
vertical error bars indicate the standard deviations for ECON-PowerCI and Electricity Map, respectively, for the
period 2017-2023. For clarity, not all labels are displayed to avoid overlapping.

revealing the interconnected nature of Europe’s power systems and the influence of imports and exports on
national carbon footprints.
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Fig. 4 Consumption-based Power Carbon Intensity for European Countries. This figure illustrates the
interconnected power network within European countries. The arrows and lines indicate the average import or
export of electricity during the period from 2015 to 2023. The size of each marker reflects the annual average
of import and export for each country. The thicker end of each arrow denotes the exporting country, while the
thinner end points to the importing country. All arrows are unidirectional, showing the direction of cross-
border electricity flow from exporter to importer. Surrounding the map, boxplots compare the production-
based carbon intensity (gen_CI) with the consumption-based power carbon intensity (con_CI) for selected
European countries. In each boxplot, the central line shows the median value, the box edges mark the 25th and
75th percentiles (interquartile range, IQR) and the whiskers extend to 1.5 times the IQR. Individual data points
are displayed as dots, while the probability density distribution is shown alongside each boxplot for reference.
Data points beyond the whiskers are classified as outliers (black dots). The inset plots highlight the annual
mean difference between consumption-based and production-based power carbon intensities (con_CI minus
gen_CI), shown as a blue dot with the country abbreviation. The upper and lower whiskers represent the range
from the 25th to the 75th percentile. These inset plots emphasize the impact of cross-border electricity transfers
on carbon intensity, illustrating the tendency after accounting for these cross-border power transmission.
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Limitations. One limitation of the ECON-PowerClI is its daily temporal resolution, which may overlook
important sub-daily dynamics in electricity systems. Electricity generation, consumption, and cross-border flows
exhibit substantial intraday variability. For example, surplus renewable electricity, particularly from solar PV, is
often exported during midday hours when solar output peak?. Conversely, evening peak demand periods may
coincide with increased reliance on fossil-fuel-based generation®. These intraday dynamics are not captured in
the present daily consumption-based carbon intensity estimates. If an hourly-resolution dataset is developed, it
will enable a more detailed characterization of short-term variations in consumption-based carbon intensity and
provide deeper insights into diurnal energy and carbon flow patterns.

Another limitation lies in the use of fixed emission factors for thermal power generation. While this choice
ensures consistency with previous Carbon Monitor products, it does not account for variations in power plant
operations, technology vintages, or fuel quality across countries and over time. For instance, emission factors may
change during ramping events due to declining thermal efficiency and differ across plants with varying technol-
ogies and ages in each country. Additionally, the carbon content and combustion efficiency of fuels, such as coal,
natural gas, and oil, can vary significantly by country, depending on sourcing practices and regulatory standards®.

If dynamic and country-specific emission factors that better reflect operational and technological differ-
ences are incorporated, it will be possible to include plant-level characteristics, fuel composition data, and
load-dependent efficiency curves where available.

The dataset does not incorporate dynamic and country-specific emission factors that capture operational
and technological heterogeneity. Specifically, information on plant-level characteristics, fuel composition data,
and load-dependent efficiency curves is not included. The absence of these factors may limit the accuracy of
emission estimates for individual plants or regions where such variations are substantial.

Furthermore, while this dataset currently focuses solely on CO, emissions, we acknowledge that other
emission species—such as methane (CH,), nitrous oxides (N,O), sulfur dioxide (SO.,), and particulate matter
(PM)—are also important contributors to climate change and air pollution.

Data availability
The dataset has been deposited to Zenodo* (https://doi.org/10.5281/zenodo.15987717).

Code availability
The codes for producing the datasets are available publicly from: https://doi.org/10.5281/zenodo.16934373.
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