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Abstract
Reactive nitrogen compounds are responsible for multiple negative impacts while they remain in
the environment, changing their state and chemical form. Here we develop a methodology to trace
these compounds throughout the environment using a stringent concept to describe their fate
consistently and comprehensively. Using an individual country as the system scale, the individual
flows of reactive nitrogen compounds are characterized between and within eight pools reflecting
human society, economic sectors and environmental spheres, also accounting for transboundary
flows, to create a national nitrogen budget. The methodology has been devised for implementation
by national agencies in conjunction with greenhouse gas or air pollution emission inventories,
hence it links closely with the structures and data derived in these contexts. The guiding
methodological principle is the mass conservation of reactive nitrogen, implemented as a material
flow analysis that systematically describes all flows and stock changes. Embedding results obtained
from five European countries demonstrates the feasibility of the approach. The major
environmental pathways of reactive nitrogen compounds can be traced from industrial processes
and agricultural production, including the agri-food chain, indicating levers for policy
interventions. Spatial and temporal benchmarking of the results demonstrates comparisons
between countries or over time. While further results of practical implementation are needed to
assess overall robustness, the budget approach allows for multiple opportunities of data checks and
verification to visualize the uncertainty associated to many input data, such as lacking information
on nitrogen contents and specific flows, or the relevance of so-far unaccounted-for stocks of
reactive nitrogen. Useful applications have been identified that link nitrogen budgets to impacts on
human health as well as on ecosystems and the climate, indicating that developing and using
national nitrogen budgets may shape improved and information-led policies.
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1. Introduction

Environmental impacts due to the disruption of the
natural biochemical nitrogen flows have been well
recognized on the global scale (Rockström et al 2009,
Richardson et al 2023) as well as regionally (Schulte-
Uebbing et al 2022). Resulting from a largely acceler-
ating global nitrogen cycle (Fowler et al 2013, Battye
et al 2017), triggered by anthropogenic activities to fix
nitrogen (Erisman et al 2008), specific environmental
effects have been recognized for Europe (Sutton et al
2011a, 2011b) as well as for other world regions
(Sutton et al 2025). A major challenge to devis-
ing measures and policies for reducing such impacts
is the difficulty to establish a proper link between
source and impact. The ‘nitrogen cascade’ (Galloway
et al 2003), describing the cycling of reactive nitro-
gen compounds (Nr, i.e. all nitrogen species except
gaseous N2) explains their extended fate in the envir-
onment, pointing out the considerable potential of
simultaneously addressing multiple impacts, but also
the difficulty in identifying an individual cause of a
given impact related to Nr.

Understanding the nitrogen cascademay contrib-
ute to identify simultaneous solutions to environ-
mental problems and to note possible synergies of
measures. Elaborating this conceptual idea, nitrogen
budgets have been developed as a tool to provide a
systematic overview of environmental nitrogen flows
between self-defined environmental and anthropo-
genic pools. Based on the principle of mass con-
servation, nitrogen budgets allow for a budget clos-
ure of the entire system as well as on the level of
each pool (see ‘method’ for details). Budget closure
helps to validate results and supplements inform-
ation wherever quantification of a flow becomes
impossible. Excluding inert N2, which is present in
large excess, from the budget allows to focus on the
environmentally relevant compounds.

Using nitrogen budgets to trace the fate of nitro-
gen is not a new idea. Starting from specific compart-
ments, like the atmosphere (Derwent et al 1988) or
agriculture (Oenema et al 2003), also comprehens-
ive budgets on a national scale have been created
(see amore detailed overviewprovided byWiniwarter
et al 2025 or Djukic et al 2025). This paper takes
advantage of the experience gained from such exist-
ing approaches to establish nitrogen budgets by a
standardized, comparable methodology established
on a national level, reported in full detail by Schäppi
et al (2025). A national nitrogen budget (NNB) uses
existing information, such as statistical data that are
especially well developed on a national level, and
environmental information collected nationally to
meet the requirements of international agreements.
In line with these operational efforts by countries
to provide data on their national greenhouse gas
emissions (UNFCCC 2022), national air pollutant

inventories (EEA 2023), or agricultural nutrient
budgets in the framework of the statistics on agricul-
tural inputs and outputs (SAIO: EU2022), we provide
an approach to create NNBs that allow for comparing
different years, benchmarking between countries, and
devising measures to reduce pollution and impacts,
including policy results and useful applications.

2. Method

Nitrogen budgets adopt themethod of amaterial flow
analysis (Brunner and Rechberger 2016), specifically
using an elemental balance for nitrogen. The under-
lying physical principle is mass conservation, and the
relevant parameters are stocks and flows. Here stocks
represent quantities of Nr in given ‘containers’, the
environmental and anthropogenic pools. Pools are
often divided into sub-units (sub-pools). Nr mov-
ing between such (sub-)pools is described as a flow.
For each of the pools considered, the Nr stock var-
ies according to the sum of all flows into and out of
the pool (equation (1)). The resulting equation of Nr

flows can be expressed as

∆S=
∑

Fi (1)

where S represents the stock, ∆S the stock change,
and F is any of i flows into (with a positive sign) or
out of (with a negative sign) the respective pool in
a given time period, which is a year by default. As
a conceptual simplification from the real-world con-
ditions, compounds are considered to maintain their
chemical form while part of a flow, i.e. any chemical
transformation would occur in the pools only.

The equation covers all flows of nitrogen com-
pounds except those of N2. N2 flows only become rel-
evant and are included as in- or outflows when con-
verting into Nr, e.g. as occurring during the Haber–
Bosch process of industrial N fixation, or when Nr

is converted into N2, as it occurs for example dur-
ing denitrification, the microbial process of reducing
nitrate into molecular N2. N2 stocks/stock changes
(or flows of N2 that are not connected to any conver-
sion to or from Nr) are not part of this concept.

In order to create NNBs as useful tools for
national agencies, the pools were defined so that they
are compatible with economic sectors required for
other environmental reporting obligations, such as
the need to report the emissions of greenhouse gases
or of air pollutants. A comprehensive national over-
view on Nr flows needed to extend beyond these sec-
tors, however, and had to also include pools rep-
resenting the human society as well as near-nature
environments and transporting media (atmosphere,
hydrosphere). Table 1 provides the harmonized struc-
ture of NNBs as developed by the UN Economic
Commission for Europe (UNECE 2025).
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Table 1. Pools and sub-pools defined for national nitrogen budgets.

Pool—sub-pool name

Reference
to technical
annex

Related IPCC
sector Code

Energy and fuels—energy conversion Annex 1 1 Energy EF.EC
Energy and fuels—transportation EF.TR
Energy and fuels—other energy and fuels EF.OE
Energy and fuels—manufacturing industries and construction EF.IC

Materials and products in industry—food processing Annex 2 2 Industrial
processes and
product use

MP.FP
Materials and products in industry—other producing industry MP.OP

Agriculture—manure management, storage and animal husbandry Annex 3 3 Agriculture AG.MM
Agriculture—soil management AG.SM
Agriculture—biofuel production and composting AG.BC

Forests and semi-natural area—forests Annex 4 4 Land use,
land-use change
and forestry

FS.FO
Forests and semi-natural area—wetland FS.WL
Forests and semi-natural area—other land FS.OL

Processing of residues—solid waste Annex 5 5 Waste PR.SO
Processing of residues—wastewater PR.WW

Humans and settlements (no sub-pool) Annex 6 Not covered HS

Atmosphere (no sub-pool) Annex 7 Not covered AT

Hydrosphere—groundwater Annex 8 Not covered HY.GW
Hydrosphere—surface water HY.SW
Hydrosphere—coastal water HY.CW
Hydrosphere—aquaculture HY.AC

Each pool and sub-pool is characterized by a
unique code. Flows between two pools (when exist-
ing) are characterized using a combined code link-
ing the two respective pools. Each flow is individu-
ally defined in the technical Annexes to the UNECE
GuidanceDocument (Schäppi et al 2025), and is asso-
ciated to the pool from which the flow originates,
where flow magnitudes are usually better defined as
for the pool a flow ends up in. Guidance includes pos-
sible data sources, characterization by compounds,
and typical nitrogen contents of materials needed to
quantify flows.

Schäppi et al (2025) also describe the overarch-
ing method and conventions of NNBs, including a
threshold for experts to consider when to report flows
explicitly (100 g N/capita and year)—flows smaller
than this magnitude may be reported in combination
with other, larger flows. Such flows may also be char-
acterized by the specific Nr compounds transported,
or by a matrix in which the flow occurs in. Finally,
methods to assess and propagate uncertainties have
been defined, based on error propagation laws and
approaches inherited from emission inventories (EEA
2023), with guidance also provided on data recon-
ciliation and reporting of uncertainty throughout the
NNB.

As NNBs necessarily are limited by spatial bound-
aries of countries, delineation of flows is also needed
with respect to exports and imports. The concept

allows for flows from each of the pools and sub-pools
to the ‘Rest of the World (RW)’ or vice versa, to
cover Nr mass entering or leaving a country, either by
trade, or by natural carriers such as the atmosphere or
the hydrosphere. In the latter case, ‘Coastal water’ is
defined as a separate sub-pool, delineated as the area
of national territorial waters, which is within 12 naut-
ical miles from any shoreline.

3. Selected results

Here we present a set of standard outputs that can
be directly derived using the toolset developed spe-
cifically for NNBs. These outputs allow to reveal
the potential and the limitations of the approach—
to be further elaborated in the discussion section.
There are four sets of results to be distinguished, to
be developed in more detail or analyzed in a more
general level. These are, firstly, a pattern of indi-
vidual flows (for a given country and year), and
secondly an input–output balance at any level (total
NNB, any pool, any sub-pool). Thirdly, there are tem-
poral trends of flows and stock changes, and finally
approaches for benchmarking, by way of a normal-
ized comparison across sectors or across countries.

The display of individual flows takes advant-
age of the STAN model (Cencic and Rechberger
2008). A specific data collection spreadsheet has been
developed which can be used as an interface for data

3
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Figure 1.Mass flows of Nr in kt of N (here for Germany, 2020, depicting individual flows—Bach et al 2025). The colors of flows
refer to the pool they derive from (imports shown in red), the arrow width represents the flow magnitude (stocks or stock changes
are not quantified here). Adapted with permission from Bach et al (2025).

input to STAN. The underlying software allows for a
full accounting of material balances (including stock
changes) and facilitates data display. Moreover, its
data reconciliation functionality has been demon-
strated to be useful for NNBs to identify data gaps
(Djukic et al 2025). A specific display sheet has
been created for NNBs reflecting the eight pools.
Further display sheets are available to describe the
internal flow structure within a pool. Results shown
in figure 1 (here for Germany, 2020) identify the
major Nr flows—dominated by a few large flows. In
this specific case, it is atmospheric fixation in chem-
ical industry (mainly production of mineral fertil-
izer), with also large flows of imports and exports
of chemicals that largely balance. Other large flows
comprise mineral fertilizer use or domestically pro-
duced compound feed for agriculture, equilibrated by
crops and animal products to food and feed industry,

leaching to groundwater and different pathways of
atmospheric emissions. Another important Nr path-
way covers nitrogen contained in fuels and forms
molecular N2 during the combustion stage (with sub-
sequent emission abatement devices supporting this
conversion). The display quantifies individual flows
(shown in ellipsoids next to each flow) and enables
the development an overall concept of a country’s Nr

flow patterns.
Budgeting across a pool or a whole NNB allows

to identify general discrepancies (e.g. due to missing
flows, using inappropriate values of N contents). If no
such discrepancies can be found, that may be seen as
a sign of coherence of data. The NNB data collection
sheet enables a direct display of pool budgets (also
for sub-pools) and to develop balances that may be
interpreted as stock changes (figure 2). Stock changes
that reappear continuously over years may indicate

4
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Figure 2. Summing up N-input and N-output flows for each of the pools (upper panel) and displaying differences (lower panel)
to analyze an NNB (data represent Austria, 2015–19 average, Djukic et al 2025).

accumulation or depletion of Nr in any given pool but
may possibly also point towards a need to check for
potentially missing flows and revise underlying data.
In the example of figure 2 (taken from the Austrian
N budget, Djukic et al 2025), stock changes are small
for most pools, but inputs seem to be generally larger
than outputs—either pointing to accumulation in the
respective pools or indicating that inputs are better
constrained (and covered) than outputs (see discus-
sion). Generally, such discrepancies may demonstrate
a need of more thorough investigation (e.g. check-
ing for missing flows, re-evaluating N contents, or
assessment of uncertainties in the data). This ana-
lysis can be easily extended to assess nitrogen use effi-
ciency (NUE) in any pool (as the ratio of total use-
ful products, including recycling products, divided by
Nr inputs) or ‘nitrogen waste’, the sum of all unused
Nr flows leaving a pool. Note that unused Nr flows
include the result of denitrification or of NOx reduc-
tion, such that even the intended creation of inert and

environmentally neutral molecular N2, following the
definition of Sutton et al (2021), is considered waste.

Many parameters can be extracted from an NNB
in form of their temporal trend. With other para-
meters held constant, differences between different
years may be considered specifically robust. Year-
to-year changes for some of the input data are
well understood and taken from reliable statist-
ics, while more uncertain data (e.g. nitrogen con-
tents) can be regarded stable over time. Figure 3
shows, as an example, the quantity of N wasted per
source pool. Data are taken from a report by the
Scottish Government (2025) for a four-year time
series. Results visualize the different respective con-
tributions of sectors, here for Scotland pointing out
the importance of agriculture to the overall wastage
of Nr. The approach allows also to account for
change over time and to track temporal variability
or even to extrapolate future trends based on the
previous developments, with differences remaining

5
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Figure 3. Temporal development of parameters (here: mass of N wasted by pool) to display trends. Data from Scotland (Scottish
Government 2025) show stable conditions as to be expected over the short time period considered.

Figure 4. Spatial benchmarking: normalized comparison of parameters or (as here) comparing parameters in relative units (%),
the economy wide NUE (useful N output divided by all N inputs for the whole country), for four European countries that have
been providing NNBs using harmonized methodology. Data derived from Djukic et al (2025), Scottish Government (2025),
Moldan et al (2025), Reutimann et al (2022).

small under stable economic conditions on the short
time scale used here (see discussion).

In a similar way, comparisons between differ-
ent spatial units (countries in NNBs) can also be
developed, again for a number of different paramet-
ers. ‘Benchmarking’ between countries requires nor-
malization when comparing values in absolute units,
in order to account for their different sizes. Options
include to divide N flows or stocks by population or

by gross domestic product (for a production-based
comparison), by area (for an impact-directed com-
parison) or by a relative parameter such as NUE.
Figure 4 demonstrates the potential of such bench-
marking exercise (here: economy-wide NUE as a
strongly aggregated indicator). For NNBs, like in all
other cases of using aggregated indicators, careful
interpretation of results is needed to allow robust con-
clusions (see discussion).

6
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4. Discussion and useful applications

Aiming to provide a comprehensive analysis of envir-
onmentalNr and its impacts, nitrogen budgets are not
a new concept. The basic idea has been pursued from
different perspectives and in part developed inde-
pendently. An overview of relevant past activities has
been provided by Winiwarter et al (2025). Among
the NNBs available, two specific groups can be distin-
guished, one that is following the CHANS layout (Gu
et al 2015), and the other one that has been performed
in the context of the UNECE activities (UNECE 2013,
2025). The approach discussed here is a further devel-
opment of the latter, striving for advanced standard-
ization and slightly revising nomenclature.

More generally, nitrogen budgets have been cre-
ated for different spatial entities. Winiwarter et al
(2020) provide an overview on activities on an urban
scale, with Suchowska-Kisielewicz et al (2024) and
Kaltenegger et al (2023) analyzing the results for spe-
cific cities. By contrast, whole-continent budgets have
been developed, such as for Europe (Van Egmond
et al 2002) or Asia (Zheng et al 2002). The lar-
ger the unit observed is, the more time is available
for N compounds to mix and interact in transport
media, and the less important is the import/export
term. This is e.g. evident for urban inventories, where
two generic flow streams (the agri-food chain and
the industry-combustion chain) can be kept strictly
separate as the residence time of Nr in the respect-
ive pools is too short to allow for complete mix-
ing/transfer between these streams (Winiwarter et al
2020). Selecting the national scale is useful in practical
terms due to data availability, as many high-quality
statistical datasets are prepared on that spatial level.
Environmental impacts, however, may often appear
on different levels, requiring downscaling to appro-
priately address scales. This is especially relevant for
large countries where scale discrepancies may argu-
ably be largest. In such a case an approach that already
covers such downscaling may be advantageous (Sabo
et al 2019).

Scientific approaches using NNBs strive to sup-
plement missing information from models. This has
been the case in the European Nitrogen assessment
(Leip et al 2011) as well as for the International
Nitrogen Assessment (Bodirsky et al 2025), where
detailed data on a national level have been drawn
from a larger scale dataset. Likewise, CHANS (Gu et al
2015) aggregates available information from differ-
ent possible sources in a hierarchical manner, mak-
ing the model usable by countries under very dif-
ferent circumstances. By contrast, the methodology
introduced here (with all underlying details presen-
ted by Schäppi et al 2025)mobilizes national data and
national expertise to optimize data availability. It may
be argued that local knowledge and understanding of
local processes benefits data quality and minimizes
the risk of errors. Locally performed NNBs, in the

context of international agreements and in coordin-
ation with similar activities such as national emis-
sion inventories (of greenhouse gases or air pollut-
ants) reflect national practices and policies and hence
also provide the national perspective on the respect-
ive Nr flows. If an inventory agency, entrusted by a
national government under an international agree-
ment, produces an NNB (or an inventory), the coun-
try accepts responsibility for the flows reported and
thus supports finding solutions to resolve environ-
mental impacts. Of course, NNB results need to be as
accurate as possible, which can be certified by appro-
priate quality control mechanisms (see also quality
control in GHG inventories, IPCC 2006). The offi-
cial status of such an NNB, however, provides it with
additional legitimization for use in an international
policy context.

At this point, it is important to recognize the chal-
lenges that are connected with establishing NNBs.
Despite efforts of harmonization, and despite the
built-in opportunities for checks and validation exer-
cises, there are multiple situations where erroneous
quantifications may become determining. Relatively
minor discrepancies may shift a pool’s N-balance
from positive to negative or vice versa. When quanti-
fication of flows includes compound material, it may
be difficult to correctly assess nitrogen contents (as
has been shown for food materials by Kaltenegger
and Winiwarter 2020). High and not well-known
N contents of fuels can constitute major elements
in NNBs (Clair et al 2014, Hayashi et al 2021).
Conversion to molecular N2 during a combustion
process is not easy to quantify. More generally, flows
out of pools that lack economic interest may be less
constrained or even missing entirely. Such missing
flows, or accumulation in the pools, are alternative
explanations of results as shown in figure 2. Pierer
et al (2015) argued for accumulation of material
in the ‘humans and settlements’ pool as the reason
of observed discrepancies between input and out-
put, but at this point quantifying stocks and stock
changes is not considered or required for NNBs.
Possibly this is a methodological shortcoming, also
as increasing stocks may have repercussions also on
increasing flows, especially when longer-term pro-
cesses such as storage ofNr in soils or groundwater are
considered. Including uncertainty analysis, as integ-
rated in the methodology, and more experience on
application of NNBs will be needed to further under-
stand and develop this approach, withmore countries
participating in such exercises under standardized
conditions.

Extending the knowledge base of standardized
NNBs will also support interpretation of benchmark-
ing. Temporal trends, as visualized in figure 3, may
arguably be well represented and robust, reflecting
only rather small changes occurring in economic
structures over the short time period shown. Still,
an NNB (similarly to a national emission inventory)
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might not capture year-to-year changes of environ-
mental parameters relevant for impacts (weather pat-
terns, water levels). Hence, even the very stagnant
conditions visualized in figure 3may be cause for very
different impacts. Selecting longer time periods for an
analysis, as available for Japan (Hayashi et al 2021)
show greater variability, but that variability would not
include the environmental conditions that cause dif-
ferences in impacts.

Comparing different countries is not straightfor-
ward, either. The value of any indicator chosen, such
as the economy-wide NUE displayed in figure 4, may
be characterized strongly by the underlying economic
structure rather than representative of the economic
performance. Figure 4 shows much higher NUE for
Austria than for Scotland, where the Austrian NUE
is strongly characterized by efficiency in the ‘mater-
ials and processes’ pool, which is not important in
the Scottish economy (in contrast to Scotland, Austria
features important N chemical industry). Also, a high
immediate export of materials will increase tend-
encies towards higher NUE, compared to situations
where agriculture plays amajor role andnational food
production is the primary form of useful Nr in end
products.

Despite important challenges in the correct inter-
pretation of the detailed results, NNBs are useful
for jointly assessing Nr compounds in any medium,
such as air, water or soil. They allow the identific-
ation of environmentally relevant flows of nitrogen
and provide information on mitigation potentials.
Specifically, they are clearly useful whenever a balance
approach is needed. These are situations that may be
regarded as ‘useful applications’ of NNBs. Such useful
applications are to be further developed for standard-
izing NNBs. Here we merely present the most evid-
ent cases. Specific country examples may be taken
from existing national exercises, taking account of
the considerable uncertainties that are associatedwith
many of the input parameters used to describe NNBs
(Häußermann et al 2021, Djukic et al 2025, Moldan
et al 2025).

• Nr compounds are relevant in the formation of
inorganic aerosols. While different atmospheric
regimes allow to discern the importance of NOx

vs NH3 as the parameter most strongly contribut-
ing to additional particulate matter, full compre-
hension of the nitrogen cycle is essential to guide
policy decisions in the long run, so that they remain
valid also for future scenarios (Gu et al 2021, Liu
et al 2023, Guo et al 2024). Here budget approaches
benefit from combination with appropriate envir-
onmental modeling exercises.

• Nr input is a critical parameter for describing the
pollution of the Baltic Sea. Maximum Allowable
Input (MAI) has been determined as a parameter
to quantify the remaining operating space for
atmospheric deposition, once the riverine inputs

are accounted for. Evidently, all inputs to mar-
ine waters need to be understood to provide a
good understanding of status and possible envir-
onmental impacts under different mitigation scen-
arios (HELCOM 2022).

• Nr contributes to both exceedance of critical loads
and critical levels for N-sensitive semi-natural
habitats and designated nature conservation sites
(Geupel et al 2022). With multiple transport path-
ways (surface water, groundwater as well as atmo-
sphere), protection needs of sensitive areas require
an understanding of the full nitrogen cycle. NNBs
and their scenario possibilities may serve as a decis-
ive tool to better control ecosystem impacts of
anthropogenic activities.

• Efforts to regulate Nr in riverine environments also
require detailed information on its flows. Further
to sectoral balances focusing on soils (Oenema et al
2003) that aim to address the agricultural impacts
on the scale of Nitrate Vulnerable Zones defined
under the European Union’s Nitrate Directive (see
description by Cameira et al 2019), more com-
prehensive endeavors have led to the development
of an Integrated Nutrient Management Action
Plan (Grizzetti et al 2023), aiming to achieve the
European Union’s target to reduce nutrient losses
by 50% for riversheds and countries.

Further balance approaches, even though not based
on this approach, have been used for global nitrous
oxide (Tian et al 2020, 2024), helping to reconcile
another set of highly uncertain Nr flows. More useful
applications of NNBs can be expected to derive from
such efforts, albeit moving themethod from scientific
exploration towards the practice of a regulation ori-
ented routine.

5. Conclusions

Setting up a highly standardized method to estab-
lish NNBs allows national experts to develop compre-
hensive understanding of the fate of Nr in a country’s
environment. With a methodology consistent with
other obligations such as national emission invent-
ories and national greenhouse gas inventories, NNBs
facilitate a view of national Nr flows that is fully in
line with the official perspective a country has of its
environmental impact, while at the same time allow-
ing for benchmarking and for comparing the results
with those of other countries.

Including national information and expertise also
aims at harmonizing NNBs with other national plan-
ning instruments. A nationally determinedNNB, cre-
ated by an adequate and nationally authorized insti-
tution, can be directly linked with scenarios and
scopes for future national policies that appropriately
consider multiple impacts by Nr. At the same time,
the standardized approach allows for comparison
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with other (neighboring) countries and for trends
over time.

Previous NNBs have been established based on
strong scientific interest. Enabling stronger policy
perspectives is expected to enhance possibilities for
useful applications that link potential interventions
on the flow pattern of Nr with environmental
impacts.More work will be needed to establish robust
relationships, but current experience already identi-
fies such applications to determine human and eco-
system health as well as climate impacts of Nr based
on budget approaches.
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