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Abstract

Amid the deepening implementation of the "dual carbon" strategy, elucidating the multidimensional dynamics
of industry-university-research (IUR) collaborative green innovation on regional carbon emissions holds critical
significance for reconciling environmental governance with economic development. Leveraging panel data from
30 Chinese provinces (2010-2022), this study employs parametric and non-parametric approaches to decode
the nonlinear impact of IUR collaborative green innovation on carbon emissions. Through moderated mediation
models and spatial lag analysis, it systematically reveals operational mechanisms. Key findings include: (1) An
inverted U-shaped relationship emerges-initial collaboration phases may elevate emissions, but sustained efforts
progressively manifest emission reduction effects. (2) Technological substitution drives low-carbon transitions

in polluting industries. While restructuring triggers transient carbon pulse peaks from cost surges, long-term
trajectories follow inverted U-shaped patterns moderated by industrial composition and structural upgrading.
(3) Initial U-shaped suppression effects stem from resource misallocation and adaptation costs, yet enhanced
technological absorptive capacity elevates green total factor productivity (GTFP), enabling a 9.57% emission
reduction through industrial transformation. (4) Spatiotemporal interactions evolve from short-term U-shaped
spatial spillovers to long-term inverted U-shaped synergies, necessitating optimized policy coordination for
dynamic emission reduction dividends. (5) Regional heterogeneity persists-eastern China demonstrates stable
impacts through industrial maturity, contrasting with volatile central/western regions constrained by fragmented
innovation ecosystems. This research advances understanding of collaborative innovation's nonlinear carbon
governance effects, offering actionable insights for regionalized decarbonization strategies and cross-regional
innovation alliances.
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Introduction

As global climate change becomes a serious challenge,
cutting carbon has become a key part of sustainable
development plans around the world. China’s rapid eco-
nomic growth during its industrial and urban devel-
opment has led to high energy use and rising carbon
emissions. This has made it harder to reduce carbon [1].
In this situation, green technology innovation plays an
important role. It helps improve energy use and resource
efficiency. It also helps lower carbon emissions [2, 3].
Cooperation between industry, universities, and research
(IUR) has become a key way to support this kind of inno-
vation. It brings together knowledge, helps turn ideas
into technology, and supports policy efforts to speed up
green technology development [4, 5].

But there are still big questions about how IUR-based
green innovation affects carbon emissions in different
regions. Many studies still use simple models that assume
straight-line effects [6]. These models miss more complex
patterns that come from how technology spreads over
time. Other studies look at single parts of the process,
like replacing old technology [7] or changing the struc-
ture of industries [8]. But they do not connect these parts
into a full picture. Also, many spatial studies are based
on fixed models. These models do not show how inno-
vation spreads over time. Because of this, it is hard to
explain why some areas with strong IUR efforts see early
increases in carbon emissions, or why areas with similar
levels of cooperation have different results.

Using China’s provincial panel data (2010-2022), we
construct an integrated multi-method analytical frame-
work. First, parametric modeling (quadratic functional
specification) synergizes with nonparametric local
regression to chart nonlinear emission trajectories. Then,
it uses a mediation model to study how green total fac-
tor productivity (GTFP) works in this process.It also uses
amoderation model toexplore the role of technological
substitution (such as the decline in the share of highly
polluting industries and the upgrading of industrial
structure) in this process.

Last, it uses static and dynamic spatial Durbin models
to compare how innovation spreads across areas and over
time.

The study’s pioneering insights manifest in three
dimensions:

«+ It shows an inverted U-shaped curve for carbon
emissions using nonlinear models. This goes beyond
the limits of traditional straight-line models.

+ It puts together the ideas of technology replacement,
resource use changes, and spatial spillovers into one
model that looks at process, path, and space.

« It uses spatial analysis to show that policy effects take
time to appear. This helps explain when and how
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different areas should manage carbon reduction in
steps.

Literature review

Green technology innovation (GTI) is widely regarded
as a core driver of the economy’s transition toward low-
carbon development. Research on the Environmental
Kuznets Curve (EKC) highlights the nonlinear relation-
ship between economic growth and environmental
degradation, emphasizing the roles of technological
progress, industrial restructuring, and institutional fac-
tors in shifting from “more pollution” to “less pollution”
[9-15]. Cross-country studies further show that the dif-
fusion of green technologies can help generate an EKC
“turning point” and improve environmental performance
[16, 17].

Regarding abatement mechanisms, GTI promotes a
synergy of three key levers: efficiency leap, pollution con-
trol, and structural reconfiguration. At the micro level,
the energy-efficiency revolution reduces carbon inten-
sity by improving conversion efficiency [18]. At the meso
level, carbon capture and renewable energy technologies
provide end-of-pipe abatement solutions [19]. At the
macro level, GTI accelerates industrial upgrading and
low-carbon restructuring, helping decouple economic
growth from carbon emissions [20].

On measurement, the literature has evolved from
“quantity tagging—quality measurement—systemic ana-
lytics” Early studies relied on visible indicators such as
counts of green patents, while later studies shifted to
composite measures such as R&D intensity and market
share of green products [21]. Recent contributions focus
on lifecycle models to trace how technology diffusion
and abatement effects propagate along value chains [22].
International evidence shows that the diffusion of green
technologies depends not only on local innovation capac-
ity but also on knowledge spillovers, trade networks, and
policy incentives [17, 23, 24]. However, research often
overlooks geographic and institutional heterogeneity,
making it hard to explain why regions with similar tech-
nology inputs exhibit different abatement outcomes [25].

At the level of technology diffusion and adoption,
industry-university-research (IUR) collaboration plays
a central role. The Triple Helix model, which integrates
university knowledge spillovers, firm technology absorp-
tion, and government policy incentives, forms a dynamic
engine for accelerating green innovation. This collabora-
tive framework drives both horizontal industrial agglom-
eration and vertical technology transfer, contributing to
emission reductions through cross-regional cooperation
[17, 23, 26, 27].

GTT’s regional effects display significant spatial het-
erogeneity and spillovers, requiring spatial econometric
tools for analysis. Advances in spatial econometrics offer
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a toolkit-from spatial autocorrelation tests to spatial lag/
Durbin models and spatial panels [28-31]-to identify
the spatial transmission of technology networks, factor
flows, and policy externalities. Unlike static metrics such
as Moran’s I, these approaches reveal diffusion lags and
their long-term policy implications [32, 33].

Despite notable progress, three limitations remain.
First, the literature often relies on linear assumptions
(e.g., OLS), making it difficult to capture nonlinear and
threshold effects between collaborative innovation and
carbon outcomes [12, 14, 34]. Early collaboration phases
may induce carbon lock-in, masking short-term abate-
ment while stronger effects emerge only with techno-
logical maturity and scale [26, 35]. Second, mechanism
analysis is fragmented, with many studies focusing on
technological iteration [36], factor allocation [37], or spa-
tial radiation [38] in isolation. Third, policy analysis tends
to be static, relying on single-period spatial correlation
measures and rarely quantifying how diffusion lags and
network structure shape medium- to long-term policy
performance [29, 30].

In response, this study develops a three-dimensional
framework of nonlinear identification, mechanism cou-
pling, and dynamic simulation, focusing on three ques-
tions: (1) Does IUR-driven innovation exhibit a U-shaped
EKC turning point? (2) How do technological iteration,
factor allocation, and spatial radiation interact through
nonlinear coupling? (3) Do spatial spillovers follow a “dif-
fusion-convergence” cyclical pattern? These findings are
expected to overcome the limitations of traditional linear
research paradigms, providing theoretical support and
empirical evidence for the development of spatiotempo-
rally differentiated policy systems.

Theoretical analysis and research hypotheses
Nonlinear impact of IUR collaborative green innovation on
carbon emissions

IUR collaborative green innovation is crucial for advanc-
ing regional low-carbon transformation. It involves
technological breakthroughs, knowledge diffusion, and
industrial evolution, and its impact on carbon emissions
varies across different stages, demonstrating nonlinear
dynamics.

In the early stage, collaboration may initially lead to a
rise in carbon emissions. As companies, universities, and
research centers focus on creating and testing new tech-
nologies, high research costs and adjustments in produc-
tion may temporarily increase emissions. This aligns with
innovation diffusion theory, where green technologies go
through research, testing, scaling, and diffusion phases
[39]. Companies continue using older, high-carbon tech-
nologies to remain profitable, and new technologies may
initially increase energy consumption. This is known as
the “technology diffusion lag effect” [40, 41].
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Later, as technologies mature and cooperation
strengthens, emissions begin to decrease. Green tech-
nologies like clean energy and smart systems gradually
replace carbon-heavy methods, driven by policies such as
green finance and carbon market incentives [42, 43]. This
combined effect accelerates emission reductions.

In China, energy system transformation faces chal-
lenges due to existing habits and slow regulatory changes
[40, 41]. Early-stage collaboration often focuses on basic
research and small efficiency improvements, but high
costs and weak demand slow full green system adoption.
In these phases, emissions may rise due to production
growth, but as cooperation reaches a key point, large-
scale changes, such as clean energy and smart manu-
facturing, emerge, reducing emissions. This suggests an
inverted U-shaped curve for emissions.

Hypothesis 1: IUR collaborative green innovation
exhibits an inverted U-shaped relationship with carbon
emissions.

Technological substitution effect of IUR collaborative
green innovation
IUR collaborative green innovation accelerates the trans-
formation of high-pollution industries to low-carbon
industries, primarily by reducing the share of high-pol-
lution industries and promoting industrial restructuring.

In early collaboration, limited capacity to absorb low-
carbon technologies andhigh market transformation
costs hinder the substitution effect. Equipment upgrades
and capacity expansion may initially increase emissions,
creating an "emission transfer effect." However, as tech-
nology matures and market demand for low-carbon
products rises, the substitution effect becomes more evi-
dent. The green technology market grows, and traditional
high-carbon industries are gradually replaced by cleaner
alternatives.

The substitution effect operates through two key
pathways:

+ Decreased share of high-pollution industries: IUR
collaboration promotes clean energy, reducing
high-pollution industries’ market share and lowering
emissions, especially in regions with low-pollution
industries.

+ Industrial upgrading: The transformation toward
green sectors like smart manufacturing and clean
energy speeds up in regions with strong absorptive
capacities, leading to lower emissions.

However, the substitution process is constrained by
path dependence and market barriers in high-pollution
regions. This can cause short-term emission reductions,
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followed by long-term rebounds, sometimes leading to a
U-shaped pattern.

Hypothesis 2: TUR collaborative green innovation affects
regional carbon emissions through the technological sub-
stitution effect.

Resource optimization allocation effect of IUR
collaborative green innovation

The resource optimization effect improves carbon emis-
sions by optimizing the allocation of capital, technology,
and human resources. IUR collaborative green innova-
tion fosters knowledge flow and technology diffusion,
enhancing the efficiency of green technology R&D and
application.

In early collaboration, companies’ limited capacity
and high adjustment costs hinder resource optimiza-
tion, leading to possible emission increases. However, as
cooperation deepens, companies gradually master green
technologies, and resource integration begins to reduce
carbon emissions. This process is influenced by regional
economic development, policy support, and market con-
ditions, with developed regions showing quicker emis-
sion reductions.

This effect may also present an inverted U-shape.
Initially, the adaptation phase may lead to emission
increases, but as the benefits of resource optimization
outweigh the negatives, emissions decrease.

Hypothesis 3: TUR collaborative green innovation affects
regional carbon emissions through the resource optimiza-
tion allocation effect.

Spatial spillover effect of IUR collaborative green
innovation

IUR collaborative green innovation not only impacts
local carbon emissions but also influences neighboring
areas through technology diffusion, knowledge sharing,
and industrial linkages, known as the spatial spillover
effect. As regions become more interconnected, green
technology spreads across regions, affecting their carbon
emission patterns.

The spatial spillover effect accelerates emissions reduc-
tion in adjacent regions as advanced technologies and
knowledge spread. Strong IUR cooperation leads to more
skilled labor mobility, patent sharing, and industry link-
ages, helping neighboring regions adopt low-carbon
technologies faster.

However, spatial spillovers manifest nonlinearly. In
early stages, regional disparities in absorptive capacity
and industrial foundations slow technology adoption. Ini-
tially, some areas may even increase emissions by relocat-
ing polluting industries. As cooperation grows, stronger
spillovers emerge, and regions become better at adopting
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and applying green technologies, leading to greater emis-
sion reductions.
Hypothesis 4:
IUR collaborative green innovation governs regional
carbon emissions through spatial spillover dynamics.

Research methodology and data sources

Model construction

In order to explore the impact of Industry-University-
Research collaborative green innovation (IUR-GI) on
carbon emissions (CE), the following regression model is
established:

InCEs =ag + a1lnIUR — Gl + as(InIUR — GI )

p
+ Z a;jControly + p; +9¢ + €451 )

=1

where:

« InCEj; represents the carbon emission level of
region i in year ¢;

o InIUR — GI; represents the level of Industry-
University-Research collaborative green innovation
(IUR-GI);

« (InIUR — GI;)? represents the squared term of
IUR-GI, used to test its nonlinear impact on carbon
emissions;

« Control; represents control variables,
including economic development level, total
energy consumption, environmental regulation,
technological innovation capability, government
investment, and green finance index;

+ p; represents individual fixed effects, controlling for
unobservable regional characteristics;

+ U, represents time fixed effects, controlling for time
trends;

+ &4 represents the error term.

Considering that the relationships between variables
and the specification of the regression function involve a
certain degree of subjectivity, a non-parametric additive
model is introduced to further test the nonlinear rela-
tionship between Industry-University-Research collab-
orative green innovation and carbon emissions, as shown
in Eq. (2):

P
ZnCEZ-f, :ﬂ() + B1lnIUR — Gln + Z B]'CO’fo/I’Olit

Jj=1

(2)
P
+ f(InIUR — GI4) + Z fi(Control;) + €

j=1
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where:

o f(InIUR — GI;) and f;(Control;;) represent
the non-parametric functional forms of IUR
collaborative green innovation and control variables,
aiming to capture the nonlinear relationship.

+ Other parameters are the same as in Eq. (1).

This study establishes mediation, moderation, and spa-
tial effect models to delve into the intricate mechanisms
through which IUR collaborative green innovation influ-
ences regional carbon emissions. Recognizing the multi-
faceted nature of carbon emissions—shaped by economic
dynamics, policy interventions, and technological evo-
lution—the intricate interplay between mediating vari-
ables and carbon outputs may engender reverse causality,
while heterogeneous moderating factors could introduce
nuanced estimation biases. To address these complexi-
ties, the research first validates the causal relationship
through robust parametric and non-parametric frame-
works (Egs. 1, 2), adroitly addressing potential endogene-
ity concerns. Subsequently, the moderation effect model
(Eq. 3) illuminates how industrial structure upgrad-
ing and high-pollution industry ratios shape the carbon
emission effects through technological substitution. The
mediation effect model (Eqs. 4; 5) then rigorously probes
whether resource optimization allocation serves as a
hidden conduit for IUR collaborative innovation’s envi-
ronmental impact. Finally, through meticulously crafted
static and dynamic spatial lag models (Egs. 6; 7), the
investigation unravels the spatial spillover effects across
regions, revealing both the radiating influence of green
innovation practices and the profound interconnected-
ness of carbon emission patterns across geographical
boundaries.

InCEy =00 + o1lnIUR — GI;; + o2(InIUR — GI;;)*
+ UgDit + U4Dit X InIUR — Gln

+ 05D x (InIUR — CI)? (3)

p
+ Z ojControl; + p; +9¢ + €4
j=1

where:

+ D,; represents the moderating variable, indicating
the technological substitution pathway, which can be
measured by the industrial structure upgrading index
(ISA) or the proportion of high-pollution industries
(PHI);

o D;; x InGIU Ry represents the interaction term
between IUR collaborative green innovation and the
industrial structure moderating variable;
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o Di x (InGIU Rit)z represents the interaction term
between the squared term of IUR collaborative green
innovation and the industrial structure moderating
variable;

+ Other parameters are the same as in Eq. (1)

Mi¢ =Yo + Y1InIUR — Gl + v (InIUR — GI;)?

p
4
+ Z’ijontrolit + i + 0 e (4)
j=1
InCE;t =po + p1lnlUR — Gl + p2(InIUR — GI,;,,)2 + dMy;
- (5)
+ Z p;iControly + pu; + 0¢ + €

j=1
where:

+ M, represents the mediating variable, which can be
measured by green total factor productivity (GTEP);

+ Other parameters are the same as in Eq. (1);

« If § is significant and the coefficient of a; decreases
or becomes insignificant after adding M, it
indicates that the mediation effect is significant.

INCE; =po +nW - InCE; + p1inlUR — GI ;4

P
+ @2(InIUR — G]lt)2 + Z%Contmllt + i+ 9+ e (6)

j=1

l'llCE” :90 + 77W . l?’LCEZt + 91lnCEit_1
+05lnIUR — Gl + 03(InIUR — Gl )
P (7)
+ Z GjControl“ + pi + T9t + €t
j=1

where:

o W -InCE;; represents the spatial lag term of carbon
emissions, used to measure the impact of carbon
emissions in neighboring regions on local carbon
emissions;

o InCFE;;_; represents the time lag term of carbon
emissions, used in the dynamic model to measure
the path dependence of carbon emissions;

+ Wrepresents the spatial weight matrix, where this
study adopts the inverse distance geographical
matrix as the spatial weight matrix;

7 represents the spatial autoregressive coefficient,
reflecting the spatial dependence of carbon
emissions.

Variable selection and data sources

This study uses provincial panel data from China from
2010 to 2022, sourced from the National Bureau of Sta-
tistics, the China Economic and Social Big Data Research
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Platform, the China Science and Technology Statisti-
cal Yearbook, and the China Statistical Yearbook. Due
to severe data gaps in Hong Kong, Macau, Taiwan, and
Tibet, 30 provincial-level regions (including provinces,
autonomous regions, and municipalities) were selected
to ensure robustness. To improve data comparability
and accuracy in regression analysis, the following adjust-
ments were made: (1) economic indicators affected by
price changes were converted to constant 2010 prices to
eliminate inflation effects; (2) moderating variables were
centered to reduce multicollinearity; (3) non-percentage
variables were log-transformed to address heteroske-
dasticity and improve model fit; (4) missing values were
interpolated using linear methods; and (5) descriptive
statistics, correlation analysis, and unit root tests were
conducted to verify data validity.

(1) Dependent Variable: Carbon Emissions.

Carbon emissions serve as the dependent variable, drawn
from the CEDAs Database to quantify regional carbon
output. This metric captures the cumulative environmen-
tal impact of industrial and economic activities across
provinces.

(2)Independent Variable: IUR Collaborative Green
Innovation.

The regional level of IUR collaborative green innova-
tion is measured by the number of jointly applied green
patents filed by enterprises (Industry), universities (Uni-
versity), and research institutions (Research Institution).
Green patents are identified using the WIPO IPC Green
Inventory, ensuring coverage of fields such as energy
conservation, pollution control, clean production, and
renewable energy. A patent is considered an IUR collab-
orative innovation if its applicants include at least two
different types of innovation actors (e.g., enterprise + uni-
versity, enterprise+research institution, or full three-
party collaboration). The annual count of such patents
is aggregated by region, log-transformed as InIUR-GI,
with its squared term (InIUR-GI)? introduced to capture
potential nonlinear effects [44].

(3) Moderating Variables: Industrial Structure and High-
Pollution Industry Ratio.

To investigate technological substitution dynamics, the
study incorporates dual moderators: industrial structure
advancement and the economic footprint of high-pollu-
tion sectors.

High-carbon industries—including steel produc-
tion, chemical manufacturing, power generation, and
construction materials—constitute primary emission
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sources. Their contribution to regional industrial out-
put quantifies economic reliance on carbon-intensive
practices. Following the First National Pollution Source
Census Plan (2007), eleven high-pollution sectors were
analyzed, with their industrial output share calculated as
a critical moderating factor.

Industrial restructuring, propelled by digital trans-
formation and service sector growth, embodies modern
economic evolution [45]. This transition is measured
through the tertiary-to-secondary industry output ratio,
reflecting structural shifts in production paradigms.

(4) Mediating Variable: Green Total Factor Productivity.

GTEFP quantifies how IUR collaborative innovation opti-
mizes resource flows and enhances energy efficiency.
Employing the SBM-DEA model with undesirable out-
puts [46], this metric integrates energy inputs, capital,
labor, and carbon emissions to evaluate sustainable pro-
ductivity. The analysis further dissects GTFP’s mediating
role in channeling green innovation effects toward emis-
sion reduction.

(5) Control Variables.

To mitigate omitted variable bias and strengthen empiri-
cal reliability, sixcontrol dimensions were incorporated:

+ Economic Development: Provincial GDP per
capita.

« Energy Demand: Aggregate electricity
consumption.

+ Regulatory Intensity: Industrial pollution control
investment as percentage of secondary sector output.
+ Innovation Capacity: R&D expenditure relative to
GDP.

« Fiscal Prioritization: Science/technology spending
as share of local government budgets.

+ Green Finance: Composite index blending green
credit, securities, insurance, and investment metrics
(47, 48].

Descriptive statistics from Table 1 reveal a 30-prov-
ince panel dataset spanning 2011-2022 (n=390). Car-
bon emissions (CE) average 383.963 Mt with substantial
standard deviation, underscoring stark interprovincial
disparities. IUR-GI collaboration averages 529.98 proj-
ects but exhibits pronounced volatility, highlighting
uneven regional innovation ecosystems. While TIC, GFI,
and GI display modest variability, EC and EDL met-
rics demonstrate extreme dispersion, mirroring China’s
imbalanced regional development. These patterns align
with observed economic realities, where variance in
green innovation capacity, industrial composition, and
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Table 1 Descriptive statistics
Variable Symbol  Unit Mean Std. dev Min Max Obs
Carbon emissions CE Mt 383.963 326250  37.140 2099.792 390
Industry-university-Research collaboration Green innovation  [UR-GI Pieces 529.980 898711 2 6429 390
Technological innovation capability TIC % 1.758 1.149 0340 6.845 390
Green finance index GFI % 0.158 0.068  0.073 0474 390
Government investment Gl % 0.261 0237 0057 1216 390
Environmental regulation ER % 0.003 0.003  0.000 0.025 390
Energy consumption EC Mtec 1408815  992,390.7 152,6494 4227082 390
Economic development level EDL Billion CNY  26,782.18  22,502.950 1350430 129,1186 390
Proportion of high-pollution industries PHI % 0.466 0.129  0.078 0.826 390
Industrial structure upgrading ISU % 1.236 0.714  0.500 5.297 390
Green total factor productivity GTFP % 1.748 0989 0443 5.396 390
Table 2 Benchmark regression results
Variable (1) (2) (3) (4) (5)
InlUR-GI 0.143" 0.066" 0916™ 0243 0131
(0.034) (0.035) (0.147) (0.062) (0.040)
(InlUR-GI)? -0.073" -0.015"
(0.015) (0.006)
InTIC -0.016 -0.262"" -0.046
(0.089) (0.093) (0.100)
InGFI -0.151" 0141 0.097
(0.058) (0.043) (0.09)
InGl -0.121™ -0.050 -0.002
(0.046) (0.046) (0.05)
InER 57.742™" -2.334 78.969""
(8.696) (4.322) (10.833)
InEC 0868 0.114" 0.844™"
(0.052) (0.053) (0.059)
InEDL 0.119" 0.155" -0201™
(0.066) (0.083) (0.072)
Constant 4856 -7.906™" 2972" 0.886
(0.184) (0.373) (0.364) (0.943)
Region FE Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes No
Obs 390 390 390 390 390
Adj R? 0.069 0.783 0.144 0977 0927
F 17.28™ 194.06™" 36.24" 689.28"

*** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)-(5) represent cluster-robust

standard errors

emission trajectories provides empirical traction for ana-
lyzing technology-driven decarbonization pathways.

Empirical analysis
Baseline regression analysis
This study employs panel data regression (Columns 1-4)
and a non-parametric additive model (Column 5) to
examine the impact of IUR collaborative green innova-
tion (InIUR-GI) on carbon emissions ([nCE) and further
analyzes the roles of technological innovation, green
finance, government investment, environmental regula-
tion, energyconsumption, and economic development.
From the panel regression results (see Table 2), the
coefficient of the linear term of IUR collaborative green

innovation is significantly positive, while that of the
squared term is significantly negative, clearly revealing an
inverted U-shaped relationship with carbon emissions.
This indicates that in the initial stage of green innova-
tion, rapid growth in R&D investment, firms’ limited
adaptability to green technologies, and the high costs
associated with industrial restructuring contribute to a
temporary rise in carbon emissions. However, as indus-
try-university-research collaboration deepens, the effects
of technology diffusion and optimized resource alloca-
tion gradually emerge, and the emission reduction effects
of green innovation progressively strengthen, ultimately
driving carbon emissions into a downward trajectory.
This dynamic pattern aligns closely with the technology



Gao et al. Carbon Balance and Management (2025) 20:45

innovation diffusion theory [49] and strongly supports
Hypothesis H1. Notably, even after incorporating mul-
tiple control variables in Column (4), this nonlinear
characteristic remains robust, indicating that green inno-
vation promotes the transition of carbon emissions from
a phase of “innovation-driven temporary increase” to a
phase of “steady decline during technological maturity,
through the mechanisms of technology diffusion, knowl-
edge spillovers, and industrial chain optimization.

The estimation results of the non-parametric additive
model (Column 5) further reinforce the above conclu-
sions. Without the need to predefine a functional form,
this model still captures a significant inverted U-shaped
relationship between green innovation and carbon emis-
sions (as shown in Fig. 1), indicating that as the level of
IUR collaborative green innovation rises, carbon emis-
sions first increase and then decline. This finding not only
avoids potential biases caused by functional form mis-
specification in parametric models but also demonstrates
that the nonlinear emission-reduction effect of green
innovation is both robust and generalizable. Meanwhile,
the non-parametric kernel regression results show that
the average marginal effect of IUR collaborative green
innovation is significantly positive (0.131, p<0.01), sug-
gesting that, on average, higher levels of green innova-
tion are associated with increased carbon emissions. This
positive effect primarily reflects the characteristics of the
early stage of green innovation, where rapid increases
in R&D investment, limited technological adaptability
among firms, and frictions and cost pressures during
industrial transformation lead to a short-term rise in car-
bon emissions.

Regarding control variables, technological innovation
({nTIC) has an insignificant effect in some models but
shows a significant negative impact on carbon emissions
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in Column (4) (-0.262, p<0.01), suggesting that techno-
logical innovation can reduce carbon emissions under
certain conditions. However, regional differences in
technology conversion rates may weaken this effect. The
green finance index (InGFI) significantly reduces carbon
emissions in Column (2) (-0.151, p<0.01), indicating that
green finance directs capital toward low-carbon indus-
tries, but its effect is inconsistent across models, possibly
due to structural adjustments in financing.

Government investment (/nGI) significantly reduces
carbon emissions in Column (2) (-0.121, p<0.01), sug-
gesting that fiscal support facilitates green transforma-
tion. However, its effect is insignificant in other models,
likely due to differences in industry allocation and policy
efficiency. Environmental regulation intensity (/nER)
has a significant positive effect in Columns (2) and (5)
(57.742, p<0.01; 78.969, p<0.01), indicating that in the
short term, strict environmental regulations increase
compliance costs, leading to higher emissions, which
is consistent with the "inverted U-shaped hypothesis of
environmental regulation” [50].

Additionally, energy consumption ([nEC) consistently
shows a significant positive effect on carbon emissions in
all models, emphasizing the importance of energy struc-
ture adjustments. The impact of economic development
(InEDL) varies; in some models (Columns 2 and 4), eco-
nomic growth increases carbon emissions, whereas in the
non-parametric additive model (Column 5), it has a neg-
ative impact (-0.201, p<0.01). This suggests that some
regions may have entered the declining phase of the Envi-
ronmental Kuznets Curve (EKC) [10, 15], where higher
economic development leads to industrial upgrading and
energy transition, reducing carbon emissions.

Predictive margins with 95% Cls

Mean function

Fig. 1. Non-parametric Curve

4

InlUR-GI
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Endogeneity issues

This study employs the instrumental variable method
(2SLS) and system generalized method of moments
(SYS-GMM) to address potential endogeneity and omit-
ted variable bias in IUR collaborative green innovation
(see Table 3). In the 2SLS estimation (Columns 1-3), we
use the first-order lag of IUR collaborative green inno-
vation and its squared term (InIUR_GI_lag, InTUR_GI_
lag_sq), the first-order lag of the annual average number
of green patents per province (InGP_lag), as well as the
first-order lags of the number of higher education insti-
tutions and research institutes (InHEI lag, InRI lag)
as instrumental variables. This instrument set demon-
strates strong explanatory power for the endogenous
variables in the first stage, with the Cragg—Donald Wald
F-statistic (86.682) far exceeding the critical threshold
of 10. The rk-LM and Anderson—Rubin Wald tests are

Table 3 Regression results of 2SLS and GMM
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significant, confirming the strength and relevance of the
instruments.

In the SYS-GMM estimation (Column 4), the first-
order lag of carbon emissions (L.lny) is introduced to
capture the dynamic inertia of carbon emissions and
control for unobservable fixed effects, enhancing the
robustness of the estimates. The regression results show
that IUR collaborative green innovation (InIUR-GI) sig-
nificantly influences carbon emissions across all models
and exhibits an inverted U-shaped relationship, consis-
tent with the baseline regression results. This finding sug-
gests that in the early stages, IUR collaborative green
innovation may lead to increased resource consumption
and higher carbon emissions, but as innovation activity
reaches a certain threshold, the accumulation and trans-
formation of green technologies can effectively contrib-
ute to carbon reduction.

Variable 25LS SYS-GMM
Q) @ 3) )
InlUR-GI (InlUR-GI)? Iny Iny
InlUR_GI_lag 0.2855™" —3.1949™
(0.0061) (1.0449)
InlUR_GI_lag_sq 00303 1.0090™"
(0.0093) (0.0869)
InGP_lag 02775 21780
0.777) (0.4929)
InHEI_lag ~0.0069" 041235
(0.0224) (0.0557)
InRI_lag 00347 0.25606"
(0.0069) (0.0201)
Liny 1007
(0.047)
InlUR-GI 09618™" 0552"
(0.2546) (0.032)
(InlUR-GIY -0.0730™" —-0.004"
(0.0248) (0.003)
Control variable Yes Yes Yes Yes
Constant 04543 41730" 28413 —-0.133
(0.2586) (2.0354) (0.9479) (0.403)
Region FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R’ 06837
F 269617 26653 12146
CDwald F 86.682 86.682 86.682
rk LM 8290 8290 8290
Anderson-rubin wald 1820 1820™ 1820
Stock-wright LM S statistic 15137 15137 15137
AR(1) 234"
AR(2) 1.36
Sargan test 202517 202517 202517 3822
Hansen test 3.546 3.546 3.546 18.97
Obs 360 360 360 360

*** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)-(4) represent cluster-robust

standard errors
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The diagnostic tests further validate the reliability of
the estimates. In the 2SLS estimations, all Wald F-tests
are highly significant (p<0.01), indicating strong overall
model fit. In the SYS-GMM estimation, the AR(1) test
is significant (p<0.05), while the AR(2) test is not sig-
nificant (p>0.1), indicating the absence of second-order
autocorrelation and satisfying the requirements for SYS-
GMM estimation. Although the Sargan test is significant,
suggesting potential redundancy in some instruments,
the Hansen test (p>0.1) fails to reject the null hypothesis
of instrument exogeneity, overall supporting the valid-
ity of the selected instruments and the robustness of the
estimation results.

Robustness tests

To verify the robustness of the research conclusions,
multiple robustness checks were conducted (see Table
4). First, the model was extended to include a cubic term
regression (Column 1). The results indicate that the lin-
ear term is significantly positive, the quadratic term is
significantly negative, and the cubic term is also signifi-
cantly negative. This finding reveals a more complex non-
linear relationship between green innovation and carbon
emissions, while confirming the stability of the inverted
U-shaped pattern. Second, to control for the potential
effects of policy changes, the sample period was trun-
cated to 2018 (Column 2). The coefficients for industry—
university—research (IUR) collaborative green innovation
remain significant, indicating that policy adjustments
do not substantially alter the core conclusions. Third, to
account for the lagged effects of green patents, all vari-
ables were lagged by one period (Column 3). The results
show that while the emission reduction effects of green
innovation exhibit some time lag, the long-term impacts
remain significant and stable. Lastly, to eliminate the

Table 4 Results of robustness test
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influence of outliers, a 1% two-sided winsorization was
applied to all variables (Column 4), and the regression
results remained significant with the nonlinear relation-
ship intact.

All robustness checks passed the F-test, and the
adjusted R? values remained high, demonstrating the
strong explanatory power of the model. Overall, regard-
less of the functional form expansion, sample truncation,
time lag adjustments, or winsorization of extreme values,
the nonlinearemission reduction effect of IUR collab-
orative green innovation on carbon emissions remains
consistently robust, further reinforcing the study’s core
findings.

Extended analysis

Heterogeneity analysis

Using a Generalized Additive Model (GAM), this study
further investigates the nonlinear effects of Industry—
University—Research (IUR) collaborative green innova-
tion on carbon emissions across four spatial dimensions:
Nationwide, Eastern, Central, and Western regions. The
results confirm pronounced nonlinearities in all subsam-
ples, with estimated effective degrees of freedom (EDF)
consistently above unity (Nationwide: 1.24; Eastern: 1.24;
Central: 1.19; Western: 1.22) and highly significant p-val-
ues (all p < 0.01; see Fig. 2). These findings indicate that
the impact of collaborative green innovation on carbon
emissions deviates markedly from a simple monotonic
pattern and instead follows complex, region-specific
trajectories.

At the national level, the partial-effect curve displays
distinct oscillations with multiple inflection points. Car-
bon emissions initially rise at lower levels of green inno-
vation (around sub InIUR - GI & 9.3) sequently decline
to a local trough near In JUR — GI =~ 10.1 and rebound

Variable (1) (2) (3) 4)
Cubic regression Patent reform Lagged processing Winsorization
InlUR-GI 0.1043™ 0597 0577 0.508™"
(0.040) (0.208) (0.190) (0.182)
(InlUR-GI)? -00111" -0076™" -0.061™" ~0.053™
(0.012) (-0.018) (0.016) (0.017)
(InlUR-GI)? -0.004"
(0.079)
Control variable Yes Yes Yes Yes
Constant 4666" 164 1857 —1.749
(2.068) (1.562) (1.752) (1.785)
Region FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
adj.R2 0.741 0.730 0.694 0677
F 4673 3882 5155 4037
Obs 390 270 360 390

*** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)-(4) represent cluster-robust

standard errors
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95% Cl —— GAMFit 4 Local peak

EDF=1.24, P=2.468e-09 EDF=1.24, P=3.913e-09

92 94 96 98 100 102 104 90 92 94 96 98 10.0

Nationwide Eastern

¥ Local trough
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Increasing phase Decreasing phase

EDF=1.19, P=6.292e-09 EDF=1.22, P=1.811e-09

700 725 750 775 800 825 70 75 80 85

Central Western

Fig. 2. Nonlinear effect of IUR collaborative green innovation on carbon emissions

toward a secondary peak around InJUR — GI ~ 10.35
This dynamic trajectory suggests that the nationwide
diffusion of green innovation is not immediately emis-
sion-reducing; rather, it undergoes a “short-term escala-
tion—adjustment—stabilization” pathway as technological
diffusion, industrial upgrading, and resource optimiza-
tion progressively take effect.

The Eastern region exhibits a trajectory similar to the
national pattern but with attenuated fluctuations. A
modest peak occurs near InIUR - GI = 9.21 followed
by a decline toward a trough around InIUR - GI = 9.8.
This smoother curve reflects the region’s advanced inno-
vation base, robust absorptive capacity, and strong policy
execution, which collectively accelerate the transition
from innovation-driven emission increases to mature
emission-reduction effects, yielding a more stable and
predictable pattern.

By contrast, the Central region demonstrates pro-
nounced volatility in the marginal effect curve. A
local minimum is evident near InIUR - Gl = .4 fol-
lowed by a rapid surge to a prominent peak around
InIUR - GI = .63 with continued fluctuations at higher
levels. These oscillations highlight the instability of
green innovation’s decarbonization effect in the region,
where evolving industrial restructuring, limited market
absorption, and incomplete policy incentives jointly con-
tribute to a more complex and less consistent emission
trajectory. These resultssuggest that the Central region
requires more time, deeper integration mechanisms, and
stronger institutional support to achieve stable and sus-
tained emission reductions.

In the Western region, the curve is steep and highly
erratic, reflecting the region’s structural vulnerabilities.
Carbon emissions initially drop to a local minimum at
approximately In IUR — GI ~ 7.5, surge sharply to a
peak near InIUR - GI = 8.05 and oscillate thereafter.
This instability underscores the region’s weaker techno-
logical absorption capacity, underdeveloped industrial
foundation, and relatively lower economic level, which
together hinder the immediate effectiveness of green

innovation in reducing emissions. Only as technologi-
cal capabilities accumulate and collaborative networks
deepen does the potential for sustained decarbonization
begin to materialize.

Overall, these results reveal distinct regional het-
erogeneity in the nonlinear effects of IUR collabora-
tive green innovation on carbon emissions. The Eastern
region demonstrates an early and stable decarboniza-
tion response, the Central region shows a volatile and
transitional dynamic, and the Western region exhibits
the greatest uncertainty and sensitivity. These findings
underscore the necessity of region-specific policy frame-
works: strengthening diffusion and scaling mechanisms
in the East, fostering innovation-market integration and
policy efficiency in the Central region, and enhancing
technological absorption, investment, and institutional
support in the West to ensure that green innovation
translates into tangible and sustained reductions in car-
bon emissions.

Technological substitution effect: the role and pathway

of green technology replacing traditional high-carbon
technology

The technological substitution effect refers to how IUR
collaborative green innovation facilitates the transition
from high-pollution industries to low-carbon indus-
tries by reducing the share of high-pollution industries
and promoting industrial upgrading, ultimately achiev-
ing carbon emission reduction. This study selects the
proportion of high-pollution industries (/nPHI) and the
industrial structure upgrading index ([nISU) as key mod-
erating variables to explore the technological substitution
pathways and their nonlinear characteristics under differ-
ent industrial structures.

The regression results show that IUR collaborative
green innovation (InIUR-GI) is significant in all mod-
els (1)-(7), indicating its consistent impact on regional
carbon emissions (see Table 5). However, its mecha-
nisms and nonlinear characteristics vary across different
industry structures. In the pooled samples (Columns 1,
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Table 5 Technology substitution effect
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Variable Proportion of high-pollution industries Industrial upgrading Index Comprehen-
sive model
(1) (2) (3) (4) (5) (6) (7)
Full sample Low high-pol- High high-pol- Full sample Low indus- High indus- Full sample
lution industry lution industry trial upgrading  trial upgrading
group group group group
InlUR-GI 0.082" 156" —0448"" 0147 —-0.090" 0127 0313
(0.049) (0.544) (0.150) (0.041) (0.051) (0.069) (0.114)
(InlUR-GI —-0.002" -0.1127 0.063™" -0.010" 00117 -0.010" —-0.020"
(0.001) (0.043) 0.019) (0.004) (0.005) (0.004) 0.011)
InPHI -0.154 5747 1.908™ -1.030"
(0.181) (1.623) (0.640) (0.468)
InIUR-GI*InPHI —-0.047" 1682 -0.973"" 0.256"
(0.018) (0.526) (0.282) (0.151)
(InIUR-GIY’*InPHI 0007 -01217" 01197 -0017"
(0.002) 0.041) (0.033) (0.008)
Inisu 0.143" 446" 00217 —-0.389"
(0.059) (0.965) (0.009) (0.229)
InlUR-GI*InISU -0.078™ -1.580"" —-0.033™ -0.173"
(0.029) (0.350) 0.011) (0.084)
(InlUR-GI?*InISU 0.009" 0134 0.006™" 0.017"
(0.004) (0.031) (0.001) (0.008)
Control Variable Yes Yes Yes Yes Yes Yes Yes
Constant 245" -2.185 1816 243" 338" 227" 1934
(0.716) (2.142) (0.951) (0.694) (1.194) (0.938) (0.741)
Region FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
adjR’ 0972 0.980 0983 0.971 0973 0977 0976
F 33538 24958 30827 330027 182647 164.66 312447
Obs 390 195 195 390 195 195 390

*** ** and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)-(7) represent cluster-robust

standard errors

4, and 7), the quadratic term of IUR collaborative green
innovation is significantly negative (-0.002, p<0.05;
-0.010, p<0.05; -0.020, p<0.1), confirming an inverted
U-shaped relationship with carbon emissions. This sug-
gests that in the early stages, increased R&D investment,
higher equipment replacement costs, and longer indus-
trial adaptation periods may lead to a temporary increase
in carbon emissions. However, as collaboration reaches
a certain scale, the technological substitution effect
strengthens, driving carbon emissions downward.
Furthermore, the inverted U-shaped pattern varies
across different industrial structures. In regions with a
lower share of high-pollution industries (Column 2) and
regions with higher industrial upgrading levels (Column
6), the quadratic term is significantly negative (-0.112,
p<0.05; -0.010, p<0.05), indicating a stronger inverted
U-shaped relationship—higher short-term emission
growth but greater long-term reduction. In contrast, in
regions with a higher share of high-pollution industries
(Column 3) and regions with lower industrial upgrading
levels (Column 5), the quadratic term is significantly pos-
itive (0.063, p<0.01; 0.011, p<0.05), suggesting a weaker
inverted U-shaped effect or even a U-shaped pattern,

where short-term emissions decrease, but long-term
emissions may rebound. These findings indicate that the
effectiveness of the technological substitution process is
highly influenced by industrial structure. In regions with
a high share of high-pollution industries, path depen-
dence and high transition costs may prevent IUR col-
laborative green innovation from achieving significant
long-term carbon reduction.

Further analysis of the interaction between IUR collab-
orative green innovation and the proportion of high-pol-
lution industries reveals that in Columns (1) and (3), the
interaction term is significantly negative (-0.047, p <0.05;
-0.973, p<0.01), while the interaction term for the qua-
dratic term is significantly positive (0.007, p<0.01; 0.119,
p<0.01). This indicates that in regions with a high share
of high-pollution industries, the inverted U-shaped effect
of IUR collaborative green innovation is weaker and
may even turn into a U-shaped relationship, where car-
bon emissions decrease in the short term but rebound
in the long run. This could be due to strong path depen-
dence in traditional high-carbon industries, making
low-carbon technology substitution more challenging.
Additionally, insufficient policy incentives and weak
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market orientation may suppress the low-carbon trans-
formation effects of IUR collaborative green innovation.
Furthermore, the high cost of industrial transformation
could lead to short-term emission reductions in some
industries, but rising market demand or policy adjust-
ments may eventually cause emissions to rebound.

In contrast, in regions with a lower share of high-pollu-
tion industries (Column 2), the interaction term is signifi-
cantly positive (1.682, p<0.01), while the interaction term
for the quadratic term is significantly negative (-0.121,
p<0.01). This suggests that in these regions, the inverted
U-shaped relationship is more pronounced, meaning that
short-term emissions rise more quickly, but long-term
emission reductions are greater. This could be attributed
to greater acceptance of IUR collaborative green innova-
tion, stronger policy support, and higher marketization,
which facilitate faster adoption of low-carbon technolo-
gies and more effective emission reduction outcomes.

Similarly, the industrial structure upgrading index
also plays a significant moderating role in the techno-
logical substitution effect. The results from Columns
(4), (5), and (6) show that the interaction term between
industrial structure upgrading and IUR collaborative
green innovation is significantly positive (0.143, p <0.05;
4.46, p<0.01; 0.021, p<0.05), while the interaction term
for the quadratic term is significantly negative (-0.078,
p<0.01; -1.580, p<0.01; -0.033, p<0.01). This suggests
that industrial structure upgrading enhances the techno-
logical substitution effect, making the inverted U-shaped
relationship steeper. As industrial upgrading advances,
short-term emission increases are more pronounced,
but once a critical level of collaboration is reached, car-
bon emissions decline more rapidly. This result aligns
with findings in existing literature. For instance, Zhang
et al. [51] highlighted that during industrial upgrading,
the expansion of high-end industries increases energy
demand, leading to greater short-term carbon emis-
sion pressures. Similarly, Cheng et al. [52] demonstrated
that as industrial structures evolve, the penetration and
efficiency of green technologies significantly improve,
enhancing emission reduction effects in the later stages.
However, compared to these studies, this research
uncovers the interaction mechanism between industrial
upgrading and IUR collaborative innovation. It not only
captures the nonlinear trajectory of green innovation
alone but also emphasizes how industrial upgrading, as
a structural moderator, accelerates the process of green
technology substitution. This integrated analytical frame-
work —“collaborative innovation—structural upgrad-
ing—dynamic evolution of carbon emissions”— enriches
the theoretical understanding of how green technological
innovation drives low-carbon transformation.

In summary, the technology substitution effect
of industry-university-research collaborative green
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innovation is moderated by the proportion of high-pollu-
tion industries and the advancement of industrial struc-
ture, exhibiting distinct nonlinear characteristics, thereby
validating hypothesis H,. In regions with concentrated
high-pollution industries, the technological substitu-
tion process may be strongly influenced by path depen-
dence, while insufficient policy incentives and market
orientation could further hinder low-carbon transition.
Therefore, governments should enhance green financial
support and implement mandatory environmental poli-
cies to lower barriers for corporate low-carbon transfor-
mation and improve the penetration rate of low-carbon
technologies. Concurrently, in areas experiencing rapid
industrial structure upgrading, the industry-university-
research collaborative green innovation model shouldbe
optimized to ensure sustained strong emission reduction
effects during mature phases, preventing diminishing
marginal returns from collaborations.

Resource optimization allocation effect: how collaboration
enhances resource efficiency

The resource optimization allocation effect refers to the
process of optimizing capital, technology, and human
resource allocation to improve resource utilization effi-
ciency, ultimately reducing carbon emissions. In the
context of green and low-carbon transformation, effec-
tive resource allocation promotes industrial upgrading,
enhances technology absorption capacity, and reduces
energy waste. This study introduces green total factor
productivity (GTFP) as a mediating variable to measure
resource utilization efficiency and examine how IUR col-
laborative green innovation facilitates knowledge flow,
technology diffusion, and resource integration, thereby
improving regional GTFP and achieving carbon reduc-
tion goals. In this study, the non-radial, non-angular SBM
(Slack-Based Measure) model is used to measure GTFP.
During the measurement process of GTEDP, relevant input
and output variables need to be introduced, as detailed in
Table 6.

The regression results indicate that the impact of
IUR collaborative green innovation on GTEP follows a
U-shaped pattern (see Table 7). In the early stages, IUR
collaborative green innovation negatively affects GTEP
(-0.213, p<0.01), suggesting that resource misalloca-
tion, limited enterprise absorption capacity, and high
industrial adjustment costs may initially lead to a decline
in GTFP. This phenomenon could stem from the adapta-
tion period required for the introduction and application
of green technologies, during which enterprises face fac-
tor adjustment costs and technical adaptation challenges,
preventing an immediate improvement in resource uti-
lization efficiency. However, as collaboration deepens,
the coefficient of the quadratic term becomes signifi-
cantly positive (0.031, p<0.01), indicating that enhanced
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Table 6 GTFP indicator system
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Primary Secondary indicator Description Data source
indicator
Input Labor Number of employees at the end of each year for each province Provincial Statistical Yearbook
Capital Capital input measured using the perpetual inventory method, with China Statistical Yearbook
2000 as the base year
Energy Energy consumption (in 10,000 tons of standard coal) for each province China Energy Statistical
Yearbook
Expected GDP Actual GDP for each province, adjusted for 2010 as the base year Provincial Statistical Yearbook
output
Non-expected  Industrial wastewater COD  COD emissions from industrial wastewater in each province China Environmental Statisti-
output Emissions cal Yearbook

industrial SO? emissions

SO? emissions from industry in each province

China Environmental Statisti-
cal Yearbook

Table 7 Resource optimization allocation effect

Variable Iny InGTFP Iny
InlUR-GI 0253 -0213" 0.204"
(0.088) (0.067) (0.088)
(InlUR-GI? -0025"" 0031™" -0018"
(~0.008) (0.006) (0.008)
InGTFP -0.2317"
(0.066)
Control Variable Yes Yes Yes
Constant —8.049™" 0370 -7.963""
0.417) 0.319) 0411)
Region FE Yes Yes Yes
Year FE Yes Yes Yes
adj.R? 0.751 0.603 0.759
F 143707 74707 132897
Obs 390 390 390

**% ** and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively. The values in parentheses represent cluster-robust standard errors

technology absorption capacity and resource integration
effects gradually emerge, leading to a recovery in GTFP.
This further confirms the positive role of IUR collabora-
tive green innovation in optimizing resource allocation
and improving production efficiency.

Further regression analysis shows that GTFP has a sig-
nificant negative impact on carbon emissions (-0.231,
p<0.01), demonstrating that improving resource utili-
zation efficiency effectively reduces carbon emissions.
This is likely because higher GTFP encourages the trans-
formation of traditional high-carbon industries into
low-carbon industries, enhances energy efficiency, and
promotes industrial structure optimization, thereby low-
ering carbon emission levels. Additionally, the direct
impact of IUR collaborative green innovation on carbon
emissions is positive (0.204, p <0.05), while its quadratic
term is significantly negative (-0.018, p<0.05). This fur-
ther supports the inverted U-shaped relationship, where
collaboration initially increases emissions, but as coop-
eration deepens, the emission reduction effect gradu-
ally appears and strengthens. Overall, IUR collaborative
green innovation enhances GTEFP, facilitating resource

optimization allocation, which becomes a crucial mecha-
nism affecting carbon emissions.

To further validate whetherthe resource optimiza-
tion allocation effect serves as a key mechanism through
which IUR collaborative green innovation impacts car-
bon emissions, this study conducts a Bootstrap mediation
effect test with 1,000 replications. The results reveal that
IUR collaborative green innovation indirectly affects car-
bon emissions through GTFP, with the mediation effect
accounting for 9.57%. This indicates that resource optimi-
zation allocation plays a partial mediating role between
IUR collaborative green innovation and carbon emis-
sions. However, despite its ability to optimize resource
allocation, the carbon reduction effect of IUR collab-
orative green innovation remains constrained by factors
such as enterprise technology absorption capacity, mar-
ket incentive mechanisms, and policy support, thereby
validating Hypothesis H;. Therefore, relying solely on
IUR collaborative green innovation may not maximize
carbon reduction benefits. It is essential to implement
supporting policies that enhance enterprises’ capacity
for green technology adoption and resource integration,
ensuring a more effective low-carbon transformation.

Spatial spillover effect: the diffusion impact of cross-
regional collaboration on emission reduction
Selection and testing of spatial econometric model
Before selecting a spatial econometric model, a series of
tests are conducted to ensure the rationality of the model
specification and the robustness of estimation results.
First, this study examines the spatial correlation of pro-
vincial carbon emissions (see Table 8). The Moran’s I sta-
tistic is positive throughout 2010-2022, with significant
Z-values (p<0.01), indicating a significant spatial cluster-
ing effect in carbon emissions. This suggests that carbon
emission levels in neighboring regions influence each
other, meaning that regional carbon emissions are not
independent but exhibit spatial dependence.

Further LM diagnostic evaluations (see Table 9)
reveal that both LM-lag and Robust LM-lag statistics
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Table 8 Global correlation of carbon emissions in chinese

provinces

year Moran’s | YA P-value
2010 0.1634 5.2363 0.0000
2011 0.1678 53313 0.0000
2012 0.1700 53907 0.0000
2013 0.1799 5.6687 0.0000
2014 0.1835 5.7554 0.0000
2015 0.1872 5.8681 0.0000
2016 0.1920 6.0061 0.0000
2017 0.1980 6.2003 0.0000
2018 0.1943 6.0462 0.0000
2019 0.1943 6.0146 0.0000
2020 0.1908 5.8804 0.0000
2021 0.2024 6.2385 0.0000
2022 0.2054 6.3153 0.0000

Table 9 LM, hausman, wald, and LR statistical tests

Test Method Statistic/chi2 p-value/Prob > chi2
LM-error 0.703 0402
Robust LM- error 0.393 0.531
LM- lag 9.272 0.002
Robust LM- lag 8.962 0.003
Hausman 31.81 0.000
Wald- error 36.19 0.000
Wald—Ilag 37.84 0.000
LR-error 35.18 0.000
LR-1ag 3642 0.000

demonstrate pronounced significance (p <0.01), whereas
LM-error and Robust LM-error remain statistically neg-
ligible. This compellingly indicates that carbon emissions
primarily manifest through spatial lag effects rather than
spatial error propagation, thereby validating the applica-
tion of the Spatial Autoregressive Model (SAR) over the
Spatial Error Model (SEM). Moreover, the Hausman test
yields decisive significance (p<0.01), conclusively estab-
lishing the Fixed Effects (FE) model’s statistical superior-
ity relative to the Random Effects (RE) framework. Such
findings underscore the existence of inherent, unobserv-
able regional heterogeneity factors-including divergent
energy structures, environmental governance strategies,
and green finance mechanisms-which collectively rein-
force the rationale for employing Fixed Effects modeling.
Simultaneously, both the Wald test and Likelihood Ratio
(LR) test exhibit robust significance (p<0.01), confirm-
ing the spatial econometric model’s rigorous specification
while emphasizing the indispensability of spatial effect
integration. These findings show the limits of using tra-
ditional OLS estimation, which can lead to biased results.
This study uses a step-by-step approach to choose the
Fixed Effects Spatial Autoregressive Model (SAR) to bet-
ter explain the complex spatial links between IUR collab-
orative green innovation and regional carbon emissions.
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Table 10 Regression results of spatial lag model

Variable (1) (2)
Iny Iny

Main

Liny 0757

(0.030)

InlUR-GI 0.112" -0.044"
(0.035) (0.025)

(InlUR-GI? -0.003 0.008™
(0.004) (0.003)

Wx

Liny -2061""

(6.026)

InIUR-GI 0.294" 3.339"
(0.066) (1.299)

(InlUR-G)? -00224™" -0222™"
(0.007) (0.070)

Control variable Yes Yes

Region FE Yes Yes

Year FE Yes Yes

Spatial rho 00739 3546
(0.009) (0.869)

Variance sigma2_e 00132 0.00450™"
(0.001) (0.001)

r2 0373 0.845

Obs 390 360

**x ** and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively. The values in parentheses in columns (1)-(2) represent cluster-
robust standard errors

To capture the spatial autocorrelation effect between
regions, the inverse distance matrix was chosen as the
spatial weight matrix. The inverse distance matrix effec-
tively quantifies the mutual influence between geographi-
cally proximate regions, particularly suitable for research
areas with spatial spillover effects such as technology
diffusion and green innovation. By weighting the geo-
graphic distance, the inverse distance matrix reflects the
strong interaction between neighboring regions, aligning
with the reality of technology spillovers and spatial coop-
eration [28, 53].

The spatial impact of IUR collaborative green innovation on
carbon emissions

This study uses the Spatial Autoregressive Model (SAR)
to closely examine how IUR collaborative green innova-
tion affects carbon emissions in different regions over
time (see Table 10). Model (1) shows a clear positive link
between IUR collaborative green innovation ([nIUR-GI)
and carbon emissions (0.112, p<0.01). This means that
in the early stages, more collaboration can lead to higher
emissions. This may happen because of higher R&D
costs, the pressure of changing industrial structures, and
slow use of green technologies in the market. This short-
term increase reflects common problems seen during
green transitions, where new sustainable technologies
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Table 11 Decomposition of spatial effects
Variable Short-term effect Long-term effect
Direct Indirect Total Direct Indirect Total
InlUR-GI -0.0468" -0.1210 -0.1678" 00184 0.0475 0.0659"
(0.021) (0.095) (0.097) (0.006) (0.037) (0.026)
(InlUR-GI? 00079 0.0086 00166" -00031™ -0.0034 —0.0065
(0.003) (0.008) (0.009) (0.001) (0.003) (0.004)

*** *% and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses represent cluster-robust standard errors

need a lot of energy and adjustments before they start
helping the environment.

In the dynamic spatial lag regression (Model 2), adding
time lag effects shows a clear change. The coefficient for
IUR-GI goes from positive to negative (-0.044, p<0.1).
At the same time, the squared term (InIUR-GIP) stays
strongly positive (0.008, p <0.05). This nonlinear dynamic
unveils a U-shaped trajectory in how IUR collaborative
green innovation influences carbon emissions. During
early-stage implementation, such innovation drives sub-
stantial low-carbon technology adoption and emission
reductions, yet as collaborations intensify, diminishing
returns emerge. Potential drivers of this phenomenon
include technological marginal utility decline, heteroge-
neous enterprise absorption capacities, uneven policy
implementation, and geographically divergent diffusion
rates of green innovation.

Notably, Model (2)’s spatial lag variable (L.ly) exhibits
pronounced temporal persistence (0.757, p<0.01), dem-
onstrating carbon emissions’ self-reinforcing temporal
inertia—prior-period emissions exert enduring influence
on current levels. This empirical validation of carbon
emission path dependence carries critical policy implica-
tions. The findings underscore the necessity for dynamic,
forward-looking regulatory frameworks that account for
intertemporal carbon lock-in effects. Strategic optimiza-
tion of innovation incentive mechanisms emerges as piv-
otal for sustaining the decarbonization potential of IUR
collaborations across their developmental lifecycle.

The spatial spillover effects of IUR collaborative green
innovation stand out prominently, with Wx.InIUR-GI
demonstrating robust positive significance across both
models (0.294, p<0.01; 3.339, p<0.05). This compel-
lingly demonstrates that neighboring regions’ IUR-driven
green innovation exerts a tangible dampening effect on
local carbon emissions, vividly illustrating the vigorous
cross-regional diffusion mechanism of green technolo-
gies. Crucially, the data reveals that collaborative green
innovation achievements transcendgeographical bound-
aries, amplifying the radiating benefits of emission miti-
gation. Moreover, Wx.In[UR-GI*> manifests a striking
negative coefficient (-0.0224, p<0.01; -0.222, p<0.01),
signaling that advancing IUR collaboration intensifies its
transregional decarbonization impact—a testament to
the snowballing prominence of technology sharing and

demonstration effects that propel more extensive decar-
bonization initiatives. The significantly positive spatial
autocorrelation coefficient (rho) further validates carbon
emissions’ inherent interdependence across territories,
rendering isolated regional efforts insufficient to meet
overarching emission reduction targets. These com-
pelling findings robustly validate Hypothesis H,. Such
groundbreaking insights cry out for paradigm-shattering
policy frameworks: low-carbon strategies must impera-
tively prioritize cross-jurisdictional symbiosis to combat
insidious emission displacement while supercharging
the dissemination of IUR innovation. Ultimately, only
through forging unshakable regional coalitions and har-
nessing synergistic knowledge spillovers can collabora-
tive green innovation truly unleash its transformative
potential to orchestrate large-scale, sustainable carbon
neutrality transitions.

Decomposing spatial effects: short-term dynamics and long-
term evolution

The decomposition of spatial effects systematically
reveals the spatiotemporal impact mechanisms of indus-
try-university-research (IUR) collaborative green innova-
tion on carbon emissions. By disaggregating the impact
into direct effects, indirect effects (spatial spillover
effects), and total effects, this study precisely captures the
dual-dimensional differences in the spatial transmission
pathways and dynamic evolution patterns of IUR collab-
orative green innovation (see Table 11).

(1) Short-Term Effects: Direct Dominance.

Empirical results demonstrate that the direct effect of
IUR-GI (InIUR-GI) is significantly negative (-0.0468,
p<0.05), confirming its immediate effectiveness in curb-
ing local carbon emissions. Notably, the quadratic term
coefficient (InILR-GI?) exhibits a significant positive
value (0.0079, p<0.01), revealing a U-shaped dynamic
characteristic of short-term emission reduction effects—
where emission reduction efficiency displays marginal
diminishing returns after innovation levels surpass a
critical threshold. In spatial spillover dimensions, the
indirect effect of InIUR-GI shows negative but statisti-
cally insignificant values, suggesting pronounced spa-
tial time-lag effects in green technology diffusion. The
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non-significance of its quadratic term further corrobo-
rates insufficient development of cross-regional collabor-
ative emission reduction mechanisms in the short term.
The short-term total effect reaches -0.1678 (significant
at 10% level), while its quadratic term remains positive
(0.0166, p <0.1), reaffirming the U-shaped impact pattern
of green innovation characterized by a "rapid effective-
ness-efficacy attenuation” trajectory.

(2) Long-Term Effects: Paradoxical Reversals.

Under long-term perspective, the direct effect of IUR-GI
undergoes significant reversal (0.0184, p<0.01), reflect-
ing energy rebound effects and technological conver-
sion lags during industrial upgrading. However, the
significantly negative moderating effect of the quadratic
term (-0.0031, p<0.01) delineates an emission reduc-
tion inflection point after cumulative innovation sur-
passes critical thresholds, forming a typical inverted
U-shaped evolutionary trajectory. Spatial spillover
analysis shows non-significant positive indirect effects
(0.0475) combined with the inverted U-shaped trend
of quadratic terms (-0.0034), collectively unveiling the
long-term transition from "competition effects" to "syner-
gistic effects” in technology diffusion. The statistical sig-
nificance of total effect (0.0659, p <0.05) and its quadratic
term (-0.0065, p<0.1) systematically constructs a three-
phase development model of [UR-GI: "initial adjustment-
costs—mid-term equilibrium—long-term optimization".
This study reveals that the carbon reduction effects
of IUR-GI exhibit significant spatiotemporal regulation
characteristics. In the short term, the mechanism follows
a “localized rapid response—spatial spillover hysteresis”
pattern, while in the long term, the evolution demon-
strates a governance trajectory of “global optimization—
spatial synergy” This dynamic shift from a U-shaped to
an inverted U-shaped pattern aligns with the Environ-
mental Kuznets Curve framework, highlighting notable
“temporal window effects” and “spatial threshold effects”
Although existing studies emphasize the spatial spillovers
of green innovation and the importance of regional col-
laboration, they largely analyze spatial and temporal
effects in isolation. In contrast, this study integrates the
temporal dynamics and spatial heterogeneity of IUR-
GI into a unified analytical framework, illustrating that
localized, policy-driven mechanisms dominate in the
short term, whereas cross-regional technological sym-
biosis and collaborative innovation ecosystems are essen-
tial for achieving sustained long-term carbon neutrality.

Conclusion and recommendations

Conclusion

This study explores how IUR collaborative green inno-
vation affects regional carbon emissions in a non-linear
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way. The findings show that IUR collaborative green
innovation follows a striking inverted U-shaped curve in
influencing carbon emissions. In the early stages, higher
R&D costs and the need to adjust industries may cause
emissions to go up. As cooperation becomes stronger,
shared technology and better industry systems help
lower emissions.

Furthermore, the effect of IUR collaborative green
innovation on cutting emissions is very different across
regions. Eastern regions show steady results with strong
carbon reduction, while Central regions show more
changes over time, reflecting transitional industrial
upgrading phases that make emission control unstable.
Western regions face the highest level of uncertainty,
where IUR collaboration struggles to achieve stable
short-term reductions due to weak infrastructure and
unstable markets.

The technological substitution effect of IUR collabora-
tion emerges as an important factor, curbing high-pol-
lution industry dominance and accelerating industrial
modernization to achieve emission cuts. But in areas
with many polluting industries and strong past hab-
its, new technologies are harder to use. This can cause
short-term increases in emissions. Simultaneously, IUR
collaborative green innovation improves green total fac-
tor productivity (GTFP) to optimize resource allocation,
thereby reducing carbon emissions to a certain extent,
with a mediation effect of 9.57%. However, this emission
reduction effect is phased and nonlinear.

The study also finds that carbon emissions’ robust
spatial interdependence. IUR collaboration not only
reshapes local emission profiles but also propagates spill-
over effects across neighboring regions, underscoring
the vital importance of cross-regional coordination in
green innovation networks. In addition, IUR collabora-
tive green innovation shows clear spatiotemporal differ-
ences in carbon reduction. In the short term, it works
through local effects. In the long term, it follows an
inverted U-shaped path with emission rebound first, then
steady decline, and shifts from competition to coopera-
tion across regions.

Recommendations
1. Establish a Joint Innovation Platform

Rely on leading enterprises, universities, and research
institutes to build industrial joint laboratories or collab-
orative innovation centers, focusing on key areas such
as green process optimization, energy-saving equipment
upgrades, and carbon capture, utilization, and storage
(CCUS). Form a closed-loop mechanism of "enterprise
demand-research collaboration—pilot testing—technol-
ogy transfer." Through resource sharing and dynamic
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management, accelerate the transformation and dem-
onstration of R&D outcomes, and combine green funds,
financial instruments, and policy support to match fund-
ing with industrial demand, thereby expediting the diffu-
sion and market application of green technologies.

2. Improve Industry—Academia—Research
Collaboration Mechanisms and Implement a
"Researchers in Enterprises” Program

Strengthen mechanisms for collaboration among indus-
try, universities, and research institutes while system-
atically promoting the "Researchers in Enterprises"
initiative. Use digital platforms to achieve precise
matching between research outcomes and enterprise
needs; adopt multiple cooperation models such as sec-
ondments, short-term placements, and joint research
to integrate researchers into corporate R&D and pro-
duction processes, thereby aligning technical solutions
with industrial practice. At the same time, refine incen-
tive mechanisms, such as revenue sharing, promotion
bonuses, and project priority support, to encourage
researcher participation. Establish a results transfer ser-
vice center providing integrated technical evaluation,
IP protection, and financing support, and adopt perfor-
mance indicators like technology transfer rate, economic
returns, and carbon reduction outcomes to drive efficient
commercialization.

3. Strengthen Green Financial Support

Build a multi-tiered and targeted green financial support
system, integrating policy guidance, market incentives,
and innovation platforms. In central regions, leverage
the experience of the Yangtze River Delta Green Finance
Pilot Zone by introducing tools such as green bills and
green supply chain financing to support collaborative
innovation projects, expediting the transformation of
outcomes in energy storage retrofits, waste heat recovery,
and green industrial upgrades. In western regions, adopt
the "Green Finance + Technology Transfer" model of the
Guangdong—Hong Kong—Macao Greater Bay Area, using
financial innovations to channel capital and technol-
ogy from the east to accelerate project implementation.
At the financial instrument level, promote green patent
pledge financing and sustainability-linked loans (SLL),
and issue green or special-purpose bonds to lower the
financing costs for enterprises. Leverage regionalgreen
technology transfer centers and joint engineering cen-
ters to integrate research, industry, and capital resources,
accelerating technology diffusion. Establish green project
databases and dynamic performance evaluation mecha-
nisms to ensure accurate and efficient capital allocation

Page 18 of 20

and promote the wide deployment and sustainable diffu-
sion of innovation outcomes.

4. Accelerate the Transition of High-Pollution
Industries

Develop differentiated roadmaps for industrial trans-
formation, setting phased carbon intensity targets and
annual reduction goals for high-emission industries such
as steel, chemicals, cement, and electricity. Dynamically
adjust energy efficiency benchmarks and emission caps
based on technological advancements and performance,
driving continuous upgrades in processes and equipment.
Simultaneously, intensify R&D and promotion of green
technologies by establishing "green process improvement
demonstration projects,” prioritizing areas such as blast
furnace gas recycling, low-carbon cement alternatives,
CCUS technologies, and intelligent energy management
systems. Build industry-wide green technology databases
and sharing platforms to publish assessments of tech-
nological maturity, applicability, and cost-effectiveness,
helping enterprises choose optimal solutions and thereby
enhancing transition efficiency and accelerating the shift
toward green and low-carbon industrial structures.

Limitations

This study has several limitations. First, despite using
provincial panel data from 2010 to 2022, the analysis may
not fully capture micro-level heterogeneity at the city
or enterprise level, which could provide deeper insights
into collaboration dynamics. Second, while the nonlin-
ear models and spatial econometric techniques enhance
robustness, potential omitted variables and measure-
ment errors-especially in proxies for collaborative green
innovation and carbon emissions-may bias the results.
Third, the study focuses on provincial-level interactions,
and cross-border innovation linkages or international
spillover effects are not examined. Future research could
incorporate finer-grained datasets and extended model-
ing approaches to address these gaps and strengthen the
generalizability of the findings.
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