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Abstract
Amid the deepening implementation of the "dual carbon" strategy, elucidating the multidimensional dynamics 
of industry-university-research (IUR) collaborative green innovation on regional carbon emissions holds critical 
significance for reconciling environmental governance with economic development. Leveraging panel data from 
30 Chinese provinces (2010–2022), this study employs parametric and non-parametric approaches to decode 
the nonlinear impact of IUR collaborative green innovation on carbon emissions. Through moderated mediation 
models and spatial lag analysis, it systematically reveals operational mechanisms. Key findings include: (1) An 
inverted U-shaped relationship emerges-initial collaboration phases may elevate emissions, but sustained efforts 
progressively manifest emission reduction effects. (2) Technological substitution drives low-carbon transitions 
in polluting industries. While restructuring triggers transient carbon pulse peaks from cost surges, long-term 
trajectories follow inverted U-shaped patterns moderated by industrial composition and structural upgrading. 
(3) Initial U-shaped suppression effects stem from resource misallocation and adaptation costs, yet enhanced 
technological absorptive capacity elevates green total factor productivity (GTFP), enabling a 9.57% emission 
reduction through industrial transformation. (4) Spatiotemporal interactions evolve from short-term U-shaped 
spatial spillovers to long-term inverted U-shaped synergies, necessitating optimized policy coordination for 
dynamic emission reduction dividends. (5) Regional heterogeneity persists-eastern China demonstrates stable 
impacts through industrial maturity, contrasting with volatile central/western regions constrained by fragmented 
innovation ecosystems. This research advances understanding of collaborative innovation’s nonlinear carbon 
governance effects, offering actionable insights for regionalized decarbonization strategies and cross-regional 
innovation alliances.
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Introduction
As global climate change becomes a serious challenge, 
cutting carbon has become a key part of sustainable 
development plans around the world. China’s rapid eco-
nomic growth during its industrial and urban devel-
opment has led to high energy use and rising carbon 
emissions. This has made it harder to reduce carbon [1]. 
In this situation, green technology innovation plays an 
important role. It helps improve energy use and resource 
efficiency. It also helps lower carbon emissions [2, 3]. 
Cooperation between industry, universities, and research 
(IUR) has become a key way to support this kind of inno-
vation. It brings together knowledge, helps turn ideas 
into technology, and supports policy efforts to speed up 
green technology development [4, 5].

But there are still big questions about how IUR-based 
green innovation affects carbon emissions in different 
regions. Many studies still use simple models that assume 
straight-line effects [6]. These models miss more complex 
patterns that come from how technology spreads over 
time. Other studies look at single parts of the process, 
like replacing old technology [7] or changing the struc-
ture of industries [8]. But they do not connect these parts 
into a full picture. Also, many spatial studies are based 
on fixed models. These models do not show how inno-
vation spreads over time. Because of this, it is hard to 
explain why some areas with strong IUR efforts see early 
increases in carbon emissions, or why areas with similar 
levels of cooperation have different results.

Using China’s provincial panel data (2010–2022), we 
construct an integrated multi-method analytical frame-
work. First, parametric modeling (quadratic functional 
specification) synergizes with nonparametric local 
regression to chart nonlinear emission trajectories. Then, 
it uses a mediation model to study how green total fac-
tor productivity (GTFP) works in this process.It also uses 
amoderation model toexplore the role of technological 
substitution (such as the decline in the share of highly 
polluting industries and the upgrading of industrial 
structure) in this process.

Last, it uses static and dynamic spatial Durbin models 
to compare how innovation spreads across areas and over 
time.

The study’s pioneering insights manifest in three 
dimensions:

 	• It shows an inverted U-shaped curve for carbon 
emissions using nonlinear models. This goes beyond 
the limits of traditional straight-line models.

 	• It puts together the ideas of technology replacement, 
resource use changes, and spatial spillovers into one 
model that looks at process, path, and space.

 	• It uses spatial analysis to show that policy effects take 
time to appear. This helps explain when and how 

different areas should manage carbon reduction in 
steps.

Literature review
Green technology innovation (GTI) is widely regarded 
as a core driver of the economy’s transition toward low-
carbon development. Research on the Environmental 
Kuznets Curve (EKC) highlights the nonlinear relation-
ship between economic growth and environmental 
degradation, emphasizing the roles of technological 
progress, industrial restructuring, and institutional fac-
tors in shifting from “more pollution” to “less pollution” 
[9–15]. Cross-country studies further show that the dif-
fusion of green technologies can help generate an EKC 
“turning point” and improve environmental performance 
[16, 17].

Regarding abatement mechanisms, GTI promotes a 
synergy of three key levers: efficiency leap, pollution con-
trol, and structural reconfiguration. At the micro level, 
the energy-efficiency revolution reduces carbon inten-
sity by improving conversion efficiency [18]. At the meso 
level, carbon capture and renewable energy technologies 
provide end-of-pipe abatement solutions [19]. At the 
macro level, GTI accelerates industrial upgrading and 
low-carbon restructuring, helping decouple economic 
growth from carbon emissions [20].

On measurement, the literature has evolved from 
“quantity tagging—quality measurement—systemic ana-
lytics.” Early studies relied on visible indicators such as 
counts of green patents, while later studies shifted to 
composite measures such as R&D intensity and market 
share of green products [21]. Recent contributions focus 
on lifecycle models to trace how technology diffusion 
and abatement effects propagate along value chains [22]. 
International evidence shows that the diffusion of green 
technologies depends not only on local innovation capac-
ity but also on knowledge spillovers, trade networks, and 
policy incentives [17, 23, 24]. However, research often 
overlooks geographic and institutional heterogeneity, 
making it hard to explain why regions with similar tech-
nology inputs exhibit different abatement outcomes [25].

At the level of technology diffusion and adoption, 
industry-university-research (IUR) collaboration plays 
a central role. The Triple Helix model, which integrates 
university knowledge spillovers, firm technology absorp-
tion, and government policy incentives, forms a dynamic 
engine for accelerating green innovation. This collabora-
tive framework drives both horizontal industrial agglom-
eration and vertical technology transfer, contributing to 
emission reductions through cross-regional cooperation 
[17, 23, 26, 27].

GTI’s regional effects display significant spatial het-
erogeneity and spillovers, requiring spatial econometric 
tools for analysis. Advances in spatial econometrics offer 
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a toolkit-from spatial autocorrelation tests to spatial lag/
Durbin models and spatial panels [28–31]-to identify 
the spatial transmission of technology networks, factor 
flows, and policy externalities. Unlike static metrics such 
as Moran’s I, these approaches reveal diffusion lags and 
their long-term policy implications [32, 33].

Despite notable progress, three limitations remain. 
First, the literature often relies on linear assumptions 
(e.g., OLS), making it difficult to capture nonlinear and 
threshold effects between collaborative innovation and 
carbon outcomes [12, 14, 34]. Early collaboration phases 
may induce carbon lock-in, masking short-term abate-
ment while stronger effects emerge only with techno-
logical maturity and scale [26, 35]. Second, mechanism 
analysis is fragmented, with many studies focusing on 
technological iteration [36], factor allocation [37], or spa-
tial radiation [38] in isolation. Third, policy analysis tends 
to be static, relying on single-period spatial correlation 
measures and rarely quantifying how diffusion lags and 
network structure shape medium- to long-term policy 
performance [29, 30].

In response, this study develops a three-dimensional 
framework of nonlinear identification, mechanism cou-
pling, and dynamic simulation, focusing on three ques-
tions: (1) Does IUR-driven innovation exhibit a U-shaped 
EKC turning point? (2) How do technological iteration, 
factor allocation, and spatial radiation interact through 
nonlinear coupling? (3) Do spatial spillovers follow a “dif-
fusion-convergence” cyclical pattern? These findings are 
expected to overcome the limitations of traditional linear 
research paradigms, providing theoretical support and 
empirical evidence for the development of spatiotempo-
rally differentiated policy systems.

Theoretical analysis and research hypotheses
Nonlinear impact of IUR collaborative green innovation on 
carbon emissions
IUR collaborative green innovation is crucial for advanc-
ing regional low-carbon transformation. It involves 
technological breakthroughs, knowledge diffusion, and 
industrial evolution, and its impact on carbon emissions 
varies across different stages, demonstrating nonlinear 
dynamics.

In the early stage, collaboration may initially lead to a 
rise in carbon emissions. As companies, universities, and 
research centers focus on creating and testing new tech-
nologies, high research costs and adjustments in produc-
tion may temporarily increase emissions. This aligns with 
innovation diffusion theory, where green technologies go 
through research, testing, scaling, and diffusion phases 
[39]. Companies continue using older, high-carbon tech-
nologies to remain profitable, and new technologies may 
initially increase energy consumption. This is known as 
the “technology diffusion lag effect” [40, 41].

Later, as technologies mature and cooperation 
strengthens, emissions begin to decrease. Green tech-
nologies like clean energy and smart systems gradually 
replace carbon-heavy methods, driven by policies such as 
green finance and carbon market incentives [42, 43]. This 
combined effect accelerates emission reductions.

In China, energy system transformation faces chal-
lenges due to existing habits and slow regulatory changes 
[40, 41]. Early-stage collaboration often focuses on basic 
research and small efficiency improvements, but high 
costs and weak demand slow full green system adoption. 
In these phases, emissions may rise due to production 
growth, but as cooperation reaches a key point, large-
scale changes, such as clean energy and smart manu-
facturing, emerge, reducing emissions. This suggests an 
inverted U-shaped curve for emissions.

Hypothesis 1:   IUR collaborative green innovation 
exhibits an inverted U-shaped relationship with carbon 
emissions.

Technological substitution effect of IUR collaborative 
green innovation
IUR collaborative green innovation accelerates the trans-
formation of high-pollution industries to low-carbon 
industries, primarily by reducing the share of high-pol-
lution industries and promoting industrial restructuring.

In early collaboration, limited capacity to absorb low-
carbon technologies andhigh market transformation 
costs hinder the substitution effect. Equipment upgrades 
and capacity expansion may initially increase emissions, 
creating an "emission transfer effect." However, as tech-
nology matures and market demand for low-carbon 
products rises, the substitution effect becomes more evi-
dent. The green technology market grows, and traditional 
high-carbon industries are gradually replaced by cleaner 
alternatives.

The substitution effect operates through two key 
pathways:

 	• Decreased share of high-pollution industries: IUR 
collaboration promotes clean energy, reducing 
high-pollution industries’ market share and lowering 
emissions, especially in regions with low-pollution 
industries.

 	• Industrial upgrading: The transformation toward 
green sectors like smart manufacturing and clean 
energy speeds up in regions with strong absorptive 
capacities, leading to lower emissions.

However, the substitution process is constrained by 
path dependence and market barriers in high-pollution 
regions. This can cause short-term emission reductions, 
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followed by long-term rebounds, sometimes leading to a 
U-shaped pattern.

Hypothesis 2:   IUR collaborative green innovation affects 
regional carbon emissions through the technological sub-
stitution effect.

Resource optimization allocation effect of IUR 
collaborative green innovation
The resource optimization effect improves carbon emis-
sions by optimizing the allocation of capital, technology, 
and human resources. IUR collaborative green innova-
tion fosters knowledge flow and technology diffusion, 
enhancing the efficiency of green technology R&D and 
application.

In early collaboration, companies’ limited capacity 
and high adjustment costs hinder resource optimiza-
tion, leading to possible emission increases. However, as 
cooperation deepens, companies gradually master green 
technologies, and resource integration begins to reduce 
carbon emissions. This process is influenced by regional 
economic development, policy support, and market con-
ditions, with developed regions showing quicker emis-
sion reductions.

This effect may also present an inverted U-shape. 
Initially, the adaptation phase may lead to emission 
increases, but as the benefits of resource optimization 
outweigh the negatives, emissions decrease.

Hypothesis 3:   IUR collaborative green innovation affects 
regional carbon emissions through the resource optimiza-
tion allocation effect.

Spatial spillover effect of IUR collaborative green 
innovation
IUR collaborative green innovation not only impacts 
local carbon emissions but also influences neighboring 
areas through technology diffusion, knowledge sharing, 
and industrial linkages, known as the spatial spillover 
effect. As regions become more interconnected, green 
technology spreads across regions, affecting their carbon 
emission patterns.

The spatial spillover effect accelerates emissions reduc-
tion in adjacent regions as advanced technologies and 
knowledge spread. Strong IUR cooperation leads to more 
skilled labor mobility, patent sharing, and industry link-
ages, helping neighboring regions adopt low-carbon 
technologies faster.

However, spatial spillovers manifest nonlinearly. In 
early stages, regional disparities in absorptive capacity 
and industrial foundations slow technology adoption. Ini-
tially, some areas may even increase emissions by relocat-
ing polluting industries. As cooperation grows, stronger 
spillovers emerge, and regions become better at adopting 

and applying green technologies, leading to greater emis-
sion reductions.

Hypothesis 4: 
 IUR collaborative green innovation governs regional 

carbon emissions through spatial spillover dynamics.

Research methodology and data sources
Model construction
In order to explore the impact of Industry-University-
Research collaborative green innovation (IUR-GI) on 
carbon emissions (CE), the following regression model is 
established:

	

lnCEit =α0 + α1lnIUR − GIit + α2(lnIUR − GIit)2

+
p∑

j=1

αjControlit + µi + ϑt + εit
� (1)

where:

 	• lnCEit represents the carbon emission level of 
region i in year t;

 	• lnIUR − GIit represents the level of Industry-
University-Research collaborative green innovation 
(IUR-GI);

 	• (lnIUR − GIit)2 represents the squared term of 
IUR-GI, used to test its nonlinear impact on carbon 
emissions;

 	• Controlit represents control variables, 
including economic development level, total 
energy consumption, environmental regulation, 
technological innovation capability, government 
investment, and green finance index;

 	• µi represents individual fixed effects, controlling for 
unobservable regional characteristics;

 	• ϑt represents time fixed effects, controlling for time 
trends;

 	• εit represents the error term.

Considering that the relationships between variables 
and the specification of the regression function involve a 
certain degree of subjectivity, a non-parametric additive 
model is introduced to further test the nonlinear rela-
tionship between Industry-University-Research collab-
orative green innovation and carbon emissions, as shown 
in Eq. (2):

	

lnCEit =β0 + β1lnIUR − GIit +
p∑

j=1

βjControlit

+ f(lnIUR − GIit) +
p∑

j=1

fi(Controlit) + εit

� (2)
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where:

 	• f(lnIUR − GIit) and fi(Controlit) represent 
the non-parametric functional forms of IUR 
collaborative green innovation and control variables, 
aiming to capture the nonlinear relationship.

 	• Other parameters are the same as in Eq. (1).

This study establishes mediation, moderation, and spa-
tial effect models to delve into the intricate mechanisms 
through which IUR collaborative green innovation influ-
ences regional carbon emissions. Recognizing the multi-
faceted nature of carbon emissions—shaped by economic 
dynamics, policy interventions, and technological evo-
lution—the intricate interplay between mediating vari-
ables and carbon outputs may engender reverse causality, 
while heterogeneous moderating factors could introduce 
nuanced estimation biases. To address these complexi-
ties, the research first validates the causal relationship 
through robust parametric and non-parametric frame-
works (Eqs. 1, 2), adroitly addressing potential endogene-
ity concerns. Subsequently, the moderation effect model 
(Eq.  3) illuminates how industrial structure upgrad-
ing and high-pollution industry ratios shape the carbon 
emission effects through technological substitution. The 
mediation effect model (Eqs. 4; 5) then rigorously probes 
whether resource optimization allocation serves as a 
hidden conduit for IUR collaborative innovation’s envi-
ronmental impact. Finally, through meticulously crafted 
static and dynamic spatial lag models (Eqs.  6;  7), the 
investigation unravels the spatial spillover effects across 
regions, revealing both the radiating influence of green 
innovation practices and the profound interconnected-
ness of carbon emission patterns across geographical 
boundaries.

	

lnCEit =σ0 + σ1lnIUR − GIit + σ2(lnIUR − GIit)2

+ σ3Dit + σ4Dit × lnIUR − GIit

+ σ5Dit × (lnIUR − CIit)2

+
p∑

j=1

σjControlit + µi + ϑt + εit

� (3)

where:

 	• Dit represents the moderating variable, indicating 
the technological substitution pathway, which can be 
measured by the industrial structure upgrading index 
(ISA) or the proportion of high-pollution industries 
(PHI);

 	• Dit × lnGIURit represents the interaction term 
between IUR collaborative green innovation and the 
industrial structure moderating variable;

 	• Dit × (lnGIURit)2 represents the interaction term 
between the squared term of IUR collaborative green 
innovation and the industrial structure moderating 
variable;

 	• Other parameters are the same as in Eq. (1)

	

Mit =γ0 + γ1lnIUR − GIit + γ2(lnIUR − GIit)2

+
p∑

j=1

γjControlit + µi + ϑt + εit
� (4)

	

lnCEit =ρ0 + ρ1lnIUR − GIit + ρ2(lnIUR − GIit)2 + δMit

+
p∑

j=1

ρjControlit + µi + ϑt + εit
� (5)

 where: 

 	• Mit represents the mediating variable, which can be 
measured by green total factor productivity (GTFP);

 	• Other parameters are the same as in Eq. (1);
 	• If δ is significant and the coefficient of α1 decreases 

or becomes insignificant after adding Mit, it 
indicates that the mediation effect is significant.

	

lnCEit =φ0 + ηW · lnCEit + φ1lnIUR − GIit

+ φ2(lnIUR − GIit)2 +
p∑

j=1

φjControlit + µi + ϑt + εit
� (6)

	

lnCEit =θ0 + ηW · lnCEit + θ1lnCEit−1

+ θ2lnIUR − GIit + θ3(lnIUR − GIit)2

+
p∑

j=1

θjControlit + µi + ϑt + εit

� (7)

 where:

 	• W · lnCEit represents the spatial lag term of carbon 
emissions, used to measure the impact of carbon 
emissions in neighboring regions on local carbon 
emissions;

 	• lnCEit−1 represents the time lag term of carbon 
emissions, used in the dynamic model to measure 
the path dependence of carbon emissions;

 	• W represents the spatial weight matrix, where this 
study adopts the inverse distance geographical 
matrix as the spatial weight matrix;

 	• η represents the spatial autoregressive coefficient, 
reflecting the spatial dependence of carbon 
emissions.

Variable selection and data sources
This study uses provincial panel data from China from 
2010 to 2022, sourced from the National Bureau of Sta-
tistics, the China Economic and Social Big Data Research 



Page 6 of 20Gao et al. Carbon Balance and Management           (2025) 20:45 

Platform, the China Science and Technology Statisti-
cal Yearbook, and the China Statistical Yearbook. Due 
to severe data gaps in Hong Kong, Macau, Taiwan, and 
Tibet, 30 provincial-level regions (including provinces, 
autonomous regions, and municipalities) were selected 
to ensure robustness. To improve data comparability 
and accuracy in regression analysis, the following adjust-
ments were made: (1) economic indicators affected by 
price changes were converted to constant 2010 prices to 
eliminate inflation effects; (2) moderating variables were 
centered to reduce multicollinearity; (3) non-percentage 
variables were log-transformed to address heteroske-
dasticity and improve model fit; (4) missing values were 
interpolated using linear methods; and (5) descriptive 
statistics, correlation analysis, and unit root tests were 
conducted to verify data validity.

(1)	Dependent Variable: Carbon Emissions.

Carbon emissions serve as the dependent variable, drawn 
from the CEDAs Database to quantify regional carbon 
output. This metric captures the cumulative environmen-
tal impact of industrial and economic activities across 
provinces.

(2)	Independent Variable: IUR Collaborative Green 
Innovation.

The regional level of IUR collaborative green innova-
tion is measured by the number of jointly applied green 
patents filed by enterprises (Industry), universities (Uni-
versity), and research institutions (Research Institution). 
Green patents are identified using the WIPO IPC Green 
Inventory, ensuring coverage of fields such as energy 
conservation, pollution control, clean production, and 
renewable energy. A patent is considered an IUR collab-
orative innovation if its applicants include at least two 
different types of innovation actors (e.g., enterprise + uni-
versity, enterprise + research institution, or full three-
party collaboration). The annual count of such patents 
is aggregated by region, log-transformed as lnIUR-GI, 
with its squared term (lnIUR-GI)2 introduced to capture 
potential nonlinear effects [44].

(3)	Moderating Variables: Industrial Structure and High-
Pollution Industry Ratio.

To investigate technological substitution dynamics, the 
study incorporates dual moderators: industrial structure 
advancement and the economic footprint of high-pollu-
tion sectors.

High-carbon industries—including steel produc-
tion, chemical manufacturing, power generation, and 
construction materials—constitute primary emission 

sources. Their contribution to regional industrial out-
put quantifies economic reliance on carbon-intensive 
practices. Following the First National Pollution Source 
Census Plan (2007), eleven high-pollution sectors were 
analyzed, with their industrial output share calculated as 
a critical moderating factor.

Industrial restructuring, propelled by digital trans-
formation and service sector growth, embodies modern 
economic evolution [45]. This transition is measured 
through the tertiary-to-secondary industry output ratio, 
reflecting structural shifts in production paradigms.

(4)	Mediating Variable: Green Total Factor Productivity.

GTFP quantifies how IUR collaborative innovation opti-
mizes resource flows and enhances energy efficiency. 
Employing the SBM-DEA model with undesirable out-
puts [46], this metric integrates energy inputs, capital, 
labor, and carbon emissions to evaluate sustainable pro-
ductivity. The analysis further dissects GTFP’s mediating 
role in channeling green innovation effects toward emis-
sion reduction.

(5)	Control Variables.

To mitigate omitted variable bias and strengthen empiri-
cal reliability, sixcontrol dimensions were incorporated:

• Economic Development: Provincial GDP per 
capita.
• Energy Demand: Aggregate electricity 
consumption.
• Regulatory Intensity: Industrial pollution control 
investment as percentage of secondary sector output.
• Innovation Capacity: R&D expenditure relative to 
GDP.
• Fiscal Prioritization: Science/technology spending 
as share of local government budgets.
• Green Finance: Composite index blending green 
credit, securities, insurance, and investment metrics 
[47, 48].

Descriptive statistics from Table  1 reveal a 30-prov-
ince panel dataset spanning 2011–2022 (n = 390). Car-
bon emissions (CE) average 383.963 Mt with substantial 
standard deviation, underscoring stark interprovincial 
disparities. IUR-GI collaboration averages 529.98 proj-
ects but exhibits pronounced volatility, highlighting 
uneven regional innovation ecosystems. While TIC, GFI, 
and GI display modest variability, EC and EDL met-
rics demonstrate extreme dispersion, mirroring China’s 
imbalanced regional development. These patterns align 
with observed economic realities, where variance in 
green innovation capacity, industrial composition, and 
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emission trajectories provides empirical traction for ana-
lyzing technology-driven decarbonization pathways.

Empirical analysis
Baseline regression analysis
This study employs panel data regression (Columns 1–4) 
and a non-parametric additive model (Column 5) to 
examine the impact of IUR collaborative green innova-
tion (lnIUR-GI) on carbon emissions (lnCE) and further 
analyzes the roles of technological innovation, green 
finance, government investment, environmental regula-
tion, energyconsumption, and economic development.

From the panel regression results (see Table 2), the 
coefficient of the linear term of IUR collaborative green 

innovation is significantly positive, while that of the 
squared term is significantly negative, clearly revealing an 
inverted U-shaped relationship with carbon emissions. 
This indicates that in the initial stage of green innova-
tion, rapid growth in R&D investment, firms’ limited 
adaptability to green technologies, and the high costs 
associated with industrial restructuring contribute to a 
temporary rise in carbon emissions. However, as indus-
try-university-research collaboration deepens, the effects 
of technology diffusion and optimized resource alloca-
tion gradually emerge, and the emission reduction effects 
of green innovation progressively strengthen, ultimately 
driving carbon emissions into a downward trajectory. 
This dynamic pattern aligns closely with the technology 

Table 1  Descriptive statistics
Variable Symbol Unit Mean Std. dev Min Max Obs
Carbon emissions CE Mt 383.963 326.250 37.140 2099.792 390
Industry-university-Research collaboration Green innovation IUR-GI Pieces 529.980 898.711 2 6429 390
Technological innovation capability TIC % 1.758 1.149 0.340 6.845 390
Green finance index GFI % 0.158 0.068 0.073 0.474 390
Government investment GI % 0.261 0.237 0.057 1.216 390
Environmental regulation ER % 0.003 0.003 0.000 0.025 390
Energy consumption EC Mtec 1,408,815 992,390.7 152,649.4 4,227,082 390
Economic development level EDL Billion CNY 26,782.18 22,502.950 1350.430 129,118.6 390
Proportion of high-pollution industries PHI % 0.466 0.129 0.078 0.826 390
Industrial structure upgrading ISU % 1.236 0.714 0.500 5.297 390
Green total factor productivity GTFP % 1.748 0.989 0.443 5.396 390

Table 2  Benchmark regression results
Variable (1) (2) (3) (4) (5)
lnIUR-GI 0.143***

(0.034)
0.066*

(0.035)
0.916***

(0.147)
0.243***

(0.062)
0.131***

(0.040)
(lnIUR-GI)2 −0.073***

(0.015)
−0.015**

(0.006)
lnTIC −0.016

(0.089)
−0.262***

(0.093)
−0.046
(0.100)

lnGFI −0.151***

(0.058)
0.141***

(0.043)
0.097
(0.09)

lnGI −0.121***

(0.046)
−0.050
(0.046)

−0.002
(0.05)

lnER 57.742***

(8.696)
−2.334
(4.322)

78.969***

(10.833)
lnEC 0.868***

(0.052)
0.114**

(0.053)
0.844***

(0.059)
lnEDL 0.119*

(0.066)
0.155*

(0.083)
−0.201***

(0.072)
Constant 4.856***

(0.184)
−7.906***

(0.373)
2.972***

(0.364)
0.886
(0.943)

Region FE Yes Yes Yes Yes No
Year FE Yes Yes Yes Yes No
Obs 390 390 390 390 390
Adj R2 0.069 0.783 0.144 0.977 0.927
F 17.28*** 194.06*** 36.24*** 689.28***

***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)–(5) represent cluster-robust 
standard errors
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innovation diffusion theory [49] and strongly supports 
Hypothesis H1. Notably, even after incorporating mul-
tiple control variables in Column (4), this nonlinear 
characteristic remains robust, indicating that green inno-
vation promotes the transition of carbon emissions from 
a phase of “innovation-driven temporary increase” to a 
phase of “steady decline during technological maturity,” 
through the mechanisms of technology diffusion, knowl-
edge spillovers, and industrial chain optimization.

The estimation results of the non-parametric additive 
model (Column 5) further reinforce the above conclu-
sions. Without the need to predefine a functional form, 
this model still captures a significant inverted U-shaped 
relationship between green innovation and carbon emis-
sions (as shown in Fig. 1), indicating that as the level of 
IUR collaborative green innovation rises, carbon emis-
sions first increase and then decline. This finding not only 
avoids potential biases caused by functional form mis-
specification in parametric models but also demonstrates 
that the nonlinear emission-reduction effect of green 
innovation is both robust and generalizable. Meanwhile, 
the non-parametric kernel regression results show that 
the average marginal effect of IUR collaborative green 
innovation is significantly positive (0.131, p < 0.01), sug-
gesting that, on average, higher levels of green innova-
tion are associated with increased carbon emissions. This 
positive effect primarily reflects the characteristics of the 
early stage of green innovation, where rapid increases 
in R&D investment, limited technological adaptability 
among firms, and frictions and cost pressures during 
industrial transformation lead to a short-term rise in car-
bon emissions.

Regarding control variables, technological innovation 
(lnTIC) has an insignificant effect in some models but 
shows a significant negative impact on carbon emissions 

in Column (4) (−0.262, p < 0.01), suggesting that techno-
logical innovation can reduce carbon emissions under 
certain conditions. However, regional differences in 
technology conversion rates may weaken this effect. The 
green finance index (lnGFI) significantly reduces carbon 
emissions in Column (2) (−0.151, p < 0.01), indicating that 
green finance directs capital toward low-carbon indus-
tries, but its effect is inconsistent across models, possibly 
due to structural adjustments in financing.

Government investment (lnGI) significantly reduces 
carbon emissions in Column (2) (−0.121, p < 0.01), sug-
gesting that fiscal support facilitates green transforma-
tion. However, its effect is insignificant in other models, 
likely due to differences in industry allocation and policy 
efficiency. Environmental regulation intensity (lnER) 
has a significant positive effect in Columns (2) and (5) 
(57.742, p < 0.01; 78.969, p < 0.01), indicating that in the 
short term, strict environmental regulations increase 
compliance costs, leading to higher emissions, which 
is consistent with the "inverted U-shaped hypothesis of 
environmental regulation" [50].

Additionally, energy consumption (lnEC) consistently 
shows a significant positive effect on carbon emissions in 
all models, emphasizing the importance of energy struc-
ture adjustments. The impact of economic development 
(lnEDL) varies; in some models (Columns 2 and 4), eco-
nomic growth increases carbon emissions, whereas in the 
non-parametric additive model (Column 5), it has a neg-
ative impact (−0.201, p < 0.01). This suggests that some 
regions may have entered the declining phase of the Envi-
ronmental Kuznets Curve (EKC) [10, 15], where higher 
economic development leads to industrial upgrading and 
energy transition, reducing carbon emissions.

Fig. 1.  Non-parametric Curve
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Endogeneity issues
This study employs the instrumental variable method 
(2SLS) and system generalized method of moments 
(SYS-GMM) to address potential endogeneity and omit-
ted variable bias in IUR collaborative green innovation 
(see Table 3). In the 2SLS estimation (Columns 1–3), we 
use the first-order lag of IUR collaborative green inno-
vation and its squared term (lnIUR_GI_lag, lnIUR_GI_
lag_sq), the first-order lag of the annual average number 
of green patents per province (lnGP_lag), as well as the 
first-order lags of the number of higher education insti-
tutions and research institutes (lnHEI_lag, lnRI_lag) 
as instrumental variables. This instrument set demon-
strates strong explanatory power for the endogenous 
variables in the first stage, with the Cragg–Donald Wald 
F-statistic (86.682) far exceeding the critical threshold 
of 10. The rk-LM and Anderson–Rubin Wald tests are 

significant, confirming the strength and relevance of the 
instruments.

In the SYS-GMM estimation (Column 4), the first-
order lag of carbon emissions (L.lny) is introduced to 
capture the dynamic inertia of carbon emissions and 
control for unobservable fixed effects, enhancing the 
robustness of the estimates. The regression results show 
that IUR collaborative green innovation (lnIUR-GI) sig-
nificantly influences carbon emissions across all models 
and exhibits an inverted U-shaped relationship, consis-
tent with the baseline regression results. This finding sug-
gests that in the early stages, IUR collaborative green 
innovation may lead to increased resource consumption 
and higher carbon emissions, but as innovation activity 
reaches a certain threshold, the accumulation and trans-
formation of green technologies can effectively contrib-
ute to carbon reduction.

Table 3  Regression results of 2SLS and GMM
Variable 2SLS SYS-GMM

(1)
lnIUR-GI

(2)
(lnIUR-GI)2

(3)
lny

(4)
lny

lnIUR_GI_lag 0.2855***

(0.0061)
−3.1949***

(1.0449)
lnIUR_GI_lag_sq 0.0303***

(0.0093)
1.0090***

(0.0869)
lnGP_lag 0.2775***

(0.777)
2.1780***

(0.4929)
lnHEI_lag −0.0069**

(0.0224)
−0.41235*

(0.0557)
lnRI_lag 0.0347***

(0.0069)
0.25606*

(0.0201)
L.lny 1.007***

(0.047)
lnIUR-GI 0.9618***

(0.2546)
0552*

(0.032)
(lnIUR-GI)2 −0.0730***

(0.0248)
−0.004*

(0.003)
Control variable Yes Yes Yes Yes
Constant 0.4543*

(0.2586)
4.1730**

(2.0354)
2.8413***

(0.9479)
−0.133
(0.403)

Region FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.6837
F 269.61*** 266.53*** 121.46***

CD wald F 86.682 86.682 86.682
rk LM 8.290* 8.290* 8.290*

Anderson-rubin wald 18.20*** 18.20*** 18.20***

Stock-wright LM S statistic 15.13*** 15.13*** 15.13***

AR(1) −2.34**

AR(2) 1.36
Sargan test 20.251*** 20.251*** 20.251*** 38.22***

Hansen test 3.546 3.546 3.546 18.97
Obs 360 360 360 360
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)–(4) represent cluster-robust 
standard errors
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The diagnostic tests further validate the reliability of 
the estimates. In the 2SLS estimations, all Wald F-tests 
are highly significant (p < 0.01), indicating strong overall 
model fit. In the SYS-GMM estimation, the AR(1) test 
is significant (p < 0.05), while the AR(2) test is not sig-
nificant (p > 0.1), indicating the absence of second-order 
autocorrelation and satisfying the requirements for SYS-
GMM estimation. Although the Sargan test is significant, 
suggesting potential redundancy in some instruments, 
the Hansen test (p > 0.1) fails to reject the null hypothesis 
of instrument exogeneity, overall supporting the valid-
ity of the selected instruments and the robustness of the 
estimation results.

Robustness tests
To verify the robustness of the research conclusions, 
multiple robustness checks were conducted (see Table 
4). First, the model was extended to include a cubic term 
regression (Column 1). The results indicate that the lin-
ear term is significantly positive, the quadratic term is 
significantly negative, and the cubic term is also signifi-
cantly negative. This finding reveals a more complex non-
linear relationship between green innovation and carbon 
emissions, while confirming the stability of the inverted 
U-shaped pattern. Second, to control for the potential 
effects of policy changes, the sample period was trun-
cated to 2018 (Column 2). The coefficients for industry–
university–research (IUR) collaborative green innovation 
remain significant, indicating that policy adjustments 
do not substantially alter the core conclusions. Third, to 
account for the lagged effects of green patents, all vari-
ables were lagged by one period (Column 3). The results 
show that while the emission reduction effects of green 
innovation exhibit some time lag, the long-term impacts 
remain significant and stable. Lastly, to eliminate the 

influence of outliers, a 1% two-sided winsorization was 
applied to all variables (Column 4), and the regression 
results remained significant with the nonlinear relation-
ship intact.

All robustness checks passed the F-test, and the 
adjusted R2 values remained high, demonstrating the 
strong explanatory power of the model. Overall, regard-
less of the functional form expansion, sample truncation, 
time lag adjustments, or winsorization of extreme values, 
the nonlinearemission reduction effect of IUR collab-
orative green innovation on carbon emissions remains 
consistently robust, further reinforcing the study’s core 
findings.

Extended analysis
Heterogeneity analysis
Using a Generalized Additive Model (GAM), this study 
further investigates the nonlinear effects of Industry–
University–Research (IUR) collaborative green innova-
tion on carbon emissions across four spatial dimensions: 
Nationwide, Eastern, Central, and Western regions. The 
results confirm pronounced nonlinearities in all subsam-
ples, with estimated effective degrees of freedom (EDF) 
consistently above unity (Nationwide: 1.24; Eastern: 1.24; 
Central: 1.19; Western: 1.22) and highly significant p-val-
ues (all p < 0.01; see Fig. 2). These findings indicate that 
the impact of collaborative green innovation on carbon 
emissions deviates markedly from a simple monotonic 
pattern and instead follows complex, region-specific 
trajectories.

At the national level, the partial-effect curve displays 
distinct oscillations with multiple inflection points. Car-
bon emissions initially rise at lower levels of green inno-
vation (around sub lnIUR - GI ≈ 9.3) sequently decline 
to a local trough near ln IUR − GI ≈ 10.1 and rebound 

Table 4  Results of robustness test
Variable (1) (2) (3) (4)

Cubic regression Patent reform Lagged processing Winsorization
lnIUR-GI 0.1043***

(0.040)
0.597***

(0.208)
0.577***

(0.190)
0.508***

(0.182)
(lnIUR-GI)2 −0.0111**

(0.012)
−0.076***

(−0.018)
−0.061***

(0.016)
−0.053***

(0.017)
(lnIUR-GI)3 −0.004**

(0.079)
Control variable Yes Yes Yes Yes
Constant 4.666**

(2.068)
1.64
(1.562)

1.857***

(1.752)
−1.749
(1.785)

Region FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
adj.R2 0.741 0.730 0.694 0.677
F 46.73*** 38.82*** 51.55*** 40.37***

Obs 390 270 360 390
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)–(4) represent cluster-robust 
standard errors
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toward a secondary peak around ln IUR − GI ≈ 10.35 
This dynamic trajectory suggests that the nationwide 
diffusion of green innovation is not immediately emis-
sion-reducing; rather, it undergoes a “short-term escala-
tion–adjustment–stabilization” pathway as technological 
diffusion, industrial upgrading, and resource optimiza-
tion progressively take effect.

The Eastern region exhibits a trajectory similar to the 
national pattern but with attenuated fluctuations. A 
modest peak occurs near lnIUR - GI ≈ 9.21 followed 
by a decline toward a trough around lnIUR - GI ≈ 9.8. 
This smoother curve reflects the region’s advanced inno-
vation base, robust absorptive capacity, and strong policy 
execution, which collectively accelerate the transition 
from innovation-driven emission increases to mature 
emission-reduction effects, yielding a more stable and 
predictable pattern. 

By contrast, the Central region demonstrates pro-
nounced volatility in the marginal effect curve. A 
local minimum is evident near lnIUR - GI ≈ .4 fol-
lowed by a rapid surge to a prominent peak around 
lnIUR - GI ≈ .63 with continued fluctuations at higher 
levels. These oscillations highlight the instability of 
green innovation’s decarbonization effect in the region, 
where evolving industrial restructuring, limited market 
absorption, and incomplete policy incentives jointly con-
tribute to a more complex and less consistent emission 
trajectory. These resultssuggest that the Central region 
requires more time, deeper integration mechanisms, and 
stronger institutional support to achieve stable and sus-
tained emission reductions.

In the Western region, the curve is steep and highly 
erratic, reflecting the region’s structural vulnerabilities. 
Carbon emissions initially drop to a local minimum at 
approximately ln IUR − GI ≈ 7.5, surge sharply to a 
peak near lnIUR - GI ≈ 8.05 and oscillate thereafter. 
This instability underscores the region’s weaker techno-
logical absorption capacity, underdeveloped industrial 
foundation, and relatively lower economic level, which 
together hinder the immediate effectiveness of green 

innovation in reducing emissions. Only as technologi-
cal capabilities accumulate and collaborative networks 
deepen does the potential for sustained decarbonization 
begin to materialize.

Overall, these results reveal distinct regional het-
erogeneity in the nonlinear effects of IUR collabora-
tive green innovation on carbon emissions. The Eastern 
region demonstrates an early and stable decarboniza-
tion response, the Central region shows a volatile and 
transitional dynamic, and the Western region exhibits 
the greatest uncertainty and sensitivity. These findings 
underscore the necessity of region-specific policy frame-
works: strengthening diffusion and scaling mechanisms 
in the East, fostering innovation-market integration and 
policy efficiency in the Central region, and enhancing 
technological absorption, investment, and institutional 
support in the West to ensure that green innovation 
translates into tangible and sustained reductions in car-
bon emissions.

Technological substitution effect: the role and pathway 
of green technology replacing traditional high-carbon 
technology
The technological substitution effect refers to how IUR 
collaborative green innovation facilitates the transition 
from high-pollution industries to low-carbon indus-
tries by reducing the share of high-pollution industries 
and promoting industrial upgrading, ultimately achiev-
ing carbon emission reduction. This study selects the 
proportion of high-pollution industries (lnPHI) and the 
industrial structure upgrading index (lnISU) as key mod-
erating variables to explore the technological substitution 
pathways and their nonlinear characteristics under differ-
ent industrial structures.

The regression results show that IUR collaborative 
green innovation (lnIUR-GI) is significant in all mod-
els (1)-(7), indicating its consistent impact on regional 
carbon emissions (see Table 5). However, its mecha-
nisms and nonlinear characteristics vary across different 
industry structures. In the pooled samples (Columns 1, 

Fig. 2.  Nonlinear effect of IUR collaborative green innovation on carbon emissions
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4, and 7), the quadratic term of IUR collaborative green 
innovation is significantly negative (−0.002, p < 0.05; 
−0.010, p < 0.05; −0.020, p < 0.1), confirming an inverted 
U-shaped relationship with carbon emissions. This sug-
gests that in the early stages, increased R&D investment, 
higher equipment replacement costs, and longer indus-
trial adaptation periods may lead to a temporary increase 
in carbon emissions. However, as collaboration reaches 
a certain scale, the technological substitution effect 
strengthens, driving carbon emissions downward.

Furthermore, the inverted U-shaped pattern varies 
across different industrial structures. In regions with a 
lower share of high-pollution industries (Column 2) and 
regions with higher industrial upgrading levels (Column 
6), the quadratic term is significantly negative (−0.112, 
p < 0.05; −0.010, p < 0.05), indicating a stronger inverted 
U-shaped relationship—higher short-term emission 
growth but greater long-term reduction. In contrast, in 
regions with a higher share of high-pollution industries 
(Column 3) and regions with lower industrial upgrading 
levels (Column 5), the quadratic term is significantly pos-
itive (0.063, p < 0.01; 0.011, p < 0.05), suggesting a weaker 
inverted U-shaped effect or even a U-shaped pattern, 

where short-term emissions decrease, but long-term 
emissions may rebound. These findings indicate that the 
effectiveness of the technological substitution process is 
highly influenced by industrial structure. In regions with 
a high share of high-pollution industries, path depen-
dence and high transition costs may prevent IUR col-
laborative green innovation from achieving significant 
long-term carbon reduction.

Further analysis of the interaction between IUR collab-
orative green innovation and the proportion of high-pol-
lution industries reveals that in Columns (1) and (3), the 
interaction term is significantly negative (−0.047, p < 0.05; 
−0.973, p < 0.01), while the interaction term for the qua-
dratic term is significantly positive (0.007, p < 0.01; 0.119, 
p < 0.01). This indicates that in regions with a high share 
of high-pollution industries, the inverted U-shaped effect 
of IUR collaborative green innovation is weaker and 
may even turn into a U-shaped relationship, where car-
bon emissions decrease in the short term but rebound 
in the long run. This could be due to strong path depen-
dence in traditional high-carbon industries, making 
low-carbon technology substitution more challenging. 
Additionally, insufficient policy incentives and weak 

Table 5  Technology substitution effect
Variable Proportion of high-pollution industries Industrial upgrading Index Comprehen-

sive model
(1)
Full sample

(2)
Low high-pol-
lution industry 
group

(3)
High high-pol-
lution industry 
group

(4)
Full sample

(5)
Low indus-
trial upgrading 
group

(6)
High indus-
trial upgrading 
group

(7)
Full sample

lnIUR-GI 0.082*

(0.049)
1.56***

(0.544)
−0.448***

(0.150)
0.147***

(0.041)
−0.090*

(0.051)
0.127*

(0.069)
0.313***

(0.114)
(lnIUR-GI)2 −0.002**

(0.001)
−0.112**

(0.043)
0.063***

(0.019)
−0.010**

(0.004)
0.011**

(0.005)
−0.010**

(0.004)
−0.020*

(0.011)
lnPHI −0.154

(0.181)
−5.747***

(1.623)
1.908***

(0.640)
−1.030**

(0.468)
lnIUR-GI*lnPHI −0.047**

(0.018)
1.682***

(0.526)
−0.973***

(0.282)
0.256*

(0.151)
(lnIUR-GI)2*lnPHI 0.007***

(0.002)
−0.121***

(0.041)
0.119***

(0.033)
−0.017**

(0.008)
lnISU 0.143**

(0.059)
4.46***

(0.965)
0.021**

(0.009)
−0.389*

(0.229)
lnIUR-GI*lnISU −0.078***

(0.029)
−1.580***

(0.350)
−0.033***

(0.011)
−0.173**

(0.084)
(lnIUR-GI)2*lnISU 0.009*

(0.004)
0.134***

(0.031)
0.006***

(0.001)
0.017**

(0.008)
Control Variable Yes Yes Yes Yes Yes Yes Yes
Constant 2.45***

(0.716)
−2.185
(2.142)

1.816*

(0.951)
2.43***

(0.694)
3.38***

(1.194)
2.27**

(0.938)
1.934***

(0.741)
Region FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
adj.R2 0.972 0.980 0.983 0.971 0.973 0.977 0.976
F 335.38*** 249.58*** 308.27*** 330.02*** 182.64*** 164.66*** 312.44***

Obs 390 195 195 390 195 195 390
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses in columns (1)–(7) represent cluster-robust 
standard errors
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market orientation may suppress the low-carbon trans-
formation effects of IUR collaborative green innovation. 
Furthermore, the high cost of industrial transformation 
could lead to short-term emission reductions in some 
industries, but rising market demand or policy adjust-
ments may eventually cause emissions to rebound.

In contrast, in regions with a lower share of high-pollu-
tion industries (Column 2), the interaction term is signifi-
cantly positive (1.682, p < 0.01), while the interaction term 
for the quadratic term is significantly negative (−0.121, 
p < 0.01). This suggests that in these regions, the inverted 
U-shaped relationship is more pronounced, meaning that 
short-term emissions rise more quickly, but long-term 
emission reductions are greater. This could be attributed 
to greater acceptance of IUR collaborative green innova-
tion, stronger policy support, and higher marketization, 
which facilitate faster adoption of low-carbon technolo-
gies and more effective emission reduction outcomes.

Similarly, the industrial structure upgrading index 
also plays a significant moderating role in the techno-
logical substitution effect. The results from Columns 
(4), (5), and (6) show that the interaction term between 
industrial structure upgrading and IUR collaborative 
green innovation is significantly positive (0.143, p < 0.05; 
4.46, p < 0.01; 0.021, p < 0.05), while the interaction term 
for the quadratic term is significantly negative (−0.078, 
p < 0.01; −1.580, p < 0.01; −0.033, p < 0.01). This suggests 
that industrial structure upgrading enhances the techno-
logical substitution effect, making the inverted U-shaped 
relationship steeper. As industrial upgrading advances, 
short-term emission increases are more pronounced, 
but once a critical level of collaboration is reached, car-
bon emissions decline more rapidly. This result aligns 
with findings in existing literature. For instance, Zhang 
et al. [51] highlighted that during industrial upgrading, 
the expansion of high-end industries increases energy 
demand, leading to greater short-term carbon emis-
sion pressures. Similarly, Cheng et al. [52] demonstrated 
that as industrial structures evolve, the penetration and 
efficiency of green technologies significantly improve, 
enhancing emission reduction effects in the later stages. 
However, compared to these studies, this research 
uncovers the interaction mechanism between industrial 
upgrading and IUR collaborative innovation. It not only 
captures the nonlinear trajectory of green innovation 
alone but also emphasizes how industrial upgrading, as 
a structural moderator, accelerates the process of green 
technology substitution. This integrated analytical frame-
work —“collaborative innovation—structural upgrad-
ing—dynamic evolution of carbon emissions”— enriches 
the theoretical understanding of how green technological 
innovation drives low-carbon transformation.

In summary, the technology substitution effect 
of industry-university-research collaborative green 

innovation is moderated by the proportion of high-pollu-
tion industries and the advancement of industrial struc-
ture, exhibiting distinct nonlinear characteristics, thereby 
validating hypothesis H2. In regions with concentrated 
high-pollution industries, the technological substitu-
tion process may be strongly influenced by path depen-
dence, while insufficient policy incentives and market 
orientation could further hinder low-carbon transition. 
Therefore, governments should enhance green financial 
support and implement mandatory environmental poli-
cies to lower barriers for corporate low-carbon transfor-
mation and improve the penetration rate of low-carbon 
technologies. Concurrently, in areas experiencing rapid 
industrial structure upgrading, the industry-university-
research collaborative green innovation model shouldbe 
optimized to ensure sustained strong emission reduction 
effects during mature phases, preventing diminishing 
marginal returns from collaborations.

Resource optimization allocation effect: how collaboration 
enhances resource efficiency
The resource optimization allocation effect refers to the 
process of optimizing capital, technology, and human 
resource allocation to improve resource utilization effi-
ciency, ultimately reducing carbon emissions. In the 
context of green and low-carbon transformation, effec-
tive resource allocation promotes industrial upgrading, 
enhances technology absorption capacity, and reduces 
energy waste. This study introduces green total factor 
productivity (GTFP) as a mediating variable to measure 
resource utilization efficiency and examine how IUR col-
laborative green innovation facilitates knowledge flow, 
technology diffusion, and resource integration, thereby 
improving regional GTFP and achieving carbon reduc-
tion goals. In this study, the non-radial, non-angular SBM 
(Slack-Based Measure) model is used to measure GTFP. 
During the measurement process of GTFP, relevant input 
and output variables need to be introduced, as detailed in 
Table 6.

The regression results indicate that the impact of 
IUR collaborative green innovation on GTFP follows a 
U-shaped pattern (see Table 7). In the early stages, IUR 
collaborative green innovation negatively affects GTFP 
(−0.213, p < 0.01), suggesting that resource misalloca-
tion, limited enterprise absorption capacity, and high 
industrial adjustment costs may initially lead to a decline 
in GTFP. This phenomenon could stem from the adapta-
tion period required for the introduction and application 
of green technologies, during which enterprises face fac-
tor adjustment costs and technical adaptation challenges, 
preventing an immediate improvement in resource uti-
lization efficiency. However, as collaboration deepens, 
the coefficient of the quadratic term becomes signifi-
cantly positive (0.031, p < 0.01), indicating that enhanced 
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technology absorption capacity and resource integration 
effects gradually emerge, leading to a recovery in GTFP. 
This further confirms the positive role of IUR collabora-
tive green innovation in optimizing resource allocation 
and improving production efficiency.

Further regression analysis shows that GTFP has a sig-
nificant negative impact on carbon emissions (−0.231, 
p < 0.01), demonstrating that improving resource utili-
zation efficiency effectively reduces carbon emissions. 
This is likely because higher GTFP encourages the trans-
formation of traditional high-carbon industries into 
low-carbon industries, enhances energy efficiency, and 
promotes industrial structure optimization, thereby low-
ering carbon emission levels. Additionally, the direct 
impact of IUR collaborative green innovation on carbon 
emissions is positive (0.204, p < 0.05), while its quadratic 
term is significantly negative (−0.018, p < 0.05). This fur-
ther supports the inverted U-shaped relationship, where 
collaboration initially increases emissions, but as coop-
eration deepens, the emission reduction effect gradu-
ally appears and strengthens. Overall, IUR collaborative 
green innovation enhances GTFP, facilitating resource 

optimization allocation, which becomes a crucial mecha-
nism affecting carbon emissions.

To further validate whetherthe resource optimiza-
tion allocation effect serves as a key mechanism through 
which IUR collaborative green innovation impacts car-
bon emissions, this study conducts a Bootstrap mediation 
effect test with 1,000 replications. The results reveal that 
IUR collaborative green innovation indirectly affects car-
bon emissions through GTFP, with the mediation effect 
accounting for 9.57%. This indicates that resource optimi-
zation allocation plays a partial mediating role between 
IUR collaborative green innovation and carbon emis-
sions. However, despite its ability to optimize resource 
allocation, the carbon reduction effect of IUR collab-
orative green innovation remains constrained by factors 
such as enterprise technology absorption capacity, mar-
ket incentive mechanisms, and policy support, thereby 
validating Hypothesis H3. Therefore, relying solely on 
IUR collaborative green innovation may not maximize 
carbon reduction benefits. It is essential to implement 
supporting policies that enhance enterprises’ capacity 
for green technology adoption and resource integration, 
ensuring a more effective low-carbon transformation.

Spatial spillover effect: the diffusion impact of cross-
regional collaboration on emission reduction
Selection and testing of spatial econometric model
Before selecting a spatial econometric model, a series of 
tests are conducted to ensure the rationality of the model 
specification and the robustness of estimation results. 
First, this study examines the spatial correlation of pro-
vincial carbon emissions (see Table 8). The Moran’s I sta-
tistic is positive throughout 2010–2022, with significant 
Z-values (p < 0.01), indicating a significant spatial cluster-
ing effect in carbon emissions. This suggests that carbon 
emission levels in neighboring regions influence each 
other, meaning that regional carbon emissions are not 
independent but exhibit spatial dependence.

Further LM diagnostic evaluations (see Table  9) 
reveal that both LM-lag and Robust LM-lag statistics 

Table 6  GTFP indicator system
Primary 
indicator

Secondary indicator Description Data source

Input Labor Number of employees at the end of each year for each province Provincial Statistical Yearbook
Capital Capital input measured using the perpetual inventory method, with 

2000 as the base year
China Statistical Yearbook

Energy Energy consumption (in 10,000 tons of standard coal) for each province China Energy Statistical 
Yearbook

Expected 
output

GDP Actual GDP for each province, adjusted for 2010 as the base year Provincial Statistical Yearbook

Non-expected 
output

Industrial wastewater COD 
Emissions

COD emissions from industrial wastewater in each province China Environmental Statisti-
cal Yearbook

industrial SO2 emissions SO2 emissions from industry in each province China Environmental Statisti-
cal Yearbook

Table 7  Resource optimization allocation effect
Variable lny lnGTFP lny
lnIUR-GI 0.253***

(0.088)
−0.213***

(0.067)
0.204**

(0.088)
(lnIUR-GI)

2 −0.025***

(−0.008)
0.031***

(0.006)
−0.018**

(0.008)
lnGTFP −0.231***

(0.066)
Control Variable Yes Yes Yes
Constant −8.049***

(0.417)
0.370
(0.319)

−7.963***

(0.411)
Region FE Yes Yes Yes
Year FE Yes Yes Yes
adj.R2 0.751 0.603 0.759
F 143.70*** 74.70*** 132.89***

Obs 390 390 390
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 
respectively. The values in parentheses represent cluster-robust standard errors
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demonstrate pronounced significance (p < 0.01), whereas 
LM-error and Robust LM-error remain statistically neg-
ligible. This compellingly indicates that carbon emissions 
primarily manifest through spatial lag effects rather than 
spatial error propagation, thereby validating the applica-
tion of the Spatial Autoregressive Model (SAR) over the 
Spatial Error Model (SEM). Moreover, the Hausman test 
yields decisive significance (p < 0.01), conclusively estab-
lishing the Fixed Effects (FE) model’s statistical superior-
ity relative to the Random Effects (RE) framework. Such 
findings underscore the existence of inherent, unobserv-
able regional heterogeneity factors-including divergent 
energy structures, environmental governance strategies, 
and green finance mechanisms-which collectively rein-
force the rationale for employing Fixed Effects modeling. 
Simultaneously, both the Wald test and Likelihood Ratio 
(LR) test exhibit robust significance (p < 0.01), confirm-
ing the spatial econometric model’s rigorous specification 
while emphasizing the indispensability of spatial effect 
integration. These findings show the limits of using tra-
ditional OLS estimation, which can lead to biased results. 
This study uses a step-by-step approach to choose the 
Fixed Effects Spatial Autoregressive Model (SAR) to bet-
ter explain the complex spatial links between IUR collab-
orative green innovation and regional carbon emissions.

To capture the spatial autocorrelation effect between 
regions, the inverse distance matrix was chosen as the 
spatial weight matrix. The inverse distance matrix effec-
tively quantifies the mutual influence between geographi-
cally proximate regions, particularly suitable for research 
areas with spatial spillover effects such as technology 
diffusion and green innovation. By weighting the geo-
graphic distance, the inverse distance matrix reflects the 
strong interaction between neighboring regions, aligning 
with the reality of technology spillovers and spatial coop-
eration [28, 53].

The spatial impact of IUR collaborative green innovation on 
carbon emissions
This study uses the Spatial Autoregressive Model (SAR) 
to closely examine how IUR collaborative green innova-
tion affects carbon emissions in different regions over 
time (see Table 10). Model (1) shows a clear positive link 
between IUR collaborative green innovation (lnIUR-GI) 
and carbon emissions (0.112, p < 0.01). This means that 
in the early stages, more collaboration can lead to higher 
emissions. This may happen because of higher R&D 
costs, the pressure of changing industrial structures, and 
slow use of green technologies in the market. This short-
term increase reflects common problems seen during 
green transitions, where new sustainable technologies 

Table 8  Global correlation of carbon emissions in chinese 
provinces
year Moran’s I Z P-value
2010 0.1634 5.2363 0.0000
2011 0.1678 5.3313 0.0000
2012 0.1700 5.3907 0.0000
2013 0.1799 5.6687 0.0000
2014 0.1835 5.7554 0.0000
2015 0.1872 5.8681 0.0000
2016 0.1920 6.0061 0.0000
2017 0.1980 6.2003 0.0000
2018 0.1943 6.0462 0.0000
2019 0.1943 6.0146 0.0000
2020 0.1908 5.8804 0.0000
2021 0.2024 6.2385 0.0000
2022 0.2054 6.3153 0.0000

Table 9  LM, hausman, wald, and LR statistical tests
Test Method Statistic/chi2 p-value/Prob > chi2
LM-error 0.703 0.402
Robust LM- error 0.393 0.531
LM- lag 9.272 0.002
Robust LM- lag 8.962 0.003
Hausman 31.81 0.000
Wald- error 36.19 0.000
Wald—lag 37.84 0.000
LR- error 35.18 0.000
LR- lag 36.42 0.000

Table 10  Regression results of spatial lag model
Variable (1)

lny
(2)
lny

Main
L.lny 0.757***

(0.030)
lnIUR-GI 0.112***

(0.035)
−0.044*

(0.025)
(lnIUR-GI)

2 −0.003
(0.004)

0.008**

(0.003)
Wx
L.lny −20.61***

(6.026)
lnIUR-GI 0.294***

(0.066)
3.339**

(1.299)
(lnIUR-GI)

2 −0.0224***

(0.007)
−0.222***

(0.070)
Control variable Yes Yes
Region FE Yes Yes
Year FE Yes Yes
Spatial rho 0.0739***

(0.009)
3.546***

(0.869)
Variance sigma2_e 0.0132***

(0.001)
0.00450***

(0.001)
r2 0.373 0.845
Obs 390 360
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 
respectively. The values in parentheses in columns (1)–(2) represent cluster-
robust standard errors
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need a lot of energy and adjustments before they start 
helping the environment.

In the dynamic spatial lag regression (Model 2), adding 
time lag effects shows a clear change. The coefficient for 
IUR-GI goes from positive to negative (−0.044, p < 0.1). 
At the same time, the squared term (lnIUR-GI2) stays 
strongly positive (0.008, p < 0.05). This nonlinear dynamic 
unveils a U-shaped trajectory in how IUR collaborative 
green innovation influences carbon emissions. During 
early-stage implementation, such innovation drives sub-
stantial low-carbon technology adoption and emission 
reductions, yet as collaborations intensify, diminishing 
returns emerge. Potential drivers of this phenomenon 
include technological marginal utility decline, heteroge-
neous enterprise absorption capacities, uneven policy 
implementation, and geographically divergent diffusion 
rates of green innovation.

Notably, Model (2)’s spatial lag variable (L.ly) exhibits 
pronounced temporal persistence (0.757, p < 0.01), dem-
onstrating carbon emissions’ self-reinforcing temporal 
inertia—prior-period emissions exert enduring influence 
on current levels. This empirical validation of carbon 
emission path dependence carries critical policy implica-
tions. The findings underscore the necessity for dynamic, 
forward-looking regulatory frameworks that account for 
intertemporal carbon lock-in effects. Strategic optimiza-
tion of innovation incentive mechanisms emerges as piv-
otal for sustaining the decarbonization potential of IUR 
collaborations across their developmental lifecycle.

The spatial spillover effects of IUR collaborative green 
innovation stand out prominently, with Wx.lnIUR-GI 
demonstrating robust positive significance across both 
models (0.294, p < 0.01; 3.339, p < 0.05). This compel-
lingly demonstrates that neighboring regions’ IUR-driven 
green innovation exerts a tangible dampening effect on 
local carbon emissions, vividly illustrating the vigorous 
cross-regional diffusion mechanism of green technolo-
gies. Crucially, the data reveals that collaborative green 
innovation achievements transcendgeographical bound-
aries, amplifying the radiating benefits of emission miti-
gation. Moreover, Wx.lnIUR-GI2 manifests a striking 
negative coefficient (−0.0224, p < 0.01; −0.222, p < 0.01), 
signaling that advancing IUR collaboration intensifies its 
transregional decarbonization impact—a testament to 
the snowballing prominence of technology sharing and 

demonstration effects that propel more extensive decar-
bonization initiatives. The significantly positive spatial 
autocorrelation coefficient (rho) further validates carbon 
emissions’ inherent interdependence across territories, 
rendering isolated regional efforts insufficient to meet 
overarching emission reduction targets. These com-
pelling findings robustly validate Hypothesis H4. Such 
groundbreaking insights cry out for paradigm-shattering 
policy frameworks: low-carbon strategies must impera-
tively prioritize cross-jurisdictional symbiosis to combat 
insidious emission displacement while supercharging 
the dissemination of IUR innovation. Ultimately, only 
through forging unshakable regional coalitions and har-
nessing synergistic knowledge spillovers can collabora-
tive green innovation truly unleash its transformative 
potential to orchestrate large-scale, sustainable carbon 
neutrality transitions.

Decomposing spatial effects: short-term dynamics and long-
term evolution
The decomposition of spatial effects systematically 
reveals the spatiotemporal impact mechanisms of indus-
try-university-research (IUR) collaborative green innova-
tion on carbon emissions. By disaggregating the impact 
into direct effects, indirect effects (spatial spillover 
effects), and total effects, this study precisely captures the 
dual-dimensional differences in the spatial transmission 
pathways and dynamic evolution patterns of IUR collab-
orative green innovation (see Table 11).

(1)	Short-Term Effects: Direct Dominance.

Empirical results demonstrate that the direct effect of 
IUR-GI (lnIUR-GI) is significantly negative (−0.0468, 
p < 0.05), confirming its immediate effectiveness in curb-
ing local carbon emissions. Notably, the quadratic term 
coefficient (lnIUR-GI2) exhibits a significant positive 
value (0.0079, p < 0.01), revealing a U-shaped dynamic 
characteristic of short-term emission reduction effects—
where emission reduction efficiency displays marginal 
diminishing returns after innovation levels surpass a 
critical threshold. In spatial spillover dimensions, the 
indirect effect of lnIUR-GI shows negative but statisti-
cally insignificant values, suggesting pronounced spa-
tial time-lag effects in green technology diffusion. The 

Table 11  Decomposition of spatial effects
Variable Short-term effect Long-term effect

Direct Indirect Total Direct Indirect Total
lnIUR-GI −0.0468**

(0.021)
−0.1210
(0.095)

−0.1678*

(0.097)
0.0184***

(0.006)
0.0475
(0.037)

0.0659**

(0.026)
(lnIUR-GI)

2 0.0079***

(0.003)
0.0086
(0.008)

0.0166*

(0.009)
−0.0031***

(0.001)
−0.0034
(0.003)

−0.0065*

(0.004)
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The values in parentheses represent cluster-robust standard errors
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non-significance of its quadratic term further corrobo-
rates insufficient development of cross-regional collabor-
ative emission reduction mechanisms in the short term. 
The short-term total effect reaches −0.1678 (significant 
at 10% level), while its quadratic term remains positive 
(0.0166, p < 0.1), reaffirming the U-shaped impact pattern 
of green innovation characterized by a "rapid effective-
ness-efficacy attenuation" trajectory.

(2)	Long-Term Effects: Paradoxical Reversals.

Under long-term perspective, the direct effect of IUR-GI 
undergoes significant reversal (0.0184, p < 0.01), reflect-
ing energy rebound effects and technological conver-
sion lags during industrial upgrading. However, the 
significantly negative moderating effect of the quadratic 
term (−0.0031, p < 0.01) delineates an emission reduc-
tion inflection point after cumulative innovation sur-
passes critical thresholds, forming a typical inverted 
U-shaped evolutionary trajectory. Spatial spillover 
analysis shows non-significant positive indirect effects 
(0.0475) combined with the inverted U-shaped trend 
of quadratic terms (−0.0034), collectively unveiling the 
long-term transition from "competition effects" to "syner-
gistic effects" in technology diffusion. The statistical sig-
nificance of total effect (0.0659, p < 0.05) and its quadratic 
term (−0.0065, p < 0.1) systematically constructs a three-
phase development model of IUR-GI: "initial adjustment-
costs—mid-term equilibrium—long-term optimization".

This study reveals that the carbon reduction effects 
of IUR-GI exhibit significant spatiotemporal regulation 
characteristics. In the short term, the mechanism follows 
a “localized rapid response–spatial spillover hysteresis” 
pattern, while in the long term, the evolution demon-
strates a governance trajectory of “global optimization–
spatial synergy.” This dynamic shift from a U-shaped to 
an inverted U-shaped pattern aligns with the Environ-
mental Kuznets Curve framework, highlighting notable 
“temporal window effects” and “spatial threshold effects.” 
Although existing studies emphasize the spatial spillovers 
of green innovation and the importance of regional col-
laboration, they largely analyze spatial and temporal 
effects in isolation. In contrast, this study integrates the 
temporal dynamics and spatial heterogeneity of IUR-
GI into a unified analytical framework, illustrating that 
localized, policy-driven mechanisms dominate in the 
short term, whereas cross-regional technological sym-
biosis and collaborative innovation ecosystems are essen-
tial for achieving sustained long-term carbon neutrality.

Conclusion and recommendations
Conclusion
This study explores how IUR collaborative green inno-
vation affects regional carbon emissions in a non-linear 

way. The findings show that IUR collaborative green 
innovation follows a striking inverted U-shaped curve in 
influencing carbon emissions. In the early stages, higher 
R&D costs and the need to adjust industries may cause 
emissions to go up. As cooperation becomes stronger, 
shared technology and better industry systems help 
lower emissions.

Furthermore, the effect of IUR collaborative green 
innovation on cutting emissions is very different across 
regions. Eastern regions show steady results with strong 
carbon reduction, while Central regions show more 
changes over time, reflecting transitional industrial 
upgrading phases that make emission control unstable. 
Western regions face the highest level of uncertainty, 
where IUR collaboration struggles to achieve stable 
short-term reductions due to weak infrastructure and 
unstable markets.

The technological substitution effect of IUR collabora-
tion emerges as an important factor, curbing high-pol-
lution industry dominance and accelerating industrial 
modernization to achieve emission cuts. But in areas 
with many polluting industries and strong past hab-
its, new technologies are harder to use. This can cause 
short-term increases in emissions. Simultaneously, IUR 
collaborative green innovation improves green total fac-
tor productivity (GTFP) to optimize resource allocation, 
thereby reducing carbon emissions to a certain extent, 
with a mediation effect of 9.57%. However, this emission 
reduction effect is phased and nonlinear.

The study also finds that carbon emissions’ robust 
spatial interdependence. IUR collaboration not only 
reshapes local emission profiles but also propagates spill-
over effects across neighboring regions, underscoring 
the vital importance of cross-regional coordination in 
green innovation networks. In addition, IUR collabora-
tive green innovation shows clear spatiotemporal differ-
ences in carbon reduction. In the short term, it works 
through local effects. In the long term, it follows an 
inverted U-shaped path with emission rebound first, then 
steady decline, and shifts from competition to coopera-
tion across regions.

Recommendations

1. Establish a Joint Innovation Platform

Rely on leading enterprises, universities, and research 
institutes to build industrial joint laboratories or collab-
orative innovation centers, focusing on key areas such 
as green process optimization, energy-saving equipment 
upgrades, and carbon capture, utilization, and storage 
(CCUS). Form a closed-loop mechanism of "enterprise 
demand–research collaboration–pilot testing–technol-
ogy transfer." Through resource sharing and dynamic 
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management, accelerate the transformation and dem-
onstration of R&D outcomes, and combine green funds, 
financial instruments, and policy support to match fund-
ing with industrial demand, thereby expediting the diffu-
sion and market application of green technologies.

2. Improve Industry–Academia–Research 
Collaboration Mechanisms and Implement a 
"Researchers in Enterprises" Program

Strengthen mechanisms for collaboration among indus-
try, universities, and research institutes while system-
atically promoting the "Researchers in Enterprises" 
initiative. Use digital platforms to achieve precise 
matching between research outcomes and enterprise 
needs; adopt multiple cooperation models such as sec-
ondments, short-term placements, and joint research 
to integrate researchers into corporate R&D and pro-
duction processes, thereby aligning technical solutions 
with industrial practice. At the same time, refine incen-
tive mechanisms, such as revenue sharing, promotion 
bonuses, and project priority support, to encourage 
researcher participation. Establish a results transfer ser-
vice center providing integrated technical evaluation, 
IP protection, and financing support, and adopt perfor-
mance indicators like technology transfer rate, economic 
returns, and carbon reduction outcomes to drive efficient 
commercialization.

3. Strengthen Green Financial Support

Build a multi-tiered and targeted green financial support 
system, integrating policy guidance, market incentives, 
and innovation platforms. In central regions, leverage 
the experience of the Yangtze River Delta Green Finance 
Pilot Zone by introducing tools such as green bills and 
green supply chain financing to support collaborative 
innovation projects, expediting the transformation of 
outcomes in energy storage retrofits, waste heat recovery, 
and green industrial upgrades. In western regions, adopt 
the "Green Finance + Technology Transfer" model of the 
Guangdong–Hong Kong–Macao Greater Bay Area, using 
financial innovations to channel capital and technol-
ogy from the east to accelerate project implementation. 
At the financial instrument level, promote green patent 
pledge financing and sustainability-linked loans (SLL), 
and issue green or special-purpose bonds to lower the 
financing costs for enterprises. Leverage regionalgreen 
technology transfer centers and joint engineering cen-
ters to integrate research, industry, and capital resources, 
accelerating technology diffusion. Establish green project 
databases and dynamic performance evaluation mecha-
nisms to ensure accurate and efficient capital allocation 

and promote the wide deployment and sustainable diffu-
sion of innovation outcomes.

4. Accelerate the Transition of High-Pollution 
Industries

Develop differentiated roadmaps for industrial trans-
formation, setting phased carbon intensity targets and 
annual reduction goals for high-emission industries such 
as steel, chemicals, cement, and electricity. Dynamically 
adjust energy efficiency benchmarks and emission caps 
based on technological advancements and performance, 
driving continuous upgrades in processes and equipment. 
Simultaneously, intensify R&D and promotion of green 
technologies by establishing "green process improvement 
demonstration projects," prioritizing areas such as blast 
furnace gas recycling, low-carbon cement alternatives, 
CCUS technologies, and intelligent energy management 
systems. Build industry-wide green technology databases 
and sharing platforms to publish assessments of tech-
nological maturity, applicability, and cost-effectiveness, 
helping enterprises choose optimal solutions and thereby 
enhancing transition efficiency and accelerating the shift 
toward green and low-carbon industrial structures.

Limitations
This study has several limitations. First, despite using 
provincial panel data from 2010 to 2022, the analysis may 
not fully capture micro-level heterogeneity at the city 
or enterprise level, which could provide deeper insights 
into collaboration dynamics. Second, while the nonlin-
ear models and spatial econometric techniques enhance 
robustness, potential omitted variables and measure-
ment errors-especially in proxies for collaborative green 
innovation and carbon emissions-may bias the results. 
Third, the study focuses on provincial-level interactions, 
and cross-border innovation linkages or international 
spillover effects are not examined. Future research could 
incorporate finer-grained datasets and extended model-
ing approaches to address these gaps and strengthen the 
generalizability of the findings.
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