nature communications

Article

https://doi.org/10.1038/s41467-025-65600-7

Shifting dominant periods in extreme
climate impacts under global warming

Received: 6 January 2025

Accepted: 20 October 2025

Published online: 05 November 2025

M Check for updates

Karim Zantout® "2/, Juraj Balkovic ® 3, Maik Billing, Christian Folberth®3,
Simon N. Gosling ®4, Tobias Hank ®®, Stijn Hantson®, Toshichika lizumi®?,
Akihiko Ito ®2, Jonas Jagermeyr ® 29, Atul K. Jain®", Nikolay Khabarov® ™,
Sian Kou-Giesbrecht®3, Fang Li® %, Mengxue Li® ™", Tzu-Shun Lin®"8,
Wenfeng Liu®™'®", Christoph Miiller ®", Masashi Okada®°,

Sebastian Ostberg ® "', Kedar Otta ® ', Sam Rabin'®2°, Christopher P. O. Reyer ®",
Clemens Scheer ®2°, Julia M. Schneider ® %, Florian Zabel ®?', Katja Frieler®" &
Jacob Schewe®'

Spatio-temporal patterns of extreme climate events have been extensively
studied, yet two questions remain underexplored: Do such events occur reg-
ularly, and how do regularity patterns change under global warming? We
address these questions by investigating dominant periods in crop failure,
heatwave, and wildfire data. Here, we show that under pre-industrial condi-
tions dominant periods emerge in 28% of cropland exposed to crop failure and
10% of wildfire-affected areas, likely related to climatic oscillations such as the
El Niflo-Southern Oscillation, while heatwaves occur irregularly. The number of
dominant periods increases by 2-13% during the transition from the pre-
industrial era to the anthropocene. In the anthropocene, the occurrence of
extreme events shifts towards monotonic growth, replacing previous natural
regularity patterns. Linearly de-trended projections reveal an additional shift

towards smaller dominant periods due to climate change. These shifts in
regularity are crucial for adaptation planning, and our method offers an
additional approach for studying extreme events.

Natural disasters from extreme climate events caused 2 million deaths,
and 3.6 trillion US$ of economic loss between 1970 and 2019". While
risk reduction and early warning have significantly reduced fatalities
over time, economic losses have increased by a factor of seven during
this time period. Moreover, climate-related natural disasters caused 26
million new internal displacements in 2023% These observations are
connected to increased extreme climate events due to anthropogenic
forcing and are expected to further aggravate under continued
warming®”’. While there is large agreement on the increase in intensity
and frequency of extreme climate conditions, only very few studies
have investigated regularity of extreme event occurrence®™. Yet, a
better understanding of the temporal dynamics of extreme climate
impacts is crucial for developing adaptation plans as regularity

ultimately relates to the predictability of extreme climate events. A
large class of time series approaches has been deployed to determine
the characteristics of extreme events', including extreme value
theory™ to determine return periods, spectral analysis'>'® to extract
periodic behavior, and stochastic or machine learning models”'® to
understand underlying processes and make predictions. Within noisy
extreme event time series, we define temporal regularity as variability
that is essentially described by a single dominant period. To this end,
classic Fourier analysis in combination with statistical tools allows us to
determine whether a dominant period exists in noisy extreme event
time series (see details in Section “Methods”).

Here, we consider three types of extreme climate events, namely
crop failures, heatwaves, and wildfires. While the definition of
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heatwaves only depends on temperature, crop failures and wildfires
are derived from impact models that combine the temporal evolution
of climatic variables with soil and vegetation characteristics. Conse-
quently, heatwaves correspond to a meteorological hazard whereas
crop failures and wildfires are impacts. The inclusion of both allows us
to investigate direct climate change effects (heatwaves) and the
interplay with impact related dynamics (crop failures and wildfires).
Wildfire studies have identified distinct fire domains that are con-
nected to regrowth dynamics” and correlations between wildfires and
the EI Nifio-Southern Oscillation (ENSO)*°?. For crop yield, only effects
from large-scale climate oscillations on crop yield variability have been
studied”*?, such as ENSO, the Indian Ocean Dipole (I0D), and the
North Atlantic Oscillation (NAO). However, it is unclear whether such
regularities of crop yield also translate into similar patterns of crop
failures. These studies on crop impacts and wildfire are based on his-
torical observations and it remains unclear how these temporal fea-
tures change under global warming. Only one recent study investigates
the relationship between ENSO and crop impacts for future
scenarios. In the case of heatwaves, climatic oscillations have been
shown to be strongly linked to the emergence of extreme heat” .
Consequently, there is a strong relationship between climate oscilla-
tions and heatwave variability. In this study, however, we investigate
whether extreme event variability can be described by a single domi-
nant period and how this period evolves under climate change. In
principle, the existence and value of the dominant period depends on
the interplay of different climate modes and their interference with
impact-type specific characteristics of the extreme event, e.g. land-use
pattern, crop type and vegetation dynamics.

Our study is based on the latest climate model projections to drive
an ensemble of climate impact models from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP). ISIMIP assembles harmonized
inputs and provides consistent modeling protocols for a multi-model
climate impact framework®. We use global gridded time series data
from ISIMIP phase 3b to calculate crop failure, heatwave and wildfire
time series from 1850 to 2100 for different scenarios. Note that also
hydrological models take part in ISIMIP which would allow to define
hydrological extreme events but due to the intricacies of the related
model setups we restrict ourselves to agricultural and vegetation
models and use heatwaves as a direct GCM derived event. Conse-
quently, heatwaves are restricted to the hazard component as the full
impact modeling, e.g. heat-realted mortality, within ISIMIP is ongoing
work. The extreme events are defined through percentiles of the
respective pre-industrial extreme event indicator distribution (see
Section “Methods” for details). The combination of climate and impact
models allows us to investigate changes in dominant periods not only
due to changes in the climate indicators but also their effects
within impact models. Crop failure, heatwave, and wildfire are
determined not only by the hazard itself but also by direct human
influences affecting exposure and vulnerability which depend on
socio-economic factors, e.g., resource scarcity, agricultural and forest
management>. Such factors are difficult to disentangle and project
into the future®. To investigate regularity patterns that exclusively
arise from natural processes such as vegetation growth dynamics as
well as temperature and precipitation variability, we here keep direct
human influences such as land use changes and land management
constant at 2015 conditions.

The dominant period is defined to be equal to the strongest
periodic signal in the time series accounting for noise and its relation
to other periodic signals in the time series (see Section “Methods” for
more details). Consequently, the dominant period is only defined if the
time series is sufficiently well described by this single periodic signal.
This approach combines Fourier analysis with statistical tools and is
motivated by the large size of the spatio-temporal data set within our
multi-model setup, which calls for a simple characterization of reg-
ularity. For example, the detection of a dominant period of 2 years

indicates the prevalence of 2 years recurrence time in extreme event
exposure. Both time series (1,0,1,0,1,0,1,0)and (1,1,0,0,0,1, 0, 1)
have average recurrence time 8/4 = 2 since we observe 4 events (1:
event, 0: no event) in 8 time steps. On the other hand, the dominant
period is 2 in the first (periodic) case and undefined in the second
(irregular) case. The first case exhibits perfect periodicity which allows
for more precise disaster management while the irregularity of the
second case signifies another challenge in terms of risk expectation.
This knowledge is relevant for insurances, disaster preparedness and
response planning agencies, etc. In addition, regularity of extreme
climate events may also help to identify critical thresholds for the
recovery of affected systems, e.g. when extreme climate impact fre-
quencies are larger than typical recovery times of ecosystems***°. For
example, in the case of wildfires, tree regeneration depends on the
time period between severe fires and exhibits critical thresholds**%,
Consequently, the recovery risks for wildfires are smaller if wildfires
exhibit regularity with a dominant period above the critical threshold.
Note that dominant periods can be used in addition to average
recurrence times to supply additional information on the regularity of
time series.

Here, we show that dominant periods exist under pre-industrial
climate conditions in 28% of cropland exposed to crop failure, 10% of
grid cells exposed to extreme wildfire, and less than 1% in heatwave
exposed grid cells. The observed dominant periods are between 7 and
13 years, likely related to climatic oscillations such as ENSO. During a
transition phase 1950-1999 the number of dominant periods increases
by 2%, 11%, and 13% for crop failure, heatwaves, and wildfires, respec-
tively. This increase is related to higher event probabilities due to
global warming. At the end of the 2Ist century, the extreme events
exhibit non-linear monotonic growth which replaces previously
observed regularity patterns. By removing the linear trend in the time
series we are able to extract an additional effect from the strong
warming, namely a general shift towards smaller dominant periods.

Results

Regularity under pre-industrial climate

The pre-industrial control (picontrol) setup within the ISIMIP
framework*® simulates stable pre-industrial climate conditions from
1850 to 2100 and serves as a reference for the future SSP scenarios (see
Section “Methods”).

The results are qualitatively independent of parameter choices for
determining the dominant period while the multi-model, large time-
scale setup allows for stable aggregated results (see Supplementary
Discussion Sections 1.1and 1.2). Additionally, we find that the dominant
periods derived from the climate model-based impact simulations
(ISIMIP 3b) for the historical period are consistent with those derived
from impact models simulations forced by observational climate from
ISIMIP3a* (see Supplementary Discussion Section 1.3). Therefore, we
conclude that the climate models provide robust data for our sub-
sequent analyses. Note that the presented results are medians over all
climate impact model combinations and time windows that detect a
dominant period. This approach is founded in technical limitations to
detect dominant periods, e.g. spectral leakage, and different sensitiv-
ities of climate impact models to climate modes (see Section “Result
aggregation”).

As crop failure is defined with respect to the 2.5th percentile yield
in the picontrol scenario, we can expect an average return period of 40
years for each crop type, maize, wheat, rice and soybean, and both
irrigated and non-irrigated cropland separately which can assemble
into higher frequencies depending on land use and the crop failure
timings. For example, if all crop types fail in close-by years we can
expect large dominant periods for the cropland-weighted exposure
but if all crop types have equal land use share and fail equally dis-
tributed in time we can expect dominant periods down to 40/(4-2) =5
years accounting for all four crops and both rainfed and irrigated
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conditions. Calculating dominant periods for each crop type sepa-
rately leads to the same dominant periods but with a different count
and spatial distribution (see Supplementary Fig. 7).

We find evidence for regularity in the occurrence of crop failures
in 28% of all affected cropland while 72% of the affected cropland show
no regularity which corresponds to irregularity in 87% of all affected
grid cells (gray color in Fig. 1a). The locations of regularity are in
agreement with research linking crop yield variability to climate
variability’***. For example, the large cluster south of the Amazon
coincides well with regions, where soy and maize have been shown to
be significantly impacted by ENSO* and similarly for Eastern Africa,
where wheat and maize yield variances are related to ENSO and the
Indian Ocean Dipole (I10D)>.

The calculated dominant periods are between 10 and 13 years
(olive color) for large parts of agricultural areas, with periods of 7-10
years (ocher) also prevalent. A likely explanation for the dominant
periods are influences from ENSO, 10D, and North Atlantic Oscillation
(NAO)*%, Note that NOA exhibits no clear low-frequency regularities
but decadal variations** that may modulate dominant periods in the
observed ranges. Similarly, IOD exhibits strong high-frequency mod-
ulations that cannot explain the observed dominant periods but IOD is
correlated with ENSO**¢ and may therefore influence the observed
dominant periods. On the other hand, ENSO shows oscillations in the
range of 2-8 years*’ and in addition to NOA and 10D is known to affect
regional climate, and thereby also crops, across the globe? %, Impacts
on crops differ by crop type, region, and climate oscillation phase; e.g.,
some crops in some regions may be positively affected by a La Nifia
event and negatively affected or unaffected by an El Nifio event,
whereas for other crops and regions this may be different®®. The
observed periods are related to the aggregated crop failure resulting in
an overlap of different frequencies, phases, amplitudes and land use
patterns that add up to the calculated dominant period. Correlation
analysis indeed shows near-zero correlation between aggregated crop
failure affected area and the Southern Oscillation Index while crop
specific analysis reveals non-zero model-median correlation in the case
of maize, rice, and wheat (see Supplementary Figs. 8a and 9). There-
fore, dominant periods of 7-13 years, i.e., longer than the typical per-
iod of ENSO, arise due to the interplay of different stochastic climate
oscillations and sensitivities of the different crops contributing to the
overall yield calculated for the grid cell. Moreover, other climate
modes that exhibit decadal variation such as the Pacific Decadal
Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) have
been shown to regionally affect crop yields*** and therefore may
locally influence dominant periods. In addition, the underlying strict
definition of crop failure has an influence on the calculated dominant
period. The 2.5th percentile as reference value for a drop in crop yield
to be extreme results in few event occurrences under mild climate
fluctuations. A test with randomly sampled data confirms that these
results are no methodological artifacts (see Supplementary Discussion
Section 4).

Heatwaves are directly calculated from the climate model outputs
based on the 97.5th percentile threshold for the daily Heat Wave
Magnitude Index (HWMId). We therefore expect more immediate
effects from climate variability on heatwaves and therefore fewer
occurrences of dominant periods as fluctuations are not mediated
through vegetation or soil buffers like for crop failure and wildfire. We
find that 99% of all affected areas exhibit no regularity (see Fig. 1b).
Based on our extreme event definitions, heatwaves can be expected to
occur approximately every 1/2.5% = 40 years which strongly limits the
occurrence of dominant periods in the range 1-25 years. Exposure to
heatwaves and therefore dominant periods appear with typical values
for dominant periods between 7 and 13 years appearing in close to 1%
of all affected areas. These rare occurences of regularity are consistent
with influences of natural climate oscillations driving climate regularity
on global scale. For example, we find a correlation coefficient of 0.37

between global heatwave affected area and the Southern Oscillation
Index (see Supplementary Fig. 8b).

Wildfire dynamics involve several time scales related to climate
oscillations and different vegetation growth dynamics®*°. We define
extreme wildfire through a threshold on the annual burnt area given by
the 97.5th percentile of the pre-industrial distribution (see Section
“Methods”). We observe more irregularity in extreme wildfires than
regularity with 90% of all impacted grid cells exhibiting no dominant
periods. We observe dominant periods in the range of 4-13 years,
similar to the ones for crop failures and heatwaves. These occurrences
of dominant periods appear in all world regions in agreement with
previous studies showing an influence of climate modes on
wildfires”**. The largest cluster is observed in South America where
previous studies detected that El Nifio 2015/16 led to the largest fire
response®. The correlation coefficient between global extreme wild-
fire affected area and the Southern Oscillation Index is 0.22 (see Sup-
plementary Fig. 8c) which is smaller than the respective value for
heatwaves and consistent with wildfire dynamics being dependent not
only on climatic factors but also on the biome types”. Our definition of
extreme wildfire does not resolve the vegetation regrowth dynamics.
To extract the influence of biome types and regrowth dynamics we
applied a different classification of wildfires based on area thresholds
in Supplementary Discussion Section 5 and find dominant periods that
are consistent with observed wildfire dynamics.

Climate change impact on regularity

The total area affected by extreme events in a moving 50 years window
(see Eq. (3)) calculated for historical and future SSP5-8.5 simulations
shows mostly constant total affected area up to the year 1950 from
which point onward the area increases (see Fig. 2a-c). The stability of
climatic pre-industrial conditions results in low variance of total
affected area for all three event categories (see Fig. 2d-f).

For this reason we can describe the time window 1950-2000 as
the transition period between the pre-industrial regime and the
warming future while the period 2040-2069 will serve as future
reference frame. This transition period is not observed in the respec-
tive affected area under pre-industrial climate conditions (see
Fig. 2d-f). Note that this classification is only valid because we keep
socio-economic conditions fixed while, for example, observed wild-
fires have drastically declined due to human activity in recent
decades™. A more detailed picture of affected area counts for all grid
cells is presented in Supplementary Discussion Section 6. We also
present the results for the SSP1-2.6 and SSP3-7.0 scenarios in the
Supplementary Discussion Section 7. For all event categories we
observe qualitatively consistent results with the main difference being
the weaker warming effect in SSP1-2.6 and SSP3-7.0 leading to smaller
effects compared to SSP5-8.5.

Note that changes in median dominant periods may stem from a
change in the set of climate impact models detecting a dominant
period (see Supplementary Discussion Section 8). This change in the
set of dominant period detecting models is due to different sensitiv-
ities of climate impact models to climate modes (see Section “Result
aggregation”) and challenges to detect regularity in noisy data within a
single time window (see Supplementary Discussion Section 1.1).

For crop failure, the share of affected cropland without dominant
period is 1.4% smaller for the transition period 1950-1999 than
under pre-industrial conditions which corresponds to a decrease in
affected grid area by 1.3% (inset in Fig. 3a). This increase in dominant
periods appears at lowest dominant periods and at the cost of the
previously strong dominant period signal at 10-13 years, where the
time series patterns in 1950-1975 are not anymore congruent with the
trend in 1975-2000 and the share within the dominant periods drops
from 8.3% to 5.6%. This signals a shift through transitioning from
previously stable pre-industrial climate conditions to a drastically
warming world which is also visible in the reduced number of models
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Fig. 1| Pre-industrial dominant periods. Median dominant period for a crop dominant period (irregularity) while existing dominant periods are grouped in
failure, b heatwave, and c wildfire for picontrol aggregated over all time windows  three-year regularity intervals ranging from 1-4 years (pink) to 22-25 years (blue).
1850-1899,1900-1949, ..., 2050-2099 and climate-impact models. The white color  The inset shows the distribution of the dominant period counts.

signifies no extreme climate impact occurrence and gray color signifies no
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every tenth bar for visibility. Note that all events occur on different scales.

that detect regularity (see discussion in Supplementary Discussion
Section 8).

In addition, we observe an emergence of largest dominant periods
between 22 and 25 years sparsely distributed in many world regions,
e.g., South East Asia. The changing climate conditions that lead to a
significant monotonic trend in the impact time series may result in
22-25 years dominant period (compare Fig. 7c). Within the transition
phase we also identify shifts from previous regularity patterns towards
highest dominant frequencies, namely an increase of 1-7 years domi-
nant period shares in affected areas from 4% to 6%. These high fre-
quency patterns are sparsely distributed and occasionally form small
clusters in some regions, e.g., North America and South-East Asia. We
attribute the transition towards smaller dominant periods at the cost
of larger dominant periods under picontrol to the climate forcing
trend (compare Fig. 2a), where irregularity can arise from strong cli-
mate forcing trends that interfere with quasi-periodic climate varia-
bility. The increase in higher frequencies may be related to stronger
climate oscillations under strong global warming® which would shift
the spectrum further towards the 2-7 years range for the prevailing
ENSO contribution on crop yields®.

This transition becomes more evident in 2040-2069 (Fig. 3b)
where most world regions show only large dominant periods or no
regularity. Note that we are considering a smaller time window at the
end of the century to avoid the strong monotonic warming trend in
extreme events which mainly determines the results in 2050-2099
(see Supplementary Discussion 9). The largest detectable dominant
period in the time window 2040-2069 is 15 years but the largest
dominant periods of 22-25 years are observed when the time window
2050-2099 is considered (see Supplementary Fig. 29a). This obser-
vation supports our interpretation of a transitioning phase where
dominant periods change due to a shift from stable climatic conditions
towards a new era in the anthropocene. Fig. 2a shows anincrease in the
range of total affected area from 1950 on. This general climate forcing
trend supersedes possible climate regularity patterns that are smaller
in magnitude and we therefore observe either no regularity or the
global warming trend itself.

In order to understand whether pre-existing regularities persist
underneath the global warming trend, we perform a linear detrending
on the time correlation function (see Eq. (1)) and calculate dominant

periods on this new time series. Linear detrending consists of an
ordinary least squares regression for each univariate correlation
function in each time window (see Eq. (1)) and subtracting the slope
component from the time correlation function. While the trend in
Fig. 2a is superlinear we still adhere to linear detrending as higher
order detrending can remove periodicity signals when trend functions
are nonlinear. The corresponding median dominant periods for
2040-2069 are shown in Fig. 3c. Removing the trend in the correlation
function leads to a relative increase in irregularity and to a relative
decline in largest dominant periods, which is consistent with the
assumption that large dominant periods result from the global
warming trend that can be mostly absorbed through detrending.
Moreover, we observe a minor resurgence of regularity signals with
high-frequency events increasing in comparison to lower frequencies.
For example, dominant periods in the range of 1-4 years are more
frequent than those with 4-7 and 7-10 years, which is a significant shift
compared to pre-industrial results (Fig. 1a). This further shift to lowest
dominant periods is consistent with our previously mentioned expla-
nation of increasing ENSO intensity dominating over previously
existing regularity patterns. Note that by considering 247 =50y we find
more irregularity in the time window 2050-2099 due to the super-
linear warming effect that cannot be sufficiently absorbed with linear
detrending (see Supplementary Fig. 29). We therefore conclude that
crop failure regularity is shifting from a pre-industrial distribution to a
transition phase with declining 10-13 years dominant periods and
subsequently to a warming future where the superlinear climate for-
cing is characterized by both irregularity and a strong trend with
suppressed natural regularity signals.

In contrast to the crop failure results we observe the emergence of
regularity in extreme heatwaves for the historical interval 1950-1999
(see Fig. 4a), namely from below 1% to 10% in the total distribution
compared to the picontrol results.

Here again the regime shift around 1950 is obvious in the total
affected area (Fig. 2b) which leads to the emergence of regularity in the
transitioning phase. Regularity occurs since the probability for heat-
waves increases with global warming while the heatwave expectation
value under picontrol was one extreme event in 40 years. Increases in
temperature variability due to human forcing were already observed in
similar modeling setups™ and support our interpretation of the results
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in the transition phase. The emergent regularity patterns are similarly
distributed to the crop failure dominant periods with highest occur-
rences of dominant periods in the range of 10-13 years and we find
heatwave clusters in all world regions.

This picture changes again drastically in the 2040-2069 period
where dominant periods can be determined in almost all regions with a
clear signal from dominant periods of 1-4 and 13-16 years or even
more years (see Supplementary Fig. 30a). The regularities from 1 to 4
years are saturated values where the picontrol threshold values is
exceeded almost every year (see Supplementary Fig. 23b) while largest
dominant periods speak of a clear warming trend that dominate the
time series. Highest frequencies at low latitudes are consistent with
previous studies of future scenarios on heat indicators®>>*.

After linear detrending (see Fig. 4c) we find a resurgence of irre-
gularity (40% in the total distribution) and prevailing highest fre-
quency clusters between 1 and 4 years (pink) across all world regions.
This increase towards smallest dominant periods may be not only
related to the general increase in temperature within SSP5-8.5 but also
to influences from stronger ENSO effects with a fingerprint in the 2-7
years range.

In the case of wildfires, we observe a decrease in irregularity from
90% under pre-industrial conditions to 77% in 1950-1999 in the total
distribution of dominant periods (see Fig. 5a).

This change is accompanied by an increase of regularity in the
4-13 years frequency regime from 10% to 22% in total affected area that
appears in all world regions. The source of this shift is again the stark
regime shift around 1950 (see Fig. 2c) which leads to an increased
impact probability. Our findings are consistent with observations of
increased frequency and intensity of extreme wildfires due to climate
change®.

Moving to the 2040-2069 period (Fig. 5b) we find extensions of
the shortest dominant period regions in Africa, both Americas, and
Asia. In addition, we again find longest dominant periods, e.g. in the
Amazon and Southern Africa, which may hint that the previously
observed dominant periods are now replaced by the pure warming
trend which would lead to longest dominant periods. We find that
wildfire regularity patterns are more robust to global warming in
comparison to crop failure and heatwaves which can be attributed to
strong buffering effects of vegetation regrowth.

Linear detrending leads to an increase in irregularities at the cost
of the largest dominant periods (see Fig. 5c) resulting in the highest
count of dominant periods to occur at smallest dominant periods
between 1 and 4 years affecting all world regions. Note that the
dominant period of 10-13 years still remains significant and occurs in
4% of all dominant periods.

Discussion

We have investigated the global distribution and dominant periods of
three types of extreme climate events, namely crop failure, heatwave,
and wildfire.

We find that 28% of the cropland exposed to crop failures
worldwide and 10% of grid cells exposed to wildfires are regular under
pre-industrial climate conditions with dominant periods concentrated
at 10-13 years. Such dominant periods are related to climatic oscilla-
tions such as ENSO, IOD, NAO which have been already shown to have a
significant influence on crop yield variability?>***?°, Similarly, studies
have found connections between climatic oscillations such as ENSO
and wildfires*®* and also heatwaves®. These regularity patterns are
concentrated in specific world regions, e.g., South Asia and South-East
Asia, and Europe. The global warming trend within SSP5-8.5 replaces
them almost entirely after a transitioning phase characterized by
increased shift towards smaller dominant periods. Through linear
detrending in time we were able to observe an additional shift towards
higher frequency extreme events driven by the strong warming effect.

In summary, our analysis shows that existing natural regularity
patterns not only depend on regularities in climate forcing but are also
influenced by internal dynamics of the considered system itself. In
addition, regularity patterns undergo a substantial shift through
anthropogenic forcing in the transitioning phase from quasi-stable
pre-industrial climate conditions towards the anthropocene, which
leads to reduced dominant periods of crop failures and wildfires while
extreme heatwave regularity emerges due to increased impact prob-
ability. This implies a reduction in predictability of crop failure and
wildfire as periodic patterns in the extreme event occurrences change
while rare heatwaves become more frequent. Previously significant
regularity patterns that are related to climatic oscillations are over-
shadowed by signals of the anthropogenic warming trend and a shift to
higher frequencies in extreme climate event patterns.

These findings not only further underscore the necessity for cli-
mate mitigation efforts but also imply that resource allocation for
adaptation strategies have to account for decreased predictability of
extreme event occurrences due to shifting dominant periods and the
general warming trend. Insurances and disaster preparedness efforts
are especially concerned and our regularity pattern and exposure
maps may provide a useful tool to further assess regional strategies for
the future.

Methods

Extreme weather event data

We investigate three types of extreme event, namely crop failure,
heatwave, and wildfire. The exposure to crop failure and wildfire relies
on process-based crop and vegetation model simulation results from
ISIMIP 3b** that are driven by the bias-adjusted®**’ daily output of
Global Climate Models (GCMs) from Phase 6 of the Coupled Model
Intercomparison Project (CMIP6)*** (see Table 1). In contrast, we
deduce the heatwave exposure directly from the bias-adjusted GCM
output. The GCM and impact simulations are run for a historical
(1850-2014) and a future period (2015-2100), where the latter is
represented through the Shared Socio-economic Pathways SSP1-2.6,
SSP3-7.0 and SSP5-8.5 .. Additionally, we include a baseline simu-
lation called picontrol with stable pre-industrial climate conditions for
the full period (1850-2100). The GCM simulations are downscaled to a
spatial resolution of 0. 5 latitude and 0. 5 longitude and the crop and
wildfire model simulations have the same resolution.

To separate the effects of physical and biogeochemical processes
from socio-economic dynamics in our analysis we fix the socio-
economic conditions in all impact models to the ones in 2015. Crop
failure calculations are based on maize, rice, soybean, and wheat yield
estimates from 8 global gridded crop models (GGCMs; see Table 1),
provided by AgMIP’s Global Gridded Crop Model Intercomparison®,
Note that some models distinguish between different wheat and rice
types which we also preserve in our analysis. The crop models follow a
harmonized simulation protocol with fixed agricultural management
and land use assumptions around the year 2015. For further details, see
ref. 62. Wildfire exposure is extracted from the output of the global
terrestrial biosphere models CLASSIC, LPJmL-5-7-10-fire, and VISIT (see
Table 1).

We define the extreme event exposure with respect to exposed
area on an annual time scale based on ref. 3. While extreme climate
impacts typically occur at smaller time scales we aggregate the expo-
sure to a yearly time scale for better intercomparison and to investi-
gate regularities beyond seasonality. For each grid cell, crop type
(maize, rice, soybean, and wheat), and irrigation type (irrigated and
rainfed) we define a crop to fail if the crop yield falls below the 2.5th
percentile of the respective picontrol yield distribution. This threshold
represents extreme events as such low crop yields occur on average
once in 40 years. The exposed grid cell area fraction is set equal to the
grid cell area fraction whereupon the respective failed crop is grown.
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Table 1| ISIMIP3b climate and impact models

Impact model

Global climate model

crop failure ~ CROVER, CYGMA1p74, EPIC-IIASA, ISAM, LDNDC, LPJmL, PEPIC, PROMET  GFDL-ESM4, UKESM1-O-LL, IPSL-CMBA-LR, MPI-ESM1-2-HR, MRI-ESM2-0
heatwave HWMId GFDL-ESM4, UKESM1-0O-LL, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0
wildfire CLASSIC?, LPJmL-5-7-10-fire, VISIT GFDL-ESM4, UKESM1-0O-LL, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0

“Note that CLASSIC simulations are only available for GFDL-ESM4 and UKESM1-O-LL input.

The total exposed area is the aggregated value for all crop and
irrigation types.

Wildfires are processes that exhibit strong geographical differ-
ences in terms of burnt area. In general, wildfires can lead to a con-
tinuous scale of burnt area ranging from O to 100% of a grid cell.
Individual wildfires involve return periods between a few years and
centuries. These stark differences in temporal scale are mainly driven
by the vegetation regrowth dynamics, which differ between different
biomes'?°. Taking the size of grid cells into account the burnt area at
the grid-cell level is often the result of multiple wildfires occurring
within that cell, affected by multiple overlapping regrowth cycles.
Small burnt area fractions of a grid cell have little effect on the available
fuel in the cell. Therefore, larger burnt areas are not inhibited in the
following year; however, with a large fraction of the grid cell burnt, fuel
recovery will take longer. Besides fuel availability, other factors such as
fuel flammability, ignition sources and fire spread rate also vary over
time and affect burnt area. Consequently, it is difficult to identify a
single dominant period in the burnt area of these multi-scale fire sys-
tems. To disentangle the wildfire dynamics we apply two wildfire
definitions. We define extreme wildfire based on the 97.5th percentile
of the annual burnt area distribution under pre-industrial conditions in
the main text. The exposed grid cell area fraction is one if the per-
centile threshold is exceeded and zero else. The analysis of wildfire
emergence is presented in Supplementary Discussion 5 based on an
upper exposed area threshold.

Finally, we calculate heatwaves from near-surface air temperature
based on the Heat Wave Magnitude Index daily (HWMId)®***, Specifi-
cally, we define a grid cell to be exposed to a heatwave if the HWMId of
that year exceeds the 97.5th percentile of the picontrol distribution of
that grid cell. Note that the impacts of heatwaves depend on the
applied definition and that heatwave definitions may also be based on
marine systems®°°,

Methodology
Given an extreme climate impact i, i = cropfailure, heatwave, wildfire,
we denote the affected area fraction in the grid cell (6, ¢) and in year y
by ff,.k(y, 0, ¢), where j and k denote the driving climate model and
impact model, respectively. As the analysis is performed for each
impact type, model combination, and grid cell position separately, we
simplify the notation by dropping the respective indices. In order to
investigate changing extreme event regularities we split the simulation
interval 1850-2100 into five discrete intervals of lengths 24T = 50
years. By increasing the window size to 24T = 60y we find no qualitative
difference except for the reduced signal due to stronger decorrelation
within the longer time window (see Supplementary Discussion Sec-
tion 1.1). The window size 24T is chosen to (i) encompass sufficient
data points to resolve global climate periodicity influences from EI-
Nifio Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and
North Atlantic Oscillation (NAO) regularities while (ii) limiting the
window size accounts for temporal decorrelation. In the strong
warming scenario we additionally consider 24T = 30 years to account
for the strong warming trend. We find no regularities on longer time
scales when considering time windows of 250 years (see Supplemen-
tary Discussion Section 10).

For each time interval with lower boundary ¢, e.g.
o =1850,1900, 1950, 2000, 2050, we define the time auto-correlation

function

AT-1

> fltg+mf(to +m+n). 6))
m=0

Croar(m= %
Accordingly, the auto-correlation function C, ,7(n) contains informa-
tion on the regularity of extreme event patterns within each time
interval. If the impact time series were periodic, we can apply a discrete
Fourier transformation to obtain the Fourier coefficients and learn
about the extreme event regularities. Note that more advanced
approaches'®'*"¢ such as the Multi Taper method allows to minimize
spectral leakage and reduce variance at optimized spectral resolution
while autoregressive models can explicitly account for red noise. On
the other hand, these elaborate approaches typically involve higher
computational costs and hyperparameters that need to be estimated
for each impact, scenario, model, or even region/location. In addition,
the resulting power spectrum of such approaches is not discrete but
continuous which makes it difficult to determine a single dominant
period based on peaks and their relationship in terms of harmonics.
Furthermore, statistical approaches in time series analysis'>®’ typically
involve assumptions on the underlying process that are critical for the
return period estimate. For example, Poisson processes are based on
(heterogenous) rates that may depend on time, location, model etc.
Within the ISIMIP setup this parameter is difficult to estimate as impact
time series are provided as single realizations. Therefore, additional
assumptions or approximations are needed to get enough data for
fitting to a Poisson process. Estimates of return periods from
probability distributions face these challenges from restricted time
length in the case of wildfires” and in the case of generalized extreme
value distributions of floods™®"".

For our purposes we can rely on a simpler quantification of reg-
ularity as we are only interested in the dominant spectral feature.
Additionally, we use the median and standard deviation from the
multi-model distribution of dominant features to partly account for
known caveats such as spectral leakage (see Section “Result aggrega-
tion”). As the climate event datais based on complex dynamical system
simulations within CMIP6°**° we can only expect quasi-periodic signals
in the impact time series. Regularities in the climate impact affected
area may arise since quasi-periodic climatic conditions inhibit or boost
extreme climate events. In addition, applied extreme event definitions
limit the number of observations within the simulation data and
therefore shape the regularity patterns that we can expect.

In order to separate the non-periodic signals within the extreme
event data we apply the following scheme to determine a so-called
dominant period.

* If the maximum of the auto-correlation function C t,a7() (seeEq. (1))
is smaller than €5 = 10™* we say that there is no dominant period,
because the affected area is smaller than 1%. Else, continue with the
next step.

* Apply a discrete Fourier transformation to the auto-correlation
function C, ,7 to identify the Fourier coefficients (C,},_o  a7_1-

* Sort the Fourier coefficients {c,},_q, _ar_; in decreasing order
{Cndn=o, . ar_1 Namely (¢l 2 [cy| 2 ... 2|Cyr_4l.

* Determine n € {0, 1, ..., AT - 1} such that the Fourier coefficients
Cy, €4 - - -, ¢, formafrequency sorted list containing a fundamental
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Fig. 6 | Extreme event time series. Area fraction affected by extreme events as a
function of time. The blue and red whiskers denote the time windows

1850-1899, ..., 2050-2099 that form the basis for the auto-correlation function in
Eq. (1). More specifically, the blue section signifies the interval (¢o, to + AT) while the
red section marks (¢o + AT, to + 2A4T). The whiskers are shifted to avoid overlapping
of red and blue segments. a Crop failure time series for climate model MPI-ESM1-2-

HR, impact model EPIC-IIASA, for SSP5-8.5 at latitude longitude coordinates
(-15.25, 28.25). b Heatwave time series for climate model GFDL-ESM4, impact
model HWMID, for SSP5-8.5 at grid location (23.25, 72.25). ¢ Wildfire time series for
climate model GFDL-ESM4, impact model LPJmL-5-7-10-fire, for SSP5-8.5 at grid
location (-15.25, 28.25).

frequency and higher harmonics. The list proceeds from lower to
higher frequencies, where the constant signal co can appear at any
position. In the special case where the fundamental frequency is 1/
AT we take the frequency corresponding to the next largest
Fourier coefficient.

If the Fourier fit constructed with Fourier coefficients {cy, ..., )}
explains at the majority of the time variation in C, r, namely the
adjusted coefficient of determination R? fulfills R? > 50%, we define
the dominant period candidate as per(cy) if ¢, #co and per(c;) else.
per(c) denotes the period corresponding to the Fourier coeffi-
cient c.

For the dominant period candidate per(c;) we test if the respec-
tive peak |cp|? in the power spectrum is due to red noise’” with a
significance level of 95%. The red noise spectrum |c,|* within an
AR(1) model is distributed as

1-¢?

2
P A G 2
1+¢? —2¢ cos—zA”T”X2 @

2
[Cal® ~

where ¢ is the lag-1 correlation function and x3 is the chi-squared
distribution with 2 degrees of freedom.

We find that the choice of R? only enhances/suppresses the number of
dominant periods when being decreased/increased but does not
influence their values (see Supplementary Discussion Section 1.2).
While step 1-4 are essentially a Fourier decomposition where we
define the dominant period through the largest non-trivial coefficient,
we keep higher harmonics in the Fourier fit in step 5. The motivation
for this approach is that even if underlying quasi-periodic natural
processes influencing climate extreme event i occur at high frequency
we do not expect to observe the same periodicity in the impact signal
due to thresholds in the extreme event definition and the stochasticity
in the climate model input. For example, mild ENSO in some years may
be insufficient to trigger an extreme climate impact which results in
larger dominant periods even though the ENSO frequency may be a
subdominant signal in the extreme climate impact time series. Allow-
ing for higher harmonics in step 5 acknowledges for these effects by
incorporating possible connections to faster natural processes. The R?
criterion in step 5 accounts for the amount of variability explained by
the dominant period. If the criterion is fulfilled we can state that at least

half of the variability is explained by the dominant period and its
higher harmonics. In this sense the criterion makes sure that the
dominant period is indeed significant and additionally accounts for
stochasticity of the time series. As geophysical time series typically
contain red and white noise’*”* we perform a significance test in step 6
to make sure that the detected dominant periods are not noise
artifacts’>”.

In Fig. 6 we show extreme event time series for exemplary loca-
tions and model combinations.

The fluctuations within the data are most prominent for the non-
extensive extreme event, namely crop failure, where the affected area
can be smaller than the whole grid cell. The exemplary locations also
show that the climate extreme event signals are themselves not
obviously regular which supports our approach to look at periodicity
not in the affected area but in the auto-correlation function (Eq. (1)).

The respective local auto-correlation functions for to = 1950 are
shown in Fig. 7.

The colored lines represent Fourier fits with the n largest coeffi-
cients, n = 1, 2, 3, 4 according to step 1 to 4 in the definition of the
dominant period. Corresponding to step 4 we show the Fourier fit
that contains only a base frequency and higher harmonics in violet.
In the case of crop failure (Fig. 7a) we find a dominant period of
8.33 years, where the base signal (yellow line) is connected to promi-
nent peaks at time lag O, 8 and 16 years. In addition, we find
higher harmonics with smaller amplitudes that increase the amplitude
at the previously mentioned time lags but also resolve smaller peaks,
e.g., at time lag 2 and 14 years. With an adjusted R? value of 0.52 this
dominant period lies at the lower bound of acceptance for regularity.
For the heatwave example (Fig. 7b) we find no dominant period as we
observe signals only at O, 14 and 21 years time lag which is related to
the underlying binary data which necessitates non-harmonic fre-
quencies to reproduce the zero sections of the time series. As a result
we have an adjusted R* = 0.46 and therefore we find no dominant
period in this case. Finally, we detect a dominant period of 25 years for
the wildfire example (Fig. 7c) that is related to the general increasing
trend in the auto-correlation function. A discussion on the robustness
of the method can be found in the Supplementary Discussion Sec-
tion 1. A comparison of dominant periods in Fig. 7 and dominant
periods estimated from the largest spectral peak of autoregressive
models shows differences due to the additional steps 4-6 in our
methodology and differences in the spectral estimates themselves
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Fig. 7 | Extreme event auto-correlation function. Time auto-correlation function
for a crop failure, b heatwave, and c wildfire for the time series in Fig. 6 and
to =1950. The colored lines show Fourier fits with the 4 largest coefficients, where

the violet line without marker corresponds to the Fourier fit described in step 4 of
the dominant period definition. In the case where the Fourier fit fulfills the condi-
tion of step 5 and 6, we show the dominant period.

(see Supplementary Table 2). These differences highlight the differ-
ence between largest spectral peak and dominant periods.

In order to get a supplemental measure of extreme event counts
within fixed time intervals we define the total affected area

2AT—

1
Ayr®=3" Y fle+m,6,¢)-A©,9), €)

6, m=0

where A(0, @) is the area of the grid cell at position (6, ¢). Therefore,
A,7(t) measures the total area affected by an extreme event in the time
window ¢ to ¢t + 2A4T.

Result aggregation

Within the ISIMIP multi-model setup we aggregate the individual
results for each model in terms of a median that is restricted to those
model combinations where a dominant period is defined. This
restriction is applied to each scenario, time window and grid cell
location separately (cmp. Supplementary Discussion Section 8). This
approach allows to address possible undetected dominant periods
due to spectral leakage, namely changes in the Fourier spectrum
depending on aspects such as the sampling of the time series. In
addition, the restricted median also addresses differences between
climate and impact model combinations that imply different geo-
graphical and temporal processes leading to differences in the
respective extreme even time series. As a consequence we also expect
differences in the geographical and temporal regularity patterns which
are represented through statistical measures such as the median and
standard deviation. Only in the case where no climate impact model
combination detects regularity we deduce irregularity in the median
result. In the case of picontrol we additionally require that a dominant
period is detected in the median over all climate-impact model com-
binations for at least half of the time windows 1850-1899, 1900-1949,
..., 2050-2099. The reasoning here is to make the picontrol runs,
which are based on five time windows, comparable to the historical
and SSP runs which are based on a single time window.

An estimate for the difference in dominant periods between dif-
ferent climate impact model combinations and time windows is given
in terms of the standard deviation (see Supplementary Discussion
Section 12). Note that the error estimation is limited due to the single
realizations from the climate impact models. The standard deviation
for all event categories is concentrated in the small range of 0-4 years.

Data availability
The extreme event data generated in this study have been deposited in
the ISIMIP database, https://doi.org/10.48364/ISIMIP.9208107°. The
input simulation data to produce the extreme events is available via
https://data.isimip.org/.

Code availability
The code used to produce the results in this manuscript is available via
Code Ocean, https://doi.org/10.24433/C0.0842870.v1”".
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