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Air pollution health and economic co-
benefits of keeping warming below 2 °C
in India
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The current trajectory of emissions will increase warming and deteriorate air quality in India, leading to
severe health and economic impacts. We comparatively assess ambient PM2.5-related health and
economic consequences for mid-century under GAINS-simulated business-as-usual (BAU) pathway,
which considers current emissions, policies, and mitigation measures will resume in future; and 2°C
warming scenario (2°C-WS) that may restrict the warming upto 2°C by 2100. Ambient PM2.5 exposure
would change from 14.6–126.4 μgm−3 in baseline across India to 13–136.1 μgm−3 under BAU
pathway, but to reduce between 7.4 and 84.4 μgm−3 under 2°C-WS. Projecting socio-demographic
determinants, we estimate that the 2°C-WS driven control measures could prevent 0.77 ± 0.19million
annual premature deaths and 18.7 ± 4.3 million DALYs by mid-century, benefiting 18.9 ± 2.8 billion
Euros. Emission controls in the domestic, energy, and waste sectors would be pivotal. Here, we show
that India should accelerate climate actions to meet 2°C target and align clean-air and health policies
for substantial health benefits.

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on
ClimateChange (IPCC) emphasized the urgent need for rapid reductions in
both greenhouse gases (GHGs) and particulate matter by 2030 to meet the
essential requirements of the Paris Agreement’s net-zero target1,2.While the
effects of CO2 emissions on deteriorating climatic stability and leading to
global warming may last over a long time horizon, the impacts of fine
particulate matter (PM2.5) on air quality and public health are more
immediate and localized3. The chronic exposure to airborne PM2.5 has
claimed 0.95 million (95% confidence intervals, CIs: 0.62–1.26) premature
deaths and 27.4million (17.7–36.3) disability adjusted life years (DALYs) in
2021 in India4. Recent global estimateshave reported that ~82%ofmortality
was attributable to anthropogenic emissions, where ambient air pollution
from fossil fuel usage claimed 5.13 million (3.63–6.32) premature deaths5,6.
Studies have used various exposure-response functions to estimate health
benefits upon airborne PM2.5 abatement7,8. However, the future evolution of
source contributions to air quality and their attributable health impacts is
not well understood at the subnational level. The complex interrelation
between air pollution and its impacts on public health is influenced by
various socio-demographic factors9–12. Despite growing attention to the
determinants of air pollution and health11,13, it remains unclear how these

drivers would collectively shape the future trends in air pollution-related
health impacts.

Rafaj et al.14 have demonstrated that India could reap substantial health
benefits by reducing PM2.5 exposure through the implementation of
ambitious climate changemitigation policies. To address the high burden of
air pollution, India has implemented several environmental policies,
including the National Clean Air Program launched in 2019, which aims to
reduce PM2.5-exposure levels by 40% by the end of 202615. Despite a recent
improvement in air quality, the annual PM2.5 levels in all major cities and
peri-urban regions remain above theWorld Health Organization’s (WHO)
air quality guideline of 5 μgm−3 16. Several attempts have been made to
project the future health burden under various mitigation scenarios for
India17–20. However, none have differentiated the impact of local emissions
from regional sources at the state level under contrasting air pollution
mitigation pathways.

Secondly, most studies have assessed the economic impacts attributed
to projected air pollution-related health burden using the conventional
willingness-to-pay (WTP) method, which assesses the out-of-pocket
expenditure that individuals spend to reduce their unit-risk of air
pollution-related burden11,13,14. Themonetaryweightage considered for each
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individual depends on the nation’s Gross Domestic Product (GDP), where
higher value is placed for each human life of developed countries as com-
pared to the developing countries like India; therefore this approach carries
moral dilemma and larger uncertaintywhilemonetizing the health impacts.
Additionally, this method does not provide the framework to segregate the
economic impacts among premature deaths and morbidity7. However, the
cost-of-illness (CoI) approach, adopted by the recent Global Burden of
Disease (GBD)-India study, estimates the contribution from each human
life in the net productivity of India during the future years if that person had
not suffered from premature mortality and morbidity attributable to
ambient PM2.5 exposure

21. This approach incorporates the projected GDP-
growth for the foreseeable future and possesses the framework to segregate
net economic impacts attributable to premature deaths andmorbidity, thus
providing greater clarity. Studies attempting to project the air pollution-
related economic impacts in the future are limited temporally and
geographically20. The quantification of potential economic co-benefits of
stringent mitigation measures is missing at the subnational level in India,
which will be a handful for the policymakers to justify and drive control
measures. The latest GBD-India study has estimated economic losses
attributed to air pollution-related health impacts across the states, con-
sidering all individuals between 15 and 84 years to contribute equally to the
nation’s GDP21. However, to our understanding, different-age groups have
differential contributions to the overall productivity of India, and assuming
an equal contribution from all sub-population may lead to larger uncer-
tainty in the assessment. Secondly, current life expectancy in India is 72
years22,23, hence statistically, the older age groups (over 72 years) should not
have any contribution to the nation’s GDP. These two aspects clearly
establish that the latest India-GBDassessment overestimated the aggregated
economic losses. Moreover, existing literature lacks an analysis of the
potential discrepancies in net productivity across these age groups, con-
sidering the working-age population of 15–70 years.

In this work, we perform comparative assessments to estimate air
pollution and its impacts onhealth and economic burdenacross the states of
India under the Business-as-Usual (BAU) pathway and the 2°C Warming
Scenario (2°C-WS) for 2050 [see Methods for details]. We integrate the
Greenhouse gas and Air pollution Interactions and Synergies (GAINS)-
model simulated sectoral contributions of primary and secondary PM2.5

from local and regional sources into the GBD framework4,24. This allows us
to allocate air pollution-related premature deaths and DALYs among sec-
tors for the baseline (2015) and project for mid-century, considering
changes in age-distributed population and baseline mortality and DALYs
rates (BMRs) at the subnational level.We further decompose the aggregated
health burden into contributions from four social determinants (population
size, aging factor, BMRs, and PM2.5 exposure) to assess the key drivers that
would shape the changes in future health burdens attributable to air pol-
lution. Subsequently, the health benefits are disaggregated into secondary
PM2.5 and primary sectors to identify the major sources to minimize future
health fatalities. Finally, using the CoI method, we estimate the economic
impacts attributable to these two contrasting pathways. We bring a novel
aspect into our assessment by incorporating the per-capita wage (based on
the National Mental Health Survey) as a proxy to segregate the sub-
population contributions toGDPamongdifferent-age groupsbetween15 to
70 years (seeMethods).

Results
Health benefit assessment of climate actions
Across the states, GAINS-simulated annual population-weighted ambient
PM2.5 exposure ranged between 14.6–126.4 µgm−3 in the baseline and
projected to vary between 13–136.1 µgm−3 in mid-century following the
BAU pathway. Exposure would increase in 13 out of 23 GAINS-simulated
subregions of India (in the range of 0.2 µgm−3 in Assam to 12.1 µgm−3 in
Punjab) [Table S1].We estimate that ambient PM2.5 exposurewould reduce
or remain static across most of the high and Middle SDI (socio-demo-
graphic index, seeMethods) subregions as compared to the baseline, while
the air pollution level would increase across most of the low SDI states. In

low SDI states, reliance on polluting sources such as solid fuels for cooking
and heating, coupled with inadequate waste management and unpaved
infrastructure, poor socioeconomic conditions of the populace, higher
illiteracy rates, and larger population growth contributes to elevated PM2.5

levels. Traditional end-of-pipe controls in sectors like power, industry, and
transport may inadequately address these localized sources. Conversely, in
high and middle SDI states, stricter pollution control measures across sec-
tors generally result in lower or stable PM2.5 exposure25,26. This could
potentially lead to reduction orminor change in ambient PM2.5 level across
the wealthier subregions of India as compared to the underdeveloped states.
Furthermore, meteorological and geographical factors, such as weather
patterns and terrain, significantly influence PM2.5 concentrations, further
contributing to observed interstate variations in exposure. Under the BAU
pathway, air pollution attributable premature deaths would increase from
0.72 million (95% confidence intervals, CIs: 0.53–0.89) in 2015 to 2.12
million (1.62–2.63) by 2050, whereas DALYs are projected to increase from
24.2million (15.4–30.5) to 51.6million (39.9–63.4). The lowerSDI states are
expected to bear the largest share of the health burden, accounting for 46%
of premature deaths and 48% of DALYs, followed by middle and high SDI
states (Fig. S2). The Indo-Gangetic Plain (IGP) and other states with high
population density would bear a substantial health burden, whereas the
states in the southern peninsula and northeast subregions would have lower
health impacts (Fig. 1).

Under the 2°C-WS,PM2.5 exposurewould rangebetween7.4 µgm
−3 in

Kerala to 84.4 µgm−3 in Delhi. The air pollution level would reduce in all
subregions relative to the BAU-driven estimates, ranging from20.5% across
the northeastern subregion to 63% in Orissa (Table S1). As a result, pre-
mature deaths and DALYs would drop to 1.35million (1.04–1.66) and 32.9
million (25.6–40.2), respectively. The low SDI states would possess larger
health benefits (0.34 million deaths and 8.52 million DALYs), followed by
middle and high SDI states (Figs. 1 and S2). The central and IGP states
would have a larger reduction (35–48%) in health burden as compared to
the subregions in southern peninsular and northeastern India.

The role of socio-demographic factors in driving future
health burden
While decomposing the aggregated changes in premature deaths from 2015
to 2050 in terms of the four drivers, wefind that population growth, its aging
or the shift in age-distribution, and the change in BMRs would play pre-
dominant roles in shaping the health burden. We estimate that population
drivers, including growth and aging, cumulatively increase the health bur-
den by ~150–200% across the states (Fig. 2). In contrast, age-distributed
BMRs are projected to decline sharply in most states except for type-2
diabetes (T2D) among the 70+ age group (Fig. S4). These reductions would
alleviate premature deaths by 40–60% as compared to the base year 2015,
partially offsetting the effects of population growth. However, the effect of
exposure change under the BAU pathway would be negligible, but would
lead to a substantial reduction under the 2°C-WS scenario if other deter-
minants remain static. In Goa, the effect of population growth would be
outweighed by the changes in the other three drivers (Fig. 2). Three of the
four non-communicable diseases (NCDs) that we consider in our analysis
(seeMethods), namely ischemic heart disease (IHD), Chronic Obstructive
Pulmonary Disease (COPD), and stroke, were the leading causes of health
burden in 2015. While IHD and COPD would continue to be key con-
tributors, T2D would emerge as a larger contributor to health casualties in
mid-century.Onthe contrary, the relative contributionsof lower respiratory
infection and preterm birth among children would reduce (Fig. S5).

Local and regional contributions to air pollution attributable to
health burden
We find that secondary PM2.5 dominates over primary PM2.5 in driving
health burden in 16 out of 23 subregions during 2015 (Fig. S6) and will
continue to do so in the BAUpathway in low andmiddle SDI states (Fig. 3).
Emissions from domestic, energy (power plant and industry), and trans-
portation sectors would be the primary contributors to health fatalities. The
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domestic sector would make a larger contribution to the IGP and southern
peninsular states, whereas emissions from biomass burning would largely
impact the northwestern subregions. Our estimates highlight larger con-
tributions from energy sectors in industry-driven central states; however,
the high SDI states, namely Delhi, Maharashtra, and Goa, would exhibit a
larger health burden attributed to emissions from waste management (Fig.
S7). Most states would experience substantial contributions from their
neighboring subregions. In contrast, the contributions would reduce from
distant states and outside India, albeit with larger uncertainties.

Under the 2°C-WS scenario, the composite shares of health burden
from states’ own sources and neighboring regions would decrease sig-
nificantly by 2050 as compared to the BAU (Fig. 3), including reduced
contributions from primary PM2.5 sectors. Contributions from domestic,
biomass burning, energy, and transport sectors would decrease across most
of the subregions (Fig. S7C, D). On the contrary, premature deaths and
DALYs attributable to open-waste burning would significantly increase in
the high SDI states. Additionally, a significant share of secondary PM2.5

wouldpersist in the future.One takeaway fromFig. 3 is that the contribution
from natural sources would increase under the 2°C-WS scenario as com-
pared to the proportion under the BAU pathway. Given the huge uncer-
tainties in the projection of natural sources across the subregions27,28, same
natural contribution is considered25 under these two pathways as per the
baseline proportion (Table S3). Since the contributions from most of the
primary-emission sources would reduce, partially under the BAU pathway,
but significantly under the 2°C-WS, the relative proportion of the naturally-

originated PM 2.5 attributable health burden is expected to increase bymid-
century. However, the absolute value of premature deaths is taken the same
as per the baseline estimates across the subregions.

Sectoral contributions to health benefits due to climate actions
India could prevent 0.77 million (0.58–0.97) premature deaths and 18.7
million (14.3–23.2) DALYs annually by 2050 by meeting the 2°C-WS
relative to the BAU pathway. In terms of preventable deaths, the low SDI
states would have the largest share [0.36 million (0.25–0.46) premature
deaths and 9.1 million (6.9–11.3) DALYs], followed by middle (30.2% and
28.9%of total benefits), and high SDI states (23.7% and 22.5%, respectively).
The states that are projected to have higher population growth, namely
Uttar Pradesh, West Bengal, Maharashtra, and Bihar, are expected to
achieve larger health benefits due to climate actions. Abatement in primary
PM2.5 would contribute to avoidable deaths by two-thirds (64.5%), mostly
from industrial, biomass burning, and domestic sectors across the IGP and
central states.Conversely, high SDI stateswouldpossess larger benefits from
reducing emissions from transport and waste-management sectors (Fig. 4).
Most of the northeastern and southern peninsular states would have con-
siderable health benefits from secondary PM2.5 abatement (>60%).

For the regional contribution, we estimate that controlling emissions
within a state and its neighboring subregions would be essential to achieve
substantial health benefits in the future (>75%), particularly across the IGP,
central India, and northwestern subregions. In contrast, prioritizing emis-
sions from long-distance states would lead to considerable health benefits

Fig. 1 | Estimated annual premature deaths attributable to air pollution in 2050
under the BAU and 2°C-WS pathways (left panel). The cyan bars in the right panel
depict the preventable premature deaths in 2050 under the 2°C-WS relative to the
BAU pathway. The spatial map of India shows the geographic locations of the
23 subregions across India. Black circles denote mean estimates, and the whiskers

represent the 95% confidence intervals (CIs). The correspondingDALYs burden and
their attributable health benefits are provided in Supplementary Fig. S1. The hor-
izontal numeric axes are presented on a logarithmic scale, and states are classified
into the categories of high (H), middle (M), and low (L) Socio-Demographic
Index (SDI).
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for subregions in eastern, northeastern, and southern peninsular India
(~20–30%). It is important to note that the GAINS-model framework
considers constant PM2.5 exposures from natural sources and emissions
outside India for 2050 as per their baseline estimates across the subregions;
therefore,healthbenefits fromthese regional sources cannotbequantified in
this study.

Economic consequence attributable to air pollution burden in
mid-century
If India follows the BAU pathway, the aggregated annual economic loss
attributable to air pollution health burden would be 75.5 billion (58.9–92.1)
Euros by 2050, in which premature deaths and DALYs would account for
62.1 billion (53.4–70.8) and 13.4 billion (11.4–15.4), respectively. However,
by adopting the 2°C-WSpathwaywith the strictest controlmeasures, thenet
productivity loss can be reduced to 56.6 billion (47.5–65.6) [premature
deaths and DALYs would contribute 46.5 and 10.1 billion, respectively],
resulting in a gain of 18.9 billion (16.1–21.7) Euros annually. Sensitivity
analyses using various combinations of labor’s share toGDP (a reduction in
the range of 5–20%) and the non-market/household contribution to overall
productivity (in the range of 0.25 to 0.35) in the future (seeMethods) reveal
that net economic benefit of climate actions would vary between 14.3–18.9
billion Euros due to various combinations of α and λ (Table S6).

Under the BAU pathway, the high and middle SDI states would have
the largest economic impact (26.2–26.7 billion Euros) as compared to the
low SDI states (22.6 billion Euros). However, the middle SDI states would
possess the largest economic benefit (6.6 billion Euros), followed by high
(6.5 billion Euros) and low SDI subregions (5.8 billion Euros). The aggre-
gated economic benefit would vary between 0.1–2.6 billion Euros across the

states (Fig. 5), with the highest in the states of Uttar Pradesh (2.6 billion
Euros) followed byMaharashtra (2.4 billion Euros), TamilNadu (2.1 billion
Euros), and West Bengal (1.9 billion Euros). The estimated per-capita
economicbenefits in Indiawould be 11.3Euros,with a variationbetween0.3
and 32 Euros. The benefit as a percentage share of projected GDPwould be
0.12% (0.1–0.13%) in India, which would vary across the states from 0.03%
to 0.78%. Goa would possess the highest relative share (0.78%), followed by
Tamil Nadu and Uttar Pradesh (0.16% each) and Chhattisgarh (0.15%)
[Table S4].

Discussion
While climate actions are expected to result in air quality co-benefit,
quantitative assessments for India, the most populous and one of the most
polluted countries, are lacking. Here, we address this critical knowledge gap
and assess the potential air quality co-benefits in terms of attributable health
burden and economic consequences across 23 Indian subregions for
keeping warming below 2°C relative to the BAU scenario.

Following the BAU pathway, air pollution-related premature deaths
and DALYs (per year) would increase by 194.4% and 108.1%, respectively,
inmid-century relative to 2015. The translated economic burdenwill rise to
75.5 billion Euros per year if air pollution is not aggressively controlled and
managed, impeding the growth of the human capital stock. However,
immediate cut-down in end-of-pipe pollutant emissions through structural
transformations, particularly targeting domestic, transport, waste, and
energy sectors, could prevent 0.77 ± 0.19 million deaths and 18.7 ± 4.4
million DALYs annually in 2050. Our GAINS-simulated premature deaths
[2.12 million (1.62–2.63)] for 2050 are consistent with the estimates from
other contemporary studies (in the rangeof 1.8–2.5million)13,14,17–20,29.Much

Fig. 2 | Relative contributions of individual determinants, namely population
growth and aging, changes in baseline mortality rate, and changes in PM2.5

exposure (BAU and 2°C-WS) on the change in premature deaths under the two
air pollution emission pathways (top panel). The individual effect of each socio-
demographic determinant is denoted by different colors. A positive change indicates
that the individual determinantwill increase inmagnitude bymid-century and could

elevate the attributable premature deaths, assuming other determinants remain
unchanged at their baseline estimate, and vice-versa. The bottompanel shows the net
changes in aggregated premature deaths under the BAU and 2°C-WS pathways
relative to the estimates for the base year 2015. The assessment for ambient PM2.5

attributable DALYs is documented in Fig. S3. The aggregated premature deaths (in
thousands) and DALYs (in thousands) are documented in supplementary Table S2.
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Fig. 4 | Relative contributions in avoidable premature deaths (BAU - 2°C-WS, in
thousands) from sectoral emissions and regional sources across the 23 GAINS-
simulated subregions by 2050. aWe segregate the avoidable premature deaths into
contributions from secondary particulates and six primary PM2.5 sectors, and
b depicts the avoidable premature deaths across the contributions from three
regional sources. Note that, under the BAU and 2°C-WS, the GAINS-model

simulated PM2.5 exposures from the natural sources (both for regional and sectoral
emissions) and outside India (regional emissions) are considered the same; hence,
we do not estimate any contribution to health benefits from these sources. The
sectoral apportionment to aggregated health benefits for Delhi is denoted by an
arrow. Figure S8 illustrates the sectoral-specific contributions to the DALYs benefit
(in millions).

Fig. 3 | The distribution of health burden (premature deaths and DALYs)
attributed to regional and sectoral emissions of airborne PM2.5 exposure under
the BAU and 2°C-WS in 2050 (per year). The numeric values at the right side of
each stacked-bar plot denote the aggregated estimate of air pollution-related pre-
mature deaths (in thousands, K) and DALYs (in millions, M) burdens across high,

middle, and low SDI states, presented for both the BAU and 2°C-WS, respectively.
The numeric values in brackets denote the 95% confidence intervals (CIs).
Subregion-specific breakdowns of the health burdens (for premature deaths and
DALYs) are depicted in Fig. S7.
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of the variation across the states for these scenarios would be driven by
differences in potential air pollutionmitigationmeasures, demography, and
epidemiologic drivers.

Alike other south Asian countries, the relative contribution from
desert-dust, sea salts, and other naturally-originated chemical constituents
vary significantly in India across the seasons; strongly governed by changes
inmeteorology30.Under the projected climate change scenarios, the changes
in meteorological parameters would be more abrupt and drastic over these
regions; eventually, they would carry huge uncertainty in the projection
from these natural sources27,28. The larger dust contributions reflected in
measurements are difficult to model with high precision due to substantial
inter-annual variability. Due to this uncertainty, GAINS tends to under-
estimate the PM2.5 measurements, particularly at higher concentrations
(Fig. S13). To avoid this large uncertainty from these source contributions
and their attributable proportions in ambient PM2.5 loading over the Indian
landmass, the same natural-sourced attributable ambient PM2.5 level is
considered for the subregions for 2050 under the two GAINS-simulated
pathways as per the baseline proportion25. As the emissions from sources
contributing to primary PM2.5 are expected to decline - marginally under
BAU but significantly under 2°C-WS - the relative contribution from nat-
ural sources seems to increase (Fig. 3).

Previous CTM-based contemporary studies (2015–19) focusing on
India have estimated 4–10% natural contributions to ambient PM2.5 and its
attributable mortality burden31–34, as compared to our estimated ~20%
during the baseline. Such discrepancy may be partially due to differential
simulation chemistry across various CTM-frameworks, differences in
meteorological and emission inventories used as inputs, variation in
exposure-response functions, and number of chronic diseases used for the
health burden assessment. Additionally, the discrepancy could stem due to

GAINS-model’s adoption of a linearized approach in using transfer coef-
ficient for natural sources to simplify the non-linearity in its dispersion over
the subregions. This approach may lead to a slight overestimated con-
tribution from this source. Moreover, most of the studies (except
Chowdhury et al.34.) have incorporated the emissions of particulate matter
and precursor gasses from each sector to estimate their relative contribution
to ambient PM2.5 using the brute-force method. It is understandable that
since the gas-to-particle phase transformation leads to the formation of
secondary PM2.5, which elevates the proportion of each sectoral contribu-
tion, thus lower contribution from natural sources has been estimated in
other studies. Conversely, in the GAINS-model framework, the primary
contributions from the sectors are solely attributable to the particulate
matter emission as the precursor gasses are separately culminated for the
secondary PM2.5 assessment over India. This factormay further account for
the discrepancy in estimated natural contributions between the GAINS-
simulation and other CTM-based studies.

Previous simulation-based studies have estimated a considerablywider
range of ambient PM2.5 exposure over India (~30–80 µgm–3), while the
global studies have used a limited number of ground-based measurements
in India for validation. Conversely, our GAINS-simulated PM2.5 estimate is
validated over pan-India (10-km × 10-km, seeMethods) and shows strong
agreement with the satellite-derived ambient PM2.5 estimate (Fig. S14).
More importantly, previous studies clearly lacked primary-secondary seg-
regation and future projections of air quality and its attributable health and
economic impacts under different climate change scenarios. Currently, no
research outlines the extent to which subregions in India would benefit in
terms of air quality, health, and economy if criteria pollutants are mitigated
alongside GHGs to limit warming below 2°C by 2100. Such quantifications,
alongwith insights into key emission sources and sectors, would be valuable

Fig. 5 | Economic assessments (per year) for mid-century across the subregions
following the BAU and 2°C-WS pathways. For each state in the top panel, the left
(hatched) and central bars denote the net economic losses following the BAU and
2°C-WS, respectively, where they are apportioned into air pollution-related pre-
mature deaths (red bars) and Years Lived with Disability (YLDs, seeMethods)
[yellow bars]. The green bars (right) denote the net economic co-benefits by mid-
century attributable to the baseline estimates of α (0.544) and λ (0.3). The bottom

panel illustrates the net monetary benefit (attributable to the difference between
BAU and 2°C-WS) in terms of percentage (%) share of projected GDP by 2050. The
black whiskers are the 95% confidence intervals (CIs) associated with the mean
estimates. The state-specific economic assessments are tabulated in Tables S4 and S5.
The sensitivity analysis of economic assessments from various combinations of α (a
reduction of 5–20%) and λ (0.25–0.35) across the high, middle, and low SDI states is
documented in Table S6. The Y axes are on a logarithmic scale.
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for the policymakers to conduct proactive assessments. This is where our
study stands out, offering a novel blueprint with detailed quantifications at
the subregional level for both the baseline and for future scenarios.

We obtain that state-specific expenditures would be driven by the
state’s total population, while the expected economic co-benefits would be
determinedby theper-capitaGDP(Table S4 andS5). The economic impact,
as a percentage of states’ GDP, would be higher among IGP and low SDI
states. However, these states would experience lower economic benefits
compared to the wealthier states (Fig. 5). The Government of India should
encourage increased expenditures inunderdeveloped states to achieve larger
economic gains in the foreseeable future. Our results also suggest that a
higher contribution from household care (high λ) could lead to greater
economic benefits across states. To facilitate this, India should implement
refinements in wage distributions among the working subgroups, increase
employment, and raise the per-capita wage.

Previous studies adopted the WTP method to estimate economic
welfare losses and have reported higher estimates of productivity losses
(0.5–1 trillion Euros) compared to our assessment. The large difference
between these estimates is from the adjustment in life expectancy and age-
specificwealthof valuationmeasure9,14,35.Additionally, this discrepancymay
be due to the fact that the amount people are willing to pay to reduce their
unit-risk of death from air pollution is generally higher than the present
value of lost output (in terms of GDP) over a long time horizon36. Studies
suggested that when regulatory measures disproportionately affect popu-
lations of different-age groups, adopting a uniform valuationmethodmight
not accurately reflect the preferences of the affected population37.Moreover,
the estimated economic impact following the WTP approach does not
segregate the contribution fromprematuredeaths andmorbidity among the
populace, as well as, it does not incorporate the differences in labor force
dynamics and their distributions across various age groups21. Whereas, our
adopted cost-of-illness approach places the framework, which renders the
air pollution-related premature deaths and years lived with disabilities
(YLDs) among working-age groups from other risk factors, and incorpo-
rates various societal components to project the economic impacts under
contrasting climate change scenarios. To add a note, the WTP method is
highly sensitive to the estimated value per statistical life, which varies sig-
nificantly in studies reported in India21. Moreover, the latest India-GBD
study assumes that every individual aged between 15–84 years contributes
equally to the national GDP, which highly overestimates the economic
assessments. We attempt to address this discrepancy by using the sample
weighted per-capita wage from the NationalMental Health Survey [https://
ruralindiaonline.org/en/library/resource/national-mental-health-survey-
of-india-2015-16-summary/] as a proxy to differentiate GDP contributions
among various age groups between 15 and 70 years (Fig. S11). Air pollution
control in India should be viewed not merely as expenditure but as an
essential investment for the country’s future economic growth. Strength-
ening current efforts to manage and prevent air pollution will help avoid
substantial economic losses across Indian states.

Our results indicate that the composite share of secondary PM2.5 will
rise more rapidly under the BAU pathway and remain substantial even
under the 2°C-WS scenario. While India’s current clean air action plan
primarily targets primary PM2.5

38, greater emphasis must be placed on
reducing precursor gas emissions to achieve larger health benefits. Realizing
the full social, economic, and health co-benefits of cleaner fuels and
advanced control technologies will require accelerated policy incentives to
overcome barriers to adoption. In the GAINS-model framework, precursor
emissions are aggregated into a total secondary PM2.5 estimate rather than
apportioning them across the sectors25. Global CTM-based studies, as well
as a few regional assessments for India and South Asia, have allocated
precursor emissions across specific sectors and combined them with pri-
mary PM2.5 to estimate total sectoral contributions31–34. Therefore, sector-
specific apportionment of secondary PM2.5 is not available in the existing
literature.A subset of these studies aggregatedprecursor emissions into total
secondary PM2.5 estimates over India31,32, consistent with our modeling
framework. However, such approaches are subject to critical limitations,

including discrepancies in representing complex atmospheric processes,
substantial uncertainties in emission inventories, constraints in spatial
resolution, andveryhigh computational demands33. By contrast, theGAINS
model is a reduced complexity model that employs parameterization
schemes to approximate the complex interactions between physio-chemical
processes and sectoral emissions, while substantially reducing computa-
tional costs25. This framework enables long-term projections of precursor
emissions, such as those presented for 2050 in this study. Nonetheless, we
acknowledge that applying the brute-force method to apportion secondary
PM2.5 across individual sectors in such long-term projections could intro-
duce considerable uncertainty and compromise the robustness of our study
outputs. For this reason, secondary PM2.5 is treated as an aggregated
component in both the GAINS-model framework and the present analysis.

We estimate that population factors, its growth and aging, would
cumulatively increase air pollution-related premature deaths by approxi-
mately 150–200% by mid-century, assuming other determinants remain
fixed at their baseline levels (Fig. 2). Consistent with reports from recent
studies20,23, India’s population is expected to expand steadily and age (Fig.
S9), and given that age-distributed population is the most influential driver
in health burden assessments, this demographic shift largely explains the
substantial rise in projected PM2.5-attributable premature deaths. Con-
versely, Goa emerges as a notable exception to this national trend. In this
state, the effect of population aging among older age groups would be offset
by an anticipated decline in overall population size, driven by demographic
and socioeconomic transitions. According to the Census-India projections
[https://ruralindiaonline.org/en/library/resource/national-mental-health-
survey-of-india-2015-16-summary/], Goa is expected to face population
contraction due to a gradual reduction in fertility rate, outwardmigration of
younger adults, and sustained socioeconomic development. As a result, in
Goa, the amplifying influence of population aging would be outweighed by
reductions in population size, baseline mortality rates, and ambient PM2.5

exposure, leading to a net decline in air pollution-attributable premature
deaths under both the BAU and 2°C-WS scenarios.

India, like many LMICs, has been undergoing a socio-demographic
transformation. Currently, the adults and middle-aged (25–69 years) sub-
groups possess the largest population share (>60%) in India. However,
expected population aging and increasing life expectancy may shift the
distribution of population size (25–49 to above 50 years), thereby increasing
vulnerability to air pollution. Relative to the base year 2015, the low SDI
states are expected to undergo larger population growth and aging or a shift
in age-structure by mid-century (Fig. S9). For instance, in 2015, the popu-
lation shares of the over-50-year age group across the low,middle, and high
SDI states were 46.9%, 27.4%, and 25.7%, respectively; and are projected to
change to 49.8%, 26.5%, and 23.7%, respectively, by mid-century (Fig. S9).
Along with these, the BMRs (per 100,000 population) for IHD, T2D, and
COPD are expected to increase substantially by mid-century (Fig. S4). The
cumulative effect from these three determinants would pull up the ambient
PM2.5-related health burden in India, especially across the low and middle
SDI states, despite only minor changes in ambient PM2.5 exposure level
under the BAU scenario compared to the baseline.

India possesses one of the highest BMRs globally for middle-aged and
older populations4. To protect human health in the foreseeable future, our
core findings imply that India must implement immediate mandates to
strengthen healthcare infrastructure and integrate clean-air and climate
actions with major health policies targeting to address other co-risk factors
fornon-communicable diseasesbypromotinghealthydiet, physical activity,
and lower stress39–42. These interconnected social barriers of climate, air
pollution, and health need to be tackled urgently to accelerate the potential
to achieve the envisioned SDG targets, as recommended in the latest NITI-
Aayog report43.

Our study has several limitations. First, we project the age-specific
BMRs at the subregional level, assuming the same trend would be followed
as per the projected national estimates (2020–2040, GBD-India Foresight)
[https://vizhub.healthdata.org/gbd-foresight/]. The temporal change
(increasing or decreasing) of BMRs shows linear trends over the last three

https://doi.org/10.1038/s44407-025-00031-8 Article

npj Clean Air |            (2025) 1:30 7

https://ruralindiaonline.org/en/library/resource/national-mental-health-survey-of-india-2015-16-summary/
https://ruralindiaonline.org/en/library/resource/national-mental-health-survey-of-india-2015-16-summary/
https://ruralindiaonline.org/en/library/resource/national-mental-health-survey-of-india-2015-16-summary/
https://ruralindiaonline.org/en/library/resource/national-mental-health-survey-of-india-2015-16-summary/
https://ruralindiaonline.org/en/library/resource/national-mental-health-survey-of-india-2015-16-summary/
https://vizhub.healthdata.org/gbd-foresight/
www.nature.com/npjcleanair


decades for the six concerneddiseases; however, theprojected estimatesmay
deviate depending upon the long-term effects of various socio-demographic
factors and potential interventions adopted by the national and state gov-
ernments. Secondly, we assume that the present-day non-linearity in the
MR-BRT exposure-risk functions (ERFs) would hold true for the future as
well. Third, we consider that PM2.5 toxicity in the MR-BRT splines used to
estimate RR would hold true in the future decades as well. RRs in the MR-
BRTdependonly on thePM2.5mass concentration, not on the composition,
and integrated dose-response functions do not yet exist to address this.
Fourth, theGAINSmodel incorporated only thenational policies and action
plans for forecasting the sectoral contributions to total PM2.5 under different
emission pathways. Though state-specific action plans are broadly aligned
with national policies, there could be new technologies in the future for
emission controls. Fifth, since the brute-force method inherently accounts
for non-linear response among source and the receptor, in the GAINS-
modeling framework, a linearized approach is assumed for the transfer
coefficients in order to assess the dispersion of sectoral contributions;
although, the aggregated PM2.5 from the sources showed strong correlation
with the ground-basedmeasurements over subregional-level in India, if not
much at the grid-level in some parts of the country; this justifies that line-
arized approach could be used for the source apportionment of ambient
PM2.5 across the sectors. Sixth, for 2050, estimating natural contributions
involves significant uncertainty due to limited knowledge of how emissions
fromnatural sourcesmay evolve under climate change scenarios.Hence, the
baseline contribution is considered across sub-regions for the mid-
century25. As the emissions from sources contributing to primary PM2.5

are expected to decline, marginally under BAU but significantly under 2°C-
WS, the relative contribution from natural sources appears to increase.
Seventh, ourGAINS-model frameworkdoesnot apportion secondaryPM2.5

across individual emission sectors, as applying a brute-force method for
sectoral attribution over long timehorizons (such as 2050 in this study)may
introduce substantial uncertainties inmodel outputs, primarily due to a lack
of comprehensive representations of atmospheric physio-chemical pro-
cesses and limitations in emission inventories with high spatio-temporal
resolution. To preserve the robustness of the results, secondary PM2.5 is
therefore treated as an aggregated component in this study. Note that
subregional source apportionment of secondary PM2.5 in India by inte-
grating updated emission inventories and sector-specific emission factors
into the GAINS model framework will be presented in a separate study.
Lastly, we assume the states belonging to high,middle, and low SDI states in
the base year 2015 will have socioeconomic upgradation at similar rates till
2050; thus, we categorize the states for mid-century as per their socio-
economic status in the baseline. We lack the projected data for mean edu-
cation and fertility rates among women across the states; thus, we could not
calculate the projected SDIs for the states till mid-century.

We recommend three important areas for additional research. First,
more detailed and comprehensive impact assessments are required to
understand the overall implications on health and prosperity. This means
combining the assessment of air pollution with health and economic impacts
performed in this study with additional assessments of other climate stres-
sors, such as heat, changes in diet affected by nutritional pathways, and
extreme events.While the global studies have tried to synthesize the literature
findings in multi-dimensional impacts44,45, many of them do not always use
consistent assumptions and modeling frameworks, making the quantitative
assessment challenging. More importantly, new modeling capabilities are
needed to address these complexities. For instance, the energy and emission
scenarios used in this study are constructed without the feedback loop that
future climate deterioration may have on overall socioeconomic develop-
ment. Thus, our projected GDP could be overestimated, and a fossil-fuel-
intensive future (i.e., BAU)might result in higher BMRs and amanifold sub-
population-level vulnerability. Therefore, our assessment of air pollution-
related health impacts may underestimate the true health impacts. Although
it goes beyond the scope of our study to estimate this feedback, future studies
may incorporate these complex system dynamics to identify potential
synergy and trade-offs between competing societal goals.

Secondly, the local heterogeneity in air pollution and health impacts
may persist in the future and could even widen. Slower economic growth
may delay the implementation of air pollution control measures, leading to
higher pollution levels. It could also be due to slower improvements in
healthcare facilities, which might exacerbate the health burden from pol-
lution exposure46. Moreover, a transition towards decarbonization requires
capacity building in the low SDI states to facilitate leapfrogging towards
cleaner and more advanced yet energy-expensive choices. Incorporating
insights from relevant social sciences and demography may strengthen the
modeling framework of interactions between environmental policies,
socioeconomic drivers, climate, and health. A wide range of determinants
can influence the health burden in the future climate. For instance,
improvements in educational attainment could accelerate economic
growth, which could directly affect the drivers for air pollution and health,
energy demand and distribution, policy efforts, and life expectancy46,47.
Future research should leverage these evolving scientific findings and
explore ways to quantitatively bridge the coupled human-natural systems.

Finally, more robust scientific evidence is needed to address the
uncertainties encountered in this study. We use the MR-BRT ERFs to
estimate the air pollution-related health burden, which needsmodifications
at a local scale and improvement of the functions specific to the Indian
context. Age group-specific ERFs for other diseases (COPD and T2D) need
to be elaboratedwhile incorporatingmore scientific evidence, strengthening
the research ecosystem, and deploying regional cohorts. Our core insight is
that socio-demographic factors influence public health effects; hence, a
more complex modeling framework is required to project the BMRs while
incorporating these determinants, which are now known to have a strong
influence on these estimates11,48. Modeling uncertainties in simulating the
effects of local and regional sectors onPM2.5 exposure needs to be evaluated,
along with deep uncertainties on the socioeconomic and technical systems
that may influence precursor emissions and population vulnerabilities.

Methods
GAINS model framework and exposure attribution
Our current analysis utilizes sector-specific PM2.5-concentrations across the
23 subregions reported by Purohit et al.25 using theGAINS (Greenhouse gas
—Air pollution INteractions and Synergies) model for the base year 2015
and projects for mid-century under two contrasting emission pathways,
namely BAU and 2°C Warming Scenario (2°C-WS). The model incorpo-
rates various emissions control options and has previously served as a tool
formanaging air quality in Europe49 andChina50. The year of 2015 has been
considered as the “baseline” in the GAINS model framework, as it was the
onset of the Sustainable Development Goals (SDGs) millennium[https://
sdgs.un.org/goals], when India embarked on implementing stricter air
pollution and climate control policies and interventions in view of achieving
several “SDG targets” by 2030 and more importantly, meeting the aspira-
tional “Net-Zero target” by 207051. Since the year 2020 was significantly
impacted by COVID-19 lockdowns, leading to unusual emission levels, we
chose 2015 as the baseline year for our analysis to ensure a more repre-
sentative starting point. In addition, the year 2015marked the introduction
of significant air pollution control policies and regulations in India51.
Among many, the significant ones are the Pradhan Mantri Ujjwala Yojana
(PMUY), launched inMay 2016, which sought to provide deposit-free LPG
connections to adult women from economically disadvantaged households,
benefiting over 100 million households to date. In 2016, the Ministry of
Environment, Forest and Climate Change (MoEFCC) revised the Solid
Waste Management Rules to enhance waste collection, segregation, pro-
cessing, and disposal practices. The National Green Tribunal (NGT) also
banned agricultural residue burning in Delhi and neighboring states in
December 2015. Using 2015 as a baseline, this study evaluates air quality
trends, intervention effectiveness, and emission changes across BAU and
2°C decarbonization scenarios. Energy and transportation activity projec-
tions for India, generated using the customized Global Change Assessment
Model (GCAM), are integrated into the GAINS model to simulate the
current and future PM2.5 levels under both BAU and alternative
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scenarios25,52. The BAUpathway considers both the existing and planned air
pollution control policies and regulations to remain unchanged in the
foreseeable future, as per the baseline. In contrast, the 2°C-WS pathway
incorporates projections of energy use, energy systems’ transitions, and
economic activities required to keep global warming below the 2°C target41.
The GAINSmodel explored cost-effectivemulti-pollutant emission control
strategies that meet environmental objectives on air quality impacts (on
human health and ecosystems) and GHGs53. This model, developed by the
International Institute for Applied Systems Analysis (IIASA), incorporated
information on future economic, energy, and agricultural growth, emission
control potentials and costs, atmospheric dispersion, and environmental
sensitivities toward air pollution25,53,54. It explored, for each of the source
regions considered in themodel, the cost-effectiveness of >2000measures to
control emissions to the atmosphere49. It computed the atmospheric dis-
persion of pollutants and analyzed the costs and environmental impacts of
pollution control strategies53. In its optimization mode, GAINS identified
the least-cost balance of emission control measures across pollutants, eco-
nomic sectors and countries that meet user-specified air quality and climate
targets49,55.

Additionally, GAINS modeled current and future activity projections
for industrial processes, agriculture, waste, and other sectors54. The Indian
version of GAINS model has a disaggregated representation of
23 subregions56, where the emission for a particular emission scenario is
considered (1) the detailed sectoral structure of the sources, (2) their tech-
nical features (fuel quality, plant types, etc.), and (3) the emission control
measures applied. It also took into account the spatial heterogeneities in
emissions and their transport, and incorporated the physio-chemical pro-
cesses involved in the modeling framework. GAINS model first estimated
emissions of primary particulates and secondary precursor gases from
various sectors, utilizing socioeconomic and demographic drivers as inputs.
Subsequently, the annual population-weighted PM2.5 exposure was esti-
mated by employing transfer coefficients constrained by chemical transport
model simulations at a much lower computational cost, which allowed
consideration of multiple emission control strategies25. Due to their small
size, PM2.5 particles remain in the atmosphere for several days and are
transportedwith the wind over several hundred to thousands of kilometers.
To represent this long-range transport of pollution, GAINS considered the
contributions from emissions within the particular subregion as well as the
inflow from its neighboring subregions, from the rest of India, and neigh-
boring countries. For this purpose, transfer coefficients were used to
describe the impacts of emission changes from each source region and
pollutant on ambient PM2.5 concentrations throughout the model
domain57,58. These coefficients have been derived from brute-force pertur-
bation simulations with the EuropeanMonitoring and Evaluation Program
(EMEP) chemistry transport model59, in which, for the meteorological
conditions of the baseline (2015), emissions of one pollutant (primary
PM2.5, SO2, NOx, NH3, NMVOC) across each subregion were reduced by
15% at a time for sensitivity assessment, considering the non-linear
chemistry. To properly account for the different dispersion behavior of
near-ground sources, emissions from urban and rural low-level (residential
+ traffic) PPM were reduced separately53.

The linearization of atmospheric calculations was a simplification that
has been used in all regional implementations of GAINS so far, as it enabled
efficient scenario comparison as well as source attribution due to faster
computational times; it also ensures that the sum of sectoral contributions
automatically equals the total PM2.5 concentrations. The linear assumption
in transfer coefficients for exposure dispersion has shown reasonably good
performance in high emission scenarios for Asia. Amann et al.53 have
compared the EMEP CTM-model simulated estimates with the resulting
concentrations when using the linear approach transfer coefficients. This
illustrates the point that, compared to total ambient PM2.5 concentrations,
particularly when including natural dust, the biases of the linear approach
seem acceptable (Fig. S10) also for a low emission scenario, as long as results
are interpreted at the region level and not for individual grid cells. The lower
level of uncertainty is due to the variation in the dust composition, especially

in the Indian context, while the errors appear to be distributed fairly ran-
domly in China60. The potential uncertainties by this step have been dis-
cussed in previous literature49; however, biases were small enough to justify
the use of the linearization approach tomodel the local to regional transport
of the pollutants. The brute-forcemethod adopted in theGAINS framework
inherently accounts for non-linear model response during the source
apportionment method61, thus may suffer limitations when the model
response includes an indirect effect resulting fromthe influenceof chemicals
other than the primary precursor. However, the error is less for secondary
aerosols, the source apportionment methods responded nearly linearly to
the emission reductions (up to 20–100%). Because the source-receptor
relationship for primary-PM is essentially linear and not affected by the
indirect effects, Koo et al.61 have reviewed multiple studies using the brute-
force method and reported that the linearized assumption across those
CTM-based studies has obtained very good agreement with the in-situ
measurements of ambient PM2.5, especially when estimating the secondary
PM2.5 source contributions. This justifies that the linearized approach could
be accepted (with reasonable confidence) for the source apportionment of
ambient PM2.5, which simplifies the non-linear interactions among PM2.5

and the meteorology. The model is run over the whole south-east Asian
region with a spatial resolution of 0.1° × 0.1° (~10-km × 10-km) for most
emission sources [except for high-stack emission, the model ran over a
spatial resolution of 0.5° × 0.5° (~50-km × 50-km)], giving combined esti-
mates of PM2.5 concentrations at 0.1° resolution. These air pollution esti-
mates are then overlaid with gridded population to assess the population-
weighted PM2.5 exposure across the 23 subregions of India. Supplementary
Fig. S1 depicts the modeling framework of the GAINS-simulation. The
model simulates ambient PM2.5 concentrations under two air pollution
emission pathways (Table 1).

We use the GAINS model to estimate population-weighted annual
exposure to ambient PM2.5 in the baseline and projected for the future
scenarios. For each state, contributions of emissions from within the state,
from neighboring states (with which each state shares its borders), from
other states within India (long-distant states; not sharing borders), outside
India (transboundary pollution), and natural sources are identified in the
GAINS model as the emissions from a given source sector, pollutant, and
region, multiplied with the appropriate transfer coefficient. Further, the
sectoral contributions are segregated among the primary and secondary
PM2.5 (Table 1) for each state; and then, the primary-PM2.5 is apportioned
into sevenmajor sectors including the natural sources (emissions fromnon-
anthropogenic sources; primarily fromwind-blowndust, sea salts, andother
natural sources), power plant (coal-fired or other biofuels-sourced energy
sectors), industry (emission from the brick kilns), domestic (emissions
attributable to all types of household activities), transport (all types of
roadways vehicular sources and shipping emissions), waste (emissions from
the waste-treatment sectors), and biomass burning (emissions due to agri-
cultural residue burning). States with arid and semi-arid regions, such as the
Rajasthan desert, the Rann of Kutch, and areas influenced by the rain
shadow of the Western Ghats (including Maharashtra, Karnataka, and
Tamil Nadu), exhibit the highest contribution from natural dust. While
estimates of natural dust emissions have inherent uncertainties, the overall
concentrations align reasonably well with observed data. Previous studies
have reported that natural-sourced ambient PM2.5 possesses critical health
risk among Indian populace31–33, hence it is necessary to estimate health
impacts attributable to natural sources. The secondary PM2.5 is the aggre-
gated PM-composition sourced from precursor gases (SOx, NOx, NH3, and
NMVOC) across all primary-emission sources. For a detailed description of
the sectoral emissions and their considered sources, refer to Purohit et al.25.
The sectoral contributions to primary particulates are estimated by turning
off primary PM emissions from that sector through each successive simu-
lation. For each sector, across the local to regional sources, the emission
estimates are multiplied by their corresponding transfer coefficients to
obtain the PM2.5 concentrations, respectively.

We validate the GAINS-simulated PM2.5 exposure at 10-km × 10-km
scale against satellite-derivedPM2.5 exposure

16 across 23 subregions of India
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for the base year 2015. Since the satellite-PM2.5 is available at 1-km × 1-km
scale, it is re-gridded to match the 10-km × 10-km GAINS scale. We esti-
mate a statistically significant correlation (r = 0.75, p < 0.001) and a root
mean square error (RMSE) of 22.8 µgm−3 (Fig. S14), suggesting that the
GAINS-simulated exposure outputs can be used for subsequent analysis.

Estimation of health burden apportioned to local and regional
PM2.5 contributions from various sectors
We use the Global Burden of Disease (GBD) framework4,24 to estimate the
impact of PM2.5 exposure onhealth,measured in terms of premature deaths
and DALYs.We use six diseases for our health burden assessments namely
ischemicheart disease (IHD), stroke, chronic obstructive pulmonarydisease
(COPD), and type-2 diabetes (T2D) for adults (>25 years); lower respiratory
infection (LRI), and preterm birth (PTB) for children (<5 years). Our esti-
mations consider sectoral contributions of PM2.5 for baseline and for 2050
under theBAUand2°C-WSscenarios.Theanalysis is conductedacross four
different age groups: children (<5 years), adults (25–49 and 50–69 years),
and the elderly (70+ years), focusing on various states of India. For each
state, age group, and disease type, the premature deaths and DALYs asso-
ciated with chronic exposure to ambient PM2.5 were estimated as,

Health� burden ¼ POP×BMR ×PAF ð1Þ

Where BMR is the baseline mortality or DALYs rates (per 100,000
population) for the age-distributed population-at-risk, PAF is the popula-
tion attributable fraction, and POP is the exposed population. PAF is cal-
culated as (1 - 1

RR), where RR is the relative risk attributable to mean
population-weighted PM2.5 exposure. The data sources and methods for
each parameter are described below.

POP. We obtain an age-distributed population [child (< 5 years), adults
(25–49 and 50–69 years, respectively), and aged (70+ years)] for the
baseline from the census projected report of India [https://
ruralindiaonline.org/en/library/resource/national-mental-health-
survey-of-india-2015-16-summary/]. We interpolate the state-specific
population estimates for 2015 from the census projected report at every
5-year interval between 2011 and 2036. To project the age-distributed
population for the states by mid-century, we fit the auto-regressive
integrated moving average (ARIMA) function among the population
estimates (2011–2036) and extrapolate the non-linear function (higher
order) till mid-century.

BMR. To obtain the disease-specific BMRs (per 100,000 population), we
first extract the BMRs for 2015 by states, both genders combined, and
different-age groups [child (<5 years), adults (15–49 and 50–69 years),
and aged (70+ years) population]. For the disease-specific BMRs at the
state level for 2050, wefirst fit a higher-order ARIMAmodel on the BMRs
estimates obtained from GBD-India Foresight from 2020 to 2040
[https://vizhub.healthdata.org/gbd-foresight/], and then apply this
function to project the disease-specific BMRs for mid-century while

taking the initial values as of 2019 (Fig. S4). To cross-check the validity of
this mapping method, we perform this operation (higher order ARIMA
model-fit) on the GBD-India estimates from 1990 to 2019 compiled in
the GBD-India study21 against the rates reported by the GBD study and
found that they are highly comparable for premature deaths and DALYs
(Fig. S15), which validates our statistical model selection.

PAF. The RRs of premature deaths from IHD, stroke, COPD, T2D, LRI,
and PTB at different PM2.5 exposure levels are obtained using the meta-
regression Bayesian, regularized, trimmed (MR-BRT) functions.
Reportedwith 95% confidence intervals (CIs), theRRs are age-specific for
IHD and stroke (25 to 95+ years with 5-year intervals) and are for all age
groups combined for other diseases. We consider the theoretical mini-
mum risk exposure level between 2.4 and 5.9 µg m−3, as reported in recent
GBD-India studies4,21,24,26. To estimate the health burden attributable to
emissions from local and regional sources, we consider the difference in
estimated health burden from total PM2.5 of a state (considering all
sources from all regions) and the estimated burden from PM2.5 without
emissions from that specific sector or region. This methodmay result in a
slightly lower estimate as compared to the attributable burden from total
PM2.5 because of the flatter exposure-risk functions (ERFs) at higher
exposure24. However, this technique conserves the facts that PAFs are
non-additive and the non-linearity of ERFs if we attribute the health
burden among the sectors using their proportional shares to total PM2.5

exposure across the subregions. More importantly, this method is con-
sistent with the GAINS-modeling framework of attributing the PM2.5

contributions from the sectors. To add a note, we consider the same
health burden estimates (premature deaths and DALYs) attributable to
the natural sources, under BAU and 2°C-WS, as per its baseline estimate
across the subregions.

We report findings of burden apportionment analysis from 23 major
geographical units in India and exclude the smaller union territories (UTs)
in this study, as air pollution exposure is not simulated for these regions.We
classify the states into three socio-demographic indices [low SDI (≤0.53),
middle SDI (0.54–0.6), and high SDI (>0.6)] as presented in the GBD-India
study26 using a combination of log-distributed per-capita income, mean
education (15 years or above), and fertility rate in women (<25 years). We
report premature death estimates with 95% confidence intervals (CIs) in the
main manuscript and the DALYs in the SI.

Isolating the effects of socio-demographic drivers
Following the GBD framework, four socio-demographic determinants play
dominant roles in air pollution attributable health burden (premature
deaths and DALYs) within any geographic region4,24. First, the attributable
relative risk (RR) corresponding to different levels of ambient PM2.5 expo-
sure; secondly, the baseline mortality or DALYs rates (per 100,000 popula-
tion), and two population factors, namely the size of various age groups and
the shift in age-structure or the aging factor, as these are critical for ambient
PM2.5-related health risks for different diseases9. Previous studies have
formulated the metrics to segregate the relative contribution from each

Table 1 | Description of the two GAINS model pathways and emission scenarios

GAINS Pathways25 Description

Business-as-Usual (BAU) Considers thesocioeconomic, demographic, and theexistingandplannedair pollution control policies,measures, regulations thatwill
resume in the future following the current practices.

2°C Warming Scenario (2°C-WS) The 2°C-WS pathway incorporates projections for energy consumption, the transformation of energy systems, and economic
activities within the framework of devising strategies to keep the warming level below 2°C temperature increase by the year 2100.
Furthermore, it assumes the complete implementation of advanced emission control technologies.

Emission scenarios Sectors

Local vs regional contributions Emissions from the state itself, from the neighboring states, from other states within India, from outside India or transboundary
pollution, and natural sources.

Sectoral contributions Segregated into primary emissions (natural sources, power plants, industry, domestic, transport, waste, and biomass burning) and
secondary PM2.5.
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socio-demographic determinant on the changes in air pollution-related
health burden9,62, whichwe adopt in this study to identify key determinant/s
that may have larger impacts on the changes in health burden across the
subregions for the concerned diseases. For each subregion, we calculate the
percent contribution of the four socio-demographic factors to projected
changes in health burden - effect of population growth and aging (change in
age-structure), effect of exposure change (followingBAUand2°C-WS), and
the effect of changes in baseline mortality/DALYs rates which could be due
to changes in health infrastructure, treatment, and care9,62.

To calculate the effect of each determinant contributing to changes in
aggregated health burden in 2050 relative to 2015, we first estimate the total
health burden attributable to air pollution in 2015 and inmid-century from
the health impact assessment described in the previous section,

Health burden2015 ¼
X
a

Pop2015a ×BMR2015a ×PAF2015a ð2Þ

Health burden2050 ¼
X
a

Pop2050a ×BMR2050a ×PAF2050a ð3Þ

Where Pop is the age-distributed population, BMR is the baseline
mortality/DALYs rate, PAF is the population attributable fraction corre-
sponds to the individual population-weighted mean exposure of the states,
and a is the four different-age groups considered in our study.

We then estimated,

PG ¼
X
a

Pop2050a ×

P
aPAF2015a ×Pop2015aP

aPop2015a
×PAF2015a�all ages ð4Þ

PA ¼
X
a

Pop2050a ×BMR2015a ×PAF2015a ð5Þ

HBBMR ¼
X
a

Pop2050a ×PAF2050a ×
1� PAF2050a

1� PAF2015a
×PAF2015a ð6Þ

Using the Eqs. (2) to (6), we estimate the percent contribution of each
determinant as follows,
• Effect (%) of population growth: (PG—total aggregated health burden

in 2015) / total aggregated health burden in 2015
• Effect (%) of population aging: (PA - PG) / total aggregated health

burden in 2015
• Effect (%) of change in baselinemortality/DALYs rate: (HBBMR—PA) /

total aggregated health burden in 2015
• Effect (%) of exposure change: (total aggregated health burden in

2050–HBBMR) / total aggregated health burden in 2015

And lastly, total attributable change (%) = (total aggregated health
burden in 2050—total aggregated health burden in 2015) / total aggregated
health burden in 2015

Estimation of economic consequences due toPM2.5-attributable
health burden
We compute the Gross State Domestic Product per worker (Yi/Li) by
dividing theper-capitaGDP(Yi/Ni) in state iby the ratio of activeworkers or
laborers to the total population (Li/Ni). Labors’ share of GDP (α) is assumed
to be the same for all the subregions, based on the World Bank estimate of
0.544 for the baseline period (2015)63. In the mainmanuscript, we show the
economic assessments computed with α value of 0.544 for mid-century;
however, α may vary in the future, and we report the results of sensitivity
analyses with different estimates of α (in the range of 5–20%) in Table S6.
Recent economic assessments have projected that the labor share of GDP
may reduce in the foreseeable future due to the upgradation of socio-
economic status in low and middle-income countries, including India64,65.

Other parameters that vary by state are the ratio of workers to the total
population and age-specific survival rates (πij). For the base year 2015, we

assume that the Census 2011-derived Total Worker to Total Population
ratio persisted till 2015 across the states and used the state-specific estimates
of Active Workers to Total Population ratio for 2050 from a recently
published work focusing on India49. We use the per-capita wage for the
individual age groups between 15 and 70 years as a proxy to segregate their
contributions to net productivity [https://cdn.who.int/media/docs/default-
source/searo/india/health-topic-pdf/summary.pdf]. Our higher-order
polynomial function (degree = 8) shows that the contribution to GDP-
share ismaximum for the age groups of 40–60 years and reduces among the
lower and higher age groups [r = 0.78 (p < 0.001), relative RMSE = 33.7%;
see Fig. S12]. To estimate the annual survival rates from age j for each
suffered individual, the life expectancy is takenas 72 for 201522,23 and assume
to be 75 years by mid-century[https://ourworldindata.org/]. Then, the
survival probability (πij) from age j is computed using the life table provided
by the GBD 201921.

The present discounted value of lost output depends on the rate of
growth in output per worker (g) and the discount rate (r). We use the
KLEMS database to estimate these rates66. For the baseline, the real rate of
per-capita income growth of the workers over the period 1990–2000 to
2014–15 is 6.47%. Adjusting this for the rate of growth of the working force
over this time domain yields an annual rate of growth in output per worker
of 4.83%44. The rate of interest (r) is chosen to be 6%, the rate of return on a
10-year government bond in India.We assume the ratio of [(1+g)/(1+r)] to
be 0.989 for all combinations of g and r in our analysis, both in the base year
2015 and in the mid-century.

The present discounted value of loss in GDP attributable to PM2.5-
related premature deaths for the baseline period and for mid-century is
calculated as follows. The loss in GDP in state i, if a worker dies, is equal to
labor’s share of GDP (α) multiplied by GDP (Yi), divided by the number of
persons who are working (Li). Because not all persons of age j are working,
the expected value of GDP per worker for a person of age j (Wij) is equal to
(αYi/Li) times the ratio of the number of workers of age j, Lij to the popu-
lation of age j, Nij,

W ij ¼ ðαY i=LiÞ× ðLij=N ijÞ ð7Þ

To calculate the loss in market and non-market outputs for the study
periods, Eq. (7) is modified to allow for household production (λ). For the
base year 2015, we consider the household production to be 30% of the
overall GDP, whereas, for mid-century, we perform our analysis with the
share of non-market output (λ) of 0.3 as well, but conduct a series of
sensitivity analyseswith various combinations of λ (0.25 to 0.35) [Table S6].
Therefore,W’ij is calculated as,

W ’ij ¼ ðαY i=LiÞ× ðLij=N ijÞþλjðαY i=LiÞ× ½1� ðLij=N ijÞ� ð8Þ

Here λj represents the fraction of output attributable to non-market
production for a person of age j. We considered that children (<15 years)
and the older population (70 and above) would not contribute to both the
market and non-market outputs. Hence, the terms Lij/Nij and λj are taken as
zero in Eq. (8) for these population age groups for every state.

If a person of age j dies in the current year, their contribution to GDP
will be lost for all future years of their working life. To compute the GDP for
the baseline, we use the Reserve Bank of India’s Handbook of Statistics
report for 2015–16 for the states and assume a moderated growth of 6.7%
(per year) in the future years, consistentwith theprojectionofNITI-Aayog’s
between 2012 and 204743, which is also incorporated in the recent GAINS
model framework for India25.We also assume that the labor’s share of GDP
and the fraction of the population of working age (Lij/Nij) would remain
constant for all i and j. This implies that lost GDP at age t of a person
currently of age j will equal (αYi/Li)×(Lit/Nit)×(1+ g)t-j. This must be
weighted by the survival probability of an individual to age t, whereπijt is the
probability that a person of age j in state i would survive to age t (LE). The
value of GDP lost in the future is discounted at the annual rate r.

https://doi.org/10.1038/s44407-025-00031-8 Article

npj Clean Air |            (2025) 1:30 11

https://cdn.who.int/media/docs/default-source/searo/india/health-topic-pdf/summary.pdf
https://cdn.who.int/media/docs/default-source/searo/india/health-topic-pdf/summary.pdf
https://ourworldindata.org/
www.nature.com/npjcleanair


Incorporating the previous assumptions, the present discounted value
of lostmarket andnon-market output for a person of age j in state iwhodies
in the baseline period and in mid-century, PVij, is

PVij ¼
XLE
t¼j

πij;t × α
Y i

Li

� �
×

Lit
Nit

� �
þ λj α

Yi

Li

� �
× 1� Lit

Nit

� �� �� �
×

1þ gt
1þ rt

� �t�j

ð9Þ
Equation (9) is calculated based on the value of j = 15–70 years, fol-

lowing the assumption ofα, λ, g, and r discussed above. The total output lost
due to air pollution is the parameter PVij, the number of deaths due to air
pollution in the baseline period and in mid-century of persons of age j in
state i, summed over all j. The 95% confidence intervals (CIs) for total
economic losses due to air pollution are calculated using the con-
fidence intervals of estimated air pollution-related premature deaths
in our analysis.

The lost output due to morbidity associated with air pollution in
2015 is computed bymultiplying the number of years an individual lost
their healthy life (YLDs) associated with air pollution in the base
year 2015 and in the mid-century. We extract the state-specific
YLDs for 2015 from India-GBD estimates4,24, and assume the
estimates for different-age groups would change till mid-century
(either increase or decrease) as per the rates of India, projected in the
GBD-India Foresight[https://vizhub.healthdata.org/gbd-foresight/].
The output loss associated with morbidity for persons of age j in state i,
Mij is given by,

Mij ¼ W ’ij ×YLDij ð10Þ

Morbidity losses, summedacross all age groups, are reported across the
subregions. We report the 95% confidence intervals (CIs) of the estimated
monetary losses in accordancewith the confidence intervals reported in our
analysis. So, to summarize, the net lost output in human capital due to air
pollution-related premature deaths andYLDs isPVij+Mij for persons of age
j in the state i.

We compare our model-estimated state-specific economic losses for
2015 (Table S7) with the India-GBD estimate21 for 2017 across the 23 sub-
regions considered in our analysis and find a statistically significant corre-
lation (r = 0.92, p < 0.001) within the uncertainty ranges (see Fig. S16). The
aggregated economic losses are lower following ourmethod as compared to
the India-GBD estimates, possibly due to lower age-distributed population
sizes in 2015 (relative to 2017 by India-GBD) and segregated contributions
to productivity from different-age groups (15–70 years) adopted in our
analysis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Source data are provided with this paper, as a Source data file and is
deposited in the figshare under accession code [https://doi.org/10.6084/m9.
figshare.27135846]. The demographic and epidemiologic information used
in this study can be accessed using the same figshare accession code. Python
codes for thedata analysis in themain text andSI are available at [https://doi.
org/10.6084/m9.figshare.27135846].
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