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ABSTRACT
This paper provides a comprehensive analysis of the forecastability of the real price of natural gas in the United States at the
monthly frequency considering a universe of models that differ in complexity and economic content. We find that considerable
reductions in mean-squared prediction error relative to a no-change benchmark can be achieved in real time for horizons of up
to 2 years. A particularly promising model is a vector autoregressive (VAR) model that includes the fundamental determinants of
supply and demand for natural gas. To capture real-time data constraints of these and other predictors, we assemble a rich database
of historical vintages from multiple sources. We also compare our model-based forecasts to model-free forecasts provided by experts
and futures markets. Given that no single forecasting method dominates, we show that combining forecasts from individual models
selected in real time using the model confidence set as a novel criterion for dynamic model selection delivers the most accurate
forecasts.
JEL Classification: C11, C32, C52, Q41, Q47

1 | Introduction

Natural gas is an important primary source of energy that is used
across all sectors in the economy in varying amounts: It is one
of the most popular fuels for residential and commercial heating,
it plays a major role in electricity generation, and it has a myr-
iad of industrial uses such as feedstock for fertilizer, hydrogen,
and other petrochemical products, and as heat source for steel,
glass, and paper manufacturing. Natural gas is also considered
the “cleanest” among the traditional fossil fuels given that it pro-
duces less carbon dioxide when it is burned compared to coal
or petroleum, and thus, it takes center stage in reducing pollu-
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tion and fostering the energy transition. Given that natural gas
plays such a critical role in today’s energy system, price develop-
ments in the natural gas market matter significantly for a range
of energy and environmental policies since they directly impact
the costs of power generation and input factors firms face and the
electricity and gas bills households pay, which in turn will influ-
ence firms’ and consumers’ energy choices. They also drive policy
decisions regarding the energy mix, the promotion of renewables,
the supply of affordable energy, infrastructure development, tax
subsidies, and energy security. Thus, to design and implement
such policies, it is key for federal and state governments as well
as other stakeholders such as environmental organizations, util-
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ity and clean power companies, regulatory agencies, and natural
gas producers to have access to reliable forecasts of natural gas
prices.

There exist few sources that can be tapped for obtaining regular
forecasts of the price of natural gas. The US Energy Information
Administration (EIA) releases monthly forecasts of nominal nat-
ural gas prices in its Short-Term Energy Outlook (STEO) for hori-
zons varying between 1 and 2 years ahead. Besides these institu-
tional forecasts, market-based forecasts can be constructed from
daily trading prices of futures contracts that deliver natural gas
for several years into the future. Yet another strategy is to assume
that the price over the forecast horizon is the same as the one
observed today. However, little is known about the accuracy of
these readily available forecasts.

What is even more surprising is that despite the growing impor-
tance of natural gas as a transition fuel, there have been limited
efforts by researchers to date to explore alternative, model-based
forecasting approaches. One exception is Ferrari et al. (2021)
who forecast a nominal natural gas price index, which is a
weighted average of natural gas prices in the United States,
Europe, and Japan, at the quarterly frequency using a dataset
of around 200 variables for 33 economies whose information
is summarized by a sparse dynamic factor model. They docu-
ment some out-of-sample forecasting success relative to a ran-
dom walk (RW). Another contribution is Gao et al. (2021) who
examine the forecasting ability of monthly autoregressive mod-
els with time-varying parameters and stochastic volatility (SV),
Markov-switching dynamics, and a hybrid of the two for nominal
natural gas prices across regional markets; none of these models
consistently outperforms their autoregressive benchmark.

In this paper, we provide a systematic evaluation of the fore-
castability of the real price of natural gas in the United States
against a common benchmark, considering a broad range of mod-
eling approaches that exploit insights from economic theory, mar-
ket structure, and time-series properties and that differ in com-
plexity and information content. We focus on the United States
given that competitive spot markets have been in place since the
early 1990s, while elsewhere natural gas prices are determined
by long-term contracts linked to oil or other non–market-pricing
mechanisms (e.g., Halser et al. 2023; Hupka et al. 2023; Stock
and Zaragoza-Watkins 2024).1 Our goal is to forecast the monthly
average level of the real price of natural gas for horizons up to 24
months in a real-time setting.

We consider four model classes. First, we investigate the pre-
dictive content of standard univariate models where forecasts
depend only on past price dynamics. In particular, we study the
accuracy of autoregressive, autoregressive-moving average, and
exponential smoothing forecasts. Second, motivated by recently
developed structural models for the US natural gas market
(see Arora and Lieskovsky 2014; Wiggins and Etienne 2017;
Winkler 2023), we explore the predictive power of various
supply-side and demand-side determinants of the real price of
natural gas which we combine in the form of a vector autoregres-
sive (VAR) model. Relevant fundamental drivers include natural
gas production and consumption, the number of active drilling
rigs for gas wells, the amount of gas in underground storage,
measures of meteorological conditions, and domestic economic

activity indicators. Given that most of these predictor variables
are subject to real-time data constraints in the form of publica-
tion lags and revisions to preliminary data releases, one of the
contributions of this paper is to assemble an extensive real-time
database of monthly vintages from multiple sources. Account-
ing for these real-time aspects is crucial to avoid look-ahead
bias when assessing the forecasting performance of economic
models. Mindful that the domestic natural gas market might
be subject to unusual episodes such as extreme weather events
and infrastructure bottlenecks, we examine whether introduc-
ing time-varying volatility impacts the accuracy of natural gas
price forecasts. Third, we consider several energy price models
that are derived from the interaction between natural gas and
oil markets. Because of fuel substitutability in the power sector,
the US natural gas prices are closely tied to the evolution of oil
prices, with both prices moving together in the long run (see
Brown and Yücel 2008; Hartley et al. 2008). We quantify the pre-
dictive ability of price spread models as well as bivariate VAR
models with and without cointegration restrictions imposed.
Given that over time the oil-gas nexus has been affected by tech-
nological advances in power generation, the shale gas revolu-
tion, and shortages of transportation facilities (see Ramberg and
Parsons 2012; Stock and Zaragoza-Watkins 2024), we also exam-
ine the benefit of allowing for regime switches in the relation-
ship between the two fuel prices. Fourth, we propose a hybrid
model that accommodates arbitrage between natural gas and oil
prices as well as fundamental drivers of the natural gas mar-
ket. This integrated-markets model is the most comprehensive
model since it contains both own-market and cross-market deter-
minants of natural gas prices.

Our analysis reveals that several forecasting methods perform
quite well in real time compared to the no-change benchmark for
horizons up to 24 months. At the nearest horizon, using the most
recent daily observation of the natural gas price to forecast the
average price next month delivers the most accurate forecast, but
this approach is superseded at the 3- and 6-month horizons by
more precise forecasts based on futures prices and various eco-
nomic models of the natural gas market that differ in predictor
variables but have in common parsimonious dynamics of order
one. Forecasting the real price of natural gas at intermediate hori-
zons, from 9 to 15 months, is most successful with futures prices,
exponential smoothing, and an economic model that includes the
full set of fundamental drivers. Exponential smoothing remains
competitive at the longest horizons, but adding SV to some of the
economic models also achieves substantial improvements in fore-
casting performance. While these are the most promising models
across horizons, the differences in average performance with the
next best tier of models are often small.

This summary highlights that there is no clear winner in this
forecasting horserace which begs the question of which model
to rely on to produce accurate real-time out-of-sample forecasts.
Since the predictive content of individual models changes con-
siderably over time, we propose a novel criterion that selects the
best-performing models dynamically in real time based on the
model confidence set (MCS) of Hansen et al. (2011). The benefit
of MCS in the current application is that, given a loss function, it
can be applied to any forecast independent of how it has been gen-
erated. We show that the MCS procedure is successful at picking
the relevant models in real time since their pooled forecasts yield
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impressive accuracy gains at all horizons dominating all other
individual forecasting approaches.

The plan for the paper is as follows. Section 2 describes the
forecasting environment and evaluates the performance of three
model-free forecasting approaches. Section 3 proposes a diverse
set of forecasting models and explores their relative merits.
Section 4 conducts a joint assessment of the predictive accuracy of
the entire model space, introduces MCS as a new, versatile tool for
dynamic model selection, and examines its promise for forecast
combinations. Section 5 offers some concluding remarks.

2 | The Forecasting Environment

2.1 | Forecast Target and Evaluation Metric

Our objective is to forecast the average monthly value of the real
Henry Hub spot price of natural gas which serves as the bench-
mark price for the entire North American natural gas market
and parts of the global liquefied natural gas (LNG) market. Daily
and monthly spot prices have been published by the EIA since
1997M1. Monthly data for Henry Hub natural gas prices going
back to 1993M11 were released by the Wall Street Journal (WSJ),
but their publication was discontinued in 2014M3. This series
is made available in the FRED database of the Federal Reserve
Bank of St. Louis. Before that, the natural gas wellhead price,
which is the average sales price across several trading hubs in the
Southwestern United States from which Henry Hub emerged as
the leading pricing point in the early 1990s when it became the
official delivery location for natural gas futures contracts traded
on the NYMEX, was used as the reference price. This monthly
series is provided by the EIA starting in 1976M1 but ceased to be
reported at the end of 2012. We construct a historical natural gas
price series based on the wellhead price for the period 1976M1
to 1993M10, the WSJ Henry Hub price for 1993M11 to 1996M12,
and the EIA spot price from 1997M1 to 2024M2.2

Throughout the analysis, we mimic as closely as possible the sit-
uation of a real-life forecaster who can rely only on the infor-
mation available at the point in time the forecast is generated.
This means working with preliminary data that are subject to
revisions later on and taking delays in data releases into account
to accurately reflect real-time data constraints when assessing
the out-of-sample performance of forecasting methods. Since our
focus is on the real price of natural gas, we deflate the price
by the US CPI in real time. For this purpose, we update the
real-time vintages of the monthly seasonally adjusted US CPI
originally compiled by Baumeister and Kilian (2012) up to Febru-
ary 2024.3 While the nominal spot price is available in real time,
CPI data are published with a 1-month lag; we nowcast the miss-
ing observation using the past average inflation rate.

We produce out-of-sample forecasts for monthly horizons ℎ of
up to 2 years. Model-based forecasts are obtained by recursively
re-estimating the model at each forecast origin 𝑡 based on data
contained in the real-time vintage 𝑡. The evaluation period starts
in February 1997 determined by the EIA’s earliest reporting of
the Henry Hub spot price. Thus, the initial estimation window
runs from 1976M1 to 1997M1 using data from the January 1997
vintage. After generating ℎ-step-ahead forecasts, we move to the

February 1997 vintage which adds one more observation. We
repeat estimation and forecasting for all vintages until February
2024 which is the last available vintage and thus the endpoint of
our evaluation period.

Since our interest centers on point forecasts, we use the
mean-squared prediction error (MSPE) as our metric to assess
the forecasting ability of alternative models. The real-time fore-
casts are evaluated against the final release of the real price of
natural gas which we take to be the values in the May 2024
vintage. The MSPE results of all candidate models are normal-
ized relative to the monthly RW, the established benchmark
in the energy price forecasting literature (e.g., Hamilton 2009;
Baumeister et al. 2017, 2022, 2024; Ferrari et al. 2021). An MSPE
ratio below one indicates an improvement in accuracy, while a
value above one indicates a deterioration in accuracy.

2.2 | Model-Free Forecasts

A question that has been raised recently is whether the monthly
RW is the appropriate benchmark for forecast comparisons of
energy prices. In the context of oil price forecasting, Ellwanger
and Snudden (2023) argue that the end-of-month price is a
stricter benchmark than the average price over the month. This
issue was first examined by Baumeister and Kilian (2014) in
relation to forecasting the quarterly price of oil where they
show that the most recent monthly observation is indeed
tougher to beat than the quarterly average. Ellwanger and
Snudden (2023) arrive at the same conclusion when comparing
the last-day-of-the-month RW forecast with the monthly average.

We start by addressing this question for natural gas price fore-
casts. The first column of Table 1 presents the average MSPE
ratios for forecasts generated using the closing price on the last
trading day of each month deflated by the nowcasted CPI rela-
tive to the monthly average price deflated by the same value for
selected horizons. Using end-of-month prices yields a substan-
tial gain in forecast accuracy at the 1-month horizon with an
MSPE reduction of 33%. This forecasting success is not entirely
surprising given that the last observed daily price contains more
recent information and thus is “closer” to the monthly average of
the subsequent month which explains its superior performance
one month ahead; however, this informational advantage quickly
dissipates. While there is still a small improvement of 2% at
the 3-month horizon, from ℎ = 6 onward, the end-of-month
no-change forecast is dominated by the monthly no-change
benchmark. In sum, for the forecast horizons we are interested
in, the monthly RW remains the relevant benchmark.

A potentially valuable source for forecasting natural gas prices
is the futures market. Since futures contracts make it possi-
ble to lock in a price today for delivery of a fixed quantity of
natural gas at a specified date in the future, the market price
of futures contracts with different maturities can be viewed as
the aggregated expected value of the spot price at expiry (see
Baumeister 2023). Thus, futures prices should have predic-
tive content for future spot prices. As in Baumeister and
Kilian (2012, 2014), we produce forecasts using the following
futures-spot spread relation: 𝑅𝐻𝐻

𝑡+ℎ|𝑡 = 𝑅
𝐻𝐻

𝑡
(1 + 𝑓𝐻𝐻,ℎ

𝑡
− 𝑠𝐻𝐻
𝑡

−
𝐸
𝑡
(𝜋
𝑡+ℎ)),where𝑅𝐻𝐻

𝑡
denotes the average level of the real natural
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TABLE 1 | Average MSPE ratios relative to the no-change forecast of the real natural gas spot price for model-free forecasting approaches.

End-of-month
No-change forecasts Futures-market-based forecasts US EIA expert forecasts

Monthly (1) (2) (3) (4) (5)
horizon 1997.2–2024.2 2005.9–2024.2 1997.2–2024.2 2005.9–2024.2 2005.9–2024.2

1 0.671* 0.439** 0.897** 0.891** 1.631
3 0.976 0.852 0.978 1.068 1.136
6 1.051 1.044 0.848* 0.941 0.796
9 1.046 1.040 0.792** 0.849 0.645**
12 1.051 1.065 0.758** 0.802* 0.615**
15 1.054 1.070 0.811** 0.849 —
18 1.072 1.073 0.838* 0.851 —
21 1.065 1.050 0.859 0.813 —
24 1.076 1.050 0.892 0.799 —

Note: Boldface indicates improvements relative to the monthly no-change forecast. Significant at **5% and *10% based on the Diebold and Mariano (1995) test. Expert
forecasts for the nominal Henry Hub spot price are reported in the US EIA’s Short-Term Energy Outlook from August 2005 onward and consistently cover a maximum
horizon of 12 months ahead.

gas price in month 𝑡, 𝑓𝐻𝐻,ℎ
𝑡

denotes the log of the current price
for a futures contract deliverable at Henry Hub with maturity
ℎ, 𝑠

𝐻𝐻

𝑡
denotes the log of the Henry Hub spot price, and𝐸

𝑡
(𝜋
𝑡+ℎ)

denotes the expected inflation rate over the next ℎmonths which
we approximate with average inflation over a rolling window of
10 years.4 Column 3 of Table 1 shows that market-based forecasts
beat the monthly no-change forecast at all horizons. Futures per-
form best in the medium term with accuracy gains between 19%
and 24% for ℎ = 9, 12, and 15, while MSPE reductions for short
and long horizons range from 10% to 16%. For six out of the nine
horizons, improvements are statistically significant according to
the Diebold and Mariano (1995) test for equal MSPE.

Another model-free approach is to rely on expert forecasts. The
EIA regularly publishes monthly forecasts of nominal natural gas
prices in its STEO report. We compiled the real-time forecasts for
the Henry Hub price from past issues of STEO which were first
reported in 2005M8. The forecast horizon varies from a minimum
of 12 to a maximum of 23 months ahead. These features restrict
both the sample and horizons over which we can evaluate these
expert forecasts. We deflate the nominal price forecasts with the
same measure of expected inflation as for the futures-spot spread
model. The last column of Table 1 reveals that expert forecasts
result in considerable losses compared to the RW one and three
months ahead, but they greatly outperform the benchmark for
subsequent horizons with statistically significant gains in accu-
racy of 35% at ℎ = 9 and 38% at ℎ = 12.

To enable a direct comparison with the EIA expert forecasts, we
also report the MSPE ratios for the end-of-month RW and the
market-based forecasts for the same shorter evaluation period
in Columns 2 and 4, respectively. As before, accuracy gains
of the last-day-of-the-month no-change forecast do not extend
beyond 3 months. While the short-run MSPE reductions are even
more impressive, these improvements vanish quickly as the hori-
zon lengthens. The futures market offers better forecasts at the
longest horizons with additional gains of 4% at ℎ = 21 and of 10%

at ℎ = 24 but loses its edge at intermediate horizons with a rela-
tive deterioration of 5% on average.

The evidence so far suggests that the simple end-of-month RW
is only useful for very near-term forecasts, and market-based
forecasts are in the lead for long horizons, whereas the EIA
experts have a clear advantage at medium-term horizons. While
all these model-free approaches yield readily available forecasts
of the real price of natural gas that can be used in policy- and
decision-making, it remains unclear what drives those forecasts.
This begs the question of whether we can improve upon existing
market-based and expert forecasts by designing alternative fore-
casting models for which we choose the determinants.

3 | A Universe of Forecasting Models

We explore the relative forecasting performance of a diverse
set of candidate models that differ in information set and
economic content. In Section 3.1, we examine several simple
time-series models that are solely based on past price dynam-
ics. In Section 3.2, we turn to economic models of the natural
gas market that feature the key determinants of the real price
of natural gas on both the supply and demand side which we
measure drawing on our newly-assembled real-time database.
In Section 3.3, we consider forecasting approaches based on the
link between natural gas and crude oil markets that finds its ori-
gin in the (imperfect) substitutability between these two energy
sources. In Section 3.4, we jointly model own- and cross-market
fundamentals. The regression models include the real natural gas
price either in logs or growth rates for estimation. Given that our
loss function is specified in levels, we exponentiate the log fore-
casts and accumulate and exponentiate the growth forecasts to
get forecasts of the level of the real price of natural gas for evalu-
ation purposes.

3.1 | Models of Past Price Dynamics

It is well-known that parsimonious time-series models that
exploit the dynamic relationship of the current price with its
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own past often deliver quite accurate forecasts. A useful starting
point is an ARMA(1, 1) model for the real price of natural gas in
logs which we estimate numerically by Gaussian maximum like-
lihood methods. Conditional on the estimated coefficients and
the most recent observations, we iterate the model forward to
produce ℎ-step-ahead forecasts for the log of the real price and
then convert it to levels. Column 1 of Table 2 shows that the
ARMA(1, 1)model outperforms the RW at all horizons except for
the shortest one but yields lower MSPE reductions compared to
the futures-spread-based forecast, in particular for intermediate
horizons. Since we cannot rule out a priori that the log of the real
price of natural gas is a unit root process, we consider an MA(1)
model in percent changes, thus an IMA(1), as an alternative. Col-
umn 2 reveals that imposing a unit root on the ARMA(1, 1) pro-
cess produces MSPE ratios well above one across all horizons,
indicating that the process is not well described by a (near) unit
root. Relaxing this constraint by estimating an ARIMA(1, 1) does
not alter the message (see Column 3).

Another standard choice is to use purely autoregressive AR(𝑝)
forecasting models which can alternatively be estimated by unre-
stricted least squares (LS) or Bayesian methods that shrink
unconstrained models toward a parsimonious benchmark. The
latter have been shown to pay off in highly parameterized models
where overfitting is a concern (see, e.g., Doan et al. 1984; Huber
and Feldkircher 2019). As in Baumeister and Kilian (2012), we
rely on the data-driven approach of Giannone et al. (2015) for
selecting the optimal degree of shrinkage in real time based on
the marginal data density. We set the lag length 𝑝 = 12 as is com-
mon for monthly data. Column 4 shows that the AR(12) model
produces hardly any reductions in MSPEs compared to the RW
except at horizon 24 where we find a marginal improvement.
Interestingly, while Bayesian shrinkage achieves some accuracy
gains over the RW from horizon ℎ = 6 onward (see Column
5), the BAR(12) model is not competitive with the ARMA(1, 1)
at any horizon. An alternative strategy to determine the lag
order is to rely on the Akaike Information Criterion (see, e.g.,
Marcellino et al. 2006), allowing the number of lags to be opti-
mally chosen for each vintage. To foster parsimony, we impose
an upper limit of six autoregressive lags. Columns 6 and 7 indi-
cate that this approach improves considerably on the (B)AR mod-
els with more lags and makes the forecasts competitive with the
ARMA(1, 1) model for horizons up to 1 year and even better
thereafter with MSPE reductions of 15%–17%. Once we use the
AIC to select the lag length, there is little difference between the
AR(AIC) and BAR(AIC) forecasts. Thus, the Bayesian shrinkage
does not play much of a role. Reducing the lag length to 𝑝 = 1
helps outperform the no-change forecast at short horizons but at
the cost of losing some forecast accuracy at longer horizons rela-
tive to their AIC counterparts (see Columns 8 and 9).

A very different forecasting method is recursive exponential
smoothing which uses a weighted average of past realizations
to predict future values with exponentially decaying weights for
observations further in the past. This approach is suitable for data
that are not trending. Given that the log level of the real price
of natural gas has no discernible trend, it is an obvious candi-
date for applying exponential smoothing. Following Baumeister
et al. (2017), we set the smoothing parameter to 0.8 which implies
a moderate degree of smoothing in line with macroeconomic data

(e.g., Faust and Wright 2013). The last column shows that expo-
nential smoothing performs poorly at horizons 1 and 3 but yields
large accuracy gains as the horizon lengthens. Beyond the 1-year
horizon, it dominates market-based forecasts with statistically
significant MSPE reductions of around 20%.

3.2 | Economic Models of the Natural Gas
Market

The price formation in the natural gas market results from the
interaction of supply and demand forces. This suggests mov-
ing beyond modeling the dynamics of the equilibrium outcome
since additional information can be derived from the fundamen-
tal determinants of the real price of natural gas suggested by eco-
nomic theory and market structure. In Section 3.2.1, we develop a
new real-time dataset that covers economically motivated predic-
tors that provide the basis for a rich economic model of the natu-
ral gas market, which in Section 3.2.2, we estimate in the form of
a VAR and evaluate for the purpose of out-of-sample forecasting.

3.2.1 | A Real-Time Dataset of Economic
Determinants of US Natural Gas Prices

We construct a comprehensive real-time database that contains
variables that according to economic theory should have predic-
tive power for the future path of natural gas prices and that allows
us to account for publication delays as well as subsequent data
revisions when assessing the accuracy of our forecasting models.
The dataset is at the monthly frequency and has been assembled
from a variety of sources. It consists of vintages from 1991M1
to 2024M2, each covering data going back to 1973M1 where
available.5 Table 1A in the Supporting Information Appendix
gives an overview of the components of the real-time database,
data sources, start dates of vintages and data as well as lags in
releases and nowcasting rules to fill those gaps.

Natural Gas Market Fundamentals. The amount of natural gas
produced domestically is one of the fundamental factors for price
setting in the national natural gas market. The standard measure
is dry natural gas production which is the quantity of natural gas
extracted from gas and oil wells purified from other compounds
and of high enough quality to be eligible for pipeline transporta-
tion. An alternative measure is marketed natural gas withdrawals
which contain not only the consumer-grade dry natural gas but
also other liquids. These “wet” components tend to be sold sepa-
rately which is why we consider this second production concept
less suitable to represent the supply side of the market, but the
quantitative difference is small. US natural gas rig counts which
measure the number of active drilling rigs employed in the search
for gas are an indicator for the intensity of resource develop-
ment and thus trends in future production. It stands to reason
that movements in rig counts affect expectations about the future
balance of supply and demand thereby inducing price swings.
Another important price determinant is the volume of natural gas
held in underground storage facilities since injections into and
withdrawals from stockpiles allow to balance the more seasonal
demand with the more steady supply. Natural gas inventories are
measured as working natural gas in underground storage which
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is the flow component that adjusts to market conditions and sea-
sonal factors. Price developments will also be influenced by the
demand behavior of multiple end users. The quantity of natural
gas delivered to households, manufacturing industries, electric
power plants, commercial entities, and the transportation sector
is measured by total natural gas consumption. We also consider
residential consumption separately since households’ demand
patterns differ from those of other sectors given their limited sub-
stitution possibilities which can exacerbate price changes.

Weather Conditions. A more direct measure for consumption are
variations in temperature and other weather phenomena since
they are important drivers of heating demand and demand for
air conditioning in residential homes and commercial buildings
which account for roughly one third of natural gas use. For
example, colder than usual winters typically lead to increased
heating demand and low winds during the summer lead to
the substitution from wind-generated to gas-generated energy,
exerting upward pressure on natural gas prices. However, severe
weather not only affects the demand side but also interferes
with natural gas supply by disrupting production or transporta-
tion (e.g., hurricanes, winter storms, and freezes). We consider
several measures to capture the impact of meteorological con-
ditions on price developments. Two widely used measures are
heating and cooling degree days which are based on outdoor air
temperature recorded daily at weather stations nationwide and
converted into a quantitative index of energy requirements to
heat or cool spaces weighted by population. A related indicator
constructed by the National Oceanic and Atmospheric Admin-
istration (NOAA) is the Residential Energy Demand Tempera-
ture Index (REDTI) which uses heating and cooling degree days
as input to determine residential energy needs. A very different
measure is NOAA’s national index for temperature anomalies
which focuses on periods of extreme heat or cold snaps computed
as deviations from long-term averages.

Macroeconomic Environment. Another key factor of demand for
natural gas that has a direct impact on the price is the state of
the domestic economy. Growth-driven increases in natural gas

consumption can be particularly strong in the industrial sector,
which uses natural gas as a fuel and a feedstock in the produc-
tion process to make goods such as fertilizer and pharmaceu-
ticals. This suggests using US industrial production (IP) or the
related capacity utilization rates as cyclical indicators since both
measures cover manufacturing, mining, and electric and gas util-
ities. A broader measure that is routinely used to gauge over-
all economic activity is the Chicago Fed National Activity Index
(CFNAI). Among the three proxies for the US business cycle, the
degree of capacity utilization seems to be the least affected by the
sharp COVID-19 contraction, which makes this our first choice.

Backcasting. Given that historical data for the natural gas market
fundamentals as well as the heating and cooling degree days are
only available in print format in published issues of the Monthly
Energy Review (MER), they cover at most a period of 54 months.
We therefore assume that observations that are dropped from
the historical editions are no longer revised, and we use the last
record in the construction of subsequent vintages. To backcast the
data all the way to 1973M1, we collect data from issues going back
to 1976M9 where possible. For those series that were not reported
in all the past issues of the MER, we approximate the missing
observations in the early part of the sample using data from the
most recent vintage. In this way, all variables from the MER can
be extended back in time to at least 1976M1 except for natural
gas drilling rigs which started to be measured separately only
in 1987M8. We extrapolate the data before that back to 1973M1
using the growth rate of crude oil and natural gas rig counts.
This is facilitated by the fact that these two series are not revised.
NOAA does not provide vintages for REDTI and the index of tem-
perature anomalies, so we assume that these data are not revised.
We account for the publication lag of 1 month in REDTI when
compiling pseudo vintages. While we have a complete set of vin-
tages for IP, the first vintage for capacity utilization is available in
1996M11 and for CFNAI in 2001M1, both containing data back
to 1973M1. Earlier vintages are based on data in these first actual
vintages adjusted for the 1-month delay in their release.

TABLE 2 | Average MSPE ratios relative to the no-change forecast of the real natural gas spot price for a set of univariate models.

Exponential
Monthly ARMA(1,1) IMA(1) ARIMA(1,1) AR(12) BAR(12) AR(AIC) BAR(AIC) AR(1) BAR(1) smoothing
horizon (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1.019 1.049 1.049 1.076 1.059 1.043 1.033 0.987 0.987 2.120
3 0.962 1.042 1.038 1.071 1.038 0.978 0.976 0.956 0.956 1.257
6 0.895 1.055 1.040 1.031 0.987 0.891 0.891 0.900 0.899 0.941
9 0.854 1.083 1.060 0.999 0.946 0.849 0.849 0.855 0.854 0.819*
12 0.843 1.099 1.073 1.001 0.937 0.827 0.828 0.837 0.837 0.798**
15 0.857 1.122 1.088 0.980 0.926 0.825 0.828 0.836 0.836 0.802**
18 0.874 1.141 1.106 0.987 0.934 0.830 0.834 0.843 0.843 0.808**
21 0.888 1.163 1.141 0.995 0.940 0.836 0.841 0.853 0.854 0.792**
24 0.915 1.190 1.175 0.966 0.923 0.844 0.850 0.871 0.871 0.782**

Note: Evaluation period: 1997.2–2024.2. Boldface indicates improvements relative to the no-change forecast. BAR refers to AR models estimated using the Bayesian method
of Giannone et al. (2015). The AIC lag order estimates are based on an upper bound of six lags for parsimony. The exponential smoothing forecasts are based on a weight of
0.8. The statistical significance of MSPE reductions is only assessed for the exponential smoothing forecasts based on the Diebold–Mariano (1995) test with significance at
**5% and *10%. All forecasts are generated recursively from data subject to real-time data constraints.
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Nowcasting. To obtain a balanced dataset, we fill in missing obser-
vations at the end of each vintage by devising a set of nowcasting
rules that are informed by the time-series properties of our vari-
ables, such as seasonal patterns or trend behavior. As shown by
Baumeister and Kilian (2012) for oil prices and by Baumeister
et al. (2017) for gasoline prices, simple, variable-specific rules
work particularly well in energy price forecasting models. For
natural gas production, which features between one and three
missing values depending on the vintage, we use the annual
log difference from the preceding year to take seasonality into
account when filling the gaps. To accommodate the seasonal
pattern of working gas underground inventories, we apply the
month-on-month change 1 year prior to the last observation to
nowcast the most recent values. For natural gas consumption, we
assume that the same amount is consumed as in the same month
the year before. Given the seasonal behavior of the three temper-
ature series that are updated with a delay, a sensible nowcasting
rule is to rely on the average value for the same month over the 10
most recent years to account for slow-moving climatic changes.
We extrapolate the one missing observation for IP based on its
average monthly growth rate. Nowcasts for the current values
of capacity utilization and CFNAI are obtained with exponential
smoothing using a parameter of 0.95, which is the same that Faust
and Wright (2013) applied to the unemployment rate.

3.2.2 | Forecasting With VAR Models

We model the dynamic relationship between the real price of
natural gas and its economic determinants as a reduced-form
VAR, which can be written as 𝒚

𝑡
= 𝒄 +𝚽1𝒚𝑡−1 + · · · +𝚽𝑝𝒚𝑡−𝑝 +

𝜺
𝑡
, where 𝒚

𝑡
is a 𝑛 × 1 vector of monthly data, 𝒄 is a 𝑛 × 1 vec-

tor of intercepts, 𝚽
𝑖
, 𝑖 = 1, … , 𝑝, are 𝑛 × 𝑛 coefficient matrices

with 𝑝 being the number of lags, and 𝜺
𝑡
∼ (𝟎,𝚺). In addition

to the log of the real price of natural gas, in our baseline model,
𝒚
𝑡

includes dry natural gas production, natural gas rig counts,
working gas inventories, capacity utilization, and the REDTI as
predictors with 𝑛 = 6. For the three natural gas fundamentals,
we consider transformations to log-levels and to monthly growth
rates by taking the first difference of the natural logarithm. We
also examine the sensitivity of our results to alternative choices
for the last two variables and explore other model specifications
that have been proposed for structural analysis of natural gas
price fluctuations.

As in the case of AR models, we estimate the VAR with unre-
stricted LS as well as Bayesian shrinkage methods starting with
a fixed lag order of 𝑝 = 12. Columns 1 and 7 of Table 3 show
that the VAR(12) is unsuccessful in improving upon the RW
independent of the transformation of the gas market fundamen-
tals, with the MSPE ratios exceeding 1 for all horizons. This
does not mean that the economic variables have no predictive
power but rather that the VAR(12) is overparameterized which
hurts its out-of-sample forecasting performance. In fact, apply-
ing Bayesian shrinkage yields more precise forecasts; so much so
that the BVAR(12) beats the RW at all horizons except for ℎ = 1
but only for the growth-rate specification (Column 2). Reducing
the lag length to six or less by means of the AIC leads to more
substantial accuracy gains for variables in log-levels and changes.
The size of the MSPE reductions for both BVAR(AIC) models is
comparable to the BAR(1) from horizon 3 onward. Columns 5 and TA
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6 show that further restricting the number of lags to 1 delivers
the best performance with little to choose between the VAR(1)
and the BVAR(1). The only model that produces larger MSPE
reductions at horizons 21 and 24 is exponential smoothing, but
this method records big losses at horizons 1 and 3. The log-level
specification also dominates the futures-based forecasts at most
horizons. We conclude that the economic drivers of natural gas
prices greatly enhance the forecast accuracy if the dynamics are
kept parsimonious.

Table 2A in the Supporting Information Appendix compares the
performance of our baseline six-variable BVAR(1) model with
predictors in logs (Column 1) to models where we replace one
variable at a time with alternative indicators for the US meteoro-
logical and macroeconomic conditions. Columns 2–4 reveal that
using an index for temperature anomalies or heating and cooling
degree days in deviations from the historical average in the same
month instead of the REDTI delivers equally accurate forecasts.
While CFNAI achieves similar reductions in MSPE as capacity
utilization across all horizons, IP does slightly better in the near
term, but its accuracy decreases as the horizon lengthens with
losses as high as 7% 2-years-ahead relative to the other business
cycle indicators (Columns 5 and 6).6

Table 4 reports results for a set of other models that have not
been designed for forecasting but for studying the structural
dynamics of the US natural gas market. Given that any structural
model is associated with a reduced form, it is useful to evalu-
ate the success of these models in real-time out-of-sample fore-
casting. The first model is the four-variable VAR of Arora and
Lieskovsky (2014) that includes marketed natural gas production
on the supply side and IP and residential natural gas consump-
tion on the demand side with variables transformed to annual
growth rates to remove seasonality and trends.7 Column 3 shows
that while this smaller model beats the RW across all horizons, it

has on average 6% higher MSPE ratios than the more comprehen-
sive baseline model (Column 1). The second small-scale model
is from Wiggins and Etienne (2017) who use seasonally adjusted
data for production, underground inventories, and IP in monthly
growth rates. Column 5 reveals that this model also does not out-
perform the baseline BVAR, but their choice of variables leads
to lower MSPE ratios at longer horizons compared to the other
four-variable model. Model 3 is of the same size as the baseline
model but features a different selection of variables proposed by
Winkler (2023). Active gas drilling rigs and marketed production
describe the supply side, while IP is the main demand-side deter-
minant of prices; we add heating and cooling degree days to the
demand side which Winkler (2023) includes as exogenous vari-
ables. The MSPE ratios in Column 7 indicate that this model is a
serious competitor for horizons up to ℎ = 6. Model 4 is a mod-
ified version of model 3 that does not distinguish between the
sources of demand but lumps them all together via total natu-
ral gas consumption. This model yields MSPE reductions similar
to the baseline up to 9 months out; beyond that, there is a gap
of about 3%, but overall, it performs best among the alternative
models (Column 9).

3.2.3 | The Role of Time-Varying Volatility

Over the decades, the US natural gas market has experienced
important changes in its regulatory and market structure which
can impact the forecasting performance of our economic models.
Hupka et al. (2023) document that structural shifts often hap-
pen quickly and for a variety of reasons. Prominent examples
include abrupt production disruptions due to winter storms and
hurricanes and consumption spikes due to other extreme weather
events like hard freezes and heat waves. Technological advances
in drilling and delivery methods or shifts in consumer prefer-
ences toward cleaner fuels can also trigger sudden changes in

TABLE 4 | Average MSPE ratios relative to the no-change forecast of the real natural gas spot price for baseline and other BVAR(1) models of the
US natural gas market with and without stochastic volatility.

Baseline Model 1 Model 2 Model 3 Model 4

Monthly (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
horizon BVAR BVAR-FSV BVAR BVAR-FSV BVAR BVAR-FSV BVAR BVAR-FSV BVAR BVAR-FSV

1 0.969 0.978 0.981 0.981 1.016 0.985 0.960 0.989 0.967 0.984
3 0.926 0.953 0.950 0.950 0.961 0.954 0.909 0.966 0.920 0.950
6 0.852 0.909 0.903 0.913 0.904 0.920 0.861 0.936 0.853 0.914
9 0.804 0.876 0.866 0.874 0.858 0.887 0.827 0.914 0.813 0.882
12 0.766 0.858 0.854 0.851 0.844 0.865 0.820 0.903 0.798 0.864
15 0.767 0.857 0.862 0.832 0.842 0.841 0.828 0.906 0.800 0.861
18 0.785 0.870 0.875 0.816 0.849 0.830 0.850 0.913 0.811 0.866
21 0.819 0.891 0.887 0.796 0.854 0.807 0.872 0.937 0.839 0.897
24 0.850 0.944 0.906 0.777 0.870 0.792 0.906 0.979 0.880 0.951

Note: Evaluation period: 1997.2–2024.2. Boldface indicates improvements relative to the no-change forecast. All models contain the real price of natural gas in logs. The
additional predictor variables are as follows: (a) Baseline model: log of dry natural gas production, log of working gas inventories, log of natural gas rig counts, capacity
utilization, and REDTI; (b) Model 1: annual growth rates of marketed natural gas production, of residential natural gas consumption, and of industrial production; (c)
Model 2: monthly growth rates of dry natural gas production, of working gas inventories, and of industrial production, all three deseasonalized; (d) Model 3: log of
marketed natural gas production, log of natural gas rig counts, log of industrial production, heating and cooling degree days in deviations from their historical average; (e)
Model 4: log of marketed natural gas production, log of natural gas rig counts, and log of total natural gas consumption. All forecasts are generated recursively from data
subject to real-time data constraints.
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the energy mix. Another possible sources of periodic instabili-
ties are infrastructure bottlenecks in transportation or capacity
constraints in underground storage. All these unexpected events
might cause an increase in price volatility that interferes with the
models’ predictive ability.

It is by now well-established that introducing nonlinearities in
the form of SV greatly enhances the accuracy of point fore-
casts of a range of macroeconomic variables and other energy
prices compared to models that impose homoskedasticity (see,
e.g., Clark and Ravazzolo 2015; Baumeister et al. 2022). In
particular, Chan and Grant (2016) show that SV dominates
GARCH for modeling energy price dynamics. As noted by
Primiceri (2005) and Carriero et al. (2019), allowing for time
variation in error variances not only captures jumps in volatil-
ity but also interacts with model dynamics in a way that might
further improve the precision of point forecasts. We investi-
gate the benefit of modeling time variation in the volatilities
of shocks to 𝒚

𝑡
by postulating the following specification for

the VAR residuals as in Kastner and Huber (2020), 𝜺
𝑡
= 𝚲𝑞

𝑡

+ 𝝂
𝑡
, where 𝚲 denotes an 𝑛 × 𝑚 matrix of factor loadings with

𝑚 referring to a small number of latent factors in 𝒒
𝑡
, which

are conditionally heteroskedastic with a time-varying diagonal
covariance matrix 𝑯

𝑡
= 𝑑𝑖𝑎𝑔(𝑒ℎ1𝑡 , … , 𝑒ℎ𝑞𝑡 ), and 𝝂

𝑡
are measure-

ment errors with a time-varying diagonal covariance matrix𝛀
𝑡
=

𝑑𝑖𝑎𝑔(𝑒ℎ𝑞+1,𝑡 , … , 𝑒ℎ𝑞+𝑛,𝑡 ). The law of motion for the 𝑚 + 𝑛 logarith-
mic volatilities ℎ

𝑖𝑡
is given by independent AR(1) processes of

the following form, ℎ
𝑖𝑡
= 𝜇

ℎ𝑖
+ 𝜌

ℎ𝑖
(ℎ
𝑖𝑡−1 − 𝜇ℎ𝑖) + 𝜎ℎ𝑖𝜂𝑖𝑡 for 𝑖 =

1, … , 𝑚 + 𝑛, with 𝜇
ℎ𝑖

the unconditional mean of the log volatili-
ties, 𝜌

ℎ𝑖
their persistence parameter, 𝜎

ℎ𝑖
their standard deviation,

and 𝜂
𝑖𝑡
∼ (0, 1). The time-varying variance of 𝜺

𝑡
can thus be

written as 𝚺
𝑡
= 𝚲𝑯

𝑡
𝚲 + Ω

𝑡
which amounts to the factor stochas-

tic volatility (FSV) model proposed by Pitt and Shephard (1999).
This specification has several attractive features. First, in con-
trast to popular alternatives, the FSV model is order-invariant.
Second, the factor structure reduces the number of free parame-
ters if 𝑚 < 𝑛.8 Third, despite its parsimonious nature, this model
offers rich dynamics by capturing both common and idiosyn-
cratic sources of volatility. Details can be found in the Supporting
Information Appendix A.1.

Table 4 compares the forecast accuracy of the economic models
with and without FSV. While all the models with time-varying
error variances outperform the no-change forecast at all horizons,
only Models 1 and 2 improve upon their constant-variance coun-
terparts for horizons beyond 12 months, with the largest MSPE
reductions of around 20% 2 years out (Columns 4 and 6). Given
that these two models are smaller in size compared to the baseline
and Model 3, it might be the case that the FSV model favorably
influences the model dynamics to produce better point forecasts
at longer horizons, whereas adding more variables compensates
for the lack of time-varying volatility. As can be seen in Column
10, this is not borne out by Model 4 which contains the same
number of variables as Models 1 and 2 but displays a weaker per-
formance than the same model without FSV. Another difference
is that the predictors in Models 1 and 2 are included in growth
rates, while all other models are specified in log-levels, suggesting
that FSV has more bite for models estimated in first differences.
Thus, while yielding accuracy gains for some models, BVAR-FSV
models only do better than the baseline BVAR at horizons ℎ = 21
and ℎ = 24.9

3.3 | Energy Price Models: A Tale of Two
Markets

So far, we considered economic fundamentals within the domes-
tic natural gas market as the main predictors of natural gas price
dynamics, but natural gas prices also have close ties with other
energy prices, in particular crude oil because of the possibility of
fuel switching. In fact, historically, natural gas was often consid-
ered a by-product of oil production, and thus, production was not
necessarily determined by market forces. Instead, the ability of
large-volume fuel consumers such as power plants and iron, steel,
and paper mills to switch between natural gas and petroleum as a
function of their cost establishes a link between the two markets
which suggests to jointly model natural gas and oil prices giving
rise to bivariate energy price models; yet, the two fuels are not per-
fect substitutes due to differences in heat content, transportation
costs, and market structure. In contrast to other countries where
oil indexation is the dominant pricing mechanism for natural gas,
energy markets in the United States are more competitive and rel-
ative price movements determine the marginal market (Hupka
et al. 2023). This means that there is no mechanical relationship
between these two prices, and the forecasting content of bivariate
fuel-pricing models is an empirical question.

Figure 1A in the Supporting Information Appendix shows that
there is strong comovement between the Henry Hub natural
gas and West Texas Intermediate (WTI) oil spot prices from
1993 to 2010 but no clear pattern thereafter.10 For this first
period, Brown and Yücel (2008) and Hartley et al. (2008) find
a cointegration relationship between natural gas and oil prices
and use an error correction model to study the short-run and
long-run interaction effects among both markets. Bachmeier and
Griffin (2006) also provide empirical evidence for energy mar-
ket integration. However, the stability of this long-run relation-
ship has been questioned by Ramberg and Parsons (2012) who
show that the price of oil has only weak explanatory power for
short-term natural gas price fluctuations. The advent of the shale
gas revolution in 2006 marks a major turning point that first
weakened, then severed the linkages between the global oil mar-
ket and the US natural gas market. The steep increase in gas pro-
duction from fracking led to the decoupling of natural gas prices
from oil prices given that shale gas was landlocked (due to lim-
ited pipeline capabilities) until 2016 when LNG export terminals
enabled shipments initiating the recoupling of the US natural gas
prices to international energy price developments (see Stock and
Zaragoza-Watkins 2024).

Against this background, we investigate the promise of two types
of models that explicitly or implicitly feature a cointegrating rela-
tionship. Specifically, we explore the predictive power of price
spread models in Section 3.3.1 and of bivariate VAR models in
Section 3.3.2.

3.3.1 | Price Spread Models

This forecasting model is based on the assumption that the nom-
inal spot prices of natural gas and oil are cointegrated. In that
case, current deviations of the spot price of natural gas from
the spot price of oil would be expected to have predictive power
for cumulative changes in the nominal spot price of natural
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gas: Δ𝑠ℎ,𝐻𝐻
𝑡+ℎ|𝑡 = 𝛼 + 𝛽(𝑠

𝐻𝐻

𝑡
− 𝑠𝑊 𝑇𝐼
𝑡

) + 𝜀
𝑡+ℎ, where 𝑠𝐻𝐻

𝑡
is the log

of the nominal spot price of natural gas, 𝑠𝑊 𝑇𝐼
𝑡

is the log of the
nominal spot price of WTI crude oil, and Δ𝑠ℎ,𝐻𝐻

𝑡+ℎ|𝑡 denotes the
cumulative change in 𝑠𝐻𝐻

𝑡
over the next ℎ months.11 Similar to

Baumeister et al. (2017), we map recursive estimates of this rela-
tionship into a forecast for the real price of natural gas as fol-
lows: 𝑅𝐻𝐻

𝑡+ℎ|𝑡 = 𝑅
𝐻𝐻

𝑡
exp

[
𝛼̂ + 𝛽(𝑠𝐻𝐻

𝑡
− 𝑠𝑊 𝑇𝐼
𝑡

) − 𝐸
𝑡
(𝜋
𝑡+ℎ)

]
, where

𝐸
𝑡
(𝜋
𝑡+ℎ) denotes expected inflation over the next ℎ months

approximated as before.

Columns 1 and 2 in Table 5 report the average MSPE ratios for
two alternative specifications of the price spread models, an unre-
stricted variant, and a restricted variant where, in the interest of
parsimony, 𝛼 is set to zero. Both models display a dismal forecast-
ing performance with MSPE ratios as high as 1.5. Only at horizon
1 do price spread models marginally improve on the RW. This
result suggests that the maintained hypothesis of cointegration
likely fails to hold for the entire evaluation period in line with
evidence provided by Stock and Zaragoza-Watkins (2024). To get
a better sense of the evolution of the forecasting performance
over time, Figure 2A in the Supporting Information Appendix
presents recursively updated MSPE ratios for selected horizons.
The message that emerges from these plots is that price spread
models delivered accurate forecasts until the breakdown of the
cointegrating relationship dated January 2009 by statistical tests
(see Table 1 in Stock and Zaragoza-Watkins, 2024). Thus, the shift
to a regime without cointegration due to the shale gas revolu-
tion explains the sudden deterioration in the forecasting ability
of these models.

This evidence raises the question of whether a model that explic-
itly allows for a switch in regime would have been able to detect
this change in real time thereby preventing the massive forecast
errors in the post-2009 period. To examine this question empir-
ically, we allow the parameters in the price spread model to be
driven by a Markov-switching (MS) process as follows:Δ𝑠ℎ,𝐻𝐻

𝑡+ℎ|𝑡 =
𝛼
𝑠
𝑡+ℎ
+ 𝛽
𝑠
𝑡+ℎ
(𝑠𝐻𝐻
𝑡

− 𝑠𝑊 𝑇𝐼
𝑡

) + 𝜀
𝑡+ℎ, where 𝛼

𝑠
𝑡+ℎ

is the MS intercept,
𝛽
𝑠
𝑡+ℎ

is the MS spread coefficient, 𝜀
𝑡+ℎ ∼ (0, 𝜎2

𝑠
𝑡+ℎ
) with 𝜎

𝑠
𝑡+ℎ

the
MS volatility, and {𝑠

𝑡+ℎ} follows an 𝑚-states ergodic and aperi-
odic Markov-chain process that determines the regime. This pro-
cess is an unobservable variable which takes integer values 𝑠

𝑡+ℎ ∈
{1, … , 𝑚} and has transition probabilities ℙ(𝑠

𝑡+ℎ = 𝑗|𝑠𝑡+ℎ−1 =
𝑖) = 𝑝

𝑖𝑗
, with 𝑖, 𝑗 ∈ {1, … , 𝑚}. We set 𝑚 = 2 postulating a switch

between a cointegration and a noncointegration regime. We apply
a Bayesian approach to estimation (see Supporting Information
Appendix A.2). The third column of Table 5 shows that account-
ing for the possibility of a shift in regime over the evaluation
period improves upon the constant-coefficient counterparts at
most horizons but only improves upon the RW benchmark at
ℎ = 3 and ℎ = 6.

3.3.2 | Bivariate VAR Models

Given the economic interaction between natural gas and oil mar-
kets, an alternative modeling approach that only implicitly allows
for a long-term relationship between natural gas and oil prices is
a bivariate VAR(𝑝) with both prices included in log-levels. Thus,
in the VAR, 𝒚

𝑡
= [𝑟𝐻𝐻

𝑡
, 𝑟
𝑊 𝑇𝐼

𝑡
]′ is now a 2 × 1 vector that con-

tains the log prices of Henry Hub natural gas and WTI crude
oil, both deflated in real time with the CPI. Columns 4–9 of TA

B
LE

5
|

A
ve

ra
ge

M
SP

E
ra

tio
sr

el
at

iv
e

to
th

e
no

-c
ha

ng
e

fo
re

ca
st

fo
re

ne
rg

y
pr

ic
e

m
od

el
s.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

Pr
ic

e
sp

re
ad

m
od

el
s

B
iv

ar
ia

te
VA

R
m

od
el

s

M
on

th
ly

C
on

st
an

tc
oe

ff
ic

ie
nt

M
ar

ko
v

sw
it

ch
in

g

ho
ri

zo
n

𝜶
,
𝜷

𝜶
=

0,
𝜷

𝜶
𝑴
𝑺
,
𝜷
𝑴
𝑺

VA
R

(1
2)

BV
A

R
(1

2)
VA

R
(A

IC
)

BV
A

R
(A

IC
)

VA
R

(1
)

BV
A

R
(1

)

1
0.

98
7

0.
99

2
1.

27
0

1.
03

3
0.

99
1

1.
03

1
0.

98
6

0.
98

5
0.

99
8

3
1.

05
7

1.
03

2
0.

95
6

1.
00

6
0.

94
7

0.
96

4
0.

95
1

0.
96

2
0.

99
4

6
1.

17
5

1.
11

7
0.

98
8

0.
97

1
0.

89
1

0.
92

3
0.

91
4

0.
92

5
0.

95
7

9
1.

36
9

1.
23

3
1.

04
2

0.
96

8
0.

87
1

0.
92

1
0.

90
8

0.
91

5
0.

94
4

12
1.

51
6

1.
33

7
1.

09
3

1.
01

0
0.

89
9

0.
95

7
0.

94
4

0.
94

9
0.

96
0

15
1.

54
7

1.
38

2
1.

17
6

1.
03

3
0.

94
1

1.
01

0
0.

99
8

1.
00

3
0.

99
3

18
1.

48
3

1.
37

1
1.

29
0

1.
06

2
0.

97
8

1.
04

8
1.

04
2

1.
04

8
1.

03
1

21
1.

36
3

1.
30

2
1.

35
7

1.
07

4
0.

99
8

1.
06

5
1.

06
6

1.
08

2
1.

05
9

24
1.

33
2

1.
28

1
1.

29
0

1.
08

1
1.

04
0

1.
10

7
1.

11
6

1.
14

1
1.

10
8

N
ot

e:
Se

e
Ta

bl
e

3.

10 Journal of Applied Econometrics, 2025

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.70018 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [13/11/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Table 5 examine the role of different lag orders for the forecast-
ing performance of this model when estimated by unrestricted
LS and the Bayesian method of Giannone et al. (2015). Column
4 shows that even in a simple bivariate model, 12 lags prevent
the LS estimator at most horizons from delivering forecasts that
are more accurate than the RW, whereas Bayesian shrinkage
yields MSPE ratios below 1 except at ℎ = 24. The largest gains of
around 10% are found for medium-term horizons of 6–12 months
ahead. Determining the lag length recursively based on the AIC
or setting 𝑝 = 1 helps the VAR outperform the RW more often
but hurts the performance of the BVAR both in terms of the size
of MSPE reductions and the number of horizons for which it out-
performs the no-change forecast. It is also interesting to note that
the VAR(1) does better than the BVAR(1) for horizons up to 1
year (Columns 8 and 9). Comparing the results to the (B)AR(𝑝)
models in Table 2, which are nested in the bivariate (B)VAR(𝑝)
models, suggests that information about past oil price dynamics
is not particularly useful for obtaining more accurate forecasts
except maybe in the short run.

While the VAR model estimated in log-levels remains agnostic
about the existence of a cointegrating relationship, it suffers an
efficiency loss should the variables be cointegrated. Despite the
evidence derived for the price spread models and the narrative
about the decoupling of natural gas and oil prices, we inves-
tigate the usefulness of imposing cointegration restrictions on
the bivariate VARs for forecasting. The vector error correction
(VEC) representation is implied by the VAR specification with
𝒚
𝑡
= [Δ𝑟𝐻𝐻

𝑡
, 𝑟
𝐻𝐻

𝑡
− 𝑟𝑊 𝑇𝐼
𝑡

]′. Table 8A confirms our earlier results
that enforcing cointegration is detrimental to the forecasting per-
formance. Except for some small accuracy gains at horizons 3–9,
VEC(𝑝) models perform poorly independent of lag order and esti-
mation method.

3.4 | Integrating Own- and Cross-Market
Fundamentals

A natural question is whether jointly modeling natural gas fun-
damentals and oil prices can further improve forecast accuracy.
We augment our baseline economic model with the log of the
real WTI price which results in a model of size 𝑛 = 7. The first

three columns of Table 6 show that among the BVAR models
with constant variance, the model where the AIC determines
the lag length recursively performs best, beating the RW at all
horizons. This suggests that the inclusion of oil prices leverages
past dynamics to yield more precise forecasts despite the higher
dimensionality of the model. Allowing for FSV leads to relative
improvements for the model with 𝑝 = 12 but worsens the per-
formance of the model with 𝑝 = 1 (Columns 4 and 6); neither of
them outperforms the BVAR(AIC) model except for ℎ = 1. Only
the BVAR-FSV model with 𝑝 = 6 is competitive at long horizons.
However, none of the integrated models that account for arbitrage
across fuels does better than the baseline model alone.12

4 | Model Comparison and Forecast Pooling

4.1 | Joint Assessment Based on the MCS

The preceding analysis highlights that while there are quite a
few models that beat the monthly no-change forecast, there is no
single forecasting method that, based on pairwise comparisons,
dominates all the others across all horizons, and thus, it is unclear
which model to choose for forecasting the real price of natural
gas.13 With such a rich assortment of competitive candidate mod-
els, it is not easy to get a good sense of whether some alternatives
are more useful than others for out-of-sample forecasting. We
shed light on this question with the help of the MCS procedure
proposed by Hansen et al. (2011) that allows us to jointly assess
the entire model space for a fixed horizon ℎ to decide which
models should be included in the MCS based on their predic-
tive power. Specifically, the approach selects the subset of models
𝑀̂

∗
1−𝛼 that form the MCS such that it contains the best model

with probability (1 − 𝛼). The pruning of the initial model space
is data-driven, and the number of surviving models reflects the
informativeness of the sample.

Table 10A reports the MCS 𝑝-values for the entire collection
of models evaluated previously, including the RW benchmark,
and summarizes the number of models that enter the MCS at
each horizon ℎ for confidence levels 𝛼 = 0.1 and 𝛼 = 0.25 based
on their squared forecasting errors over the full out-of-sample
period.14 Starting with an initial set of 60 individual models, we

TABLE 6 | Average MSPE ratios relative to the no-change forecast for the baseline economic model augmented with the real WTI oil price with and
without factor stochastic volatility.

Monthly (1) (2) (3) (4) (5) (6)
horizon BVAR(12) BVAR(AIC) BVAR(1) BVAR(12)-FSV BVAR(6)-FSV BVAR(1)-FSV

1 1.002 0.992 0.971 0.980 0.984 0.988
3 0.948 0.927 0.936 0.938 0.938 0.967
6 0.970 0.868 0.873 0.904 0.888 0.936
9 0.950 0.823 0.844 0.893 0.866 0.917
12 0.935 0.820 0.839 0.891 0.863 0.913
15 0.933 0.853 0.880 0.909 0.876 0.927
18 0.978 0.899 0.931 0.933 0.888 0.955
21 1.010 0.921 0.987 0.968 0.909 0.992
24 1.078 0.973 1.055 1.012 0.963 1.075

Note: See Table 3.
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find that for horizons up to 9 months, the MCS basically covers
the complete model space. The fact that no models are discarded
suggests that the information in the data cannot discriminate
between good and bad models; that is, the MCS procedure finds
the forecasting ability of any one model not to be significantly
worse than any other and thus keeps them all. As emphasized
by Hansen et al. (2011), the MCS approach tends to err on the
side of caution and does not shrink the initial set if the data pro-
vide insufficient information about the relative performance of
the forecasting models. As the forecast horizon lengthens, some
competitors are eliminated; for example, for ℎ = 18 and ℎ = 24,
only 72% of the models pass the threshold to enter 𝑀̂∗

75%. But even
for longer horizons, the set of superior models remains large.

In addition to determining the size of the set for a given level of
confidence, the MCS 𝑝-values imply a ranking where models with
larger 𝑝-values are more likely to be among the best-performing
models. The top-5 models are marked in red in Table 10A. What
stands out is that the economic models of the natural gas market
whose dynamics are summarized by VARs of order one always
show up at the head of the pack. At intermediate horizons from
ℎ = 6 to ℎ = 18, the VAR(1) with the baseline predictors enter-
ing the model in log-levels receives a 𝑝-value of one three times.
At long horizons, some models that feature SV start appearing in
the upper echelon with one of the alternative economic models
being assigned a 𝑝-value of one at ℎ = 24. Exponential smooth-
ing and simple AR models with moderate lag length are also
among the most promising models further out, while most energy
price models are removed from 𝑀̂∗

75% at longer horizons. Most
other univariate models make a poor showing, especially at short
horizons. The forecasting ability of models that combine own-
and cross-market fundamentals is rated as comparable to eco-
nomic models of the natural gas market with alternative predic-
tors at the shortest horizons, irrespective of their lag order and
volatility component, but these models are ranked considerably
lower at horizons beyond one year. Not surprisingly, forℎ = 1, the
end-of-month no-change forecast takes the lead with a 𝑝-value of
one, but its relevance diminishes quickly, and, at horizons 12 and
18, it is even kicked out of 𝑀̂∗

75%. The futures-market forecast is a
strong contender across all horizons and even makes first place at
ℎ = 9. While the benchmark is always included in 𝑀̂∗

75%, it never
ends up among the top models.

4.2 | Tracking Forecasting Performance Over
Time

The evidence presented so far focuses on the average forecast
quality of the entire set of models over the full evaluation period.
However, as already discussed in Section 3.3.1 for the case of
constant-coefficient price spread models, the forecasting perfor-
mance is not necessarily stable over time and might depend on
the prevailing market structure.

To get a better idea to what extent the predictive ability varies also
for other models across the out-of-sample period, Figure 1 dis-
plays the evolution of the cumulative MSPE ratios relative to the
RW for a subset of representative models from each class and two
different forecast horizons. The key takeaway from these plots is
that there is substantial heterogeneity in the forecast accuracy
across models and horizons and that the relative performance

of some models changes considerably over time. For example,
at the 3-month horizon, the end-of-period RW starts out poorly,
while the futures-based forecast is quite successful, but from 2010
onward, they converge and end up with the same average perfor-
mance with an MSPE ratio of 0.98. For 24-month-ahead forecasts,
the BVAR(1) model with predictors in logs is one of the most
promising candidates early on but then experiences a notable
deterioration in the interim only to reclaim its spot among the
best models at the end of the evaluation sample. A similar pat-
tern can be observed for the simple AR(AIC) model. Instead, the
accuracy gains from exponential smoothing are relatively con-
stant throughout.15

We complement this illustrative evidence with a more for-
mal assessment of changes in the forecasting performance of
the entire universe of models in the Supporting Information
Appendix C by splitting the evaluation period into four subsam-
ples guided by the institutional regimes defined by Stock and
Zaragoza-Watkins (2024). The graphical and subsample analy-
ses reveal some striking changes in the predictive power and
relevance of different models in our set both over time and
across horizons. Given this variation in performance and the
difficulty of settling on a single model for out-of-sample fore-
casting, we next investigate the promise of combining forecasts,
not only to possibly enhance the forecast accuracy further but
also to guard against forecast failures due to structural change
and model misspecification (see, e.g., Granger and Jeon 2004;
Timmermann 2006).

4.3 | Model Selection and Forecast
Combination

To explore the benefits of aggregating forecasts from different
models, we consider a real-life forecaster who had good rea-
sons for compiling the entire universe of models in January 1997
based on the insights discussed above but without any knowl-
edge of their out-of-sample forecasting performance. During the
first year, he pools the forecasts from all 60 models by taking
the arithmetic average but then employs the MCS approach to
dynamically select the set of competing models that contains the
best model with a specified level of confidence 𝛼. An attractive
feature of the MCS for real-time model selection is that it explic-
itly acknowledges the fact that more than one model can be the
best (see also Granger and Jeon 2004). Given that the procedure
is tied to the informativeness in the data, the set of superior mod-
els evolves dynamically and thus differs at each forecast origin
with models exiting and (re-)entering. We then combine the fore-
casts of the best-performing models where “best-performing” is
defined in two different ways. First, we pool the forecasts from all
the models above the threshold for inclusion in the MCS which
we set at the 𝛼 = 25% significance level. Second, we exploit the
ranking of models implicit in the MCS testing procedure and only
retain models that yield the highest MCS 𝑝-values within 𝑀̂∗

75%
which essentially means that we pool forecasts from the mod-
els with the highest and second highest 𝑝-values given that these
are associated with the smallest sample loss of all forecasts.16 The
sample loss based on squared forecast errors is determined either
recursively or rolling, where, in the former case, the real-life fore-
caster uses the evidence on the performance of each model since
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FIGURE 1 | Real-time cumulative MSPE ratios relative to the monthly no-change forecast for a subset of models and model combinations at selected
horizons. Note: A ratio below 1 indicates that model-based forecasts outperform the no-change forecast. To allow the MSPE ratio to stabilize, we skip
the first 50 forecast periods. The three pooled forecasts refer to the equal-weighted forecast combinations.

TABLE 7 | Real-time accuracy of forecast combinations.

Models with the highest 𝒑-value:

All models Models in 𝑴̂
∗
75% set Recursive Rolling

Equal Inverse MSPE Equal Inverse MSPE Equal Inverse MSPE Equal Inverse MSPE
Monthly weights weights weights weights weights weights weights weights
horizon (1) (2) (3) (4) (5) (6) (7) (8)

1 0.956 0.949 0.944 0.936 0.831 0.814 0.491 0.488
3 0.913 0.908 0.910 0.905 0.839 0.838 0.655 0.654
6 0.867 0.856 0.857 0.847 0.760 0.759 0.583 0.583
9 0.837 0.822 0.813 0.801 0.711 0.711 0.531 0.531
12 0.833 0.814 0.766 0.758 0.699 0.698 0.522 0.522
15 0.843 0.822 0.753 0.746 0.724 0.724 0.498 0.498
18 0.856 0.833 0.749 0.742 0.713 0.713 0.476 0.476
21 0.866 0.840 0.770 0.764 0.756 0.755 0.473 0.473
24 0.881 0.852 0.773 0.766 0.718 0.717 0.459 0.459

Note: Evaluation period: 1997.2–2024.2. Average MSPE ratios of pooled forecasts relative to the no-change forecast of the real natural gas spot price. Boldface indicates
improvements relative to the no-change forecast. Models that enter the forecast combinations are selected in real time by the MCS procedure with 10,000 block bootstrap
replications using a block size of 12 from the entire universe of 60 individual models.

the beginning, while, in the latter case, he only relies on model
accuracy observed over the past year.

Table 7 presents the MSPE ratios for these alternative forecast
combinations relative to the RW. We start with including all 60
models in the forecast combination in line with the thick model-
ing approach of Granger and Jeon (2004) which serves as a use-
ful reference. Column 1 shows that these pooled forecasts beat
the no-change forecast across all horizons, but none of them is
more accurate than the best individual model by horizon. If we
restrict the forecast combination to models that end up in 𝑀̂∗

75%
in real time, we find substantial MSPE reductions of around 24%
from ℎ = 12 onward which are either tied with or outperform
individual models (see Column 3). For horizons up to 9 months,
improvements are minor relative to pooling all models. This dif-
ference between short and long horizons can be traced back to
the weaker sample information at short horizons, which results
in a large number of surviving models closer to the “all-models”

case.17 Since it apparently pays to be selective, we now limit pool-
ing to the models ranked first and second according to the MCS
𝑝-values. Column 5 reveals that using this stricter criterion results
in fewer but more promising models yielding further accuracy
gains with MSPE reductions ranging from 16% at the 3-month
horizon to 30% at the 12-month horizon. The combined forecasts
now perform better than individual models at all horizons except
for ℎ = 1 where the end-of-month RW still dominates. Applying
the same selection criterion but on a rolling basis leads to even
more impressive improvements in MSPE ratios with the lowest
value being a staggering 0.46 (Column 7). Thus, narrowing the
evaluation of losses to a short window increases the power of
the MCS procedure to make a precise selection of the relevant
models whose forecasts when pooled achieve the largest MSPE
reductions overall. Figure 1 includes the cumulative MSPE ratios
for the MCS-based forecast combinations, highlighting that being
increasingly selective yields more effective pooling not just on
average but over the entire evaluation period.18 These results are
based on weighing all models equally when aggregating their
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FIGURE 2 | Dot plot of real-time dynamic MCS model selection for ℎ = 12. Note: The black dots indicate the model with a p-value of 1, while the
other entries pertain to the models with the second highest p-values. The red dashed lines refer to the subperiods of Stock and Zaragoza-Watkins (2024).
The black dotted line marks the beginning of the last 12 months.

forecasts. As can be seen from Columns 2, 4, 6, and 8, using
inverse MSPE weights instead makes no material difference for
the accuracy of pooled forecasts; all that matters is how the mod-
els for the forecast combination are chosen.

Figure 2 reports the models that rank highest at each forecast ori-
gin. For illustration, we focus on ℎ = 12. Further evidence and

discussion for other horizons is in the Supporting Information
Appendix D. The spread price models are frequently selected
in the first subperiod when natural gas and oil prices co-move
closely but disappear after the decoupling of energy prices. Bivari-
ate VARs, which belong to the same model class, also occasion-
ally enter the pool, especially in later periods, hinting at price
recoupling. Constant-volatility economic models of the natural

14 Journal of Applied Econometrics, 2025
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gas market are consistently part of the forecast combinations with
the VAR(12) based on fundamentals in logs being the dominant
choice. Hybrid oil price-economic models are selected for consec-
utive periods at the onset of the transition to shale gas and appear
again in the model set toward the end of the “shut-in fracking”
period and regularly thereafter. While futures do not play any role
in the first half of the evaluation period, they gain prominence in
the last subperiod. Economic models with FSV show up a few
times early on but then lose their informational edge and never
return. Thus, the MCS flexibly adapts to changes in the predictive
content across models in line with the historical narrative.

In sum, this analysis provides practitioners with two options. One
is to update all the models each month to select the ones with the
highest MCS 𝑝-values for the purpose of pooling, which deliv-
ers the best forecast of the real price of natural gas throughout.
Alternatively, to reduce the burden of regular updates, forecast-
ers could rely on the models selected in the recent past and only
recalibrate the mix of models once a year. For more practical guid-
ance, see Supporting Information Appendix D.

5 | Conclusions

Accurate forecasts of the natural gas price inform the design of a
range of policies on climate change, energy affordability, incen-
tives for fuel shifting, and the use of public lands for mineral
exploration and extraction. In this paper, we evaluated the use-
fulness of a variety of candidate models that find their origin in
economic theory, cross-market dynamics, and long-run relation-
ships, in terms of their out-of-sample forecasting performance
for the monthly real price of natural gas for horizons up to 24
months. The assessment was conducted in a real-time setting that
accounted for delays in the release of predictor variables and sub-
sequent revisions. For this purpose, we compiled a rich database
of key determinants of the real price of natural gas from multi-
ple sources. It consists of vintages from 1991M1 to 2024M2, each
covering data back to 1973M1, that report only the information
that was available to a real-life forecaster at the time the forecasts
were generated.

Our analysis offers several key takeaways. First, at short
horizons, model-free forecasts based on futures prices and
last-day-of-the-month prices alongside forecasts from economic
models of the natural gas market with a selective choice of funda-
mental drivers perform best. Second, at longer horizons, forecasts
derived from exponential smoothing, futures prices, and various
economic models with and without SV display the most suc-
cess. Third, given that no single model wins across all horizons
and that the relative forecasting performance of individual mod-
els changes over time, we propose a real-time MCS-based model
selection criterion and show that pooled forecasts from individ-
ual models that are ranked highest by this criterion that flexi-
bly adapts to each models’ most recent performance achieve the
largest reductions in MSPE and thus promise to deliver reliable
forecasts going forward. Alternatively, to keep regular forecast
updates feasible, the set of recently selected models can be used
for pooling with revisions to the model space only once a year.

The real-time database together with the large universe of
economically-motivated forecasting models offers promising

avenues for future research. First, our analysis has focused on
point forecasts because a systematic forecast evaluation for natu-
ral gas prices was missing in the literature; it would be straight-
forward to investigate the usefulness of these models for real-time
density forecasting which could be used to quantify uncertainty,
study tail behavior, construct risk measures and other real-time
market monitoring tools. Second, while we have for the first time
relied on MCS for real-time dynamic model selection, an inter-
esting direction is to explore alternative methods for forecast
aggregation such as Bayesian model averaging, prediction pools,
Bayesian predictive synthesis, among others. Third, since our
forecasts are targeted at informing economic decisions such as
the residential energy mix, energy-saving investments, and gov-
ernment policies, the appropriate forecast frequency is monthly
at which predictors of market fundamentals are available. Devel-
oping forecasting approaches for daily and weekly frequencies
that could be put to use by financial investors, traders, and mar-
ket analysts would be useful, but they require a different set of
models, predictor variables, and evaluation criteria and therefore
is left for future work.
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Endnotes
1 For example, in 2005, only 15% of the natural gas purchased in Europe

on wholesale markets was determined by spot prices according to the
International Gas Union. While this share increased to 64% by 2015
and to 81% by 2020, oil-indexed contracts are still a distinctive feature of
the European gas market. By contrast, 99% of natural gas in the United
States is sold at spot prices.

2 The wellhead price is quoted in dollars per thousand cubic feet,
whereas the Henry Hub price is quoted in dollars per million Btu. We
convert the wellhead price to dollars per million Btu by dividing it by
1.038.

3 These real-time data are obtained from Economic Indicators pub-
lished by the Council of Economic Advisers and made available in the
FRASER database of the Federal Reserve Bank of St. Louis.

4 We use the monthly average of daily prices for natural gas futures
obtained from Bloomberg.

5 While we only use vintages from January 1997 onward, the entire
dataset can be found in the JAE Data Archive and on Christiane
Baumeister’s webpage. The date of January 1991 for the first vin-
tage is a natural starting point since the publication of the Monthly
Energy Review (MER) was temporarily suspended between Octo-
ber and December 1990. The vintages up to December 2023 were
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hand-collected from electronic copies of historical issues of the MER
available on the EIA’s website. In January 2024, the EIA started to
release real-time vintages in electronic format for all the data contained
in the MER. Thus, our historical real-time database for variables related
to the US natural gas market can now be easily extended.

6 Table 3A in the Supporting Information Appendix shows that this find-
ing is not due to the inclusion of the COVID-19 observations but is a
genuine pattern of IP. In fact, the MSPE ratios are robust to the pan-
demic period.

7 While the authors set the lag length to four months based on the AIC,
we stick with one lag since we have already shown that for forecasting
natural gas prices parsimony is key. Selecting the lag length recursively
with the AIC does not yield any systematic improvements in accuracy
(see Table 4A in the Supporting Information Appendix).

8 We select 𝑚 according to the Ledermann bound which determines the
largest number of factors that implies a unique decomposition of the
covariance matrix 𝚺

𝑡
and is derived by solving (𝑛 − 𝑚)2 ≥ 𝑛 + 𝑚.

9 In the Supporting Information Appendix, we compare BVAR models
with homoskedastic and heteroskedastic factor structure on the covari-
ance matrix in Table 5A, with different priors on the reduced-form
dynamics in Table 6A, and with FSV and traditional SV in Table 7A.
Our results are robust to these changes.

10 Monthly data for the WTI spot oil price are taken from FRED
(WTISPLC). We convert the oil price which is quoted in dollars per
barrel to dollars per million Btu by dividing it by 5.8 such that it is in
the same units as the Henry Hub spot price.

11 We estimate the spread model starting in 1993.1 because the Fed-
eral Energy Regulatory Commission Order 636 issued in 1992
marks the completion of the deregulation process of wellhead prices
(Joskow 2013).

12 We show that this finding is robust to different prior choices and mod-
eling of SV in Table 9A.

13 Upon the request of two referees, we complement our analysis with
a systematic evaluation of the predictive ability of our proposed set of
models for the nominal price of natural gas in the Supporting Informa-
tion Appendix B.

14 Following Hansen et al. (2011), we compute the MCS 𝑝-values with
10,000 block bootstrap replications using a block size of 12.

15 Additional results for other forecast horizons can be found in Figure
3A in the Supporting Information Appendix.

16 The highest 𝑝-value is always 1, whereas the second highest 𝑝-value can
either be above or below the threshold for inclusion in the MCS. Thus,
the minimum is one selected model.

17 For example, at ℎ = 3, the minimum number of models included is 4,
the maximum is 60, and the average is 57, as opposed to a minimum of
1, a maximum of 46, and an average of 35 selected models at ℎ = 24.

18 See also Figures 3A and 4A for other forecast horizons that tell the same
story.
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