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Natural forests of the world – a 
2020 baseline for deforestation  
and degradation monitoring
Maxim Neumann   1 ✉, Anton Raichuk1, Yuchang Jiang1,3, Mélanie Rey1, Radost Stanimirova   2, 
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Informed decisions to reduce deforestation, protect biodiversity, and curb carbon emissions require not 
just knowing where forests are, but understanding their composition. Identifying natural forests, which 
serve as critical biodiversity hotspots and major carbon sinks, is particularly valuable. We developed 
a novel global natural forest map for 2020 at 10 m resolution. This map can support initiatives like the 
European Union’s Deforestation Regulation (EUDR) and other forest monitoring or conservation efforts 
that require a comprehensive baseline for monitoring deforestation and degradation. The globally 
consistent map represents the probability of natural forest presence, enabling nuanced analysis and 
regional adaptation for decision-making. Evaluation using a global independent validation dataset 
demonstrated an overall accuracy of about 92%.

Background & Summary
Forests are critical assets in global efforts to mitigate climate change, conserve biodiversity and support liveli-
hoods. They help stabilize the global climate by absorbing significant amounts of greenhouse gases1. Forest eco-
systems harbor over 80% of the world’s threatened species, making them essential for biodiversity conservation2. 
Additionally, forests support the livelihoods of over 1.6 billion people worldwide, including nearly 70 million 
Indigenous Peoples, by providing food, shelter, medicine and economic opportunities3,4. While the importance 
of forests is global, the ecological roles and disturbance regimes of tropical, temperate and boreal forests can 
differ substantially, influencing how loss, degradation, biodiversity maintenance, and carbon changes occur 
across forest climate domains. Despite the critical role that forests play, deforestation continues at an alarming 
rate5 primarily driven by the expansion of agricultural land6. In response, more than 140 countries have pledged 
to end forest loss by 2030, and numerous voluntary and regulatory initiatives have emerged to reduce the impact 
of agriculture on forests7. These include corporate zero-deforestation commitments and policies such as the 
European Union Deforestation Regulation (EUDR), which aims to ensure that products imported into the EU 
market (e.g., cocoa, coffee, oil palm, rubber, cattle, soy) do not come from areas that were deforested or degraded 
after December 31, 20208. Monitoring and achieving these goals requires accurate and comprehensive depic-
tions of global natural forest cover, accounting for the distinct ecological characteristics and disturbance regimes 
of tropical, temperate, and boreal biomes.

A number of datasets map tree cover globally for various time periods9,10, including as a class within land 
cover datasets11–14. However, these datasets are a biophysical measure of woody vegetation often based on height 
or canopy density and do not distinguish natural forests – such as primary forests and naturally regenerat-
ing forests – from planted trees, including tree crops, wood fiber plantations, or agroforestry systems. When 
such datasets are used for forest monitoring, changes within planted forests, such as harvesting, felling of older 
agricultural trees, and loss of other non-natural tree cover are often conflated with deforestation of natural 
forests, complicating data interpretation and potentially leading to wasted investigatory resources. Available 
data that distinguishes forest types, such as natural or planted forests, are more limited; for example, Vancutsem 
et al.15 separate plantations from undisturbed and degraded forests, but limit their study area to moist forest 
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in the tropics, while Lesiv et al.16 map forest management types globally, but only for the year 2015 and at 
100 m resolution. Datasets that explicitly consider disturbance regimes specific to tropical, temperate or boreal 
climate domains remain scarce. More recently, a number of global forest maps have been developed for the 
year 2020 by combining multiple datasets to meet specific definitions for various intended applications, such 
as compliance with EUDR8,17– 20, corporate target-setting with the Science Based Targets Network (SBTN)21, 
and Intergovernmental Panel on Climate Change (IPCC) forest biomass estimates22,23. However, because these 
maps were created by combining various input datasets, they are subject to a number of limitations, including 
inconsistent quality in certain geographic regions or for specific forest types due to limitations of available input 
data18,19,21,23. Furthermore, the ability to update these maps in the future is contingent upon updates to the input 
data.

This study fills an important data gap by moving beyond tree cover to provide a natural forest map for 2020 
that can be used as a baseline for forest monitoring. Under EUDR, which requires companies to provide the 
geographic coordinates of sourcing areas and assessment of deforestation or degradation risk for these locations, 
this data can support companies in conducting due diligence by providing a baseline companies can use to 
evaluate if commodities were produced in areas that have been deforested or degraded after 2020. Furthermore, 
this data can support forest monitoring efforts more broadly by providing a baseline that can be adopted across 
tropical, temperate and boreal forests by distinguishing between natural forest loss versus rotations or harvest of 
tree plantations or tree crops. This critical advancement supports forest conservation and sustainable manage-
ment efforts, as well progress toward global climate and biodiversity goals.

The main objective of this paper is the generation of a novel, globally consistent, calibrated, probabilistic 
mapping of the natural forests of the world (NFW). We trained a single model for the entire world at 10 m res-
olution. We performed a large-scale (about 2 million square kilometers (2M km2)) global stratified sampling of 
land cover across the globe for the training data, from a global sample of 1.2 million non-overlapping locations, 
so that the model saw all possible land cover types, could distinguish coarse categories, and had the capability to 
discriminate natural forest from other tree cover (planted forest, tree crops, etc.) and non-forest environments 
(Table 1). We constructed the training labels from diverse sources, including manually labeled high-quality 
annotations as well as weakly labeled inference results. We trained a novel multi-modal, multi-temporal trans-
former neural network model on satellite remote sensing data (Sentinel-224) at 10 m resolution. It performed 
semantic segmentation taking local spatial context as well as seasonal temporal variation into account. In addi-
tion to multi-spectral inputs, the model used topography information as well as geographic location informa-
tion. We performed inference on the trained model to generate a global, consistent map of natural forest at 10 m 
resolution for the year 2020. We calibrated the predicted pseudo-probabilities of the natural forest class to better 
represent the actual probability of a given pixel being a natural forest. Providing these probabilities rather than 
a fixed binary classification allows users to adapt the natural forest prediction to a specific climate domain or to 
the regional context and user application goals. We evaluated the generated map on a validation dataset based on 
the Global Forest Management stratified validation dataset16 updated for the year 2020 (Fig. 1).

Methods
Our approach harmonized multiple labeled data sources to train a global deep learning semantic segmentation 
model for estimating the probability of natural forest. This model exploits spectral, temporal, and textural infor-
mation from satellite remote sensing. For reference, Fig. 2 provides a diagram of study design and overall data 
flow for model training, evaluation, and final map generation.

Definitions.  The Food and Agriculture Organization of the United Nations (FAO) offers a widely used defi-
nition of forests: “Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of 
more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly 
under agricultural or urban land use”25,26. The FAO goes on to define “Naturally regenerating forest” as “Forest 
predominantly composed of trees established through natural regeneration”. This includes several explanatory 
notes: 1. Includes forests for which it is not possible to distinguish whether planted or naturally regenerated. 2. 
Includes forests with a mix of naturally regenerated native tree species and planted/seeded trees, and where the 

Land type Definition

forest
land area with more than 0.5 hectares, with trees higher than 5 meters and canopy cover greater than 10%. it includes natural 
and planted forests and excludes everything else (in particular other land with tree cover that doesn’t meet the definitions 
above or is predominantly used for agriculture (tree crops) or other land use).

Natural forest

Undisturbed forest where no major human impacts have been detected via satellite imagery in recent history (since the year 
1984); naturally regenerating secondary forests; and managed natural forests with no signs of planting. Managed natural 
forests may be subject to logging, harvesting of forest products, or other low-intensity activities that do not substantially 
alter forest structure, so long as clear signs of planting have not been detected. This category also includes degraded forests 
(so long as they have not been converted to a non-forest land use, and degradation does not result in the sustained reduction 
of tree cover below the height and tree canopy thresholds). Mangroves and savannas are included if they fulfill the forest and 
naturalness definitions above.

Planted forest Stands of planted trees, other than tree crops, with visible signs of planting, such as rows and/or even age distribution. 
Typically grown for wood and wood fiber production or as ecosystem protection against wind and/or soil erosion.

Tree crops Perennial trees that produce agricultural products, such as rubber, oil palm, coffee, cocoa, and orchards.

Other land 
cover types

Other vegetation (including agriculture, as well as savannas and urban trees that do not fulfill the definitions above), human 
built environments, water bodies, permanent ice/snow, and bare/sparse vegetation land covers.

Table 1.  Forest definitions used in this study.
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naturally regenerated trees are expected to constitute the major part of the growing stock at stand maturity. 3. 
Includes coppice from trees originally established through natural regeneration. 4. Includes naturally regenerated 
trees of introduced species. However, some aspects of these definitions cannot be mapped using earth observation 
data alone, such as “trees able to reach these threshold in situ.” Therefore, we adapted our natural forest definition 
to one which can be used in a remote sensing application. In our study, natural forests include primary forests, 
naturally regenerating secondary forests, managed natural forests, and degraded forests that have not been con-
verted to another use. Table 1 summarizes the category definitions we used to map natural forest in this study.

Fig. 1  The global extent of natural forests in 2020 (according to our model, and based on the probability 
threshold of 0.52) with zoom-in examples (from left to right: Amazon Basin in Brazil, deforestation frontier in 
Indonesia, and boreal forest in Western Canada).

Fig. 2  Study design and the overall flow of data for model training, global map construction and the final 
technical validation.
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Training data creation.  Training a deep learning model to recognize natural forest at 10 m resolution requires 
numerous high-quality training examples. We first sampled positive samples containing natural forests (class 1), 
and then included supplementary classes of negative samples. We divided the negatives into hard negatives— 
land cover classes visually similar to natural forests in satellite imagery, including planted forests (class 2), tree 
crop plantations (class 3) and some other vegetation (class 4)—and soft negatives—more distinct land cover 
classes—including human built environments (class 5), water bodies (class 6), permanent ice and snow (class 7), 
as well as bare ground or sparse vegetation (class 8). We found it beneficial for the model to learn these classes 
separately to develop a nuanced understanding of land cover types; a simpler binary segmentation (natural forest 
vs. other) did not perform as well.

In the first stage (“locations sampling”), we constructed a global sample of 1.2 million non-overlapping loca-
tions, each covering 1280  × 1280 m2 area (totaling approx. 2 million square kilometers). We initially prioritized 
locations with known natural forest and other tree cover (positives and hard negatives), incorporating samples 
where ground truth information (manual/in-situ labels) for the forest types was available (Table 2). Additionally, 
we sampled random locations within every 100  × 100 km2 region containing land globally to include other land 
cover types and underrepresented areas.

In the next stage (“class assignment”), we assigned one of eight labels (and an extra “unknown” label, class 
0) to each 10 m pixel within each sample location (there are 1282 = 16,384 pixels per sample). We used the label 
construction process as outlined in Fig. 3, based on the data sources described in Table 2 and Table 3. We des-
ignated areas as unknown (class 0) where data sources disagreed on a label, or where no label candidate existed. 
We aimed to make the best use of all available datasets to create labels for model training. Among others, we 
included the JRC Forest Types v019 as one of the sources, in addition to our retrained GFM-FT 2020 map based 
on updated GFM 2020 training data (an update to16). Some assigned labels could be spurious, especially if 
coming from other weaker machine learning model inferences; however, we expected the model could learn to 
identify and potentially reclassify these label errors. The decisions for the labels construction algorithm (Fig. 3) 
were data-driven; we iterated across many different label sources and combination configurations before arriv-
ing at them. The final presented version optimized model training and map quality, based on evaluation results 
and external reviewers feedback.

The overall process for natural forest class assignment consisted of the following steps (see Fig. 3 for details): 

	 1.	 We created the initial natural forest class as an overlapping combination of sources: natural forest equiv-
alent classes from TMF, SBTN, GFT2020, GFM-FT (p(natural) >0.5), as well as PHTF, European and 
Canadian primary forests, US mature old-growth, and boreal primary and old secondary forests. We also 
included areas of forest loss caused by wildfires, assuming natural regrowth.

Name Classes Type Description

PHTF 1 R,I Primary humid tropical forest (PHTF) for the year 200150 at 30 m resolution.

Boreal 1 R,I Forest age (FA) in the boreal forest biome51 is used to identify primary and old secondary forest 
stands older than 20 years in 2020 at 30 m resolution.

European Primary 1 V,C European primary forest database (v2)52 harmonizing 48 different datasets in the form of polygons 
and points verified by Landsat time series.

Canada Primary 1 R,I
Estimated forest age in Canada based on Landsat temporal composites and allometric equations 
coupled with forest structure and productivity metrics53, that we threshold at 50 years to obtain a 
conservative range of primary forests.

USA MOG 1 R,I
Mature and old-growth (MOG) forests over the contiguous United States54 at 30 m resolution, 
that we threshold at a minimum index of 7 (in the range 1 to 10) to include mature naturally 
regenerating forests.

GFT2020 1-2 R,C JRC global map of forest types (FT) at 10 m spatial resolution19. Classes 1 and 10 are used as for 
natural forest, while class 20 is used for planted forest labels.

TMF 1-2 R,I
JRC tropical moist forest (TMF) types15. Classes 10, 11, 12, 51, 52, 53, 54, 55, 56 as well as 21, 22, 
23, 24, 25, 26, 31, 32, 33, 63 are mapped to natural forest labels, while classes 92 and 93 are used for 
planted forest labels.

SDPT (v2) 2-3 V,C The Spatial Database of Planted Trees (SDPT) dataset contains a set of planted forest and tree 
crops polygons55,56.

ETH cocoa 3 R,I Probability of cocoa growing area at 10 m resolution57, that we binarize at probability threshold 
of 0.9.

CORINE 3 R,I Copernicus CORINE land cover map over Europe58.

CDL 3 R,I USDA’s Cropland Data Layers (CDL) of the United States59.

Tree crops 3 V,M A combination of tree crop commodities in the form of polygons (or squares around points) from 
the various public sources60–72.

WorldCover 4-8 R ESA’s 10 m WorldCover land cover land use classification (including classes for built, snow/ice, 
bare, and water)12.

SBTN 1-2, 4-8 R,C Natural land map from the Science Based Targets Network (SBTN)21 at 30 m resolution.

Table 2.  Label sources for constructing labels for model training. The class column denotes for which classes 
the source was used (1: natural forest, 2: planted forest, 3: tree crops, 4: other vegetation, 5: built environments, 
6: water, 7: ice and snow, and 8: bare or very sparse vegetation). The type column denotes whether the data is a 
rasterized map (R) or vector data (polygons, points) (V), and whether the source involved manual inspection 
(M), model inference (I), or a combination (C).
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	 2.	 From these initial natural forest annotations, we removed areas that experienced recent permanent forest  
cover loss or deforestation (2000–2020), and areas likely non-natural according to GFM-FT (p(natural) < 0.3).

	 3.	 We applied a forest mask, limiting the forest area to locations with tree heights greater than 5 m10, or loca-
tions that experienced natural disturbance between 2000 to 20206, or locations characterized as forest in 
JRC Forest Types19.

	 4.	 After constructing the planted forest and tree crops classes (see Fig. 3), we masked out any ambiguous 
pixels that overlapped with these classes and denoted them as unknown.

We constructed the supplementary classes similarly using a reduced number of sources, as outlined in Fig. 3. 
We also applied the forest mask to the planted forest class since it is expected to conform to the forest definition. 
We applied the inverse of the forest mask to the other vegetation, built, water, ice/snow and bare classes. For the 
‘other vegetation’ class, which can be ambiguous with tree classes, we adopted a more conservative approach, 
assigning that label only if all relevant label sources agree (including SBTN, WorldCover, and indicating no for-
est in GFC tree cover and in our forest mask).

The final distribution of determined class annotations per 10 m pixels in the training data is reported in 
Fig. 4. The natural forest class, the most important one, covered 34.3% of the training data pixels. Hard negatives 
(planted forest, tree crops and other vegetation) also covered a significant area with 37.9%. 13.9% of pixels were 
denoted as unknown due to unavailable or inconclusive/ambiguous sources. The global spatial extent of the 
training data is shown in Fig. 5, where only the local majority class is denoted.

Fig. 3  Diagram of label assignment based on label data sources.
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Model inputs.  For each sample location, we constructed a model training example of predictor variables by 
combining multi-temporal multi-spectral data from Sentinel-2, elevation and topology data from FABDEM27, 
and the geographic location of the sample.

We used multi-spectral imagery from Sentinel-2 surface reflectance data (Level-2A), originally processed 
by sen2cor28. We masked out cloudy areas using Cloud Score+ with the default clear threshold of 60%29. We 
utilized 10 Sentinel-2 bands that are sensitive to land cover (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12), res-
ampling all to 10 m resolution. During dataset generation, we aggregated all temporal cloud-free Sentinel-2 
images for 2020 into four three-months seasonal composites (December-February, March-May, June-August, 
September-November, corresponding to winter, spring, summer, autumn in the Northern Hemisphere) using a 
median temporal filter. This resulted in four 10-band images per sample, giving final dimensions for Sentinel-2 
inputs of (4, 128, 128, 10) representing (temporal dimension, height, width, number of frequency channels).

We obtained elevation data from the Copernicus GLO-30 Digital Elevation Model30, based on interferomet-
ric synthetic aperture radar (InSAR) data acquired by the TanDEM-X mission between 2011 and 2015. We used 
the FABDEM variant that additionally removed estimated forest and building heights27. In addition to the sur-
face elevation above sea level, we computed the local slope and the aspect angle of the slope. After resampling the 
original 30 m data to 10 m resolution, the input dimensions were (1, 128, 128, 3), with the 3 bands representing 
elevation, slope, and aspect.

For global context information, we included the geographical location (latitude and longitude at the center of 
each sample) represented as unit-sphere Cartesian coordinates.

Fig. 6 shows examples of model input data, including multi-spectral composites of Sentinel-2 data, elevation 
data, and the constructed label mask that the model is trained to predict.

Model training.  Our approach utilized a novel Multi-modal Temporal-Spatial Vision Transformer (MTSViT) 
model (Fig. 7), an adaptation of the Vision Transformer (ViT) architecture31,32, engineered to effectively process 

Name Description

GLAD GFC
Global Forest Change (GFC) data contains global layers of tree cover, forest gain and loss, with the year of forest loss, along 
with Landsat 7 cloud-free composite9. We used the GFC tree cover (GFC TC) layer for the year 2000, and the forest loss 
year layer (between 2000 and 2020) to create masks for tree cover in 2020.

GLAD height Tree canopy height layer estimated from Landsat and GEDI data10, used to create a mask of minimal natural and planted 
forest height.

GFM-FT 2020

Global Forest Management – Forest Types (GFM-FT) map is trained on GFM 2020 training data (data by courtesy of Dr. 
M. Lesiv and Dr. S. Fritz, IIASA), which is an update to16. The classes were reassigned to the forest types as used in this 
work (natural forest, planted forest, tree crops, other). The data is used as an additional mask for natural forest (probability 
of GFM-FT natural forest class >0.5), and non-natural forest land (probability of GFM-FT natural forest class <0.3). We 
also threshold it based on the Copernicus Global Land Cover73 tree coverage layer, as originally done in16.

Drivers

Drivers of forest loss between 2000 and 2020 at 1 km resolution6. The classes are: (1) permanent agriculture, (2) hard 
commodities, (3) shifting cultivation, (4) logging, (5) wildfire, (6) settlements and infrastructure, and (7) other natural 
disturbances. For this work, we first combined the drivers data with GLAD GFC tree cover and forest loss year layer9, 
to only keep areas which had tree cover >10% in 2020, and which experienced forest loss between 2001 and 2020. After 
this combination, the resulting drivers data has a 30 m resolution matching the GLAD GFC data. We used this data as 
an additional mask for potentially natural forest after wildfires, and for non-natural forest land after likely permanent 
conversion following a deforestation event (permanent agriculture, hard commodity, and settlements and infrastructure 
classes).

Table 3.  Supporting layers for constructing labels for model training.

Fig. 4  Class distribution at pixel level in the training data. The x-axis denotes the number of pixels in billions (109).
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multi-modal time-series satellite data as input. The ViT model adapts the Transformer architecture, originally 
designed for natural language processing, to image recognition by treating an image as a sequence of smaller 
image patches.

In our MTSViT, we initially divided each input image into 8 × 8 pixel patches, resulting in (128/8)2 = 256 
spatial patches per image. We then projected each 8 × 8 pixel patch into a 192-dimensional vector representa-
tion (a ‘token’) via a learned linear embedding. This process converts each input image into a sequence of 256 
such tokens, which is the standard input format for a Vision Transformer model. Subsequently, a two-stage 
encoding process extracted both spatial and temporal information. First, a spatial transformer encoder oper-
ated on these tokens (independently for each data source and time step) using multiple transformer layers  
(depth = 2) with self-attention33. This stage captured spatial relationships within each image at each time point. 
Second, a temporal encoder (depth = 2) processed the output of the spatial encoder to extract temporal dynam-
ics across the time series (again independently for each data source and spatial token). Following this encoding, 
we fed the compressed spatial and temporal information into a transformer decoder (depth = 4). The decoder’s 
output was then processed by a multi-layer perceptron (MLP, with hidden layer dimension = 768) to predict the 
spatial maps of interest (pixel-wise class logits). We converted the model’s direct outputs (logits, unscaled class 
log-probabilities) to normalized probabilities using a softmax operation34.

The model’s architecture is designed to leverage the distinct information content of each input modality. The 
spatial encoder processes the 8 × 8 pixel patches within each seasonal composite, allowing it to learn textural 
and fine-grained spatial patterns indicative of different land cover types (e.g., the regular patterns of plantations 
versus the heterogeneous texture of natural forests). The temporal encoder then processes the sequence of these 
spatial representations across the four seasons, enabling it to capture the unique phenological signatures of dif-
ferent vegetation types. Finally, the decoder fuses these spatio-temporal embeddings with the topographic data 
(elevation, slope, aspect) and geographic location, enabling the model to learn complex relationships between 
land cover, terrain, and biome-specific characteristics.

Both the encoder and decoder transformer components of our MTSViT were lightweight, consisting of a 
small number of transformer layers (2 and 4, respectively) with 6 attention heads each. This design effectively 
captured spatial, temporal, and multi-modal interactions without excessive computational cost. The specific 
architectural parameters were: embedding size = 192, number of attention heads = 6, temporal patch size = 1, 
spatial patch size = 8, and MLP dimension = 768. We found that ensembling five MTSViT models with different 
random initializations improved performance, with the final prediction generated by averaging their softmax 
probability outputs.

We trained the model weights by minimizing the cross-entropy loss function using gradient descent with the 
Adam optimizer35 on minibatches of size 51234. During model exploration, we trained models for 10 epochs on 
the train split of the data and evaluated them on the test split (10% of land patches of size 100  × 100 km2 ran-
domly distributed and not overlapping with the train split). During each training iteration, we applied random 
data augmentations (synchronous rotations and flipping) to the input data. We trained the model on 64 TPUv3 
accelerator chips. We used a standard Adam optimizer with learning rate = 0.001, weight decay = 3e-5, and a 
cosine learning rate decay schedule with a warmup of 10% of the training duration. We also applied gradient 
clipping (threshold value = 1.0) to stabilize training and to prevent the gradients from becoming too large. Note 
that we ignored pixels with the class unknown during training (they did not contribute to the loss); the model 
therefore never learned to predict that class but still estimated the likelihood of other classes for pixels labeled 
as unknown. We performed hyperparameter tuning on model configuration, input data sources, and label con-
struction. We evaluated the model on F1-score (a harmonic mean of the user’s and producer’s accuracies) and 
overall accuracy metrics on the test dataset split.

We found that ensembling five MTSViT models with different random initializations improved performance. 
Once we determined the best model inputs and model and training configuration, we retrained an ensemble of 

Fig. 5  Global spatial distribution of training data. Each hexagon denotes the dominant class within its area.
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five models on the combined train and test splits for final map generation. The final probability for each class was 
calculated by averaging the softmax probabilities from the five individual models in the ensemble. A completely 
independent validation dataset, which was never seen during training, was used for the final map evaluation in 
the Technical Validation section.

While a single model architecture is used globally for consistency, its design allows it to learn regionally-specific 
patterns. The inclusion of geographic coordinates provides the model with explicit location context, while the 
multi-temporal Sentinel-2 composites enable it to learn the distinct phenological signatures of different biomes 
(e.g., strong seasonality in boreal forests vs. evergreen behavior in tropical rainforests). In this way, the model 
learns a globally consistent but locally sensitive mapping function.

Map construction.  After the model is trained we created an inference dataset covering all land areas between 
−65 and +84 degrees latitude for final map construction. We then used the final trained model ensemble to esti-
mate the probability for the Natural forest class for each inference sample. To reduce tiling and patching artifacts, 
we performed inference using overlapping samples, with a distance between inference sample centers of 210 m 
(the height and width of each sample is 1280 m). While non-overlapping samples were used during training, this 
overlapping inference strategy was employed to produce a smooth, seamless final map. We weight-averaged the 
predictions for overlapping pixels based on the inverse Euclidean distance of the pixel to its respective sample 
center.

Model uncertainty and calibration assessment.  Predictions from neural network models inherently 
possess uncertainty. The two primary sources36 are: epistemic uncertainty (related to model parameters) and ale-
atoric uncertainty (related to inherent input data ambiguity). For our binary classification task (natural forest vs. 
other), the predicted natural forest probability serves as an approximate measure of model confidence, albeit with 
certain limitations. It is well-established that class probabilities generated by deep learning models can be miscal-
ibrated, often exhibiting a tendency towards overconfident predictions (probabilities clustering near 0 or 1)37,38.

To enhance the reliability of our probability estimates, we implemented several strategies. First, we used an 
ensemble of 5 independently trained models to mitigate epistemic uncertainty. Second, we evaluated the cali-
bration of our final probability estimates using an independent validation split derived from GFM16, updated to 
2020 (see Technical Validation section), which was never seen during training. Specifically, we assessed whether 
our predicted forest probabilities aligned with the actual observed forest proportions in this hold-out dataset 
using adaptive histogram binning39.

Our calibration analysis revealed instances of overconfidence in certain probability ranges. Consequently, we 
applied temperature scaling40 with a temperature parameter T = 1.4 to recalibrate the model’s output probabili-
ties. Note that this calibration rescaled the probabilities but did not affect the evaluation metrics in the Technical 
Validation section at the optimal probability threshold. After probability calibration, the generated map repre-
sents the estimated probabilities of the natural forest class at 10 m resolution.

We quantized the final map probabilities into 0.4% intervals to reduce file size.

Fig. 6  Examples of three training locations shown in very high resolution satellite imagery from Google Maps, 
with model input examples from left to right: (2) Sentinel-2 Red-Green-Blue bands, (3) Sentinel-2 SWIR-
NIR-Red bands, (4) elevation, (5) slope, and (6) class annotations. To the right is the color map for the class 
annotations.
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Data Records
The natural forest probability map is available for download at (https://doi.org/10.25452/figshare.
plus.28881731)41, and on the Google Earth Engine (GEE) (https://developers.google.com/earth-engine/data-
sets/catalog/projects_nature-trace_assets_forest_typology_natural_forest_2020_v1_0_collection). A GEE App 
to analyze the data is available at (https://nature-trace.projects.earthengine.app/view/natural-forests-2020). The 
dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). We provide 
the dataset as Cloud Optimized GeoTIFFs (COGs). The map uses the Universal Transverse Mercator (UTM) 
coordinate system, has a spatial resolution of 10 m per pixel, and contains unsigned 8-bit integer values (0-250) 
representing quantized probability values. Each UTM zone is split into 100 smaller tiles/files, resulting in 37,166 
files containing land cover.

To reduce disk space and enable faster loading, we quantized the probability values into the integer range 
of 0 to 250 (stored as unsigned 8-bit integers). To retrieve the estimated probabilities, users need to convert the 
integer values to floats and divide by 250. This quantization implies that the map’s probability resolution is 0.4%.

The probabilities can be used to create a binary natural forest map by setting a probability threshold (either 
the recommended value of 0.52, or another threshold that is estimated for a particular research objective in a 
specific region of interest). Fig. 1 shows the estimated global extent of the natural forests using the 0.52 proba-
bility threshold.

The tabular validation data that was used for accuracy assessment is available at (https://doi.org/10.25452/
figshare.plus.30051517)42. It is licensed under the Creative Commons Attribution 4.0 International License (CC 
BY 4.0). This dataset is in a comma-separated values (CSV) file, consisting of 2,072 records with sample loca-
tions, natural forest class label, and the strata index.

Technical Validation
Accuracy assessment and comparison with other datasets.  We performed evaluation and validation 
of our map based on the Global Forest Management (GFM) validation dataset16, which we updated to 2020 for 
this study. This validation dataset has no intersection with GFM-FT training data used during model training. 
We performed statistically rigorous accuracy assessment, adjusting for the different strata following established 
methods43,44.

We updated the GFM validation dataset for 2020 by visually re-assessing and re-labeling validation plots from 
the GFM 2015 validation dataset from16 that might have experienced natural forest changes between 2015–2020. 
We simplified the labeling task to assigning one of two labels: natural forest (class 1, corresponding to original 
GFM classes 11 (naturally regenerating forests without signs of management) and 20 (naturally regenerating 
forests with signs of management)) versus other (class 0, all other GFM classes). To determine which plots poten-
tially experienced changes, we assessed Global Forest Change9 data between 2015 and 2020. This resulted in a 

Fig. 7  An overview of model training and the multi-modal spatio-temporal vision transformer (MTSViT) 
model. The model takes Sentinel-2 time-series imagery and topography data as inputs, processes each data 
source independently into patch embeddings, and passes them through shared spatial and temporal encoders to 
produce spatio-temporal embeddings. The embeddings from both modalities are then fused in a multi-modal 
decoder and passed through a segmentation head to estimate the class probabilities per pixel. During training, 
the weights of the model are iteratively updated to minimize the loss objective (cross-entropy between these 
probabilities and the labels).
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subset of 56 plots (out of 816 total validation plots originally labeled as natural forest in 2015) that showed some 
tree cover loss. We did not assess other classes under the assumption that a transition from non-natural forest to 
natural forest was highly unlikely over this period. Two to three experts visually re-assessed each of these 56 plots 
using the latest satellite imagery (very high-resolution imagery in Google Earth Pro and ESRI World Imagery 
Wayback, and various contextual layers in Google Earth Engine) and re-assigned labels for 2020 where necessary.

It is important to note that this dataset was originally collected using a stratified random sampling design16. 
However, our current analysis focuses on a binary classification of natural forest versus other. The full dataset 
contains 2,072 sample plots globally, which for our binary assessment correspond to 800 plots of natural forest 
and 1,272 plots of other. Due to this difference in classification schemes, the original strata defined in16 do not 
directly correspond to our map classes. Therefore, we employed general estimators for stratified random sampling 
as described in43 to ensure statistically rigorous accuracy and area estimation. This approach accounts for the 
varying inclusion probabilities associated with the original strata. The accuracy assessment produced estimates 
of accuracies that acknowledged the complexities arising from the differing stratification.

Since the GFM data provided a label for a 100  × 100 m plot, while our map and others have predictions at 10 
to 30 m pixels, we developed the following approach to accurately evaluate against this dataset without bias. We 
assumed that GFM labels correspond to  >50% area cover within the 100  × 100 m plots. For probability maps, 
we first thresholded all pixels within the 100 m area using a selected probability threshold. Then, we assigned the 
plot-level prediction to the Natural forest class based on the majority (>50%) of pixel predictions within the plot. 
We applied the same procedure to other evaluated datasets for consistency. Because the validation sampling unit 
size was 100  × 100 m, we did not assess the accuracy of spatial details at finer resolution (e.g., 10 m).

Selection of the probability threshold is an important step and can be adjusted for particular use cases, 
depending on whether user’s or producer’s accuracy (UA or PA) should be prioritized, and based on map quality 
in a particular region. Fig. 8 shows the overall accuracy (OA), UA, and PA, plotted against the probability thresh-
old. The graph also shows the 95% confidence intervals computed as  ±1.96*SE (standard error) of the metrics. 
The behavior of the User’s Accuracy (UA) curve at low thresholds is a result of the stratified sampling design 
of the validation dataset. The UA is calculated as the ratio of correctly classified positive samples to all samples 
classified as positive, area weighted by the strata. At a threshold of 0, all samples are classified as positive, so the 
UA is simply the proportion of positive samples in the validation set, area weighted by the strata.

The vertical bars in Fig. 8 denote specific probability thresholds. The probability threshold with the highest 
OA is 0.52. However, as observed for the optimal overall accuracy, this threshold yields high user’s accuracy, but 
lower producer’s accuracy, representing a trade-off that reduces commission errors at the cost of more omission 
errors. Alternatively, one could choose a balanced threshold at 0.37, where UA is similar to PA, with only a minor 
drop in OA compared to the maximum. At this threshold the commission and omission errors are balanced on 
the GFM 2020 validation dataset. Note also that OA is not very sensitive to a wide range of probabilities, and the 
greyed area denotes the range where OA is within 1% of the top OA.

For comparison, we also evaluated other recently released natural forest cover maps: 

	 1.	 GFT2020: Joint Research Center’s (JRC’s) Forest Type map19. We combined classes 1 (naturally regenerat-
ing forest) and 10 (primary forest) to represent natural forest.

	 2.	 UMD IPCC: University of Maryland’s forest map for the Intergovernmental Panel on Climate Change 
(IPCC) assessment22. We constructed the natural forest class by combining all 3 relevant classes (primary 
and young and old secondary forests).

	 3.	 SBTN v1.1: Science Based Targets Network map denoting natural lands, including forests21. We construct-
ed the natural forest class by combining classes 2 (natural forests), 5 (natural mangroves), 8 (wet natural 
forests), and 9 (natural peat forests)21.

	 4.	 Forest Persistence v0: Forest Data Partnership’s (FDaP’s) undisturbed forest score (0 to 1) at 30 m resolu-
tion, for 202020.

Fig. 8  User’s accuracy, producer’s accuracy, and overall accuracy on the Global Forest Management (GFM) 
2015 validation data16 updated to 2020. The shaded areas include 95% confidence intervals. Also denoted are the 
optimal OA and balanced probability thresholds, as well as the range of probabilities within 1% of maximal OA.
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The evaluation results using a stratified estimator (combined ratio estimator)43,44 on the updated GFM 2020 
validation data are shown in Table 4. We report the results at the overall accuracy optimal probability or confi-
dence score threshold toa, which was 0.52 for our map (NFW) and 0.57 for Forest Persistence map. Alongside 
the accuracy metrics, we report the estimated standard error in the parentheses. We found that the overall 
accuracy of the NFW map was 92.2% (±0.6%), which was 3 percentage points higher than the next best map in 
this comparison.

Table 5 presents the evaluation results per continent for our map, using the same globally optimal probability 
threshold (toa = 0.52). Although we used the global threshold, we also observed that the locally optimal thresh-
old could vary by continent. The map performs best in North and South America as well as in Asia, with lower 
overall accuracy in Europe, Africa and Australia/Oceania.

Error analysis.  At very high probability thresholds, there are fewer samples where the map confidently pre-
dicts natural forest. The few error outliers disproportionately strongly affect UA. At a probability threshold of 
0.95, only 47 validation samples were predicted as natural forest, 4 of which had the reference label other (result-
ing in a commission error rate of 8.5% for this high threshold). We analyzed several high-confidence commission 
errors and observed quite ambiguous and difficult cases. Fig. 9 demonstrates some high-confidence examples 
of apparent errors. The first two examples on the left show commission errors where the map predicted natural 
forests, while the reference label indicated potentially planted forest according to16.

Conversely, at a probability threshold below 0.05, there were 60 omission errors where the map confidently 
predicted other, but the reference label was natural forest (out of 997 samples predicted as other with p < 0.05; 
representing a 6% omission error rate among these high confidence other predictions). Often we observed that 
the model did not predict natural forest if the trees were very sparse or close to settlements with agriculture, as 
shown on the right examples in Fig. 9.

Limitations.  While this study provides a novel global baseline map of natural forests for 2020, it is important 
to acknowledge certain limitations in our map (assessed at the OA optimal probability threshold of 0.52): 

•	 Agroforestry and smallholder systems: Some complex agroforestry systems (e.g., with shaded tree crops, such 
as shaded cocoa plantations in West Africa) and smallholder agricultural mosaics can be difficult to distin-
guish from natural forest using satellite data alone. The misclassification is particularly apparent in some areas 
in Southeast Asia and Latin America.

•	 Planted and orchards vs. natural forest differentiation: Distinguishing planted forests from naturally regener-
ating forests can be challenging using only remote sensing satellite data. This is especially prevalent in regions 
like the boreal zone, where some natural forests have lower species diversity and planted forests are harvested 
with longer rotation times (up to 100 years) compared to the tropics45. These long rotations and homogeneous 
stands can mimic the characteristics of natural or old-growth forests, making them difficult to separate based 
on spectral and textural features alone. Consequently, our map (with a probability threshold of 0.52) tends to 
overestimate natural forest in Scandinavia. We observed similar overestimation in some parts of temperate 

Map Overall acc. (SE) User’s acc. (SE) Producer’s acc. (SE)

GFT2020 89.2 (0.7) 85.2 (1.4) 81.5 (1.5)

UMD IPCC 85.4 (0.8) 88.1 (1.4) 64.7 (1.8)

SBTN v1.1 86.0 (0.8) 84.8 (1.5) 70.4 (1.8)

Forest Persistence (toa = 0.57) 88.7 (0.7) 81.0 (1.2) 86.2 (1.4)

ForestPersistence (tbalanced = 0.62) 88.3 (0.7) 82.3 (1.2) 82.5 (1.6)

Our map (toa = 0.52) 92.2 (0.6) 90.5 (1.2) 85.3 (1.4)

Our map (tbalanced = 0.37) 91.7 (0.7) 87.5 (1.3) 87.6 (1.4)

Table 4.  Evaluation results using a stratified estimator on Global Forest Management (GFM) 2015 validation 
data16 updated to 2020 for this study. Standard error (SE) of the accuracy metrics is reported in the parentheses.

Continent Overall acc. (SE) User’s acc. (SE) Producer’s acc. (SE)

Africa (t = 0.52) 89.0 (1.7) 92.9 (2.2) 70.1 (4.6)

Asia (t = 0.52) 94.0 (0.9) 91.8 (1.9) 88.3 (2.0)

Australia and Oceania (t = 0.52) 86.3 (4.3) 93.0 (6.1) 53.0 (11.6)

Europe (t = 0.52) 89.2 (2.1) 82.5 (3.4) 82.3 (5.1)

North America (t = 0.52) 93.5 (1.4) 87.1 (2.9) 92.9 (2.8)

South America (t = 0.52) 94.7 (1.6) 95.5 (2.4) 94.4 (1.8)
	

Table 5.  Evaluation per continent (at global optimal OA threshold). Standard error (SE) of the accuracy metrics 
is reported in the parentheses.

https://doi.org/10.1038/s41597-025-06097-z


1 2Scientific Data |         (2025) 12:1715  | https://doi.org/10.1038/s41597-025-06097-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

forests in the United States Northwest and Midwest. Similarly we observed some orchards (for example in 
northern Turkey) to be misclassified as natural forest.

•	 Sparse natural forest, such as savanna, are often at the threshold of natural forest definition for the tree can-
opy height and coverage ratios. It is not easily possible to determine the correctness or errors of the map 
predictions.

•	 Post-disturbance ambiguity: Forest type assignment immediately after a disturbance event (e.g., fire, logging) 
is inherently ambiguous. It may not be clear from satellite imagery whether the forest will regenerate naturally 
or if the land will be converted to another use (e.g., plantation, agriculture).

•	 Other ambiguities: Areas of potential confusion could include large parks within urban areas, or planted tree 
belts that meet forest definition criteria but are not natural.

•	 Input data quality: The accuracy of our natural forest map is intrinsically linked to the quality and consistency 
of the various input datasets used for training label generation (Tables 2, 3). These datasets were created using 
different methodologies, spatial resolutions, temporal ranges, and definitions. Some label layers were the 
outputs of other models, and are therefore limited by the quality of those models. While our approach aimed 
to harmonize sources and mitigate the impact of individual dataset errors, inconsistencies and inaccuracies 
in the underlying data could still influence the final map.

An important avenue for improvement will be to address these limitations in future versions of the dataset.

Usage Notes
Except for the probability quantization and calibration, we released the map without any additional 
post-processing. Consequently, users may choose to apply post-processing heuristics to optimize the map for 
specific use cases. For example, users might want to refine the natural forest extent by filtering out areas using a 
minimal tree canopy height threshold. There are various regional and global tree canopy height maps available 
(e.g.10,46–48) that could be used for this task.

After probability threshold selection and creating a binary natural forest map, users may also choose to 
remove predicted natural forest patches with areas smaller than a specific threshold (e.g. 0.5 hectares according 
to FAO).

Fig. 9  Examples of high-confidence commission and omission errors. The central square of each example 
covers the 100  × 100 m area that is being evaluated. On the left: commission errors, potentially misinterpreting 
planted forest as natural forest. In the center and to the right: omission errors in sparse trees areas and close to 
human settlements and agriculture.
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Tiling artifacts.  The model used a spatial context window of 1280 m when making predictions. While our 
overlapping inference approach aimed to minimize discontinuities between adjacent prediction windows, subtle 
tiling artifacts might still appear in the probability map when merging neighboring prediction windows, particu-
larly near the corners of the underlying inference tiles. These artifacts usually disappear or become negligible after 
applying a probability threshold to create a binary map.

Probability threshold selection.  Choosing an optimal probability threshold is crucial for balancing dif-
ferent types of errors when creating a binary classification map from the probability layer, and this decision is 
inherently tied to the specific application and the desired error characteristics. For a given application and desired 
balance between commission (false positives) and omission (false negatives) errors, users should select the prob-
ability threshold by analyzing the trade-off between User’s Accuracy (UA) and Producer’s Accuracy (PA).

The plot in Fig. 8 can guide threshold selection based on global validation data. Based on our global analysis, 
we recommend using the threshold between 0.3 to 0.55, depending on the desired balance between UA and PA. 
However, if local evaluation data are available, we recommend using a data-driven approach: recompute the 
accuracy metrics for the region of interest across different thresholds and select the threshold best suited to the 
local context and application needs.

Some general guidance for probability threshold selection: 

•	 To prioritize User’s Accuracy (minimizing commission errors/false positives, i.e., high confidence that 
mapped forests are truly forests), select a higher threshold from the curve in Fig. 8 where UA is high.

•	 To prioritize Producer’s Accuracy (minimizing omission errors/false negatives, i.e., capturing most of the 
actual forest), select a lower threshold where PA is high.

•	 To seek a balance, choose a threshold near the intersection point of the UA and PA curves in Fig. 8, or where 
both accuracies are acceptably high.

Data availability
The natural forests of the world 2020 dataset is available at Figshare under the following link: https://doi.
org/10.25452/figshare.plus.2888173141.

Code availability
We generated the training dataset and the final map using the GeeFlow library (https://github.com/google-
deepmind/geeflow) that uses Google Earth Engine49 as the backbone. The code for model training, inference, and 
evaluation is available in the JEO code repository (https://github.com/google-deepmind/jeo).
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