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Abstract
Artificial intelligence (AI) is increasingly being explored as a tool to optimize and accelerate various stages of 
evidence synthesis. A persistent challenge in environmental evidence syntheses is that these remain predominantly 
monolingual (English), leading to biased results and misinforming cross-scale policy decisions. AI offers a promising 
opportunity to incorporate non-English language evidence in evidence syntheses screening process and help to 
move beyond the current monolingual focus of evidence syntheses. Using a corpus of Spanish-language peer-
reviewed papers on biodiversity conservation interventions, we developed and evaluated text classifiers using 
supervised machine learning models. Our best-performing model achieved 100% recall meaning no relevant 
papers (n = 9) were missed and filtered out over 70% (n = 867) of negative documents based only on the title 
and abstract of each paper. The text was encoded using a pre-trained multilingual model and class-weights were 
used to deal with a highly imbalanced dataset (0.79%). This research therefore offers an approach to reducing the 
manual, time-intensive effort required for document screening in evidence syntheses—with minimal risk of missing 
relevant studies. It highlights the potential of multilingual large language models and class-weights to train a 
light-weight non-English language classifier that can effectively filter irrelevant texts, using only a small non-English 
language labelled corpus. Future work could build on our approach to develop a multilingual classifier that enables 
the inclusion of any non-English scientific literature in evidence syntheses.

Keywords  Natural language processing, Non-English, Evidence synthesis, Biodiversity conservation, Language 
barriers, Explainable AI, SHAP, Multilingual language model

Resumen
La inteligencia artificial (IA) se está explorando cada vez más como una herramienta para optimizar y acelerar 
diversas etapas de la síntesis de evidencia. Un desafío persistente en la síntesis de evidencia ambiental es que 
estas son predominantemente monolingües (inglés), lo que conduce a resultados sesgados y a decisiones políticas 
erróneas. La IA ofrece una oportunidad prometedora para incorporar evidencia científica en idiomas distintos 
del inglés en el primer paso del proceso de la síntesis de evidencia, la selección de documentos relevantes, 
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Background
Synthesising scientific evidence in an unbiased and com-
prehensive way—for example through systematic reviews 
and mapping—is fundamental to inform evidence-based 
conservation and thus devise solutions to the current 
biodiversity crisis. Incorporating multilingual evidence 
is crucial for evidence-based conservation, as systemati-
cally excluding non-English literature limits comprehen-
siveness and reduces the ability of syntheses to account 
for biases. Incomplete evidence syntheses lead to flawed 
decisions and policies [1, 2] and misinform environmen-
tal governance at both local and global scales [3].

To date, evidence syntheses in environmental sciences 
have remained predominantly monolingual (English) [2, 
4]. For example, over 60% of the systematic reviews and 
maps published in Environmental Evidence exclusively 
searched for English-language evidence. Similarly, only 
4% of the evidence used in global assessments by the 
Intergovernmental Platform on Biodiversity and Ecosys-
tem Services (IPBES) were in non-English language [2, 
4, 5]. This monolingual approach could have multiple 

consequences for evidence synthesis. First, English-only 
evidence synthesis excludes the substantial body of sci-
entific evidence published in non-English languages [6, 
7]. For instance, non-English-language literature captures 
a greater amount of data sources than English-language 
evidence on the economic cost caused by invasive species 
worldwide [8]. Second, by ignoring non-English-language 
evidence we could overlook locally specific and context-
relevant evidence [6], which is typically preferred by 
conservation policy-makers [8, 9]. On average, non-Eng-
lish-language literature constitutes 65% of the references 
cited in national biodiversity conservation assessments, 
and these are recognized as relevant knowledge sources 
by 75% of report authors in countries where English is 
not an official language [9]. Finally, ignoring non-English-
language studies can lead to systematic biases in statis-
tical results, as statistically more significant and positive 
results are more likely to be published in English [10, 11]. 
Together, these consequences could undermine the qual-
ity of meta-analyses, scientific conclusions, and policy 
recommendations, particularly in regions where local 

contribuyendo a ir más allá del enfoque monolingüe actual de la síntesis de evidencia. Utilizando un corpus de 
artículos revisados por pares en español sobre intervenciones de conservación de la biodiversidad, desarrollamos y 
evaluamos clasificadores de texto utilizando modelos de aprendizaje automático supervisado (en inglés, “supervised 
machine learning”). Nuestro mejor modelo alcanzó un 100% de exhaustividad (en inglés, “recall”), lo que significa 
que no se pasó por alto ningún artículo relevante (n = 9) y se filtraron más del 70% (n = 867) de los documentos 
negativos basándose únicamente en el título y el resumen de cada artículo. El texto se codificó utilizando un 
modelo multilingüe pre-entrenado y se utilizaron ponderaciones de clase para tratar un conjunto de datos 
muy desequilibrado (0.79%). Nuestro trabajo destaca el potencial de los modelos lingüísticos multilingües pre-
entrenados y los pesos de clase para entrenar un clasificador ligero de idiomas distintos del inglés con la capacidad 
de filtrar eficazmente los textos irrelevantes, utilizando solo un pequeño corpus de documentos etiquetado. Futuras 
investigaciones podrían partir de nuestro enfoque para desarrollar un clasificador multilingüe que permita incluir 
cualquier literatura científica en idiomas distintos del inglés en las síntesis de pruebas.

要約 – 日本語

人工知能（AI）は、エビデンスの統合における様々な段階を最適化・加速するツールとして、ますます活用が
進められている。環境分野では、エビデンス統合が主に英語のみで行われ、結果に偏りが生じることで政策決
定に対して誤った情報を伝え得ることが、継続した課題となっている。AIは、非英語の文献をエビデンス統合
のスクリーニング過程に取り入れるために有望な手段であり、現在の英語偏重のエビデンス統合を大きく改善
する可能性を秘めている。本研究では、生物多様性の保全活動に関するスペイン語の査読付き論文コーパスを
用いて、教師あり機械学習モデルによるテキスト分類の開発・評価を行った。最も性能の高かったモデルは、
タイトルと要旨の情報のみを利用することで再現率（recall）100%を達成し、関連した文献（n=9）を一つも
見逃すことなく、関連していない文献の70%以上（n=867）を除外することができた。このモデルでは、テキ
ストは事前学習済みの多言語モデルを用いてエンコードされ、極端に不均衡なデータセット（0.79%）に対応
するためにクラス重み付けが用いられた。本研究は、エビデンス統合において手作業で行なう文献スクリーニ
ングが必要とする時間と労力を、関連研究を見逃すリスクを最小限に抑えつつ軽減するアプローチを提供す
る。また、多言語の大規模言語モデルとクラス重み付けの活用により、少量の非英語ラベル付きコーパスのみ
で、不要なテキストを効果的に除外できる軽量な非英語テキスト分類を実現する可能性を示している。今後の
研究では、本アプローチを発展させ、あらゆる非英語の科学文献をエビデンス統合に取り込むことが可能な多

言語テキスト分類の開発が期待される。
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knowledge and context-specific research published in 
native languages provide crucial insights that are not cap-
tured in the international English-language literature.

The time-consuming and labour-intensive nature of 
evidence synthesis, often poses a challenge in including 
non-English-language evidence. For example, manually 
completing a systematic map in environmental sciences 
is estimated to take 211 days full-time equivalent for an 
experienced reviewer, with roughly 91 days dedicated 
only to screening stages [12]. The amount of time and 
people required to conduct evidence synthesis can be 
much larger if multiple languages are considered in the 
synthesis. Indeed a survey with authors of 72 systematic 
reviews and maps published in Environmental Evidence 
showed that the lack of time, relevant language skills, 
and necessary resources is the main reason for them not 
to include non-English-language evidence in their stud-
ies [5]. Furthermore, a synthesis on the effectiveness of 
biodiversity conservation interventions conducted in 17 
languages required the collaboration of 38 people and 
the involvement of two institutions for over two years 
to cover scientific data of journals from 28 countries [6], 
highlighting the large efforts needed to make evidence 
synthesis multilingual.

Thanks to recent developments in artificial intelli-
gence (AI), researchers have increasingly been exploring 
their integration in various stages of evidence synthesis 
[13–17]. Traditionally, classification-based approach 
using machine learning classifiers like logistic regres-
sion, naïve bayes, support vector machines, and more 
recently neural networks have been applied to automati-
cally identify evidence that is relevant to a set of eligibil-
ity criteria in the ecological and health domain [14–16], 
with some automated classifiers performing better than 
manual screening [15]. For instance, a classification pipe-
line including machine learning and active learning can 
find 95% of eligible studies after screening between only 
8–33% of the studies [15]. Further, the same pipeline can 
find from 70 to 100% of relevant studies after screening 
only 10% of the abstracts [15]. With the recent advances 
of generative AI, researchers can do end to evidence syn-
thesis achieving varying levels of accuracy in the different 
stages of the evidence synthesis process [17–20]. Vir-
tual AI assistants (but not using Large language models 
(LLM) reasoning capabilities) have been found to help 
human reviewers with search string development and 
the screening of article titles and abstracts [17]. LLMs 
like Claude, ChatGPT, and the Bing AI Chat tool can act 
as second reviewers and are able to extract and tabulate 
valuable information from scientific articles (including 
PDFs), e.g. geographic location, taxonomic informa-
tion and other study characteristics [21–24]. Careful use 
of LLMs for evidence synthesis is however required, as 
outputs can be incomplete and biased, or even contain 

‘hallucinations’ (fabricated data) [18, 21]. Nonetheless, 
recent progress in generative AI, including complex rea-
soning capabilities and the ability to retrieve information 
from the internet [25] highlight the huge potential of AI 
to accelerate evidence synthesis workflows.

Despite the promise of machine learning and natural 
language processing algorithms, most current proposed 
solutions for automatically identifying relevant litera-
ture are trained on English-language text, limiting the 
potential for (semi-)automated multilingual evidence 
synthesis. Yet, pre-trained multilingual language models 
(e.g. mBERT, XLM-R, and mT5 [26–28]) are increasingly 
available, covering over 100 languages and displaying 
high accuracy when fine-tuned on downstream tasks, 
such as classification, summarisation and question 
answering. Thus, developing text classifiers trained on 
non-English language scientific literature has potential to 
both widen information coverage and reduce screening 
times for multilingual evidence syntheses, allowing for 
improved use of non-English-language evidence.

Using a multilingual global database of scientific peer-
reviewed articles on the effectiveness of biodiversity 
conservation interventions identified based on a set of 
selection criteria (i.e., inclusion/exclusion –see selec-
tion criteria in ( [6, 29]), this study develops supervised 
machine learning to classify Spanish-language literature 
that is relevant to the same selection criteria. We aim to 
(i) determine the best performing models for classifying 
relevant Spanish-language literature and (ii) identify the 
aspects of feature engineering and feature extraction that 
influence the performance of classification models. The 
importance of Spanish-language studies for conservation 
is unquestionable; up to 13% of the scientific literature 
on conservation is in Spanish [30], and over 6% of the 
global population are Spanish native speakers with most 
of these people living in Latin America [31], a region that 
houses seven biodiversity hotspots (i.e., Atlantic Forest, 
the Caribbean, the Cerrado, Mesoamerica, the Valdivian 
temperate rainforest, the Tropical Andes, and Tumbes-
Chocó-Magdalena). Thus, exploring ways to access the 
knowledge produced in the Spanish language is funda-
mental to foster inclusive, effective, and locally informed 
evidence-based conservation. We also anticipate that the 
approach developed in this study will be readily transfer-
able to other non-English languages.

Box 1. Glossary

Supervised machine learning: modelling approach 
that uses human-labelled input data to learn the 
underlying relationships between inputs and outputs. 
The trained model is able to predict correct outputs 
based on new, unlabelled data.
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Embeddings: numerical representations of text data 
that capture semantic relationships.
Pre-trained language models: neural networks 
trained on massive text datasets, enabling them to 
understand human language.
Hyperparameter tuning: the process of finding 
the optimal set of hyperparameters for a machine 
learning model before training.
Ablation studies: consists of systematically removing 
components of a model to assess their individual 
contributions to overall performance to understand 
which parts of the model are essential and which 
might be redundant.

Methodology
We compared three supervised binary classifiers: logis-
tic regression (LR), support vector machine (SVM), and 
multi-layer perceptron (MLP). We used different com-
binations of classifiers, feature extraction, and data bal-
ancing approaches to assess how these factors impact 
the performance of the classification models. Each docu-
ment’s text length includes the title and abstract of a sci-
entific article. In total, 38 model variants were generated 
(Table S4).

Pre-processing training data
We define relevant documents (i.e. articles) as studies 
that tested the effectiveness of a conservation actions 
on biodiversity outcomes and were published in Spanish 
(i.e., the title, abstract, and main text is written in Span-
ish). These documents were identified through a disci-
pline-wide multilingual synthesis [6], which screened 
26,819 documents published in 56 Spanish-language 
journals across 11 countries including Argentina, Chile, 
Colombia, Costa Rica, Dominican Republic, Ecuador, 
El Salvador, Mexico, Nicaragua, Peru, Uruguay for spe-
cific year ranges until 2019 (see year ranges and more 
information in Sup. Mat. Table  1). Amano et al. (2021) 
[6] identified 111 relevant Spanish-language documents 
(Fig. 1) covering conservation actions, such as species re-
introduction programs, ecological restoration, reforesta-
tion, control of invasive species, installation of bat and 
bird nest-boxes, fire management programs, agricultural 
land use programs for forest conservation, community 
forest management programs, and more.

We restricted the scope of this study to documents 
from 12 journals indexed in SciELO ​(​​​h​t​t​p​s​:​/​/​s​c​i​e​l​o​.​o​r​g​/​e​s​
/​​​​​​)​​, a regional language-specific repository, in which docu-
ments are open access and largely available on the web-
site, as well as two other journals that had a high number 
of relevant documents in [6]. As a result, documents from 
14 journals within the year ranges screened in [6] were 
included in our analysis (Acta Zoológica Mexicana, Bar-
bastella, Ecología Aplicada, Ecología Austral, Galemys, 

Huitzil, Madera y Bosques, Mastozoología Neotropical, 
Quebracho, Revista Chilena de Historia Natural, Revista 
de Biología Tropical, Revista Mexicana de Biodiversidad, 
Revista Mexicana de Ciencias Forestales, Therya) (Fig. 1). 
Custom scrapers were written in Python language (​h​t​
t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​h​a​k​o​​s​h​​/​j​o​u​r​n​a​l​-​s​c​r​a​p​e​r) to retrieve 
all documents published in the 14 journals by selecting 
those that met the following selection criteria: (i) title and 
abstract should be available in Spanish, but there could 
also be an English or Portuguese version, (ii) title and 
abstract should be available on the website not in PDF 
format, and (iii) the main text should be in Spanish only. 
A total of 10,340 documents were retrieved in HTML 
format, cleaned up, and relevant information including 
the title and abstract were extracted. Next, the text was 
processed using a language detection model—fastText 
[32]—and 3,033 documents were removed as they had 
the main text in English in addition to Spanish (Fig.  1). 
We excluded 1,301 documents that were outside the year 
range screened in [6]. Additionally, 125 documents were 
removed as their abstract was shorter than 300 charac-
ters. Using Polars String methods [33], we removed 331 
documents that were duplicates or editorials, erratum, In 
Memoriam, or retracted documents, leaving 5,550 docu-
ments. Out of the 111 relevant Spanish-language docu-
ments found in [6], we excluded 19 documents as they 
were not published in the journals of focus, 42 docu-
ments didn’t have an abstract, and six documents also 
had their main text available in English. As a result, we 
used 44 relevant documents as positive documents in our 
study.

Articles in the scraped dataset (from SciELO, Bar-
bastella, and Galemys) that were present in our collec-
tion of positive documents were removed. We identified 
these duplicates using article titles and the Levenshtein 
distance, a string metric that measures the minimum 
number of single-character edits (insertions, deletions, 
or substitutions) required to change one word into the 
other. We set the similarity score above 0.95 using the 
Levenshtein Python module [34] as this was the thresh-
old in which all the positive titles in the body of docu-
ments scraped from SciELO, Barbastella, and Galemys, 
were ‘similar enough’ to the titles in the corpus of posi-
tive documents. The remaining documents published 
in the subset of focus journals were considered negative 
(i.e., non-relevant) documents and annotated accordingly 
with positive or negative labels. Our final corpus con-
sisted of 5,550 documents, with 44 positive documents 
and 5,506 negative documents.

Finally, the corpus was pre-processed for two feature 
extraction approaches (i.e., term frequency and term 
frequency inverse-document frequency). We removed 
numbers, special characters, punctuations, stop-words 
i.e., words that hold little information (e.g., ‘el’, ‘la’, ‘y’, ‘en’ 

https://scielo.org/es/
https://scielo.org/es/
https://github.com/hakosh/journal-scraper
https://github.com/hakosh/journal-scraper
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Fig. 1  Flowchart showing the retrieval and pre-processing of training data and the number of studies included and excluded at each stage of the pre-
processing. Green arrows output the final number of documents in the positive and negative class. Journals of focus are Acta Zoológica Mexicana, Barbastella, 
Ecología Aplicada, Ecología Austral, Galemys, Huitzil, Madera y Bosques, Mastozoología Neotropical, Quebracho, Revista Chilena de Historia Natural, Revista de Bi-
ología Tropical, Revista Mexicana de Biodiversidad, Revista Mexicana de Ciencias Forestales, and Therya. Created in ​h​t​t​p​s​:​/​/​B​i​o​R​e​n​d​e​r​.​c​o​m​​​​​​​​

 

https://BioRender.com
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in Spanish), and extra white spaces (Fig. 1). We used the 
Python stop_word module as it had the most compre-
hensive predefined list of stop words. We lemmatized 
words to remove inflectional endings (e.g., -o, -a, -s, -es 
in Spanish) and to return the base or dictionary form of a 
word, known as the lemma [35], using a Spanish language 
pre-trained model (‘es_core_news_md’) from the spaCy 
library [36].

Feature extraction
We used three approaches to extract features from the 
text in documents: (i) term frequency (TF), (ii) term 
frequency inverse document frequency (TF-IDF) and 
(iii) sentence-level embeddings. Term frequency is the 
number of times a word occurs in a document. TF-IDF 
weights term frequency by the number of documents 
that term occurs in, down-weighting common terms 
[37]. These term-based features represent text with-
out accounting for word position or semantic mean-
ing, i.e., ‘bag of words’. In contrast, our third approach 
is context-aware and derives semantically meaningful 
sentence embeddings using the SentenceTransformers 
encoder (a.k.a SBERT) [38, 39] implemented through 
Sentence Encoder (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​k​o​a​n​​i​n​​g​/​e​m​b​e​t​t​e​
r). The sentence embeddings learned from a large ​m​u​l​t​i​
l​i​n​g​u​a​l corpora, which consist of text data from various 
languages. During training, the model learns to predict 
the context of words or phrases in multiple languages, 
effectively capturing the semantic relationships between 
words across languages. We tested the performance of 
two multilingual pre-trained models when mapping 
sentences and paragraphs into vectors (distiluse-base-
multilingual-cased-v1 and paraphrase-multilingual-
mpnet-base-v2) Table 1.

All text pre-processing, model training, and testing was 
conducted in Python 3.11 [40] using modules includ-
ing NumPy [41], Polars [33], Pandas [42], matplotlib 
[43], NLTK [44], Levenshtein [34], spaCy [36], scikit-
learn [45], imbalanced-learn [46], embetter (​h​t​t​p​​s​:​/​​/​g​i​t​​h​
u​​b​.​c​​o​m​/​​k​o​a​n​​i​n​​g​/​e​m​b​e​t​t​e​r), SentenceTransformer [38], 
PyTorch [47].

Accounting for imbalanced data
Because positive documents only account for 0.79% of 
the data, we tested four approaches to handle our imbal-
anced dataset: weighting the model loss function, ran-
dom oversampling of documents of the minority class 
(positives/relevant), synthetically oversampling docu-
ments of the minority class using the ADASYN algo-
rithm, and random undersampling of documents of the 
majority class (negative/irrelevant). In a weighted loss 
function, the weights are used to make the model more 
sensitive to the minority class by increasing the cost of 
a misclassification of that class (see formulas for weight 
calculations in Sup. Mat.). On the other hand, resampling 
can add samples from the minority class or remove sam-
ples from the majority class in an effort to balance the 
classes. RandomUnderSampler, RandomOverSampler, 
and ADASYN of the imblearn module within the scikit-
learn library were used to resample the training data and 
were all randomly seeded at 42.

Classifiers and hyperparameters
We fitted multiple classification heads of three model 
families: logistic regression, support vector machine 
(SVM), and multilayer perceptron to evaluate their per-
formance when classifying text. We trained ‘baseline’ 
models using their default hyperparameters except for 
the multilayer perceptron; we changed the activation 
function to ‘logistic’ (instead of the default ‘relu’), and 
it had no hidden layers. To ensure reproducibility, we 
seeded all random initialisations at 42. We used Logisti-
cRegression, SVC, and MLPClassifier within the scikit-
learn library.

Training and testing
In all model families, training, development, and testing 
sets were created to test the validity of the classifier. We 
split the corpus stratifying classes resulting in 80% of the 
corpus as training data (n = 4,440) and the remaining 20% 
was retained for testing the model (n = 1,110). To assess 
model performance during training, we used stratified 
two-fold cross-validation and to enable direct compari-
sons of model performance, all models were cross-vali-
dated using the same data subsets. To avoid over-fitting, 
development sets were used to evaluate classification 
performance, whilst the testing sets were used to evaluate 
the classifier’s performance when applied to unseen data. 
We investigated the performance of the best performing 
model by training the model on four different random 
splits and calculated the standard error of the training 
set losses (Sup. Mat. Table 3). To make predictions in a 
systematic and reproducible way, we used scikit-learn 
[45] pipelines to transform and resample the data and 
fit estimators. We used the cross_val_predict and Strati-
fiedKFold functions within the scikit-learn [45] library 

Table 1  Implemented classifiers, feature extraction techniques, 
and balance strategies
Classifier Feature extraction Balancing approach
Logistic regression
Support vector 
machine
Multi-layer perceptron

TF (term frequency)
TF-IDF (term frequen-
cy inverse document 
frequency)
Sentence embedding

No sampling
Random 
undersampling
Random upsampling
Synthetic 
upsampling
Class weights

Note that not all combinations are possible. For example, the multi-layer 
perceptron classifier cannot handle class weights. See table S4 for all 38 models 
used in this study

https://github.com/koaning/embetter
https://github.com/koaning/embetter
https://github.com/koaning/embetter
https://github.com/koaning/embetter
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for stratified cross-validation and the Pipeline and make_
pipeline functions from the imbalanced-learn [46] library 
for implementing pipelines consisting of data transfor-
mations and a final classifier.

Evaluation
The models were evaluated using the precision (i.e., pro-
portion of all the model’s positive classifications that are 
actually positive), recall (i.e., proportion of all actual posi-
tives that were classified correctly as positives), and F1 
scores (i.e., the harmonic mean of precision and recall). 
Besides these metrics, we generated confusion matrices. 
Because the classifiers developed here were primarily 
designed to avoid missing any potentially eligible study, 
we evaluated the model with the highest cross-validation 
F1 among those attaining a threshold test set recall value 
above 90%. We conducted ablation studies by system-
atically removing or replacing modules (i.e., encoding 
and weighting approach) from the model architecture 
to assess their individual contributions to the overall 
performance.

Hyperparameter tuning
We searched for the best set of hyperparameters in the 
Logistic Regression and SVM to optimize model perfor-
mance. We tested different solvers, including ‘liblinear’ 
and ‘lbfgs’. We also tested different values of the regular-
ization parameter C that controls the strength of Ridge 
Regression or Tikhonov regularization applied to the 
model. Smaller C values add penalties to large weights.

Explainability and error analysis
We explained predictions using SHapley Additive Expla-
nations (SHAP) [48], a feature-based (i.e., word-based) 
interpretability method that can be integrated into super-
vised classification tasks. SHAP is based on the Shapley 
Values used in game theory. The approach measures the 
relative contribution of each feature (i.e., word or token) 
to the output produced by the classification model by 
assigning a value to each feature in a specific prediction. 
Each prediction (i.e., f(x)) is calculated as:

	 f (inputs) = basevalue +
∑

(SHAP values of features)

The base value (expected value) is the model’s prior belief 
and represents the average prediction (expressed in SVM 
decision scores) the model would make for any given text 
if it didn’t have any specific information from the cur-
rent text. SHAP calculations start from the base value. 
Next, each feature in the text is assigned a SHAP value, 
and the sum of these features’ SHAP values (f(inputs)) 
are the contributions that adjust the prediction higher or 
lower relative to the baseline. The sum of the SHAP val-
ues for all features, when added to the base value, equals 

the final SVM decision score prediction for the given 
text. It is important to highlight that these explanations 
come with some limitations. For instance, the observed 
SHAP values are approximations as the exact calculation 
of Shapley values is computationally infeasible due to the 
exponential number of feature combinations that need to 
be evaluated [48].

Additional qualitative evaluation was conducted by 
inspecting whether the words assigned a high relevance 
by the model were associated with the impact class. For 
this, we created word clouds of all predictions to gain 
insights from the most frequently used words (Sup. Mat. 
Figure 1).

Results
Classifier performance
The best performing classifier uses SVM, sentence-
embedding using a multilingual pre-trained language 
model as the feature extractor, and weights to balance 
classes, achieving a test set recall of 100% and F1 of 0.071 
(Fig.  2, Sup.Mat. Figure  1, Sup.Mat.Table  4). The classi-
fier cut the manual labelling effort in a systematic synthe-
sis by over 78% with a false positive error of < 22%. The 
high recall achieved indicates that the model effectively 
captures nearly all positive documents while minimiz-
ing false negatives (see Confusion Matrix in Sup. Mat. 
Table 2). Our ablation studies reveal that no single model 
component (i.e., encoding or weighting approach) con-
tributes significantly more than the other to the overall 
architecture. This is evidenced by the fact that removing 
or replacing either of the two components results in a 
recall of 0% (Sup. Mat. Table 5). To test the performance 
of the best model, we trained the model using different 
train-test partitions and the results of these models did 
not deviate from those of the best model with the stan-
dard error of the model loss being less than 0.01 (Sup. 
Mat. Table  3). The second-best performing model, a 
multi-layer perceptron (MLP) classifier using TF-IDF 
with under-sampled training data also achieved a recall 
of 100%, but with a significantly lower F1 and precision 
(Sup. Mat. Table 4). As shown in Fig. 2, classifier perfor-
mance strongly depends on the specific combination of 
model head, feature extractor and approach to data bal-
ancing. Further, our ablation studies reveal that no single 
model component (i.e., encoding or weighting approach) 
contributes significantly more than the other to the over-
all architecture. This is evidenced by the fact that remov-
ing or replacing either of the two components results in a 
recall of 0% (Sup. Mat. Table 5).

Multilingual pre-trained models as encoders
Our results demonstrate the potential of multilingual 
pre-trained models for encoding a small corpus of Span-
ish-language text to train classification models (Fig.  2). 
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Despite the challenge that only 44 documents in the 
entire dataset (0.79%) were relevant to biodiversity con-
servation, the pre-trained model (‘MPNet’) performed 
well in capturing contextual information for each class. 
However, the sentence embedding alone can’t achieve 
high performance and it needs to be used with appropri-
ate weighting and classification head too.

Dealing with imbalanced data
We found that weighting the loss function was the most 
effective strategy for addressing extreme class imbal-
ance, a common challenge in evidence synthesis tasks 
and literature classification (Fig.  2). By assigning higher 
importance to underrepresented classes, this approach 
improves the model’s sensitivity to rare but relevant doc-
uments, ensuring better recall without compromising 
precision. The MLP classifier also achieved a comparable 
recall by undersampling training data. However, reducing 
the training data may result in losing valuable informa-
tion, potentially leading to a skewed understanding of the 
underlying linguistic patterns and biasing model predic-
tions and limiting generalizability.

Prediction explanations
Using SHAP, we measured the role of each word or set 
of words in the classifier’s predictions –note that because 
the best-preforming classifier used sentence embed-
dings as input features, stop words are also included in 
this analysis. SHAP values explain the change in the 
model’s prediction when a word is included versus when 
it’s not. Thus, the SHAP value that a word gets depends 
on their context and it is not related to high word occur-
rence, but on the relative importance that word has in 
the instance. Figure  3 shows a summary of the words 
having the largest impact in any instance based on the 
max absolute SHAP value. The words in Spanish and 

their translations to English that had the largest impact 
in predicting a positive instances are “conservación = con-
servation”, “comunidades = communities”, “restaura-
ción = restoration”, “La = the”, “comunitario = community”, 
“protegidas = protected”, “presentó=presented”, “aprove-
chamiento = utilization”, “a = to”, many of them being 
strong indicators of the corpus domain, biodiversity con-
servation actions, particularly conservation interventions 
and their consequences. Words from models trained 
on different train-test partitions follow the same pat-
tern, for instance “parques = parks”, “restauración = res-
toration”, “fuego = fire” (Sup. Mat. Figure  2). The words 
in Spanish and their translations to English that had 
the largest impact in predicting negative instances are 
“cianobacterias = cyanobacteria”, “riesgo = risk”, “phry-
nosomatidae = phrynosomatidae”, “coyote = coyote”, 
“lamiaceae = lamiaceae”, “microbiota = microbiota, con-
servación = conservation”, and ‘Michoacán = Michoacán” 
(Fig. 3). The word conservation appears as an important 
word in both true negative and true positive documents 
(Fig.  3). The reason for this can be because words in 
embedding models do not have a fixed directional impact 
(positive or negative). Instead, their impact is contex-
tual: the embedding model encodes a word’s meaning 
based on its surroundings (e.g., ‘wildlife conservation’ vs. 
‘energy conservation’), and SHAP aggregates these local 
effects. Thus, the same word can push predictions in dif-
ferent directions depending on its usage in the text.

Perhaps not surprising, the words having the largest 
impact to increase a true positive and negative predic-
tion did not match the most frequently used words in 
the true positive nor negative predicted class (Fig. 4). It 
often happens that the most frequent words carry little 
class-specific information, this being the reason why TF-
IDF is often better than TF when extracting words using 
word-based approaches. The top five words in the true 

Fig. 2  Heatmap depicting the configuration of 38 classification models tested in this study and their test set Recall. Columns on the x axis represent 
models (n = 38, also see Supp Mat Table 4 for the model number of each model) and rows on the y axis represent model configurations (i.e., model head, 
feature extractors, and balancing approach). Squares indicate the combination of the model head, feature extractor, and balancing approach used in 
each model, and colours depict the test set recall achieved by the model. Warmer colours (red) show higher recall and cooler colors (blue) show a lower 
recall. Additional performance scores are in Sup. Mat. Table 4. Notes: SVM parameters (weighted) : (class weight={0:0.50, 1: 63.06}, kernel:’linear’, probabil-
ity = True, C = 0.01) Logistic Regression parameters (weighted): (class weight={0:0.50, 1: 63.06}, random state = 42, solver=’liblinear’, C = 0.01) MLP Classifier 
parameters: (activation=’logistic’, batch size = 16, hidden layer sizes=(), random state = 42) TF-IDF: term frequency inverse document frequency
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positives are especie = species (normalized frequency of 
100%), fuego = fire and área = area (normalized frequency 
of 60%) and resultados = results = and manejo = manage-
ment (normalized frequency of 50%) (see Calculating 
normalized frequency scores in Sup. Mat. and normal-
ized frequency of words in ​h​t​t​p​​s​:​/​​/​f​i​g​​s​h​​a​r​e​​.​c​o​​m​/​s​/​​0​f​​a​0​8​​
8​6​e​​f​5​7​3​​4​a​​7​7​8​9​3​c). Similarly, the normalized ​f​r​e​q​u​e​n​c​i​e​s 
of the top five words in the predicted true negatives show 
that especie = species is the most frequent word followed 
by estudio = study occurring 28% as often as the most 
common word, and México = Mexico, bosque = forest, 
distribución = distribution, and género = genus/gender 
appear 20% as often as the most common word.

The word contributions to the model prediction in a 
correctly classified positive and negative document are 
shown in Fig. 5 as an example (See full length of predic-
tions in ​h​t​t​p​​s​:​/​​/​f​i​g​​s​h​​a​r​e​​.​c​o​​m​/​s​/​​8​9​​d​f​9​​6​5​e​​b​f​9​6​​e​6​​2​b​f​1​e​
3). Words in red increase the SVM decision scores and 
thus the positive predicted probability while words in 

blue increase the predicted negative probability. The 
f(inputs) value is the sum of all word contributions, 
which added up to 0.367 compared to the base value in 
Fig.  5a, making it a positive prediction. Following the 
same logic, the f(inputs) value in Fig. 5b is -0.692, show-
ing the word contributions to a negative class prediction. 
In the document shown in Fig.  5a, the top two words 
that contributed to the positive prediction example are 
highly relevant to biodiversity conservation actions, for 
instance“conservación = conservation”, “reserva = reserve 
(noun)”, and “mamíferos = mammals”. Conversely, words 
like “tropica = tropical” and “biodiversidad = biodiversity” 
decreased the probability. Interestingly, in this document 
the word “biodiversidad” contributes both positively 
(SVM decision score = 0.023, in a green square) and nega-
tively (SVM decision score=-0.115, in an orange square) 
to the model’s output as highlighted in Fig. 5a. This shows 
the nature of embedding models that encode not just the 
word itself but its interaction with surrounding words 

Fig. 4  Word clouds of frequently used words in (a) true positive and (b) true negative predictions. The top five most frequently used words in (a) are 
especie = species, followed by área = area, fuego = fire, manejo = management and in (b) especie = species, estudio = study, México = Mexico, bosque = forest, 
distribución = distribution, género = genus/gender

 

Fig. 3  Summary of the words having the largest impact to increase any true (a) positive and (b) negative predictions, if present. The x axis shows the 
max absolute SHAP value expressed as the SVM decision scores. The bar at the bottom of the figure represents the sum of all other words in the text. 
Translation to English of the words in the (a) positive prediction are: conservación = conservation, comunidades = communities, restauración = restora-
tion, La = the, comunitario = community, protegidas = protected, presentó=presented, aprovechamiento = utilization, a = to; and (b) negative predictions 
are cianobacterias = cyanobacteria, riesgo = risk, phrynosomatidae = phrynosomatidae, coyote = coyote, lamiaceae = lamiaceae, “microbiota = microbiota, 
conservación = conservation, and Michoacán = Michoacán

 

https://figshare.com/s/0fa0886ef5734a77893c
https://figshare.com/s/0fa0886ef5734a77893c
https://figshare.com/s/89df965ebf96e62bf1e3
https://figshare.com/s/89df965ebf96e62bf1e3
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capturing nuanced semantic information from contex-
tual relationships. For instance, the word “biodiversity” 
(in Spanish biodiversidad) in a green square in Fig.  5a, 
is close to the word “to preserve” (in Spanish conser-
var) potentially influencing the importance of the word 
biodiversity.

Error analysis
To understand why the model misclassified a positive 
document we calculated the SHAP scores of the false 
negative predictions (Fig. 6, Sup. Mat. Figure 2, See full 

length of predictions in ​h​t​t​p​​s​:​/​​/​f​i​g​​s​h​​a​r​e​​.​c​o​​m​/​s​/​​7​4​​1​4​5​​a​9​c​​f​
5​3​3​​2​9​​b​6​9​b​d​7). Translations of the top words that strongly 
push negative documents to be classified as positives are 
shown in Fig.  6. Several of these words are words asso-
ciated with conservation interventions, the positive class 
domain including “estrategia = strategy”, “éxito = success”, 
“conservación = conservation”, “refugio = refuge”, “diver-
sidad = diversity”. We suspect that the presence of these 
words “confused” the classifier into predicting 234 false 
positives. Words from models trained on different train-
test partitions follow the same pattern, for instance “con-
servación = conservation”, “reforestación = reforestation”, 
“sostenibilidad = sustainability”, “resiliencia = resilience” 
(Sup. Mat. Figure 2). Furthermore, we suspect that there 
might be some model bias when learning features in 
the negative class as we see that the model overweights 
words like “estrategia”, “éxito”, “infestación”, and others 
(SHAP values = 0.51, 0.32, and 0.31 and so on) strongly 
associating these to the positive class. Another bias could 
be from the negative documents, in which those terms 
are absent, rare or surrounded by words with strong con-
servation semantic meaning.

Discussion
Using supervised machine learning we developed a Span-
ish-language text classifier to identify relevant scientific 
documents on the effectiveness of biodiversity conserva-
tion actions. A key finding of our study is the robustness 
of the model architecture combining transformer-based 
multilingual models to represent semantic sentence-level 
features and weighted loss function to deal with a highly 
imbalanced dataset. The sentence embedding model 
contributed to achieving strong classification outcomes, 
very likely because it learned deep representation of 
the words by pre-training on contextual representation 
using a large corpus with bidirectionality, whereas the 
traditional models use frequency-based feature extrac-
tors. The encoder’s capability to handle the complexi-
ties of non-English linguistic structures is an advantage 
for multilingual text applications. The use of SHAP [48] 
further enhanced explainability by providing insights into 
how the model generates predictions and showed that 
words with deep semantic meaning to biodiversity con-
servation interventions, the domain of the positive class, 
were the words with largest importance. Such transpar-
ency is crucial for fostering trust in automated classifica-
tion systems, as it allows researchers to understand not 
only what the model predicts but also why and how those 
predictions are made. This capability makes our approach 
a valuable tool for automated non-English-language 
text classification applications in global conservation 
research.

Our work demonstrates that using transformer-based 
multilingual models to encode non-English-language 

Fig. 6  Summary of the words having the largest impact to increase 
any false positive predictions, if present. The x axis shows the SHAP val-
ues expressed as SVM decision scores and are calculated on the max 
absolute SHAP value. The bar at the bottom of the figure represents the 
sum of all other words in the text. Translation to English of the words 
are: “estrategia = strategy”, “éxito = success”, “reproductiva = reproduc-
tive”, “infestation = infestation”, “Hypoxidaceae = Hypoxidaceae”, “con-
servación = conservation”, “población = population”, “refugio = refuge”, 
“diversidad = diversity”

 

Fig. 5  Example of the SHAP contributions (decision score) on the model’s 
output of correctly classified (a) positive and (b) negative documents. The 
base value is the baseline value that the model outputs when no specific 
input words are considered. It acts as a reference point to explain how 
much each word pushes the prediction higher or lower relative to this 
baseline. The f(inputs) is the sum of all SHAP values output of the model for 
the full original input. Each word’s SHAP value is above each word/group 
of words, and they represent the contribution of that specific word to 
the change in the model’s output (decision score) compared to the base 
value. Words in pink/red push the model’s prediction towards a higher de-
cision score value for the predicted class whilst words in blue model’s pre-
diction towards a lower decision score value for the predicted class. The 
intensity of the colour on the text indicates the magnitude of the impact 
(i.e., strength of the words contribution)

 

https://figshare.com/s/74145a9cf53329b69bd7
https://figshare.com/s/74145a9cf53329b69bd7
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text at the sentence level (e.g., SBERT), combined with 
a simple classification head like logistic regression can 
also yield a lightweight yet effective multilingual classi-
fier. A classification algorithm with a logistic regression 
head trained only on English-language biodiversity data 
has also shown exceptional performance [16, 38, 49]. 
Similarly, research testing sentence-level representa-
tions of English-language text against token-based ones 
have shown the robustness of the former [49]. Further-
more, a common issue in classification problems are 
imbalanced datasets [15, 50, 51], and we addressed this 
issue by weighting the loss function to balance classes. 
An approach that combines these methodologies is valu-
able for the screening stage in environmental evidence 
synthesis, where language barriers often limit access to 
evidence produced in highly biodiverse regions where 
English is not widely spoken. However, because our train-
ing data spans from 1992 to 2019, our model might need 
to be updated using adaptive text classification frame-
works to keep up with the fluidity of scientific language 
where a temporal and conceptual drift exists (i.e., new/
modern concepts, terminology, and definitions).

Alternative classification methodologies—such as 
XLM-Roberta models, virtual agents, and other gen-
erative or reasoning AI systems—may result in similar 
classification performance and aid the screening stage 
in evidence syntheses. These alternative approaches, 
either independently or in combination with our meth-
ods, could enhance overall classification outcomes. For 
instance, screening data for a systematic review on elec-
tric vehicles using GPT-4 achieved comparable results 
to our best-performing classifier [52]. More work should 
examine the advantages of these methodologies to deter-
mine the most effective strategies for English and non-
English-language text classification in research.

Another avenue for future exploration involves lever-
aging the multilingual embeddings used in this study 
and assessing the model’s ability to generalize across 
other non-English languages. In this same line, future 
work can perform zero-shot learning, where our model 
is retrained using a different non-Spanish Latin language 
with very little labelled data, for instance the Portuguese 
language. The knowledge transferred from our model 
can help bootstrap the model’s performance in the target 
language. Such a model could possibly perform as good 
as our best performing model. Expanding the model’s 
application beyond Spanish-language texts could pro-
vide valuable insights into its versatility and potential 
for broader evidence synthesis. Additionally, future 
research should evaluate whether pre-trained mod-
els with extended sequence lengths or using document 
embedding can generate improved embeddings, leading 
to better classification performance (i.e., F1 score). Fur-
thermore, fine-tuning our models could achieve better 

precision, a crucial factor in, e.g., health-related synthe-
ses, where comprehensive and precise coverage is essen-
tial [13, 14]. As a result, these classifiers would enable 
fast and complete identification of relevant literature for 
biodiversity conservation evidence syntheses. However, 
we caution that our approach is only for one step in the 
evidence syntheses process and either additional AI algo-
rithms should be validated and included in the pipeline 
or fluent speakers of a language are needed to extract 
data and assess publications.

Box 2 - Practical recommendations to leveraging 
pre-trained language models.
For researchers and practitioners interested in leveraging 
pre-trained language models for Spanish text classifica-
tion we offer practical recommendations:

 	• Multilingual vs. monolingual models: while 
multilingual models (e.g., MPNet) perform well 
across languages, monolingual Spanish models can 
also achieve good results for Spanish-specific tasks 
due to specialized vocabulary and training data. 
To select the most appropriate model, check the 
HuggingFace leaderboard of pre-trained multilingual 
models (​h​t​t​p​​s​:​/​​/​h​u​g​​g​i​​n​g​f​​a​c​e​​.​c​o​/​​s​p​​a​c​e​​s​/​m​​t​e​b​/​​l​e​​a​d​e​
r​b​o​a​r​d) and always consider the domain in which 
the model has been trained –this can have a huge 
impact in how the model “understands” your text. 
Also, match your text preprocessing to the model’s 
training regime (i.e., casing, tokenization, maximum 
sequence length).

 	• Explainable AI (a.k.a. XAI): consider including 
techniques to understand why your model makes 
a certain prediction, rather than treating it as a 
“black box”. Tools like SHAP (SHapley Additive 
exPlanations) [48] can visually highlight which 
specific words or phrases in the text most influenced 
the classification outcome. These visualisations 
increase transparency and can help you understand 
model errors and biases.

 	• Computational resources: consider a language model 
size that matches your computational capabilities. 
The HuggingFace model leaderboard (​h​t​t​p​​s​:​/​​/​h​
u​g​​g​i​​n​g​f​​a​c​e​​.​c​o​/​​s​p​​a​c​e​​s​/​m​​t​e​b​/​​l​e​​a​d​e​r​b​o​a​r​d) offers 
information on model size. If a big model is required, 
free cloud computing services, like Google Collab are 
available.

Conclusions
Our study shows that integrating multilingual pre-
trained models for text encoding, a weighted loss func-
tion for class balancing, and support vector machine as 
the classification algorithm enables a classifier to per-
form effectively on Spanish-language text. Multilingual 

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
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text embeddings allow learning more accurate clas-
sifiers without large amounts of non-English labelled 
data expanding the scope of knowledge covered in an 
evidence synthesis by including non-English language 
evidence. Furthermore, non-English-language text classi-
fiers can streamline the screening of titles and abstracts, 
accelerating the identification of relevant documents in 
conservation science. Automating and making this step 
of the synthesis process multilingual not only improves 
efficiency but also allows researchers to focus on ana-
lyzing high-relevance documents and ensuring broader 
coverage of non-English-language evidence in environ-
mental evidence syntheses.
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