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Abstract

Artificial intelligence (Al) is increasingly being explored as a tool to optimize and accelerate various stages of
evidence synthesis. A persistent challenge in environmental evidence syntheses is that these remain predominantly
monolingual (English), leading to biased results and misinforming cross-scale policy decisions. Al offers a promising
opportunity to incorporate non-English language evidence in evidence syntheses screening process and help to
move beyond the current monolingual focus of evidence syntheses. Using a corpus of Spanish-language peer-
reviewed papers on biodiversity conservation interventions, we developed and evaluated text classifiers using
supervised machine learning models. Our best-performing model achieved 100% recall meaning no relevant
papers (n=9) were missed and filtered out over 70% (n=867) of negative documents based only on the title

and abstract of each paper. The text was encoded using a pre-trained multilingual model and class-weights were
used to deal with a highly imbalanced dataset (0.79%). This research therefore offers an approach to reducing the
manual, time-intensive effort required for document screening in evidence syntheses—with minimal risk of missing
relevant studies. It highlights the potential of multilingual large language models and class-weights to train a
light-weight non-English language classifier that can effectively filter irrelevant texts, using only a small non-English
language labelled corpus. Future work could build on our approach to develop a multilingual classifier that enables
the inclusion of any non-English scientific literature in evidence syntheses.

Keywords Natural language processing, Non-English, Evidence synthesis, Biodiversity conservation, Language
barriers, Explainable Al, SHAP, Multilingual language model

Resumen

La inteligencia artificial (IA) se estd explorando cada vez mas como una herramienta para optimizar y acelerar
diversas etapas de la sintesis de evidencia. Un desafio persistente en la sintesis de evidencia ambiental es que
estas son predominantemente monolingtes (inglés), lo que conduce a resultados sesgados y a decisiones politicas
erréneas. La IA ofrece una oportunidad prometedora para incorporar evidencia cientifica en idiomas distintos

del inglés en el primer paso del proceso de la sintesis de evidencia, la seleccién de documentos relevantes,
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contribuyendo a ir mas alld del enfoque monolingtie actual de la sintesis de evidencia. Utilizando un corpus de
articulos revisados por pares en espafol sobre intervenciones de conservaciéon de la biodiversidad, desarrollamos y
evaluamos clasificadores de texto utilizando modelos de aprendizaje automatico supervisado (en inglés, “supervised
machine learning”). Nuestro mejor modelo alcanzd un 100% de exhaustividad (en inglés, “recall”), lo que significa
que no se pasd por alto ningun articulo relevante (n=9) y se filtraron més del 70% (n=867) de los documentos
negativos basandose Unicamente en el titulo y el resumen de cada articulo. El texto se codificé utilizando un
modelo multilingle pre-entrenado y se utilizaron ponderaciones de clase para tratar un conjunto de datos

muy desequilibrado (0.79%). Nuestro trabajo destaca el potencial de los modelos lingiisticos multilingtes pre-
entrenados y los pesos de clase para entrenar un clasificador ligero de idiomas distintos del inglés con la capacidad
de filtrar eficazmente los textos irrelevantes, utilizando solo un pequernio corpus de documentos etiquetado. Futuras
investigaciones podrian partir de nuestro enfoque para desarrollar un clasificador multilinglie que permita incluir
cualquier literatura cientifica en idiomas distintos del inglés en las sintesis de pruebas.
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Background

Synthesising scientific evidence in an unbiased and com-
prehensive way—for example through systematic reviews
and mapping—is fundamental to inform evidence-based
conservation and thus devise solutions to the current
biodiversity crisis. Incorporating multilingual evidence
is crucial for evidence-based conservation, as systemati-
cally excluding non-English literature limits comprehen-
siveness and reduces the ability of syntheses to account
for biases. Incomplete evidence syntheses lead to flawed
decisions and policies [1, 2] and misinform environmen-
tal governance at both local and global scales [3].

To date, evidence syntheses in environmental sciences
have remained predominantly monolingual (English) [2,
4]. For example, over 60% of the systematic reviews and
maps published in Environmental Evidence exclusively
searched for English-language evidence. Similarly, only
4% of the evidence used in global assessments by the
Intergovernmental Platform on Biodiversity and Ecosys-
tem Services (IPBES) were in non-English language [2,
4, 5]. This monolingual approach could have multiple

consequences for evidence synthesis. First, English-only
evidence synthesis excludes the substantial body of sci-
entific evidence published in non-English languages [6,
7]. For instance, non-English-language literature captures
a greater amount of data sources than English-language
evidence on the economic cost caused by invasive species
worldwide [8]. Second, by ignoring non-English-language
evidence we could overlook locally specific and context-
relevant evidence [6], which is typically preferred by
conservation policy-makers [8, 9]. On average, non-Eng-
lish-language literature constitutes 65% of the references
cited in national biodiversity conservation assessments,
and these are recognized as relevant knowledge sources
by 75% of report authors in countries where English is
not an official language [9]. Finally, ignoring non-English-
language studies can lead to systematic biases in statis-
tical results, as statistically more significant and positive
results are more likely to be published in English [10, 11].
Together, these consequences could undermine the qual-
ity of meta-analyses, scientific conclusions, and policy
recommendations, particularly in regions where local
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knowledge and context-specific research published in
native languages provide crucial insights that are not cap-
tured in the international English-language literature.

The time-consuming and labour-intensive nature of
evidence synthesis, often poses a challenge in including
non-English-language evidence. For example, manually
completing a systematic map in environmental sciences
is estimated to take 211 days full-time equivalent for an
experienced reviewer, with roughly 91 days dedicated
only to screening stages [12]. The amount of time and
people required to conduct evidence synthesis can be
much larger if multiple languages are considered in the
synthesis. Indeed a survey with authors of 72 systematic
reviews and maps published in Environmental Evidence
showed that the lack of time, relevant language skills,
and necessary resources is the main reason for them not
to include non-English-language evidence in their stud-
ies [5]. Furthermore, a synthesis on the effectiveness of
biodiversity conservation interventions conducted in 17
languages required the collaboration of 38 people and
the involvement of two institutions for over two years
to cover scientific data of journals from 28 countries [6],
highlighting the large efforts needed to make evidence
synthesis multilingual.

Thanks to recent developments in artificial intelli-
gence (AI), researchers have increasingly been exploring
their integration in various stages of evidence synthesis
[13-17]. Traditionally, classification-based approach
using machine learning classifiers like logistic regres-
sion, naive bayes, support vector machines, and more
recently neural networks have been applied to automati-
cally identify evidence that is relevant to a set of eligibil-
ity criteria in the ecological and health domain [14-16],
with some automated classifiers performing better than
manual screening [15]. For instance, a classification pipe-
line including machine learning and active learning can
find 95% of eligible studies after screening between only
8-33% of the studies [15]. Further, the same pipeline can
find from 70 to 100% of relevant studies after screening
only 10% of the abstracts [15]. With the recent advances
of generative Al researchers can do end to evidence syn-
thesis achieving varying levels of accuracy in the different
stages of the evidence synthesis process [17-20]. Vir-
tual Al assistants (but not using Large language models
(LLM) reasoning capabilities) have been found to help
human reviewers with search string development and
the screening of article titles and abstracts [17]. LLMs
like Claude, ChatGPT, and the Bing AI Chat tool can act
as second reviewers and are able to extract and tabulate
valuable information from scientific articles (including
PDFs), e.g. geographic location, taxonomic informa-
tion and other study characteristics [21-24]. Careful use
of LLMs for evidence synthesis is however required, as
outputs can be incomplete and biased, or even contain
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‘hallucinations’ (fabricated data) [18, 21]. Nonetheless,
recent progress in generative Al, including complex rea-
soning capabilities and the ability to retrieve information
from the internet [25] highlight the huge potential of Al
to accelerate evidence synthesis workflows.

Despite the promise of machine learning and natural
language processing algorithms, most current proposed
solutions for automatically identifying relevant litera-
ture are trained on English-language text, limiting the
potential for (semi-)automated multilingual evidence
synthesis. Yet, pre-trained multilingual language models
(e.g. mBERT, XLM-R, and mT5 [26-28]) are increasingly
available, covering over 100 languages and displaying
high accuracy when fine-tuned on downstream tasks,
such as classification, summarisation and question
answering. Thus, developing text classifiers trained on
non-English language scientific literature has potential to
both widen information coverage and reduce screening
times for multilingual evidence syntheses, allowing for
improved use of non-English-language evidence.

Using a multilingual global database of scientific peer-
reviewed articles on the effectiveness of biodiversity
conservation interventions identified based on a set of
selection criteria (i.e., inclusion/exclusion —see selec-
tion criteria in ( [6, 29]), this study develops supervised
machine learning to classify Spanish-language literature
that is relevant to the same selection criteria. We aim to
(i) determine the best performing models for classifying
relevant Spanish-language literature and (ii) identify the
aspects of feature engineering and feature extraction that
influence the performance of classification models. The
importance of Spanish-language studies for conservation
is unquestionable; up to 13% of the scientific literature
on conservation is in Spanish [30], and over 6% of the
global population are Spanish native speakers with most
of these people living in Latin America [31], a region that
houses seven biodiversity hotspots (i.e., Atlantic Forest,
the Caribbean, the Cerrado, Mesoamerica, the Valdivian
temperate rainforest, the Tropical Andes, and Tumbes-
Chocé-Magdalena). Thus, exploring ways to access the
knowledge produced in the Spanish language is funda-
mental to foster inclusive, effective, and locally informed
evidence-based conservation. We also anticipate that the
approach developed in this study will be readily transfer-
able to other non-English languages.

Box 1. Glossary

Supervised machine learning: modelling approach
that uses human-labelled input data to learn the
underlying relationships between inputs and outputs.
The trained model is able to predict correct outputs
based on new, unlabelled data.
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Embeddings: numerical representations of text data
that capture semantic relationships.

Pre-trained language models: neural networks
trained on massive text datasets, enabling them to
understand human language.

Hyperparameter tuning: the process of finding

the optimal set of hyperparameters for a machine
learning model before training.

Ablation studies: consists of systematically removing
components of a model to assess their individual
contributions to overall performance to understand
which parts of the model are essential and which
might be redundant.

Methodology

We compared three supervised binary classifiers: logis-
tic regression (LR), support vector machine (SVM), and
multi-layer perceptron (MLP). We used different com-
binations of classifiers, feature extraction, and data bal-
ancing approaches to assess how these factors impact
the performance of the classification models. Each docu-
ment’s text length includes the title and abstract of a sci-
entific article. In total, 38 model variants were generated
(Table S4).

Pre-processing training data

We define relevant documents (i.e. articles) as studies
that tested the effectiveness of a conservation actions
on biodiversity outcomes and were published in Spanish
(i.e., the title, abstract, and main text is written in Span-
ish). These documents were identified through a disci-
pline-wide multilingual synthesis [6], which screened
26,819 documents published in 56 Spanish-language
journals across 11 countries including Argentina, Chile,
Colombia, Costa Rica, Dominican Republic, Ecuador,
El Salvador, Mexico, Nicaragua, Peru, Uruguay for spe-
cific year ranges until 2019 (see year ranges and more
information in Sup. Mat. Table 1). Amano et al. (2021)
[6] identified 111 relevant Spanish-language documents
(Fig. 1) covering conservation actions, such as species re-
introduction programs, ecological restoration, reforesta-
tion, control of invasive species, installation of bat and
bird nest-boxes, fire management programs, agricultural
land use programs for forest conservation, community
forest management programs, and more.

We restricted the scope of this study to documents
from 12 journals indexed in SciELO (https://scielo.org/es
/), a regional language-specific repository, in which docu-
ments are open access and largely available on the web-
site, as well as two other journals that had a high number
of relevant documents in [6]. As a result, documents from
14 journals within the year ranges screened in [6] were
included in our analysis (Acta Zooldgica Mexicana, Bar-
bastella, Ecologia Aplicada, Ecologia Austral, Galemys,
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Huitzil, Madera y Bosques, Mastozoologia Neotropical,
Quebracho, Revista Chilena de Historia Natural, Revista
de Biologia Tropical, Revista Mexicana de Biodiversidad,
Revista Mexicana de Ciencias Forestales, Therya) (Fig. 1).
Custom scrapers were written in Python language (ht
tps://github.com/hakosh/journal-scraper) to retrieve
all documents published in the 14 journals by selecting
those that met the following selection criteria: (i) title and
abstract should be available in Spanish, but there could
also be an English or Portuguese version, (ii) title and
abstract should be available on the website not in PDF
format, and (iii) the main text should be in Spanish only.
A total of 10,340 documents were retrieved in HTML
format, cleaned up, and relevant information including
the title and abstract were extracted. Next, the text was
processed using a language detection model—fastText
[32]—and 3,033 documents were removed as they had
the main text in English in addition to Spanish (Fig. 1).
We excluded 1,301 documents that were outside the year
range screened in [6]. Additionally, 125 documents were
removed as their abstract was shorter than 300 charac-
ters. Using Polars String methods [33], we removed 331
documents that were duplicates or editorials, erratum, In
Memoriam, or retracted documents, leaving 5,550 docu-
ments. Out of the 111 relevant Spanish-language docu-
ments found in [6], we excluded 19 documents as they
were not published in the journals of focus, 42 docu-
ments didn’t have an abstract, and six documents also
had their main text available in English. As a result, we
used 44 relevant documents as positive documents in our
study.

Articles in the scraped dataset (from SciELO, Bar-
bastella, and Galemys) that were present in our collec-
tion of positive documents were removed. We identified
these duplicates using article titles and the Levenshtein
distance, a string metric that measures the minimum
number of single-character edits (insertions, deletions,
or substitutions) required to change one word into the
other. We set the similarity score above 0.95 using the
Levenshtein Python module [34] as this was the thresh-
old in which all the positive titles in the body of docu-
ments scraped from SciELO, Barbastella, and Galemys,
were ‘similar enough’ to the titles in the corpus of posi-
tive documents. The remaining documents published
in the subset of focus journals were considered negative
(i.e., non-relevant) documents and annotated accordingly
with positive or negative labels. Our final corpus con-
sisted of 5,550 documents, with 44 positive documents
and 5,506 negative documents.

Finally, the corpus was pre-processed for two feature
extraction approaches (i.e., term frequency and term
frequency inverse-document frequency). We removed
numbers, special characters, punctuations, stop-words

LS SN

i.e., words that hold little information (e.g., ‘el; la; ‘y; ‘en
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Fig. 1 Flowchart showing the retrieval and pre-processing of training data and the number of studies included and excluded at each stage of the pre-
processing. Green arrows output the final number of documents in the positive and negative class. Journals of focus are Acta Zooldgica Mexicana, Barbastella,
Ecologia Aplicada, Ecologia Austral, Galemys, Huitzil, Madera y Bosques, Mastozoologia Neotropical, Quebracho, Revista Chilena de Historia Natural, Revista de Bi-
ologia Tropical, Revista Mexicana de Biodiversidad, Revista Mexicana de Ciencias Forestales, and Therya. Created in https://BioRender.com
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in Spanish), and extra white spaces (Fig. 1). We used the
Python stop_word module as it had the most compre-
hensive predefined list of stop words. We lemmatized
words to remove inflectional endings (e.g., -0, -a, -s, -es
in Spanish) and to return the base or dictionary form of a
word, known as the lemma [35], using a Spanish language
pre-trained model (‘es_core_news_md’) from the spaCy
library [36].

Feature extraction

We used three approaches to extract features from the
text in documents: (i) term frequency (TF), (ii) term
frequency inverse document frequency (TF-IDF) and
(iii) sentence-level embeddings. Term frequency is the
number of times a word occurs in a document. TE-IDF
weights term frequency by the number of documents
that term occurs in, down-weighting common terms
[37]. These term-based features represent text with-
out accounting for word position or semantic mean-
ing, i.e., ‘bag of words! In contrast, our third approach
is context-aware and derives semantically meaningful
sentence embeddings using the SentenceTransformers
encoder (a.k.a SBERT) [38, 39] implemented through
Sentence Encoder (https://github.com/koaning/embette
r). The sentence embeddings learned from a large multi
lingual corpora, which consist of text data from various
languages. During training, the model learns to predict
the context of words or phrases in multiple languages,
effectively capturing the semantic relationships between
words across languages. We tested the performance of
two multilingual pre-trained models when mapping
sentences and paragraphs into vectors (distiluse-base-
multilingual-cased-vl and  paraphrase-multilingual-
mpnet-base-v2) Table 1.

All text pre-processing, model training, and testing was
conducted in Python 3.11 [40] using modules includ-
ing NumPy [41], Polars [33], Pandas [42], matplotlib
[43], NLTK [44], Levenshtein [34], spaCy [36], scikit-
learn [45], imbalanced-learn [46], embetter (https://gith
ub.com/koaning/embetter), SentenceTransformer [38],
PyTorch [47].

Table 1 Implemented classifiers, feature extraction techniques,
and balance strategies

Classifier Feature extraction  Balancing approach
Logistic regression TF (term frequency) No sampling
Support vector TF-IDF (term frequen-  Random

machine
Multi-layer perceptron

cy inverse document
frequency)
Sentence embedding

undersampling
Random upsampling
Synthetic
upsampling

Class weights

Note that not all combinations are possible. For example, the multi-layer
perceptron classifier cannot handle class weights. See table S4 for all 38 models
used in this study
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Accounting for imbalanced data

Because positive documents only account for 0.79% of
the data, we tested four approaches to handle our imbal-
anced dataset: weighting the model loss function, ran-
dom oversampling of documents of the minority class
(positives/relevant), synthetically oversampling docu-
ments of the minority class using the ADASYN algo-
rithm, and random undersampling of documents of the
majority class (negative/irrelevant). In a weighted loss
function, the weights are used to make the model more
sensitive to the minority class by increasing the cost of
a misclassification of that class (see formulas for weight
calculations in Sup. Mat.). On the other hand, resampling
can add samples from the minority class or remove sam-
ples from the majority class in an effort to balance the
classes. RandomUnderSampler, RandomOverSampler,
and ADASYN of the imblearn module within the scikit-
learn library were used to resample the training data and
were all randomly seeded at 42.

Classifiers and hyperparameters

We fitted multiple classification heads of three model
families: logistic regression, support vector machine
(SVM), and multilayer perceptron to evaluate their per-
formance when classifying text. We trained ‘baseline’
models using their default hyperparameters except for
the multilayer perceptron; we changed the activation
function to ‘logistic’ (instead of the default ‘relu’), and
it had no hidden layers. To ensure reproducibility, we
seeded all random initialisations at 42. We used Logisti-
cRegression, SVC, and MLPClassifier within the scikit-
learn library.

Training and testing

In all model families, training, development, and testing
sets were created to test the validity of the classifier. We
split the corpus stratifying classes resulting in 80% of the
corpus as training data (n =4,440) and the remaining 20%
was retained for testing the model (n=1,110). To assess
model performance during training, we used stratified
two-fold cross-validation and to enable direct compari-
sons of model performance, all models were cross-vali-
dated using the same data subsets. To avoid over-fitting,
development sets were used to evaluate classification
performance, whilst the testing sets were used to evaluate
the classifier’s performance when applied to unseen data.
We investigated the performance of the best performing
model by training the model on four different random
splits and calculated the standard error of the training
set losses (Sup. Mat. Table 3). To make predictions in a
systematic and reproducible way, we used scikit-learn
[45] pipelines to transform and resample the data and
fit estimators. We used the cross_val_predict and Strati-
fiedKFold functions within the scikit-learn [45] library
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for stratified cross-validation and the Pipeline and make_
pipeline functions from the imbalanced-learn [46] library
for implementing pipelines consisting of data transfor-
mations and a final classifier.

Evaluation

The models were evaluated using the precision (i.e., pro-
portion of all the model’s positive classifications that are
actually positive), recall (i.e., proportion of all actual posi-
tives that were classified correctly as positives), and F1
scores (i.e., the harmonic mean of precision and recall).
Besides these metrics, we generated confusion matrices.
Because the classifiers developed here were primarily
designed to avoid missing any potentially eligible study,
we evaluated the model with the highest cross-validation
F1 among those attaining a threshold test set recall value
above 90%. We conducted ablation studies by system-
atically removing or replacing modules (i.e., encoding
and weighting approach) from the model architecture
to assess their individual contributions to the overall
performance.

Hyperparameter tuning

We searched for the best set of hyperparameters in the
Logistic Regression and SVM to optimize model perfor-
mance. We tested different solvers, including ‘liblinear’
and ‘Ibfgs’ We also tested different values of the regular-
ization parameter C that controls the strength of Ridge
Regression or Tikhonov regularization applied to the
model. Smaller C values add penalties to large weights.

Explainability and error analysis

We explained predictions using SHapley Additive Expla-
nations (SHAP) [48], a feature-based (i.e., word-based)
interpretability method that can be integrated into super-
vised classification tasks. SHAP is based on the Shapley
Values used in game theory. The approach measures the
relative contribution of each feature (i.e., word or token)
to the output produced by the classification model by
assigning a value to each feature in a specific prediction.
Each prediction (i.e., f(x)) is calculated as:

f (inputs) = basevalue + Z (SHAP values of features)

The base value (expected value) is the model’s prior belief
and represents the average prediction (expressed in SVM
decision scores) the model would make for any given text
if it didn’t have any specific information from the cur-
rent text. SHAP calculations start from the base value.
Next, each feature in the text is assigned a SHAP value,
and the sum of these features’” SHAP values (f{inputs))
are the contributions that adjust the prediction higher or
lower relative to the baseline. The sum of the SHAP val-
ues for all features, when added to the base value, equals

Page 7 of 13

the final SVM decision score prediction for the given
text. It is important to highlight that these explanations
come with some limitations. For instance, the observed
SHAP values are approximations as the exact calculation
of Shapley values is computationally infeasible due to the
exponential number of feature combinations that need to
be evaluated [48].

Additional qualitative evaluation was conducted by
inspecting whether the words assigned a high relevance
by the model were associated with the impact class. For
this, we created word clouds of all predictions to gain
insights from the most frequently used words (Sup. Mat.
Figure 1).

Results

Classifier performance

The best performing classifier uses SVM, sentence-
embedding using a multilingual pre-trained language
model as the feature extractor, and weights to balance
classes, achieving a test set recall of 100% and F1 of 0.071
(Fig. 2, Sup.Mat. Figure 1, Sup.Mat.Table 4). The classi-
fier cut the manual labelling effort in a systematic synthe-
sis by over 78% with a false positive error of <22%. The
high recall achieved indicates that the model effectively
captures nearly all positive documents while minimiz-
ing false negatives (see Confusion Matrix in Sup. Mat.
Table 2). Our ablation studies reveal that no single model
component (i.e., encoding or weighting approach) con-
tributes significantly more than the other to the overall
architecture. This is evidenced by the fact that removing
or replacing either of the two components results in a
recall of 0% (Sup. Mat. Table 5). To test the performance
of the best model, we trained the model using different
train-test partitions and the results of these models did
not deviate from those of the best model with the stan-
dard error of the model loss being less than 0.01 (Sup.
Mat. Table 3). The second-best performing model, a
multi-layer perceptron (MLP) classifier using TE-IDF
with under-sampled training data also achieved a recall
of 100%, but with a significantly lower F1 and precision
(Sup. Mat. Table 4). As shown in Fig. 2, classifier perfor-
mance strongly depends on the specific combination of
model head, feature extractor and approach to data bal-
ancing. Further, our ablation studies reveal that no single
model component (i.e., encoding or weighting approach)
contributes significantly more than the other to the over-
all architecture. This is evidenced by the fact that remov-
ing or replacing either of the two components results in a
recall of 0% (Sup. Mat. Table 5).

Multilingual pre-trained models as encoders

Our results demonstrate the potential of multilingual
pre-trained models for encoding a small corpus of Span-
ish-language text to train classification models (Fig. 2).
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Fig. 2 Heatmap depicting the configuration of 38 classification models tested in this study and their test set Recall. Columns on the x axis represent
models (n=38, also see Supp Mat Table 4 for the model number of each model) and rows on the y axis represent model configurations (i.e., model head,
feature extractors, and balancing approach). Squares indicate the combination of the model head, feature extractor, and balancing approach used in
each model, and colours depict the test set recall achieved by the model. Warmer colours (red) show higher recall and cooler colors (blue) show a lower
recall. Additional performance scores are in Sup. Mat. Table 4. Notes: SVM parameters (weighted) : (class weight={0:0.50, 1: 63.06}, kernel:linear; probabil-
ity=True, C=0.01) Logistic Regression parameters (weighted): (class weight={0:0.50, 1: 63.06}, random state =42, solver='liblinear, C=0.01) MLP Classifier
parameters: (activation="logistic, batch size =16, hidden layer sizes=(), random state =42) TF-IDF: term frequency inverse document frequency

Despite the challenge that only 44 documents in the
entire dataset (0.79%) were relevant to biodiversity con-
servation, the pre-trained model (‘MPNet’) performed
well in capturing contextual information for each class.
However, the sentence embedding alone can’t achieve
high performance and it needs to be used with appropri-
ate weighting and classification head too.

Dealing with imbalanced data

We found that weighting the loss function was the most
effective strategy for addressing extreme class imbal-
ance, a common challenge in evidence synthesis tasks
and literature classification (Fig. 2). By assigning higher
importance to underrepresented classes, this approach
improves the model’s sensitivity to rare but relevant doc-
uments, ensuring better recall without compromising
precision. The MLP classifier also achieved a comparable
recall by undersampling training data. However, reducing
the training data may result in losing valuable informa-
tion, potentially leading to a skewed understanding of the
underlying linguistic patterns and biasing model predic-
tions and limiting generalizability.

Prediction explanations

Using SHAP, we measured the role of each word or set
of words in the classifier’s predictions —note that because
the best-preforming classifier used sentence embed-
dings as input features, stop words are also included in
this analysis. SHAP values explain the change in the
model’s prediction when a word is included versus when
it’s not. Thus, the SHAP value that a word gets depends
on their context and it is not related to high word occur-
rence, but on the relative importance that word has in
the instance. Figure 3 shows a summary of the words
having the largest impact in any instance based on the
max absolute SHAP value. The words in Spanish and

their translations to English that had the largest impact
in predicting a positive instances are “conservacion = con-
servation’,  “comunidades =communities’,  “restaura-
cion =restoration’, “La = the’, “comunitario = community’,
“protegidas = protected”, “presenté=presented’; “aprove-
chamiento = utilization”, ‘@=to; many of them being
strong indicators of the corpus domain, biodiversity con-
servation actions, particularly conservation interventions
and their consequences. Words from models trained
on different train-test partitions follow the same pat-
tern, for instance “parques=parks’, “restauracion=res-
toration’, “fuego=fire” (Sup. Mat. Figure 2). The words
in Spanish and their translations to English that had
the largest impact in predicting negative instances are
“cianobacterias = cyanobacteria’, “riesgo=risk’; “phry-
nosomatidae = phrynosomatidae’, “coyote = coyote’,
“lamiaceae = lamiaceae”, “microbiota=microbiota, con-
servacion = conservation’, and ‘Michoacan = Michoacan”
(Fig. 3). The word conservation appears as an important
word in both true negative and true positive documents
(Fig. 3). The reason for this can be because words in
embedding models do not have a fixed directional impact
(positive or negative). Instead, their impact is contex-
tual: the embedding model encodes a word’s meaning
based on its surroundings (e.g., ‘wildlife conservation’ vs.
‘energy conservation’), and SHAP aggregates these local
effects. Thus, the same word can push predictions in dif-
ferent directions depending on its usage in the text.
Perhaps not surprising, the words having the largest
impact to increase a true positive and negative predic-
tion did not match the most frequently used words in
the true positive nor negative predicted class (Fig. 4). It
often happens that the most frequent words carry little
class-specific information, this being the reason why TE-
IDF is often better than TF when extracting words using
word-based approaches. The top five words in the true
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a) True positives
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b) True negatives
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Fig. 3 Summary of the words having the largest impact to increase any true (a) positive and (b) negative predictions, if present. The x axis shows the
max absolute SHAP value expressed as the SVM decision scores. The bar at the bottom of the figure represents the sum of all other words in the text.
Translation to English of the words in the (a) positive prediction are: conservaciéon=conservation, comunidades=communities, restauracion = restora-
tion, La=the, comunitario =community, protegidas = protected, presenté=presented, aprovechamiento = utilization, a=to; and (b) negative predictions

are cianobacterias=cyanobacteria, riesgo=risk, phrynosomatidae = phrynosomatidae, coyote=coyote, lamiaceae=

conservacién = conservation, and Michoacdn =Michoacéan
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Fig. 4 Word clouds of frequently used words in (a) true positive and (b) true negative predictions. The top five most frequently used words in (a) are
especie = species, followed by drea=area, fuego =fire, manejo =management and in (b) especie = species, estudio = study, México =Mexico, bosque = forest,

distribucion =distribution, género = genus/gender

positives are especie =species (normalized frequency of
100%), fuego = fire and drea =area (normalized frequency
of 60%) and resultados =results=and manejo = manage-
ment (normalized frequency of 50%) (see Calculating
normalized frequency scores in Sup. Mat. and normal-
ized frequency of words in https://figshare.com/s/0fa08
86ef5734a77893c¢). Similarly, the normalized frequencies
of the top five words in the predicted true negatives show
that especie = species is the most frequent word followed
by estudio =study occurring 28% as often as the most
common word, and México=Mexico, bosque={forest,
distribucion = distribution, and género = genus/gender
appear 20% as often as the most common word.

The word contributions to the model prediction in a
correctly classified positive and negative document are
shown in Fig. 5 as an example (See full length of predic-
tions in  https://figshare.com/s/89df965ebf96e62bfle
3). Words in red increase the SVM decision scores and
thus the positive predicted probability while words in

blue increase the predicted negative probability. The
flinputs) value is the sum of all word contributions,
which added up to 0.367 compared to the base value in
Fig. 5a, making it a positive prediction. Following the
same logic, the finputs) value in Fig. 5b is -0.692, show-
ing the word contributions to a negative class prediction.
In the document shown in Fig. 5a, the top two words
that contributed to the positive prediction example are
highly relevant to biodiversity conservation actions, for
instance ‘conservacion = conservation”, “reserva=reserve
(noun)”, and “mamiferos = mammals”. Conversely, words
like “tropica = tropical” and “biodiversidad = biodiversity”
decreased the probability. Interestingly, in this document
the word “biodiversidad” contributes both positively
(SVM decision score =0.023, in a green square) and nega-
tively (SVM decision score=-0.115, in an orange square)
to the model’s output as highlighted in Fig. 5a. This shows
the nature of embedding models that encode not just the
word itself but its interaction with surrounding words
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Fig. 5 Example of the SHAP contributions (decision score) on the model’s
output of correctly classified (a) positive and (b) negative documents. The
base value is the baseline value that the model outputs when no specific
input words are considered. It acts as a reference point to explain how
much each word pushes the prediction higher or lower relative to this
baseline. The f(inputs) is the sum of all SHAP values output of the model for
the full original input. Each word’s SHAP value is above each word/group
of words, and they represent the contribution of that specific word to
the change in the model's output (decision score) compared to the base
value. Words in pink/red push the model’s prediction towards a higher de-
cision score value for the predicted class whilst words in blue model’s pre-
diction towards a lower decision score value for the predicted class. The
intensity of the colour on the text indicates the magnitude of the impact
(i.e, strength of the words contribution)

Estrategia | +0.51
éxito [+0.32
reproductiva | +0.31
infestacién, | +0.31
Hypoxidaceae), | +0.28
conservacion | +0.27
poblacién | +0.26
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Fig. 6 Summary of the words having the largest impact to increase
any false positive predictions, if present. The x axis shows the SHAP val-
ues expressed as SVM decision scores and are calculated on the max
absolute SHAP value. The bar at the bottom of the figure represents the
sum of all other words in the text. Translation to English of the words
are:  estrategia =strategy’, “éxito=success’, ‘“reproductiva=reproduc-
tive,  “infestation=infestation’,  “Hypoxidaceae=Hypoxidaceae’, “con-
servacion=conservation’,  “poblacion=population’,  “refugio=refuge’,
"diversidad = diversity”

capturing nuanced semantic information from contex-
tual relationships. For instance, the word “biodiversity”
(in Spanish biodiversidad) in a green square in Fig. 5a,
is close to the word “to preserve” (in Spanish conser-
var) potentially influencing the importance of the word
biodiversity.

Error analysis

To understand why the model misclassified a positive
document we calculated the SHAP scores of the false
negative predictions (Fig. 6, Sup. Mat. Figure 2, See full
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length of predictions in https://figshare.com/s/74145a9cf
53329b69bd7). Translations of the top words that strongly
push negative documents to be classified as positives are
shown in Fig. 6. Several of these words are words asso-
ciated with conservation interventions, the positive class
domain including “estrategia = strategy’, “éxito = success’,
“conservacién = conservation’, “refugio =refuge’, “diver-
sidad = diversity”. We suspect that the presence of these
words “confused” the classifier into predicting 234 false
positives. Words from models trained on different train-
test partitions follow the same pattern, for instance “con-
servacion = conservation’, “reforestacion = reforestation’,
“sostenibilidad = sustainability’, “resiliencia = resilience”
(Sup. Mat. Figure 2). Furthermore, we suspect that there
might be some model bias when learning features in
the negative class as we see that the model overweights
words like ‘estrategia”, “éxito”, “infestacion’, and others
(SHAP values=0.51, 0.32, and 0.31 and so on) strongly
associating these to the positive class. Another bias could
be from the negative documents, in which those terms
are absent, rare or surrounded by words with strong con-
servation semantic meaning.

Discussion
Using supervised machine learning we developed a Span-
ish-language text classifier to identify relevant scientific
documents on the effectiveness of biodiversity conserva-
tion actions. A key finding of our study is the robustness
of the model architecture combining transformer-based
multilingual models to represent semantic sentence-level
features and weighted loss function to deal with a highly
imbalanced dataset. The sentence embedding model
contributed to achieving strong classification outcomes,
very likely because it learned deep representation of
the words by pre-training on contextual representation
using a large corpus with bidirectionality, whereas the
traditional models use frequency-based feature extrac-
tors. The encoder’s capability to handle the complexi-
ties of non-English linguistic structures is an advantage
for multilingual text applications. The use of SHAP [48]
further enhanced explainability by providing insights into
how the model generates predictions and showed that
words with deep semantic meaning to biodiversity con-
servation interventions, the domain of the positive class,
were the words with largest importance. Such transpar-
ency is crucial for fostering trust in automated classifica-
tion systems, as it allows researchers to understand not
only what the model predicts but also why and how those
predictions are made. This capability makes our approach
a valuable tool for automated non-English-language
text classification applications in global conservation
research.

Our work demonstrates that using transformer-based
multilingual models to encode non-English-language
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text at the sentence level (e.g., SBERT), combined with
a simple classification head like logistic regression can
also yield a lightweight yet effective multilingual classi-
fier. A classification algorithm with a logistic regression
head trained only on English-language biodiversity data
has also shown exceptional performance [16, 38, 49].
Similarly, research testing sentence-level representa-
tions of English-language text against token-based ones
have shown the robustness of the former [49]. Further-
more, a common issue in classification problems are
imbalanced datasets [15, 50, 51], and we addressed this
issue by weighting the loss function to balance classes.
An approach that combines these methodologies is valu-
able for the screening stage in environmental evidence
synthesis, where language barriers often limit access to
evidence produced in highly biodiverse regions where
English is not widely spoken. However, because our train-
ing data spans from 1992 to 2019, our model might need
to be updated using adaptive text classification frame-
works to keep up with the fluidity of scientific language
where a temporal and conceptual drift exists (i.e., new/
modern concepts, terminology, and definitions).

Alternative classification methodologies—such as
XLM-Roberta models, virtual agents, and other gen-
erative or reasoning Al systems—may result in similar
classification performance and aid the screening stage
in evidence syntheses. These alternative approaches,
either independently or in combination with our meth-
ods, could enhance overall classification outcomes. For
instance, screening data for a systematic review on elec-
tric vehicles using GPT-4 achieved comparable results
to our best-performing classifier [52]. More work should
examine the advantages of these methodologies to deter-
mine the most effective strategies for English and non-
English-language text classification in research.

Another avenue for future exploration involves lever-
aging the multilingual embeddings used in this study
and assessing the model’s ability to generalize across
other non-English languages. In this same line, future
work can perform zero-shot learning, where our model
is retrained using a different non-Spanish Latin language
with very little labelled data, for instance the Portuguese
language. The knowledge transferred from our model
can help bootstrap the model’s performance in the target
language. Such a model could possibly perform as good
as our best performing model. Expanding the model’s
application beyond Spanish-language texts could pro-
vide valuable insights into its versatility and potential
for broader evidence synthesis. Additionally, future
research should evaluate whether pre-trained mod-
els with extended sequence lengths or using document
embedding can generate improved embeddings, leading
to better classification performance (i.e., F1 score). Fur-
thermore, fine-tuning our models could achieve better
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precision, a crucial factor in, e.g., health-related synthe-
ses, where comprehensive and precise coverage is essen-
tial [13, 14]. As a result, these classifiers would enable
fast and complete identification of relevant literature for
biodiversity conservation evidence syntheses. However,
we caution that our approach is only for one step in the
evidence syntheses process and either additional Al algo-
rithms should be validated and included in the pipeline
or fluent speakers of a language are needed to extract
data and assess publications.

Box 2 - Practical recommendations to leveraging
pre-trained language models.

For researchers and practitioners interested in leveraging
pre-trained language models for Spanish text classifica-
tion we offer practical recommendations:

+ Multilingual vs. monolingual models: while
multilingual models (e.g., MPNet) perform well
across languages, monolingual Spanish models can
also achieve good results for Spanish-specific tasks
due to specialized vocabulary and training data.

To select the most appropriate model, check the
HuggingFace leaderboard of pre-trained multilingual
models (https://huggingface.co/spaces/mteb/leade
rboard) and always consider the domain in which
the model has been trained —this can have a huge
impact in how the model “understands” your text.
Also, match your text preprocessing to the model’s
training regime (i.e., casing, tokenization, maximum
sequence length).

+ Explainable AI (a.k.a. XAlI): consider including
techniques to understand why your model makes
a certain prediction, rather than treating it as a
“black box”. Tools like SHAP (SHapley Additive
exPlanations) [48] can visually highlight which
specific words or phrases in the text most influenced
the classification outcome. These visualisations
increase transparency and can help you understand
model errors and biases.

+ Computational resources: consider a language model
size that matches your computational capabilities.
The HuggingFace model leaderboard (https://h
uggingface.co/spaces/mteb/leaderboard) offers
information on model size. If a big model is required,
free cloud computing services, like Google Collab are
available.

Conclusions

Our study shows that integrating multilingual pre-
trained models for text encoding, a weighted loss func-
tion for class balancing, and support vector machine as
the classification algorithm enables a classifier to per-
form effectively on Spanish-language text. Multilingual
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text embeddings allow learning more accurate clas-
sifiers without large amounts of non-English labelled
data expanding the scope of knowledge covered in an
evidence synthesis by including non-English language
evidence. Furthermore, non-English-language text classi-
fiers can streamline the screening of titles and abstracts,
accelerating the identification of relevant documents in
conservation science. Automating and making this step
of the synthesis process multilingual not only improves
efficiency but also allows researchers to focus on ana-
lyzing high-relevance documents and ensuring broader
coverage of non-English-language evidence in environ-
mental evidence syntheses.
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