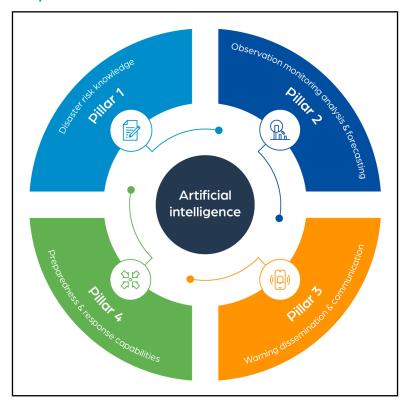
iScience

The role of artificial intelligence for early warning systems: Status, applicability, guardrails, and ways forward

Graphical abstract



Authors

Timothy Tiggeloven, Samira Pfeiffer, Alessia Matanó, Marc van den Homberg, Lisa Thalheimer, Markus Reichstein, Silvia Torresan

Correspondence

timothy.tiggeloven@vu.nl (T.T.), s.pfeiffer@ehs.unu.edu (S.P.)

In brief

Earth sciences; Environmental science; Remote sensing; Artificial intelligence; Social sciences; Research methodology social sciences

Highlights

- Systematic review of AI utilization across the early warning chain
- Al in EWS shows exponential growth in papers published in recent years
- Al and EWS gaps exist across knowledge, application and policy
- Guardrails needed to ensure people-centred AI integration in EWS

iScience

Article

The role of artificial intelligence for early warning systems: Status, applicability, guardrails, and ways forward

Timothy Tiggeloven, 1,2,9,10,* Samira Pfeiffer, 3,9,* Alessia Matanó, 1 Marc van den Homberg, 4,5 Lisa Thalheimer, 3,6 Markus Reichstein, 7 and Silvia Torresan^{2,8}

¹Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

https://doi.org/10.1016/j.isci.2025.113689

SUMMARY

Artificial intelligence (AI) is gaining momentum in earth sciences as a tool to analyze complex natural hazards and their impacts. Such analyses are critical for effective Early Warning Systems (EWSs), which is aiming to generate timely and actionable risk information to protect sectors, systems, and people. Despite advancements in AI, its role in EWS remains underexplored across the four pillars of the Early Warning for AII (EW4AII) framework; risk knowledge, forecasting, warning dissemination and communication and response preparedness. This study draws on a systematic literature review to assess AI methods utilized in the context of EWS, examines their challenges and opportunities and discusses guiding questions for responsible use. Our study highlights key gaps across knowledge, application and policy. Moreover, we call for coordinated efforts to develop responsible AI frameworks that enhance EWS while ensuring they remain inclusive, accessible, and people-centred that ultimately supports the goal of EW4AII by 2027.

INTRODUCTION

Artificial intelligence (AI) is key for the effectiveness of early warning systems (EWSs). However, ensuring that AI methods are used in a responsible and people-centred way requires advances in knowledge, application, and policy. In recent years, Al has rapidly transformed technological landscapes across sectors, offering unprecedented opportunities for addressing global challenges. 1,2 Moreover, Al creates new avenues to improve the analysis of multidimensional data and accelerate information processing. This fast-developing field has improved how we enhance capabilities to handle large, non-linear, and complex datasets, simulate scenarios and aid decision-support mechanisms.3 While a range of sectors have employed AI, it has increasingly gained attention in the earth science and disaster risk reduction domain. 4-6 Specifically, there is growing interest in using innovative methods such as deep learnings and natural language processes (NLPs) or technologies such as Internet of Things (IoT) in the context of EWS.7

EWS are recognized as one of the most effective tools for protecting lives, assets, and systems from hazards and their impacts. In contemporary frameworks, EWS encompass four interrelated pillars; risk knowledge (Pillar I), observation and forecasting (Pillar II), communication and dissemination (Pillar III), and response and preparedness (Pillar IV). As a substantial body of literature conceptualizes these four pillars as a peoplecentred framework which aims to ensure information and action reaches all relevant sectors and actors in sufficient time and leaves no one behind, it will guide this paper as conceptual understanding of the warning chain.

The need for people-centred EWS across the four pillars is recognized in large scale global efforts such as the Early Warning for All Initiative (EW4ALL)—a United Nations (UN) program aiming to ensure everyone on Earth is protected by EWS by 2027—which responds to the Target G of the UN Sendai Framework 2015–2030 as one of the most effective instruments for reducing disaster risk.¹¹

While the relevance of people-centred EWS for inclusive disaster risk reduction is recognized, half of the countries

²CMCC Foundation, Euro-Mediterranean Center on Climate Change, Lecce, Italy

³United Nations University, Institute for Environment and Human Security UNU-EHS, Bonn, Germany

⁴510, an Initiative of the Netherlands Red Cross, The Hague, the Netherlands

⁵ITC/Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands

⁶Population and Just Societies Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

⁷Department Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany

⁸Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy

⁹These authors contributed equally

¹⁰Lead contact

^{*}Correspondence: timothy.tiggeloven@vu.nl (T.T.), s.pfeiffer@ehs.unu.edu (S.P.)

globally are not covered by EWS. Countries in the Global South and rural areas persistently report the largest gaps in terms of EWS coverage, while ineffective risk communication as well as a lack of operational preparedness plans are evident on all continents. This disparity is, however, illustrated by fundamental infrastructure deficits, such as Africa having just 37 weather radar stations compared to 636 in Europe and the United States for similar population sizes and landmass, and over 50% of existing stations provide data that is too inaccurate for reliable forecasting. Additionally, the digital divide may further limit the dissemination of warnings through for example inadequate internet access and warning messages that are not adapted to local languages, knowledge systems, or cultural contexts.

Furthermore, hazards are inherently complex 13 and rarely occur in isolation.¹⁴ These so called multi-hazards can occur simultaneously or sequentially, interacting with the vulnerabilities and exposures of people, livelihoods, assets and systems, 15-20 Here, we focus on EWS for hydrometeorological hazards and geohazards.²¹ Hydrometeorological hazards include both rapid-onset events like floods, hurricanes, and rainfall-triggered landslides with warning periods ranging from hours to days, and slow-developing events such as droughts with warning periods from weeks to months. However, EWSs for geohazards operate on widely varying timescales.²² For instance, earthquake operate on extremely compressed time frames, often mere seconds between detection and impact, while volcanic eruptions may exhibit precursor signals days to weeks before the events. Secondary hazards like tsunamis (triggered by earthquakes, volcanic eruptions, or landslides) and earthquake-induced landslides²² may further complicate multi-hazard warning frameworks, with each demanding specialized Al applications suited to their unique temporal scales and monitoring requirements. Furthermore, despite the critical need for addressing multiple hazards in a comprehensive manner,²³ operational multi-hazard early warning systems (MHEWS) face challenges, with hazards typically addressed in isolation rather than accounting for their complex interactions.²⁴ These complex interactions between and within risk components present significant challenges for most operational EWS, which monitor and assess single hazards only.

EWS present a potential domain for utilizing AI, along the whole early warning value chain.^{25–27} The emergence of Al capabilities has been enabled by concurrent advances in high-performance computing, massive datasets, modern algorithms, and high-level programming languages, creating a technological ecosystem more accessible to domain scientists.²⁸⁻³⁰ Recognizing this potential, the United Nations launched the Global Initiative on Resilience to Natural Hazards through Al Solutions, led by International Telecommunication Union (ITU), UN Environment Program (UNEP), UN Framework Convention on Climate Change (UNFCCC), Universal Postal Union (UPU), and World Meteorological Organization (WMO), which has been set up to ensure that advanced digital technologies will boost resilience to natural hazards.²⁶ Supporting this broader vision, the global UN Early Warning Initiatives Executive Action Plan for EW4All (2023-2027) provides specific implementation pathways, while technical guidance on best practices for data collection, modeling and effective communication is emerging through ITU/WMO/UNEP Focus Group reports on AI for Natural Disaster Management and the subsequent Global Initiative on Resilience to Natural Hazards through Al Solutions that establishes frameworks for responsible Al integration across the four pillars. These initiative highlights that while physics-based prediction systems remain important, Al can complement them by reducing computational burdens, improving data processing efficiency, and enhancing predictions, especially where pure physical modeling is limited by process knowledge or computational capacity, e.g., for high resolution. ^{31,32}

In this study, we aim to examine potential gaps in the understanding and application of AI for EWS and provide evidence-informed questions that can help develop guardrails for responsible implementation of AI across the four pillars of early warning. We hypothesize three key areas requiring investigation.

- (1) The knowledge gap: The current status and evolution of Al and EWS in terms of how adoption has progressed over time and geographical distribution is missing. Specifically, there are few studies that investigate the uptake of Al across the four pillars of early warning and the affiliated methods that have been used across different hazard types.
- (2) The application gap: The use of Al across the four pillars is not yet well examined in a coherent way, and there is a lack of documentation of different Al methods for EWS by hazard types and a gap in examining the implications (opportunities and challenges) of utilizing Al across the four pillars of EWS (i.e., Pillar I-IV; risk knowledge, monitoring and forecasting, communication and dissemination and response preparedness). However, this is critical as it guides the ongoing efforts of people-centred EWS around the clobe.
- (3) The policy gap: There is a gap of studies that provide evidence-informed questions that can help to develop guardrails for research, practice, and policy for a responsible use of Al in the context of EWS (e.g., human oversight mechanism, ethical considerations). This can be a threat to the efforts to prioritize inclusivity and people-centred approaches (such as Target G of the Sendai Framework) to leave no one behind. Hence, it is critical to establish evidence-informed questions that can help develop context-specific guardrails for ensuring that "do no harm".

Drawing on a systematic literature review, this paper presents, first, the results on the patterns of use of AI methods in existing early warning research, and the findings of the role of AI across the four pillars of EWS. Subsequently, we provide a reflection on cross-cutting challenges and opportunities while providing ways forward for addressing the knowledge, application, and policy gap. The insights of the paper are organized along the four pillars used in the EW4ALL initiative as a framework for implementation, to enable transfer of the results to practitioners and increase the relevance of findings for real-world application.

RESULTS

Patterns of AI use and EWS

Our systematic literature review revealed significant patterns in Al applications for EWS, illuminating knowledge, application,

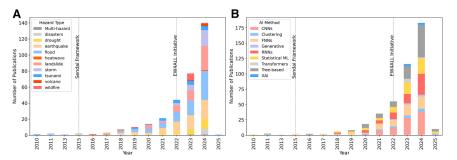


Figure 1. Distribution of scoped papers over time for hazard types and per methods Distribution of scoped papers over time for hazard types (left panel, A) and per methods (right panel, B). ANN, artificial neural network; CNN, convolutional neural network; LLM, large language model; NLP, natural language processing; RNN, recurrent neural network; ML, machine learning; XAI, eXplainable artificial intelligence.

and policy gaps across different regions and throughout the four EWS pillars. Results show that, out of the total of 324 reviewed papers, a recent boom in literature on Al in the context of EWS coincides with the 2022 launch of the EW4ALL initiative⁹ (see Figure 1A). Multiple Al methods are applied, notably tree-based, CNNs, ANNs, and RNNs (Figure 1B). Furthermore we find that there is an exponential increase in papers between 2010 and 2025, with more than 40% published in the year 2024. Out of our final selection, we find that 55% of the papers are relevant to Pillar I, 38% to Pillar II, 6% to Pillar III and only 1% to Pillar IV. Figure 1 summarizes the distribution of scoped papers over time and by Al method utilised.

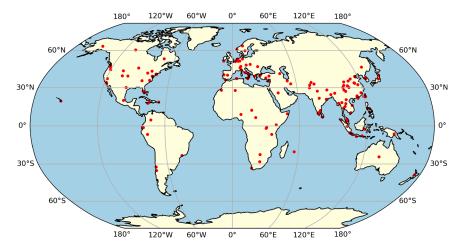
In total, we have found 158 specific locations mentioned in the reviewed papers as either location of deployment, monitoring or location of training data (purely research) (see Figure 2). The division is roughly 79% research-based case studies and 21% implemented or prototype. A focus on high-risk places where EWS are essential is highlighted by the fact that many case study locations are located along tectonic plate borders, along coastlines, and in areas that are prone to flooding. The spatial distribution of case studies reveals a strong concentration in Asia, Europe, and North America, with particularly dense clusters in China, India, Japan, and Southeast Asia. This may be due to the regions' high susceptibility to a variety of hazards, including earthquakes, landslides, floods, and typhoons. Western and Central Europe also show significant representation, which could be due to well-documented risk assessments and disaster response frameworks. In North America, most case studies are located in the eastern and western United States, aligning with research on hurricanes, wildfires, large coastal cities and flooding areas. In contrast, Africa and South America have comparatively fewer case studies, despite the vulnerabilities to hazards like droughts and floods in these regions, indicating potential research gaps. This geographical imbalance aligns with findings from UNDRR/WMO Global Status Reports on MHEWS highlighting similar disparities in early warning coverage and capabilities between resource-rich and resource-constrained regions.

Within the scoped papers of AI across temporal and geographical scales, there are typically three concepts used for EWS: (1) classical Machine Learning (ML), which involves algorithms that automatically improve their performance through exposure to data (such as clustering, regression, random forest, support vector machines); (2) Neural Networks (NNs), which is an advanced form of machine learning that utilizes interconnected layers of computational nodes to identify complex patterns within large datasets; and (3) Natural Language Processing

(NLP), which extracts insights from unstructured text from reports, newspapers or social media (such as large language models). Note that while many studies in our review use the term Deep Learning (DL) to refer to NN with multiple hidden layers, we categorize all NN approaches, both shallow and deep architectures, under the broader NN category for clarity. A key difference between classical ML and NN is that in classical ML the user manually engineers the features/predictors, while in NN they are automatically learned from the data through the network's layered structure extracted by the ML. Also called representation learning because good representations of the data are learned.²⁵ More specifically, classical ML techniques like XGBoost and Random Forest can efficiently capture complex, non-linear relationships, and interactions within large, heterogeneous datasets, while NN excel at aggregating information across multiple dimensions, using CNNs to extract spatial patterns and RNNs or LSTMs to model temporal dynamics.

Most of the papers conceptually discuss applying either classical ML or NN methods for EWS related to floods (28%), earthquakes (21%) and landslides (17%), which also reflect the proposed maturity levels (implemented vs. prototype phase) of hazard emergency support by Merz et al.33 These events dominate across the four pillars of EWS with an exception for the reviewed papers that are linked to the response phase. Here drought-related studies are more prevalent. This suggests a stronger emphasis on using AI for real-time monitoring and preparedness for rapid-onset hazards, whereas slow-onset hazards like droughts receive more attention in post-disaster response and adaptation strategies. 34-36 Notably, only four papers relate to multi-hazards, and even these do not directly use the term "multi-hazards" but rather address several hazards independently without implementing integrated warning systems, barring one on compound hazard interaction of ocean-fluvial floods. This highlights a significant gap in research specifically targeting the complex interactions between hazards that operational MHEWS would need to address.

Furthermore, the focus of AI methods varies by hazard type, as earthquake studies more dominantly apply NN, while drought-related studies almost exclusively use classical ML. This could be due to the nature of these hazards, as for example earthquakes involve complex spatial-temporal seismic and rock deformation patterns that benefit from deep learning's feature extraction capabilities, whereas droughts, being slow-onset events, are often analyzed through structured decision trees that rely on threshold-based classifications. The distribution of methods among the pillars implies that each hazard's unique



characteristics have an impact on the model selection process. The relationship between hazard spatial-temporal scales and Al method selection is also evident: with real-time deep learning approaches often employed for rapid, localized hazards, while machine learning approaches for longer-term prediction and monitoring typically used for slow-onset, widespread hazards.

Table 1 provides a summary of various AI methods alongside examples of their applications for specific hazards.

Neural Network approaches (such as CNNs and RNNs in Figure 1B), make up almost half of all applied techniques among all the other categories. Convolutional neural networks (CNNs), the most popular kind, are employed in 26% of studies (Figure 1B) and are primarily known for their ability to extract spatial features from images. ⁵⁹ In natural hazard research, they have been adapted to process structured time-series data, particularly for earthquake monitoring as seismic activity is often represented as spectrograms or spatial grids. ^{60,61}

Recurrent neural networks (RNNs) are another popular method, in particular for flood prediction, and are applied in 22% of the reviewed papers. RNNs are designed to handle sequential data, making them highly effective for hazards where historical patterns inform future risk. Specifically, Long Short-Term Memory (LSTM) networks, a type of RNN, are commonly used for flood forecasting and storm surge prediction as they retain information over long time intervals, capturing trends in atmospheric drivers, precipitation, river discharge, and soil moisture. Section Similarly, Feedforward Neural Networks (FNNs) (applied in 22% of the studies) are applied for flood and landslide prediction, providing flexible non-linear modeling but often requiring careful hyperparameter tuning and large datasets.

Attention-based models reflect promising enhancement of EWS, such as through capturing complex spatial and temporal dependencies in environmental data. Recent advances like Earthformer demonstrate how AI architectures can process large-scale spatiotemporal data more efficiently and that subsequently enables faster extreme weather predictions across broader geographic areas, which is a critical improvement for extending early warning lead times. ⁶⁸ This architecture has demonstrated state-of-the-art performance in Earth system forecasting tasks, including precipitation nowcasting and EI Niño/Southern

Figure 2. Distribution of study locations on Al methods for EWS

Concentrations of cases are shown in USA, Europe, Southeast Asia, China, and Japan.

Oscillation (ENSO) forecasting. Another example is Contextformer, which is introduced by Benson et al., 31 and is a multimodal Transformer model designed for high-resolution vegetation forecasting. By integrating spatial context through a vision backbone and modeling temporal dynamics with meteorological time series, Contextformer effectively predicts vegetation greenness across Europe, which is another important indicator for

several hazard predictions. These attention-based models have been applied to various EWS. For instance, an attention-based temporal CNN has been proposed for predicting landslide warning signals, demonstrating high accuracy in capturing precursory warning characteristics from sensor data. ⁶⁹ Additionally, attention mechanisms have been incorporated into CNN to improve flash flood susceptibility modeling, as shown in studies focusing on ungauged watersheds. ⁷⁰

Classical ML methods for EWS, and specifically tree-based approaches, are applied in 32% of the studies (Figure 1B). These approaches include Random Forest (RF) and Gradient Boosting Machines (GBMs), which are particularly useful for EWS as they can provide interpretable decision-making processes, and can handle non-linearity and missing data effectively.⁷¹ Tree-based models excel at capturing relationships between environmental indicators and hazard occurrence, making them well-suited for hazards with gradual development, such as droughts and landslides.^{72,73}

Explainable AI (XAI) methods are also represented in few studies, notably to improve transparency in EWS models and these XAI techniques, such as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations), help interpret classical ML and complex NN models by highlighting feature importance and decision pathways. ^{74,75} In the realm of hazard forecasting and EWS, this may be particularly useful as trust and interpretability are crucial for decision-making. ⁷⁶

Role of Al across the four pillars of early warning

Al methods provide merits for the application across the four pillars of early warning-while also posing challenges for different use cases along the warning chain.

Disaster risk knowledge (Pillar I)

Building risk knowledge is the basis of EWS because it enables more accurate predictions, timely communication, and effective preparedness measures.^{8,77} In recent years by using AI, significant progress has been made to better understand the complex relationships between hazards, society, and risks and conduct risk assessments.^{75,78–80} A common first step is establishing a shared glossary of terms to ensure consistent understanding across disciplines, as exemplified by the ITU-T Focus Group

nce 28,	
113689,	
November 21,	
, 2025	

I method	Merits (or EWS application)	Hazard	Pillar	Examples of application	Reference(s)
Linear/statistical ML methods (e.g., logistic regression, naive Bayes, support vector machines, Bayesian, fuzzy logic), which provide baseline models but are less adaptable to complex interactions. They are efficient for binary and multi-class classification tasks.	they may serve as baseline models for hazard forecasting, offering rapid and understandable predictions that may	flood	I	naive Bayes is used for flood susceptibility based on social media data in Chengdu city, China.	Li et al. ⁴⁰
	support real-time decision-making.	wildfire	1	SVM is used for predictive modeling of wildfires.	Sayad et al. ⁴¹
		flood	II, III	fuzzy inference techniques are used for flood Impact-Based forecasting system.	Wee et al. ⁴²
		landslide	II	Bayesian Gaussian mixture model is used for automatic detection of rock- slope failures using distributed acoustic sensing.	Kang et al. ⁴³
Clustering (e.g., K-means, DBSCAN) Igorithms group data points based on	they help identify spatial or temporal clusters of hazards, which may be	flood	1	KNN are used to identify rainfall patterns for urban inundation rapid prediction.	Chen et al.44
similarity without requiring pre-labeled outcomes, revealing inherent structure	valuable for the mapping of risk zones and targeted allocation of resources during emergencies.	earthquake	II	K-means are used to label regional clusters which is feed into early warning detection of earthquake using deep learning.	Anggraini et al. ⁴⁵
forests, decision trees, XGBoost) make them ide leverage ensembles of decision trees to factors and get	their robustness and interpretability make them ideal for identifying risk factors and generating classification or regression models for hazard	drought	II	XGB is used to predict Food-Security Crises in the Horn of Africa.	Busker et al. ⁴⁶
		tsunami	II	regression tree are used for tsunami waves forecasting.	Cesario et al.47
	prediction.	drought	IV	fast and frugal trees are used for forecasting and unraveling early warning relationships between climate variability, vegetation coverage, and maize yields at multiple lead times.	Guimarães Nobre et al. ⁴⁸
eedforward neural networks (FNN) onsist of fully interconnected layers of eurons that learn complex nonlinear	they integrate diverse data inputs to generate comprehensive risk assessments and predictions, which	tsunami	II	MLP is used for predicting the alert level due to a tsunami at given coastal locations.	De la Asunción ⁴⁹
elationships through weighted may support decision-making in various bazard scenarios.	volcano	II	FCNN is used to classify the volcanic state of alert based on the behavior of certain features, providing a probability of having an eruption.	Rey-Devesa et al.	
convolutional neural networks (CNN) re deep learning models that utomatically learn spatial hierarchies rom grid-like data using layers of	applications: CNNs excel at analyzing remote sensing images to detect hazards such as wildfires, floods, and making them ideal for detecting seismic	earthquake	II	a CNN based architecture (PEGSNet) is applied to Instantaneously track earthquake growth with elastogravity signals.	Licciardi et al. ⁵¹
onvolutions. fields for earthquakes by extracting and interpreting spatial features.	eildfire	II	U-Ccnvolutional long short-term memory (ULSTM) neural network is developed to extract the location and temporal wildfire evolution.	Bhowmik et al. ⁵²	

(Continued on next page)

Table 1. Continued					
Al method	Merits (or EWS application)	Hazard	Pillar	Examples of application	Reference(s)
Recurrent neural networks (RNN) are designed to process sequential data (such as time series data) by maintaining an internal state (memory), effectively	their ability to model temporal dynamics makes them valuable for forecasting hazards, such as predicting weather patterns and event progression over	flood	II	LSTM-based streamflow forecasting model is used to predict daily streamflow through a 7-day forecast horizon.	Nearing et al. ⁵³
capturing temporal dependencies.	time, and making them well-suited for hazards where historical patterns inform future risk.	landslide	II	an LSTM-based model for early warning detection of landslide is developed using groundwater and rainfall monitoring.	Zhang et al. ⁵⁴
Transformers (e.g., large language models [LLMs] & natural language processing [NLP]) analyze and generate	they extract actionable insights from disaster reports and social media, which facilitates early detection, human	wildfire	III	Dirichlet multinomial mixture (GSDMM) is used to detect trend and communication during wildfires.	Zander et al. ⁵⁵
human language, enabling contextual understanding of large-scale textual data.	behavior or response of emerging hazards through text analysis.	flood	II	ULMFiT is used as text classification to improve impact based weather warning systems and support decision-making.	Vrotsou et al. ⁵⁶
Generative models (e.g., autoencoders, GAN models), which reduce dimensionality and extract key	they improve the quality of hazard datasets by filtering noise and highlighting critical patterns, thereby	earthquake	II	cascaded autoencoders are used for crowd detection and estimation for an earthquake EWS.	Lamas et al. ⁵⁷
features from high-dimensional data by learning efficient representations of the input.	enhancing predictive accuracy in forecasting models.	tsunami	II	encoder-decoder neural network is used for high resolution inundation mapping for tsunami early warning in Sicily.	Briseid Storrøsten et al. ⁵⁸

Technical Report on Artificial Intelligence for Natural Disaster Management, which provides standardized definitions within the *trans*-disciplinary domain of AI for risk management. This study adopts and builds upon these established terminologies.

Risk knowledge for EWS should encompass and integrate the concepts of hazard, exposure, vulnerability, and impact-based forecasting, however few of the reviewed papers explicitly address these dimensions alongside hazard prediction and most of these studies focus on drought and flood as the main hazards. Shyrokaya et al.⁷³ demonstrate that integrating exposure and vulnerability for impact-based forecasting—using fuzzy inference, machine learning, and multi-source data fusion-has enabled more precise, lead-time predictions and actionable risk communication in EWS. However, significant challenges remain in normalizing exposure and vulnerability metrics to account for dynamics, 73 addressing data gaps, 81 and incorporating dynamic socio-economic factors. 38,42,73,82 These challenges present opportunities for further innovation in model refinement, enhanced data integration (e.g., from stakeholders and local and regional assessment documents) into adaptive forecasting frameworks.⁵⁶ The integration of these dimensions into risk frameworks is especially critical given that advanced data-driven methods, including AI, demand large training datasets-yet we face a substantial shortage of reliable data on impact and vulner-

At the same time, multi-hazard and impact-based approaches supported by AI remain underrepresented, despite a few promising studies. ^{15,83} However, as disasters are complex and interconnected, developing models that account for multiple interacting hazards—rather than isolated ones—will be crucial to building a resilient and adaptive early warning framework that reflects the complexity of real-world risks. ^{17,84,85} One of the challenges for MHEWS would be to standardize evaluation metrics tailored to specific hazards—such as floods, earthquakes, and landslides—a method that could be applied by various AI models and by doing so will also foster better model validation and cross-comparison. ^{86,87}

Employing generative adversarial networks (GANs) to create synthetic datasets has shown considerable potential for improving landslide displacement models, while federated learning approaches enable the aggregation of localized models - such as those used in earthquake prediction - without compromising sensitive data.^{88–90} These federated approaches enable multiple institutions to collaboratively train shared Al models by exchanging only model updates rather than raw data, which makes them particularly valuable for contexts with sensitive data or limited connectivity where traditional centralized approaches are not feasible due to for example data constraints. Additionally, exposure, vulnerability and impact datasets can be derived from Al. For example, for exposure mapping, there are promising approaches that include building footprint extraction using models like Google Open Buildings, Microsoft Bing Maps Building Footprints, and Al-enhanced population distributions from WorldPop that include poverty indicators. 91 Physical vulnerability assessments can, for example, leverage pre-labelled damage datasets like xBD (which contains approximately 850,000 labeled damages across multiple hazards) to train CNN models that assess building damage for new disasters or establish baseline vulnerability. ⁹² Subsequently, CNNs can be used to determine the damage for an unseen disaster, forming an alternative rapid damage assessment, but also to train impact-based forecasting models if other impact data are missing. ⁹³ Additionally, the use of NLP for enhancing the collection of impact data has proving promising ⁹⁴ and the same method could be applied to gather information on early actions and responses to supplement traditional impact records.

Foundational models like large-scale Earth system models and multimodal Al systems can enhance disaster risk knowledge (Pillar 1) by synthesizing vast amounts of environmental observations and extracting complex spatiotemporal patterns that may inform a comprehensive understanding of Earth systems. 95–97 These models, for example, are addressing the challenge of integrating heterogeneous observation networks and models to improve predictions across scales from weather to climate. Recent developments such as Aurora-based on more than a million hours of geophysical data show that such models can outperform traditional numerical forecasting systems across multiple Earth system domains and are orders of magnitude more computationally efficient, allowing for the enabling broader accessibility to accurate environmental predictions underpinning effective EWS. 98

These strategies enhance model robustness and democratize access to high-quality risk assessments, paving the way for more resilient and community-focused EWS. 99 However, addressing data scarcity through innovative methods like Alderived datasets may fill data gaps but not change the issue of data scarcity as such. 100–104 For example, global gridded population datasets systematically underrepresent the rural population-which is not necessarily changed through Al analysis methods. 105

Monitoring, forecasting, analysis of hazards (Pillar II)

The WMO Executive Action Plan for EW4All (2023-2027) emphasizes that enhanced data integration and technological innovation are a core priority to strengthen monitoring and forecasting capabilities. Al is progressively transforming Pillar II, enhancing the monitoring, analysis, and forecasting of hazards through its ability to process vast amounts of real-time data from diverse sources. 37,43,106 Techniques like deep learning, transfer learning, and hybrid models drive these significant improvements in prediction accuracy, lead times, and location determination, as is demonstrated by studies such as those by Abdalzaher et al. 107,108 and Xu and Gao. 109 A recent innovative advancement within AI for forecasting is GraphCast, which provides a graph neural network-based forecasting system that delivers highly accurate, medium-range weather predictions and early warnings of extreme events.³² The potential of transformative AI models that include LLMs and foundation models may enhance disaster risk management across multiple domains and is comprehensively examined in the ITU-T Focus Group Technical Report on Transformative Al Models for Natural Disaster Management, which provides guidance on leveraging these advanced Al architectures for improved monitoring and forecasting capabilities. Additional method advancements center around integrating Al with real-time sensor networks, satellite data, and IoT to create adaptive, intelligent systems that can detect weak hazard signals earlier than traditional models, crucial for improving global early

warnings. ^{52,110} This shift toward dynamic and data-driven forecasting is marking a key advancement in global risk management and reduction.

To successfully integrate AI in Pillar II, the integrity and reliability of data streams from heterogeneous sources is important. For example, by ensuring data quality, robust sensor calibration, and secure communication networks, models may be able to avoid false alarms or missed events—a concern highlighted by Li et al. 111 and Al-Rawas et al. 112 in their review of flash flood prediction technologies. Similarly, standardized interoperability protocols to seamlessly integrate IoT sensor data, satellite imagery, and numerical model outputs, would provide guardrails for monitoring and detection as these elements form the backbone of efficient EWS. 108,113,114 Zhu et al. 115 demonstrate how Al can automatize autonomous location-based decision-making to transform and enhance emergency response operations. Furthermore, standardizing protocols in the form of data-knowledge-driven or collaborative frameworks, as those proposed by WMO, is holding the key to transforming proactive hazard mitigation in the face of a rapidly changing climate. 52,116

Processing these multi-modal data in near real-time with the help of advanced AI models is a substantial opportunity for enhancing hazard forecasting. For instance, deep learning architectures that are integrated with autoencoders and CNNs, can rapidly estimate earthquake parameters and thereby improving early warning lead times. 108 Furthermore, Xu and Gao 109 show that high accuracy and low computational cost can be achieved by developing a hybrid surrogate model that fuses LSTM and CNN outputs, which they exemplify with a coastal flood prediction study. Furthermore, investing in distributed sensor networks with edge computing capabilities could be worthwhile as these methods enable local data processing to lower latency and improve the promptness of warnings. Such integration enables Al to process high-speed data streams and detect subtle, weak hazard signals much earlier than conventional statistical models, thereby extending the effective lead time of EWS.

Another promising avenue is enhancing the generalisability of Al models across different hazards and geographical regions that can be done through transfer learning and multi-modelling. For example, deep learning architectures can be adapted to diverse environmental conditions, while maintaining high prediction accuracy despite variations in regional hazard characteristics. 117,118 This adaptability not only facilitates the deployment of robust EWS in data-scarce regions 102 but also opens possibilities for a unified forecasting framework that can address multiple hazard types simultaneously. 119 However, the integration of multi-hazards remains challenging as different hazards have different lead times requiring different ways of operating.²² Developing flexible, modular Al architectures that are able to accommodate variable temporal scales and warning thresholds, while maintaining interoperability between hazard-specific components, will be critical to overcome these operational challenges and enable to adapt to changing environmental conditions.

Learning algorithms that can quantify uncertainties in hazard forecasts-such as Bayesian AI techniques and traditional physics-based models-can lead to more robust and interpretable predictions. ^{109,118,120} For example, models that integrate phys-

ics-based with advanced AI models can give insights into the fundamental dynamics of hazard processes. ^{121–123} A prime example of an integrating all approach, is establishing a digital twin that is able help precise risk prediction while leveraging AI algorithms for efficient processing and analysis of real-time data. ⁷⁵ Digital twins allow for the integration of real-time sensor data, advanced simulation models, and historical records into a unified virtual replica of physical systems, enabling continuous monitoring, dynamic risk assessment that include exposure and vulnerabilities of the system, and proactive disaster management. ^{124–128} Multi-hazard susceptibility maps may provide a foundation here from which to capture and contextualize underlying environmental and atmospheric processes, as well as hazard interactions.

However, to provide actionable risk information that enables targeted protective actions it is crucial to integrate exposure and vulnerability data with hazard intensity warnings. 129-131 We acknowledge, however, that dynamic exposure and vulnerability data are generally scarce and difficult to collect, 132,133 particularly for the most vulnerable groups (e.g., residents of informal settlements). When exposure and vulnerability data do exist, for example, collected by insurance companies and usually in high-income countries, they are often not publicly accessible or incomplete, Potential pathways to overcome these limitations include enhancing, public-private partnerships, anonymized data sharing agreements, and the development of standardized vulnerability indicators from open government data sources. Additionally, the use of crowd-sourced vulnerability mapping or the integration of satellite-derived exposure metrics offer alternative approaches to complement unavailable data. These impact-based forecasts represent a strategic priority within the EW4All initiative, which allows to shift from traditional hazardonly predictions to forecasts that directly estimate potential consequences on people, infrastructure, and livelihoods. Al may play a crucial role in impact-based forecasting as it allows for the processing of complex multi-dimensional datasets that combine meteorological predictions with demographic, infrastructure, and socioeconomic data to generate location-specific impact predictions.^{25,134} For example, instead of simply forecasting flood depth, impact-based systems allow for predictions that can warn communities that they will be cut off, or provide information on which critical infrastructure will fail, and what humanitarian needs will emerge. 135 This transformation from 'what the weather will do' to 'what the weather will due to us' is essential for moving beyond generic warnings to tailored, actionable guidance that saves more lives and reduces losses. 136

Warning dissemination and communication (Pillar III)

Enabling clear and accessible dissemination and communication is crucial for the translation of early warning information into actionable formats. For example, the common alerting protocol, Google Public Alerts, and IFRC Alert Hub expand the reach of reliable, fast, and actionable warning messages to people at risk, in which Al could support. Moreover, operational guidance from international organisations is emphasizing the critical role of Al to enhance communication effectiveness. For example, the WMO Guidelines on 'Multi-Hazard Impact-based Forecast and Warning Services' highlight the importance of

partnerships between scientists, forecasters, and community leaders in developing effective warning communication systems. ¹³⁷ Furthermore, the ITU/WMO/UNEP Focus Group on AI for Natural Disaster Management (FG-AI4NDM) has established best practices for using AI to support EWS and improve communication across spatiotemporal scales through multiple operational use cases how AI-enhanced communication systems can improve alert dissemination across diverse populations. ¹³⁸

First, AI can generate emergency alerts tailored to specific geographic locations, demographics, and language preferences. The use of large language models to support the translation of warnings is, for instance, a straightforward application and has already been implemented in several operational EWS. However, more work is needed in tailoring messages to recipients based on their demographic characteristics. While progress has been made in creating sector-specific warnings, it is essential to further develop personalized alerts, for example, for people of different ages or persons with disabilities. Core topics in this area include real-time alert generation, explainable alerts, and the development of user-friendly and accessible communication interfaces, which together facilitate effective disaster risk communication and situational awareness.

Secondly, another area of development is the Al-driven realtime prediction that can quickly generate alert messages. For instance, Dang et al. 139 developed a real-time EWS for urban flooding that is leveraging big data analytics and Web-GIS visualisations that is able to enhance flood risk communication. Another example is "FloodWatch," which is an IoT-based flood monitoring system that provides continuous hazard assessment and instant notifications. 140 Furthermore, Quaissa et al. 141 highlights the role of AI and IoT integration in wildfire and flood management, demonstrating how real-time processing improves situational awareness and response capabilities of people at risk. Furthermore, Al can integrate user reports from social media and IoT devices, providing a comprehensive situational overview in real time, which increases the effectiveness of information dissemination to end-users³⁴ For example, leveraging the collaborative power of Al and citizen science can be complementary by improving the use and access to citizen generated data, which supports inclusion of complementary local knowledge to forecast models. 133 These approaches are aligning with findings from the IFRC's guide 'The Future of Forecasts' that is demonstrating how impact-based forecasting can transform complex scientific information into actionable community insights for (Al-powered) communication strategies.

Third, Al can support by real-time analysis of multi-modal data—from sensor networks, satellite imagery, radar, weather models, and social media—to generate timely, actionable warnings and ensure that emergency messages reach all stakeholders via intuitive digital platforms. For the public, it is essential to provide intuitive and multi-platform communication strategies. If interfaces are able to provide alerts that are understandable through web platforms, mobile applications, and interactive mapping tools, it may enhance public engagement. ^{139,140} For example, visual and geospatial representations of risks, such as real-time hazard mapping and augmented reality overlays, make complex data more comprehensible for both decision-makers and communities. An underrepresented aspect is the

use of AI for reinforcement learning-training agents for decision-making during emergency scenarios, which could be an area of future research.

Preparedness and response capabilities (Pillar IV)

Enhancing response capacities and preparedness is essential for ensuring that EWS translate into timely, effective actions that minimize the societal and economic impacts of natural hazards. Al is progressively employed to test its effectiveness in supporting pillar IV, notably in modeling disaster response scenarios, speeding up analytics and data processing for real-time relief efforts, and improving the efficiency of emergency preparedness across sectors and decision-making support systems with diverse stakeholders connected to EWS and anticipatory action. 142,143 While most operational EWS have not yet fully integrated AI, existing humanitarian frameworks may provide valuable foundations for Al implementation to support. For example, the IFRC's Operational Framework for Anticipatory Action 2021-2025 establishes systematic approaches for forecastbased disaster response that could be enhanced through Al applications in risk assessment, resource allocation optimization, and predictive modeling. OCHA's briefing note on AI for the humanitarian sector reflects this as well, although mentioning some challenges to overcome in a data driven world, such as challenges misinformation, reinforcement of bias, system opacity, cybersecurity, and erosion of privacy. 144 Additionally, to ensure a coordinated progress in Al-enhanced disaster risk management technologies for preparedness and response capabilities across international organisations and standards development bodies, the FG-Al4NDM provided a standardization roadmap, which may serve as a strategic guide for this. 145

A range of examples of Al-support in this domain come from humanitarian and military sectors, such as using unmanned aerial vehicles (UAVs) to capture and process high-resolution local real-time data in emergency scenarios, such as Al-supported spatial mapping, data processing for damage assessment and situational awareness. On the financing side, Fast and frugal tree methods could be used to analyze the existing rapid cash transferring systems in a forecast model that unravels early warning relationships between climate variability, vegetation coverage, and maize yields at multiple lead times and cost-effectiveness of response measures. 48 Additionally, lessons can be drawn for Al-based responses to natural hazards from other field such as the health sector and biological hazards. For example, AI is used to simulate COVID-19 vaccine delivery contingency plan for IDP camps in Borno State, Northeast Nigeria. Next to this, Al methods have supported simulating the transmission of infectious diseases under various intervention measures and evaluate the effectiveness of control strategies can help formulate, implement, and potentially adjust measures. 146

Despite these promising applications, multiple challenges exist, such as uncertainties and the algorithm bias, might lead to false response scenario planning, notably by reinforcing the underrepresentation of rural communities and minority groups. Managing the complex interrelations of disaster response scenarios remains challenging as new risks could be introduced while advanced technology may lack applicability or fail to meet the actual needs of rural communities. 147,148 While

in existing systems, this is already a challenge, automated models may narrow this people-centric interaction along the warning chain even more.

With increasing complexity and predictive power of Al models, issues of trust, reliability, and interpretability of the models and its suggestions are fragile. This can cause issues from a physical perspective but can also result in a lack of trust by multi-stake-holders in warning messages. Transparency in Al systems extends beyond mere technical openness; it involves providing stakeholders with accessible and meaningful information about how Al models function, make decisions, and impact various user groups, ensuring that Al within the warning chain is transparent and inclusive. 149

Cross-cutting aspects of responsible AI in EWS

While AI offers significant potential across all four pillars, successful implementation requires to address fundamental challenges that may transcend individual pillar boundaries. Here we identify four critical cross-cutting aspects. Firstly, explainability is critical-yet, challenging for ethical and inclusive usability across the four pillars. 150 For example, to ensure that Al-driven early warning communications are actionable, it is essential to have explainable results that preferably also provide insides on uncertainty. The lack of interpretability of Al can hinder trust in Al-generated warnings, making it essential to incorporate explainable AI (XAI) methods that reveal decision-making processes and highlight uncertainties. 76 For the interoperability of EWS, where human lives depend on, it is crucial to provide such transparency and insights into model predictions. Ultimately, this will enhance user confidence also contribute to better-informed decision-making in high-stakes hazard scenarios. 75,79

Secondly, accountability is a key need in Al-powered EWS, notably, to establish clear responsibility frameworks for when systems fail, which ensures humans retain ultimate oversight of warning decisions regardless of automation level. 150,151 For example, transparent decision-making chains must document, which components (Al or human) triggered specific warnings, which should enable post-event auditing and continuous improvement while clarifying liability. Additionally, accountability demands for inclusive governance structures where diverse stakeholders-including vulnerable communities-have meaningful input into system design, deployment, and evaluation, ensuring AI serves broad public interests rather than narrow technical or commercial goals. Furthermore, collaborative approaches are key to evolving EWS.77 For example, fostering interdisciplinary collaborations among geoscientists, Al experts, policymakers, and local stakeholders is essential to translate these technological advances into sustainable, real-world applications. 152

Thirdly, data scarcity in Al-powered EWS reflects insufficient historical records of extreme events, inadequate monitoring networks in vulnerable regions, and low-resolution datasets of hazard-specific parameters. Such scant training data can produce biased models that perform poorly in historically underrepresented areas or for rare but catastrophic events and thus create warning gaps between data-rich and data-poor regions. Beyond simple data augmentation, novel approaches are needed for addressing this challenge: physics-informed models

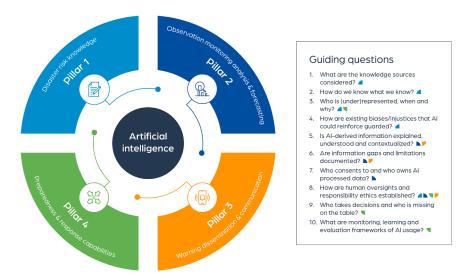
incorporating domain knowledge, transfer learning from datarich to data-poor contexts, and methods to quantify uncertainty when working with limited observations. Addressing data gaps in training data for data scarce regions, is to prioritize the development and validation of Al-derived datasets across risk components. Al-derived datasets should be rigorously validated with ground-truth observations where available, with clear documentation of uncertainties, potential biases (especially in underrepresented regions), and methodological limitations. International standards for dataset quality, interoperability, and transparency would further enhance the utility of these resources for operational MHEWS, particularly in data-scarce regions where traditional observational networks remain limited. The ITU/WMO/ UNEP Focus Group on Al for Natural Disaster Management and the subsequent Global Initiative on Resilience to Natural Hazards through Al Solutions provide technical guidance on best practices for data collection, modeling and effective communication for addressing these standardization challenges for responsible AI deployment that could help bridge data and capability gaps across regions.

Fourthly, community engagement and local knowledge integration should be emerging as critical success factors that will determine Al-enhanced EWS effectiveness. The IFRC's extensive experience with forecast-based financing across multiple National Societies is demonstrating that meaningful community engagement is essential for any EWS to be trusted, understood, and acted upon. Successful early warning implementations should have a systematic way to integrate traditional and Indigenous knowledge systems alongside technological solutions, which is documented in Anticipation Hub case studies. 154 Additionally, organisations such as Practical Action exemplify usage of AI in case studies, while UNDRR point out the potential of AI for EWS and documents this in their handbook on risk knowledge for MHEWS. This would establish principles that will be vital for ensuring that AI systems complement rather than replace local expertise and decision-making processes. Additionally, co-production approaches are essential for successful Al implementation in EWS and should involve meteorologists, social scientists, and humanitarian experts that work directly with at-risk communities, 155,156 as is emphasized by the IFRC's comprehensive analysis in 'The Future of Forecasts' and WMO's guidelines on 'Multi-hazard Impact-based Forecast and Warning Services'.

DISCUSSION

Ways forward

This study aims to address the knowledge, application, and policy gap on Al and EWS across the four pillars. While Al holds significant potential to improve EWS across these pillars, our results highlight the necessity of establishing guardrails for responsible use of Al in EWS, to ensure people-centred approaches and address the current challenges emerging in use cases (such as data gaps, algorithm bias, and underrepresentation of minority groups). While this study did not aim to establish universal guardrails for Al and EW, it intended to provide evidence-informed questions that need to be considered and addressed by those who have the responsibility to implement and operate EWS. Hence, Figure 3 provides an overview of



guiding questions based on this study that can help to establish guardrails across the four pillars to contribute and transfer to current knowledge, implementation, and policy sphere of EWS and AI (e.g., under the EW4ALL initiative). It unravels some of the key issues that are critical for responsible use of AI methods across the four Pillar, notably to ensure peoplecentred, responsible, and accountable AI use. The guiding questions are not comprehensive, nor extensive, however, they offer a guiding set of questions for future research in this domain moving forward.

The knowledge gap

Our review finds that AI can support in integrating exposure, vulnerability, and impact-based forecasting by standardizing metrics, addressing data gaps or hybrid approaches that combine physics-based models with advanced Al. For example, digital twins and collaborative systems may offer promising pathways to enhance dynamic risk prediction and proactive disaster management. While standardizing evaluation metrics across diverse hazards might remain a significant challenge, developing models that capture and that quantify the complex interactions of cascading events might offer an interesting array for future research. The review also highlighted that one of the major trends in Al and EWS are methods that can help to address data scarcity, specifically in rural areas (data augmentation, transfer learning and federated learning to overcome data limitations) and enhance model robustness and democratize access to high-quality risk assessments for EWS. Filling those data gaps, however, it will be critical to consider diverse knowledge sources and reflect on the biases of the data and algorithms utilized (see guiding question 1-3). Specifically, the narrative of filling data gaps through Al needs careful reflection on accountable oversight mechanisms to ensure quality and reliability (see guiding question 7-9).

The application gap

Al has been increasingly applied in the domains of risk knowledge, monitoring and forecasting, dissemination and communication and preparedness and response. However, the main

Figure 3. Role of guiding questions that serve as guardrails for the responsible utilization of AI methods across the four pillars of EWS

The EW4ALL framework is adapted from WMO's Executive Action Plan for 2023–2027.

application area remains in monitoring and forecasting. Another finding of current applications is the processing of multi-modal data in near real-time using advanced Al architectures and distributed sensor networks. Specifically, Al has the potential to reduce latency and extend early warning lead times accuracy in monitoring and forecasting. Further, its capacity to model generalisability through transfer learning and multi-modelling paves the way for

improving forecasting across diverse hazards and support scenario planning. Finally, integrating physical process simulations with data-driven insights or Al powered earth system models and digital twins hold promising pathways for developing robust, interpretable systems that better inform timely decision-making. However, it is impediment to establish evaluation criteria ensuring data integrity, accountability, and interoperability across heterogeneous sources-such as IoT sensors, satellite imagery, and numerical models (see guiding question 10). This can mitigate false alarms and improve detection reliability. Additionally, the application areas of Al are dominantly technical niche-requiring efforts for explainability and ensuring that the role of AI in the warning chain is well documented and understood by all stakeholders (see guiding question 5 & 6). Furthermore, we showed that case studies are mostly absent in sub-Saharan Africa. Central America, parts of South America, Central Asia, and small island developing states. Such uneven geographical distribution of Al-focused EWS research and implementation reflects the infrastructure and digital disparities, where regions most affected by the digital divide and weather station deficits receive the least research attention, creating a worrying cycle where technological advances may actually worsen rather than reduce existing warning system inequalities (see guiding question 6 & 9). To bridge this digital divide, Digital Public Goods initiatives and open-access Earth observation platforms such as Digital Earth Africa and Copernicus are offering promising pathways by providing free access to satellite data and computational resources. This has the ability to support and enable researchers and practitioners in data-scarce regions to develop locally relevant AI-EWS applications.

The policy gap

While advanced AI methods can enhance the effectiveness across the warning chain, it persists a lack of studies providing ethical and human-rights based frameworks and commonly agreed ethical oversight mechanism for AI deployment (see guiding question 8). For example, few of the studies applying AI methods in EWS domain, provide reflection and

ethical guidance on issues such as privacy, data bias and the trustworthiness of Al-supported information for policy makers and practitioners. Global, regional and national standards need to be developed for the use of Al in EWS, building upon existing frameworks such as the ITU/WMO/UNEP technical reports on Al for Natural Disaster Management and the WMO Executive Action Plan implementation guidelines. ¹⁵⁷ For example, the protection of transparency, fairness and human oversight of Al systems are impediment for implementation in any EWS application (see guiding question 8). Specifically, core values such as gender, education, research, wellbeing and ecosystems need to be integrated, evaluated and monitored through frameworks and policy mechanism for Al in EWS, while currently critically underrepresented or even absent⁷² (see guiding question 3).

The scope of this study was not aimed at establishing comprehensive guardrails for addressing such policy issues. However, it recognizes that technocratic approaches in disaster risk reduction must go hand in hand with people-centred and responsible approaches, which are yet to be established for this domain. Guardrails are almost absent in the reviewed papers in this study. Additionally, it is essential to foster international standardization efforts that include diverse stakeholders representing different regional priorities. This ensures both effective and equitable implementation, potentially encouraging adoption of these standards into national legislative frameworks. 158 Further, such collaboration allows to develop international standards for AI in EWS that are not limited by cross-border interoperability, which are currently critical blind spots in warning coverage precisely where hazards may transcend national boundaries. Ultimately, unlocking the potential of AI in EWS requires close collaboration between the research community and the key national actors -supported by the UN agencies and IFRC- implementing EW4All, including UNDRR for risk knowledge and preparedness. WMO for monitoring and forecasting systems. ITU for warning dissemination and communication and IFRC for preparedness to respond. Such an alignment would ensure that research priorities identified here translate into operational improvements across the four pillars and support evidencebased policy development at international and national levels. The guiding questions that serve as guardrails for responsible Al implementation and pillar-specific findings from this review offer these agencies a practical framework that can be used to develop responsible AI integration strategies that can address the technical, ethical, and equity challenges identified across EW4All implementation.

Concluding remarks

This study examined AI methods utilized in the context of EWS, their opportunities and limitations and discusses guardrails for applying AI in people-centred EWS. While AI offers opportunities for the effectiveness of EWS, there is a lack of guidance and ethical questions to ensure inclusive, people-centred warning systems moving forward. Artificial intelligence (AI) paves the way for improvements of early warning across the four pillars, supporting its viability for protecting sectors, systems, and people.

Patterns of AI use/adoption: AI tools in EWS substantially increased in the past decade across the globe for different hazard types in the domain of early warning. A variety of methods are utilized (such as Deep Learning, NLP) to support parts of the warning chain, dominantly computational and data-driven components.

Challenges and opportunities across the four pillars: Application areas are dominantly in forecasting and monitoring, however, there are emerging patterns and examples for applying it across the warning chain, which need to be further explored. Challenges include explainability, including privacy and ethical considerations of the use of data, issues around accuracy and accountability of Al and the data scarcity challenge.

Addressing policy, research, and knowledge gap: The role in EWS is not a silver bullet for improving existing systems-it can be understood as a complementary approach, when carefully tested and ethically embedded into regulatory frameworks, to support parts of the warning chain. It is critical in the future to strengthen research and policy making of people-centred EWS and DRR to identify utilities that do no harm.

Future research can strengthen the responsible use of Al methods across the EWS pillars through tackling guardrails and providing guidelines for research, application, and practice. Ultimately, the potential of Al in EWS could only be realized with close collaboration between the research community and UN agencies implementing EW4All (including WMO, UNDRR, and other relevant agencies) to ensure that research findings would be translated into operational improvements and evidence-based policy development across the four pillars.

Limitations of the study

This study encounters multiple limitations in the methodology. First, we acknowledge that there are other papers that still address Al for one of the EWS pillar but not explicitly mention early warning or early warning systems in their paper. For example, there are papers that are about preparedness in humanitarian action, which might have also contributed additional insights, however, due to the selected search strings were not integrated. Secondly, the four-eye principle of title and abstract screening might have introduced biases due to the positionalities of the two researchers for selecting the papers. Thirdly, only including open access and English papers, as well as excluding gray literature in the systematic literature review introduces limitations to the comprehensiveness of the review. Fourthly, the study utilized NLP in the review process to extract locations or hazard types of the reviewed abstracts, which introduces the bias of an Al tool to the research; however, 100% human oversight was implemented to mitigate this limitation. Lastly, the requirement for explicit 'early warning' terminology in our search may have excluded relevant AI forecasting studies using alternative terms such as forecasting and prediction in the realm of hazard studies that might be of interest to one of the pillars of EW4ALL.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will be fulfilled by the lead contact, Timothy Tiggeloven (timothy.tiggeloven@vu.nl).

Materials availability

The study did not generate new materials.

Data and code availability

- Data on the reviewed papers in the systematic review are available in the supplemental information. All other data reported in this paper will be shared by the lead contact upon request.
- The code related to this article can be accessed by reaching out to the lead contact, provided the request is reasonable.
- Any additional information required to reanalyze the data reported in this
 paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

T.T. and S.T. have received financial support through the MYRIAD-EU project from the European Union's Horizon 2020 research and innovation program (grant agreement no. 101003276). S.P. has received financial support through the EarlyWarning4IGAD project (grant agreement: UNDRR/GR/2023/027) and the EW4IGAD III project (grant agreement: UNDRR/GR/2024/045) funded by the UN Office for Disaster Risk Reduction (UNDRR). A.M. has received support from the PerfectSTORM ERC Grant Project (number: ERC-2020-StG-948601). The authors would like to thank Maarten de Vries for the contribution to the design and visualization of Figure 3 and the graphical abstract.

AUTHOR CONTRIBUTIONS

T.T. and S.P. contributed equally and conceptualized the research, undertook the review/modeling, and led the analysis and investigation. A.M. and M.v.d.H. contributed to the conceptualization of the research and analysis. T.T. and S.P. wrote the first draft of the manuscript, which was edited and reviewed by A.M., M.v.d.H., L.T., M.R., and S.T.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR*METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- METHOD DETAILS
 - o Literature selection
 - Screening process
 - Review process
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci. 2025.113689.

Received: April 30, 2025 Revised: July 9, 2025

Accepted: September 29, 2025 Published: October 3, 2025

REFERENCES

 Schoormann, T., Strobel, G., Möller, F., Petrik, D., and Zschech, P. (2023). Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature. Commun. Assoc. Inf. Syst. 52, 8.

- Fan, Z., Yan, Z., and Wen, S. (2023). Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability 15, 13493.
- 3. Zhang, A., Lipton, Z.C., Li, M., and Smola, A.J. (2023). Dive into Deep Learning (Cambridge University Press).
- Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., Yu, L., Wang, F., Xie, Y., Li, J., et al. (2024). Artificial intelligence for geoscience: Progress, challenges, and perspectives. Innovation 5, 100691.
- Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204.
- Camps-Valls, G., Tuia, D., Zhu, X.X., and Reichstein, M. (2021). Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences (John Wiley & Sons).
- Esposito, M., Palma, L., Belli, A., Sabbatini, L., and Pierleoni, P. (2022). Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 22, 2124.
- Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., Sneddon, A., and Golding, B. (2022). Early Warning Systems and Their Role in Disaster Risk Reduction. In Towards the "Perfect" Weather Warning: Bridging Disciplinary Gaps through Partnership and Communication, B. Golding, ed. (Cham: Springer International Publishing), pp. 11–46. https://doi.org/10.1007/978-3-030-98989-7_2.
- 9. WMO (2022). Early warnings for all: Executive action plan 2023-2027 | PreventionWeb. https://www.preventionweb.net/publication/early-warnings-all-executive-action-plan-2023-2027.
- Kelman, I., and Glantz, M.H. (2014). Early Warning Systems Defined. In Reducing Disaster: Early Warning Systems For Climate Change, A. Singh and Z. Zommers, eds. (Dordrecht: Springer Netherlands), pp. 89–108. https://doi.org/10.1007/978-94-017-8598-3_5.
- UNDRR (2015). Sendai Framework for Disaster Risk Reduction 2015– 2030 (UNDRR).
- Tzachor, A., Richards, C.E., Gudoshava, M., Nying'uro, P., Misiani, H., Ongoma, J.G., Yair, Y., Mulugetta, Y., and Gaye, A.T. (2023). How to reduce Africa's undue exposure to climate risks. Nature 620, 488–491.
- 13. Gill, J.C., and Malamud, B.D. (2014). Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 52, 680–722.
- Matanó, A., de Ruiter, M.C., Koehler, J., Ward, P.J., and Van Loon, A.F. (2022). Caught Between Extremes: Understanding Human-Water Interactions During Drought-To-Flood Events in the Horn of Africa. Earths Future 10, e2022EF002747.
- Kappes, M.S., Keiler, M., von Elverfeldt, K., and Glade, T. (2012). Challenges of analyzing multi-hazard risk: a review. Nat. Hazards 64, 1925–1958
- De Angeli, S., Malamud, B.D., Rossi, L., Taylor, F.E., Trasforini, E., and Rudari, R. (2022). A multi-hazard framework for spatial-temporal impact analysis. Int. J. Disaster Risk Reduct. 73, 102829.
- de Ruiter, M.C., Couasnon, A., van den Homberg, M.J.C., Daniell, J.E., Gill, J.C., and Ward, P.J. (2020). Why We Can No Longer Ignore Consecutive Disasters. Earths Future 8, e2019EF001425.
- Antofie, T.-E., Luoni, S., Tilloy, A., Sibilia, A., Salari, S., Eklund, G., Rodomonti, D., Bountzouklis, C., and Corbane, C. (2025). Spatial identification of regions exposed to multi-hazards at the pan-European level. Nat. Hazards Earth Syst. Sci. 25, 287–304.
- Reichstein, M., Riede, F., and Frank, D. (2021). More floods, fires and cyclones plan for domino effects on sustainability goals. Nature 592, 347–349.
- Thalheimer, L., Choquette-Levy, N., and Garip, F. (2022). Compound impacts from droughts and structural vulnerability on human mobility. iScience 25, 105491.

- (2020). Hazard definition and classification review: Technical report | UNDRR. https://www.undrr.org/publication/hazard-definitionand-classification-review-technical-report.
- Claassen, J.N., Ward, P.J., Daniell, J., Koks, E.E., Tiggeloven, T., and de Ruiter, M.C. (2023). A new method to compile global multi-hazard event sets. Sci. Rep. 13, 13808.
- Tiggeloven, T., Raymond, C., de Ruiter, Sillmann, J., Thieken, A. H., Buijs, S. L., Ciurean, R., Cordier, E., Crummy, J. M., Cumiskey, L., et al. (2025). Reflections and Future Directions for Multi-Hazard Risk in the Context of the Sendai Framework and Discussions Beyond. Preprint at EGUsphere. https://doi.org/10.5194/egusphere-2025-2771.
- Rokhideh, M., Fearnley, C., and Budimir, M. (2025). Multi-Hazard Early Warning Systems in the Sendai Framework for Disaster Risk Reduction: Achievements, Gaps, and Future Directions. Int. J. Disaster Risk Sci. 16, 103–116
- Reichstein, M., Benson, V., Blunk, J., Camps-Valls, G., Creutzig, F., Fearnley, C.J., Han, B., Kornhuber, K., Rahaman, N., Schölkopf, B., et al. (2025). Early warning of complex climate risk with integrated artificial intelligence. Nat. Commun. 16, 2564.
- Kuglitsch, M.M., Cox, J., Luterbacher, J., Jamoussi, B., Xoplaki, E., Thummarukudy, M., Radwan, G.S., Yasukawa, S., McClain, S.N., Albayrak, R.A., et al. (2024). Al to the rescue: how to enhance disaster early warnings with tech tools. Nature 634, 27–29.
- Kuglitsch, M., Albayrak, A., Aquino, R., Craddock, A., Edward-Gill, J., Kanwar, R., Koul, A., Ma, J., Marti, A., Menon, M., et al. (2022). Artificial intelligence for disaster risk reduction: Opportunities, challenges, and prospects. World Meteorological Organization 72, 1.
- Bauer, P., Thorpe, A., and Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature 525, 47–55.
- (2019). Extreme-scale Computing and Data Handling the Heart of Progress in Weather and Climate Prediction (World Meteorological Organization). https://wmo.int/media/magazine-article/extreme-scalecomputing-and-data-handling-heart-of-progress-weather-and-climateprediction.
- 30. Kuglitsch, M.M., Albayrak, A., Luterbacher, J., Craddock, A., Toreti, A., Ma, J., Vilela, P.P., Xoplaki, E., Kotani, R., Berod, D., et al. (2023). When it comes to Earth observations in Al for disaster risk reduction, is it feast or famine? A topical review. Environ. Res. Lett. 18, 093004.
- Benson, V., Robin, C., Requena-Mesa, C., Alonso, L., Carvalhais, N., Cortés, J., Gao, Z., Linscheid, N., Weynants, M., and Reichstein, M. (2024). Multi-modal Learning for Geospatial Vegetation Forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27788–27799.
- Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al. (2023). Learning skillful medium-range global weather forecasting. Science 382, 1416–1421.
- Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D.N., Domeisen, D.I.V., Feser, F., Koszalka, I., Kreibich, H., et al. (2020). Impact Forecasting to Support Emergency Management of Natural Hazards. Rev. Geophys. 58, e2020RG000704.
- Mazzoleni, M., Mondino, E., Matanó, A., Van Loon, A.F., and Barendrecht, M.H. (2024). Modelling the role of multiple risk attitudes in implementing adaptation measures to reduce drought and flood losses.
 J. Hydrol. 636, 131305.
- Van Loon, A.F., Gleeson, T., Clark, J., Van Dijk, A.I.J.M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A.J., Tallaksen, L.M., Uijlenhoet, R., et al. (2016). Drought in the Anthropocene. Nat. Geosci. 9, 89–91.
- Staupe-Delgado, R. (2019). Progress, traditions and future directions in research on disasters involving slow-onset hazards. Disaster Prev. Manag. 28, 623–635.

- Kolivand, P., Saberian, P., Tanhapour, M., Karimi, F., Kalhori, S.R.N., Javanmard, Z., Heydari, S., Talari, S.S.H., Mousavi, S.M.L., Alidadi, M., et al. (2024). A systematic review of Earthquake Early Warning (EEW) systems based on Artificial Intelligence. Earth Sci. Inform. 17, 957–984.
- Salimi, A., Ghobrial, T., Samakosh, J.M., and Bonakdari, H. (2024). Chapter 5 Drought forecasting based on machine learning techniques. In Intelligence Systems for Earth, Environmental and Planetary Sciences, H. Bonakdari and S.J. Gumiere, eds. (Elsevier), pp. 113–145. https://doi.org/10.1016/B978-0-443-13293-3.00009-9.
- Luo, H., Bhardwaj, J., Choy, S., and Kuleshov, Y. (2022). Applying Machine Learning for Threshold Selection in Drought Early Warning System. Climate 10, 97
- Li, Y., Osei, F.B., Hu, T., and Stein, A. (2023). Urban flood susceptibility mapping based on social media data in Chengdu city, China. Sustain. Cities Soc. 88, 104307.
- Sayad, Y.O., Mousannif, H., and Al Moatassime, H. (2019). Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 104, 130–146.
- Wee, G., Chang, L.-C., Chang, F.-J., and Mat Amin, M.Z. (2023). A flood Impact-Based forecasting system by fuzzy inference techniques. J. Hydrol. 625, 130117.
- Kang, J., Walter, F., Paitz, P., Aichele, J., Edme, P., Meier, L., and Fichtner, A. (2024). Automatic Monitoring of Rock-Slope Failures Using Distributed Acoustic Sensing and Semi-Supervised Learning. Geophys. Res. Lett. 51, e2024GL110672.
- Chen, G., Hou, J., Liu, Y., Xue, S., Wu, H., Wang, T., Lv, J., Jing, J., and Yang, S. (2024). Urban inundation rapid prediction method based on multi-machine learning algorithm and rain pattern analysis. J. Hydrol. 633, 131059.
- Anggraini, S., Wijaya, S.K., and Daryono. (2021). Earthquake detection and location for Earthquake Early Warning Using Deep Learning. J. Phys., Conf. Ser. 1951, 012056.
- 46. Busker, T., van den Hurk, B., de Moel, H., van den Homberg, M., van Straaten, C., Odongo, R.A., and Aerts, J.C.J.H. (2024). Predicting Food-Security Crises in the Horn of Africa Using Machine Learning. Earths Future 12, e2023EF004211.
- Cesario, E., Giampá, S., Baglione, E., Cordrie, L., Selva, J., and Talia, D. (2024). A parallel machine learning-based approach for tsunami waves forecasting using regression trees. Comput. Commun. 225, 217–228.
- 48. Guimarães Nobre, G., Davenport, F., Bischiniotis, K., Veldkamp, T., Jongman, B., Funk, C.C., Husak, G., Ward, P.J., and Aerts, J.C. (2019). Financing agricultural drought risk through ex-ante cash transfers. Sci. Total Environ. 653, 523–535.
- de la Asunción, M. (2024). Prediction of Tsunami Alert Levels Using Deep Learning. Earth Space Sci. 11, e2023EA003385.
- Rey-Devesa, P., Carthy, J., Titos, M., Prudencio, J., Ibáñez, J.M., and Benítez, C. (2024). Universal machine learning approach to volcanic eruption forecasting using seismic features. Front. Earth Sci. 12, 1342468.
- Licciardi, A., Bletery, Q., Rouet-Leduc, B., Ampuero, J.-P., and Juhel, K. (2022). Instantaneous tracking of earthquake growth with elastogravity signals. Nature 606, 319–324.
- Bhowmik, R.T., Jung, Y.S., Aguilera, J.A., Prunicki, M., and Nadeau, K. (2023). A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. J. Environ. Manage. 341, 117009
- Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., Kratzert, F., Metzger, A., et al. (2024). Global prediction of extreme floods in ungauged watersheds. Nature 627, 559–563.
- Zhang, S., Jia, H., Wang, C., Wang, X., He, S., and Jiang, P. (2024). Deeplearning-based landslide early warning method for loose deposits slope coupled with groundwater and rainfall monitoring. Comput. Geotech. 165, 105924.

iScience

Article

- Zander, K.K., Garnett, S.T., Ogie, R., Alazab, M., and Nguyen, D. (2023).
 Trends in bushfire related tweets during the Australian 'Black Summer' of 2019/20. For. Ecol. Manag. 545, 121274.
- Vrotsou, K., Navarra, C., Kucher, K., Fedorov, I., Schück, F., Unger, J., and Neset, T.S. (2023). Towards a Volunteered Geographic Information-Facilitated Visual Analytics Pipeline to Improve Impact-Based Weather Warning Systems. Atmosphere 14, 1141.
- Lamas, F., Duguet, K., Pezoa, J.E., Montalva, G.A., Torres, S.N., and Meng, W. (2022). Crowd detection and estimation for an earthquake early warning system using deep learning. In Pattern Recognition and Tracking XXXIII, 12101 (SPIE), pp. 142–148.
- Briseid Storrøsten, E., Ragu Ramalingam, N., Lorito, S., Volpe, M., Sánchez-Linares, C., Løvholt, F., and Gibbons, S.J. (2024). Machine learning emulation of high resolution inundation maps. Geophys. J. Int. 238, 382–399
- O'Shea, K., and Nash, R. (2015). An Introduction to Convolutional Neural Networks. Preprint at arXiv. https://doi.org/10.48550/arXiv.1511.08458.
- 60. Wibowo, A., Heliani, L.S., Pratama, C., Sahara, D.P., Widiyantoro, S., Ramdani, D., Fuady Bisri, M.B., Sudrajat, A., Wibowo, S.T., and Purnama, S.R. (2024). Deep learning for real-time P-wave detection: A case study in Indonesia's earthquake early warning system. Appl. Comput. Geosci. 24, 100194.
- Meng, F., Ren, T., Liu, Z., and Zhong, Z. (2023). Toward earthquake early warning: A convolutional neural network for rapid earthquake magnitude estimation. Artif. Intell. Geosci. 4, 39–46.
- 62. Gohar, T., Hasan, L., Khan, G.M., and Mubashir, M. (2022). Constraint Free Early Warning System for Flood Using Multivariate LSTM Network. In 2022 2nd International Conference on Artificial Intelligence (ICAI), pp. 64–70. https://doi.org/10.1109/ICAI55435.2022.9773495.
- Hop, F.J., Linneman, R., Schnitzler, B., Bomers, A., and Booij, M.J. (2024). Real time probabilistic inundation forecasts using a LSTM neural network. J. Hydrol. 635, 131082.
- 64. Orland, E., Roering, J.J., Thomas, M.A., and Mirus, B.B. (2020). Deep Learning as a Tool to Forecast Hydrologic Response for Landslide-Prone Hillslopes. Geophys. Res. Lett. 47, e2020GL088731.
- Tiggeloven, T., Couasnon, A., van Straaten, C., Muis, S., and Ward, P.J. (2021). Exploring deep learning capabilities for surge predictions in coastal areas. Sci. Rep. 11, 17224.
- Skoubris, E., and Hloupis, G. (2023). An Al-Powered, Low-Cost IoT Node Oriented to Flood Early Warning Systems. Eng. Proc. 58, 44.
- 67. Distefano, P., Peres, D.J., Piciullo, L., Palazzolo, N., Scandura, P., and Cancelliere, A. (2023). Hydro-meteorological landslide triggering thresholds based on artificial neural networks using observed precipitation and ERA5-Land soil moisture. Landslides 20, 2725–2739.
- Gao, Z., Shi, X., Wang, H., Zhu, Y., Wang, Y., Li, M., and Yeung, D.-Y. (2023). Earthformer: Exploring Space-Time Transformers for Earth System Forecasting. Preprint at arXiv. https://doi.org/10.48550/arXiv.2207. 05833
- 69. Zhang, D., Wei, K., Yao, Y., Yang, J., Zheng, G., and Li, Q. (2022). Capture and Prediction of Rainfall-Induced Landslide Warning Signals Using an Attention-Based Temporal Convolutional Neural Network and Entropy Weight Methods. Sensors 22, 6240.
- Elghouat, A., Algouti, A., Algouti, A., and Baid, S. (2024). Attention is all you need for an improved CNN-based flash flood susceptibility modeling. The case of the ungauged Rheraya watershed, Morocco. Preprint at arXiv. https://arxiv.org/abs/2408.02692v1.
- Moradian, S., AghaKouchak, A., Gharbia, S., Broderick, C., and Olbert, A.I. (2024). Forecasting of compound ocean-fluvial floods using machine learning. J. Environ. Manage. 364, 121295.
- Nocentini, N., Rosi, A., Piciullo, L., Liu, Z., Segoni, S., and Fanti, R. (2024).
 Regional-scale spatiotemporal landslide probability assessment through machine learning and potential applications for operational warning systems: a case study in Kvam (Norway). Landslides 21, 2369–2387.

- Shyrokaya, A., Pappenberger, F., Pechlivanidis, I., Messori, G., Khatami, S., Mazzoleni, M., and Di Baldassarre, G. (2024). Advances and gaps in the science and practice of impact-based forecasting of droughts. WIRES Water 11, e1698.
- Binu, K.E., Anoopkumar, L.T., Sunil, M., Jose, M., and Preetha, K.G. (2024). Dynamic Landslide Prediction, Monitoring, and Early Warning with Explainable Al: A Comprehensive Approach. In 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), pp. 960–965. https://doi.org/10.1109/ICAAIC60222.2024. 10575330.
- Ghaffarian, S., Taghikhah, F.R., and Maier, H.R. (2023). Explainable artificial intelligence in disaster risk management: Achievements and prospective futures. Int. J. Disaster Risk Reduct. 98, 104123.
- Dramsch, J.S., Kuglitsch, M.M., Fernández-Torres, M.Á., Toreti, A., Albayrak, R.A., Nava, L., Ghaffarian, S., Cheng, X., Ma, J., Samek, W., et al. (2025). Explainability can foster trust in artificial intelligence in geoscience. Nat. Geosci. 18. 112–114.
- 77. Hermans, T.D.G., Šakić Trogrlić, R., van den Homberg, M.J.C., Bailon, H., Sarku, R., and Mosurska, A. (2022). Exploring the integration of local and scientific knowledge in early warning systems for disaster risk reduction: a review. Nat. Hazards 114, 1125–1152.
- Tan, L., Guo, J., Mohanarajah, S., and Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Nat. Hazards 107, 2389–2417.
- Albahri, A.S., Khaleel, Y.L., Habeeb, M.A., Ismael, R.D., Hameed, Q.A., Deveci, M., Homod, R.Z., Albahri, O., Alamoodi, A., and Alzubaidi, L. (2024). A systematic review of trustworthy artificial intelligence applications in natural disasters. Comput. Electr. Eng. 118, 109409.
- Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., and Marcomini, A. (2021). Exploring machine learning potential for climate change risk assessment. Earth Sci. Rev. 220, 103752.
- Sutanto, S.J., van der Weert, M., Blauhut, V., and Van Lanen, H.A.J. (2020). Skill of large-scale seasonal drought impact forecasts. Nat. Hazards Earth Syst. Sci. 20, 1595–1608.
- Masupha, T.E., Moeletsi, M.E., and Tsubo, M. (2024). A transformative framework reshaping sustainable drought risk management through advanced early warning systems. iScience 27, 110066.
- 83. Aguirre-Ayerbe, I., Merino, M., Aye, S.L., Dissanayake, R., Shadiya, F., and Lopez, C.M. (2020). An evaluation of availability and adequacy of Multi-Hazard Early Warning Systems in Asian countries: A baseline study. Int. J. Disaster Risk Reduct. 49, 101749.
- 84. Khan, A., Gupta, S., and Gupta, S.K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. Int. J. Disaster Risk Reduct. 47, 101642.
- 85. Budimir, M., Trogrlić, R.Š., Almeida, C., Arestegui, M., Vásquez, O.C., Cisneros, A., Iriarte, M.C., Dia, A., Lizon, L., Madueño, G., et al. (2025). Opportunities and challenges for people-centered multi-hazard early warning systems: Perspectives from the Global South. iScience 28, 112353.
- Bordbar, M., Aghamohammadi, H., Pourghasemi, H.R., and Azizi, Z. (2022). Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques. Sci. Rep. 12, 1451.
- 87. Zheng, X.-W., Li, H.-N., and Shi, Z.-Q. (2023). Hybrid Al-Bayesian-based demand models and fragility estimates for tall buildings against multihazard of earthquakes and winds. Thin-Walled Struct. 187, 110749.
- Eltehewy, R., Abouelfarag, A., and Saleh, S.N. (2023). Efficient Classification of Imbalanced Natural Disasters Data Using Generative Adversarial Networks for Data Augmentation. ISPRS Int. J. Geolnf. 12, 245.
- Ge, Q., Li, J., Lacasse, S., Sun, H., and Liu, Z. (2024). Data-augmented landslide displacement prediction using generative adversarial network. J. Rock Mech. Geotech. Eng. 16, 4017–4033.

- Tehseen, R., Farooq, M.S., and Abid, A. (2021). A framework for the prediction of earthquake using federated learning. PeerJ Comput. Sci. 7, e540.
- Gevaert, C.M., Buunk, T., and van den Homberg, M.J.C. (2024). Auditing Geospatial Datasets for Biases: Using Global Building Datasets for Disaster Risk Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 12579–12590.
- Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., and Gaston, M. (2019). xBD: A Dataset for Assessing Building Damage from Satellite Imagery. Preprint at arXiv. https://doi. org/10.48550/arXiv.1911.09296.
- Valentijn, T., Margutti, J., van den Homberg, M., and Laaksonen, J. (2020). Multi-Hazard and Spatial Transferability of a CNN for Automated Building Damage Assessment. Remote Sens. 12, 2839.
- Madruga de Brito, M., Kuhlicke, C., and Marx, A. (2020). Near-real-time drought impact assessment: a text mining approach on the 2018/19 drought in Germany. Environ. Res. Lett. 15, 1040a9.
- 95. Gettelman, A., Geer, A.J., Forbes, R.M., Carmichael, G.R., Feingold, G., Posselt, D.J., Stephens, G.L., van den Heever, S.C., Varble, A.C., and Zuidema, P. (2022). The future of Earth system prediction: Advances in model-data fusion. Sci. Adv. 8, eabn3488.
- Zhu, X.X., Xiong, Z., Wang, Y., Stewart, A.J., Heidler, K., Wang, Y., Yuan, Z., Dujardin, T., Xu, Q., and Shi, Y. (2024). On the Foundations of Earth and Climate Foundation Models. Preprint at arXiv. https://doi.org/10. 48550/arXiv.2405.04285
- Choudhury, S., Kreidieh, A.R., Kuznetsov, I., and Arora, N. (2024). Towards a Trajectory-powered Foundation Model of Mobility. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Spatial Big Data and Al for Industrial Applications (New York, NY, USA: Association for Computing Machinery), pp. 1–4. https://doi.org/10.1145/3681766.3699610.
- Bodnar, C., Bruinsma, W.P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, P., Riechert, M., Weyn, J.A., Dong, H., et al. (2025). A foundation model for the Earth system. Nature 641, 1180–1187.
- Palmieri, L., Boldrini, C., Valerio, L., Passarella, A., and Conti, M. (2023).
 Exploring the Impact of Disrupted Peer-to-Peer Communications on Fully Decentralized Learning in Disaster Scenarios. In 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), pp. 1–6. https://doi.org/10.1109/ICT-DM58371.2023.10286953.
- Leach, S., Xue, Y., Sridhar, R., Paal, S., Wang, Z., and Murphy, R. (2021).
 Data Augmentation for Improving Deep Learning Models in Building Inspections or Postdisaster Evaluation. J. Perform. Constr. Facil. 35, 04021029.
- 101. Happé, T., Wijnands, J.S., Fernández-Torres, M.Á., Scussolini, P., Muntjewerf, L., and Coumou, D. (2024). Detecting Spatiotemporal Dynamics of Western European Heatwaves Using Deep Learning. Artif. Intell. Earth Syst. 3, e230107. https://doi.org/10.1175/AIES-D-23-0107.1.
- Sousa, M.J., Moutinho, A., and Almeida, M. (2020). Wildfire detection using transfer learning on augmented datasets. Expert Syst. Appl. 142, 112975.
- 103. Ozeki, R., Yonekura, H., Rizk, H., and Yamaguchi, H. (2024). Decentralized Landslide Disaster Prediction for Imbalanced and Distributed Data. In 2024 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 143–150. https://doi.org/10.1109/PerCom59722.2024.10494417.
- 104. Bloemendaal, N., Haigh, I.D., de Moel, H., Muis, S., Haarsma, R.J., and Aerts, J.C.J.H. (2020). Generation of a global synthetic tropical cyclone hazard dataset using STORM. Sci. Data 7, 40.
- Láng-Ritter, J., Keskinen, M., and Tenkanen, H. (2025). Global gridded population datasets systematically underrepresent rural population. Nat. Commun. 16, 2170.

- Pan, Z., Xu, Z., Chen, L., Peng, C., and Liu, E. (2024). Application of Artificial Intelligence Technology in Flood Early Warning System. In 2024 3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), pp. 438–442. https://doi.org/10.1109/AIARS63200. 2024.00087.
- 107. Abdalzaher, M.S., Krichen, M., and Falcone, F. (2024). Emerging technologies and supporting tools for earthquake disaster management: A perspective, challenges, and future directions. Prog. Disaster Sci. 23, 100347.
- 108. Abdalzaher, M.S., Soliman, M.S., El-Hady, S.M., Benslimane, A., and El-wekeil, M. (2022). A Deep Learning Model for Earthquake Parameters Observation in IoT System-Based Earthquake Early Warning. IEEE Internet Things J. 9, 8412–8424.
- 109. Xu, L., and Gao, L. (2024). A hybrid surrogate model for real-time coastal urban flood prediction: An application to Macao. J. Hydrol. 642, 131863.
- Lee, J., Khan, I., Choi, S., and Kwon, Y.-W. (2019). A Smart IoT Device for Detecting and Responding to Earthquakes. Electronics 8, 1546.
- 111. Li, B., Li, Y., Niu, R., Xue, T., and Duan, H. (2024). Early warning of landslides based on statistical analysis of landslide motion characteristics and Al Earth Cloud InSAR processing system: a case study of the Zhenxiong landslide in Yunnan Province, China. Landslides 21, 3137–3148.
- 112. Al-Rawas, G., Nikoo, M.R., Al-Wardy, M., and Etri, T. (2024). A Critical Review of Emerging Technologies for Flash Flood Prediction: Examining Artificial Intelligence, Machine Learning, Internet of Things, Cloud Computing, and Robotics Techniques. Water 16, 2069.
- 113. Varun, M., Kesavraj, K., Suman, S., and Raj, X.S. (2023). Integrating IoT and Machine Learning for Enhanced Forest Fire Detection and Temperature Monitoring. In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 152–158. https://doi.org/10.1109/ICIMIA60377.2023.10426108.
- 114. Constantinou, V., Ravanelli, M., Liu, H., and Bortnik, J. (2023). Deep Learning Driven Detection of Tsunami Related Internal GravityWaves: A Path Towards open-Ocean Natural Hazards Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3748–3753.
- 115. Zhu, F., Lu, Y.Y., and Yang, J. (2024). Collaborative Control Technology and Prospects of Drone Swarms in Earthquake Emergency Rescue Scenarios. In Proceedings of the 2024 Asia Pacific Conference on Computing Technologies, Communications and Networking (New York, NY, USA: Association for Computing Machinery), pp. 83–91. https://doi.org/10.1145/3685767.3685782.
- 116. Zhu, J., Li, S., and Song, J. (2024). Data-Knowledge Driven Hybrid Deep Learning for Earthquake Early Warning. Earth Space Sci. 11, e2023EA003363.
- 117. Zhang, X., Zhang, M., and Tian, X. (2021). Real-Time Earthquake Early Warning With Deep Learning: Application to the 2016 M 6.0 Central Apennines, Italy Earthquake. Geophys. Res. Lett. 48, 2020GL089394.
- 118. Zhang, H., Yu, D., Li, G., and Dong, Z. (2024). A real-time seismic damage prediction framework based on machine learning for earthquake early warning. Earthq. Eng. Struct. Dyn. 53, 593–621.
- Ullah, K., Wang, Y., Fang, Z., Wang, L., and Rahman, M. (2022). Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geosci. Front. 13, 101425.
- 120. Bolle, A., das Neves, L., Smets, S., Mollaert, J., and Buitrago, S. (2018). An impact-oriented Early Warning and Bayesian-based Decision Support System for flood risks in Zeebrugge harbour. Coast. Eng. 134, 191–202.
- 121. Duan, Y., Akula, S., Kumar, S., Lee, W., and Khajehei, S. (2023). Hybrid Physics–Al Model to Improve Hydrological Forecasts. Artif. Intell. Earth Syst. 2, e220023. https://doi.org/10.1175/AIES-D-22-0023.1.

- 122. Das, P., Posch, A., Barber, N., Hicks, M., Duffy, K., Vandal, T., Singh, D., Werkhoven, K.v., and Ganguly, A.R. (2024). Hybrid physics-Al outperforms numerical weather prediction for extreme precipitation nowcasting. NPJ Clim. Atmos. Sci. 7, 282.
- 123. Naeini, S.S., and Snaiki, R. (2024). Rapid Prediction of Storm Wave Run-Up Using a Hybrid Physics-Informed Machine Learning. In Proceedings of the Canadian Society for Civil Engineering Annual Conference 2023, 9, S. Desjardins, A.H. Azimi, and G.J. Poitras, eds. (Cham: Springer Nature Switzerland), pp. 179–190. https://doi.org/10.1007/978-3-031-61519-1_13.
- 124. Yun, S.-J., Kwon, J.-W., and Kim, W.-T. (2022). A Novel Digital Twin Architecture with Similarity-Based Hybrid Modeling for Supporting Dependable Disaster Management Systems. Sensors 22, 4774.
- 125. Fan, C., Jiang, Y., and Mostafavi, A. (2020). Social Sensing in Disaster City Digital Twin: Integrated Textual-Visual-Geo Framework for Situational Awareness during Built Environment Disruptions. J. Manage. Eng. 36, 04020002.
- 126. Ford, D.N., and Wolf, C.M. (2020). Smart Cities with Digital Twin Systems for Disaster Management. J. Manage. Eng. 36, 04020027.
- 127. Tiggeloven, T., Ferrario, D. M., Claassen, J. N., Jäger, W. S., Shapovalova, Y., Koyama, M., de Ruiter, Daniell, J. E., Torresan, S., and Ward, P.J. (2025). A global approach for mapping multi-hazard susceptibility using deep learning: A case study in Japan. Artif. Intell. Earth Syst. 4. https://doi.org/10.1175/AIES-D-25-0039.1.
- 128. Rusk, J., Maharjan, A., Tiwari, P., Chen, T. H. K., Shneiderman, S., Turin, M., and Seto, K. C. (2022). Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Sci. Total Environ 804, 150039.
- 129. Coughlan de Perez, E., Berse, K.B., Depante, L.A.C., Easton-Calabria, E., Evidente, E.P.R., Ezike, T., Heinrich, D., Jack, C., Lagmay, A.M.F. A., Lendelvo, S., et al. (2022). Learning from the past in moving to the future: Invest in communication and response to weather early warnings to reduce death and damage. Clim. Risk Manage. 38, 100461.
- 130. Potter, S.H., Kreft, P.V., Milojev, P., Noble, C., Montz, B., Dhellemmes, A., Woods, R.J., and Gauden-Ing, S. (2018). The influence of impact-based severe weather warnings on risk perceptions and intended protective actions. Int. J. Disaster Risk Reduct. 30, 34–43.
- Kelman, I., and Fearnley, C.J. (2025). From multi-hazard early warning systems (MHEWS) to all-vulnerability warning systems (AVWS). iScience 28. 112977.
- 132. de Ruiter, M.C., and van Loon, A.F. (2022). The challenges of dynamic vulnerability and how to assess it. iScience 25, 104720.
- 133. Schlumberger, J., Stolte, T., Garcia, H.M., Sebastian, A., Jäger, W., Ward, P., de Ruiter, M., Šakić Trogrlić, R., Tijssen, A., and de Brito, M. M. (2025). Review article: Stocktaking of methods for assessing dynamic vulnerability in the context of flood hazard research. EGUsphere 2025, 1–29. https://doi.org/10.5194/egusphere-2025-850.
- 134. Pfeiffer, S., Dewi, M. B. K., Dall, K., Reichstein, M., Usamah, M., Werners, S. E., Shekhar, H., Hagenlocher, M., et al. (2024). Strengthening equitable, impact-based early warning through artificial intelligence: four key perspectives. https://www.preventionweb.net/quick/88235.
- 135. Meléndez-Landaverde, E., Sempere-Torres, D., and Park, S. (2024). Towards Impact-Based Communication During Climate Emergencies. In Responding to Extreme Weather Events (John Wiley & Sons, Ltd), pp. 119–140. https://doi.org/10.1002/9781119741374.ch6.
- Anticipation Hub (2022). Impact-Based Forecasting: Moving from what weather will be to what it will do for more effective disaster risk management. PreventionWeb. https://www.preventionweb.net/quick/73306.
- 137. WMO (2021). WMO Guidelines on Multi-Hazard Impact-Based Forecast and Warning Services. Part II: Putting Multi-Hazard IBFWS into Practice. https://www.anticipation-hub.org/download/file-2082.

- FG-Al4NDM (2023). Al for Communications: Towards Natural Disaster Management (Technical Report FG-Al4NDM-COM) (International Telecommunication Union).
- 139. Dang, T.Q., Tran, B.H., Le, Q.N., Tanim, A.H., Bui, V.H., Mai, S.T., Thanh, P.N., and Anh, D.T. (2025). Integrating Intelligent Hydro-informatics into an effective Early Warning System for risk-informed urban flood management. Environ. Model. Software 183, 106246.
- 140. Indrakumari, R., Sriramulu, S., Partheeban, N., and Rajavel, R. (2024). FloodWatch: Suggesting an IoT-Driven Flood Monitoring and Early Warning System for the Flood-Prone Cuddalore District in the Indian State of Tamilnadu. In Digital Twin Technology and Applications (Auerbach Publications).
- 141. Ouaissa, M., Ouaissa, M., Himer, S.E., and Boulouard, Z. (2024). Al and IoT Integration for Natural Disaster Management: A Comprehensive Review and Future Directions. In Al and IoT for Proactive Disaster Management (IGI Global Scientific Publishing), pp. 1–16. https://doi.org/10.4018/979-8-3693-3896-4.ch001.
- 142. David, W., Garmendia-Doval, B., and King-Okoye, M. (2023). Artificial Intelligence Support to the Paradigm Shift from Reactive to Anticipatory Action in Humanitarian Responses. In Modelling and Simulation for Autonomous Systems, J. Mazal, A. Fagiolini, P. Vašík, A. Bruzzone, S. Pickl, V. Neumann, P. Stodola, and S. Lo Storto, eds. (Cham: Springer International Publishing), pp. 145–162. https://doi.org/10.1007/978-3-031-31268-7_9.
- 143. Pizzi, M., Romanoff, M., and Engelhardt, T. (2021). Al for Humanitarian Action: Human Rights and Ethics. http://international-review.icrc.org/ articles/ai-humanitarian-action-human-rights-ethics-913.
- 144. OCHA (2024). Briefing Note on Artificial Intelligence and the Humanitarian Sector (OCHA).
- 145. FG-Al4NDM (2022). Standardization Roadmap on Natural Disaster Management: Trends and Gaps in Standardization. Technical Report ITU-T FG-Al4NDM-Roadmap (International Telecommunication Union).
- 146. Wang, J., Wang, K., Li, J., Jiang, J., Wang, Y., Mei, J., and Li, S. (2021). Accelerating Epidemiological Investigation Analysis by Using NLP and Knowledge Reasoning: A Case Study on COVID-19. AMIA Annu. Symp. Proc. 2021 2020, 1258–1267.
- 147. Yang, J., Hou, H., and Hu, H. (2024). Exploring the Intelligent Emergency Management Mode of Rural Natural Disasters in the Era of Digital Technology. Sustainability 16, 2366.
- Hunter, D.J., and Holmes, C. (2023). Where Medical Statistics Meets Artificial Intelligence. N. Engl. J. Med. 389, 1211–1219.
- 149. Zolkafli, A., Mansor, N.S., Omar, M., Ahmad, M., Ibrahim, H., and Yasin, A. (2024). Al for Smart Disaster Resilience among Communities. In Intelligent Systems Modeling and Simulation III: Artificial Intelligent, Machine Learning, Intelligent Functions and Cyber Security, S.A. Abdul Karim, ed. (Cham: Springer Nature Switzerland), pp. 369–395. https://doi.org/10.1007/978-3-031-67317-7_22.
- 150. Van den Homberg, M.J.C., Gevaert, C.M., and Georgiadou, Y. (2020). The Changing Face of Accountability in Humanitarianism: Using Artificial Intelligence for Anticipatory Action. Polit. Governance 8, 456–467.
- 151. Bierens, S., Boersma, K., and Van den Homberg, M.J.C. (2020). The Legitimacy, Accountability, and Ownership of an Impact-Based Forecasting Model in Disaster Governance. Polit. Governance 8, 445–455.
- 152. Sun, W., Bocchini, P., and Davison, B.D. (2020). Applications of artificial intelligence for disaster management. Nat. Hazards 103, 2631–2689.
- 153. Van den Homberg, M., Mouakkid Soltesova, K., Tozier de la Poterie, A., Schiano Lomoriello, R. & Gortzak, I. Bridging the gaps in disaster loss data to support early warning early action. United Nations Office for Disaster Risk Reduction, Geneva.

- 154. (2024). United Nations Office for Disaster Risk Reduction. Handbook on the use of risk knowledge for multi-hazard early warning systems 2024. https://www.undrr.org/quick/90052.
- 155. (2020). International Federation of Red Cross and Red Crescent Societies (IFRC). The Future of Forecasts: Impact-based Forecasting for Early Action. https://www.ifrc.org/document/future-forecasts-impact-based-forecasting-early-action.
- 156. (2015). World Meteorological Organization (WMO). WMO Guidelines on Multi-hazard Impact-based Forecast and Warning Services. https:// etrp.wmo.int/pluginfile.php/42254/mod_page/content/18/WMO-1150_ multihazard-guidelines_en.pdf.
- UNESCO (2021). Recommendation on the Ethics of Artificial Intelligence. https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence.
- 158. Kuglitsch, M.M., Pelivan, I., Ceola, S., Menon, M., and Xoplaki, E. (2022). Facilitating adoption of AI in natural disaster management through collaboration. Nat. Commun. 13, 1579.
- 159. Sawicki, J., Ganzha, M., and Paprzycki, M. (2023). The State of the Art of Natural Language Processing — A Systematic Automated Review of NLP Literature Using NLP Techniques. Data Intell. 5, 707–749.

STAR*METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and algorithms		
Python (version: 3.12)	The Python Software Foundation	RRID: SCR_008394, https://www. python.org/
spaCy (Natural Language Processing library)	Explosion Al	https://spacy.io/
Hugging Face (Al model repository and libraries)	Hugging Face Inc.	https://huggingface.co/
geopy (Geocoding library)	GeoPy contributors	https://github.com/geopy/geopy
Scopus (Bibliographic database)	Elsevier	https://www.scopus.com/
Microsoft Excel	Microsoft Corporation	RRID: SCR_016137, https://www.microsoft.com/

METHOD DETAILS

We conducted a systematic literature review to gather descriptive statistics on the use of Al for early warning systems (EWS) and synthesised its role across the four pillars of EW4ALL using the pool of papers. In order to do so, we first developed search queries using Scopus (on title, abstract and keywords) incorporating terms related to EWS, Al (including 'artificial intelligence', 'machine learning', and 'deep learning'), natural hazards, and risk, with some queries also linked to specific pillars (see literature selection). Subsequently, we screened the papers for relevance using a four-eye principle and gathered those that met our criteria of relevance to the pillars (see screening process). Next, we classified the entries, extracted relevant metadata, and employed NLP techniques to assist us to detect key terms. We have validated everything manually afterward (see review process). This process allowed us to compile a comprehensive dataset for our review, following the PRISMA 2020 guidelines where applicable.

Literature selection

For selection of relevant literature, we used Scopus and included criteria encompassing EWS, AI, and risk-related terminology. We divided the literature search among the pillars of EW4ALL and various categories (see Table 2). Each search query included one of the AI-related terms and 'early warning' for EWS, except in the case of single-hazard queries, where we used 'early warning system', and was applied to the title, abstract and keywords. For risk-related terminology, we selected the criteria listed in column 4 of Table 2 which resulted in a total of 1344 unique papers, and 1187 after excluding non-English written papers. The Table summarises the search criteria for the selection process of the systematic review in which each row represents a search criterion.

EW4ALL pillar	Search terms ^a	Exclusion criteria		
Pillar I risk knowledge	multi-hazard, multi-disaster, multi-risk, compound hazard, compound disaster, compound risk, impact based, exposure, vulnerability	socio-economic events biohazards, socio-economic shocks, non-hydro- and geo-hazards		
Pillar I risk knowledge or Pillar II forecasting, analysis, monitoring	hazard, disaster, flood, drought, heatwave, wildfire, earthquake, coldwave, landslide, avalanche, storm, cyclone, typhoon, hurricane, tsunami, volcano.			
Pillar III warning dissemination and communication	dissemination, communication	urban digitalization, smart cities, health related studies		
Pillar IV response and preparedness	preparedness, response, early action, anticipatory action, emergency response	military response, conflict response, conflict preparedness		

^aNote that all searches include the search terms on AI ("Artificial Intelligence" OR "AI" OR "Machine learning" OR "Deep learning") and "early warning," except the second row with individual hazards for which "early warning system" was used.

Screening process

For each entry, we employed the four-eye principle and screened (title, abstract, keywords) if the entries are addressing Al and EWS within the context of natural hazards, disasters, and risk. Here, we excluded entries related to biological hazards. To differentiate between Pillar I and Pillar II, we categorised entries based on whether they contributed to the body of knowledge on EWS (Pillar I) or provided a practical implementation of hazard monitoring and detection (Pillar II). This resulted in 324 papers for the review process.

Review process

For each of the 324 selected papers, we extracted key information as meta data that includes the Al concept employed (i.e., classical ML, NN, and NLP), the specific Al method, the geographical location, and the hazard type. We focused on three Al categories, i) classical machine learning, ii) neural networks, and iii) natural language processes and assigned each paper to the category it most closely aligned with. We used Natural Language Processing (NLP) tools to assist us in the review process for specific parts and tasks of the review process. ¹⁵⁹ We employed 'spaCy' for tokenisation and named entity recognition to extract locations and models from predefined lists, and a fine-tuned transformer model from the Hugging Face library to classify text into specific hazard types. This NLP-generated metadata served as a preliminary dataset that was subsequently manually verified, corrected and further filled in by the research team. Each entry was thoroughly reviewed for fitness with 100% human oversight of all extracted information, and the metadata was further filled in and updated accordingly to ensure accuracy. In addition, for papers that are mentioning specific geographical locations (n = 158), we manually classified each study based on implementation status: 'research-based' (Al methods applied to case study data with no operational deployment), 'prototype or implemented' (Al systems developed and tested but not yet operationally integrated or Al methods integrated into existing operational EWS).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used the geopy package in Python to extract latitude and longitude data for the case studies locations and generated descriptive plots for Figure 1. These plots illustrate the distribution of papers across different hazard types, pillars, and other relevant categories.