
ArticleiScience
The role of artificial intelligence for early warning 
systems: Status, applicability, guardrails, and ways 
forward

Graphical abstract

Highlights

• Systematic review of AI utilization across the early warning 

chain

• AI in EWS shows exponential growth in papers published in 

recent years

• AI and EWS gaps exist across knowledge, application and 

policy

• Guardrails needed to ensure people-centred AI integration in 

EWS

Authors

Timothy Tiggeloven, Samira Pfeiffer, 
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SUMMARY

Artificial intelligence (AI) is gaining momentum in earth sciences as a tool to analyze complex natural haz-

ards and their impacts. Such analyses are critical for effective Early Warning Systems (EWSs), which is 
aiming to generate timely and actionable risk information to protect sectors, systems, and people. 
Despite advancements in AI, its role in EWS remains underexplored across the four pillars of the Early 
Warning for All (EW4All) framework; risk knowledge, forecasting, warning dissemination and communica-

tion and response preparedness. This study draws on a systematic literature review to assess AI 
methods utilized in the context of EWS, examines their challenges and opportunities and discusses guid-

ing questions for responsible use. Our study highlights key gaps across knowledge, application and pol-

icy. Moreover, we call for coordinated efforts to develop responsible AI frameworks that enhance EWS 
while ensuring they remain inclusive, accessible, and people-centred that ultimately supports the goal 
of EW4All by 2027.

INTRODUCTION

Artificial intelligence (AI) is key for the effectiveness of early 

warning systems (EWSs). However, ensuring that AI methods 

are used in a responsible and people-centred way requires 

advances in knowledge, application, and policy. In recent 

years, AI has rapidly transformed technological landscapes 

across sectors, offering unprecedented opportunities for ad-

dressing global challenges. 1,2 Moreover, AI creates new ave-

nues to improve the analysis of multidimensional data and 

accelerate information processing. This fast-developing field 

has improved how we enhance capabilities to handle large, 

non-linear, and complex datasets, simulate scenarios and 

aid decision-support mechanisms. 3 While a range of sectors 

have employed AI, it has increasingly gained attention in the 

earth science and disaster risk reduction domain. 4–6 Specif-

ically, there is growing interest in using innovative methods 

such as deep learnings and natural language processes 

(NLPs) or technologies such as Internet of Things (IoT) in the 

context of EWS. 7

EWS are recognized as one of the most effective tools for pro-

tecting lives, assets, and systems from hazards and their im-

pacts. 8 In contemporary frameworks, EWS encompass four 

interrelated pillars; risk knowledge (Pillar I), observation and fore-

casting (Pillar II), communication and dissemination (Pillar III), 

and response and preparedness (Pillar IV). 9 As a substantial 

body of literature conceptualizes these four pillars as a people-

centred framework which aims to ensure information and action 

reaches all relevant sectors and actors in sufficient time and 

leaves no one behind, it will guide this paper as conceptual un-

derstanding of the warning chain. 10 

The need for people-centred EWS across the four pillars is 

recognized in large scale global efforts such as the Early Warning 

for All Initiative (EW4ALL)—a United Nations (UN) program aim-

ing to ensure everyone on Earth is protected by EWS by 

2027—which responds to the Target G of the UN Sendai Frame-

work 2015–2030 as one of the most effective instruments for 

reducing disaster risk. 11 

While the relevance of people-centred EWS for inclusive 

disaster risk reduction is recognized, half of the countries
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globally are not covered by EWS. 9 Countries in the Global South 

and rural areas persistently report the largest gaps in terms of 

EWS coverage, while ineffective risk communication as well as 

a lack of operational preparedness plans are evident on all con-

tinents. 9 This disparity is, however, illustrated by fundamental 

infrastructure deficits, such as Africa having just 37 weather ra-

dar stations compared to 636 in Europe and the United States 

for similar population sizes and landmass, and over 50% of ex-

isting stations provide data that is too inaccurate for reliable fore-

casting. 12 Additionally, the digital divide may further limit the 

dissemination of warnings through for example inadequate 

internet access and warning messages that are not adapted to 

local languages, knowledge systems, or cultural contexts. 

Furthermore, hazards are inherently complex 13 and rarely occur 

in isolation. 14 These so called multi-hazards can occur simulta-

neously or sequentially, interacting with the vulnerabilities and ex-

posures of people, livelihoods, assets and systems, 15–20 Here, we 

focus on EWS for hydrometeorological hazards and geoha-

zards. 21 Hydrometeorological hazards include both rapid-onset 

events like floods, hurricanes, and rainfall-triggered landslides 

with warning periods ranging from hours to days, and slow-devel-

oping events such as droughts with warning periods from weeks 

to months. However, EWSs for geohazards operate on widely 

varying timescales. 22 For instance, earthquake operate on 

extremely compressed time frames, often mere seconds between 

detection and impact, while volcanic eruptions may exhibit pre-

cursor signals days to weeks before the events. Secondary haz-

ards like tsunamis (triggered by earthquakes, volcanic eruptions, 

or landslides) and earthquake-induced landslides 22 may further 

complicate multi-hazard warning frameworks, with each 

demanding specialized AI applications suited to their unique tem-

poral scales and monitoring requirements. Furthermore, despite 

the critical need for addressing multiple hazards in a comprehen-

sive manner, 23 operational multi-hazard early warning systems 

(MHEWS) face challenges, with hazards typically addressed in 

isolation rather than accounting for their complex interactions. 24 

These complex interactions between and within risk components 

present significant challenges for most operational EWS, which 

monitor and assess single hazards only.

EWS present a potential domain for utilizing AI, along the 

whole early warning value chain. 25–27 The emergence of AI capa-

bilities has been enabled by concurrent advances in high-perfor-

mance computing, massive datasets, modern algorithms, and 

high-level programming languages, creating a technological 

ecosystem more accessible to domain scientists. 28–30 Recog-

nizing this potential, the United Nations launched the Global 

Initiative on Resilience to Natural Hazards through AI Solutions, 

led by International Telecommunication Union (ITU), UN Environ-

ment Program (UNEP), UN Framework Convention on Climate 

Change (UNFCCC), Universal Postal Union (UPU), and World 

Meteorological Organization (WMO), which has been set up to 

ensure that advanced digital technologies will boost resilience 

to natural hazards. 26 Supporting this broader vision, the global 

UN Early Warning Initiatives Executive Action Plan for EW4All 

(2023–2027) provides specific implementation pathways, while 

technical guidance on best practices for data collection, 

modeling and effective communication is emerging through 

ITU/WMO/UNEP Focus Group reports on AI for Natural Disaster

Management and the subsequent Global Initiative on Resilience 

to Natural Hazards through AI Solutions that establishes frame-

works for responsible AI integration across the four pillars. These 

initiative highlights that while physics-based prediction systems 

remain important, AI can complement them by reducing compu-

tational burdens, improving data processing efficiency, and 

enhancing predictions, especially where pure physical modeling 

is limited by process knowledge or computational capacity, e.g., 

for high resolution. 31,32

In this study, we aim to examine potential gaps in the under-

standing and application of AI for EWS and provide evidence-

informed questions that can help develop guardrails for respon-

sible implementation of AI across the four pillars of early warning. 

We hypothesize three key areas requiring investigation.

(1) The knowledge gap: The current status and evolution of AI 

and EWS in terms of how adoption has progressed over 

time and geographical distribution is missing. Specifically, 

there are few studies that investigate the uptake of AI across 

the four pillars of early warning and the affiliated methods 

that have been used across different hazard types.

(2) The application gap: The use of AI across the four pillars 

is not yet well examined in a coherent way, and there is a 

lack of documentation of different AI methods for EWS by 

hazard types and a gap in examining the implications 

(opportunities and challenges) of utilizing AI across the 

four pillars of EWS (i.e., Pillar I-IV; risk knowledge, moni-

toring and forecasting, communication and dissemination 

and response preparedness). However, this is critical as it 

guides the ongoing efforts of people-centred EWS around 

the globe.

(3) The policy gap: There is a gap of studies that provide ev-

idence-informed questions that can help to develop guard-

rails for research, practice, and policy for a responsible use 

of AI in the context of EWS (e.g., human oversight mecha-

nism, ethical considerations). This can be a threat to the ef-

forts to prioritize inclusivity and people-centred ap-

proaches (such as Target G of the Sendai Framework) to 

leave no one behind. Hence, it is critical to establish evi-

dence-informed questions that can help develop context-

specific guardrails for ensuring that ‘‘do no harm’’.

Drawing on a systematic literature review, this paper presents, 

first, the results on the patterns of use of AI methods in existing 

early warning research, and the findings of the role of AI across 

the four pillars of EWS. Subsequently, we provide a reflection 

on cross-cutting challenges and opportunities while providing 

ways forward for addressing the knowledge, application, and 

policy gap. The insights of the paper are organized along the 

four pillars used in the EW4ALL initiative as a framework for im-

plementation, to enable transfer of the results to practitioners 

and increase the relevance of findings for real-world application.

RESULTS

Patterns of AI use and EWS

Our systematic literature review revealed significant patterns in 

AI applications for EWS, illuminating knowledge, application,
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and policy gaps across different regions and throughout the four 

EWS pillars. Results show that, out of the total of 324 reviewed 

papers, a recent boom in literature on AI in the context of EWS 

coincides with the 2022 launch of the EW4ALL initiative 9 (see 

Figure 1A). Multiple AI methods are applied, notably tree-based, 

CNNs, ANNs, and RNNs (Figure 1B). Furthermore we find that 

there is an exponential increase in papers between 2010 and 

2025, with more than 40% published in the year 2024. Out of 

our final selection, we find that 55% of the papers are relevant 

to Pillar I, 38% to Pillar II, 6% to Pillar III and only 1% to Pillar 

IV. Figure 1 summarizes the distribution of scoped papers over 

time and by AI method utilised.

In total, we have found 158 specific locations mentioned in the 

reviewed papers as either location of deployment, monitoring or 

location of training data (purely research) (see Figure 2). The di-

vision is roughly 79% research-based case studies and 21% im-

plemented or prototype. A focus on high-risk places where EWS 

are essential is highlighted by the fact that many case study lo-

cations are located along tectonic plate borders, along coast-

lines, and in areas that are prone to flooding. The spatial distribu-

tion of case studies reveals a strong concentration in Asia, 

Europe, and North America, with particularly dense clusters in 

China, India, Japan, and Southeast Asia. This may be due to 

the regions’ high susceptibility to a variety of hazards, including 

earthquakes, landslides, floods, and typhoons. Western and 

Central Europe also show significant representation, which 

could be due to well-documented risk assessments and disaster 

response frameworks. In North America, most case studies are 

located in the eastern and western United States, aligning with 

research on hurricanes, wildfires, large coastal cities and flood-

ing areas. In contrast, Africa and South America have compara-

tively fewer case studies, despite the vulnerabilities to hazards 

like droughts and floods in these regions, indicating potential 

research gaps. This geographical imbalance aligns with findings 

from UNDRR/WMO Global Status Reports on MHEWS high-

lighting similar disparities in early warning coverage and capabil-

ities between resource-rich and resource-constrained regions. 

Within the scoped papers of AI across temporal and 

geographical scales, there are typically three concepts used 

for EWS: (1) classical Machine Learning (ML), which involves al-

gorithms that automatically improve their performance through 

exposure to data (such as clustering, regression, random forest, 

support vector machines); (2) Neural Networks (NNs), which is an 

advanced form of machine learning that utilizes interconnected 

layers of computational nodes to identify complex patterns 

within large datasets; and (3) Natural Language Processing

(NLP), which extracts insights from unstructured text from re-

ports, newspapers or social media (such as large language 

models). Note that while many studies in our review use the 

term Deep Learning (DL) to refer to NN with multiple hidden 

layers, we categorize all NN approaches, both shallow and 

deep architectures, under the broader NN category for clarity. 

A key difference between classical ML and NN is that in classical 

ML the user manually engineers the features/predictors, while in 

NN they are automatically learned from the data through the 

network’s layered structure extracted by the ML. Also called rep-

resentation learning because good representations of the data 

are learned. 25 More specifically, classical ML techniques like 

XGBoost and Random Forest can efficiently capture complex, 

non-linear relationships, and interactions within large, heteroge-

neous datasets, while NN excel at aggregating information 

across multiple dimensions, using CNNs to extract spatial pat-

terns and RNNs or LSTMs to model temporal dynamics.

Most of the papers conceptually discuss applying either clas-

sical ML or NN methods for EWS related to floods (28%), earth-

quakes (21%) and landslides (17%), which also reflect the pro-

posed maturity levels (implemented vs. prototype phase) of 

hazard emergency support by Merz et al. 33 These events domi-

nate across the four pillars of EWS with an exception for the re-

viewed papers that are linked to the response phase. Here 

drought-related studies are more prevalent. This suggests a 

stronger emphasis on using AI for real-time monitoring and pre-

paredness for rapid-onset hazards, whereas slow-onset hazards 

like droughts receive more attention in post-disaster response 

and adaptation strategies. 34–36 Notably, only four papers relate 

to multi-hazards, and even these do not directly use the term 

‘‘multi-hazards’’ but rather address several hazards indepen-

dently without implementing integrated warning systems, 

barring one on compound hazard interaction of ocean-fluvial 

floods. This highlights a significant gap in research specifically 

targeting the complex interactions between hazards that opera-

tional MHEWS would need to address.

Furthermore, the focus of AI methods varies by hazard type, as 

earthquake studies more dominantly apply NN, while drought-

related studies almost exclusively use classical ML. This could 

be due to the nature of these hazards, as for example earth-

quakes involve complex spatial-temporal seismic and rock 

deformation patterns that benefit from deep learning’s feature 

extraction capabilities, whereas droughts, being slow-onset 

events, are often analyzed through structured decision trees 

that rely on threshold-based classifications. 37–39 The distribution 

of methods among the pillars implies that each hazard’s unique

Figure 1. Distribution of scoped papers 

over time for hazard types and per methods

Distribution of scoped papers over time for hazard 

types (left panel, A) and per methods (right panel, 

B). ANN, artificial neural network; CNN, convolu-

tional neural network; LLM, large language model; 

NLP, natural language processing; RNN, recurrent 

neural network; ML, machine learning; XAI, 

eXplainable artificial intelligence.
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characteristics have an impact on the model selection process. 

The relationship between hazard spatial-temporal scales and AI 

method selection is also evident: with real-time deep learning 

approaches often employed for rapid, localized hazards, while 

machine learning approaches for longer-term prediction and 

monitoring typically used for slow-onset, widespread hazards. 

Table 1 provides a summary of various AI methods alongside 

examples of their applications for specific hazards.

Neural Network approaches (such as CNNs and RNNs in 

Figure 1B), make up almost half of all applied techniques among 

all the other categories. Convolutional neural networks (CNNs), 

the most popular kind, are employed in 26% of studies 

(Figure 1B) and are primarily known for their ability to extract 

spatial features from images. 59 In natural hazard research, they 

have been adapted to process structured time-series data, 

particularly for earthquake monitoring as seismic activity is often 

represented as spectrograms or spatial grids. 60,61

Recurrent neural networks (RNNs) are another popular 

method, in particular for flood prediction, and are applied in 

22% of the reviewed papers. RNNs are designed to handle 

sequential data, making them highly effective for hazards where 

historical patterns inform future risk. Specifically, Long Short-

Term Memory (LSTM) networks, a type of RNN, are commonly 

used for flood forecasting and storm surge prediction as they 

retain information over long time intervals, capturing trends in at-

mospheric drivers, precipitation, river discharge, and soil mois-

ture. 62–65 Similarly, Feedforward Neural Networks (FNNs) 

(applied in 22% of the studies) are applied for flood and landslide 

prediction, providing flexible non-linear modeling but often 

requiring careful hyperparameter tuning and large datasets. 66,67 

Attention-based models reflect promising enhancement of 

EWS, such as through capturing complex spatial and temporal 

dependencies in environmental data. Recent advances like 

Earthformer demonstrate how AI architectures can process 

large-scale spatiotemporal data more efficiently and that subse-

quently enables faster extreme weather predictions across 

broader geographic areas, which is a critical improvement for ex-

tending early warning lead times. 68 This architecture has demon-

strated state-of-the-art performance in Earth system forecasting 

tasks, including precipitation nowcasting and El Niñ o/Southern

Figure 2. Distribution of study locations on 

AI methods for EWS

Concentrations of cases are shown in USA, Eu-

rope, Southeast Asia, China, and Japan.

Oscillation (ENSO) forecasting. Another 

example is Contextformer, which is intro-

duced by Benson et al., 31 and is a multi-

modal Transformer model designed for 

high-resolution vegetation forecasting. 

By integrating spatial context through a 

vision backbone and modeling temporal 

dynamics with meteorological time se-

ries, Contextformer effectively predicts 

vegetation greenness across Europe, 

which is another important indicator for 

several hazard predictions. These attention-based models have 

been applied to various EWS. For instance, an attention-based 

temporal CNN has been proposed for predicting landslide warn-

ing signals, demonstrating high accuracy in capturing precursory 

warning characteristics from sensor data. 69 Additionally, atten-

tion mechanisms have been incorporated into CNN to improve 

flash flood susceptibility modeling, as shown in studies focusing 

on ungauged watersheds. 70

Classical ML methods for EWS, and specifically tree-based 

approaches, are applied in 32% of the studies (Figure 1B). These 

approaches include Random Forest (RF) and Gradient Boosting 

Machines (GBMs), which are particularly useful for EWS as they 

can provide interpretable decision-making processes, and can 

handle non-linearity and missing data effectively. 71 Tree-based 

models excel at capturing relationships between environmental 

indicators and hazard occurrence, making them well-suited for 

hazards with gradual development, such as droughts and 

landslides. 72,73

Explainable AI (XAI) methods are also represented in few 

studies, notably to improve transparency in EWS models and 

these XAI techniques, such as SHAP (Shapley Additive Explana-

tions) and LIME (Local Interpretable Model-Agnostic Explana-

tions), help interpret classical ML and complex NN models by high-

lighting feature importance and decision pathways. 74,75 In the 

realm of hazard forecasting and EWS, this may be particularly use-

ful as trust and interpretability are crucial for decision-making. 76

Role of AI across the four pillars of early warning

AI methods provide merits for the application across the four pil-

lars of early warning-while also posing challenges for different 

use cases along the warning chain.

Disaster risk knowledge (Pillar I)

Building risk knowledge is the basis of EWS because it enables 

more accurate predictions, timely communication, and effective 

preparedness measures. 8,77 In recent years by using AI, signifi-

cant progress has been made to better understand the complex 

relationships between hazards, society, and risks and conduct 

risk assessments. 75,78–80 A common first step is establishing a 

shared glossary of terms to ensure consistent understanding 

across disciplines, as exemplified by the ITU-T Focus Group
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Table
 

1. Artificial intelligence
 

methods
 

and
 

use
 

cases
 

across
 

EWS
 

pillars
 

for different hazards, with
 

examples
 

of applications
 

of the
 

324
 

reviewed
 

papers

AI method Merits (or EWS
 

application) Hazard Pillar Examples of application Reference(s)

Linear/statistical ML
 

methods
 

(e.g., 
logistic

 
regression, naive

 
Bayes, 

support vector machines, Bayesian, 
fuzzy logic), which

 
provide

 
baseline

 
models but are

 
less adaptable

 
to
 

complex
 

interactions. They are
 

efficient 
for binary and

 
multi-class classification

 
tasks.

they may serve
 

as baseline
 

models for 
hazard

 
forecasting, offering

 
rapid

 
and

 
understandable

 
predictions that may 

support real-time
 

decision-making.

flood I naive
 

Bayes is used
 

for flood
 

susceptibility based
 

on
 

social media
 

data
 

in
 

Chengdu
 

city, China.

Li et al. 
40

wildfire I SVM
 

is used
 

for predictive
 

modeling
 

of wildfires.

Sayad
 

et al. 
41

flood II, III fuzzy inference
 

techniques are
 

used
 

for flood
 

Impact-Based
 

forecasting
 

system.

Wee
 

et al. 
42

landslide II Bayesian
 

Gaussian
 

mixture
 

model is 
used

 
for automatic

 
detection

 
of rock-

slope
 

failures using
 

distributed
 

acoustic
 

sensing.

Kang
 

et al. 
43

Clustering
 

(e.g., K-means, DBSCAN) 
algorithms group

 
data

 
points based

 
on
 

similarity without requiring
 

pre-labeled
 

outcomes, revealing
 

inherent structure
 

in
 

the
 

data.

they help
 

identify spatial or temporal 
clusters of hazards, which

 
may be

 
valuable

 
for the

 
mapping

 
of risk

 
zones 

and
 

targeted
 

allocation
 

of resources 
during

 
emergencies.

flood I KNN
 

are
 

used
 

to
 

identify rainfall patterns 
for urban

 
inundation

 
rapid

 
prediction.

Chen
 

et al. 
44

earthquake II K-means are
 

used
 

to
 

label regional 
clusters which

 
is feed

 
into

 
early warning

 
detection

 
of earthquake

 
using

 
deep

 
learning.

Anggraini et al. 
45

Tree-based
 

methods
 

(e.g., random
 

forests, decision
 

trees, XGBoost) 
leverage

 
ensembles of decision

 
trees to

 
capture

 
nonlinear interactions and

 
hierarchical relationships in

 
data

 
through

 
recursive

 
partitioning, making

 
them

 
robust for classification

 
and

 
regression

 
tasks.

their robustness and
 

interpretability 
make

 
them

 
ideal for identifying

 
risk

 
factors and

 
generating

 
classification

 
or 

regression
 

models for hazard
 

prediction.

drought II XGB
 

is used
 

to
 

predict Food-Security 
Crises in

 
the
 

Horn
 

of Africa.

Busker et al. 
46

tsunami II regression
 

tree
 

are
 

used
 

for tsunami 
waves forecasting.

Cesario
 

et al. 
47

drought IV fast and
 

frugal trees are
 

used
 

for 
forecasting

 
and

 
unraveling

 
early 

warning
 

relationships between
 

climate
 

variability, vegetation
 

coverage, and
 

maize
 

yields at multiple
 

lead
 

times.

Guimarã es 
Nobre

 
et al. 

48

Feedforward
 

neural networks
 

(FNN) 
consist of fully interconnected

 
layers of 

neurons that learn
 

complex
 

nonlinear 
relationships through

 
weighted

 
connections and

 
activation

 
functions.

they integrate
 

diverse
 

data
 

inputs to
 

generate
 

comprehensive
 

risk
 

assessments and
 

predictions, which
 

may support decision-making
 

in
 

various 
hazard

 
scenarios.

tsunami II MLP
 

is used
 

for predicting
 

the
 

alert level 
due

 
to
 

a
 

tsunami at given
 

coastal 
locations.

De
 

la
 

Asunció n 
49

volcano II FCNN
 

is used
 

to
 

classify the
 

volcanic
 

state
 

of alert based
 

on
 

the
 

behavior of 
certain

 
features, providing

 
a
 

probability 
of having

 
an
 

eruption.

Rey-Devesa
 

et al. 
50

Convolutional neural networks
 

(CNN) 
are
 

deep
 

learning
 

models that 
automatically learn

 
spatial hierarchies

from
 

grid-like
 

data
 

using
 

layers of 
convolutions.

applications: CNNs excel at analyzing
 

remote
 

sensing
 

images to
 

detect 
hazards such

 
as wildfires, floods, and

 
making

 
them

 
ideal for detecting

 
seismic

 
fields for earthquakes by extracting

 
and

 
interpreting

 
spatial features.

earthquake II a
 

CNN
 

based
 

architecture
 

(PEGSNet) is 
applied

 
to
 

Instantaneously track
 

earthquake
 

growth
 

with
 

elastogravity 
signals.

Licciardi et al. 
51

eildfire II U-Ccnvolutional long
 

short-term
 

memory (ULSTM) neural network
 

is 
developed

 
to
 

extract the
 

location
 

and
 

temporal wildfire
 

evolution.

Bhowmik
 

et al. 
52

(Continued
 

on
 

next page)
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Table
 

1. Continued

AI method Merits (or EWS
 

application) Hazard Pillar Examples of application Reference(s)

Recurrent neural networks
 

(RNN) are
 

designed
 

to
 

process sequential data
 

(such
 

as time
 

series data) by maintaining

an
 

internal state
 

(memory), effectively 
capturing

 
temporal dependencies.

their ability to
 

model temporal dynamics 
makes them

 
valuable

 
for forecasting

 
hazards, such

 
as predicting

 
weather 

patterns and
 

event progression
 

over 
time, and

 
making

 
them

 
well-suited

 
for 

hazards where
 

historical patterns inform
 

future
 

risk.

flood II LSTM-based
 

streamflow
 

forecasting
 

model is used
 

to
 

predict daily 
streamflow

 
through

 
a
 

7-day forecast 
horizon.

Nearing
 

et al. 
53

landslide II an
 

LSTM-based
 

model for early warning
 

detection
 

of landslide
 

is developed
 

using
 

groundwater and
 

rainfall 
monitoring.

Zhang
 

et al. 
54

Transformers
 

(e.g., large
 

language
 

models [LLMs] &
 

natural language
 

processing
 

[NLP]) analyze
 

and
 

generate
 

human
 

language, enabling
 

contextual 
understanding

 
of large-scale

 
textual 

data.

they extract actionable
 

insights from
 

disaster reports and
 

social media, which
 

facilitates early detection, human
 

behavior or response
 

of emerging
 

hazards through
 

text analysis.

wildfire III Dirichlet multinomial mixture
 

(GSDMM) 
is used

 
to
 

detect trend
 

and
 

communication
 

during
 

wildfires.

Zander et al. 
55

flood II ULMFiT
 

is used
 

as text classification
 

to
 

improve
 

impact based
 

weather warning
 

systems and
 

support decision-making.

Vrotsou
 

et al. 
56

Generative
 

models
 

(e.g., 
autoencoders, GAN

 
models), which

 
reduce

 
dimensionality and

 
extract key 

features from
 

high-dimensional data
 

by 
learning

 
efficient representations of the

 
input.

they improve
 

the
 

quality of hazard
 

datasets by filtering
 

noise
 

and
 

highlighting
 

critical patterns, thereby 
enhancing

 
predictive

 
accuracy in

 
forecasting

 
models.

earthquake II cascaded
 

autoencoders are
 

used
 

for 
crowd

 
detection

 
and

 
estimation

 
for an

 
earthquake

 
EWS.

Lamas et al. 
57

tsunami II encoder-decoder neural network
 

is 
used

 
for high

 
resolution

 
inundation

 
mapping

 
for tsunami early warning

 
in
 

Sicily.

Briseid
 

Storrøsten
 

et al. 
58
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Technical Report on Artificial Intelligence for Natural Disaster 

Management, which provides standardized definitions within 

the trans-disciplinary domain of AI for risk management. This 

study adopts and builds upon these established terminologies. 

Risk knowledge for EWS should encompass and integrate the 

concepts of hazard, exposure, vulnerability, and impact-based 

forecasting, however few of the reviewed papers explicitly 

address these dimensions alongside hazard prediction and 

most of these studies focus on drought and flood as the main 

hazards. Shyrokaya et al. 73 demonstrate that integrating expo-

sure and vulnerability for impact-based forecasting—using fuzzy 

inference, machine learning, and multi-source data fusion—has 

enabled more precise, lead-time predictions and actionable risk 

communication in EWS. However, significant challenges remain 

in normalizing exposure and vulnerability metrics to account for 

dynamics, 73 addressing data gaps, 81 and incorporating dynamic 

socio-economic factors. 38,42,73,82 These challenges present op-

portunities for further innovation in model refinement, enhanced 

data integration (e.g., from stakeholders and local and regional 

assessment documents) into adaptive forecasting frame-

works. 56 The integration of these dimensions into risk frame-

works is especially critical given that advanced data-driven 

methods, including AI, demand large training datasets—yet we 

face a substantial shortage of reliable data on impact and vulner-

ability metrics.

At the same time, multi-hazard and impact-based approaches 

supported by AI remain underrepresented, despite a few prom-

ising studies. 15,83 However, as disasters are complex and 

interconnected, developing models that account for multiple in-

teracting hazards—rather than isolated ones—will be crucial to 

building a resilient and adaptive early warning framework that re-

flects the complexity of real-world risks. 17,84,85 One of the chal-

lenges for MHEWS would be to standardize evaluation metrics 

tailored to specific hazards—such as floods, earthquakes, and 

landslides—a method that could be applied by various AI models 

and by doing so will also foster better model validation and 

cross-comparison. 86,87

Employing generative adversarial networks (GANs) to create 

synthetic datasets has shown considerable potential for 

improving landslide displacement models, while federated 

learning approaches enable the aggregation of localized 

models—such as those used in earthquake prediction—without 

compromising sensitive data. 88–90 These federated approaches 

enable multiple institutions to collaboratively train shared AI 

models by exchanging only model updates rather than raw 

data, which makes them particularly valuable for contexts with 

sensitive data or limited connectivity where traditional central-

ized approaches are not feasible due to for example data con-

straints. Additionally, exposure, vulnerability and impact data-

sets can be derived from AI. For example, for exposure 

mapping, there are promising approaches that include building 

footprint extraction using models like Google Open Buildings, 

Microsoft Bing Maps Building Footprints, and AI-enhanced pop-

ulation distributions from WorldPop that include poverty indica-

tors. 91 Physical vulnerability assessments can, for example, 

leverage pre-labelled damage datasets like xBD (which contains 

approximately 850,000 labeled damages across multiple haz-

ards) to train CNN models that assess building damage for

new disasters or establish baseline vulnerability. 92 Subse-

quently, CNNs can be used to determine the damage for an un-

seen disaster, forming an alternative rapid damage assessment, 

but also to train impact-based forecasting models if other impact 

data are missing. 93 Additionally, the use of NLP for enhancing the 

collection of impact data has proving promising 94 and the same 

method could be applied to gather information on early actions 

and responses to supplement traditional impact records. 

Foundational models like large-scale Earth system models 

and multimodal AI systems can enhance disaster risk knowledge 

(Pillar 1) by synthesizing vast amounts of environmental observa-

tions and extracting complex spatiotemporal patterns that may 

inform a comprehensive understanding of Earth systems. 95–97 

These models, for example, are addressing the challenge of inte-

grating heterogeneous observation networks and models to 

improve predictions across scales from weather to climate. 

Recent developments such as Aurora-based on more than a 

million hours of geophysical data show that such models can 

outperform traditional numerical forecasting systems across 

multiple Earth system domains and are orders of magnitude 

more computationally efficient, allowing for the enabling broader 

accessibility to accurate environmental predictions underpin-

ning effective EWS. 98

These strategies enhance model robustness and democratize 

access to high-quality risk assessments, paving the way for 

more resilient and community-focused EWS. 99 However, ad-

dressing data scarcity through innovative methods like AI-

derived datasets may fill data gaps but not change the issue of 

data scarcity as such. 100–104 For example, global gridded popu-

lation datasets systematically underrepresent the rural popula-

tion-which is not necessarily changed through AI analysis 

methods. 105

Monitoring, forecasting, analysis of hazards (Pillar II)

The WMO Executive Action Plan for EW4All (2023–2027) empha-

sizes that enhanced data integration and technological innova-

tion are a core priority to strengthen monitoring and forecasting 

capabilities. AI is progressively transforming Pillar II, enhancing 

the monitoring, analysis, and forecasting of hazards through its 

ability to process vast amounts of real-time data from diverse 

sources. 37,43,106 Techniques like deep learning, transfer learning, 

and hybrid models drive these significant improvements in 

prediction accuracy, lead times, and location determination, as 

is demonstrated by studies such as those by Abdalzaher 

et al. 107,108 and Xu and Gao. 109 A recent innovative advancement 

within AI for forecasting is GraphCast, which provides a graph 

neural network-based forecasting system that delivers highly ac-

curate, medium-range weather predictions and early warnings of 

extreme events. 32 The potential of transformative AI models that 

include LLMs and foundation models may enhance disaster risk 

management across multiple domains and is comprehensively 

examined in the ITU-T Focus Group Technical Report on Trans-

formative AI Models for Natural Disaster Management, which 

provides guidance on leveraging these advanced AI architec-

tures for improved monitoring and forecasting capabilities. Addi-

tional method advancements center around integrating AI with 

real-time sensor networks, satellite data, and IoT to create adap-

tive, intelligent systems that can detect weak hazard signals 

earlier than traditional models, crucial for improving global early
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warnings. 52,110 This shift toward dynamic and data-driven fore-

casting is marking a key advancement in global risk manage-

ment and reduction.

To successfully integrate AI in Pillar II, the integrity and reli-

ability of data streams from heterogeneous sources is important. 

For example, by ensuring data quality, robust sensor calibration, 

and secure communication networks, models may be able to 

avoid false alarms or missed events—a concern highlighted by 

Li et al. 111 and Al-Rawas et al. 112 in their review of flash flood pre-

diction technologies. Similarly, standardized interoperability pro-

tocols to seamlessly integrate IoT sensor data, satellite imagery, 

and numerical model outputs, would provide guardrails for moni-

toring and detection as these elements form the backbone of 

efficient EWS. 108,113,114 Zhu et al. 115 demonstrate how AI can 

automatize autonomous location-based decision-making to 

transform and enhance emergency response operations. 

Furthermore, standardizing protocols in the form of data-knowl-

edge-driven or collaborative frameworks, as those proposed by 

WMO, is holding the key to transforming proactive hazard miti-

gation in the face of a rapidly changing climate. 52,116 

Processing these multi-modal data in near real-time with the 

help of advanced AI models is a substantial opportunity for 

enhancing hazard forecasting. For instance, deep learning archi-

tectures that are integrated with autoencoders and CNNs, can 

rapidly estimate earthquake parameters and thereby improving 

early warning lead times. 108 Furthermore, Xu and Gao 109 show 

that high accuracy and low computational cost can be achieved 

by developing a hybrid surrogate model that fuses LSTM and 

CNN outputs, which they exemplify with a coastal flood predic-

tion study. Furthermore, investing in distributed sensor networks 

with edge computing capabilities could be worthwhile as these 

methods enable local data processing to lower latency and 

improve the promptness of warnings. Such integration enables 

AI to process high-speed data streams and detect subtle, 

weak hazard signals much earlier than conventional statistical 

models, thereby extending the effective lead time of EWS. 

Another promising avenue is enhancing the generalisability of 

AI models across different hazards and geographical regions 

that can be done through transfer learning and multi-modelling. 

For example, deep learning architectures can be adapted to 

diverse environmental conditions, while maintaining high predic-

tion accuracy despite variations in regional hazard characteris-

tics. 117,118 This adaptability not only facilitates the deployment 

of robust EWS in data-scarce regions 102 but also opens possibil-

ities for a unified forecasting framework that can address multi-

ple hazard types simultaneously. 119 However, the integration of 

multi-hazards remains challenging as different hazards have 

different lead times requiring different ways of operating. 22 

Developing flexible, modular AI architectures that are able to 

accommodate variable temporal scales and warning thresholds, 

while maintaining interoperability between hazard-specific com-

ponents, will be critical to overcome these operational chal-

lenges and enable to adapt to changing environmental 

conditions.

Learning algorithms that can quantify uncertainties in hazard 

forecasts-such as Bayesian AI techniques and traditional phys-

ics-based models-can lead to more robust and interpretable 

predictions. 109,118,120 For example, models that integrate phys-

ics-based with advanced AI models can give insights into the 

fundamental dynamics of hazard processes. 121–123 A prime 

example of an integrating all approach, is establishing a digital 

twin that is able help precise risk prediction while leveraging AI 

algorithms for efficient processing and analysis of real-time 

data. 75 Digital twins allow for the integration of real-time sensor 

data, advanced simulation models, and historical records into 

a unified virtual replica of physical systems, enabling continuous 

monitoring, dynamic risk assessment that include exposure 

and vulnerabilities of the system, and proactive disaster man-

agement. 124–128 Multi-hazard susceptibility maps may provide 

a foundation here from which to capture and contextualize un-

derlying environmental and atmospheric processes, as well as 

hazard interactions.

However, to provide actionable risk information that enables 

targeted protective actions it is crucial to integrate exposure 

and vulnerability data with hazard intensity warnings. 129–131 We 

acknowledge, however, that dynamic exposure and vulnerability 

data are generally scarce and difficult to collect, 132,133 particu-

larly for the most vulnerable groups (e.g., residents of informal 

settlements). When exposure and vulnerability data do exist, 

for example, collected by insurance companies and usually in 

high-income countries, they are often not publicly accessible 

or incomplete, Potential pathways to overcome these limitations 

include enhancing, public-private partnerships, anonymized 

data sharing agreements, and the development of standardized 

vulnerability indicators from open government data sources. 

Additionally, the use of crowd-sourced vulnerability mapping 

or the integration of satellite-derived exposure metrics offer 

alternative approaches to complement unavailable data. These 

impact-based forecasts represent a strategic priority within the 

EW4All initiative, which allows to shift from traditional hazard-

only predictions to forecasts that directly estimate potential con-

sequences on people, infrastructure, and livelihoods. AI may 

play a crucial role in impact-based forecasting as it allows for 

the processing of complex multi-dimensional datasets that 

combine meteorological predictions with demographic, infra-

structure, and socioeconomic data to generate location-specific 

impact predictions. 25,134 For example, instead of simply fore-

casting flood depth, impact-based systems allow for predictions 

that can warn communities that they will be cut off, or provide in-

formation on which critical infrastructure will fail, and what hu-

manitarian needs will emerge. 135 This transformation from 

‘what the weather will do’ to ‘what the weather will due to us’ 

is essential for moving beyond generic warnings to tailored, 

actionable guidance that saves more lives and reduces 

losses. 136

Warning dissemination and communication (Pillar III) 

Enabling clear and accessible dissemination and communica-

tion is crucial for the translation of early warning information 

into actionable formats. For example, the common alerting pro-

tocol, Google Public Alerts, and IFRC Alert Hub expand the 

reach of reliable, fast, and actionable warning messages to peo-

ple at risk, in which AI could support. Moreover, operational 

guidance from international organisations is emphasizing the 

critical role of AI to enhance communication effectiveness. For 

example, the WMO Guidelines on ‘Multi-Hazard Impact-based 

Forecast and Warning Services’ highlight the importance of
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partnerships between scientists, forecasters, and community 

leaders in developing effective warning communication sys-

tems. 137 Furthermore, the ITU/WMO/UNEP Focus Group on AI 

for Natural Disaster Management (FG-AI4NDM) has established 

best practices for using AI to support EWS and improve commu-

nication across spatiotemporal scales through multiple opera-

tional use cases how AI-enhanced communication systems 

can improve alert dissemination across diverse populations. 138 

First, AI can generate emergency alerts tailored to specific 

geographic locations, demographics, and language prefer-

ences. The use of large language models to support the transla-

tion of warnings is, for instance, a straightforward application 

and has already been implemented in several operational 

EWS. However, more work is needed in tailoring messages to re-

cipients based on their demographic characteristics. While 

progress has been made in creating sector-specific warnings, 

it is essential to further develop personalized alerts, for example, 

for people of different ages or persons with disabilities. Core 

topics in this area include real-time alert generation, explainable 

alerts, and the development of user-friendly and accessible 

communication interfaces, which together facilitate effective 

disaster risk communication and situational awareness. 

Secondly, another area of development is the AI-driven real-

time prediction that can quickly generate alert messages. For 

instance, Dang et al. 139 developed a real-time EWS for urban 

flooding that is leveraging big data analytics and Web-GIS visu-

alisations that is able to enhance flood risk communication. 

Another example is ‘‘FloodWatch,’’ which is an IoT-based flood 

monitoring system that provides continuous hazard assessment 

and instant notifications. 140 Furthermore, Ouaissa et al. 141 high-

lights the role of AI and IoT integration in wildfire and flood man-

agement, demonstrating how real-time processing improves 

situational awareness and response capabilities of people at 

risk. Furthermore, AI can integrate user reports from social me-

dia and IoT devices, providing a comprehensive situational over-

view in real time, which increases the effectiveness of informa-

tion dissemination to end-users 34 For example, leveraging the 

collaborative power of AI and citizen science can be comple-

mentary by improving the use and access to citizen generated 

data, which supports inclusion of complementary local knowl-

edge to forecast models. 133 These approaches are aligning 

with findings from the IFRC’s guide ‘The Future of Forecasts’ 

that is demonstrating how impact-based forecasting can trans-

form complex scientific information into actionable community 

insights for (AI-powered) communication strategies.

Third, AI can support by real-time analysis of multi-modal 

data—from sensor networks, satellite imagery, radar, weather 

models, and social media—to generate timely, actionable warn-

ings and ensure that emergency messages reach all stake-

holders via intuitive digital platforms. For the public, it is essential 

to provide intuitive and multi-platform communication strate-

gies. If interfaces are able to provide alerts that are understand-

able through web platforms, mobile applications, and interactive 

mapping tools, it may enhance public engagement. 139,140 For 

example, visual and geospatial representations of risks, such 

as real-time hazard mapping and augmented reality overlays, 

make complex data more comprehensible for both decision-

makers and communities. An underrepresented aspect is the

use of AI for reinforcement learning-training agents for deci-

sion-making during emergency scenarios, which could be an 

area of future research.

Preparedness and response capabilities (Pillar IV) 

Enhancing response capacities and preparedness is essential 

for ensuring that EWS translate into timely, effective actions 

that minimize the societal and economic impacts of natural haz-

ards. AI is progressively employed to test its effectiveness in 

supporting pillar IV, notably in modeling disaster response sce-

narios, speeding up analytics and data processing for real-time 

relief efforts, and improving the efficiency of emergency pre-

paredness across sectors and decision-making support sys-

tems with diverse stakeholders connected to EWS and anticipa-

tory action. 142,143 While most operational EWS have not yet fully 

integrated AI, existing humanitarian frameworks may provide 

valuable foundations for AI implementation to support. For 

example, the IFRC’s Operational Framework for Anticipatory Ac-

tion 2021–2025 establishes systematic approaches for forecast-

based disaster response that could be enhanced through AI ap-

plications in risk assessment, resource allocation optimization, 

and predictive modeling. OCHA’s briefing note on AI for the hu-

manitarian sector reflects this as well, although mentioning some 

challenges to overcome in a data driven world, such as chal-

lenges misinformation, reinforcement of bias, system opacity, 

cybersecurity, and erosion of privacy. 144 Additionally, to ensure 

a coordinated progress in AI-enhanced disaster risk manage-

ment technologies for preparedness and response capabilities 

across international organisations and standards development 

bodies, the FG-AI4NDM provided a standardization roadmap, 

which may serve as a strategic guide for this. 145

A range of examples of AI-support in this domain come from 

humanitarian and military sectors, such as using unmanned 

aerial vehicles (UAVs) to capture and process high-resolution 

local real-time data in emergency scenarios, such as AI-sup-

ported spatial mapping, data processing for damage assess-

ment and situational awareness. On the financing side, Fast 

and frugal tree methods could be used to analyze the existing 

rapid cash transferring systems in a forecast model that unravels 

early warning relationships between climate variability, vegeta-

tion coverage, and maize yields at multiple lead times and 

cost-effectiveness of response measures. 48 Additionally, les-

sons can be drawn for AI-based responses to natural hazards 

from other field such as the health sector and biological hazards. 

For example, AI is used to simulate COVID-19 vaccine delivery 

contingency plan for IDP camps in Borno State, Northeast 

Nigeria. Next to this, AI methods have supported simulating 

the transmission of infectious diseases under various interven-

tion measures and evaluate the effectiveness of control strate-

gies can help formulate, implement, and potentially adjust 

measures. 146

Despite these promising applications, multiple challenges 

exist, such as uncertainties and the algorithm bias, might lead 

to false response scenario planning, notably by reinforcing 

the underrepresentation of rural communities and minority 

groups. 132 Managing the complex interrelations of disaster 

response scenarios remains challenging as new risks could be 

introduced while advanced technology may lack applicability 

or fail to meet the actual needs of rural communities. 147,148 While
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in existing systems, this is already a challenge, automated 

models may narrow this people-centric interaction along the 

warning chain even more.

With increasing complexity and predictive power of AI models, 

issues of trust, reliability, and interpretability of the models and 

its suggestions are fragile. This can cause issues from a physical 

perspective but can also result in a lack of trust by multi-stake-

holders in warning messages. 76 Transparency in AI systems ex-

tends beyond mere technical openness; it involves providing 

stakeholders with accessible and meaningful information about 

how AI models function, make decisions, and impact various 

user groups, ensuring that AI within the warning chain is trans-

parent and inclusive. 149

Cross-cutting aspects of responsible AI in EWS

While AI offers significant potential across all four pillars, suc-

cessful implementation requires to address fundamental chal-

lenges that may transcend individual pillar boundaries. Here 

we identify four critical cross-cutting aspects. Firstly, explain-

ability is critical-yet, challenging for ethical and inclusive usabil-

ity across the four pillars. 150 For example, to ensure that 

AI-driven early warning communications are actionable, it is 

essential to have explainable results that preferably also provide 

insides on uncertainty. The lack of interpretability of AI can hind-

er trust in AI-generated warnings, making it essential to incorpo-

rate explainable AI (XAI) methods that reveal decision-making 

processes and highlight uncertainties. 76 For the interoperability 

of EWS, where human lives depend on, it is crucial to provide 

such transparency and insights into model predictions. Ulti-

mately, this will enhance user confidence also contribute 

to better-informed decision-making in high-stakes hazard 

scenarios. 75,79

Secondly, accountability is a key need in AI-powered EWS, 

notably, to establish clear responsibility frameworks for when 

systems fail, which ensures humans retain ultimate oversight of 

warning decisions regardless of automation level. 150,151 For 

example, transparent decision-making chains must document, 

which components (AI or human) triggered specific warnings, 

which should enable post-event auditing and continuous 

improvement while clarifying liability. Additionally, accountability 

demands for inclusive governance structures where diverse 

stakeholders—including vulnerable communities—have mean-

ingful input into system design, deployment, and evaluation, 

ensuring AI serves broad public interests rather than narrow 

technical or commercial goals. Furthermore, collaborative ap-

proaches are key to evolving EWS. 77 For example, fostering 

interdisciplinary collaborations among geoscientists, AI experts, 

policymakers, and local stakeholders is essential to translate 

these technological advances into sustainable, real-world 

applications. 152

Thirdly, data scarcity in AI-powered EWS reflects insufficient 

historical records of extreme events, inadequate monitoring net-

works in vulnerable regions, and low-resolution datasets of 

hazard-specific parameters. 153 Such scant training data can 

produce biased models that perform poorly in historically under-

represented areas or for rare but catastrophic events and thus 

create warning gaps between data-rich and data-poor regions. 

Beyond simple data augmentation, novel approaches are 

needed for addressing this challenge: physics-informed models

incorporating domain knowledge, transfer learning from data-

rich to data-poor contexts, and methods to quantify uncertainty 

when working with limited observations. Addressing data gaps in 

training data for data scarce regions, is to prioritize the develop-

ment and validation of AI-derived datasets across risk compo-

nents. AI-derived datasets should be rigorously validated with 

ground-truth observations where available, with clear documen-

tation of uncertainties, potential biases (especially in underrepre-

sented regions), and methodological limitations. International 

standards for dataset quality, interoperability, and transparency 

would further enhance the utility of these resources for opera-

tional MHEWS, particularly in data-scarce regions where tradi-

tional observational networks remain limited. The ITU/WMO/ 

UNEP Focus Group on AI for Natural Disaster Management 

and the subsequent Global Initiative on Resilience to Natural 

Hazards through AI Solutions provide technical guidance on 

best practices for data collection, modeling and effective 

communication for addressing these standardization challenges 

for responsible AI deployment that could help bridge data and 

capability gaps across regions.

Fourthly, community engagement and local knowledge inte-

gration should be emerging as critical success factors that will 

determine AI-enhanced EWS effectiveness. The IFRC’s exten-

sive experience with forecast-based financing across multiple 

National Societies is demonstrating that meaningful community 

engagement is essential for any EWS to be trusted, understood, 

and acted upon. Successful early warning implementations 

should have a systematic way to integrate traditional and Indig-

enous knowledge systems alongside technological solutions, 

which is documented in Anticipation Hub case studies. 154 Addi-

tionally, organisations such as Practical Action exemplify usage 

of AI in case studies, while UNDRR point out the potential of AI 

for EWS and documents this in their handbook on risk knowl-

edge for MHEWS. This would establish principles that will be vital 

for ensuring that AI systems complement rather than replace 

local expertise and decision-making processes. Additionally, 

co-production approaches are essential for successful AI imple-

mentation in EWS and should involve meteorologists, social sci-

entists, and humanitarian experts that work directly with at-risk 

communities, 155,156 as is emphasized by the IFRC’s comprehen-

sive analysis in ‘The Future of Forecasts’ and WMO’s guidelines 

on ‘Multi-hazard Impact-based Forecast and Warning Services’.

DISCUSSION

Ways forward

This study aims to address the knowledge, application, and 

policy gap on AI and EWS across the four pillars. While AI holds 

significant potential to improve EWS across these pillars, our 

results highlight the necessity of establishing guardrails for 

responsible use of AI in EWS, to ensure people-centred ap-

proaches and address the current challenges emerging in use 

cases (such as data gaps, algorithm bias, and underrepresen-

tation of minority groups). While this study did not aim to estab-

lish universal guardrails for AI and EW, it intended to provide 

evidence-informed questions that need to be considered and 

addressed by those who have the responsibility to implement 

and operate EWS. Hence, Figure 3 provides an overview of
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guiding questions based on this study that can help to establish 

guardrails across the four pillars to contribute and transfer to 

current knowledge, implementation, and policy sphere of 

EWS and AI (e.g., under the EW4ALL initiative). It unravels 

some of the key issues that are critical for responsible use of 

AI methods across the four Pillar, notably to ensure people-

centred, responsible, and accountable AI use. The guiding 

questions are not comprehensive, nor extensive, however, 

they offer a guiding set of questions for future research in this 

domain moving forward.

The knowledge gap

Our review finds that AI can support in integrating exposure, 

vulnerability, and impact-based forecasting by standardizing 

metrics, addressing data gaps or hybrid approaches that 

combine physics-based models with advanced AI. For 

example, digital twins and collaborative systems may offer 

promising pathways to enhance dynamic risk prediction and 

proactive disaster management. While standardizing evalua-

tion metrics across diverse hazards might remain a significant 

challenge, developing models that capture and that quantify 

the complex interactions of cascading events might offer an 

interesting array for future research. The review also high-

lighted that one of the major trends in AI and EWS are 

methods that can help to address data scarcity, specifically 

in rural areas (data augmentation, transfer learning and feder-

ated learning to overcome data limitations) and enhance 

model robustness and democratize access to high-quality 

risk assessments for EWS. Filling those data gaps, however, 

it will be critical to consider diverse knowledge sources and 

reflect on the biases of the data and algorithms utilized (see 

guiding question 1–3). Specifically, the narrative of filling 

data gaps through AI needs careful reflection on accountable 

oversight mechanisms to ensure quality and reliability (see 

guiding question 7–9).

The application gap

AI has been increasingly applied in the domains of risk knowl-

edge, monitoring and forecasting, dissemination and commu-

nication and preparedness and response. However, the main

Figure 3. Role of guiding questions that 

serve as guardrails for the responsible utili-

zation of AI methods across the four pillars 

of EWS

The EW4ALL framework is adapted from WMO’s 

Executive Action Plan for 2023–2027.

application area remains in monitoring 

and forecasting. Another finding of cur-

rent applications is the processing of 

multi-modal data in near real-time using 

advanced AI architectures and distrib-

uted sensor networks. Specifically, AI 

has the potential to reduce latency 

and extend early warning lead times ac-

curacy in monitoring and forecasting. 

Further, its capacity to model generalis-

ability through transfer learning and 

multi-modelling paves the way for 

improving forecasting across diverse hazards and support 

scenario planning. Finally, integrating physical process simu-

lations with data-driven insights or AI powered earth system 

models and digital twins hold promising pathways for devel-

oping robust, interpretable systems that better inform timely 

decision-making. However, it is impediment to establish eval-

uation criteria ensuring data integrity, accountability, and 

interoperability across heterogeneous sources—such as IoT 

sensors, satellite imagery, and numerical models (see guiding 

question 10). This can mitigate false alarms and improve 

detection reliability. Additionally, the application areas of AI 

are dominantly technical niche-requiring efforts for explain-

ability and ensuring that the role of AI in the warning chain 

is well documented and understood by all stakeholders (see 

guiding question 5 & 6). Furthermore, we showed that case 

studies are mostly absent in sub-Saharan Africa, Central 

America, parts of South America, Central Asia, and small is-

land developing states. Such uneven geographical distribution 

of AI-focused EWS research and implementation reflects the 

infrastructure and digital disparities, where regions most 

affected by the digital divide and weather station deficits 

receive the least research attention, creating a worrying cycle 

where technological advances may actually worsen rather 

than reduce existing warning system inequalities (see guiding 

question 6 & 9). To bridge this digital divide, Digital Public 

Goods initiatives and open-access Earth observation plat-

forms such as Digital Earth Africa and Copernicus are offering 

promising pathways by providing free access to satellite data 

and computational resources. This has the ability to support 

and enable researchers and practitioners in data-scarce re-

gions to develop locally relevant AI-EWS applications.

The policy gap

While advanced AI methods can enhance the effectiveness 

across the warning chain, it persists a lack of studies 

providing ethical and human-rights based frameworks and 

commonly agreed ethical oversight mechanism for AI deploy-

ment (see guiding question 8). For example, few of the studies 

applying AI methods in EWS domain, provide reflection and
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ethical guidance on issues such as privacy, data bias and the 

trustworthiness of AI-supported information for policy makers 

and practitioners. Global, regional and national standards 

need to be developed for the use of AI in EWS, building 

upon existing frameworks such as the ITU/WMO/UNEP tech-

nical reports on AI for Natural Disaster Management and the 

WMO Executive Action Plan implementation guidelines. 157 

For example, the protection of transparency, fairness and hu-

man oversight of AI systems are impediment for implementa-

tion in any EWS application (see guiding question 8). Specif-

ically, core values such as gender, education, research, 

wellbeing and ecosystems need to be integrated, evaluated 

and monitored through frameworks and policy mechanism 

for AI in EWS, while currently critically underrepresented or 

even absent 72 (see guiding question 3).

The scope of this study was not aimed at establishing 

comprehensive guardrails for addressing such policy issues. 

However, it recognizes that technocratic approaches in 

disaster risk reduction must go hand in hand with people-cen-

tred and responsible approaches, which are yet to be estab-

lished for this domain. Guardrails are almost absent in the re-

viewed papers in this study. Additionally, it is essential to 

foster international standardization efforts that include diverse 

stakeholders representing different regional priorities. This en-

sures both effective and equitable implementation, potentially 

encouraging adoption of these standards into national legisla-

tive frameworks. 158 Further, such collaboration allows to 

develop international standards for AI in EWS that are not 

limited by cross-border interoperability, which are currently 

critical blind spots in warning coverage precisely where haz-

ards may transcend national boundaries. Ultimately, unlocking 

the potential of AI in EWS requires close collaboration be-

tween the research community and the key national actors 

-supported by the UN agencies and IFRC- implementing 

EW4All, including UNDRR for risk knowledge and prepared-

ness, WMO for monitoring and forecasting systems, ITU for 

warning dissemination and communication and IFRC for pre-

paredness to respond. Such an alignment would ensure that 

research priorities identified here translate into operational im-

provements across the four pillars and support evidence-

based policy development at international and national levels. 

The guiding questions that serve as guardrails for responsible 

AI implementation and pillar-specific findings from this review 

offer these agencies a practical framework that can be used to 

develop responsible AI integration strategies that can address 

the technical, ethical, and equity challenges identified across 

EW4All implementation.

Concluding remarks

This study examined AI methods utilized in the context of EWS, 

their opportunities and limitations and discusses guardrails for 

applying AI in people-centred EWS. While AI offers opportunities 

for the effectiveness of EWS, there is a lack of guidance and 

ethical questions to ensure inclusive, people-centred warning 

systems moving forward. Artificial intelligence (AI) paves the 

way for improvements of early warning across the four pillars, 

supporting its viability for protecting sectors, systems, and 

people.

Patterns of AI use/adoption: AI tools in EWS substantially 

increased in the past decade across the globe for different haz-

ard types in the domain of early warning. A variety of methods are 

utilized (such as Deep Learning, NLP) to support parts of the 

warning chain, dominantly computational and data-driven 

components.

Challenges and opportunities across the four pillars: Applica-

tion areas are dominantly in forecasting and monitoring, 

however, there are emerging patterns and examples for applying 

it across the warning chain, which need to be further explored. 

Challenges include explainability, including privacy and ethical 

considerations of the use of data, issues around accuracy and 

accountability of AI and the data scarcity challenge. 

Addressing policy, research, and knowledge gap: The role in 

EWS is not a silver bullet for improving existing systems-it can 

be understood as a complementary approach, when carefully 

tested and ethically embedded into regulatory frameworks, to 

support parts of the warning chain. It is critical in the future to 

strengthen research and policy making of people-centred EWS 

and DRR to identify utilities that do no harm.

Future research can strengthen the responsible use of AI 

methods across the EWS pillars through tackling guardrails 

and providing guidelines for research, application, and practice. 

Ultimately, the potential of AI in EWS could only be realized with 

close collaboration between the research community and UN 

agencies implementing EW4All (including WMO, UNDRR, and 

other relevant agencies) to ensure that research findings would 

be translated into operational improvements and evidence-

based policy development across the four pillars.

Limitations of the study

This study encounters multiple limitations in the methodology. 

First, we acknowledge that there are other papers that still 

address AI for one of the EWS pillar but not explicitly mention early 

warning or early warning systems in their paper. For example, 

there are papers that are about preparedness in humanitarian ac-

tion, which might have also contributed additional insights, how-

ever, due to the selected search strings were not integrated. Sec-

ondly, the four-eye principle of title and abstract screening might 

have introduced biases due to the positionalities of the two re-

searchers for selecting the papers. Thirdly, only including open 

access and English papers, as well as excluding gray literature 

in the systematic literature review introduces limitations to the 

comprehensiveness of the review. Fourthly, the study utilized 

NLP in the review process to extract locations or hazard types 

of the reviewed abstracts, which introduces the bias of an AI 

tool to the research; however, 100% human oversight was imple-

mented to mitigate this limitation. Lastly, the requirement for 

explicit ’early warning’ terminology in our search may have 

excluded relevant AI forecasting studies using alternative terms 

such as forecasting and prediction in the realm of hazard studies 

that might be of interest to one of the pillars of EW4ALL.
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STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

We conducted a systematic literature review to gather descriptive statistics on the use of AI for early warning systems (EWS) and 

synthesised its role across the four pillars of EW4ALL using the pool of papers. In order to do so, we first developed search queries 

using Scopus (on title, abstract and keywords) incorporating terms related to EWS, AI (including ‘artificial intelligence’, ‘machine 

learning’, and ‘deep learning’), natural hazards, and risk, with some queries also linked to specific pillars (see literature selection). 

Subsequently, we screened the papers for relevance using a four-eye principle and gathered those that met our criteria of relevance 

to the pillars (see screening process). Next, we classified the entries, extracted relevant metadata, and employed NLP techniques to 

assist us to detect key terms. We have validated everything manually afterward (see review process). This process allowed us to 

compile a comprehensive dataset for our review, following the PRISMA 2020 guidelines where applicable.

Literature selection

For selection of relevant literature, we used Scopus and included criteria encompassing EWS, AI, and risk-related terminology. We 

divided the literature search among the pillars of EW4ALL and various categories (see Table 2). Each search query included one of the 

AI-related terms and ‘early warning’ for EWS, except in the case of single-hazard queries, where we used ‘early warning system’, and 

was applied to the title, abstract and keywords. For risk-related terminology, we selected the criteria listed in column 4 of Table 2 

which resulted in a total of 1344 unique papers, and 1187 after excluding non-English written papers. The Table summarises the 

search criteria for the selection process of the systematic review in which each row represents a search criterion.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version: 3.12) The Python Software Foundation RRID: SCR_008394, https://www. 

python.org/

spaCy (Natural Language Processing 

library)

Explosion AI https://spacy.io/

Hugging Face (AI model repository and 

libraries)

Hugging Face Inc. https://huggingface.co/

geopy (Geocoding library) GeoPy contributors https://github.com/geopy/geopy

Scopus (Bibliographic database) Elsevier https://www.scopus.com/

Microsoft Excel Microsoft Corporation RRID: SCR_016137, https://www. 

microsoft.com/

Search criteria for the selection process of the systematic review in which each row represents a search criterion

EW4ALL pillar Search terms a Exclusion criteria

Pillar I risk knowledge multi-hazard, multi-disaster, multi-risk, 

compound hazard, compound disaster, 

compound risk, impact based, 

exposure, vulnerability

socio-economic events

Pillar I risk knowledge or Pillar II 

forecasting, analysis, monitoring

hazard, disaster, flood, drought, 

heatwave, wildfire, earthquake, 

coldwave, landslide, avalanche, 

storm, cyclone, typhoon, 

hurricane, tsunami, volcano.

biohazards, socio-economic shocks, 

non-hydro- and geo-hazards

Pillar III warning dissemination 

and communication

dissemination, communication urban digitalization, smart cities, 

health related studies

Pillar IV response and preparedness preparedness, response, early 

action, anticipatory action, 

emergency response

military response, conflict response, 

conflict preparedness

a Note that all searches include the search terms on AI (‘‘Artificial Intelligence’’ OR ‘‘AI’’ OR ‘‘Machine learning’’ OR ‘‘Deep learning’’) and ‘‘early 

warning,’’ except the second row with individual hazards for which ‘‘early warning system’’ was used.
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Screening process

For each entry, we employed the four-eye principle and screened (title, abstract, keywords) if the entries are addressing AI and EWS 

within the context of natural hazards, disasters, and risk. Here, we excluded entries related to biological hazards. To differentiate be-

tween Pillar I and Pillar II, we categorised entries based on whether they contributed to the body of knowledge on EWS (Pillar I) or 

provided a practical implementation of hazard monitoring and detection (Pillar II). This resulted in 324 papers for the review process.

Review process

For each of the 324 selected papers, we extracted key information as meta data that includes the AI concept employed (i.e., classical 

ML, NN, and NLP), the specific AI method, the geographical location, and the hazard type. We focused on three AI categories, i) clas-

sical machine learning, ii) neural networks, and iii) natural language processes and assigned each paper to the category it most 

closely aligned with. We used Natural Language Processing (NLP) tools to assist us in the review process for specific parts and tasks 

of the review process. 159 We employed ‘spaCy’ for tokenisation and named entity recognition to extract locations and models from 

predefined lists, and a fine-tuned transformer model from the Hugging Face library to classify text into specific hazard types. This 

NLP-generated metadata served as a preliminary dataset that was subsequently manually verified, corrected and further filled in 

by the research team. Each entry was thoroughly reviewed for fitness with 100% human oversight of all extracted information, 

and the metadata was further filled in and updated accordingly to ensure accuracy. In addition, for papers that are mentioning 

specific geographical locations (n = 158), we manually classified each study based on implementation status: ‘research-based’ 

(AI methods applied to case study data with no operational deployment), ‘prototype or implemented’ (AI systems developed and 

tested but not yet operationally integrated or AI methods integrated into existing operational EWS).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used the geopy package in Python to extract latitude and longitude data for the case studies locations and generated descrip-

tive plots for Figure 1. These plots illustrate the distribution of papers across different hazard types, pillars, and other relevant 

categories.
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