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SUMMARY

Artificial intelligence (Al) is gaining momentum in earth sciences as a tool to analyze complex natural haz-
ards and their impacts. Such analyses are critical for effective Early Warning Systems (EWSs), which is
aiming to generate timely and actionable risk information to protect sectors, systems, and people.
Despite advancements in Al, its role in EWS remains underexplored across the four pillars of the Early
Warning for All (EW4AIl) framework; risk knowledge, forecasting, warning dissemination and communica-
tion and response preparedness. This study draws on a systematic literature review to assess Al
methods utilized in the context of EWS, examines their challenges and opportunities and discusses guid-
ing questions for responsible use. Our study highlights key gaps across knowledge, application and pol-
icy. Moreover, we call for coordinated efforts to develop responsible Al frameworks that enhance EWS
while ensuring they remain inclusive, accessible, and people-centred that ultimately supports the goal

of EW4AIl by 2027.

INTRODUCTION

Artificial intelligence (Al) is key for the effectiveness of early
warning systems (EWSs). However, ensuring that Al methods
are used in a responsible and people-centred way requires
advances in knowledge, application, and policy. In recent
years, Al has rapidly transformed technological landscapes
across sectors, offering unprecedented opportunities for ad-
dressing global challenges.”” Moreover, Al creates new ave-
nues to improve the analysis of multidimensional data and
accelerate information processing. This fast-developing field
has improved how we enhance capabilities to handle large,
non-linear, and complex datasets, simulate scenarios and
aid decision-support mechanisms.® While a range of sectors
have employed Al, it has increasingly gained attention in the
earth science and disaster risk reduction domain.*® Specif-
ically, there is growing interest in using innovative methods
such as deep learnings and natural language processes
(NLPs) or technologies such as Internet of Things (loT) in the
context of EWS.’

)
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EWS are recognized as one of the most effective tools for pro-
tecting lives, assets, and systems from hazards and their im-
pacts.® In contemporary frameworks, EWS encompass four
interrelated pillars; risk knowledge (Pillar I), observation and fore-
casting (Pillar 1), communication and dissemination (Pillar Ill),
and response and preparedness (Pillar 1V).° As a substantial
body of literature conceptualizes these four pillars as a people-
centred framework which aims to ensure information and action
reaches all relevant sectors and actors in sufficient time and
leaves no one behind, it will guide this paper as conceptual un-
derstanding of the warning chain.'®

The need for people-centred EWS across the four pillars is
recognized in large scale global efforts such as the Early Warning
for All Initiative (EW4ALL)—a United Nations (UN) program aim-
ing to ensure everyone on Earth is protected by EWS by
2027 —which responds to the Target G of the UN Sendai Frame-
work 2015-2030 as one of the most effective instruments for
reducing disaster risk.""

While the relevance of people-centred EWS for inclusive
disaster risk reduction is recognized, half of the countries
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globally are not covered by EWS.® Countries in the Global South
and rural areas persistently report the largest gaps in terms of
EWS coverage, while ineffective risk communication as well as
a lack of operational preparedness plans are evident on all con-
tinents.® This disparity is, however, illustrated by fundamental
infrastructure deficits, such as Africa having just 37 weather ra-
dar stations compared to 636 in Europe and the United States
for similar population sizes and landmass, and over 50% of ex-
isting stations provide data that is too inaccurate for reliable fore-
casting.'? Additionally, the digital divide may further limit the
dissemination of warnings through for example inadequate
internet access and warning messages that are not adapted to
local languages, knowledge systems, or cultural contexts.

Furthermore, hazards are inherently complex'® and rarely occur
in isolation.' These so called multi-hazards can occur simulta-
neously or sequentially, interacting with the vulnerabilities and ex-
posures of people, livelihoods, assets and systems, '°° Here, we
focus on EWS for hydrometeorological hazards and geoha-
zards.?’ Hydrometeorological hazards include both rapid-onset
events like floods, hurricanes, and rainfall-triggered landslides
with warning periods ranging from hours to days, and slow-devel-
oping events such as droughts with warning periods from weeks
to months. However, EWSs for geohazards operate on widely
varying timescales.’> For instance, earthquake operate on
extremely compressed time frames, often mere seconds between
detection and impact, while volcanic eruptions may exhibit pre-
cursor signals days to weeks before the events. Secondary haz-
ards like tsunamis (triggered by earthquakes, volcanic eruptions,
or landslides) and earthquake-induced landslides®® may further
complicate multi-hazard warning frameworks, with each
demanding specialized Al applications suited to their unique tem-
poral scales and monitoring requirements. Furthermore, despite
the critical need for addressing multiple hazards in a comprehen-
sive manner,”® operational multi-hazard early warning systems
(MHEWS) face challenges, with hazards typically addressed in
isolation rather than accounting for their complex interactions.*
These complex interactions between and within risk components
present significant challenges for most operational EWS, which
monitor and assess single hazards only.

EWS present a potential domain for utilizing Al, along the
whole early warning value chain.?* " The emergence of Al capa-
bilities has been enabled by concurrent advances in high-perfor-
mance computing, massive datasets, modern algorithms, and
high-level programming languages, creating a technological
ecosystem more accessible to domain scientists.”**° Recog-
nizing this potential, the United Nations launched the Global
Initiative on Resilience to Natural Hazards through Al Solutions,
led by International Telecommunication Union (ITU), UN Environ-
ment Program (UNEP), UN Framework Convention on Climate
Change (UNFCCC), Universal Postal Union (UPU), and World
Meteorological Organization (WMO), which has been set up to
ensure that advanced digital technologies will boost resilience
to natural hazards.”® Supporting this broader vision, the global
UN Early Warning Initiatives Executive Action Plan for EWA4AII
(2023-2027) provides specific implementation pathways, while
technical guidance on best practices for data collection,
modeling and effective communication is emerging through
ITU/WMO/UNEP Focus Group reports on Al for Natural Disaster
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Management and the subsequent Global Initiative on Resilience
to Natural Hazards through Al Solutions that establishes frame-
works for responsible Al integration across the four pillars. These
initiative highlights that while physics-based prediction systems
remain important, Al can complement them by reducing compu-
tational burdens, improving data processing efficiency, and
enhancing predictions, especially where pure physical modeling
is limited by process knowledge or computational capacity, e.g.,
for high resolution.®'>?

In this study, we aim to examine potential gaps in the under-
standing and application of Al for EWS and provide evidence-
informed questions that can help develop guardrails for respon-
sible implementation of Al across the four pillars of early warning.
We hypothesize three key areas requiring investigation.

(1) The knowledge gap: The current status and evolution of Al
and EWS in terms of how adoption has progressed over
time and geographical distribution is missing. Specifically,
there are few studies that investigate the uptake of Al across
the four pillars of early warning and the affiliated methods
that have been used across different hazard types.

The application gap: The use of Al across the four pillars
is not yet well examined in a coherent way, and there is a
lack of documentation of different Al methods for EWS by
hazard types and a gap in examining the implications
(opportunities and challenges) of utilizing Al across the
four pillars of EWS (i.e., Pillar I-1V; risk knowledge, moni-
toring and forecasting, communication and dissemination
and response preparedness). However, this is critical as it
guides the ongoing efforts of people-centred EWS around
the globe.

The policy gap: There is a gap of studies that provide ev-
idence-informed questions that can help to develop guard-
rails for research, practice, and policy for a responsible use
of Al in the context of EWS (e.g., human oversight mecha-
nism, ethical considerations). This can be a threat to the ef-
forts to prioritize inclusivity and people-centred ap-
proaches (such as Target G of the Sendai Framework) to
leave no one behind. Hence, it is critical to establish evi-
dence-informed questions that can help develop context-
specific guardrails for ensuring that “do no harm”.

S

&

Drawing on a systematic literature review, this paper presents,
first, the results on the patterns of use of Al methods in existing
early warning research, and the findings of the role of Al across
the four pillars of EWS. Subsequently, we provide a reflection
on cross-cutting challenges and opportunities while providing
ways forward for addressing the knowledge, application, and
policy gap. The insights of the paper are organized along the
four pillars used in the EW4ALL initiative as a framework for im-
plementation, to enable transfer of the results to practitioners
and increase the relevance of findings for real-world application.

RESULTS

Patterns of Al use and EWS
Our systematic literature review revealed significant patterns in
Al applications for EWS, illuminating knowledge, application,
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Figure 1. Distribution of scoped papers
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and policy gaps across different regions and throughout the four
EWS pillars. Results show that, out of the total of 324 reviewed
papers, a recent boom in literature on Al in the context of EWS
coincides with the 2022 launch of the EW4ALL initiative® (see
Figure 1A). Multiple Al methods are applied, notably tree-based,
CNNs, ANNs, and RNNs (Figure 1B). Furthermore we find that
there is an exponential increase in papers between 2010 and
2025, with more than 40% published in the year 2024. Out of
our final selection, we find that 55% of the papers are relevant
to Pillar 1, 38% to Pillar I, 6% to Pillar lll and only 1% to Pillar
IV. Figure 1 summarizes the distribution of scoped papers over
time and by Al method utilised.

In total, we have found 158 specific locations mentioned in the
reviewed papers as either location of deployment, monitoring or
location of training data (purely research) (see Figure 2). The di-
vision is roughly 79% research-based case studies and 21% im-
plemented or prototype. A focus on high-risk places where EWS
are essential is highlighted by the fact that many case study lo-
cations are located along tectonic plate borders, along coast-
lines, and in areas that are prone to flooding. The spatial distribu-
tion of case studies reveals a strong concentration in Asia,
Europe, and North America, with particularly dense clusters in
China, India, Japan, and Southeast Asia. This may be due to
the regions’ high susceptibility to a variety of hazards, including
earthquakes, landslides, floods, and typhoons. Western and
Central Europe also show significant representation, which
could be due to well-documented risk assessments and disaster
response frameworks. In North America, most case studies are
located in the eastern and western United States, aligning with
research on hurricanes, wildfires, large coastal cities and flood-
ing areas. In contrast, Africa and South America have compara-
tively fewer case studies, despite the vulnerabilities to hazards
like droughts and floods in these regions, indicating potential
research gaps. This geographical imbalance aligns with findings
from UNDRR/WMO Global Status Reports on MHEWS high-
lighting similar disparities in early warning coverage and capabil-
ities between resource-rich and resource-constrained regions.

Within the scoped papers of Al across temporal and
geographical scales, there are typically three concepts used
for EWS: (1) classical Machine Learning (ML), which involves al-
gorithms that automatically improve their performance through
exposure to data (such as clustering, regression, random forest,
support vector machines); (2) Neural Networks (NNs), which is an
advanced form of machine learning that utilizes interconnected
layers of computational nodes to identify complex patterns
within large datasets; and (3) Natural Language Processing
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(NLP), which extracts insights from unstructured text from re-
ports, newspapers or social media (such as large language
models). Note that while many studies in our review use the
term Deep Learning (DL) to refer to NN with multiple hidden
layers, we categorize all NN approaches, both shallow and
deep architectures, under the broader NN category for clarity.
A key difference between classical ML and NN is that in classical
ML the user manually engineers the features/predictors, while in
NN they are automatically learned from the data through the
network’s layered structure extracted by the ML. Also called rep-
resentation learning because good representations of the data
are learned.”® More specifically, classical ML techniques like
XGBoost and Random Forest can efficiently capture complex,
non-linear relationships, and interactions within large, heteroge-
neous datasets, while NN excel at aggregating information
across multiple dimensions, using CNNs to extract spatial pat-
terns and RNNs or LSTMs to model temporal dynamics.

Most of the papers conceptually discuss applying either clas-
sical ML or NN methods for EWS related to floods (28%), earth-
quakes (21%) and landslides (17%), which also reflect the pro-
posed maturity levels (implemented vs. prototype phase) of
hazard emergency support by Merz et al.>* These events domi-
nate across the four pillars of EWS with an exception for the re-
viewed papers that are linked to the response phase. Here
drought-related studies are more prevalent. This suggests a
stronger emphasis on using Al for real-time monitoring and pre-
paredness for rapid-onset hazards, whereas slow-onset hazards
like droughts receive more attention in post-disaster response
and adaptation strategies.>*° Notably, only four papers relate
to multi-hazards, and even these do not directly use the term
“multi-hazards” but rather address several hazards indepen-
dently without implementing integrated warning systems,
barring one on compound hazard interaction of ocean-fluvial
floods. This highlights a significant gap in research specifically
targeting the complex interactions between hazards that opera-
tional MHEWS would need to address.

Furthermore, the focus of Al methods varies by hazard type, as
earthquake studies more dominantly apply NN, while drought-
related studies almost exclusively use classical ML. This could
be due to the nature of these hazards, as for example earth-
quakes involve complex spatial-temporal seismic and rock
deformation patterns that benefit from deep learning’s feature
extraction capabilities, whereas droughts, being slow-onset
events, are often analyzed through structured decision trees
that rely on threshold-based classifications.®”*° The distribution
of methods among the pillars implies that each hazard’s unique
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characteristics have an impact on the model selection process.
The relationship between hazard spatial-temporal scales and Al
method selection is also evident: with real-time deep learning
approaches often employed for rapid, localized hazards, while
machine learning approaches for longer-term prediction and
monitoring typically used for slow-onset, widespread hazards.

Table 1 provides a summary of various Al methods alongside
examples of their applications for specific hazards.

Neural Network approaches (such as CNNs and RNNs in
Figure 1B), make up almost half of all applied techniques among
all the other categories. Convolutional neural networks (CNNs),
the most popular kind, are employed in 26% of studies
(Figure 1B) and are primarily known for their ability to extract
spatial features from images.* In natural hazard research, they
have been adapted to process structured time-series data,
particularly for earthquake monitoring as seismic activity is often
represented as spectrograms or spatial grids.®°®"

Recurrent neural networks (RNNs) are another popular
method, in particular for flood prediction, and are applied in
22% of the reviewed papers. RNNs are designed to handle
sequential data, making them highly effective for hazards where
historical patterns inform future risk. Specifically, Long Short-
Term Memory (LSTM) networks, a type of RNN, are commonly
used for flood forecasting and storm surge prediction as they
retain information over long time intervals, capturing trends in at-
mospheric drivers, precipitation, river discharge, and soil mois-
ture.%>°°  Similarly, Feedforward Neural Networks (FNNs)
(applied in 22% of the studies) are applied for flood and landslide
prediction, providing flexible non-linear modeling but often
requiring careful hyperparameter tuning and large datasets.®®¢”

Attention-based models reflect promising enhancement of
EWS, such as through capturing complex spatial and temporal
dependencies in environmental data. Recent advances like
Earthformer demonstrate how Al architectures can process
large-scale spatiotemporal data more efficiently and that subse-
quently enables faster extreme weather predictions across
broader geographic areas, which is a critical improvement for ex-
tending early warning lead times.®® This architecture has demon-
strated state-of-the-art performance in Earth system forecasting
tasks, including precipitation nowcasting and El Nifio/Southern
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Figure 2. Distribution of study locations on
Al methods for EWS

Concentrations of cases are shown in USA, Eu-
rope, Southeast Asia, China, and Japan.

Oscillation (ENSO) forecasting. Another
example is Contextformer, which is intro-
duced by Benson et al.,*" and is a multi-
modal Transformer model designed for
high-resolution vegetation forecasting.
By integrating spatial context through a
vision backbone and modeling temporal
dynamics with meteorological time se-
ries, Contextformer effectively predicts
vegetation greenness across Europe,
which is another important indicator for
several hazard predictions. These attention-based models have
been applied to various EWS. For instance, an attention-based
temporal CNN has been proposed for predicting landslide warn-
ing signals, demonstrating high accuracy in capturing precursory
warning characteristics from sensor data.®® Additionally, atten-
tion mechanisms have been incorporated into CNN to improve
flash flood susceptibility modeling, as shown in studies focusing
on ungauged watersheds.”°

Classical ML methods for EWS, and specifically tree-based
approaches, are applied in 32% of the studies (Figure 1B). These
approaches include Random Forest (RF) and Gradient Boosting
Machines (GBMs), which are particularly useful for EWS as they
can provide interpretable decision-making processes, and can
handle non-linearity and missing data effectively.”' Tree-based
models excel at capturing relationships between environmental
indicators and hazard occurrence, making them well-suited for
hazards with gradual development, such as droughts and
landslides.”*"®

Explainable Al (XAl) methods are also represented in few
studies, notably to improve transparency in EWS models and
these XAl techniques, such as SHAP (Shapley Additive Explana-
tions) and LIME (Local Interpretable Model-Agnostic Explana-
tions), help interpret classical ML and complex NN models by high-
lighting feature importance and decision pathways.”*"® In the
realm of hazard forecasting and EWS, this may be particularly use-
ful as trust and interpretability are crucial for decision-making.”®

Role of Al across the four pillars of early warning

Al methods provide merits for the application across the four pil-
lars of early warning-while also posing challenges for different
use cases along the warning chain.

Disaster risk knowledge (Pillar I)

Building risk knowledge is the basis of EWS because it enables
more accurate predictions, timely communication, and effective
preparedness measures.®’” In recent years by using Al, signifi-
cant progress has been made to better understand the complex
relationships between hazards, society, and risks and conduct
risk assessments.”> 8% A common first step is establishing a
shared glossary of terms to ensure consistent understanding
across disciplines, as exemplified by the ITU-T Focus Group
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Table 1. Artificial intelligence methods and use cases across EWS pillars for different hazards, with examples of applications of the 324 reviewed papers

Al method Merits (or EWS application) Hazard Pillar Examples of application Reference(s)
Linear/statistical ML methods (e.g., they may serve as baseline models for flood | naive Bayes is used for flood Li et al.*°
logistic regression, naive Bayes, hazard forecasting, offering rapid and susceptibility based on social media
support vector machines, Bayesian, understandable predictions that may data in Chengdu city, China.
fuzzy logic), which provide baseline support real-time decision-making. wildfire | SVM is used for predictive Sayad et al.*!
models but are less adaptable to modeling of wildfires.
complex |nteract|or)s. They are Ielff|0|.e nt flood I, 1 fuzzy inference techniques are Wee et al.*
for binary and multi-class classification
used for flood Impact-Based
tasks. )
forecasting system.
landslide I Bayesian Gaussian mixture model is Kang et al.*®
used for automatic detection of rock-
slope failures using distributed acoustic
sensing.
Clustering (e.g., K-means, DBSCAN) they help identify spatial or temporal flood | KNN are used to identify rainfall patterns Chen et al.**
algorithms group data points based on clusters of hazards, which may be for urban inundation rapid prediction.
similarity without requiring pre-labeled valuable for the mapping of risk zones earthquake I K-means are used to label regional Anggraini et al.*®
outcomes, revealing inherent structure and targeted allocation of resources clusters which is feed into early warning
in the data. during emergencies. detection of earthquake using deep
learning.
Tree-based methods (e.g., random their robustness and interpretability drought Il XGB is used to predict Food-Security Busker et al.*®
forests, decision trees, XGBoost) make them ideal for identifying risk Crises in the Horn of Africa.
leverage ensembles of decision trees to factors and generating classification or tsunami I regression tree are used for tsunami Cesario et al.*”
capture nonlinear interactions and regression models for hazard waves forecasting.
hi hical relationships i t iction.
erarcnica re? 1ons |.p.s |r.1 data . prediction drought 1\ fast and frugal trees are used for Guimaraes
through recursive partitioning, making . ; 48
e forecasting and unraveling early Nobre et al.
them robust for classification and ) . . .
. warning relationships between climate
regression tasks. L .
variability, vegetation coverage, and
maize yields at multiple lead times.
Feedforward neural networks (FNN) they integrate diverse data inputs to tsunami 1] MLP is used for predicting the alert level De la Asuncién®®
consist of fully interconnected layers of generate comprehensive risk due to a tsunami at given coastal
neurons that learn complex nonlinear assessments and predictions, which locations.
relationships through weighted may support decision-making in various volcano M FCNN is used to classify the volcanic Rey-Devesa et al.*°
connections and activation functions. hazard scenarios. state of alert based on the behavior of
certain features, providing a probability
of having an eruption.
Convolutional neural networks (CNN) applications: CNNs excel at analyzing earthquake Il a CNN based architecture (PEGSNEet) is Licciardi et al.”’
are deep learning models that remote sensing images to detect applied to Instantaneously track
automatically learn spatial hierarchies hazards such as wildfires, floods, and earthquake growth with elastogravity
from grid-like data using layers of making them ideal for detecting seismic signals.
convolutions. fields for earthquakes by extracting and eildfire Il U-Ccnvolutional long short-term Bhowmik et al.**

interpreting spatial features.

memory (ULSTM) neural network is
developed to extract the location and
temporal wildfire evolution.

(Continued on next page)
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Table 1. Continued
Al method Merits (or EWS application) Hazard Pillar

Reference(s)
|_53

Examples of application
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Recurrent neural networks (RNN) are
designed to process sequential data
(such as time series data) by maintaining
an internal state (memory), effectively

their ability to model temporal dynamics flood Il

makes them valuable for forecasting
hazards, such as predicting weather
patterns and event progression over

LSTM-based streamflow forecasting
model is used to predict daily
streamflow through a 7-day forecast
horizon.

capturing temporal dependencies. time, and making them well-suited for landslide an LSTM-based model for early warning
hazards where historical patterns inform detection of landslide is developed
future risk. using groundwater and rainfall

monitoring.

Transformers (e.g., large language they extract actionable insights from wildfire Dirichlet multinomial mixture (GSDMM)

models [LLMs] & natural language disaster reports and social media, which is used to detect trend and

processing [NLP]) analyze and generate facilitates early detection, human communication during wildfires.

human language, enabling contextual behavior or response of emerging flood ULMFiT is used as text classification to

understanding of large-scale textual hazards through text analysis. improve impact based weather warning

data. systems and support decision-making.

Generative models (e.g., they improve the quality of hazard earthquake cascaded autoencoders are used for

autoencoders, GAN models), which datasets by filtering noise and crowd detection and estimation for an

reduce dimensionality and extract key highlighting critical patterns, thereby earthquake EWS.

features from high-dimensional data by enhancing predictive accuracy in tsunami encoder-decoder neural network is Briseid Storrgsten

learning efficient representations of the
input.

forecasting models.

used for high resolution inundation
mapping for tsunami early warning in
Sicily.

92USIOGI
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Technical Report on Atrtificial Intelligence for Natural Disaster
Management, which provides standardized definitions within
the trans-disciplinary domain of Al for risk management. This
study adopts and builds upon these established terminologies.

Risk knowledge for EWS should encompass and integrate the
concepts of hazard, exposure, vulnerability, and impact-based
forecasting, however few of the reviewed papers explicitly
address these dimensions alongside hazard prediction and
most of these studies focus on drought and flood as the main
hazards. Shyrokaya et al.”® demonstrate that integrating expo-
sure and vulnerability forimpact-based forecasting—using fuzzy
inference, machine learning, and multi-source data fusion—has
enabled more precise, lead-time predictions and actionable risk
communication in EWS. However, significant challenges remain
in normalizing exposure and vulnerability metrics to account for
dynamics,”® addressing data gaps,®' and incorporating dynamic
socio-economic factors.*®*%7%82 These challenges present op-
portunities for further innovation in model refinement, enhanced
data integration (e.g., from stakeholders and local and regional
assessment documents) into adaptive forecasting frame-
works.® The integration of these dimensions into risk frame-
works is especially critical given that advanced data-driven
methods, including Al, demand large training datasets —yet we
face a substantial shortage of reliable data on impact and vulner-
ability metrics.

At the same time, multi-hazard and impact-based approaches
supported by Al remain underrepresented, despite a few prom-
ising studies.”®® However, as disasters are complex and
interconnected, developing models that account for multiple in-
teracting hazards—rather than isolated ones—will be crucial to
building a resilient and adaptive early warning framework that re-
flects the complexity of real-world risks.'”**°> One of the chal-
lenges for MHEWS would be to standardize evaluation metrics
tailored to specific hazards—such as floods, earthquakes, and
landslides —a method that could be applied by various Al models
and by doing so will also foster better model validation and
cross-comparison.®¢:87

Employing generative adversarial networks (GANs) to create
synthetic datasets has shown considerable potential for
improving landslide displacement models, while federated
learning approaches enable the aggregation of localized
models—such as those used in earthquake prediction—without
compromising sensitive data.?®°° These federated approaches
enable multiple institutions to collaboratively train shared Al
models by exchanging only model updates rather than raw
data, which makes them particularly valuable for contexts with
sensitive data or limited connectivity where traditional central-
ized approaches are not feasible due to for example data con-
straints. Additionally, exposure, vulnerability and impact data-
sets can be derived from Al. For example, for exposure
mapping, there are promising approaches that include building
footprint extraction using models like Google Open Buildings,
Microsoft Bing Maps Building Footprints, and Al-enhanced pop-
ulation distributions from WorldPop that include poverty indica-
tors.”" Physical vulnerability assessments can, for example,
leverage pre-labelled damage datasets like xBD (which contains
approximately 850,000 labeled damages across multiple haz-
ards) to train CNN models that assess building damage for
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new disasters or establish baseline vulnerability.”” Subse-
quently, CNNs can be used to determine the damage for an un-
seen disaster, forming an alternative rapid damage assessment,
but also to train impact-based forecasting models if other impact
data are missing.”® Additionally, the use of NLP for enhancing the
collection of impact data has proving promising® and the same
method could be applied to gather information on early actions
and responses to supplement traditional impact records.

Foundational models like large-scale Earth system models
and multimodal Al systems can enhance disaster risk knowledge
(Pillar 1) by synthesizing vast amounts of environmental observa-
tions and extracting complex spatiotemporal patterns that may
inform a comprehensive understanding of Earth systems.*>™’
These models, for example, are addressing the challenge of inte-
grating heterogeneous observation networks and models to
improve predictions across scales from weather to climate.
Recent developments such as Aurora-based on more than a
million hours of geophysical data show that such models can
outperform traditional numerical forecasting systems across
multiple Earth system domains and are orders of magnitude
more computationally efficient, allowing for the enabling broader
accessibility to accurate environmental predictions underpin-
ning effective EWS.%®

These strategies enhance model robustness and democratize
access to high-quality risk assessments, paving the way for
more resilient and community-focused EWS.%® However, ad-
dressing data scarcity through innovative methods like Al-
derived datasets may fill data gaps but not change the issue of
data scarcity as such.'°°"'%* For example, global gridded popu-
lation datasets systematically underrepresent the rural popula-
tion-which is not necessarily changed through Al analysis
methods.'%®
Monitoring, forecasting, analysis of hazards (Pillar Il)
The WMO Executive Action Plan for EW4AII (2023-2027) empha-
sizes that enhanced data integration and technological innova-
tion are a core priority to strengthen monitoring and forecasting
capabilities. Al is progressively transforming Pillar Il, enhancing
the monitoring, analysis, and forecasting of hazards through its
ability to process vast amounts of real-time data from diverse
sources.®”*31% Techniques like deep learning, transfer learning,
and hybrid models drive these significant improvements in
prediction accuracy, lead times, and location determination, as
is demonstrated by studies such as those by Abdalzaher
etal.’9”"% and Xu and Gao.'?° A recent innovative advancement
within Al for forecasting is GraphCast, which provides a graph
neural network-based forecasting system that delivers highly ac-
curate, medium-range weather predictions and early warnings of
extreme events.*” The potential of transformative Al models that
include LLMs and foundation models may enhance disaster risk
management across multiple domains and is comprehensively
examined in the ITU-T Focus Group Technical Report on Trans-
formative Al Models for Natural Disaster Management, which
provides guidance on leveraging these advanced Al architec-
tures for improved monitoring and forecasting capabilities. Addi-
tional method advancements center around integrating Al with
real-time sensor networks, satellite data, and |oT to create adap-
tive, intelligent systems that can detect weak hazard signals
earlier than traditional models, crucial for improving global early
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warnings.®*""° This shift toward dynamic and data-driven fore-
casting is marking a key advancement in global risk manage-
ment and reduction.

To successfully integrate Al in Pillar 1l, the integrity and reli-
ability of data streams from heterogeneous sources is important.
For example, by ensuring data quality, robust sensor calibration,
and secure communication networks, models may be able to
avoid false alarms or missed events—a concern highlighted by
Lietal.""" and Al-Rawas et al."'? in their review of flash flood pre-
diction technologies. Similarly, standardized interoperability pro-
tocols to seamlessly integrate 0T sensor data, satellite imagery,
and numerical model outputs, would provide guardrails for moni-
toring and detection as these elements form the backbone of
efficient EWS. %% 113114 Zhy et al.''® demonstrate how Al can
automatize autonomous location-based decision-making to
transform and enhance emergency response operations.
Furthermore, standardizing protocols in the form of data-knowl-
edge-driven or collaborative frameworks, as those proposed by
WMO, is holding the key to transforming proactive hazard miti-
gation in the face of a rapidly changing climate.>*"'®

Processing these multi-modal data in near real-time with the
help of advanced Al models is a substantial opportunity for
enhancing hazard forecasting. For instance, deep learning archi-
tectures that are integrated with autoencoders and CNNs, can
rapidly estimate earthquake parameters and thereby improving
early warning lead times.'°® Furthermore, Xu and Gao'®® show
that high accuracy and low computational cost can be achieved
by developing a hybrid surrogate model that fuses LSTM and
CNN outputs, which they exemplify with a coastal flood predic-
tion study. Furthermore, investing in distributed sensor networks
with edge computing capabilities could be worthwhile as these
methods enable local data processing to lower latency and
improve the promptness of warnings. Such integration enables
Al to process high-speed data streams and detect subtle,
weak hazard signals much earlier than conventional statistical
models, thereby extending the effective lead time of EWS.

Another promising avenue is enhancing the generalisability of
Al models across different hazards and geographical regions
that can be done through transfer learning and multi-modelling.
For example, deep learning architectures can be adapted to
diverse environmental conditions, while maintaining high predic-
tion accuracy despite variations in regional hazard characteris-
tics.""”""® This adaptability not only facilitates the deployment
of robust EWS in data-scarce regions'°? but also opens possibil-
ities for a unified forecasting framework that can address multi-
ple hazard types simultaneously.’'® However, the integration of
multi-hazards remains challenging as different hazards have
different lead times requiring different ways of operating.?
Developing flexible, modular Al architectures that are able to
accommodate variable temporal scales and warning thresholds,
while maintaining interoperability between hazard-specific com-
ponents, will be critical to overcome these operational chal-
lenges and enable to adapt to changing environmental
conditions.

Learning algorithms that can quantify uncertainties in hazard
forecasts-such as Bayesian Al techniques and traditional phys-
ics-based models-can lead to more robust and interpretable
predictions. %8120 For example, models that integrate phys-
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ics-based with advanced Al models can give insights into the
fundamental dynamics of hazard processes.’?’"'2® A prime
example of an integrating all approach, is establishing a digital
twin that is able help precise risk prediction while leveraging Al
algorithms for efficient processing and analysis of real-time
data.” Digital twins allow for the integration of real-time sensor
data, advanced simulation models, and historical records into
a unified virtual replica of physical systems, enabling continuous
monitoring, dynamic risk assessment that include exposure
and vulnerabilities of the system, and proactive disaster man-
agement. 27128 Multi-hazard susceptibility maps may provide
a foundation here from which to capture and contextualize un-
derlying environmental and atmospheric processes, as well as
hazard interactions.

However, to provide actionable risk information that enables
targeted protective actions it is crucial to integrate exposure
and vulnerability data with hazard intensity warnings.'?*"'*' We
acknowledge, however, that dynamic exposure and vulnerability
data are generally scarce and difficult to collect,'*'* particu-
larly for the most vulnerable groups (e.g., residents of informal
settlements). When exposure and vulnerability data do exist,
for example, collected by insurance companies and usually in
high-income countries, they are often not publicly accessible
or incomplete, Potential pathways to overcome these limitations
include enhancing, public-private partnerships, anonymized
data sharing agreements, and the development of standardized
vulnerability indicators from open government data sources.
Additionally, the use of crowd-sourced vulnerability mapping
or the integration of satellite-derived exposure metrics offer
alternative approaches to complement unavailable data. These
impact-based forecasts represent a strategic priority within the
EWA4AIl initiative, which allows to shift from traditional hazard-
only predictions to forecasts that directly estimate potential con-
sequences on people, infrastructure, and livelihoods. Al may
play a crucial role in impact-based forecasting as it allows for
the processing of complex multi-dimensional datasets that
combine meteorological predictions with demographic, infra-
structure, and socioeconomic data to generate location-specific
impact predictions.”®'** For example, instead of simply fore-
casting flood depth, impact-based systems allow for predictions
that can warn communities that they will be cut off, or provide in-
formation on which critical infrastructure will fail, and what hu-
manitarian needs will emerge.'® This transformation from
‘what the weather will do’ to ‘what the weather will due to us’
is essential for moving beyond generic warnings to tailored,
actionable guidance that saves more lives and reduces
losses.'%®
Warning dissemination and communication (Pillar III)
Enabling clear and accessible dissemination and communica-
tion is crucial for the translation of early warning information
into actionable formats. For example, the common alerting pro-
tocol, Google Public Alerts, and IFRC Alert Hub expand the
reach of reliable, fast, and actionable warning messages to peo-
ple at risk, in which Al could support. Moreover, operational
guidance from international organisations is emphasizing the
critical role of Al to enhance communication effectiveness. For
example, the WMO Guidelines on ‘Multi-Hazard Impact-based
Forecast and Warning Services’ highlight the importance of
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partnerships between scientists, forecasters, and community
leaders in developing effective warning communication sys-
tems."®” Furthermore, the ITU/WMO/UNEP Focus Group on Al
for Natural Disaster Management (FG-AI4NDM) has established
best practices for using Al to support EWS and improve commu-
nication across spatiotemporal scales through multiple opera-
tional use cases how Al-enhanced communication systems
can improve alert dissemination across diverse populations. '

First, Al can generate emergency alerts tailored to specific
geographic locations, demographics, and language prefer-
ences. The use of large language models to support the transla-
tion of warnings is, for instance, a straightforward application
and has already been implemented in several operational
EWS. However, more work is needed in tailoring messages to re-
cipients based on their demographic characteristics. While
progress has been made in creating sector-specific warnings,
it is essential to further develop personalized alerts, for example,
for people of different ages or persons with disabilities. Core
topics in this area include real-time alert generation, explainable
alerts, and the development of user-friendly and accessible
communication interfaces, which together facilitate effective
disaster risk communication and situational awareness.

Secondly, another area of development is the Al-driven real-
time prediction that can quickly generate alert messages. For
instance, Dang et al."*® developed a real-time EWS for urban
flooding that is leveraging big data analytics and Web-GIS visu-
alisations that is able to enhance flood risk communication.
Another example is “FloodWatch,” which is an loT-based flood
monitoring system that provides continuous hazard assessment
and instant notifications.’“® Furthermore, Ouaissa et al."*" high-
lights the role of Al and loT integration in wildfire and flood man-
agement, demonstrating how real-time processing improves
situational awareness and response capabilities of people at
risk. Furthermore, Al can integrate user reports from social me-
dia and loT devices, providing a comprehensive situational over-
view in real time, which increases the effectiveness of informa-
tion dissemination to end-users®! For example, leveraging the
collaborative power of Al and citizen science can be comple-
mentary by improving the use and access to citizen generated
data, which supports inclusion of complementary local knowl-
edge to forecast models.'®® These approaches are aligning
with findings from the IFRC’s guide ‘The Future of Forecasts’
that is demonstrating how impact-based forecasting can trans-
form complex scientific information into actionable community
insights for (Al-powered) communication strategies.

Third, Al can support by real-time analysis of multi-modal
data—from sensor networks, satellite imagery, radar, weather
models, and social media—to generate timely, actionable warn-
ings and ensure that emergency messages reach all stake-
holders via intuitive digital platforms. For the public, it is essential
to provide intuitive and multi-platform communication strate-
gies. If interfaces are able to provide alerts that are understand-
able through web platforms, mobile applications, and interactive
mapping tools, it may enhance public engagement.'*%'“? For
example, visual and geospatial representations of risks, such
as real-time hazard mapping and augmented reality overlays,
make complex data more comprehensible for both decision-
makers and communities. An underrepresented aspect is the
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use of Al for reinforcement learning-training agents for deci-
sion-making during emergency scenarios, which could be an
area of future research.

Preparedness and response capabilities (Pillar IV)
Enhancing response capacities and preparedness is essential
for ensuring that EWS translate into timely, effective actions
that minimize the societal and economic impacts of natural haz-
ards. Al is progressively employed to test its effectiveness in
supporting pillar IV, notably in modeling disaster response sce-
narios, speeding up analytics and data processing for real-time
relief efforts, and improving the efficiency of emergency pre-
paredness across sectors and decision-making support sys-
tems with diverse stakeholders connected to EWS and anticipa-
tory action.'#%'*® While most operational EWS have not yet fully
integrated Al, existing humanitarian frameworks may provide
valuable foundations for Al implementation to support. For
example, the IFRC’s Operational Framework for Anticipatory Ac-
tion 2021-2025 establishes systematic approaches for forecast-
based disaster response that could be enhanced through Al ap-
plications in risk assessment, resource allocation optimization,
and predictive modeling. OCHA'’s briefing note on Al for the hu-
manitarian sector reflects this as well, although mentioning some
challenges to overcome in a data driven world, such as chal-
lenges misinformation, reinforcement of bias, system opacity,
cybersecurity, and erosion of privacy.’'** Additionally, to ensure
a coordinated progress in Al-enhanced disaster risk manage-
ment technologies for preparedness and response capabilities
across international organisations and standards development
bodies, the FG-AI4NDM provided a standardization roadmap,
which may serve as a strategic guide for this.'*

A range of examples of Al-support in this domain come from
humanitarian and military sectors, such as using unmanned
aerial vehicles (UAVs) to capture and process high-resolution
local real-time data in emergency scenarios, such as Al-sup-
ported spatial mapping, data processing for damage assess-
ment and situational awareness. On the financing side, Fast
and frugal tree methods could be used to analyze the existing
rapid cash transferring systems in a forecast model that unravels
early warning relationships between climate variability, vegeta-
tion coverage, and maize yields at multiple lead times and
cost-effectiveness of response measures.*® Additionally, les-
sons can be drawn for Al-based responses to natural hazards
from other field such as the health sector and biological hazards.
For example, Al is used to simulate COVID-19 vaccine delivery
contingency plan for IDP camps in Borno State, Northeast
Nigeria. Next to this, Al methods have supported simulating
the transmission of infectious diseases under various interven-
tion measures and evaluate the effectiveness of control strate-
gies can help formulate, implement, and potentially adjust
measures.'*®

Despite these promising applications, multiple challenges
exist, such as uncertainties and the algorithm bias, might lead
to false response scenario planning, notably by reinforcing
the underrepresentation of rural communities and minority
groups.’®? Managing the complex interrelations of disaster
response scenarios remains challenging as new risks could be
introduced while advanced technology may lack applicability
or fail to meet the actual needs of rural communities.’*’'*® While
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in existing systems, this is already a challenge, automated
models may narrow this people-centric interaction along the
warning chain even more.

With increasing complexity and predictive power of Al models,
issues of trust, reliability, and interpretability of the models and
its suggestions are fragile. This can cause issues from a physical
perspective but can also result in a lack of trust by multi-stake-
holders in warning messages.’® Transparency in Al systems ex-
tends beyond mere technical openness; it involves providing
stakeholders with accessible and meaningful information about
how Al models function, make decisions, and impact various
user groups, ensuring that Al within the warning chain is trans-
parent and inclusive.'*°
Cross-cutting aspects of responsible Al in EWS
While Al offers significant potential across all four pillars, suc-
cessful implementation requires to address fundamental chal-
lenges that may transcend individual pillar boundaries. Here
we identify four critical cross-cutting aspects. Firstly, explain-
ability is critical-yet, challenging for ethical and inclusive usabil-
ity across the four pillars.’*® For example, to ensure that
Al-driven early warning communications are actionable, it is
essential to have explainable results that preferably also provide
insides on uncertainty. The lack of interpretability of Al can hind-
er trust in Al-generated warnings, making it essential to incorpo-
rate explainable Al (XAl) methods that reveal decision-making
processes and highlight uncertainties.”® For the interoperability
of EWS, where human lives depend on, it is crucial to provide
such transparency and insights into model predictions. Ulti-
mately, this will enhance user confidence also contribute
to better-informed decision-making in high-stakes hazard
scenarios.”>"®

Secondly, accountability is a key need in Al-powered EWS,
notably, to establish clear responsibility frameworks for when
systems fail, which ensures humans retain ultimate oversight of
warning decisions regardless of automation level."*">" For
example, transparent decision-making chains must document,
which components (Al or human) triggered specific warnings,
which should enable post-event auditing and continuous
improvement while clarifying liability. Additionally, accountability
demands for inclusive governance structures where diverse
stakeholders—including vulnerable communities—have mean-
ingful input into system design, deployment, and evaluation,
ensuring Al serves broad public interests rather than narrow
technical or commercial goals. Furthermore, collaborative ap-
proaches are key to evolving EWS.”” For example, fostering
interdisciplinary collaborations among geoscientists, Al experts,
policymakers, and local stakeholders is essential to translate
these technological advances into sustainable, real-world
applications.'*?

Thirdly, data scarcity in Al-powered EWS reflects insufficient
historical records of extreme events, inadequate monitoring net-
works in vulnerable regions, and low-resolution datasets of
hazard-specific parameters.’®® Such scant training data can
produce biased models that perform poorly in historically under-
represented areas or for rare but catastrophic events and thus
create warning gaps between data-rich and data-poor regions.
Beyond simple data augmentation, novel approaches are
needed for addressing this challenge: physics-informed models
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incorporating domain knowledge, transfer learning from data-
rich to data-poor contexts, and methods to quantify uncertainty
when working with limited observations. Addressing data gaps in
training data for data scarce regions, is to prioritize the develop-
ment and validation of Al-derived datasets across risk compo-
nents. Al-derived datasets should be rigorously validated with
ground-truth observations where available, with clear documen-
tation of uncertainties, potential biases (especially in underrepre-
sented regions), and methodological limitations. International
standards for dataset quality, interoperability, and transparency
would further enhance the utility of these resources for opera-
tional MHEWS, particularly in data-scarce regions where tradi-
tional observational networks remain limited. The ITU/WMO/
UNEP Focus Group on Al for Natural Disaster Management
and the subsequent Global Initiative on Resilience to Natural
Hazards through Al Solutions provide technical guidance on
best practices for data collection, modeling and effective
communication for addressing these standardization challenges
for responsible Al deployment that could help bridge data and
capability gaps across regions.

Fourthly, community engagement and local knowledge inte-
gration should be emerging as critical success factors that will
determine Al-enhanced EWS effectiveness. The IFRC’s exten-
sive experience with forecast-based financing across multiple
National Societies is demonstrating that meaningful community
engagement is essential for any EWS to be trusted, understood,
and acted upon. Successful early warning implementations
should have a systematic way to integrate traditional and Indig-
enous knowledge systems alongside technological solutions,
which is documented in Anticipation Hub case studies.’** Addi-
tionally, organisations such as Practical Action exemplify usage
of Al in case studies, while UNDRR point out the potential of Al
for EWS and documents this in their handbook on risk knowl-
edge for MHEWS. This would establish principles that will be vital
for ensuring that Al systems complement rather than replace
local expertise and decision-making processes. Additionally,
co-production approaches are essential for successful Al imple-
mentation in EWS and should involve meteorologists, social sci-
entists, and humanitarian experts that work directly with at-risk
communities, '°*"° as is emphasized by the IFRC’s comprehen-
sive analysis in ‘The Future of Forecasts’ and WMO's guidelines
on ‘Multi-hazard Impact-based Forecast and Warning Services’.

DISCUSSION

Ways forward

This study aims to address the knowledge, application, and
policy gap on Al and EWS across the four pillars. While Al holds
significant potential to improve EWS across these pillars, our
results highlight the necessity of establishing guardrails for
responsible use of Al in EWS, to ensure people-centred ap-
proaches and address the current challenges emerging in use
cases (such as data gaps, algorithm bias, and underrepresen-
tation of minority groups). While this study did not aim to estab-
lish universal guardrails for Al and EW, it intended to provide
evidence-informed questions that need to be considered and
addressed by those who have the responsibility to implement
and operate EWS. Hence, Figure 3 provides an overview of



iScience

Artificial
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Guiding questions

. What are the knowledge sources

considered? 4
How do we know what we know? 4

. Who is (under)represented, when and

why? 44

. How are existing biases/injustices that Al

could reinforce guarded? 4

. Is Al-derived information explained,

understood and contextualized? &

. Are information gaps and limitations

documented? &

. Who consents to and who owns Al

processed data?

. How are human oversights and

responsibility ethics established? A ww

. Who takes decisions and who is missing

onthe table? W

10. What are monitoring, learning and

evaluation frameworks of Alusage? W
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Figure 3. Role of guiding questions that
serve as guardrails for the responsible utili-
zation of Al methods across the four pillars
of EWS

The EW4ALL framework is adapted from WMQO’s
Executive Action Plan for 2023-2027.

application area remains in monitoring
and forecasting. Another finding of cur-
rent applications is the processing of
multi-modal data in near real-time using
advanced Al architectures and distrib-
uted sensor networks. Specifically, Al
has the potential to reduce latency

and extend early warning lead times ac-

guiding questions based on this study that can help to establish
guardrails across the four pillars to contribute and transfer to
current knowledge, implementation, and policy sphere of
EWS and Al (e.g., under the EW4ALL initiative). It unravels
some of the key issues that are critical for responsible use of
Al methods across the four Pillar, notably to ensure people-
centred, responsible, and accountable Al use. The guiding
questions are not comprehensive, nor extensive, however,
they offer a guiding set of questions for future research in this
domain moving forward.

The knowledge gap

Our review finds that Al can support in integrating exposure,
vulnerability, and impact-based forecasting by standardizing
metrics, addressing data gaps or hybrid approaches that
combine physics-based models with advanced Al. For
example, digital twins and collaborative systems may offer
promising pathways to enhance dynamic risk prediction and
proactive disaster management. While standardizing evalua-
tion metrics across diverse hazards might remain a significant
challenge, developing models that capture and that quantify
the complex interactions of cascading events might offer an
interesting array for future research. The review also high-
lighted that one of the major trends in Al and EWS are
methods that can help to address data scarcity, specifically
in rural areas (data augmentation, transfer learning and feder-
ated learning to overcome data limitations) and enhance
model robustness and democratize access to high-quality
risk assessments for EWS. Filling those data gaps, however,
it will be critical to consider diverse knowledge sources and
reflect on the biases of the data and algorithms utilized (see
guiding question 1-3). Specifically, the narrative of filling
data gaps through Al needs careful reflection on accountable
oversight mechanisms to ensure quality and reliability (see
guiding question 7-9).

The application gap

Al has been increasingly applied in the domains of risk knowl-
edge, monitoring and forecasting, dissemination and commu-
nication and preparedness and response. However, the main

curacy in monitoring and forecasting.
Further, its capacity to model generalis-
ability through transfer learning and
multi-modelling paves the way for
improving forecasting across diverse hazards and support
scenario planning. Finally, integrating physical process simu-
lations with data-driven insights or Al powered earth system
models and digital twins hold promising pathways for devel-
oping robust, interpretable systems that better inform timely
decision-making. However, it is impediment to establish eval-
uation criteria ensuring data integrity, accountability, and
interoperability across heterogeneous sources—such as loT
sensors, satellite imagery, and numerical models (see guiding
question 10). This can mitigate false alarms and improve
detection reliability. Additionally, the application areas of Al
are dominantly technical niche-requiring efforts for explain-
ability and ensuring that the role of Al in the warning chain
is well documented and understood by all stakeholders (see
guiding question 5 & 6). Furthermore, we showed that case
studies are mostly absent in sub-Saharan Africa, Central
America, parts of South America, Central Asia, and small is-
land developing states. Such uneven geographical distribution
of Al-focused EWS research and implementation reflects the
infrastructure and digital disparities, where regions most
affected by the digital divide and weather station deficits
receive the least research attention, creating a worrying cycle
where technological advances may actually worsen rather
than reduce existing warning system inequalities (see guiding
question 6 & 9). To bridge this digital divide, Digital Public
Goods initiatives and open-access Earth observation plat-
forms such as Digital Earth Africa and Copernicus are offering
promising pathways by providing free access to satellite data
and computational resources. This has the ability to support
and enable researchers and practitioners in data-scarce re-
gions to develop locally relevant AI-EWS applications.
The policy gap
While advanced Al methods can enhance the effectiveness
across the warning chain, it persists a lack of studies
providing ethical and human-rights based frameworks and
commonly agreed ethical oversight mechanism for Al deploy-
ment (see guiding question 8). For example, few of the studies
applying Al methods in EWS domain, provide reflection and
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ethical guidance on issues such as privacy, data bias and the
trustworthiness of Al-supported information for policy makers
and practitioners. Global, regional and national standards
need to be developed for the use of Al in EWS, building
upon existing frameworks such as the ITU/WMO/UNEP tech-
nical reports on Al for Natural Disaster Management and the
WMO Executive Action Plan implementation guidelines.'®’
For example, the protection of transparency, fairness and hu-
man oversight of Al systems are impediment for implementa-
tion in any EWS application (see guiding question 8). Specif-
ically, core values such as gender, education, research,
wellbeing and ecosystems need to be integrated, evaluated
and monitored through frameworks and policy mechanism
for Al in EWS, while currently critically underrepresented or
even absent’? (see guiding question 3).

The scope of this study was not aimed at establishing
comprehensive guardrails for addressing such policy issues.
However, it recognizes that technocratic approaches in
disaster risk reduction must go hand in hand with people-cen-
tred and responsible approaches, which are yet to be estab-
lished for this domain. Guardrails are almost absent in the re-
viewed papers in this study. Additionally, it is essential to
foster international standardization efforts that include diverse
stakeholders representing different regional priorities. This en-
sures both effective and equitable implementation, potentially
encouraging adoption of these standards into national legisla-
tive frameworks.'®® Further, such collaboration allows to
develop international standards for Al in EWS that are not
limited by cross-border interoperability, which are currently
critical blind spots in warning coverage precisely where haz-
ards may transcend national boundaries. Ultimately, unlocking
the potential of Al in EWS requires close collaboration be-
tween the research community and the key national actors
-supported by the UN agencies and IFRC- implementing
EWA4AII, including UNDRR for risk knowledge and prepared-
ness, WMO for monitoring and forecasting systems, ITU for
warning dissemination and communication and IFRC for pre-
paredness to respond. Such an alignment would ensure that
research priorities identified here translate into operational im-
provements across the four pillars and support evidence-
based policy development at international and national levels.
The guiding questions that serve as guardrails for responsible
Al implementation and pillar-specific findings from this review
offer these agencies a practical framework that can be used to
develop responsible Al integration strategies that can address
the technical, ethical, and equity challenges identified across
EWA4AIl implementation.

Concluding remarks

This study examined Al methods utilized in the context of EWS,
their opportunities and limitations and discusses guardrails for
applying Al in people-centred EWS. While Al offers opportunities
for the effectiveness of EWS, there is a lack of guidance and
ethical questions to ensure inclusive, people-centred warning
systems moving forward. Artificial intelligence (Al) paves the
way for improvements of early warning across the four pillars,
supporting its viability for protecting sectors, systems, and
people.
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Patterns of Al use/adoption: Al tools in EWS substantially
increased in the past decade across the globe for different haz-
ard types in the domain of early warning. A variety of methods are
utilized (such as Deep Learning, NLP) to support parts of the
warning chain, dominantly computational and data-driven
components.

Challenges and opportunities across the four pillars: Applica-
tion areas are dominantly in forecasting and monitoring,
however, there are emerging patterns and examples for applying
it across the warning chain, which need to be further explored.
Challenges include explainability, including privacy and ethical
considerations of the use of data, issues around accuracy and
accountability of Al and the data scarcity challenge.

Addressing policy, research, and knowledge gap: The role in
EWS is not a silver bullet for improving existing systems-it can
be understood as a complementary approach, when carefully
tested and ethically embedded into regulatory frameworks, to
support parts of the warning chain. It is critical in the future to
strengthen research and policy making of people-centred EWS
and DRR to identify utilities that do no harm.

Future research can strengthen the responsible use of Al
methods across the EWS pillars through tackling guardrails
and providing guidelines for research, application, and practice.
Ultimately, the potential of Al in EWS could only be realized with
close collaboration between the research community and UN
agencies implementing EW4AIl (including WMO, UNDRR, and
other relevant agencies) to ensure that research findings would
be translated into operational improvements and evidence-
based policy development across the four pillars.

Limitations of the study

This study encounters multiple limitations in the methodology.
First, we acknowledge that there are other papers that still
address Al for one of the EWS pillar but not explicitly mention early
warning or early warning systems in their paper. For example,
there are papers that are about preparedness in humanitarian ac-
tion, which might have also contributed additional insights, how-
ever, due to the selected search strings were not integrated. Sec-
ondly, the four-eye principle of title and abstract screening might
have introduced biases due to the positionalities of the two re-
searchers for selecting the papers. Thirdly, only including open
access and English papers, as well as excluding gray literature
in the systematic literature review introduces limitations to the
comprehensiveness of the review. Fourthly, the study utilized
NLP in the review process to extract locations or hazard types
of the reviewed abstracts, which introduces the bias of an Al
tool to the research; however, 100% human oversight was imple-
mented to mitigate this limitation. Lastly, the requirement for
explicit ’early warning’ terminology in our search may have
excluded relevant Al forecasting studies using alternative terms
such as forecasting and prediction in the realm of hazard studies
that might be of interest to one of the pillars of EW4ALL.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version: 3.12) The Python Software Foundation RRID: SCR_008394, https://www.
python.org/

spaCy (Natural Language Processing Explosion Al https://spacy.io/

library)

Hugging Face (Al model repository and Hugging Face Inc. https://huggingface.co/

libraries)

geopy (Geocoding library) GeoPy contributors https://github.com/geopy/geopy

Scopus (Bibliographic database) Elsevier https://www.scopus.com/

Microsoft Excel Microsoft Corporation RRID: SCR_016137, https://www.

microsoft.com/

METHOD DETAILS

We conducted a systematic literature review to gather descriptive statistics on the use of Al for early warning systems (EWS) and
synthesised its role across the four pillars of EW4ALL using the pool of papers. In order to do so, we first developed search queries
using Scopus (on title, abstract and keywords) incorporating terms related to EWS, Al (including ‘artificial intelligence’, ‘machine
learning’, and ‘deep learning’), natural hazards, and risk, with some queries also linked to specific pillars (see literature selection).
Subsequently, we screened the papers for relevance using a four-eye principle and gathered those that met our criteria of relevance
to the pillars (see screening process). Next, we classified the entries, extracted relevant metadata, and employed NLP techniques to
assist us to detect key terms. We have validated everything manually afterward (see review process). This process allowed us to
compile a comprehensive dataset for our review, following the PRISMA 2020 guidelines where applicable.

Literature selection

For selection of relevant literature, we used Scopus and included criteria encompassing EWS, Al, and risk-related terminology. We
divided the literature search among the pillars of EW4ALL and various categories (see Table 2). Each search query included one of the
Al-related terms and ‘early warning’ for EWS, except in the case of single-hazard queries, where we used ‘early warning system’, and
was applied to the title, abstract and keywords. For risk-related terminology, we selected the criteria listed in column 4 of Table 2
which resulted in a total of 1344 unique papers, and 1187 after excluding non-English written papers. The Table summarises the
search criteria for the selection process of the systematic review in which each row represents a search criterion.

Search criteria for the selection process of the systematic review in which each row represents a search criterion

EWA4ALL pillar Search terms® Exclusion criteria

Pillar | risk knowledge multi-hazard, multi-disaster, multi-risk, socio-economic events
compound hazard, compound disaster,
compound risk, impact based,
exposure, vulnerability
Pillar | risk knowledge or Pillar Il hazard, disaster, flood, drought, biohazards, socio-economic shocks,
forecasting, analysis, monitoring heatwave, wildfire, earthquake, non-hydro- and geo-hazards
coldwave, landslide, avalanche,
storm, cyclone, typhoon,
hurricane, tsunami, volcano.

Pillar 1ll warning dissemination dissemination, communication urban digitalization, smart cities,

and communication health related studies

Pillar IV response and preparedness preparedness, response, early military response, conflict response,
action, anticipatory action, conflict preparedness

emergency response

®Note that all searches include the search terms on Al (“Artificial Intelligence” OR “Al” OR “Machine learning” OR “Deep learning”) and “early
warning,” except the second row with individual hazards for which “early warning system” was used.
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Screening process

For each entry, we employed the four-eye principle and screened (title, abstract, keywords) if the entries are addressing Al and EWS
within the context of natural hazards, disasters, and risk. Here, we excluded entries related to biological hazards. To differentiate be-
tween Pillar | and Pillar 1l, we categorised entries based on whether they contributed to the body of knowledge on EWS (Pillar |) or
provided a practical implementation of hazard monitoring and detection (Pillar Il). This resulted in 324 papers for the review process.

Review process

For each of the 324 selected papers, we extracted key information as meta data that includes the Al concept employed (i.e., classical
ML, NN, and NLP), the specific Al method, the geographical location, and the hazard type. We focused on three Al categories, i) clas-
sical machine learning, ii) neural networks, and iii) natural language processes and assigned each paper to the category it most
closely aligned with. We used Natural Language Processing (NLP) tools to assist us in the review process for specific parts and tasks
of the review process.'*® We employed ‘spaCy’ for tokenisation and named entity recognition to extract locations and models from
predefined lists, and a fine-tuned transformer model from the Hugging Face library to classify text into specific hazard types. This
NLP-generated metadata served as a preliminary dataset that was subsequently manually verified, corrected and further filled in
by the research team. Each entry was thoroughly reviewed for fitness with 100% human oversight of all extracted information,
and the metadata was further filled in and updated accordingly to ensure accuracy. In addition, for papers that are mentioning
specific geographical locations (n = 158), we manually classified each study based on implementation status: ‘research-based’
(Al methods applied to case study data with no operational deployment), ‘prototype or implemented’ (Al systems developed and
tested but not yet operationally integrated or Al methods integrated into existing operational EWS).

QUANTIFICATION AND STATISTICAL ANALYSIS
We used the geopy package in Python to extract latitude and longitude data for the case studies locations and generated descrip-

tive plots for Figure 1. These plots illustrate the distribution of papers across different hazard types, pillars, and other relevant
categories.
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