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Future agricultural landscapes will likely be shaped by the interplay between socioeconomic
developments and natural conditions. However, existing theory-driven, process-based models often
rely on idealized assumptions, limiting their capacity to capture real-world complexities fully. To
complement these methods through an observational, data-driven approach, we developed a novel
global dataset utilizing a statistical fixed-effects model. This paper presents a novel global dataset
detailing projections of harvested area allocation for ten major crop groups across 197 countries and
regions from 2020 to 2100. The dataset was generated using a statistical fixed-effects model calibrated
on historical data. It includes annual projections under six distinct SSP-RCP scenarios (SSP1-2.6, SSP2-

© 4.5,SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5). For each scenario, the dataset provides future

. trajectories for key national agricultural management inputs—including nitrogen application rates,
irrigation extents, and mechanization levels—and the resulting projected cropping shares. This dataset
is designed to support assessments of food security, trade policy, and environmental impacts by
providing a consistent, data-driven set of future agricultural landscape patterns.

: Background & Summary

© Agriculture is fundamental to human societies, providing essential resources such as food, fiber, and fuel, and
exerting substantial influences on global economies and landscapes'. With the global population expected to
approach approximately 10 billion by 20507, pressures to enhance agricultural productivity and sustainability are
intensifying. These challenges are further exacerbated by climate change, resource scarcity, and shifting socioec-
onomic conditions, all of which significantly affect decisions regarding agricultural land use’.

A crucial aspect of agricultural dynamics involves the interplay between farmers  land management decisions
and their choices regarding crop selection and location®. Changes in agricultural management practices, includ-

: ingincreased application of irrigation, fertilizers, and machinery, influence crop yields and production costs,
. thereby reshaping a country’s comparative advantage in cultivating particular crops. Consequently, such shifts
- influence farmers’ cropping choices globally®. Although existing modeling approaches commonly project future
agricultural land use, they frequently lack transparency in explicitly linking broad socioeconomic scenarios,
such as the Shared Socioeconomic Pathways (SSPs), to tangible changes in agricultural input intensity, including
nitrogen application, irrigation, and mechanization, and subsequently detailing how these management adjust-
ments affect farmers’ crop selection based on evolving relative competitiveness. Clearly understanding these
. causal pathways is essential for accurately evaluating agricultural adaptation strategies and anticipating future
: landscape compositions.

Many current large-scale land-use projections depend heavily on equilibrium-based, process-driven models
such as GLOBIOM and GCAM?®’. These frameworks are powerful tools for exploring future scenarios, as they
effectively capture broad, theory-driven interactions across agricultural systems. They typically operate under

: core economic principles such as market equilibrium and rational behavior among participants, which is essen-
© tial for assessing theoretically optimal adaptation pathways®’. However, there is an acknowledged need for com-
. plementary approaches that explore future agricultural landscapes from a different methodological standpoint®®.
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Statistical models based on historical observations, such as the fixed-effects model employed in this study, offer
such a complementary perspective. Instead of being constrained by theoretical assumptions about behavior,
these models learn directly from observed, real-world data. By capturing the empirical relationships between
macro-level drivers and collective agricultural outcomes, this data-driven approach can reveal patterns shaped
by historical inertia, market imperfections, and complex behaviors that may not be fully represented in equilib-
rium frameworks. Therefore, this study does not aim to replace process-based projections, but rather to enrich
the existing landscape of future scenarios. By providing a methodologically distinct, observation-based dataset,
we facilitate a more robust understanding of future uncertainties and enable valuable model intercomparison,
which is crucial for improving the reliability of projected agricultural outcomes.

To address this need, we have developed a comprehensive dataset containing projections of national crop-
land allocation among ten major crop groups from 2020 to 2100. The dataset provides these projections under
six distinct SSP-RCP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5). The data files
are structured to provide two layers of information for each scenario: first, the potential future trajectories for
key agricultural management inputs (fertilizer application rates, irrigation extent, and mechanization levels);
and second, the resulting national cropland allocations for staple and cash crops that are consistent with these

management pathways.

Providing annual estimates for more than 150 countries, this dataset allows for the exploration of a wide
range of plausible futures under varying socioeconomic and climate trajectories. Its global scope enables
large-scale assessments of agricultural patterns, as well as detailed analyses of national-level land-use changes.
By providing an integrated set of socioeconomic conditions, agricultural management inputs, and crop selection
outcomes within a coherent framework, this dataset is designed to facilitate critical examinations of food secu-
rity, sustainable agricultural practices, trade policies, and environmental impacts.

Methods

Figure 1 shows flow chart of the methodology of this research.

Study scale and rationale.

All analyses in this study were conducted at the national level. This scale was

deliberately chosen for three primary reasons. First, it aligns with our objective to inform national and global-scale
assessments of policy, trade, and food security, where the nation-state is the key analytical and decision-making
unit. Second, it ensures maximum data consistency and coverage, as reliable, long-term historical panel data for
the wide range of socioeconomic and management drivers used in our model are most comprehensively avail-
able at the national level from sources like FAOSTAT and the World Bank. Third, it maintains methodological
coherence, as our model is designed to capture the relationships between aggregate national-level drivers and the
resulting national agricultural landscape patterns. The construction and analysis process for this dataset involved
four main stages: data sourcing and processing, statistical analysis, and prediction based on future scenarios.

Data source and processing.
als, starchy roots, pulses, soybeans, oil crops (excluding soybeans), sugar crops, vegetables, fruits, stimulants
(e.g., coffee, tea, cocoa), and spices. Harvested area (hectares) for various crops were obtained from FAOSTAT
(https://www.fao.org/faostat/en/#data/QCL)™. This study utilized annual country-level data spanning the period

1961-2021.

The analysis focused on the following ten major crop categories: cere-
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Ln Actual farm size
Ln Cropland area per agricultural laborer | 0.417%%*
s.e. —0.051
P values 0.000
Country Yes
Year Yes
N 418
Adjust-R2 0.967

Table 1. Correlation between cropland area per agricultural laborer and actual farm size. Note: Each column
represents a separate regression model. All equations include country and year fixed effects. The asterisks
indicate the statistical significance level based on P values: *p <0.1, **p <0.05, ***p <0.01, which assessed
using a two-sided t-test.

Socio-economic. Data for urbanization level (percentage) was obtained from FAOSTAT (https://www.
fao.org/faostat/en/#data/OA)'!. Per capita gross domestic product (PGDP) data were sourced from
the World Bank’s World Development Indicators (WDI) database (https://datatopics.worldbank.org/
world-development-indicators/)'2.

Management. 'The “farm size” in this paper is defined as the cropland area per unit of agricultural laborer.
Due to the limitations of available data, this study employs cropland area per agricultural laborer as a proxy
for farm size. This variable was constructed by dividing the total cropland area for each country and year,
sourced from FAOSTAT (https://www.fao.org/faostat/en/#data/RL)"?, by the total agricultural labor force
data from the USDA’s International Agricultural Productivity dataset (https://ers.usda.gov/data-products/
international-agricultural-productivity/)'*. We provide a detailed explanation and validation of this substitu-
tion’s effectiveness in Table 1.

The data on mechanization ownership were derived from the USDA’s International Agricultural Productivity
dataset (https://ers.usda.gov/data-products/international-agricultural-productivity/)'%. In the September 2023
update of this dataset, the USDA provided country-level data on the quantity of total agricultural machinery
stock from 1961 to 2021, measured in metric horsepower (CV). Mechanization ownership was calculated by
dividing this machinery stock data by the rural population.

The data on irrigated area per capita were derived from the FAO’s AQUASTAT database (https://data.apps.
fao.org/aquastat/?lang=en)", specifically using the actually irrigated area under full control irrigation. This
metric was selected because it excludes areas equipped with irrigation infrastructure but not actively irrigated,
as well as equipped lowlands area and spate irrigation area. The exclusion of these categories is justified for two
reasons. First, incorporating spate irrigation and equipped lowlands would reduce irrigated cropping intensity,
thereby failing to accurately reflect the potential benefits of irrigation'®. Second, since these irrigation methods
rely on floodwater, they cannot fully decouple irrigated agriculture from climatic conditions in the same way
that full control irrigation does'”. Irrigated area per capita was then calculated by dividing the actually irrigated
area under full control irrigation by the rural population. All historical data were matched and collated by coun-
try and year.

The nitrogen fertilizer data utilized in this research were derived from the CHANS model, a nitrogen mass
balance framework'®. CHANS integrates bottom-up nitrogen input and output fluxes from 14 subsystems—
including cropland, livestock, grassland, forest, aquaculture, industry, humans, pets, urban green spaces, waste-
water treatment, waste disposal, atmosphere, surface water, and groundwater—with top-down reactive nitrogen
flux datasets at regional, national, and global scales. This comprehensive approach provides an integrated per-
spective on nitrogen cycling and fluxes, facilitating a deeper understanding of nitrogen dynamics across multiple
scales. The nitrogen budget for cropland used in this study encompasses all crops (including staple crops and
cash crops) from 1961 to 2021. The underlying data from the CHANS model are not publicly archived but are
available from the corresponding author upon reasonable request.

All historical data were matched and collated by country and year. It is important to note the rationale for
using these national-level intensity indicators. In our modeling framework, these metrics serve as powerful
proxies for the overall modernization and intensification of a country’s entire agricultural system. A nationwide
increase in fertilizer availability or machinery stock, for example, reflects a systemic shift in capital investment,
technological access, and agricultural policy priorities. These macro-level changes have significant spillover
effects and influence resource competition (e.g., for labor and capital) across all agricultural activities, thereby
shaping the comparative advantage and profitability of specific crops, even those concentrated in particular
subnational regions.

Climate. Climate data from January 1961 to December 2021, including annual average temperature and total
annual precipitation, is sourced from the Climatic Research Unit Gridded Time Series (CRU TS v.4.07) (https://
doi.org/10.1038/s41597-020-0453-3)".

Future scenarios. Data utilized for future scenario analysis encompass projected changes across both socioec-
onomic and climatic dimensions. Socioeconomic alterations, projected for the period 2020-2100, include var-
iations in urbanization rates and per capita Gross Domestic Product (PGDP). These socioeconomic data are
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Socioeconomic Factors

(constant 2015 USD) and its squared term.

Variable Category Description Data Source (Reference)

Dependent Variables ONfa;;;ielclitt)igcaﬁtol;né;itgl;er)}:arvested area proportion FAOSTAT (https://www.fao.org/faostat/en/#data/QCL)
tSet?;c.lardized urbanization rate (%) and its squared FAOSTAT!! (https://www.fao.org/faostat/en/#data/OA)

Independent Variables | Standardized natural logarithm of per capita GDP

World Bank WDI'? (https://datatopics.worldbank.org/world-development-indicators/)

Natural logarithm of farm size (cropland area per
agricultural laborer) and its squared term.

FAOSTAT" (https://www.fao.org/faostat/en/#data/RL)/USDA" (https://ers.usda.gov/data-
products/international-agricultural-productivity/)

Farm Structure

Natural logarithm of fertilizer use intensity (kg/ha)
and its squared term.

CHANS Model'®
The underlying data from the CHANS model are not publicly archived but are available from
the corresponding author upon reasonable request.

Agricultural Inputs

Natural logarithm of machinery use per capita (CV/
person) and its squared term.

USDA™ (https://ers.usda.gov/data-products/international-agricultural-productivity/)

Natural logarithm of irrigated area per capita (ha/
person) and its squared term.

AQUASTAT" (https://data.apps.fao.org/aquastat/?lang=en)/USDA (https://ers.usda.gov/data-
products/international-agricultural-productivity/)

Standardized annual average temperature (°C) and
its squared term.

CRU TS v.4.07" (https://doi.org/10.1038/s41597-020-0453-3)

Climate Factors

Standardized annual total precipitation (mm) and its
squared term.

CRU TS v.4.07" (https://doi.org/10.1038/s41597-020-0453-3)

Table 2. Description of Variables and Data Sources.

sourced from the International Institute for Applied Systems Analysis (IIASA) Shared Socioeconomic Pathways
(SSP) database (https://tntcat.iiasa.ac.at/SspDb/)?, covering scenarios SSP1, SSP2, SSP3, SSP4, and SSP5.
Concurrently, climate change projections address anticipated variations in temperature and precipitation over the
same 2020-2100 timeframe. This climate information is derived from the Canadian Earth System Model version
5 (CanESM5) outputs for the Coupled Model Intercomparison Project Phase 6 (CMIP6)?!. Data were sourced
from the Earth System Grid Federation node at IPSL (https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/), incor-
porating a total of six distinct scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5.
All data sources are listed in Table 2.

Statistical analysis. To investigate the relationships between socio-economic, management, and crop har-
vested area proportions, we employed a data-driven, statistical approach. Our methodological choice is rooted in
providing a complementary perspective to existing process-based, equilibrium models. Whereas process-based
models simplify reality through theoretical and behavioral idealizations (e.g., perfect rationality), our statistical
approach represents a different form of simplification based on parsimonious variable selection. We focus on a
key set of observable drivers for which consistent, long-term global panel data is available. The strength of this
approach is its ability to learn complex, real-world relationships directly from historical observations, generating
projections grounded in empirical evidence and historical inertia.

Given the nature of our dataset, which tracks numerous countries over several decades, a key analytical
challenge is to control for the vast unobserved heterogeneity between countries. Factors such as deep-seated
institutional settings, cultural preferences, and fundamental agro-ecological endowments are critical drivers of
agricultural patterns, yet they are largely time-invariant and difficult to measure.

To address this, we selected a panel data fixed-effects (FE) model as our primary analytical framework. The
choice of the FE specification over alternative statistical models, such as a pooled OLS or a random-effects (RE)
model, is motivated by its superior ability to mitigate omitted variable bias. By design, the FE estimator controls for
all time-invariant heterogeneity by analyzing the variation within each country over time. This aligns perfectly with
our research objective: to isolate the dynamic impact of changes in time-varying drivers on crop allocation decisions.

A two-stage regression strategy within a fixed-effects framework was implemented:

Initially, we estimated a fixed effects model to analyze the impact of urbanization (incorporating both linear
and quadratic terms) on farm size and the input of management measures. This analysis controlled for per capita
GDP (PGDP) and climate factors (including temperature and precipitation). Furthermore, country-specific and
year-specific fixed effects were included to account for unobserved, time-invariant country characteristics and
common time trends. The model specification is as follows:

(InU)? + 30,4
n

InM;, = ay + oy X InU, + a, X + @+ e+

nit

In this model, the subscripts i and ¢ represent the country and year, respectively. M, is the management indi-
cators, which includes farm size, fertilizer use intensity, machinery use per capita and irrigation per capita. In U
is the logarithm of urbanization level. The control variables g include PGDP, temperature and precipitation. o,
is the constant term, while ¢, £, and 1, are error items. v}, v, and 0 are the coefficients to be estimated.

Subsequently, we estimated ‘anothér fixed effects model. This second model aimed to quantify the impact of
urbanization (again considering both linear and quadratic terms), alongside farm size and management measure
inputs specific to crop categories, on the proportion of planted area allocated to various crops. A key feature of
this stage is that we estimate a separate and distinct coefficient for the effect of each national-level management
indicator on each of the ten specific crop categories. This “crop-category level” estimation allows our model
to capture the heterogeneous impacts of a general, nationwide increase in agricultural modernization on the
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relative competitiveness of different crops. The set of control variables was specified identically to the preceding
model. The model specification is as follows:

InHAP, = o/ + o/, x InU, + o/, x (InU,)* + o/5 x InM,, + o/, x (InM,,)*
+ 20, + O+

In this model, the subscripts i and ¢ represent the country and year, respectively. o’ is the constant term,

while ', &/, and i/, are error items. o'}, o/, and 0’ are the coefficients to be estimated.

A key feature of this two-stage regression strategy is its ability to mitigate potential endogeneity arising from
the simultaneity between management inputs (M) and crop harvested area proportions (HAP). A farmer’s deci-
sion to invest in a management input (e.g., irrigation) is often jointly determined with the decision to plant a spe-
cific crop. To address this, our framework establishes a causal hierarchy. In Stage 1, we first model management
inputs as a function of broader, more exogenous socioeconomic and climatic drivers. In Stage 2, we then use the
predicted values of the management inputs from the first stage, rather than the observed values, as explanatory
variables for crop area proportions. This approach, analogous to an instrumental variable (IV) strategy, uses the
component of management variation that is driven by exogenous macro-level factors to identify its effect on
crop choice, thereby breaking the simultaneity loop and reducing potential bias in the estimated coefficients.
The inclusion of country-specific fixed effects in both stages further controls for time-invariant unobserved
confounders.

A key consideration in our modeling, which employs a log-transformed dependent variable, was the treat-
ment of zero harvested area shares. Many country-crop combinations in the raw data exhibit structural zeros,
where a crop is never cultivated. To avoid the biases associated with arbitrarily modifying these zero values, our
analysis focused on active cultivation instances. For each crop-category-specific model, the estimation sample
was restricted to countries that reported non-zero harvested area for that crop in at least one year during the
historical period. Consequently, the model is specified to explain allocation changes among active producers.
For prediction, countries excluded from a model’s estimation sample retain a zero share for that crop throughout
the projection period.

All statistical analyses were performed using Stata version 17.0. The model validation process is detailed in
the Technical Validation section.

Future scenario prediction.  The estimated coefficients from our historical regressions were used to project
future outcomes for the period 2020-2100. Our projection methodology is built upon a two-stage sequential sim-
ulation framework, where future management indicators are projected first, and these projections then serve as
inputs for the subsequent projection of harvested area proportions. Within each stage, we employ a differencing
approach to isolate the net impact of future SSP-RCP scenarios.

Stage 1: Projecting Future Management Indicators. The first stage focuses on projecting the four key man-
agement indicators (fertilizer use, mechanization, irrigation, and farm size). For each indicator, the process is
as follows:

Estimating Scenario Impacts (Delta): Using the coefficients from the first-stage model (Eq. 169), we gen-
erate two sets of predictions for each future year under a given SSP-RCP scenario: one for a “reference” future
(without the SSP-RCP shock, i.e., base = = 0) and one for a “scenario” future (with the shock, base ==1). The
difference between these two predictions yields the net scenario impact (A), which represents the pure effect of
the changes in all relevant drivers (urbanization, PGDP, and climate).

Generating Final Projections: This calculated impact (A) is then added to a stable historical baseline (the
2017-2021 average) to produce the final time-series projection for that management indicator under the specific
scenario.

Stage 2: Projecting Future Harvested Area Proportions. The second stage utilizes the outputs from the first.
The process is repeated for each of the ten crop categories:

Estimating Scenario Impacts (Delta): Using the coefficients from the second-stage model (Eq. 183), we again
calculate the net scenario impact (A) on the harvested area proportion. Crucially, this calculation uses the
projected management indicators from Stage 1 as inputs, alongside the projected changes in all other drivers
(urbanization, PGDP, and climate).

Generating Final Projections: This impact (A) is then added to the crop’s stable historical baseline (2017-
2021 average) to produce the final projection. Finally, a normalization correction is applied across all crop pro-
portions within a given country and year to ensure their sum equals 1.

This two-stage structure is a critical feature of our methodology. It explicitly models the causal pathway
where broader socioeconomic and climatic changes first influence on-farm management decisions (Stage 1),
and these evolving management practices, in turn, influence farmers’ crop allocation choices (Stage 2). This
approach helps to mitigate potential endogeneity issues and provides a more mechanistically plausible set of pro-
jections. For all projections, 90% confidence intervals were also calculated to represent the statistical uncertainty
of the model’s parameter estimates.

Data Records

This dataset provides projections of changes in harvested area proportions for various crops across 197
countries globally, spanning the period from 2020 to 2100 in five-year increments under five Shared
Socioeconomic Pathway scenarios (SSP1 to SSP5), allowing users to explicitly assess scenario uncertainty in
their own analyses. The dataset is publicly available through the figshare repository (https://doi.org/10.6084/
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File Name in Repository Corresponding Dependent Variable
regression_outputs-farm_size.xlsx Farm size
regression_outputs-machinery.xlsx Machinery
regression_outputs-irrigation.xlsx Irrigation
regression_outputs-fertilizer.xlsx Fertilizer
regression_outputs-cereal_share.xlsx Cereal harvested area proportion
regression_outputs-roots_share.xlsx Roots harvested area proportion
regression_outputs-pulses_share.xlsx Pulses harvested area proportion
regression_outputs-soybean_share xlsx Soybean harvested area proportion
regression_outputs-sugarcrops_share.xlsx Sugar crops harvested area proportion
regression_outputs-oilcrops_share.xlsx Oil crops (ex. soy) harvested area proportion
regression_outputs-vegetables_share.xlsx Vegetables harvested area proportion
regression_outputs-fruit_share.xlsx Fruit harvested area proportion
regression_outputs-stimulants_share xlsx Stimulants harvested area proportion
regression_outputs-spices_share.xlsx Spices harvested area proportion

Table 3. Index of detailed regression output files available in the data repository. This table provides a guide to
the individual Excel files containing the full statistical outputs of the nested regression models discussed in the
Technical Validation section.

Column Name Description

areacode Unique numerical identifier for each country/region (FAO code).

country Country name.

year The projection year (2020, 2025,..., 2100).

scenario The SSP-RCP scenario identifier.

crlb_ssp Projected central estimate for farm size (ha).

crlb_Ib/crlb_ub Lower and upper bounds of the 90% confidence interval for the farm size projection.
ferNpL_ssp Projected central estimate for fertilizer application rate (kgha™"' yr7).
ferNpL_lbn/ferNpL_ub Lower and upper bounds of the 90% CI for the fertilizer projection.

malb_ssp Projected central estimate for machinery stock (CV cap™!).

malb_lb/malb_ub Lower and upper bounds of the 90% CI for the machinery projection.

irlb_ssp Projected central estimate for irrigation extent (ha cap™?).

irlb_Ib/irlb_ub Lower and upper bounds of the 90% CI for the irrigation projection.
Rh_[Crop]_ssp Projected central estimate for the harvested area proportion of a specific crop (e.g., Rh_Cereal_ssp).
Rh_[Crop]_Ib/Rh_[Crop]_ub Lower and upper bounds of the 90% CI for the specific crop share projection.

Table 4. Description of columns in the projection data files (predict_Rh_*.csv).

m9.figshare.28838930)2. The repository contains three categories of files: (1) the main projection data in
comma-separated value (CSV) format, (2) tables with detailed regression results in Excel format (A complete
index of the regression output files is provided in Table 3), and (3) the Stata code file used to generate the
projections.

The main projection data are provided in six separate CSV files, one for each SSP-RCP scenario. File Naming
Convention: The files are named predict_Rh_[scenario].csv, where [scenario] corresponds to the specific
SSP-RCP combination (e.g., ssp126 for SSP1-2.6, ssp245 for SSP2-4.5, etc.). File Content: Each file contains the
projected annual values for 197 countries and regions for the period 2020-2100 in five-year increments. The
columns in each file are described in Table 4. Figures 2-5 show the model outputs.

The repository includes 14 Excel files containing the detailed regression outputs that form the basis of
our projections. The files are descriptively named (e.g., regression_outputs-cereal_share.xlsx) to indicate the
dependent variable of the model within. or a detailed list and description of each file, please refer to Table 3.

The Stata do-file code-projection.do is provided in the repository. This file contains the full set of commands
used to run the two-stage fixed-effects regressions and generate all future projections, ensuring full reproduci-
bility of the dataset.

Technical Validation

To assess the robustness and suitability of the chosen model specification for projecting national cropland allo-
cation, we performed a comparative analysis of different model configurations using historical data. The core
objective was to validate that the comprehensive model incorporating all identified driver categories, provides
a statistically superior fit and robust predictive power, thereby justifying its use for generating the future pro-
jections presented in this dataset. This process involved three key components: (1) a comparative analysis of
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Fig. 2 Prediction of staple crop harvested area proportion from 2020 to 2100 under SSP 1-RCP2.6, SSP2-
RCP4.5 and SSP3-RCP?7.0 in different income groups. (a—c) Cereal; (d-f), Roots; (g,h), Pulses; (j-1), Soybean.
Shaded areas around the lines represent the 90% confidence intervals of the projections, indicating model
parameter uncertainty.

different model configurations using historical data, (2) an out-of-sample predictive performance test, and (3) a
robustness check to account for the influence of time-invariant eco-environmental factors.

Model specification and goodness-of-Fit. We systematically evaluated the contribution of four
distinct categories of predictor variables, reflecting the key drivers outlined in the Background & Summary:
Socioeconomic factors variables representing broader development context, including urbanization rate and
per capita GDP; Farm Structure variables capturing characteristics of the agricultural landscape, i.e. farm size;
Agricultural inputs variables representing the intensity of management practices, such as fertilizer application,
machinery availability, and irrigation infrastructure; Climate Factors variables reflecting key climatic conditions,
specifically temperature and precipitation.

To determine the optimal specification for the management practice models, we also constructed a series of
nested models. The full statistical outputs for this model comparison analysis are provided in a series of indi-
vidual Excel files in the project’s data repository, which are indexed and described in Table 3. We began with the
‘full model’ (Model A), which incorporated both linear and quadratic terms for our two primary socioeconomic
drivers: the urbanization rate and the natural logarithm of per capita GDP (In PGDP). Subsequently, we esti-
mated three more parsimonious specifications: Model B excluded the quadratic term for urbanization; Model C
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Fig. 3 Prediction of cash crop harvested area proportion from 2020 to 2100 under SSP 1-RCP2.6, SSP2-
RCP4.5 and SSP3-RCP?7.0 in different income groups. (a—c) Oil crops; (d-f) Sugar crops; (g-i) Vegetables and
Fruits; (j-1) Stimulants and Spices. Shaded areas around the lines represent the 90% confidence intervals of the
projections, indicating model parameter uncertainty.

excluded both the linear and quadratic terms for In PGDP; and Model D excluded only the quadratic term for
In PGDP.

We constructed a series of nested models. The full statistical outputs for this model comparison analysis are
provided in a series of individual Excel files in the project’s data repository, which are indexed and described in
Table 3. First, models including only one category of predictors were estimated (Models 1-4). Subsequently, mod-
els combining the core ‘Agricultural Inputs’ category with each of the other categories were tested (Models 5-7).
Further combinations were explored (Models 8-9), culminating in the ‘full model’ (Model 10) that incorporates
all four categories of predictors simultaneously.

A critical aspect of model comparison using information criteria is ensuring that all models are estimated
on the exact same set of observations. Due to listwise deletion of missing values inherent in regression analysis,
simply running models with different variable sets often results in different estimation samples. To address this,
we first identified the estimation sample used by the full model (which contains all predictors and thus typically
has the most missing-data constraints). We then explicitly restricted the estimation of all simpler models to
this identical sample. This rigorous approach ensures that the log-likelihoods and resulting information crite-
ria are directly comparable across all model specifications. We used the Akaike Information Criterion (AIC)
as the primary metric for model selection®. AIC provides a measure of relative model quality by balancing
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Fig. 4 Predicting changes of staple crop harvested area proportion in 2050 and 2100 under SSP 1-RCP2.6.
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Fig. 5 Predicting changes of cash crop harvested area proportion in 2050 and 2100 under SSP 1-RCP2.6.
(a-c) Oil crops; (d-f) Sugar crops; (g-i) Vegetables and Fruits; (j-1) Stimulants and Spices.

goodness-of-fit (log-likelihood) against model complexity (number of parameters), penalizing models with
more parameters. A lower AIC value indicates a preferred model among the candidate set.

Across the vast majority of crop categories, the full model’ (Model 10)—which incorporates Agricultural
Inputs, Farm Structure, Socioeconomic Factors, and Climate Factors simultaneously—consistently yielded the
lowest Akaike Information Criterion (AIC) value. In a few isolated cases, a slightly more parsimonious model
exhibited a marginally lower AIC. However, for the sake of methodological consistency and to ensure a unified
theoretical framework across all crop projections, we selected the full Model 10 as the final specification for all
categories. This decision is justified as Model 10 was overwhelmingly the best-performing specification and
provides the most comprehensive explanatory structure. The finding that a model incorporating all four inter-
connected driver categories generally provides the best statistical fit underscores the importance of a holistic
approach when modeling cropland allocation dynamics.

Following the selection of the full model based on AIC, we performed additional diagnostic checks to assess
potential multicollinearity among the predictor variables within the estimation sample. Pearson correlation
coeflicients were calculated, results revealing a high positive correlation (approx. 0.80) was observed between
the standardized urbanization rate and the standardized logarithm of per capita GDP, suggesting a strong lin-
ear association between these two socioeconomic indicators. To further evaluate the potential impact of these
relationships on model stability, we calculated Variance Inflation Factors (VIFs). According to the updated VIF
analysis results, multicollinearity appears to be low to moderate. The Mean VIF based on the variables included
in this specific VIF calculation was 3.43. These results suggest that despite the notable pairwise correlation
between urbanization and GDP per capita, the potential impact of multicollinearity on the model’s stability
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Urbanization | Urbanization? | Ln PGDP | Ln PGDP?
Urbanization | 1.0000
Urbanization? | —0.7260 1.0000
Ln PGDP 0.7956 —0.5344 1.0000
Ln PGDP? —0.6075 0.6678 —0.7312 1.0000

Table 5. Pearson correlation coefficients between urbanization rate and In PGDP.

Variable VIE
Urbanization 2.92

Urbanization? 2.88

Ln PGDP 1.41
Ln PGDP? 3.05
Mean VIF 3.43

Table 6. Variance Inflation Factor (VIF) for Independent Variables. Notes: Mean VIF below the threshold of 5,
suggesting no severe multicollinearity.

and standard errors is minimal according to standard VIF diagnostics®. This strengthens the confidence in the
reliability of the parameter estimates from the full model (Tables 5, 6).

The comparative model analysis, based on the AIC criterion and conducted on a consistent sample, pro-
vides strong statistical support for the chosen full model specification. The finding that incorporating variables
representing agricultural inputs, farm structure, socioeconomic context, and climate factors together leads to
the best statistical performance underscores the importance of considering these interconnected drivers simul-
taneously when modeling cropland allocation dynamics. This validation exercise increases confidence in the
capacity of the chosen model structure to capture the key historical relationships, forming a robust basis for the
forward-looking projections under different SSP-RCP scenarios presented in this dataset. While AIC selects the
best model among the candidates considered, and the model captures statistical associations rather than defin-
itive causal pathways. This validation exercise confirms that the comprehensive model specification provides a
statistically superior fit to the historical data, which strengthens the confidence in the reliability of the projec-
tions generated from this framework.

Out-of-sample predictive validation. To further validate the robustness of the chosen model structure,
we conducted a rigorous out-of-sample validation exercise. For each crop category, the full model was trained
using historical data only from the period 1961-2000. The estimated coefficients were then used to generate pre-
dictions for the subsequent 2001-2021 period, representing data the model had not previously seen. The model’s
predictive accuracy was evaluated using the Out-of-Sample R-squared (OOS-R?), which measures the proportion
of the variation in the unseen data that is explained by the model’s predictions.

The results (Table 7) demonstrate the model’s strong predictive power for future outcomes based on past
relationships. The OOS-R? was substantial across most major crop categories. For instance, the model explained
56.7% of the out-of-sample variation for Sugar Crops, 54.9% for Fruit, 45.6% for Vegetables, and 43.0% for
Cereals. This strong out-of-sample performance provides compelling evidence that the relationships between
socioeconomic drivers and crop choices captured by our model are not mere statistical artifacts of the training
period but are robust and persistent over time, strengthening the justification for its use in forward-looking
projections.

Robustness Check: accounting for time-invariant eco-environmental factors. A potential con-
cern regarding our statistical approach is the exclusion of explicit eco-environmental variables, such as soil char-
acteristics and topography. Our model addresses this challenge through the inherent properties of the fixed-effects
specification, a choice reinforced by the temporal nature of different drivers and practical data constraints.

The inclusion of country-specific fixed effects (a_c) is a core feature designed to capture the combined
influence of all relatively stable, country-specific characteristics, including the underlying eco-environmental
endowments. We acknowledge that these environmental variables are not perfectly static over long time hori-
zons. However, they are typically “slow-moving” variables (e.g., soil formation), in contrast to the “fast-moving”
socioeconomic drivers (e.g., per capita GDP) at the core of our study. Furthermore, the scarcity of consist-
ent, long-term annual panel data for these environmental factors at a global scale makes their inclusion as
time-varying predictors impractical. The fixed-effects approach is therefore a methodologically sound and prac-
tical choice, as it controls for the baseline influence of these slow-moving or hard-to-measure variables.

To empirically validate that our fixed effects have effectively proxied for these critical baseline factors, we
conducted a comprehensive quantitative robustness check. We compiled a cross-sectional dataset of four
key country-level eco-environmental variables representing average conditions within agricultural lands:
mean soil organic carbon density (SOC, in hg/m?®) from SoilGrids database (https://files.isric.org/soilgrids/
latest/data/soc/)*, mean bulk density (in cg/cm®) from SoilGrids (https://files.isric.org/soilgrids/latest/
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Crop Category Out-of-Sample R* | RMSE MAE
Sugar Crops 0.567 1.266 0.027
Fruit 0.549 1.023 —0.238
Vegetables 0.456 0.888 —0.13
Oil crops 0.44 1.163 0.235
Cereal 0.43 0.863 0.023
Spices 0.418 1.718 0.01
Stimulants 0.324 2421 0.064
Pulses 0.291 1.219 0.132
SoyBean 0.257 2.425 0.556
Roots 0.19 1.544 —0.292

Table 7. Out-of-Sample Predictive Performance of the Final Models. Note: The models for each crop category
were trained on historical data from 1961-2000. The performance metrics were then calculated based on the
models’ predictions for the out-of-sample period of 2001-2021. Out-of-Sample R-squared (OOS-R?) measures
the proportion of variation in the unseen data explained by the model. Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) measure the average magnitude of the prediction errors in the original logarithmic
scale of the dependent variable.

mean_soc | mean_bulk_density | mean_ph | mean_tri
Cereal -0.217 0.365 0.328 —0.181
Fruit 0.167 —0.265 —0.184 0.239
Oilcrops —0.201 0.208 —0.200 —0.294
Pulses —0.083 —-0.017 —0.169 —0.078
Roots 0.336 —0.318 —0.257 0.164
SoyBean 0.223 —0.272 —0.358 —0.006
SugarCrops 0.182 —0.382 —0.313 —0.124
Vegetables 0.203 —0.018 0.183 0.217

Table 8. Pearson correlation coefficients between country fixed effects and eco-environmental variables.

Note: The table displays the Pearson correlation coeflicients between the country-specific fixed effects (a_c),
estimated from the final regression models for each of the eight crop categories, and the four country-level eco-
environmental variables. All environmental variables represent the mean values within cropland areas, derived
from zonal statistics. These variables include mean soil organic carbon density (mean_soc), mean bulk density
(mean_bulk_density), mean soil pH (mean_ph), and the mean Terrain Ruggedness Index (mean_tri). The fixed
effects capture time-invariant heterogeneity across countries.

data_aggregated/1000m/bdod/)*, mean soil pH from SoilGrids database (https://files.isric.org/soilgrids/latest/
data_aggregated/1000m/phh20/)¥, and the mean Terrain Ruggedness Index (TRI) (https://diegopuga.org/data/
rugged/)*.

We then analyzed the relationship between the country fixed effects estimated from our final models and
these four variables. The results, summarized in Tables 8, 9, are highly significant. We found that the four
eco-environmental variables jointly explain a statistically significant and agronomically meaningful portion
of the cross-country variation in the fixed effects. The explanatory power (Adjusted R-squared) is notably high
for major commodity and high-value crops, reaching 18.7% for Sugar Crops, 18.5% for Oilcrops (excluding
soybeans), and 14.4% for Cereals.

We found that the four eco-environmental variables jointly explain a statistically significant and agronomi-
cally meaningful portion of the cross-country variation in the fixed effects across nearly all crop categories. The
explanatory power (Adjusted R-squared) is notably high for major commodity and high-value crops, reaching
18.7% for Sugar Crops, 18.5% for Oilcrops (excluding soybeans), 14.4% for Cereals, and 12.6% for Vegetables.

Considering that the country fixed effect is a complex composite that also includes other unobservable fac-
tors (e.g., institutions, culture), the ability to explain up to nearly one-fifth of its variation with just four phys-
ical variables is a powerful validation of our model. This quantitative evidence demonstrates that a substantial
portion of the heterogeneity in agricultural potential driven by stable soil and topographic conditions has been
successfully captured, strengthening our model’s ability to isolate the impacts of the time-varying socioeco-
nomic drivers.

Usage notes and limitations. While these validation steps confirm the statistical robustness of our dataset,
users should be aware of several key limitations when applying it to their own research. The primary limitation is
the national-scale aggregation of the data. Our projections represent national averages and, consequently, do not
capture the significant subnational heterogeneity in socioeconomic conditions or eco-environmental constraints.
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Crop Category | Adjusted R-squared
Cereal 0.14
Fruit 0.07
Oil crops 0.18
Pulses 0.01
Roots 0.11
Soybean 0.10
Sugar crops 0.19
Vegetables 0.13

Table 9. Joint explanatory power of eco-environmental variables on country fixed effects. This table presents
the results of a series of multiple linear regression analyses. For each of the eight crop categories, the estimated
country-specific fixed effect (o_c) was regressed on the four country-level eco-environmental variables (mean_
soc, mean_bulk_density, mean_ph, and mean_tri). The Adjusted R-squared value is reported, quantifying the
proportion of the total cross-country variation in the fixed effects that can be jointly explained by these four key
soil and topographic factors. This analysis serves as a quantitative robustness check to validate that the fixed-
effects specification has effectively captured heterogeneity driven by stable environmental endowments.

As such, the results may not fully reflect the dynamics within specific, agriculturally significant regions of a coun-
try. Future research could build upon our framework by developing methods to downscale these national pro-
jections where sufficient subnational data is available. A second limitation is that our statistical model, by design,
projects future patterns based on historically observed relationships and does not endogenously model potential
future structural breaks or novel policy interventions not seen in the historical record. The dataset is therefore
best interpreted as a robust, empirically-grounded projection of future crop choices under the specific socioeco-
nomic and climatic trajectories defined by the SSP-RCP scenarios.

Data availability
The dataset is publicly available through the figshare repository (https://doi.org/10.6084/m9.figshare.28838930).

Code availability
Code for this study are available within figshare files.
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