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Social-distancing measures were among the very few available policy responses to the initial outbreak 
of COVID-19, and they remain an important tool for containing recurring wavers of this and possible 
future pandemics. However, policies aiming at limiting the intensity of people-to-people contacts 
incur substantial socio-economic costs while their effectiveness varies over time and across locations. 
Having a robust way of measuring the level of people-to-people contacts and monitoring compliance 
with social-distancing policies would greatly aid governments in better calibrating their responses to 
future pandemic outbreaks. In this paper we use the case example of the Yandex’s self-isolation index 
to explore the potential of composite indices that aggregate multiple sources of activity data collected 
by digital platforms as proxies for evaluating the people-to-people contact intensity. To this end, we 
propose two error-corrected autoregressive distributed-lag models, inspired by the classical SIR model 
of infectious disease dynamics, and use them in testing for cointegration between the self-isolation 
index and the official data on the numbers of new COVID-19 cases and deaths, for the two largest cities 
in Russia, Moscow and St. Petersburg. We have found evidence for such cointegration, which confirms 
that the COVID-19 epidemic curve can be explained by the level of people-to-people contact intensity 
as measured by the self-isolation index. Our findings suggest that the self-isolation index is a useful 
real-time indicator of the level of compliance with social distancing measures in the population and 
thus can serve as a reliable tool for informing policymaking.
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The Coronavirus Disease (COVID-19)1 pandemic has afflicted over 778 million people to date (May 2025), of 
whom approximately 7 million have died2. It also caused unprecedented disruptions in economic and political 
systems and devastated numerous communities across the world3. COVID-19 is caused by the SARS-CoV-2 
virus, which mainly spreads through airborne transmission4. To reduce the virus transmission and contain initial 
surges in COVID-19 cases, most countries introduced a wide range of non-pharmaceutical interventions (NPIs), 
such as face-mask mandates and social distancing measures5. While vaccines (and later other pharmaceutical 
measures), became available as of December 2020, their roll-out across the world was uneven, with lower 
vaccination rates attained in low- and middle-income countries6. Global vaccination campaign succeeded 
in reducing COVID-19 deaths7,8, but vaccine-induced immunity proved to decline within months from the 
primary vaccination cycle9. Due to immunity waning and appearance of more contagious variants of the SARS-
CoV-2 virus, NPIs have continued to play an important role in managing the recurring waves of COVID-19 
infections. They also remain our primary defense against outbreaks of emerging infectious diseases that may 
occur in the future.

The efficacy of NPIs has been assessed in different contexts using compartmental models of epidemic 
dynamics coupled with statistical modeling10. It is often evaluated in terms of the change in the effective 
reproduction number Rt, i.e., the average number of secondary cases generated by an individual case detected 
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at time t, which serves as a key parameter to determine how the disease will spread in the population. Using data 
on the reported cases before and after the inception of a considered NPI, its impact can be estimated, provided 
no other significant factors interfere or the impact of these factors could be accounted for11–18.

NPIs act on the reproduction number of the virus indirectly, e.g., by reducing individuals’ exposure to the 
virus through changes in their behaviors, such as limiting the number of people-to-people contacts and altering 
context-specific mobility patterns. Thus, the efficacy of NPIs critically depends on citizens’ compliance with 
the introduced measures. However, the level of compliance varies, both across and within countries, resulting 
in observable differences in the NPIs efficacy13,17,19–21. Socio-economic conditions22,23, public believes and 
attitudes24, risk perception25, trust in the healthcare systems26, and quality of institutions21,27 have been found 
to influence compliance in different contexts. Many of these factors are obscure or unknown in real-time to 
authorities responding to developing disease outbreaks, making it difficult to anticipate population’s compliance 
with, and thus effectiveness of, NPI measures. This uncertainty leaves governments facing high-stakes dilemmas 
when calibrating policy response: overly stringent measures are likely to contain the outbreak but possibly at the 
price of exceedingly high social and economic costs, while too lax (but still costly) policies may be ineffective. 
Ability to monitor citizen’s compliance with NPI measures would reduce the level of uncertainty under which 
governments and public health authorities operate and thus would be a significant aid in formulating policy 
responses to disease outbreaks. A reliable way of monitoring population-level compliance with social distancing 
measures (e.g., travel restrictions, school and non-essential businesses closures, shelter-in-place orders) would 
be particularly useful for policymakers, as such measures, while proven effective in containing COVID-19 
outbreaks, cause significant social and economic disruptions.

To help authorities make informed decisions on the scale and timing of social distancing measures, two 
elements are needed: (1) a reliable indicator of social distancing in the population; and (2) an understanding 
of the relationship between this indicator and the dynamics of the epidemic. The latter would enable experts to 
infer the level of social distancing necessary to slow down the virus spread, while the former would allow them 
to gauge whether the current compliance with already introduced measures ensures the required level of social 
distancing and whether social distancing policies should be strengthened or relaxed.

Monitoring all people-to-people interactions is not feasible in practice and may not be politically and socially 
desirable. Thus, in absence of direct measurements, a policy-relevant indicator of social distancing within a 
population must rely on aggregate and anonymized proxy data. Large digital platforms, which collect and 
integrate user activity data across multiple domains (including geolocation services, virtual shopping, online 
entertainment, ride-hailing services) have a high potential to serve as valuable sources of good-quality proxy 
data that allow for monitoring social distancing on aggregate levels and across different contexts (workplaces, 
public transport, etc.).

Aggregate population mobility patterns derived from anonymized geolocation data collected by digital 
platforms and mobile service providers were among the most widely used proxies for explaining the development 
of the COVID-19 pandemic in the short-run. Using the estimated flows of travelers based on Baidu geolocation 
services, Quilty et al.28 studied the effects of introducing a cordon sanitaire around Wuhan in January 2020 
on the spread of COVID-19 across major cities in China. Similarly, Moorley et al.29 correlated the composite 
mobility grade based of Unacast mobile telephone tracking data with the daily estimates of the reproductive 
numbers Rt for eight counties in central State of New York. Gerlee et al.30 employed data on the public transport 
usage and the Google mobility reports (GMR)31 to predict hospital admissions due to COVID-19 infections in 
Sweden. GMR data was successfully incorporated into statistical models to improve accuracy of their predictions 
of COVID-19 spread32,33 and changes in the reproductive number Rt

34, and were widely used for parameterizing 
and validating compartmental and metapopulation models of the COVID-19 dynamics35. Mobility data was also 
used as a proxy for the level compliance with social distancing measures. Vokó & Pitter13 used GMR to calculate 
country-specific social distance indices for 28 European countries and showed that elevated levels of these 
indices coincided with breakpoints in the infection rates. Ilin et al.36 leveraged GMR and aggregated mobility 
data from other platforms to assess how changes in the stringency of lockdown policies translate to changes in 
mobility behaviors and, ultimately, to changes in infection rates.

While mobility metrics are readily available and widely used in research, their usefulness for predicting 
COVID-19 dynamics and informing policies have proven to be limited. When evaluated over a range of diverse 
regions, mobility data does consistently carry statistically significant information on COVID-19 spread and the 
predictive power of mobility metrics is highly dependent on the level of spatial aggregation37. Moreover, as the 
COVID-19 pandemic developed, mobility information became a progressively worse proxy for frequency of 
risky in-person contacts which drive the dynamics of COVID-19 infections38.

Estimates of in-person contact rates, either based on surveys or derived from high frequency positioning 
data from mobile devices, proved to be better predictors of COVID-19 spread compared to aggregate mobility 
metrics39,40. Yet, using such estimates for monitoring population compliance with social-distancing measures 
may be impractical, as it would involve conducting frequent surveys within a sufficiently large representative 
group of responders or require processing of large amounts of sensitive data to identify co-location events for 
mobile device users.

We posit that shifts in users’ engagement with a wide range of services offered by digital platforms (such as Google, 
Baidou or Yandex), summarized by aggregate user activity metrics, reflect behavioral changes of population sufficiently 
well to serve as a useful proxy for the intensity of people-to-people contacts driving the spread of COVID-19. User 
activity metrics are based on data routinely collected by digital platforms and, in principle, could be made available 
to public and authorities just as the aggregate mobility metrics were. However, to our knowledge, the unique example 
of publicly available aggregate metric of user activity is the Self-isolation Index (SII) provided by Yandex41, a major 
digital platform ecosystem operating in Russia and several other countries of the Commonwealth of Independent 
States, covering 50–60% of search sessions in Russian internet in years 2020–2021 (with 2025 market share of 65%)42. 

Scientific Reports |        (2025) 15:40709 2| https://doi.org/10.1038/s41598-025-24240-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Yandex’s Self-isolation Index gives insights into the changes in population’s travel patterns as well as into shifts in types 
of activity people engage in, inferred from the usage of apps and web services in the Yandex ecosystem, such as search 
queries, delivery and taxi requests. SII was successfully used in machine-learning models to enhance the forecasting 
of the COVID-19 dynamics43. It could also serve as a readily available tool for real-time monitoring of population’s 
compliance with the mandated social distancing measures, yet, to our knowledge, its suitability in this role has never 
been rigorously investigated. In this paper we address this knowledge gap.

To investigate the usefulness of Yandex’s SII as a real-time indicator of the level of social distancing within a 
population, we statistically explore whether SII can explain the observed development of the COVID-19 epidemic 
in two largest urban centers of Russia: Moscow and St. Petersburg. To address this question, we propose two 
error-corrected autoregressive distributed-lag time series models and use them to test for statistically significant 
cointegration (interpreted as a stable long-run equilibrium) between the SII and the daily reported numbers of 
new infections or fatal cases associated with COVID-19. Whenever the available data provide sufficient evidence 
for such cointegration, we also estimate parameters of the short-run dynamics which govern the responses of 
these two quantities to changes of the self-isolation index.

Materials and methods
Data
Official data on daily reported COVID-19 infections and deaths in the Russian Federation were obtained from44. The 
data are available at the level of individual administrative units (oblasts) and has a daily resolution, starting from 12 
March 2020.

The Yandex’s self-isolation index was designed to reflect the average intensity of person-to-person contacts45. 
This was possible due to the platform’s extensive user base. In years 2020 – 2022, for example, on average 80 to 
100 million users in Russia (approximately 55–70% of the Russian population, with slight underrepresentation 
of adults of above 65 years of age – 10% of Yandex users vs. 27% of total adult population46,47) were visiting 
Yandex platform at least once a month. A typical user was spending about 13 h a month engaging with the 
Yandex ecosystem, including portal, mail service, movie and music streaming, blog, news, marketplace, and a 
range of other services48. Thus, the Yandex user base is a good cross-section of people living in Russian urban 
centers, which tend to have above-average access to computers and mobile devices.

The self-isolation index was derived from the anonymized user activity data from various services available 
through the Yandex ecosystem, including geolocation data from navigation and ride-hailing apps, delivery 
requests, movie streaming as well as search queries and use of blog platforms49. For example, higher values of 
self-isolation index were attained when fever than usual routing requests were registered for the navigator and 
subway route planning apps. Likewise, an elevated usage of movie streaming, delivery services and activity on 
internet forums resulted in higher values of the SII. The index was calibrated against a pre-pandemic baseline and 
takes values between 0 and 5, with 0 representing the level of activity during rush hours on a regular weekday, 
when most people are not at home, and 5 corresponding to virtually empty streets, with a vast majority of the 
population staying at home. The SII time series are available for individual cities at daily resolution for the period 
from 23 February 2020 to 22 September 2021.

The period for which the epidemic data and the SII data overlap spans between 12 March 2020 and 22 
September 2021. There is a mismatch, however, in the level of spatial resolution, as the epidemic data is available 
for entire administrative units (federal subjects), while SII is calculated for individual cities. Therefore, in 
our analysis, we focus on the two largest cities in Russia, Moscow and St. Petersburg, which themselves are 
administrative units (federal cities). Both epidemic and SII data sets used in our study are publicly available, 
anonymized and highly aggregated. They are not considered personal data and thus their use does not require 
ethical approval.

The time series used in our analyses are displayed in Fig. 1. Points represent daily reported new cases of 
COVID-19 infections Nt, daily COVID-19 related deaths Dt, and daily values of self-isolation index SIIt 
for Moscow and St. Petersburg. Solid lines represent the smoothed versions of these time series, RM7(Nt), 
RM7 (Dt) and RM7(SIIt), respectively, where RM7(·t) denotes a 7-day rolling mean (moving average) taken 
over the days from (t − 6) to t. The 7-day rolling mean filters out seasonal patterns at weekly time scales (e.g., 
lower than average numbers of new infections recorded on Tuesdays and Wednesdays and higher values of the 
SII on weekends).

In the initial stage of the pandemic unfolding in early spring of 2020, only a few new cases have been reported 
each day, with some days on which no new cases have been recorded at all. Numbers of new cases in double 
digits or higher (a signal sufficiently strong for the purpose of our analysis) have been consistently reported 
only after 23 March 2020 for Moscow and 6 April 2020 for St. Petersburg. We therefore take these dates as 
starting points for the time series of the daily new COVID-19 cases in the respective cities. As SIIt exhibit 
pronounced weekly cycles with index values higher on weekends, we limit our analysis to the period that ends 
on 19 September to ensure that the time series used for modelling include records of full weeks. The ranges of 
the time series included in the analysis are marked on Fig. 1A with a gray background.

The data on the daily reported deaths due to COVID-19 required a more substantial trimming to be used 
in our analysis. As some analysis of the excess mortality in Russia suggests, the number of the fatal cases due to 
COVID-19 might have been considerably underreported in 202050,51. According to Kobak50, on 28 December 
2020, the Russian authorities admitted that most of the excess mortality between January and November 2020 
was related to COVID-19, but the official statistics were not updated. Therefore, we discard the data points 
on deaths before 2 November 2020 which marks the beginning of the second wave of COVID-19 deaths. The 
period for which the data on COVID-19 deaths was included in our analysis is marked on Fig. 1B with the grey 
background.

Scientific Reports |        (2025) 15:40709 3| https://doi.org/10.1038/s41598-025-24240-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The SIR-inspired time series model
A visual inspection of Fig. 1 suggests the following relationship between the dynamics of COVID-19 and the self-
isolation index: the waves of infections are preceded by the periods of low SII values, while higher SII levels appear 
to flatten the epidemic curve. If confirmed, such a relationship would justify SIIt as an informative indicator 
for explaining the observed dynamics of COVID-19, reflected by Nt or Dt. To explore this hypothesis, in this 
section we propose an autoregressive distributed-lag time series model inspired by the classical compartmental 
susceptible-infected-removed (SIR) model of infectious disease52.

In the SIR model, at any given time t the number of new cases, Nt is proportional to the number of currently 
infected individuals It. In a discrete time, this relationship can be expressed as

	
Nt = βIt−1 = β

K∑
i=1

Nt−i� (1)

where K  is an average period within which infected individuals remain contagious, and the proportionality 
coefficient β is interpreted as the average number of contacts per person times the probability of virus 
transmission (See Supplementary Information S1, where we show how the discrete-time Eq. (1) can be derived 
from the continuous-time SIR model). Applying the logarithmic transformation, Eq. (1) can be written in the 
additive form

	
log Nt = log β + log

(
K∑

i=1

Nt−i

)
� (2)

Equation (2) allows for the separation of the effects related to the intensity of people-to-people contacts and 
the probability of transmission, jointly captured by parameter β, and the effects related to the sheer number of 
infected individuals, captured by the sum of recent cases Nt−i over the period of the last K  days.

It is important to note that Eq. (2) relies on the assumptions of a well-mixed and closed population, inherited 
from the SIR model. For large cities, such as Moscow and St. Petersburg, the assumption of a well-mixed 
population is plausible, since multiple public spaces and dense transport infrastructure enables uniform virus 
spread (i.e., without a tendency to develop spatially isolated clusters of infections). Populations of urban centers, 
however, cannot be considered closed. To represent the net flow of infected individuals to and from a city in 
question, we add a constant term µ to the right-hand side of Eq. (2).

Fig. 1.  Time series used in the study. (A) Daily reported new COVID-19 infections, (B) daily reported deaths, 
and (C) daily levels of the self-isolation index for Moscow (MSK) and St. Petersburg (SPB). Dots represent the 
original data while solid lines represent the rolling means over the previous 7 days. Shaded regions indicate the 
periods for which data was used in our analyses: 23 March 2020 – 19 September 2021 and 4 April 2020 – 19 
September 2021 for the daily infections in Moscow and St. Petersburg, respectively, and 2 November 2020 – 19 
September 2021 for the daily reported deaths (for both cities).
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To further improve the realism of model (2) we make two more adjustments. First, we observe that term 
log

(∑K

i=1Nt−i

)
 implies that the old cases Nt−i (with i close to K) contribute to the current number of 

cases Nt with the same weight as the more recent cases (with i close to 1). In other words, model (2) assumes 
that infected individuals that are close to recovery transmit the virus at the same rate as the newly infected 
persons. In the case of COVID-19, however, higher transmission rates are observed within the first several 
days of a COVID-19 infection, and then they gradually decline53. To reflect this reality in the model while 
maintaining its convenient linear form, we replace log

(∑K

i=1Nt−i

)
 with 

∑q

i=1 γilogNt−i, where coefficients 
γi represent the effect strengths of the lagged values logNt−i on the current value of logNt. Here q ≤ K  is the 
time horizon within which these effects are not negligible. Importantly, coefficients γi should not be confused 
with transmission rates of individuals in the i-th day of infection.

Second, in Eq.  (2), parameter β, i.e., the average number of contacts per person times the transmission 
probability, is constant. In reality, however, this parameter can vary from day to day, e.g., due to the social 
distancing measures that reduce the number of physical person-to-person contacts. While daily changes in the 
average number of contacts per person are impossible to track, we conjecture that they match the changes in the 
self-isolation index. Accordingly, term logβ in Eq. (2), i.e., the effect of the logarithm of the average number of 
contacts per person (assuming constant transmission probability) on the current value of logNt, can be replaced 
with 

∑p

j=0 βj logSIIt−j , where coefficients βj  represent the effect strengths of lagged values logSIIt−j  on 

logNt. In other words, logβ can be replaced with a linear model that regresses logNt on past values of logSIIt. 
The time horizon for detectable effects, p, should not exceed the length of the period within which newly infected 
persons can transmit the SARS-COV-2 virus, but it does not need to coincide with q.

Considering the abovementioned adjustments to Eq.  (2), we propose the autoregressive distributed lag 
(ARDL) model ((M1)), given by formula (3), to explain the current level of logNt with a linear combination of 
its past values (the autoregressive part) and past values of logSIIt (the distributed lag part) plus the white noise 
εt.

	
log Nt = µ +

q∑
i=1

γi log Nt−i +
p∑

j=0

βj log SIIt−j + εt,� (3)

If reliable testing and/or registering the new COVID-19 cases is lacking, the daily reported new cases Nt may 
not reflect well the true epidemic curve. Yet, the true number of infections could be estimated using the reported 
numbers of COVID-19 fatalities54. While estimating the true numbers of infections based on the reported fatal 
cases of COVID-19 is beyond the scope of this paper, the abovementioned approach justifies the use of the daily 
reported deaths Dt in place of Nt in our analysis. Working with the time series of reported deaths Dt poses 
several problems, however. As visible on Fig. 1B, Dt exhibits considerable changes in volatility and on some 
days no deaths were reported, which precludes logarithmic transformation. Therefore, we smoothen the original 
data Dt using a 7-day rolling mean. This reduces the variance without obscuring the long-term patterns and 
allows us to apply logarithmic transformation to the time series (barring cases when no deaths were reported 
for 7 consecutive days). We also apply a 7-day rolling mean to logSIIt. Thus, as an analog to model ((M1)), we 
propose model ((M2)) given by formula (4):

	
log RM7(Dt) = µ +

q∑
i=1

γi log RM7(Dt−i) +
p∑

j=0

βj log RM7(SIIt−j) + εt.� (4)

A reliable estimation of parameters of models ((M1)) and ((M2)) using the ordinary least squares (OLS) 
method requires that both processes logNt and logSIIt, and logRM7(Dt) and logRM7(SIIt), respectively, 
are stationary55. A suite of stationarity tests (cf. Supplementary Information S2, Supplementary Tables S2.1 
and S2.2) compels us, however, to reject the hypotheses of stationarity of logNt, logSIIt, logRM7(Dt), and 
logRM7(SIIt) – for both Moscow and St. Petersburg. Consequently, the OLS method cannot be used to estimate 
parameters of models (3) and (4) directly. However, the first differences of the abovementioned processes, 
∆ log Nt, ∆ log SIIt∆ log RM7(Dt), and ∆ log RM7 (SIIt), do pass the stationary tests (see Supplementary 
Information S2, Supplementary Tables S2.3 and S2.4). Thus, for both cities, the analyzed time series are of type 
I(1) (integrated of order one, i.e., stationary after applying difference operator once). This opens a possibility 
for employing the so-called error-corrected forms of ARDL models (M1) and (M2), for which OLS estimators 
of parameters are reliable.

Cointegration and the error-corrected form of models (M1) and (M2)
While both logNt and logSIIt are non-stationary, there may exist a stable long-run relationship between 
them, which could be exploited for reliable OLS estimation of parameters. More specifically, there may exist 
vector (γ, θ) ∈ R2 such that process γlogNt + θlogSIIt is stationary – in which case processes logNt and 
logSIIt are said to be cointegrated56. Notice that the mean of a stationary process is a constant, which can be 
included in the intercept term of the model, thus, without loss of generality, we can assume that the average of 
γlogNt + θlogSIIt is zero. Consequently, cointegration implies that, on average, we expect to observe the long-
run equilibrium relationship logNt = − θ

γ
logSIIt.

If logNt and logSIIt are cointegrated, then model ((M1)) given by formula (3) can be transformed into its 
so-called error-corrected form57,58, defined by formula (5) below and denoted as (M1EC):
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∆ log Nt = µ + γ log Nt−1 + θ log SIIt−1 +

q−1∑
i=1

αi∆ log Nt−i +
p−1∑
j=0

ϕj∆ log SIIt−j + et.� (5)

Cointegration of logNt and logSIIt implies that both sides of the formula above consist of stationary processes, 
which offers a possibility for a reliable estimation of parameters of model (M1EC). More specifically, OLS 
estimators of these parameters are consistent if: (A) errors et are serially independent with zero mean and a 
constant variance; and (B) errors et are uncorrelated with ∆ log SIIt−h for all lags h ∈ Z (i.e., ∆ log SIIt is 
exogenous)55. Parameters of the original model (M1) can then be recovered using the following relationships:

	

γ1 = γ + 1 + α1,

γi = αi − αi−1, i = 2, . . . , q − 1,

γq = −αq−1,

β0 = θ0,

β1 = θ + ϕ1 − ϕ0

βj = ϕj − ϕj−1, j = 2, . . . , p − 1,

βp = −ϕp−1.

� (6)

The error-corrected model (M1EC) has an important practical interpretation. The ARDL term 
q−1∑
i=1

αi∆ log Nt−i

+
p−1∑
j=0

ϕj∆ log SIIt−j  represents the short-term dynamics of ∆ log Nt driven by the past changes ∆ log Nt 

and ∆ log SIIt. The short-term dynamics is not influenced by the level of logSIIt, however, regardless of 
whether it is low or high. Yet, in the presence of a long-run equilibrium logNt = − θ

γ
logSIIt, any given level 

of logSIIt will induce an adjustment of values of logNt towards its new equilibrium value of − θ
γ
logSIIt. 

Thus, to properly describe the evolution of ∆ log Nt, the short term-dynamics needs to be corrected (hence 
the name of error correction model) with the term γlogNt−1+θlogSIIt−1= −γ

(
− θ

γ
logSIIt−1 − logNt−1

)
, 

where the expression in parentheses is the difference between the expected equilibrium value of logNt, equal to 
− θ

γ
logSIIt−1, and the value of logNt−1 observed at the previous time step. The constant −γ is interpreted as 

the rate of convergence to the new equilibrium.
In a similar fashion as above, if logRM7(Dt) and logRM7(SIIt) are cointegrated, then the model (M2) 

can be transformed into its error-corrected form (M1EC) given by formula (7) below:

	

∆ log RM7 (Dt) =µ + γ log RM7 (Dt−1)
+ θ log RM7 (SIIt−1)

+
q−1∑
i=1

αi∆ log RM7 (Dt−i)

+
p−1∑
j=0

ϕj∆ log RM7 (SIIt−j) + et.

� (7)

The conditions (A) and (B) for reliable estimation of parameters of model (M2EC) are essentially the same as 
for the model (M1EC), with ∆ log RM7 (SIIt−h) replacing ∆ log SIIt−h in condition (B). Coefficients of 
the model (M2) can be recovered using Eq.(6).

Estimation of parameters of error-corrected model and cointegration tests
An error-corrected ARDL model can be employed in testing for cointegration if its parameters can be reliably 
estimated using the OLS method, i.e., if conditions (A) and (B) above are satisfied58. The procedure for testing for 
cointegration involves: (i) estimation of parameters of the error-corrected ARDL model including the optimal 
orders q∗ and p∗ of the autoregressive and distributed lag parts of the model, respectively, and (ii) testing the 
null hypothesis H0 : γ = θ = 058,59.

In the Results section below, we present the results of cointegration tests between logNt and logSIIt, and 
logRM7(Dt) and logRM7(SIIt) obtained with use of the R package dLagM, version 1.1.860. To carry out step 
(i), we use the ardlBoundOrders function. The function performs a search over combinations of orders q and 
p within the pre-specified limits qmax and pmax. For each combination of q and p, the function estimates an 
error-correction ARDL model and it returns q∗ and p∗ for which the corresponding estimated model minimizes 
the selected goodness-of-fit criterion. As a goodness-of-fit criterion we use the Bayesian Information Criterion 
(BIC) since it strongly penalises the number of parameters in a model and thus reduces the risk of overfitting. To 
carry out step (ii), we use the obtained optimal orders q∗ and p∗ as parameters in the ardlBound function. This 
function fits an error-corrected ARDL model of the specified orders, performs the bounds test for cointegration 
as described in59 and displays the model’s diagnostics.
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Results
The relationship between daily reported new infections and the self-isolation index
To explore the relationship between logNt and logSIIt we perform the cointegration tests based on model 
(M1EC). In the testing procedure (i.e., steps (i) and (ii) described in the previous subsection), the upper limits 
on the orders of the autoregressive and distributed lag components are set to qmax = pmax = 14 days, which is 
a typical duration of a symptomatic COVID-19 infection53.

The output of the ardlBound function, including the model diagnostics, is presented in full in Appendices 
S3 and S4 for the Moscow and St. Petersburg data, respectively. There, we discuss conditions (A) and (B) for a 
reliable OLS estimation of parameters and we assess the quality of the fitted models (M1EC). Below, we present 
the results of cointegration test. If the presence of cointegration is concluded, we also present the estimated 
parameters of model (M1EC), reconstruct the parameters of the model (M1), and interpret the results.

 Cointegration between new infections and the self-isolation index for Moscow
 Table 1 summarizes the results of the bounds test for cointegration. The value of the F -statistic for the bounds 
test is above the I(1) threshold for the critical value of 1%, which provides strong evidence for cointegration 
between logNt and logSIIt.

As discussed in Supplementary Information S3, conditions (A) and (B) for a reliable OLS estimation of 
parameters of model (M1EC) are satisfied and we consider the quality of the fitted model to be good. The 
estimated coefficients of model (M1EC) and the results of significance tests are presented in Table 2. From the 
estimated coefficients of model (M1EC) (displayed on Fig. 2A and C), we recover the coefficients of the original 
ARDL model (M1) using Eq. (3)–see Fig. 2B and D.

The estimated values of the error correction coefficients are γ = −0.019 and θ = −0.005, implying the 
long-run equilibrium relationship logNt = − θ

γ
logSIIt = −0.26logSIIt. That is, an increase in logSIIt by 

1 induces logNt to eventually decrease by 0.26, and the rate of this adjustment (i.e., convergence to the new 

Coefficients of model (M1EC)

Coefficient Estimate Std. error t statistic p value

µ 0.148 0.060 2.460 0.014 (*)

γ − 0.019 0.008 − 2.434 0.015 (*)

θ − 0.005 0.012 − 0.423 0.673

ϕ0 0.019 0.014 1.404 0.161

ϕ1 − 0.019 0.015 − 1.254 0.210

ϕ2 0.042 0.014 3.006 0.003 (**)

ϕ3 − 0.090 0.014 − 6.531 1.56e−10 (***)

α1 − 0.433 0.042 − 10.298 < 2e−16 (***)

α2 − 0.138 0.045 − 3.082 0.002 (**)

α3 − 0.022 0.041 − 0.544 0.587

α4 0.017 0.040 0.428 0.669

α5 − 0.049 0.040 − 1.211 0.226

α6 0.171 0.040 4.218 2.90e−05 (***)

α7 0.370 0.040 9.171 < 2e−16 (***)

α8 0.285 0.040 7.202 2.09e−12 (***)

α9 0.091 0.037 2.430 0.015 (*)

Table 2.  Parameters of the (M1EC) model fitted to the Moscow data. Multiple R2: 0.42, Adjusted R2: 0.41. 
F-statistic: 22.42 on 15 and 520 DF, p value: < 2.2e−16. Significance codes used: 0 ≤ (***) ≤ 0.001 ≤ (**) ≤ 0.01 
≤ (*) ≤ 0.05 ≤ (.) ≤ 0.1.

 

Bounds test for cointegration

Critical value I(0) bound I(1) bound

10% 4.04 4.78

5% 4.94 5.73

1% 6.84 7.84

Table 1.  Cointegration test based on the (M1EC) model for the Moscow data. F -statistic > I(1) bound for 
critical value of 1%. F -statistic = 11.48. Conclusion: The null hypothesis of cointegration not rejected at 0.01 
significance level.

 

Scientific Reports |        (2025) 15:40709 7| https://doi.org/10.1038/s41598-025-24240-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


equilibrium value) is equal to −γ = 0.019 per day. This agrees with the empirical observation that limiting 
people-to-people interactions leads to a reduction in the numbers of COVID-19 cases.

As the long-run equilibrium is restored rather slowly (adjustments of about 2% a day), it has a relatively 
small impact on the short-term dynamics of ∆ log Nt. Indeed, the level of logSIIt−1 has a negligible effect 
on ∆ log Nt. However, ∆ log SIIt−2 and ∆ log SIIt−3 have statistically significant, even if small, effects on 
∆ log Nt. This suggests that the daily numbers of new infections react to changes in the level of self-isolation 
index with a delay of 2–3 days. This apparent delay coincides with the observation that people infected with 
SARS-CoV-2 can themselves become infectious one to two days before the onset of symptoms61 (plus one day 
for results of positive tests to appear in the published statistics).

The autoregressive part of thestimated model (M1EC) indicates that the short-run dynamics of ∆ log Nt.  
is driven mainly by the past changes ∆ log Nt−h for h = 1, . . . 9. For small h, the impact of ∆ log Nt−h on 
∆ log Nt is negative, gradually becoming zero around h = 4, then further increasing and reaching a peak at 
h = 7, and then tapering off as h approaches 9, as presented on Fig. 2C. This agrees with the observed dynamics 
of COVID-19 infections, where the number of new infections is driven by the total number of active cases. 
Indeed, if the number of cases is on the rise for some time prior to t − 1, then, even as ∆ log Nt−1 < 0, the 
number of new cases Nt is pushed up by the active cases detected more than 1 day ago. A continued decrease in 
the daily number of cases overcomes this momentum within 4–5 days and then reverses it, which manifests itself 
in ∆ log Nt−h becoming gradually positively impacting ∆ log Nt as h approaches 7. This impact decreases for 
h approaching 9. Lags h ≥ 10 were not included in the model, which suggests that the cases older than 10 days 
do not contribute significantly to the increase in new cases. The contributions of the past infections, i.e., of active 
cases i days old, to the current number of daily infections are represented by coefficients γi in the autoregressive 
part of model (M1) – cf. Fig. 2D.

 Cointegration between the new infections and the self-isolation index for St. Petersburg
 As discussed in Supplementary Information S4, condition (A) for a reliable OLS estimation of parameters is not 
satisfied and the quality of the fitted model (M1EC) is poor. This undermines validity of the cointegration test, 
results of which (included in Supplementary Information S4) are thus not presented here. Available data for St. 
Petersburg do not support conclusive evidence for or against the hypothesis of cointegration between logNt and 
logSIIt. We highlight potential quality issues with data for St. Petersburg in the Discussion.

The relationship between the COVID-19 deaths and the self-isolation index
To investigate the existence of a long-run relationship between the self-isolation index and reported deaths 
related to COVID-19 we perform tests for cointegration between logRM7(Dt) and logRM7(SIIt) based on 
model (M2EC). The testing procedure is essentially the same as the one employing model (M1EC). However, 
to accommodate a considerable uncertainty in the time between contracting COVID-19 and death – ranging 
between a couple of days and a couple of weeks – we increase the upper limit for the orders of autoregressive 
and distributed-lag terms to qmax = pmax = 21 days. The full output of the ardlBound function, discussion of 
conditions for a reliable OLS estimation and assessment of the quality of models (M2EC) fitted to the Moscow 
and St. Petersburg data are presented in Appendices S5 and S6, respectively.

Fig. 2.  Plots of model coefficients estimated for Moscow. (A) Distributed lag coefficients of model (M1EC). 
(B) Distributed lag coefficients of model (M1). (C) Coefficients of autoregressive part of model (M1EC). (D) 
Coefficients of autoregressive part of model (M1).
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It is important to note that uncertainty in the time between the COVID-19 infection and death blurs any 
short-term responses of logDt to changes in logSIIt. This is further compounded by smoothening of these time 
series with 7-days rolling means. Consequently, coefficients of the model (M2EC) do not lend themselves to 
easy interpretation. Hence, in this section, we will not attempt to draw conclusions from the values of short-term 
coefficients αi and ϕj  of model (M2EC).

Cointegration between deaths and the self-isolation index for Moscow
The results of the bounds test for cointegration between logRM7(Dt) and logRM7(SIIt) applied to the 
Moscow data are presented in Table 3. The value of the F -statistic is above the I(1) bound for the critical value 
of 5%, thus the hypothesis of cointegration is not rejected at the significance level of 0.05.

Despite slight violation of condition (A) for a reliable OLS estimation (light serial correlation in the residuals) 
we consider the fitted model (M2EC) to have satisfactory quality – cf. Supplementary Information S5. Thus, 
we have good confidence in the results of the cointegration test and in the estimates of parameters of model 
(M2EC), presented in Table 4.

The long-run equilibrium between logRM7(Dt) and logRM7(SIIt)  is given by the equation 
logRM7(Dt) = − θ

γ
logRM7(SIIt) = −0.055logRM7(SIIt). That is, on average, an increasing 

logRM7(SIIt) by 1 is expected to decrease  logRM7(Dt) by 0.055. The rate of convergence to the equilibrium 
is equal to −γ = 0.006 per day. Qualitatively, this is in line with the observed dynamics of COVID-19 (social 
distancing measures result in fewer infections and thus in fewer fatal cases), as well as with the estimated 
equilibrium relationship between logNt and logSIIt (although here both the equilibrium coefficient, and the 
rate of convergence are an order of magnitude smaller). This further strengthens our confidence in the soundness 
of conclusions drawn from the model (M2EC) for Moscow.

Cointegration between deaths and the self-isolation index for St. Petersburg
Table 5 presents the results of the bounds test for cointegration between logRM7(Dt) and logRM7(SIIt) 
recorded for St. Petersburg. The value of the F -statistic is just above the I(1) bound for the critical value of 5%. 
Thus, we conclude that the hypothesis of cointegration is not rejected at the significance level of 0.05.

As discussed in Supplementary Information S6, the conditions for a reliable OLS estimation of parameters 
are satisfied to a satisfactory degree and we consider the quality of the fitted model (M2EC) to be good. We are, 
therefore, confident in the results of the cointegration test and in the estimated parameters of model (M2EC), 
which are presented in Table 6.

The estimated coefficient − θ
γ  in the long-run equilibrium logRM7(Dt) = − θ

γ
logRM7(SIIt) for St. 

Petersburg is equal to 0.58, and the rate of convergence is equal to −γ = 0.008. Qualitatively, this is consistent 
with our findings for Moscow obtained with both models (M1EC) and (M2EC).

Discussion and conclusions
In this paper we proposed two error-corrected ARDL models, (M1EC) and (M2EC) , which allow us to 
investigate the existence of a stable long-run relationship (cointegration) between the numbers of newly detected 
COVID-19 infections and the numbers of fatal cases, respectively, and the self-isolation index.

Applying model (M1EC) to the data available for Moscow, we found very strong evidence for cointegration 
between logNt and logSIIt. For St. Petersburg, however, we were unable to conclude whether such cointegration 
relationship exists or not. In our opinion, this is due to a questionable quality of the official data on the daily 
numbers of new COVID-19 cases reported in this city. Indeed, the first wave of infections in spring 2020, clearly 
seen in Moscow’s records, is barely visible in the St. Petersburg data (see Fig. 1A). Moreover, the two following 
waves (November–December 2020 and August–September 2021) have very unusual shapes, with an initial 
exponential-like growth sharply transiting to elevated but nearly constant levels of the new daily infections. 
This is in a stark contrast to the typically observed patterns of sharp rises in the numbers of new cases, followed 
in quick succession by comparably steep declines (as, e.g., in the case for Moscow). A very low volatility (i.e., 
deviations from the 7-days rolling mean) of the daily reported numbers of the new COVID-19 cases further rises 
our suspicions about reliability of the official infection statistics for St. Petersburg. Furthermore, these statistics 
also appear to be inconsistent with the number of COVID-19 related deaths reported in St. Petersburg, as the 
second and third wave of reported deaths slightly precede – rather than lag behind – the corresponding waves 
of the newly reported cases. Finally, the official statistics for St. Petersburg imply the case-fatality ratio that is 
2–3 times higher than such ratio for Moscow, which also appears unlikely. Thus, we conjecture that insufficient 

Bounds test for cointegration

Critical value I(0) bound I(1) bound

10% 4.04 4.78

5% 4.94 5.73

1% 6.84 7.84

Table 3.  Cointegration test based on the (M2EC) model for the Moscow data. F -statistic > I(1) bound for 
critical value of 5% F -statistic = 6.08 Conclusion: The null hypothesis of cointegration not rejected at 0.05 
significance level.
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Bounds test for cointegration

Critical value I(0) bound I(1) bound

10% 4.04 4.78

5% 4.94 5.73

1% 6.84 7.84

Table 5.  Cointegration test based on the (M2EC) model for the St. Petersburg data. F -statistic > I(1) bound 
for critical value of 5% F -statistic = 5.74 Conclusion: The null hypothesis of cointegration not rejected at 0.05 
significance level.

 

Coefficients of model (M2EC)

Coefficient Estimate Std. error t statistic p value

µ 0.024 0.011 2.078 0.039 (*)

γ − 0.006 0.003 − 2.092 0.037 (*)

θ − 3.15e−04 0.002 − 0.172 0.864

ϕ0 0.010 0.016 0.639 0.523

ϕ1 − 0.041 0.017 − 2.397 0.017 (*)

ϕ2 0.029 0.017 1.678 0.095 (.)

ϕ3 0.022 0.017 1.249 0.213

ϕ4 0.006 0.017 0.340 0.734

ϕ5 − 0.038 0.017 − 2.185 0.030 (*)

ϕ6 0.025 0.018 1.403 0.162

ϕ7 0.005 0.020 0.272 0.786

ϕ8 − 0.015 0.019 − 0.791 0.430

ϕ9 0.021 0.019 1.102 0.271

ϕ10 0.006 0.019 0.313 0.755

ϕ11 0.015 0.019 0.780 0.436

ϕ12 − 0.049 0.019 − 2.587 0.010 (*)

ϕ13 − 2.72e−05 0.019 − 0.001 0.999

ϕ14 0.068 0.019 3.502 0.001 (***)

ϕ15 − 0.024 0.017 − 1.361 0.175

ϕ16 0.016 0.017 0.941 0.348

ϕ17 − 0.010 0.017 − 0.594 0.553

ϕ18 0.017 0.017 0.965 0.335

ϕ19 − 0.021 0.017 − 1.206 0.229

ϕ20 − 0.029 0.017 − 1.690 0.092 (.)

ϕ21 0.023 0.017 1.409 0.160

α1 0.414 0.059 7.065 1.40e−11 (***)

α2 0.222 0.058 3.814 1.70e−04 (***)

α3 0.258 0.060 4.291 2.49e−05 (***)

α4 0.041 0.062 0.664 0.507

α5 0.058 0.063 0.916 0.361

α6 0.031 0.061 0.509 0.611

α7 − 0.452 0.059 − 7.722 2.32e−13 (***)

α8 0.286 0.059 4.855 2.06e−06 (***)

Table 4.  Parameters of the model (M2EC) fitted to the Moscow data. Multiple R2: 0.66, Adjusted R2: 0.62. 
F-statistic: 16.41 on 32 and 267 DF, p value: < 2.2e−16. Significance codes used: 0 ≤ (***) ≤ 0.001 ≤ (**) ≤ 0.01 
≤ (*) ≤ 0.05 ≤ (.) ≤ 0.1.
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evidence for cointegration between number of COVID-19 cases and SII for St. Petersburg is more likely due to 
unreliability of data rather than due to inadequacy of model (M1EC).

This conclusion is corroborated by our findings obtained with model (M2EC), which uses the 7-day rolling 
mean of daily reported numbers of fatal cases of COVID-19 in place of the numbers of infections. With the help 
of this model, we have found strong evidence for cointegration between logRM7(Dt) and logRM7(SIIt) 
for both Moscow and St. Petersburg. This suggests that the numbers of COVID-19 related deaths may be a 
more robust, if less direct, proxy for the true dynamics of the pandemic in case the data on the numbers of new 
COVID-19 cases is unreliable.

The detected cointegration relationships between logSIIt and logNt, and between logRM7(SIIt) and 
logRM7(Dt) allows us to draw a conclusion that Yandex’s self-isolation index is a useful metric for monitoring 
the level of intensity of people-to-people contacts within a population.

The long-run equilibrium between logNt and logSIIt implied by cointegration has considerable practical 
importance. First, it informs us about the order of magnitude of changes to logNt that could be brought about by 
limiting person-to-person contacts measured by the self-isolation index. Second, the rate at which logNt adjust 
to changed levels of logSIIt gives us a measure of the expected time delays before social-distancing policies start 
having the desired effects on the dynamic of the pandemic. For Moscow, the approximate equilibrium is given 
by the equation  logNt = −0.26logSIIt and the rate of adjustments of logNt to a new level of logSIIt of 2% 
per day. A qualitatively similar long-run relationship was detected between logRM7(Dt) and logRM7(SIIt), 
with the equilibrium coefficient ranging between −0.05 for Moscow and −0.58 for St. Petersburg, and the rate 
of convergence less than 1% a day. This could indicate that social distancing measures may be more effective in 
limiting the number of COVID-19 related deaths rather than the overall number of cases, but it takes longer for 
the results of such measures to make a detectable impact.

The error-corrected ARDL models (M1EC)  and (M2EC) proposed in this paper were employed in a 
diagnostic mode, with the purpose of testing for cointegration between the self-isolation index and the time 
series reflecting COVID-19 dynamics. We advise caution, in employing them in a prognostic mode, especially 
for long-term projections. The structure of our models was chosen for the ease of interpretation, for reliability of 
parameter estimators, and for the possibility of relating them to the classical SIR model of epidemic dynamics. 
More advanced models, such as partially observed Markov processes used in7, which feature better mechanistic 
representation of the COVID-19 dynamics, and which account for changing levels of vaccine-induced immunity 
as well as varying transmissibility of the virus (e.g., due to emergence of new variants of the SARS-Cov-2) 
may have better predictive performance. Moreover, the aggregation methodology of condensing diverse data 
into a single SII value may be suboptimal in terms of capturing the correlation between the patterns of user 
activity on the Yandex platform and actual people-to-people contact rates. Non-linear SII transformations could 
enhance this correlation and thus act as even better predictors of COVID-19 dynamics, however, at the cost of 
less straightforward interpretation of results. In this paper, we opted to work with the SII in its original scale.

In conclusion, our results obtained for the Yandex’s self-isolation index in Moscow and St. Petersburg suggest 
that similar aggregated indices reflecting the intensity of people-to-people contacts based on anonymized user 
mobility and online activity data collected by Yandex and other digital platform may be useful for monitoring in 
real-time the level of population compliance with social distancing measures in other parts of the world beyond 
Russia. Caution is advised, however, until additional data covering other regions become available and allow 

Coefficients of model (M2EC)

Coefficient Estimate Std. error t statistic p value

µ 0.032 0.014 2.260 0.025 (*)

γ − 0.008 0.004 − 2.220 0.027 (*)

θ − 0.005 0.004 − 1.075 0.283

ϕ0 − 0.058 0.028 − 2.078 0.039 (*)

ϕ1 − 0.062 0.030 − 2.093 0.037 (*)

ϕ2 0.085 0.028 3.038 0.003 (**)

α1 0.406 0.056 7.275 3.15e−12 (***)

α2 0.212 0.059 3.572 4.13e−04 (***)

α3 0.048 0.060 0.806 0.421

α4 0.027 0.054 0.504 0.615

α5 0.057 0.054 1.058 0.291

α6 0.041 0.054 0.759 0.448

α7 − 0.380 0.054 − 7.098 9.44e−12 (***)

α8 0.147 0.057 2.554 0.011 (*)

α9 0.119 0.057 2.069 0.039 (*)

α10 0.142 0.054 2.616 0.009 (**)

Table 6.  Parameters of the model (M2EC) fitted to the St. Petersburg data. Multiple R2: 0.48, Adjusted R2: 
0.45. F-statistic: 17.89 on 15 and 295 DF, p value: < 2.2e−16. Significance codes used: 0 ≤ (***) ≤ 0.001 ≤ (**) 
≤ 0.01 ≤ (*) ≤ 0.05 ≤ (.) ≤ 0.1.
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for more extensive testing of the performance of aggregate user activity indices as proxies for people-to-people 
contact rates. This testing is necessary to establish whether such indices suffer from inconsistent predictive 
power across different regions and scales, as was the case with pure mobility metrics (cf.37). Statistical models 
presented in this paper establish a method of testing whether aggregate user activity indices akin to SII can serve 
as reliable monitoring tools and support decision-making of public health authorities.

Data availability
The relevant data is available in the Supporting Information files, together with the R code replicating the pre-
sented analysis. The data set was composed from publicly available sources: Statistics of new COVID-19 cases 
and deaths due to COVID-19 in Russia ([https://datalens.yandex/7o7is1q6ikh23?tab = X1]) and the Yandex’s 
Self-isolation index ([https://datalens.yandex/7o7is1q6ikh23?tab = q6]).
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