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Explaining COVID-19 dynamics
through user activity data from
digital platforms with Yandex's self-
Isolation index as a case study
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Social-distancing measures were among the very few available policy responses to the initial outbreak
of COVID-19, and they remain an important tool for containing recurring wavers of this and possible
future pandemics. However, policies aiming at limiting the intensity of people-to-people contacts
incur substantial socio-economic costs while their effectiveness varies over time and across locations.
Having a robust way of measuring the level of people-to-people contacts and monitoring compliance
with social-distancing policies would greatly aid governments in better calibrating their responses to
future pandemic outbreaks. In this paper we use the case example of the Yandex’s self-isolation index
to explore the potential of composite indices that aggregate multiple sources of activity data collected
by digital platforms as proxies for evaluating the people-to-people contact intensity. To this end, we
propose two error-corrected autoregressive distributed-lag models, inspired by the classical SIR model
of infectious disease dynamics, and use them in testing for cointegration between the self-isolation
index and the official data on the numbers of new COVID-19 cases and deaths, for the two largest cities
in Russia, Moscow and St. Petersburg. We have found evidence for such cointegration, which confirms
that the COVID-19 epidemic curve can be explained by the level of people-to-people contact intensity
as measured by the self-isolation index. Our findings suggest that the self-isolation index is a useful
real-time indicator of the level of compliance with social distancing measures in the population and
thus can serve as a reliable tool for informing policymaking.

Keywords COVID-19 dynamics, Social distancing monitoring, Digital platforms, Cointegration,
Autoregressive distributed lag models

The Coronavirus Disease (COVID-19)! pandemic has afflicted over 778 million people to date (May 2025), of
whom approximately 7 million have died. It also caused unprecedented disruptions in economic and political
systems and devastated numerous communities across the world>. COVID-19 is caused by the SARS-CoV-2
virus, which mainly spreads through airborne transmission*. To reduce the virus transmission and contain initial
surges in COVID-19 cases, most countries introduced a wide range of non-pharmaceutical interventions (NPIs),
such as face-mask mandates and social distancing measures®. While vaccines (and later other pharmaceutical
measures), became available as of December 2020, their roll-out across the world was uneven, with lower
vaccination rates attained in low- and middle-income countries®. Global vaccination campaign succeeded
in reducing COVID-19 deaths”®, but vaccine-induced immunity proved to decline within months from the
primary vaccination cycle’. Due to immunity waning and appearance of more contagious variants of the SARS-
CoV-2 virus, NPIs have continued to play an important role in managing the recurring waves of COVID-19
infections. They also remain our primary defense against outbreaks of emerging infectious diseases that may
occur in the future.

The efficacy of NPIs has been assessed in different contexts using compartmental models of epidemic
dynamics coupled with statistical modeling'®. It is often evaluated in terms of the change in the effective
reproduction number Ry, i.e., the average number of secondary cases generated by an individual case detected
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at time ¢, which serves as a key parameter to determine how the disease will spread in the population. Using data
on the reported cases before and after the inception of a considered NPI, its impact can be estimated, provided
no other significant factors interfere or the impact of these factors could be accounted for!!~18,

NPIs act on the reproduction number of the virus indirectly, e.g., by reducing individuals’ exposure to the
virus through changes in their behaviors, such as limiting the number of people-to-people contacts and altering
context-specific mobility patterns. Thus, the efficacy of NPIs critically depends on citizens’ compliance with
the introduced measures. However, the level of compliance varies, both across and within countries, resulting
in observable differences in the NPIs efficacy!*!”1°-21. Socio-economic conditions?*?*, public believes and
attitudes?, risk perception?, trust in the healthcare systems?, and quality of institutions?*” have been found
to influence compliance in different contexts. Many of these factors are obscure or unknown in real-time to
authorities responding to developing disease outbreaks, making it difficult to anticipate population’s compliance
with, and thus effectiveness of, NPI measures. This uncertainty leaves governments facing high-stakes dilemmas
when calibrating policy response: overly stringent measures are likely to contain the outbreak but possibly at the
price of exceedingly high social and economic costs, while too lax (but still costly) policies may be ineffective.
Ability to monitor citizen’s compliance with NPI measures would reduce the level of uncertainty under which
governments and public health authorities operate and thus would be a significant aid in formulating policy
responses to disease outbreaks. A reliable way of monitoring population-level compliance with social distancing
measures (e.g., travel restrictions, school and non-essential businesses closures, shelter-in-place orders) would
be particularly useful for policymakers, as such measures, while proven effective in containing COVID-19
outbreaks, cause significant social and economic disruptions.

To help authorities make informed decisions on the scale and timing of social distancing measures, two
elements are needed: (1) a reliable indicator of social distancing in the population; and (2) an understanding
of the relationship between this indicator and the dynamics of the epidemic. The latter would enable experts to
infer the level of social distancing necessary to slow down the virus spread, while the former would allow them
to gauge whether the current compliance with already introduced measures ensures the required level of social
distancing and whether social distancing policies should be strengthened or relaxed.

Monitoring all people-to-people interactions is not feasible in practice and may not be politically and socially
desirable. Thus, in absence of direct measurements, a policy-relevant indicator of social distancing within a
population must rely on aggregate and anonymized proxy data. Large digital platforms, which collect and
integrate user activity data across multiple domains (including geolocation services, virtual shopping, online
entertainment, ride-hailing services) have a high potential to serve as valuable sources of good-quality proxy
data that allow for monitoring social distancing on aggregate levels and across different contexts (workplaces,
public transport, etc.).

Aggregate population mobility patterns derived from anonymized geolocation data collected by digital
platforms and mobile service providers were among the most widely used proxies for explaining the development
of the COVID-19 pandemic in the short-run. Using the estimated flows of travelers based on Baidu geolocation
services, Quilty et al.?® studied the effects of introducing a cordon sanitaire around Wuhan in January 2020
on the spread of COVID-19 across major cities in China. Similarly, Moorley et al.?® correlated the composite
mobility grade based of Unacast mobile telephone tracking data with the daily estimates of the reproductive
numbers R; for eight counties in central State of New York. Gerlee et al.** employed data on the public transport
usage and the Google mobility reports (GMR)?! to predict hospital admissions due to COVID-19 infections in
Sweden. GMR data was successfully incorporated into statistical models to improve accuracy of their predictions
of COVID-19 spread?* and changes in the reproductive number R;4, and were widely used for parameterizing
and validating compartmental and metapopulation models of the COVID-19 dynamics®>. Mobility data was also
used as a proxy for the level compliance with social distancing measures. Voko & Pitter'® used GMR to calculate
country-specific social distance indices for 28 European countries and showed that elevated levels of these
indices coincided with breakpoints in the infection rates. Ilin et al.* leveraged GMR and aggregated mobility
data from other platforms to assess how changes in the stringency of lockdown policies translate to changes in
mobility behaviors and, ultimately, to changes in infection rates.

While mobility metrics are readily available and widely used in research, their usefulness for predicting
COVID-19 dynamics and informing policies have proven to be limited. When evaluated over a range of diverse
regions, mobility data does consistently carry statistically significant information on COVID-19 spread and the
predictive power of mobility metrics is highly dependent on the level of spatial aggregation®”. Moreover, as the
COVID-19 pandemic developed, mobility information became a progressively worse proxy for frequency of
risky in-person contacts which drive the dynamics of COVID-19 infections.

Estimates of in-person contact rates, either based on surveys or derived from high frequency positioning
data from mobile devices, proved to be better predictors of COVID-19 spread compared to aggregate mobility
metrics®*0. Yet, using such estimates for monitoring population compliance with social-distancing measures
may be impractical, as it would involve conducting frequent surveys within a sufficiently large representative
group of responders or require processing of large amounts of sensitive data to identify co-location events for
mobile device users.

We posit that shifts in users’ engagement with a wide range of services offered by digital platforms (such as Google,
Baidou or Yandex), summarized by aggregate user activity metrics, reflect behavioral changes of population sufficiently
well to serve as a useful proxy for the intensity of people-to-people contacts driving the spread of COVID-19. User
activity metrics are based on data routinely collected by digital platforms and, in principle, could be made available
to public and authorities just as the aggregate mobility metrics were. However, to our knowledge, the unique example
of publicly available aggregate metric of user activity is the Self-isolation Index (SII) provided by Yandex!!, a major
digital platform ecosystem operating in Russia and several other countries of the Commonwealth of Independent
States, covering 50-60% of search sessions in Russian internet in years 2020-2021 (with 2025 market share of 65%)*.
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Yandex’s Self-isolation Index gives insights into the changes in population’s travel patterns as well as into shifts in types
of activity people engage in, inferred from the usage of apps and web services in the Yandex ecosystem, such as search
queries, delivery and taxi requests. SII was successfully used in machine-learning models to enhance the forecasting
of the COVID-19 dynamics®. It could also serve as a readily available tool for real-time monitoring of population’s
compliance with the mandated social distancing measures, yet, to our knowledge, its suitability in this role has never
been rigorously investigated. In this paper we address this knowledge gap.

To investigate the usefulness of Yandex’s SII as a real-time indicator of the level of social distancing within a
population, we statistically explore whether SII can explain the observed development of the COVID-19 epidemic
in two largest urban centers of Russia: Moscow and St. Petersburg. To address this question, we propose two
error-corrected autoregressive distributed-lag time series models and use them to test for statistically significant
cointegration (interpreted as a stable long-run equilibrium) between the SIT and the daily reported numbers of
new infections or fatal cases associated with COVID-19. Whenever the available data provide sufficient evidence
for such cointegration, we also estimate parameters of the short-run dynamics which govern the responses of
these two quantities to changes of the self-isolation index.

Materials and methods

Data

Official data on daily reported COVID-19 infections and deaths in the Russian Federation were obtained from*. The
data are available at the level of individual administrative units (oblasts) and has a daily resolution, starting from 12
March 2020.

The Yandex's self-isolation index was designed to reflect the average intensity of person-to-person contacts*.
This was possible due to the platform’s extensive user base. In years 2020 - 2022, for example, on average 80 to
100 million users in Russia (approximately 55-70% of the Russian population, with slight underrepresentation
of adults of above 65 years of age - 10% of Yandex users vs. 27% of total adult population?®*”) were visiting
Yandex platform at least once a month. A typical user was spending about 13 h a month engaging with the
Yandex ecosystem, including portal, mail service, movie and music streaming, blog, news, marketplace, and a
range of other services*. Thus, the Yandex user base is a good cross-section of people living in Russian urban
centers, which tend to have above-average access to computers and mobile devices.

The self-isolation index was derived from the anonymized user activity data from various services available
through the Yandex ecosystem, including geolocation data from navigation and ride-hailing apps, delivery
requests, movie streaming as well as search queries and use of blog platforms®. For example, higher values of
self-isolation index were attained when fever than usual routing requests were registered for the navigator and
subway route planning apps. Likewise, an elevated usage of movie streaming, delivery services and activity on
internet forums resulted in higher values of the SII. The index was calibrated against a pre-pandemic baseline and
takes values between 0 and 5, with 0 representing the level of activity during rush hours on a regular weekday,
when most people are not at home, and 5 corresponding to virtually empty streets, with a vast majority of the
population staying at home. The SII time series are available for individual cities at daily resolution for the period
from 23 February 2020 to 22 September 2021.

The period for which the epidemic data and the SII data overlap spans between 12 March 2020 and 22
September 2021. There is a mismatch, however, in the level of spatial resolution, as the epidemic data is available
for entire administrative units (federal subjects), while SII is calculated for individual cities. Therefore, in
our analysis, we focus on the two largest cities in Russia, Moscow and St. Petersburg, which themselves are
administrative units (federal cities). Both epidemic and SII data sets used in our study are publicly available,
anonymized and highly aggregated. They are not considered personal data and thus their use does not require
ethical approval.

The time series used in our analyses are displayed in Fig. 1. Points represent daily reported new cases of
COVID-19 infections Ny, daily COVID-19 related deaths Dy, and daily values of self-isolation index SI1;
for Moscow and St. Petersburg. Solid lines represent the smoothed versions of these time series, RM7(Ny),
RMy7 (D) and RM~(SI1;), respectively, where RM7 (-;) denotes a 7-day rolling mean (moving average) taken
over the days from (¢ — 6) to . The 7-day rolling mean filters out seasonal patterns at weekly time scales (e.g.,
lower than average numbers of new infections recorded on Tuesdays and Wednesdays and higher values of the
SII on weekends).

In the initial stage of the pandemic unfolding in early spring of 2020, only a few new cases have been reported
each day, with some days on which no new cases have been recorded at all. Numbers of new cases in double
digits or higher (a signal sufficiently strong for the purpose of our analysis) have been consistently reported
only after 23 March 2020 for Moscow and 6 April 2020 for St. Petersburg. We therefore take these dates as
starting points for the time series of the daily new COVID-19 cases in the respective cities. As SII; exhibit
pronounced weekly cycles with index values higher on weekends, we limit our analysis to the period that ends
on 19 September to ensure that the time series used for modelling include records of full weeks. The ranges of
the time series included in the analysis are marked on Fig. 1A with a gray background.

The data on the daily reported deaths due to COVID-19 required a more substantial trimming to be used
in our analysis. As some analysis of the excess mortality in Russia suggests, the number of the fatal cases due to
COVID-19 might have been considerably underreported in 2020°%>!. According to Kobak®, on 28 December
2020, the Russian authorities admitted that most of the excess mortality between January and November 2020
was related to COVID-19, but the official statistics were not updated. Therefore, we discard the data points
on deaths before 2 November 2020 which marks the beginning of the second wave of COVID-19 deaths. The
period for which the data on COVID-19 deaths was included in our analysis is marked on Fig. 1B with the grey
background.
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Fig. 1. Time series used in the study. (A) Daily reported new COVID-19 infections, (B) daily reported deaths,
and (C) daily levels of the self-isolation index for Moscow (MSK) and St. Petersburg (SPB). Dots represent the
original data while solid lines represent the rolling means over the previous 7 days. Shaded regions indicate the
periods for which data was used in our analyses: 23 March 2020 - 19 September 2021 and 4 April 2020 - 19
September 2021 for the daily infections in Moscow and St. Petersburg, respectively, and 2 November 2020 - 19
September 2021 for the daily reported deaths (for both cities).

The SIR-inspired time series model
A visual inspection of Fig. 1 suggests the following relationship between the dynamics of COVID-19 and the self-
isolation index: the waves of infections are preceded by the periods of low SII values, while higher SII levels appear
to flatten the epidemic curve. If confirmed, such a relationship would justify SII; as an informative indicator
for explaining the observed dynamics of COVID-19, reflected by N; or D;. To explore this hypothesis, in this
section we propose an autoregressive distributed-lag time series model inspired by the classical compartmental
susceptible-infected-removed (SIR) model of infectious disease®>.

In the SIR model, at any given time ¢ the number of new cases, N; is proportional to the number of currently

infected individuals I;. In a discrete time, this relationship can be expressed as

K
Ne=BLi-1=8) N 1)

i=1

where K is an average period within which infected individuals remain contagious, and the proportionality
coefficient 3 is interpreted as the average number of contacts per person times the probability of virus
transmission (See Supplementary Information S1, where we show how the discrete-time Eq. (1) can be derived
from the continuous-time SIR model). Applying the logarithmic transformation, Eq. (1) can be written in the
additive form

K
log N; = log B + log Z Ni_s @)

i=1

Equation (2) allows for the separation of the effects related to the intensity of people-to-people contacts and
the probability of transmission, jointly captured by parameter /3, and the effects related to the sheer number of
infected individuals, captured by the sum of recent cases N;_; over the period of the last K days.

It is important to note that Eq. (2) relies on the assumptions of a well-mixed and closed population, inherited
from the SIR model. For large cities, such as Moscow and St. Petersburg, the assumption of a well-mixed
population is plausible, since multiple public spaces and dense transport infrastructure enables uniform virus
spread (i.e., without a tendency to develop spatially isolated clusters of infections). Populations of urban centers,
however, cannot be considered closed. To represent the net flow of infected individuals to and from a city in
question, we add a constant term g to the right-hand side of Eq. (2).
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To further improve the realism of model (2) we make two more adjustments. First, we observe that term
log (ZiK:th,i) implies that the old cases Ny—; (with i close to K) contribute to the current number of

cases Ny with the same weight as the more recent cases (with 4 close to 1). In other words, model (2) assumes
that infected individuals that are close to recovery transmit the virus at the same rate as the newly infected
persons. In the case of COVID-19, however, higher transmission rates are observed within the first several
days of a COVID-19 infection, and then they gradually decline®®. To reflect this reality in the model while
maintaining its convenient linear form, we replace log (Zf(:th—i) with Zgzl ~vilog N _;, where coefficients

v; represent the effect strengths of the lagged values log/N;_; on the current value of log/N;. Here ¢ < K is the
time horizon within which these effects are not negligible. Importantly, coefficients y; should not be confused
with transmission rates of individuals in the i-th day of infection.

Second, in Eq. (2), parameter 3, i.e., the average number of contacts per person times the transmission
probability, is constant. In reality, however, this parameter can vary from day to day, e.g., due to the social
distancing measures that reduce the number of physical person-to-person contacts. While daily changes in the
average number of contacts per person are impossible to track, we conjecture that they match the changes in the
self-isolation index. Accordingly, term log/3 in Eq. (2), i.e., the effect of the logarithm of the average number of
contacts per person (assuming constant transmission probability) on the current value of log/V;, can be replaced
with Z?:o B;logSII;_;, where coefficients 3; represent the effect strengths of lagged values logSII;_; on

log N¢. In other words, logf3 can be replaced with a linear model that regresses log/V on past values of logSI1;.
The time horizon for detectable effects, p, should not exceed the length of the period within which newly infected
persons can transmit the SARS-COV-2 virus, but it does not need to coincide with q.

Considering the abovementioned adjustments to Eq. (2), we propose the autoregressive distributed lag
(ARDL) model ((M1)), given by formula (3), to explain the current level of log/N; with a linear combination of
its past values (the autoregressive part) and past values of logS1I; (the distributed lag part) plus the white noise
Et.

q p
log Nt = p+ Z ~ilog Ny—; + Z Bilog SITi_j + €4, (3)

i=1 =0

If reliable testing and/or registering the new COVID-19 cases is lacking, the daily reported new cases N; may
not reflect well the true epidemic curve. Yet, the true number of infections could be estimated using the reported
numbers of COVID-19 fatalities®®. While estimating the true numbers of infections based on the reported fatal
cases of COVID-19 is beyond the scope of this paper, the abovementioned approach justifies the use of the daily
reported deaths D; in place of IV; in our analysis. Working with the time series of reported deaths D; poses
several problems, however. As visible on Fig. 1B, D; exhibits considerable changes in volatility and on some
days no deaths were reported, which precludes logarithmic transformation. Therefore, we smoothen the original
data D; using a 7-day rolling mean. This reduces the variance without obscuring the long-term patterns and
allows us to apply logarithmic transformation to the time series (barring cases when no deaths were reported
for 7 consecutive days). We also apply a 7-day rolling mean to logSI1;. Thus, as an analog to model ((M1)), we
propose model ((M2)) given by formula (4):

q P
log RM7(Dy) = o+ »_ vilog RMz(Di—i) + Y _ B log RMr(SITi—;) + & 4)

i=1 §=0

A reliable estimation of parameters of models ((M1)) and ((M2)) using the ordinary least squares (OLS)
method requires that both processes logN; and logS11;, and logRM7(D,) and logRM~7(S11;), respectively,
are stationary™. A suite of stationarity tests (cf. Supplementary Information S2, Supplementary Tables S2.1
and S2.2) compels us, however, to reject the hypotheses of stationarity of logNy, logS11¢, logRM~(D t), and
logRM7(S11;) - for both Moscow and St. Petersburg. Consequently, the OLS method cannot be used to estimate
parameters of models (3) and (4) directly. However, the first differences of the abovementioned processes,
Alog N, Alog SII;Alog RM7(Dy),and Alog RM7 (S11;), do pass the stationary tests (see Supplementary
Information S2, Supplementary Tables S2.3 and S2.4). Thus, for both cities, the analyzed time series are of type
I(1) (integrated of order one, i.e., stationary after applying difference operator once). This opens a possibility
for employing the so-called error-corrected forms of ARDL models (M1) and (M2), for which OLS estimators
of parameters are reliable.

Cointegration and the error-corrected form of models (M1) and (M2)

While both logN; and logSII; are non-stationary, there may exist a stable long-run relationship between
them, which could be exploited for reliable OLS estimation of parameters. More specifically, there may exist
vector (7,0) € R? such that process ylogN; 4 0logSTI; is stationary - in which case processes logV; and
logST1; are said to be cointegrated®. Notice that the mean of a stationary process is a constant, which can be
included in the intercept term of the model, thus, without loss of generality, we can assume that the average of
YlogN; + 0logS11, is zero. Consequently, cointegration implies that, on average, we expect to observe the long-
run equilibrium relationship logV; = — %logS 11;.

If logN; and logS11; are cointegrated, then model ((M1)) given by formula (3) can be transformed into its
so-called error-corrected form*”8, defined by formula (5) below and denoted as (M 1g¢):
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q—1 p—1
Alog Ny = p+ vylog Ne—1 + 0log STIi—1 + Z a;Alog Ni—; + Z@Alog SILi—; + eq. (5)
i=1 =0

Cointegration of log N; and logSI1; implies that both sides of the formula above consist of stationary processes,
which offers a possibility for a reliable estimation of parameters of model (M1gc). More specifically, OLS
estimators of these parameters are consistent if: (A) errors e; are serially independent with zero mean and a
constant variance; and (B) errors e; are uncorrelated with Alog SI1:_y, for all lags h € Z (i.e., Alog S11; is
exogenous)®. Parameters of the original model (M 1) can then be recovered using the following relationships:

m=7+1+a,
Vi = — Qi—1,1=2,...,q—1,

Ya = —Qq-1,
Bo = bo, (6)
Br =0+ ¢1— do
Bj=¢j—bj-1,7=2,...,p—1,
Bp = —¢p-1.
a—1
Theerror-corrected model (M 1 ¢ ) hasan important practical interpretation. The ARDL term » | o Alog Ni—;
i=1

p—1
+> ¢jAlog SII;_; represents the short-term dynamics of Alog N; driven by the past changes A log Ny

=0
and Alog SII;. The short-term dynamics is not influenced by the level of logSII;, however, regardless of
whether it is low or high. Yet, in the presence of a long-run equilibrium log/N; = — %logS 11;, any given level

of logS1I; will induce an adjustment of values of log/V; towards its new equilibrium value of —%logSl 1.

Thus, to properly describe the evolution of A log Ny, the short term-dynamics needs to be corrected (hence
the name of error correction model) with the term ylogN:—1+0logSI[;_1= —7y (— %logSHt,l — logNtfl),

where the expression in parentheses is the difference between the expected equilibrium value of log V¢, equal to
— %logS 11;_1, and the value of log/Ny_1 observed at the previous time step. The constant — is interpreted as

the rate of convergence to the new equilibrium.
In a similar fashion as above, if logRM?7(D,) and logRM7(S11;) are cointegrated, then the model (M 2)
can be transformed into its error-corrected form (M1gc) given by formula (7) below:

Alog RM7 (D) =p + ylog RM7 (Dy—1)
+0 log RM~ (SIL:71)
qg—1
+ aillog RMy (D;—) )
-
+ " é;Alog RMy (SI1i—;) + e

J=0

The conditions (A) and (B) for reliable estimation of parameters of model (M2g¢) are essentially the same as
for the model (M1gc), with Alog RM7 (S11;_y) replacing Alog SII;_j in condition (B). Coefficients of
the model (M2) can be recovered using Eq.(6).

Estimation of parameters of error-corrected model and cointegration tests

An error-corrected ARDL model can be employed in testing for cointegration if its parameters can be reliably
estimated using the OLS method, i.e., if conditions (A) and (B) above are satisfied*®. The procedure for testing for
cointegration involves: (i) estimation of parameters of the error-corrected ARDL model including the optimal
orders ¢* and p* of the autoregressive and distributed lag parts of the model, respectively, and (ii) testing the
null hypothesis Ho : v = 6 = 0°%%°.

In the Results section below, we present the results of cointegration tests between log/N; and logSI1;, and
logRM~(D,) and logRM~(SI1;) obtained with use of the R package dLagM, version 1.1.8%. To carry out step
(i), we use the ardIBoundOrders function. The function performs a search over combinations of orders ¢ and
p within the pre-specified limits gmax and pmax. For each combination of g and p, the function estimates an
error-correction ARDL model and it returns ¢* and p™ for which the corresponding estimated model minimizes
the selected goodness-of-fit criterion. As a goodness-of-fit criterion we use the Bayesian Information Criterion
(BIC) since it strongly penalises the number of parameters in a model and thus reduces the risk of overfitting. To
carry out step (ii), we use the obtained optimal orders ¢* and p* as parameters in the ardlBound function. This
function fits an error-corrected ARDL model of the specified orders, performs the bounds test for cointegration
as described in*® and displays the model’s diagnostics.
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Bounds test for cointegration

Critical value | 1(0) bound | 7(1) bound

10% 4.04 4.78
5% 4.94 5.73
1% 6.84 7.84

Table 1. Cointegration test based on the (M1gc) model for the Moscow data. F-statistic > I(1) bound for
critical value of 1%. F'-statistic=11.48. Conclusion: The null hypothesis of cointegration not rejected at 0.01
significance level.

Coefficients of model (M1gc)

Coefficient | Estimate | Std. error | t statistic | p value

% 0.148 0.060 2.460 |0.014 (%)

0 -0.019 0.008 -2.434 |0.015 (%)

0 -0.005 0.012 -0.423 |0.673

b0 0.019 0.014 1.404 | 0.161

1 -0.019 0.015 -1.254 |0.210

P2 0.042 0.014 3.006 | 0.003 (**)

b3 -0.090 0.014 -6.531 | 1.56e—10 (**¥)
aq —-0.433 0.042 -10.298 | <2e-16 (***)
Qs -0.138 0.045 —-3.082 | 0.002 (**)

as -0.022 0.041 —-0.544 |0.587

ay 0.017 0.040 0.428 | 0.669

as -0.049 0.040 -1.211 |0.226

ag 0.171 0.040 4.218 | 2.90e-05 (***)
ar 0.370 0.040 9.171 | <2e-16 (***)
asg 0.285 0.040 7.202 | 2.09e-12 (***)
ag 0.091 0.037 2.430 |0.015 (%)

Table 2. Parameters of the (M1gc) model fitted to the Moscow data. Multiple R?:0.42, Adjusted R%.041.
F-statistic: 22.42 on 15 and 520 DF, p value: <2.2e-16. Significance codes used: 0 < (***) < 0.001 < (**) <0.01
< (%) <0.05<()<0.1.

Results
The relationship between daily reported new infections and the self-isolation index
To explore the relationship between log/N; and logSII; we perform the cointegration tests based on model
(M1Egc). In the testing procedure (i.e., steps (i) and (ii) described in the previous subsection), the upper limits
on the orders of the autoregressive and distributed lag components are set t0 gmaz = Pmaz = 14 days, which is
a typical duration of a symptomatic COVID-19 infection®?.

The output of the ardlBound function, including the model diagnostics, is presented in full in Appendices
S3 and S4 for the Moscow and St. Petersburg data, respectively. There, we discuss conditions (A) and (B) for a
reliable OLS estimation of parameters and we assess the quality of the fitted models (M 1z ). Below, we present
the results of cointegration test. If the presence of cointegration is concluded, we also present the estimated
parameters of model (M 1g¢), reconstruct the parameters of the model (M 1), and interpret the results.

Cointegration between new infections and the self-isolation index for Moscow

Table 1 summarizes the results of the bounds test for cointegration. The value of the F'-statistic for the bounds
test is above the I(1) threshold for the critical value of 1%, which provides strong evidence for cointegration
between logN; and logS11;.

As discussed in Supplementary Information S3, conditions (A) and (B) for a reliable OLS estimation of
parameters of model (M1gc) are satisfied and we consider the quality of the fitted model to be good. The
estimated coefficients of model (M1gc¢) and the results of significance tests are presented in Table 2. From the
estimated coefficients of model (M 1g¢) (displayed on Fig. 2A and C), we recover the coefficients of the original
ARDL model (M1) using Eq. (3)-see Fig. 2B and D.

The estimated values of the error correction coefficients are v = —0.019 and § = —0.005, implying the
long-run equilibrium relationship log/Ny = —%logSIL«, = —0.26logS1I;. That is, an increase in logS1I; by

1 induces logN; to eventually decrease by 0.26, and the rate of this adjustment (i.e., convergence to the new
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equilibrium value) is equal to —y = 0.019 per day. This agrees with the empirical observation that limiting
people-to-people interactions leads to a reduction in the numbers of COVID-19 cases.

As the long-run equilibrium is restored rather slowly (adjustments of about 2% a day), it has a relatively
small impact on the short-term dynamics of Alog V;. Indeed, the level of logSII;_; has a negligible effect
on Alog N¢. However, Alog SII;_» and Alog S11;_3 have statistically significant, even if small, effects on
Alog N;. This suggests that the daily numbers of new infections react to changes in the level of self-isolation
index with a delay of 2-3 days. This apparent delay coincides with the observation that people infected with
SARS-CoV-2 can themselves become infectious one to two days before the onset of symptoms®® (plus one day
for results of positive tests to appear in the published statistics).

The autoregressive part of thestimated model (M1gc¢) indicates that the short-run dynamics of A log N;.
is driven mainly by the past changes Alog N¢_p, for h = 1,...9. For small h, the impact of Alog N;_, on
Alog Ny is negative, gradually becoming zero around h = 4, then further increasing and reaching a peak at
h = 7, and then tapering off as h approaches 9, as presented on Fig. 2C. This agrees with the observed dynamics
of COVID-19 infections, where the number of new infections is driven by the total number of active cases.
Indeed, if the number of cases is on the rise for some time prior to ¢ — 1, then, even as Alog N;—1 < 0, the
number of new cases IV; is pushed up by the active cases detected more than 1 day ago. A continued decrease in
the daily number of cases overcomes this momentum within 4-5 days and then reverses it, which manifests itself
in Alog N;_p becoming gradually positively impacting A log N; as h approaches 7. This impact decreases for
h approaching 9. Lags h > 10 were not included in the model, which suggests that the cases older than 10 days
do not contribute significantly to the increase in new cases. The contributions of the past infections, i.e., of active
cases i days old, to the current number of daily infections are represented by coeflicients y; in the autoregressive
part of model (M1) - cf. Fig. 2D.

Cointegration between the new infections and the self-isolation index for St. Petersburg

As discussed in Supplementary Information S4, condition (A) for a reliable OLS estimation of parameters is not
satisfied and the quality of the fitted model (M 1g¢) is poor. This undermines validity of the cointegration test,
results of which (included in Supplementary Information S4) are thus not presented here. Available data for St.
Petersburg do not support conclusive evidence for or against the hypothesis of cointegration between log/V; and
logS11I;. We highlight potential quality issues with data for St. Petersburg in the Discussion.

The relationship between the COVID-19 deaths and the self-isolation index

To investigate the existence of a long-run relationship between the self-isolation index and reported deaths
related to COVID-19 we perform tests for cointegration between log RM7(D;) and logRM~7(S11;) based on
model (M2gc). The testing procedure is essentially the same as the one employing model (M 1g¢). However,
to accommodate a considerable uncertainty in the time between contracting COVID-19 and death - ranging
between a couple of days and a couple of weeks — we increase the upper limit for the orders of autoregressive
and distributed-lag terms to ¢maz = Pmas = 21 days. The full output of the ardlBound function, discussion of
conditions for a reliable OLS estimation and assessment of the quality of models (M2g() fitted to the Moscow
and St. Petersburg data are presented in Appendices S5 and S6, respectively.

A B
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Fig. 2. Plots of model coefficients estimated for Moscow. (A) Distributed lag coefficients of model (M1z¢).
(B) Distributed lag coeflicients of model (M 1). (C) Coeficients of autoregressive part of model (M 1gc¢). (D)
Coefficients of autoregressive part of model (M1).
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It is important to note that uncertainty in the time between the COVID-19 infection and death blurs any
short-term responses of log D; to changes in logS11;. This is further compounded by smoothening of these time
series with 7-days rolling means. Consequently, coefficients of the model (M2g¢) do not lend themselves to
easy interpretation. Hence, in this section, we will not attempt to draw conclusions from the values of short-term
coefficients ; and ¢; of model (M2g¢).

Cointegration between deaths and the self-isolation index for Moscow

The results of the bounds test for cointegration between logRM7(D;) and logRM~7(SII;) applied to the
Moscow data are presented in Table 3. The value of the F'-statistic is above the I(1) bound for the critical value
of 5%, thus the hypothesis of cointegration is not rejected at the significance level of 0.05.

Despite slight violation of condition (A) for a reliable OLS estimation (light serial correlation in the residuals)
we consider the fitted model (M2gc¢) to have satisfactory quality - cf. Supplementary Information S5. Thus,
we have good confidence in the results of the cointegration test and in the estimates of parameters of model
(M2Egc), presented in Table 4.

The long-run equilibrium between logRM7(D;) and logRM7(SII;) is given by the equation
logRM7 (D) = —%logRM7(SIIt) = —0.055logRM~7(SII;). That is, on average, an increasing

logRM7(S11;) by 1 is expected to decrease logRM7 (D) by 0.055. The rate of convergence to the equilibrium
is equal to —v = 0.006 per day. Qualitatively, this is in line with the observed dynamics of COVID-19 (social
distancing measures result in fewer infections and thus in fewer fatal cases), as well as with the estimated
equilibrium relationship between logN; and logSII; (although here both the equilibrium coefficient, and the
rate of convergence are an order of magnitude smaller). This further strengthens our confidence in the soundness
of conclusions drawn from the model (M2g¢) for Moscow.

Cointegration between deaths and the self-isolation index for St. Petersburg

Table 5 presents the results of the bounds test for cointegration between logRM7(D;) and logRM7(SI1)
recorded for St. Petersburg. The value of the F'-statistic is just above the I(1) bound for the critical value of 5%.
Thus, we conclude that the hypothesis of cointegration is not rejected at the significance level of 0.05.

As discussed in Supplementary Information S6, the conditions for a reliable OLS estimation of parameters
are satisfied to a satisfactory degree and we consider the quality of the fitted model (M2gc¢) to be good. We are,
therefore, confident in the results of the cointegration test and in the estimated parameters of model (M2gc¢),
which are presented in Table 6.

The estimated coefficient —% in the long-run equilibrium logRM7(D;) = — %logRM 7(SII;) for St.

Petersburg is equal to 0.58, and the rate of convergence is equal to —v = 0.008. Qualitatively, this is consistent
with our findings for Moscow obtained with both models (M 1g¢) and (M2gc).

Discussion and conclusions

In this paper we proposed two error-corrected ARDL models, (M1gc) and (M2gc), which allow us to
investigate the existence of a stable long-run relationship (cointegration) between the numbers of newly detected
COVID-19 infections and the numbers of fatal cases, respectively, and the self-isolation index.

Applying model (M1gc) to the data available for Moscow, we found very strong evidence for cointegration
between log /Ny and logS11;. For St. Petersburg, however, we were unable to conclude whether such cointegration
relationship exists or not. In our opinion, this is due to a questionable quality of the official data on the daily
numbers of new COVID-19 cases reported in this city. Indeed, the first wave of infections in spring 2020, clearly
seen in Moscow’s records, is barely visible in the St. Petersburg data (see Fig. 1A). Moreover, the two following
waves (November-December 2020 and August-September 2021) have very unusual shapes, with an initial
exponential-like growth sharply transiting to elevated but nearly constant levels of the new daily infections.
This is in a stark contrast to the typically observed patterns of sharp rises in the numbers of new cases, followed
in quick succession by comparably steep declines (as, e.g., in the case for Moscow). A very low volatility (i.e.,
deviations from the 7-days rolling mean) of the daily reported numbers of the new COVID-19 cases further rises
our suspicions about reliability of the official infection statistics for St. Petersburg. Furthermore, these statistics
also appear to be inconsistent with the number of COVID-19 related deaths reported in St. Petersburg, as the
second and third wave of reported deaths slightly precede - rather than lag behind - the corresponding waves
of the newly reported cases. Finally, the official statistics for St. Petersburg imply the case-fatality ratio that is
2-3 times higher than such ratio for Moscow, which also appears unlikely. Thus, we conjecture that insufficient

Bounds test for cointegration

Critical value | 1(0) bound | 1 (1) bound

10% 4.04 4.78
5% 4.94 5.73
1% 6.84 7.84

Table 3. Cointegration test based on the (M2gc) model for the Moscow data. F-statistic > (1) bound for
critical value of 5% F'-statistic =6.08 Conclusion: The null hypothesis of cointegration not rejected at 0.05
significance level.
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Coefficients of model (M 2gc)

Coefficient | Estimate | Std. error | ¢ statistic | p value

7 0.024 0.011 2.078 0.039 (*)
-0.006 0.003 -2.092 0.037 (*)

0 —3.15e-04 | 0.002 -0.172 0.864

b0 0.010 0.016 0.639 0.523

b1 ~0.041 0.017 2397 | 0.017 (*)

¢2 0.029 0.017 1.678 | 0.095 (.)

@3 0.022 0.017 1.249 0.213

b4 0.006 0.017 0.340 0.734

s -0.038 0.017 -2.185 0.030 (*)

b6 0.025 0.018 1.403 0.162

b7 0.005 0.020 0.272 0.786

[or -0.015 0.019 -0.791 0.430

o3 0.021 0.019 1.102 0.271

10 0.006 0.019 0.313 0.755

11 0.015 0.019 0.780 0.436

P12 -0.049 0.019 —-2.587 0.010 (*)

13 —2.72e-05 | 0.019 —-0.001 0.999

P14 0.068 0.019 3.502 0.001 (***)

15 -0.024 0.017 -1.361 0.175

d16 0.016 0.017 0.941 0.348

o7 -0.010 0.017 -0.594 0.553

P18 0.017 0.017 0.965 0.335

$19 -0.021 0.017 -1.206 | 0.229

20 -0.029 0.017 -1.690 0.092 (.)

21 0.023 0.017 1.409 0.160

%1 0.414 0.059 7.065 1.40e—11 (***)

Qs 0.222 0.058 3.814 1.70e—04 (***)

as 0.258 0.060 4.291 2.49e-05 (***)

Qg 0.041 0.062 0.664 0.507

as 0.058 0.063 0.916 0.361

ag 0.031 0.061 0.509 0.611

ar —-0.452 0.059 -7.722 2.32e-13 (***)

asg 0.286 0.059 4.855 2.06e—06 (***)

Table 4. Parameters of the model (M2gc) fitted to the Moscow data. Multiple R?: 0.66, Adjusted R?: 0.62.
F-statistic: 16.41 on 32 and 267 DEF, p value: <2.2e-16. Significance codes used: 0 < (***) < 0.001 < (**) <0.01

< (%) <0.05<()<0.1.

Bounds test for cointegration

Critical value

1(0) bound

I(1)bound

10%

4.04

4.78

5%

4.94

573

1%

6.84

7.84

Table 5. Cointegration test based on the (M2gc) model for the St. Petersburg data. F-statistic > 1(1) bound
for critical value of 5% F'-statistic = 5.74 Conclusion: The null hypothesis of cointegration not rejected at 0.05

significance

level.
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Coefficients of model (M 2gc)

Coefficient | Estimate | Std. error | ¢ statistic | p value

1% 0.032 0.014 2.260 0.025 (*)
-0.008 0.004 -2.220 0.027 (*)

] -0.005 0.004 -1.075 0.283

b0 -0.058 0.028 -2.078 0.039 (*)

b1 -0.062 0.030 -2.093 0.037 (*)

b2 0.085 0.028 3.038 0.003 (**)

aq 0.406 0.056 7.275 3.15e—12 (***)

Qg 0.212 0.059 3.572 4.13e-04 (***)

as 0.048 0.060 0.806 0.421

Qg 0.027 0.054 0.504 0.615

as 0.057 0.054 1.058 0.291

g 0.041 0.054 0.759 0.448

ar -0.380 0.054 —-7.098 9.44e—12 (***)

asg 0.147 0.057 2.554 0.011 (*)

ag 0.119 0.057 2.069 0.039 (*)

a0 0.142 0.054 2.616 0.009 (**)

Table 6. Parameters of the model (M2gc) fitted to the St. Petersburg data. Multiple R?: 0.48, Adjusted R?:
0.45. F-statistic: 17.89 on 15 and 295 DEF, p value: < 2.2e-16. Significance codes used: 0 < (***) < 0.001 < (**)
<0.01<(*)<0.05<()<0.1.

evidence for cointegration between number of COVID-19 cases and SII for St. Petersburg is more likely due to
unreliability of data rather than due to inadequacy of model (M1gc¢).

This conclusion is corroborated by our findings obtained with model (M 2gc¢), which uses the 7-day rolling
mean of daily reported numbers of fatal cases of COVID-19 in place of the numbers of infections. With the help
of this model, we have found strong evidence for cointegration between logRM7(D;) and logRM7(SI1)
for both Moscow and St. Petersburg. This suggests that the numbers of COVID-19 related deaths may be a
more robust, if less direct, proxy for the true dynamics of the pandemic in case the data on the numbers of new
COVID-19 cases is unreliable.

The detected cointegration relationships between logSII; and logN;, and between log RM~(SII;) and
logRM7(Dy) allows us to draw a conclusion that Yandex’s self-isolation index is a useful metric for monitoring
the level of intensity of people-to-people contacts within a population.

The long-run equilibrium between log/V; and logSI1; implied by cointegration has considerable practical
importance. First, it informs us about the order of magnitude of changes to log/V; that could be brought about by
limiting person-to-person contacts measured by the self-isolation index. Second, the rate at which log/V; adjust
to changed levels of log S11; gives us a measure of the expected time delays before social-distancing policies start
having the desired effects on the dynamic of the pandemic. For Moscow, the approximate equilibrium is given
by the equation log/N; = —0.26logSII; and the rate of adjustments of log/N; to a new level of logSTI; of 2%
per day. A qualitatively similar long-run relationship was detected between logRM7(D;) and logRM7(SI1,),
with the equilibrium coeflicient ranging between —0.05 for Moscow and —0.58 for St. Petersburg, and the rate
of convergence less than 1% a day. This could indicate that social distancing measures may be more effective in
limiting the number of COVID-19 related deaths rather than the overall number of cases, but it takes longer for
the results of such measures to make a detectable impact.

The error-corrected ARDL models (M1gc) and (M2gc) proposed in this paper were employed in a
diagnostic mode, with the purpose of testing for cointegration between the self-isolation index and the time
series reflecting COVID-19 dynamics. We advise caution, in employing them in a prognostic mode, especially
for long-term projections. The structure of our models was chosen for the ease of interpretation, for reliability of
parameter estimators, and for the possibility of relating them to the classical SIR model of epidemic dynamics.
More advanced models, such as partially observed Markov processes used in’, which feature better mechanistic
representation of the COVID-19 dynamics, and which account for changing levels of vaccine-induced immunity
as well as varying transmissibility of the virus (e.g., due to emergence of new variants of the SARS-Cov-2)
may have better predictive performance. Moreover, the aggregation methodology of condensing diverse data
into a single SII value may be suboptimal in terms of capturing the correlation between the patterns of user
activity on the Yandex platform and actual people-to-people contact rates. Non-linear SII transformations could
enhance this correlation and thus act as even better predictors of COVID-19 dynamics, however, at the cost of
less straightforward interpretation of results. In this paper, we opted to work with the SII in its original scale.

In conclusion, our results obtained for the Yandex’s self-isolation index in Moscow and St. Petersburg suggest
that similar aggregated indices reflecting the intensity of people-to-people contacts based on anonymized user
mobility and online activity data collected by Yandex and other digital platform may be useful for monitoring in
real-time the level of population compliance with social distancing measures in other parts of the world beyond
Russia. Caution is advised, however, until additional data covering other regions become available and allow
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for more extensive testing of the performance of aggregate user activity indices as proxies for people-to-people
contact rates. This testing is necessary to establish whether such indices suffer from inconsistent predictive
power across different regions and scales, as was the case with pure mobility metrics (cf.¥). Statistical models
presented in this paper establish a method of testing whether aggregate user activity indices akin to SII can serve
as reliable monitoring tools and support decision-making of public health authorities.

Data availability

The relevant data is available in the Supporting Information files, together with the R code replicating the pre-
sented analysis. The data set was composed from publicly available sources: Statistics of new COVID-19 cases
and deaths due to COVID-19 in Russia ([https://datalens.yandex/707is1q6ikh23?tab=X1]) and the Yandex’s
Self-isolation index ([https://datalens.yandex/707is1q6ikh23?tab =q6]).
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