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ABSTRACT

The main aim of this paper is to investigate those algorith-
mic procedures which solve optimization problems whilst either
estimating the unknown parameters of these problems or approxi-
mating them by more simple problems. The problem of nonstation-
ary optimization with time=-varying functions and a set of opti-
mal solutions (set of equilibriums) is considered. The proposed
solution technique is based on the application of nonmonotonic
optimization procedures. We derive the convergence of such
procedures by studying the Hausdorf distance between a current
approximate solution and the set of e-optimal solutions. The
Lipschitz continuity of the Hausdorf distance between sets of
e-optimal solutions upon the parameters of the problem is also
discussed.
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SIMULTANEQUS NONSTATIONARY OPTIMIZATION,
ESTIMATION, AND APPROXIMATION PROCEDURES

Yuri Ermoliev and A.A. Gaivoronski

I. TINTRODUCTION

Most mathematical programming applications require the esti-
mation of unknown parameters in the objective function and con-
straints. In some cases, the tasks of optimization and estima-
tion can be separated and optimization performed after estima- .
tion. However, it is often necessary to optimize and estimate
stmultaneously. For instance, optimization cannot be separated
from estimation if the observation of unknown parameters depends
on the current value of the control variables. In this situation
we need algorithmic procedures which solve the optimization prob-
lem while estimating the unknown parameters. It will be shown
that development of such procedures leads to nonstationary opti-
mization problems, in particular to so-called limit extremal
problems (Ermoliev and Gaivoronski 1979; Gaivoronski 1979;
Ermoliev 1981).

The objective function f(x,s) and the feasible set Xs in
nonstationary problems (Ermoliev and Nurminski 1973; Nurminski
1977; Vertchenko 1977) depend on the iteration number s=0,1,...
It is necessary to create a sequence of approximate solutions
{xs}:=0,
the optimal solutions: for s » =

that tends, in some sense, to follow the time-path of
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lim[f (x%,s) - min{f(x,s) [x € X }] =0 (1)

The ideas behind the simultaneous optimization and approxi-
mation procedures are close to the idea of nonstationary optimi-

zation described above.

Many books and papers have been written on optimization
and approximation problems. In some approaches the problem of
approximation is examined using general optimization techniques;
in this case the approximation problem is considered as a special
optimization problem. In other approaches, optimization problems
are characterized by using approximation ideas to simplify opti-
mization methods. For instance, the methods of feasible direc-
tions solve nonlinear programming problems while approximating
them by linear programming problems. Such methods approximate
nonlinear objective functions fo(x) and constraints fl(x),
i=1,m , by linear functions at every current point x5.  The idea of
optimization through approximation of "bad" functions fo(x),
fl(x) by a sequence of "good" functions fo(x,s) > fo(x),
fi(x,s) > fi(x) in the entire feasible set is discussed in Ermoliev
and Nurminski (1973), Ermoliev (1976), and Katkovnik and Khejsin (1976).:

This paper considers the case in which the approximation of
the functions f0 (x), fi(x) occurs in the neighborhood Dy of every
current point x5. At each iteration s, a certain domain Ds is
determined within which the functions fo(x), fi(x) are approxi-
mated by the more simple functions fo(x,s), fi(x,s) (the latter
may be linear, quadratic, convex, etc., depending on the context).
A direction of search and a new point xS+1 are determined using

fo(x,s), fl(x,s). A new domain DS+ is then created and the

iterations are continued. 1
The main feature of this method is that a precise approxi-
mation fo(x,s), fi(x,s) of the functions fo(x), fi(x) and a
precise optimization of fo(x,s) are unnecessary. It is suffi-
cient simply to iteratively improve the approximation during the
optimization process. Moreover, every iteration is based on
information regarding the behavior of the objective function

within the neighborhood of x°. This method is less likely to




stop at a local minimum of fo(x) than methods based on approxi-

mations at points x>

II. SIMULTANEOUS OPTIMIZATION AND ESTIMATION PROCEDURES

We shall first consider a simple example--minimization of
the differentiable function

£(x) = (x,u)

. * _ .
where u ch is a vector of wnknown parameters and x € R" is a vec-
tor of control variables. At each iteration s=0,1,..., an observa-

. s . , ' .
tion h™ 1s available which has the form of a direct observation

of the parameter vector, i.e.,

S *
Eh™ =u .
The problem is to create a sequence of control variables {xs}:=0
which converges to the set of optimal solutions
* * * )
X ={x |[f(x ) =min f(x) , X € rR%}
Note that f(x) cannot be optimized directly because of the un-
*
known parameters u . However, at iteration s we could obtain a

S

*
statistical estimate u® such that u® - u with probability 1

and a sequence of functions f(x,s) =¢(x,us) such that
f(x,s) + £(x)

with probability 1 for s + ». The function f(x,s) is available

only at iteration s.

Consider the following procedure:

+1
x> =xs-psfx(xs,s) , s=0,1,... (2)

This procedure, together with a procedure for calculating us,

allows us to carry out the optimization while simultaneously
* L e . ) .
estimating u - The principal difficulties associated with the

convergence of procedure (1) are connected with the choice of




the step-size Pge There is no guarantee that the new approximate

+1

solution x° will belong to the domain of the smaller values of

the functions f(x,t) for t>s+1 (see Figure 1).

Convergence similar to that of (2) involving nondescent
procedures has been studied within the framework of special

nonstationary optimization problems in which it is assumed that
[ 0]

s=0
to some degree. It was shown in Ermoliev and Nurminski (1973)

the sequence of functions {f(x,s)!} and sets {Xs}:=0 converges

that under natural assumptions on the step-size sequence (such
[=o]

as psflo, ») for functions £f(x,s) convex with respect to

I o, =
s=0 S

X with the property f(x,s) »£(x), we have:

lim £(x°,s) =min f(x) .

Figure 1,




ITI. GENERAL PROBLEM

Consider the problem of minimizing the function
*
f(x) =¢(x,u ) (3)
subject to
*
X € D(u ) (4)

where x € R! is a vector of control (decision) wvariables and

*
u EU{;Rk is a vector of unknown parameters. Suppose that for

. . . 0 .1 S
an arbitrary given sequence of control variables X ,X ,eee/,X seas

1 s

it is possible to observe an £-dimensional seguence ho,h ye.esh™, ..

such that

E{hsixolx1l"'lxs}=w(xslu*) ’ (5)

where the function Y (x,u) is known. The problem is to create a

sequence of control variables {x® } which minimizes the func-

=0
tion f (x) subject to given constralnts. In more general cases

the vector of unknown parameters may depend on time (i.e., on

the iteration index s). We are therefore given a sequence of un-

*
known k-dimensional parameters ug EUC Rk, s=0,1,... It is

1 S

possible to observe an £-dimensional sequence ho,h PP « NI

such that

1

*
E{hs|x0,x ,...,xs}-=w(xs,us) .

The requlred sequence {xs} -0. has to minimize the functions

Y (%, u ) for x € X(u ) in the sense that
Lim[¢ (xS,u’) -min{¢(x,u’) |x € D(us)}] =0

for s » «.

If a sequence of estimates u® is found such that




ﬂus-u;"-ro (6)

for s + », then instead of functions ¢(x,u;) and sets D(u;) it is
possible to consider the sequence of available functions f(x,s)=
¢(x,us), sets Xs==D(us) and the problem of finding a sequence
{x°} such that

1im[¢ (x°,u%) -min{¢ (x,u®)|x € D(u®)}]1 =0 . (7)

Before discussing a way of obtaining statistical estimates of
uS which satisfy (6), let us consider the iterative procedures
for creating x> such that it satisfies (7).

IV. THE SET OF e-SOLUTIONS

The aim of {x°} is to track the set of optimal solutions

X;=={x*|¢(x*,us)==min o (x,u°) , x € D (u®)} .

* % *
Unfortunately the Hausdorf distance d[Xs,Xs+1] between Xs and

*
Xs+1' where

d[A,B] =max {sup inf lx -yl , sup inf llx-yll } ,
XEA Y€EB XEB yeEeA
may be large even for small Hus+1-usH, Therefore the distance

*
between the current control variable xs and XS+1

rapidly compared with the distance between x~ and Xs' However,

may increase
*

the Hausdorf distance between the sets of e-solutions Xz and
£
Xs+1'
€ _ * ¥ s . s s
Xs-—{x |¢(x ,u”) <min ¢(x,u”) +e , x € D(u”)}

. , . X L, . s+1 s
satisfies the Lipschitz condition with respect to Ilu -u~ |l
under reasonable assumptions when e >0. This fact was investigated
and used in Ermoliev and Gaivoronski (1979) and Gaivoronski (1979)

to study the convergence of procedures similar to (2).




To illustrate the basic idea more clearly, consider the
*
case in which the feasible set D(u ) does not depend on the un-

known parameters u*. Denote the feasible set as X and let
X(u) ={x(u)|¢(x(u),u) =min ¢(x,u) , x € X}
xE(u) ={x|¢(x,u) <¢(x(u),u) +e , x € X}
THEOREM 1. Assume that

(a) X i8 a conmvex compact set;
(b) ¢(x,u)is a convex continuous function with respect to X for allu € U

and
|6 (x,u) = ¢(x,v)| <Lllu=vl (8)

for all x€ X, u,v € U, vwhere L is a constant.

Then
arx®(w , ¥ < EE Nu-vl
where
M=max {llx-2z1l |x €X,z € X} .

Proof. The set x%(u) is compact. Therefore there are z', z"

such that (see Figure 2):
arx®() ,x&v)1 =10z -z
Without loss of generality we could assume that:

Iz' - z"I =min {llz" -xll|x € x& (u)}

We nave

¢(z",u) = ¢(z',u) >(_(z',u),2" ~2"y




Figure 2.

where $X(x,u) denotes a subgradient of the function ¢(x,u) with

respect to x. It is obvious that a $ exists such that
o (2t u) =x(z"-2z2")

or

$(z",u) =9 (z',u) >A[z" -z | 2

where A>0. Since
e=¢(z',u) - ¢(x(u'),u)
<CA(z" =2"),2"' -x(u))
< AMJlz" ~-z'|

— 14

then

A>e/Mllzt -z .




Therefore, for given ax(z',u),
((zt,w) |z =zt =Allz" =z 12> (e/m Iz -z |
or
$(z",u) = ¢ (z',u) > (e/MAIX" (0) X (V)] .
Since
¢(2",u) -¢(z',u) =¢(z",u) -¢(2",v) +¢(2",v) -¢(2',u)
$s¢(z",v) -¢(z',u) +Lllu-vi ,
then we will have

$(z",v) - ¢(z',u) > (e/MAlXx"(u),x*(V)]1 -Lllu-vl .

It is easy to see that
|¢(anv) - ¢'(z'lu).|

=|min ¢(x,v) +e-min ¢(x,u) ~e| <L llv-ull
- xeX XX

Substituting this estimate into the previous inequality we
obtain the desired result.

This theorem enables us to use many of the nondescent pro-
cedures discussed in Ermoliev (1976, 1981) to solve problem (7),
and to prove the convergence of these procedures by studying the
behavior of the distance between x° and the set Xg.

It should also be noted that this theorem clarifies the
recently discovered Lipschitz continuity of the set of e-sub-
gradients for convex functions (Nurminski 1978; Hiriart-Urruty

1980) . Indeed, suppose We have a convex function g(u). The
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subdifferential is

d3g(u) = Arg min ¢(x,u)
X

* * . .
where ¢(x,u) =qg(u) +g (x) =(x,u) , g (x) =minl[g(u) -(x,u)],
u
and min ¢(x,u) =0.
X
On the other hand, from the definition of the e-subdifferen-

tial Beq(u) we have

3 .qfu) = {x|¢(x,u) <e} = {x[¢(x,u) <min ¢(x,u) +e!} .
b

V. NONSTATIONARY OPTIMIZATION PROCEDURES

Consider only the case in which the feasible set of the prob-
lem does not depend on unknown parameters and the operation of
projection on the feasible set X is available. The nonstationary
analog of the stochastic projection method has the form

s+1 s
xZT = (x” - p %), s=0,1,..., (9)

. s .0 1 N
BT [x %, ., x7) =0 (x%,u%) +a° (10)

where the function ¢(x,u) is considered to be convex continuous
with respect to Xx; 5;(xs,us) is a subgradient of ¢(x,u) with
respect to X; the step-size pg Tay depend on the sequence of
preceding approximations (xs,x ,..,,xs); and u® € U, where U is
a compact set.

It should be noted that if ¢(x,u) is differentiable with
respect to x, €s==¢x(xs,us), and X=R", then method (9)
corresponds to method (2).
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THEOREM 2. Let the asswmptions of Theorem 1 hold. Assume also that

(a) { usﬂl-1 -u® |

<85 8 /p >0, Ila® |l >0 with probability 1

for s + =;

>0, § pg =< with probability 1,

(b) p
s s=0
xQ
I B2 <=, EIES 1% < conse.
s=0
Then lim[¢ (x°,u®) -min {¢(x,u®)|x € X} =0

with probability 1.
Proof. Let us set an ¢ >0 and adopt the notation

_ S € € _LE, .S * S
ws—d(x lxs) ’ xs_’x (U.) ’ XS—X(u )

All constants will be represented by the letter c.

In view of Theorem 1 and requirement (a), we have

s+1

2 € 2
wop < @S+ arxE xS 0% < atx®T XS +e(s e

s+1

Let
— s . s €
Hhx® -x"|| =min {|l x-x" | |x€Xs_1} ,
S s . s €
| %° =%~ =min {|| x-x"| |xexs} ,

¢(u) =min {¢(x,u) [x € X}
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The further evaluation of Wi yields:
= s+1 s+1 2 2 ~S s+1 , 2
Wep1 S ONIX - X [ “+c(8g+6) < || X -x ”
2 ~S S s, 2 2
t e +65) S X =-x"+p 87 | T +c(S +8))
2 2 s 2
< ws-bc(65-+ds)-+ps||£ |
s A s .S S ~S s s
+ 2p (87 -9 (x7,u7) —a” , XT-x" ) +cp|la” |

20, 1¢(x°,u%) -o(u®) -l
where the inequality
<$_x(xs,us) , %% -x%) < 9(x%,u%) —0(u®) - ¢ ’

was used. Therefore, we will also have

k=1
W, <W_=2 Z

p Lo (x",u") —o(u’) e -clla”ll - c6,/p_-co2/p_]
r

S

k=1
I opp (E° -3 (x",u") -2 , & -x")

k-1
NN ISR !
r=s r=s

From condition (10) and the martingale convergence theorems

it follows that

k-1
N r r r ~X r
rgspr(&r—tbx(x ,u’) -a , X -x"y >0
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with probability 1 for s » =, ' From condition (b) we have that

2 ryg2
y oy les 1< +0 ,
r=s

with probability 1 for s +«, Therefore

k=1

wkiwS -2 rZspr[cp(xr,ur) -d)(ur) -c

(11)

r 2,
—c(lla” ll+8,. /0 +6./0.)]+,

where YS-+0 with probability 1 for s+,
We shall now prove that ws-+0 with probability 1.

Suppose that there exist s' and A >0 such that w_>A for s>s',

s
Then, from the continuous dependence of XE(u) on U € U and the

compactness of U, it follows that there exists an a > 0 such that

s .S s
p(x”,u") -d(u”) —-e>a (12)
for s>s'., Substituting this into the previous inequality we
obtain
k-1
weswo=20 ) op [1-e ]+ ,
r=s
where

_ r 2
ar-c(lla ||-+6r/2apr+-6r/2apr) .
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From condition (b) the &:r->0 with probability 1 for r+«, Then,

[eo]

bearing in mind that Z pg=®, we obtain a contradiction when Wy

s=0
is positive. Choose an arbitrary A >0 and suppose that w, < A,
r
but that there is a number t., s, < t. < Sy’ such that wtr> 34A.

From (11), it follows that for k= s+l

max {0 , w —ws}+0

s+1

with probability 1. Therefore, for sufficiently large r there

i t % < < >
is a number T, such that Sy T, tr’ w_[r 2A, and Wy A for

T.3sst.. Since inequality (12) holds (for a certain number a)

r

if Trf_sf.tr' then from (11) for k=tr and s=T1., we obtain

t_-1
r

w, Sw. -2a ) ppl1=e€p) +v._ .
r r Z=Tr r

1f we now choose a value of r large enough that y. <4, €, <1
r

for £ > Tpr then w, < 3A, which contradicts the assumption that

t

w, > 34. Thereforé, wg >0 with probability 1 for s+«, From

this and from the inequality

s .
¢ (x ,u°) -min {qb(x,us) |x € X}<e+c minE Iy - x5l
yEXS

the theorem is proved.

It should be noted that algorithm (9) is also applicable

s+1 S
-u-

when Il u and p, do not approach zero.

THEOREM 3. Assume that instead of requirements (a) and (b) of

Theorem 2, the following conditions are satisfied:
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s+1 S

(a) Iy -u llf_ch, lim §,=8>0 fors~»= 3
(b) Il a® I + 0 with probability 1;
(c) Pg=P> 0, €>0 and

0<y=2(pe -MK)/M> <1 ,
where
k=2M8L/e, M=max {llx-yl |x,y € X} .

Then

lim & min {1 x-x°"" 1 [x e xS} <asy
q=|<2+l+p<SL+cp2 '

where ¢ 18 a constant.

The above theorem demonstrates that the sequence {xs}:=0

will, on the average, be sufficiently close to the set of
g-solutions, provided that the choice of step-size p and the
drifts of the u° are reasonable. We should note that this con-
dition may be satisfied by increasing the number of iterations

taking place within unit time.

Gaivoronsky (1979) has given a number of other algorithms
for solving nonstationary optimization problems with constraints
of a general form. However, even the simple algorithms described
above may serve as the basis for the numerical solution of many
important classes of practical problems. Special classes of
nonstationary optimization problems have been discussed by Dupaa
(1965), Tsypkin (1971), Fujitas and Fukao (1972), Uosaki (1974),
and Eremin (1979).
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VI. ESTIMATION PROCEDURES

Nonstationary optimization procedures similar to (9) allow
us to carry out optimization and estimation simultaneously, if
we nave a simple iterative scheme for calculating the estimates
u® which satisfy (6). A useful method of creating an itera-
tive estimation procedure is to rewrite the estimation problem
as an optimization problem and then to use iterative optimiza-

tion methods similar to (9).

For instance, in the simple case of Section II, if an
observation h® of the random vector h is available at iteration
s, such that

Eh=u ’
*
then the required vector u minimizes the function
¢(w) =Elu-hl?
because u=Eh satisfies the optimality conditions

r, () =2(u=-Eh) =0 . (13)

*
If a priort knowledge about the unknown u is introduced as u € U,

then we could use the following stochastic projection method to

minimize function (13) (see, for instance, Ermoliev 1976, 1981):
W an - (-0, s=0,1,.., (14)

where 65 is the step-size, which may depend on (uo,u1,...,us),

and h® is the observation of h. If 65_10, Z 6s==0 with proba-

*® s=0
bility 1, } Eéi < », and the set U is convex compact, then
s=0

* . ,
u®+u" with probability 1. Ermoliev and Gaivoronski (1979) noted
a number of advantages of estimates obtained via iterative opti-
mization procedures (in addition to the opportunity for on-line

calculations). Firstly, 6s may be chosen to be a function of
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(uo,u1,...,us) in order to decrease the value of the objective
function. Secondly, a priori knowledge about the unknown u* may
be taken into account in terms of constraints, In this case, a
current estimate u® would have the property u® € U for all
s=0,1,..., whereas a conventional estimate i% would normally

only fulfill 1lim 4° € U for s +», Therefore the estimates u°
are generally better for small samples.

In the more general case when the vector of observations h

satisfies the condition

E{h|x} = w(x,u*) ’

* . . .
the true vector u minimizes the function

r(x,u) =E || $(x,u) -h | 2

with respect to u for each feasible x. However, there may be

unnecessary solutions. Since

* . * 2
r(x,u) -r(x,u ) = || ¥(x,u) -y(x,u ) | '
*
then for the solution u=u minimizing r(x,u) with respect to u

to be unique it is necessary to assume that the equations

¥ (x,u) =1P(.x,u*) , X E€X

. , *
represent the unique solution u=u ,

This requirement can often be relaxed as follows., Consider
the sequence of functions (for the given sequence of control

variables xo,x1,...xs,...):

g(u,s) =/ r(xs+y,u) P, (dy) =E{r(xs+ys,u) Ixs} '
Y
S

where the probabilistic measure Ps(dy) is distributed on a domain
Ys and centered at the point 0 for s +«, For instance, Ys could

be given by
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. < A

3 Ij=1ln} ’

Ys={y=(y1,Y2,---rYn)|'AsiY s
and Ps(dy) is used to generate the random vector ys with inde-
pendent components distributed uniformly over the interval

[-AS,AS], where A is a positive number, and Ag >0 for s+,

*
The trye vector u minimizes the function g(u,s) for each

s=0,1,..., such that

g(u,s) —g(u',s) =f (xS +y,u) -u(xS+y,u’) | P, (dy)

Y
S

Therefore there may be a unique solution to the problem of mini-
mizing g(u,s) even if the minimization of r(xs,u) with respect

to u does not possess this property.

We could use a procedure similar to (9) to minimize g(x,s).
Assume that g(u,s) is a convex continuous function with respect

to u for all s; U is a convex compact set.

Consider the procedure

s+1 _ s s _
u -HU(u -Gsc ) ’ s=0,1,...,

0 [

E{Cs|x0,u ,osolx ’us}=§u(usls)+DS

where éu is a subgradient of function g(u,s).

For example, we can consider the function

£
s _ S s .S s S S .S
s —2i£1wi(x +y ,u) =hily, (x7 +y7,u)
where w (-,u) are differentiable functlons and h __(hI’hZ"“’ht)

is an observatlon of the vector h at x-= x° -+y such that:
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]

*
E{hslxo,x ,..;,xs}==W(XS'+YS,Y ) .

It is easy to see that
S(.S .S s
E{z |x ,u”} =g (u,s) .

THEOREM 4. (See Ermoliev and Gaivoronski, 1979). Assume that
the above condition holds and that

g(u,s) ~g(u’,s) >a_y(u,u) (15)

* * *
where }‘s 0, y(u,u ) >0 and y(u,u ) =0 only for u=u ; the step-size

65 may depend on (xo,x1

probability 1, and also

(o]
s .
,...,X),andG'siO, szoksés=m with

o
J E{s_IbSIl +6%) <= , ENS1? < const.
s=0 S S

Then uS »u" with probability 1.

The proof of this theorem is similar to the proof of

Theorem 2. We shall now comment on condition (15).

Consider the important case
¥(x,u) =A(X)u ,

where A(xX) is a matrix. Then

g(u,s) -g(u,s) =f Il ax®+y) (u-u") I ° p_(dy)
Y

S

*
| 2

> cksllu-u ,

where As is the smallest eigenvalue of the matrix
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f A(x® +y)aT (%% +y) P_(dy) .
YS

i * *
Therefore, in this case, Y(u,u )= Jlu-u | .

VII. SIMULTANEOUS OPTIMIZATION AND APPROXIMATION PROCEDURES

Consider the problem of minimizing a differentiable func-
tion f(x) in a set X. Suppose that a sequence of solution
approximations xo,x ,...,xs,..., is constructed according to the

following rule:
Let

s s .
= = (Xq ;X peos S - T < X. < Xo 4+ i=
P {(X=( 11¥50 ,xn)lxl T S X, S X/ +T1, 1,n} ,

s
where Ty is a number. Let ¥(x,a) be convex functions with res-
pect to x, parametrized by a parameter a € A. Let these func-

tions approximate the function f(x) in the sense of minimizing

the criteria

®(a,s) = f (£(x) - ¥(x,a)) % P_(dx)

D
S

where Ps(dx) is a Borell measure. If we assume that Ps(dxw is
a probabilistic measure, we can then rewrite the above equation
as

®(a,s) =E(£(x  +h) -‘F(xs+h,a))2

where h==(h1,h2,...,hn) is a random vector. For simplicity, we
assume further that the components of h are independent and

uniformly distributed over [-1_,T.]. Therefore

T
S S
<I>(a,s.)=-(—2?1;7—r—l [_T j_T (£(x®+h) -¥(x®+h,a))%dn .
S

S
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+1

The choice of the point x° is based on the requirement that

approximation W(x,as) should be minimized:

s+1 _ s -~ S _s
x = Te(x” = p ¥ (x7,a7))

wnere Ty is the projection operator on X and Wx(xs,as) is a sub-
gradient of T(x,as) with respect to x at xs,as. Moreover, the

next value of the parameter a is determined by

s+1 _ [ S
a = HA(a -GSE )

where ;s has the property that

E{ cslxo.ao,-..,xs,as} = <I>a'1(,as.s)

For instance, we can choose gs to be defined by:

]

o5 = -2[£(8%) - ¥(%%,a%)1y,(%%,a%)

where %> =x%+h® and (h°®} are observations of h=(h;,hy,...,h ),

hi e [-rs,rs].

n

Consider the following assumptions:

(a) ¥(x,a) is a convex continuous function with respect to x,a
and differentiable with respect to a; f(x) is a differen-=
tiable function;

(b) X,A are convex compact sets;

(c) there exist a set X1 C X and an element z &€ x1 such that

f(x) > f(z) , ¥x & X1 :

(d) for any e >0 there exist A >0 and Tt >0 such that
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£, (%) -@x(x,a) I <A

for all a such that

a €A_(s)=1{a € A|®(a,s) -min &(a,s) <e} , T_<T
€ s
ach

14

x € X _(s) = {x € x’[ Il £ (x) I >e}

THEOREM 5. Let the above assumptions hold and let the nonnegative
parameters ps’as’rs satisfy the conditions:

(7) pS,GS,TS are (xo,ao, cen ,xs,as) - measurable functions;
(1%) T,>0, pg /8,0, |1:s+1 - TSI/TSGS‘+0 with probability 1;
(177) of ps=°°l E Gs=°°l Of (pz + 62) <®
s=0 s=0 s=0 S S
(1v) IES Il <C<e

Then with probability 1:

lim min (£.(x%) , x"-y)=0

. (16)
s+ yeX

Let X=Rn, A be a convex compact set, and let the assumptions

(a), (c), (i)-(iv) hold. Assume instead of (d) that:
(d') for any € >0 there exist A>0 and 1T >0 such that:

(£ .(x) , ¥ (x,a) >

for a Ae(s), X € Xe(s), Tg<T.
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THEOREM 6. Let the assumptions (a)=-(c), (d'), (i)-(iv) hold and
assume also that there s a compact set K such that:

x> € K , s=0,1,..., (17)
Then

lim | £.(x°) Il =0 a.c (18)

S0 X

Note that requirement (17) is not too stringent for the applica-
tions. It would be satisfied if, for example, we chose appro-
priate functions Y¥(x,a). The requirement (iv) 1is satisfied if,
for example, (17) holds and the random variables are bounded.

The proof can be outlined as follows:

1. First, as in Theorem 2, we prove that with probability 1:

lim [¢(a®,s) -min ®(a,s)] =0 for s + o (19)
acAh

This can be done in the following way. Consider

w@s)= min laS-all? =1a-a"(s)I?
aca_(s)

It can be proved that

s+1 ||as+‘|

w(a

) <

*
-a (s)||2-+cys-+yi

where c<eo, £€>0, and Yg is the Hausdorf distance between

Ae(s) and Ae(s+1). The quantity Yg can be estimated as follows:

*
Yg2 € ¢ max {ps’lTs+1 _Ts‘/rs}
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*
where ¢ <o if €>0. Thus, according to (ii), YS/GS-+0.
Then

2

*
as+1) < —6sz;s+as—a (s) “'2 +cys+ys_<_w(as)

W (
s _S * 2 s 2
~25_ (c%,a%-a (s)) + 651 E% 0 4oyt

= w(a®) - 28 q>;(as,s) L aS-at(s))

! *
soy ryir el ?oas (-0 %) , a%-a"(s)),
It can be shown that
' *
<<Pa(as,5) , a%-a (s)) > cf w(a®) +v°) ;us+0 a.c.

where ¢ depends on € and ¢ >0 if € >0, and that

) ' *
| 165" t5-0,(a%s) , a%-a (s)) | <=
sS=

with probability 1.

Therefore:

s=1 , .
w@a®) swiah) -c; I 8 1Nw(a®) - " e, (vg/8 4 ¥e/8)1 + 8

=

where B8, >0 a.c. for £+, Cq<®, c, <@, Since ys/ds-+0, we

obtain



=25~

s+1 X
W(as) iw(at) -C.] sz_ (Sk( w(ak) "'Uk) +B£ ’

where uk-+0 a.c. for k+ =,

Hence we can show that w(as)-+0 a.c. for s+~ which implies
that (19) is true.

2. Now we can prove the convergence results (16) and (18).

Consider, for instance, the result (18). We have

£ -2 = (e, S AT X)), ST o)

< -pg ¢ £, (x%) , ¥ (x7,a%)) + v(s)og , (20)

where v(s) +0 a.c., A € [0,1].

Suppose that there is an € >0 and a number m such that
||fx(xs)|| >e for s>m. Then from (4') and (19) it fcllows that

s+1 S
f(x ) = £(x7) < —psA+\)(s)ps

and for s>m

.. S m s=1 v(s)
£(x7) <f(x) -4 ] p,(1 - )
i=m A

From (c) and (iii), this contradicts the assumption that
”fx(xs)“ > e,

s
There therefore exist subsequences {x k} such that

S
£, (x ) >0
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It is now easy to obtain the result (18) from ||xs -xs+1||-+0
and (20).

These results can be generalized for problems with non-
differentiable objective functions and constraints of a general
form.
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