

Disaster impact forecasting framework for multi hazard disaster risk assessment

Mohammad Reza Yeganegi Nadejda Komendantova

Cooperation and Transformative Governance (CAT) research Group

Advancing System Analysis (ASA) Program

International Institute for Applied System Analysis (IIASA)

December | 2025 | London CFE-CMStatistics | Birkbeck, University of London

- The decision problem for Disaster Risk Reduction
 - Find the optimal solution to mitigate the disaster risk.
- Evidence based decision making:
 - The severity of disaster impact should be measured
 - The disaster risk is being measured based on the impact of the disaster.

Definition:

- Disaster impact metrics M_1, \dots, M_k are random variable that quantify the impact of a disastrous event.
- The decision makers need to have an estimation of disaster impact metrics $\mathbf{M} = (M_1, ..., M_k)'$ under different scenarios.

Classic decision analysis approach:

$$\min_{\mathcal{D}} L(\widehat{\boldsymbol{m}}), \qquad \widehat{m}_i = E(M_i \mid \boldsymbol{\mathcal{S}})$$

- $L(\cdot)$: The loss function
- \widehat{m}_i : ith dimension of estimated disaster impact
- \mathcal{D} : The state space for decision vector (the decision space)
- S: Sigma-filed containing all the information used for estimating the impacts.

- S is generated by three random vectors:
- Multi-Hazards severity: $\boldsymbol{H} = (H_1, ..., H_{m_1})'$
- Other Systematic Risk drivers (uncontrollable at the moment): $\mathbf{R} = (R_1, \dots, R_{m_2})'$
- Intervention variables (decision variables): $\boldsymbol{X} = (X_1, ..., X_{m_3})'$
- Suppose \mathcal{H} , \mathcal{R} , and \mathcal{X} are sigma-fields generated by \mathcal{H} , \mathcal{R} , and \mathcal{X} respectively:
- $S = \mathcal{H} \otimes \mathcal{R} \otimes \mathcal{X}$

Classic decision analysis approach:

$$\min_{\mathbf{D}} L(\widehat{\mathbf{m}}) = L(E(\mathbf{M}|\mathbf{h},\mathbf{r},\mathbf{x})),$$

For a linear loss function:

$$\min_{\mathbf{D}} L(\widehat{\mathbf{m}}) = \mathbf{w} \cdot E(\mathbf{M}|\mathbf{h}, \mathbf{r}, \mathbf{x})$$

- Challenges:
 - Finding the estimated impact
 - Accounting for uncertainty
 - Accounting for time (considering the dynamic system)

Accounting for uncertainty: Disaster impact probability distribution

One approach is to have an estimation of the conditional distribution,
 rather than the average point estimation

$$F_{M}(m | S) = P(M_{1} < m_{1}, ..., M_{k} < m_{k} | S)$$

 $F_{\mathbf{M}}(\mathbf{m}|\mathbf{S})$: Disaster Impact Probability (DIP) distribution.

- Using $F_{\mathbf{M}}(\mathbf{m} \mid \mathbf{S})$ we can have an interval estimation for the loss function
- DIP distribution can be used for analyzing systemic risks as well.

Other Disaster Risk Measures

Definition: Disaster impact Value at Risk (DiVaR)

- Suppose the random Vectors *M*, *H*, *R*, and *X* are defined as mentioned before.
- Disaster impact Value at Risk at the risk level α ($DiVaR^{\alpha}$) is a multivariate Value at Risk measure, showing the worst-case scenario at the given risk level α , under conditions defined by H, R, and X:

$$P(M_1 < DiVaR_1^{\alpha}, ..., M_k < DiVaR_k^{\alpha} | \mathcal{S}) = F_{\mathbf{M}}(DiVaR_1^{\alpha}, ..., DiVaR_k^{\alpha} | \mathcal{S})$$

= 1 - \alpha

Accounting for time:

- The random vectors **M**, **H**, **R**, and **X** are not time invariant
 - Climate change can have impact on severity of hazards.
 - Socioeconomic, environmental and other factors are changing over time as well.
 - The intervention variables also are changing over time.
- M_t is impact measure vector at time t
- H_t is hazard severity measure vector at time t
- R_t is other Systematic Risk drivers' vector at time t
- X_t is Intervention's vector at time t

Accounting for time: Time-variant DPI distribution

The Time-Variant DIP distribution can be defined as:

$$F_{\boldsymbol{M}_{t}}(\boldsymbol{m}|\boldsymbol{\mathcal{S}}_{t}) = P(M_{t,1} < m_{1}, \dots, M_{t,k} < m_{k}|\boldsymbol{\mathcal{S}}_{t})$$

- IF the impact at time of the disaster only depends on the current situation of random vectors H_t , R_t , and X_t ,
- Then DPI forecasting distribution at time t:

$$F_{M_t}(\boldsymbol{m}|\boldsymbol{\mathcal{S}}_{t-1}) = \int_{Suport(\boldsymbol{h},\boldsymbol{r},\boldsymbol{x})} F_{M_t}(\boldsymbol{m}|\boldsymbol{h},\boldsymbol{r},\boldsymbol{x}) dF_{H_t,R_t,X_t} (\boldsymbol{h},\boldsymbol{r},\boldsymbol{x}|\boldsymbol{\mathcal{S}}_{t-1})$$

Accounting for time: Risk measure forecasting

Accordingly, the other risk measures can be estimated:

$$P(M_1 < DiVaR_1^{\alpha}, \dots, M_k < DiVaR_k^{\alpha} | \mathcal{S}_{t-1}) = 1 - \alpha$$

New Practical Challenge: estimating forecasting DIP distribution

$$F_{M_t}(\boldsymbol{m}|\boldsymbol{\mathcal{S}}_{t-1}) = \int_{Suport(\boldsymbol{h},\boldsymbol{r},\boldsymbol{x})} F_{M_t}(\boldsymbol{m}|\boldsymbol{h},\boldsymbol{r},\boldsymbol{x}) dF_{H_t,R_t,X_t} (\boldsymbol{h},\boldsymbol{r},\boldsymbol{x}|\boldsymbol{\mathcal{S}}_{t-1})$$

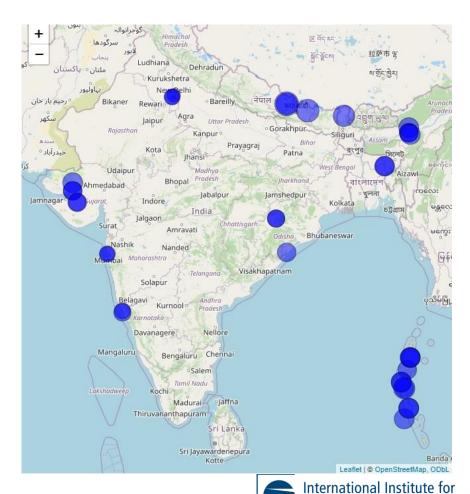
Disaster impact metrics:

- Casualties
- Infrastructure damage (million USD)
- Hazard severity metrics
 - Earthquake Magnitude
 - Tsunami height (m)
- Risk factors and decision variables
 - Maximum and Minimum Population Density (district level)
 - Wealth inequality (Gini Coefficient; district level)
 - Gross National Income per capita (district level)
 - Human Development Index (district level)
 - Subnational Vulnerability Index (SGVI; district level)
 - Flood Risk Index (district level)

- Dataset:
- Earthquakes and Tsunamis from 2000 to 2025
- Contains 20 regions (to districts)
- Time series are also from 2000 to 2025

Disaster impact metrics:

- Casualties
- Infrastructure damage (million USD)


Hazard severity metrics

- o Earthquake Magnitude
- Tsunami height (m)

Risk factors and decision variables

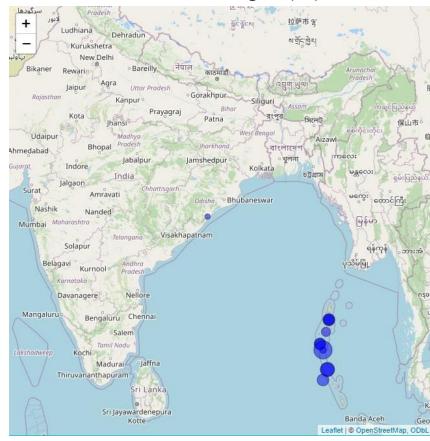
- Maximum and Minimum Population Density (district level)
- Wealth inequality (Gini Coefficient; district level)
- Gross National Income per capita (district level)
- Human Development Index (district level)
- Subnational Vulnerability Index (SGVI; district level)
- Flood Risk Index (district level)

Earthquake Magnitude

Applied Systems Analysis

Disaster impact metrics:

- Casualties
- Infrastructure damage (million USD)


Hazard severity metrics

- Earthquake Magnitude
- Tsunami height (m)

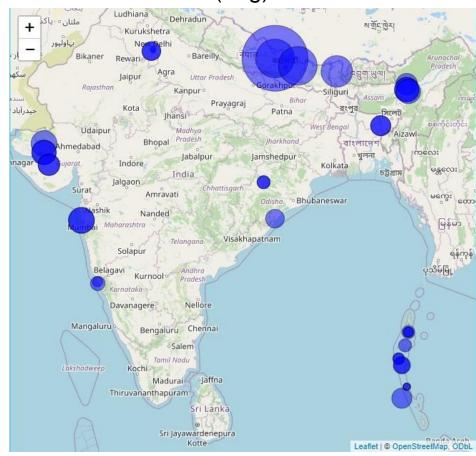
Risk factors and decision variables

- Maximum and Minimum Population Density (district level)
- Wealth inequality (Gini Coefficient; district level)
- Gross National Income per capita (district level)
- Human Development Index (district level)
- Subnational Vulnerability Index (SGVI; district level)
- Flood Risk Index (district level)

Tsunami height (m)

Disaster impact metrics:

- Casualties
- Infrastructure damage (million USD)


Hazard severity metrics

- Earthquake Magnitude
- Tsunami height (m)

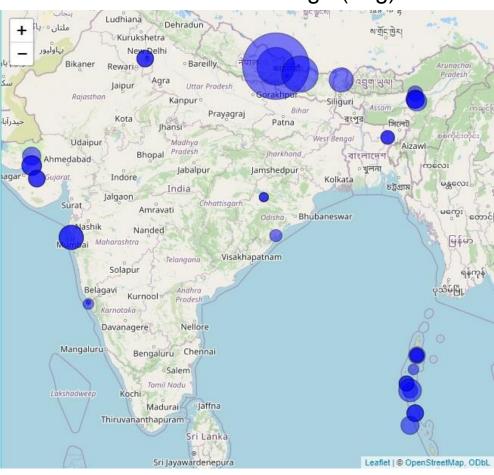
Risk factors and decision variables

- Maximum and Minimum Population Density (district level)
- Wealth inequality (Gini Coefficient; district level)
- Gross National Income per capita (district level)
- Human Development Index (district level)
- Subnational Vulnerability Index (SGVI; district level)
- Flood Risk Index (district level)

Casualties (Log)

Disaster impact metrics:

- Casualties (Log)
- Infrastructure damage (million USD;Log)


Hazard severity metrics

- Earthquake Magnitude
- Tsunami height (m)

Risk factors and decision variables

- Maximum and Minimum Population Density (district level)
- Wealth inequality (Gini Coefficient; district level)
- Gross National Income per capita (district level)
- Human Development Index (district level)
- Subnational Vulnerability Index (SGVI; district level)
- Flood Risk Index (district level)

Infrastructure damage (Log)

Expected loss function forecasting

log
lties
_
$\boldsymbol{\sigma}$
\neg
75
S
$\boldsymbol{\sigma}$
()

Infrastructural	Damage (log)

Coefficient	Estimate	StdError	t.value	P.Value
(Intercept)	-2.00462	0.762024	-2.63065	0.013502
HDI	-1.63288	0.683523	-2.38892	0.023625
Flood Risk Index * Tsunami Generated: FRI*Tsunami	-1.07342	0.195957	-5.47783	6.73E-06
Max. Population Density: PD_{max}	1.60E-05	2.83E-06	5.639259	4.30E-06
Magnitude: <i>Mag</i>	0.646867	0.081571	7.930146	9.56E-09
Building vulnerability (High & Very High): BVH	0.34236	0.114703	2.984758	0.005712

Coefficient	Estimate	StdError	t.value	P.value
(Intercept)	-3.37143	0.627612	-5.37184	9.03E-06
HDI	-0.5386	0.562958	-0.95674	0.346608
Flood Risk Index * Tsunami Generated: FRI*Tsunami	-0.64485	0.161393	-3.99554	0.000405
Max. Population Density: PD_{max}	1.92E-05	2.33E-06	8.218684	4.62E-09
Magnitude: Mag	0.690487	0.067183	10.27778	3.53E-11
Building vulnerability (High & Very High): BVH	0.415559	0.094471	4.398827	0.000134

Casualties (log) Infrastructural Damage (log)

A Multi-Hazard Example: Earthquake and Tsunami risk forecasting in India

• DiVaR ($\alpha = 0.1$)

Coefficient	β	Lower Bd.	Upper Bd.
(Intercept)	-2.50737	-2.50737	-0.9376
HDI	-1.13671	-2.55026	-0.74083
Flood Risk Index * Tsunami Generated: FRI*Tsunami	-0.77245	-0.82771	-0.45736
Max. Population Density: PD_{max}	2.18E-05	1.40E-06	1.797E+308
Magnitude: Mag	0.711235	0.604371	0.739076
Building vulnerability (High & Very High): BVH	0.27368	-1.797E+308	0.528711

	Coefficient	β	Lower Bd.	Upper Bd.
)	(Intercept)	-3.37367	-3.37461	-1.9943
	HDI	-0.39462	-1.68982	-0.21934
)	Flood Risk Index * Tsunami Generated: FRI*Tsunami	-0.68063	-0.71278	-0.35131
	Max. Population Density: PD_{max}	2.63E-05	8.95E-07	1.797E+308
	Magnitude: <i>Mag</i>	0.714562	0.631419	0.726271
	Building vulnerability (High & Very High): BVH	0.315278	-1.797E+308	0.553073

• DiVaR ($\alpha = 0.1$)

```
 \begin{aligned} & \widehat{DiVaR}^{\alpha}_{\text{Casualties (log)}|s_{t}} = \\ & \widehat{\beta}^{\alpha}_{0,1} + \widehat{\beta}^{\alpha}_{1,1}HDI_{t} + \widehat{\beta}^{\alpha}_{2,1}FRI * Tsunami + \\ & \widehat{\beta}^{\alpha}_{3,1}PD^{max}_{t} + \widehat{\beta}^{\alpha}_{4,1}Mag + \widehat{\beta}^{\alpha}_{5,1}BVH \end{aligned} 
    \widehat{DiVaR}^{\alpha}_{\text{Infrastructural Damage (log)}|s_{t}| = \|\hat{\beta}^{\alpha}_{0,2} + \hat{\beta}^{\alpha}_{1,2}HDI_{t} + \hat{\beta}^{\alpha}_{2,2}FRI * Tsunami + \|\hat{\beta}^{\alpha}_{3,2}PD^{max}_{t} + \hat{\beta}^{\alpha}_{4,2}Mag + \hat{\beta}^{\alpha}_{5,2}BVH
```


Scenario based risk forecasting:

Scenario:

Region: Gopalpur (Orissa), time: 2030; 2035

 \circ Hazards: M = 6.6 earthquake with triggering tsunami

Disaster risk measures: Current situation

Historical event:

2002: M = 6.6 earthquake with triggered tsunami

Scenario based risk forecasting:

	Casualties	Infrastructure damage(million usd)	$\widehat{DiVaR}^{lpha}_{\mathbf{Cas.} \mathcal{S}_t}$	$\widehat{DiVaR}^{lpha}_{Inf.}$ Damage $ s_t $
Historical event (2002)	15	5.6	-	-
Scenario based forecast (2030)	3.301051 (expected value)	2.791313 (expected value)	9.637927	4.889014
Scenario based forecast (2035)	3.079464 (expected value)	2.735143 (expected value)	9.201114	4.827700

Practical Challenges

- Detecting risk factors
- Including local characteristics
- Including policy-makers' interested disaster impact metrics
- Accounting tail dependencies
- Accessing Necessary data

Effective policy crafting hinges on informative models.

The impact of a model depends on its practical usability.

Q&A

Building Models for Policy Making

This study is supported by European Commission: Multi-hazard and Risk-informed System for Enhanced Local and Regional Disaster Risk Management (MEDiate) 101074075.

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria

iiaca ac at

iiasa.ac.at/contact

IIASA

iiasa-vienna

@IIASAVienna

@IIASALive

@iiasavienna

