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A B S T R A C T

Energy communities (ECs) are seen as a promising concept towards a just energy transition. They can act as a 
catalyst for social tipping points and accelerate the shift to renewable energy while keeping benefits to local 
communities. However, no quantitative assessment of ECs' role in future energy system configurations exists. 
This study fills this gap by quantifying the potential impact of ECs in the Netherlands from 2025 to 2050.

We do this by developing a theoretically and empirically grounded agent-based model (BENCH-EC) to explore 
the formation and development of ECs over time and space. The model benefits from established theoretical 
frameworks on individual and collective decision-making for EC participation and formation and is calibrated 
using historical data. A set of scenarios is designed to evaluate various policies and assess the potential uptake 
and impacts of ECs over time.

Our findings show that the potential for ECs is large with over 40 % of the households involved and up to 38 
GW of installed capacity of renewables. However, this strongly depends on the chosen scenarios and requires 
radical breakthroughs and transition processes. The calibrated baseline scenario results in 10 % of the households 
involved, and 4 GW installed capacity.

This research poses a novel model framework and area of quantitative projections and highlights how 
exploring different scenarios can pinpoint key tradeoffs in locality and inclusivity. Furthermore, it shows how 
policies require a combination of increased professional capacity and social learning to harvest the interaction 
effects between those.

1. Introduction

Energy communities (ECs) and other citizen-led energy initiatives 
are seen as a promising organizational innovation to accelerate the en
ergy transition. An EC is a group of individuals, businesses, or organi
zations collaborating to produce, manage, and share renewable energy 
locally, often through solar PV or wind projects. These communities aim 
to increase local energy independence, promote sustainability, and 
empower members by allowing them to share in the economic and 
environmental benefits of locally generated energy [1–4].

There is a broad variety of definitions for ECs [5–7], encompassing 
various forms of participation [8,9], activities, technologies, scales [10], 
and business models [11–13]. For the purposes of this study, we define 
ECs as citizen-led organizations based on local ownership and collective 
decision-making, focusing on developing wind and solar projects within 
their proximity. See Appendix A for an overview of definitions. Common 

examples include neighborhoods or districts collectively investing in 
local rooftop solar PV systems, solar parks, or wind turbines. This is the 
most prevalent and studied type of ECs within Europe [8].

Energy communities can contribute to the energy transition in two 
main ways: First, ECs facilitate a more inclusive and just energy tran
sition, ensuring that the benefits of renewable energy projects flow back 
to local communities [14]. Second, they can be instrumental in accel
erating the pace of the transition by increasing public acceptance and 
balancing local renewable energy systems. They can also serve as niches 
or incubators for pioneering decentralized energy systems, in which 
community driven values are prioritized over market-driven motives 
[15,16]. This community-based structure fosters knowledge sharing, 
creating network effects and driving the spread of information. More
over, by integrating supply and demand within decentralized, local, and 
smart energy systems, ECs facilitate the adoption of complementary 
renewable technologies, such as smart grids, electric vehicles, demand- 
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side management, and energy storage [17]. Together, these elements 
position ECs as potential catalysts of social tipping dynamics in the en
ergy transition. They strengthen positive feedback loops and reduce 
resistance to change [18], enabling a rapid shift towards a sustainable 
energy system.

The prospects of ECs are underlined by their rapid growth over the 
past decades. In the period 2000–2021, ECs and other citizen-led com
munity energy initiatives in the EU have started over 22,000 energy 
projects, connected over 2 million people, and raised €6–11 billion in 
investments [8]. Furthermore, they take center stage in policy and 
climate scenarios. They are prominent actors in the European Clean 
Energy Package [19], play a significant role in the United States In
flations Reduction Act of 2022 [20], and are seen as instrumental in the 
transition to renewable energy systems in energy transition pathways 
[21], by the IPCC [22], International Energy Agency (IEA) [23], and 
International Renewable Energy Agency (IRENA) [24].

Despite their recognized role, there is a notable knowledge gap in 
quantifying ECs' impact on future energy system configurations [16]. 
While extensive research has examined the economic, financial, insti
tutional, and socio-political drivers and barriers affecting EC develop
ment [1,2,5,25,26], these studies are largely qualitative, without any 
data-driven models to assess the quantitative potential of ECs. Conse
quently, researchers have called for more quantitative approaches to 
analyze EC formation and development [14,16,27–30]. On the energy 
supply side, traditional energy system models offer quantitative insights 
but lack mechanisms to simulate community-led investments and 
bottom-up social dynamics that drive EC growth, omitting critical 
behavioral and policy feedback loops [31,32] On the energy demand 
side, adoption and diffusion models of renewable energy technologies 
address individual behavioral decisions but have not incorporated col
lective decision-making processes or the interactions that drive 
community-based energy adoption [33–42]. In short, a quantitative 
analysis of the potential impact of ECs is needed to evaluate their po
tential contribution to the energy transition.

In this study, we aim to address this research gap by examining how 
energy communities (ECs) can contribute to energy transition pathways 
and their potential impact on future energy systems. Additionally, we 
investigate the most effective strategies and policies for accelerating the 
development of ECs. To achieve this, we combine qualitative and 
quantitative methods, providing a comprehensive analysis of ECs' role in 
the evolving energy landscape. We first develop a conceptual framework 
to better understand the system, investigating EC growth and develop
ment, which incorporates both individual and collective decision- 
making process rooted in theorical and empirical studies (Section 2). 
Accordingly, we develop an agent-based model to identify the best 
strategies in ECs development. This is achieved by further developing 
the BENCH-v3 model, an empirically validated agent-based model rep
resenting energy related decision-making processes of households 
[43–45]. The model is modified to the case of energy communities, and 
the collective decision-making process is incorporated (Section 3). The 
developed BENCH-EC could serve as a decision-support tool for poli
cymakers, enabling them to run a variety of socio-technical scenarios 
and set regulations and policy accordingly (Section 4).

This study takes the Netherlands as a demonstration case for the 
model. The Netherlands has the second most ECs in Europe, with the 
highest number of ECs per capita. Furthermore, Dutch ECs are relatively 
diverse in generation sources, with wind, solar and combined projects 
[46]. ECs in the Netherlands have experienced accelerated growth over 
the past 15 years. The installed capacity of EC owner assets has increased 
over 2100 % in this period (see Fig. 1, panel a). As of 2024, there are 702 
active ECs which together have developed over 1400 renewable elec
tricity projects (mostly wind and solar) [47]. Theses ECs are spread 
throughout the Netherlands, present in both urban and rural areas (see 
Fig. 1, panel b). Nearly 80 % of municipalities host at least one EC, while 
in larger municipalities typically multiple ECs are active serving sepa
rate districts or villages within a municipality. Although there is a rapid 
growth trend, only 1.6 % of Dutch households are members of an EC, 
which underlines its status as a niche.

Fig. 1. (a) EC development in the Netherlands in the number of communities, community projects, installed capacity, and members; (b) ECs geographical distri
bution in 2024.
(Data and figure from [47].)
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2. Modelling energy communities

To gain a deeper understanding of how ECs evolve and develop over 
time and across different spatial contexts, we draw on existing literature 
rooted in pro-environmental behavior and socio-technical innovation 
theories [48–51]. This approach allows us to explore the dynamics of 
ECs from two distinct levels of decision-making: individual and collec
tive. By examining these layers, we can better understand how indi
vidual behaviors and collective actions interact to shape the trajectory of 
ECs, influencing their growth, sustainability, and impact (see Fig. 2 for 
an overview). Individual households determine their willingness to 
participate and invest in an EC, a group of individuals willing to 
participate collectively forms an EC, and an EC as an organization de
cides upon new renewable energy projects. This approach provides a 
comprehensive lens through which to analyze the complex social and 
technical factors that drive the success of ECs adoption and 
development.

2.1. Individual decision-making

The individual decision-making framework is an extension of the 
BENCH-v3 model, applied to the case of EC development. The BENCH- 
v3 model is an agent-based model simulating energy-related decision- 
making by householders, which can invest in renewable energy tech
nologies, adopt energy efficient behavior, or switch to more sustainable 
energy suppliers [36,43,44]. The model is theoretically grounded in the 
combination of the Theory of Planned Behavior (TPB) [48] and the 
Norm-Activation Theory (NAT) [52]. This approach acknowledges the 
complexity of decision-making and moves beyond the traditional, 
simplified models that rely on cost optimization and perfect rationality 
[53]. Instead, it offers a more realistic approach, particularly suited for 
energy related decision-making [45,54,55].

In this section we evaluate empirical evidence to these theories in the 
case of EC participation, considering both current members of ECs 
[56–60], and citizens in general [28,61,62]. Furthermore, we included 
studies of similar concepts, such as local smart energy systems, to 
encompass the broad diversity in definitions [63,64]. These earlier 
studies used different decision-making frameworks. The TPB is the most 
used generic framework in three studies, while others create a variety of 
non-generic energy community specific frameworks [58,61,65]. Despite 

this variety, several key determinants consistently emerge across most 
studies (see Table 1 for an overview).

The TPB is one of the most widely used models for studying house
hold adoption and diffusion of energy-related behaviors. [34,45,66]. In 
the context of EC participation, the TPB is frequently applied to analyze 
and model factors that influence households' decisions [58,61,67]. Ac
cording to the TPB, a person's intention to act is influenced by three main 
factors: attitude towards the behavior, subjective norms (SN), and 
perceived behavioral control (PBC) [48]. Subjective norms are shaped 
by interactions within a person's social network, while PBC refers to the 
individual's ability to take action, such as having the necessary time, 
money, or resources to make an investment decision [66].

From these factors attitude is most significant, as a key determinant 
in all reviewed studies. Attitude towards ECs comprises multiple facets, 
such as environmental attitude, attitude towards renewables, and 
financial attitude. This relates to the community logic, where many 
people invest in ECs not for its profits but for the community and 
environmental benefits [65,68]. Community identity and trust are other 
key determinants, which are either included in attitude when using TPB 
or a single determinant in specific frameworks. However, the signifi
cance of the effect differs amongst studies and ECs; small-scale and 
highly local initiatives require higher levels of trust than larger and more 
professionalized initiatives [59]. The general trend shows that strong 
local bonds and networks are an important determinant of the number of 
ECs [69]. This also relates to subjective norms as described in the TPB. 

Fig. 2. Schematic representation of interactions in multi-layered decision-making processes in energy communities.

Table 1 
Determinants of individual decision-making on EC participation.

Determinants Level Empirical evidence

Environmental attitude Individual [9,28,56–65,68,70,75]
Financial attitude and motives Individual [9,57,59–62,64,65,68,76,77]
Perceived behavioral control Individual [58,61,65]
Community identity and trust or 

social capital
Individual [9,28,56,59,61,62,64,68,69]

Awareness Individual [9,62,63]
Socio-demographic factors (e.g., 

home ownership, income, and 
education level)

Individual [28,56,57,62,65,70]

Subjective norms, peer influence, and 
network

Individual [9,28,56–59,61,64,65]
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As ECs often depend on close-knit networks of environmentally minded 
peers, this can be especially strong. Furthermore, the TPB highlights the 
difference between behavior and intention, which is particularly strong 
in EC participation, by including PBC. To illustrate the significance of 
this gap, the intention to participate in an EC is repeatedly above 4 on a 
scale from 1 to 5 [58,61,62], however just 1.6 % of households actually 
participates in the Netherlands. Concrete examples of PBC in the case of 
ECs are homeowners, ownership of rooftop PV systems [57,61,70], and 
time availability [62]. Even though these factors do not actually exclude 
people from participating in an EC, they are often perceived as a barrier.

The NAT adds another four factors to individual decision-making: 
Awareness of consequences, problem awareness, responsibility, and 
personal norms [71], which adds to the explanation of energy-related 
behavior [52,71,72] and is often used for studying prosocial and altru
istic behavior [71]. Especially awareness proves well studied in ECs 
[9,62,63]. In combining the TPB and NAT, we follow the work of 
[73,74], adding awareness and personal norms to the decision-making 
process. Interactions with the TPB occur at personal norms, a medi
ating variable partly determined by subjective norms. However, unlike 
these studies and the BENCH-v3 model, we omit responsibility and guilt 
as intermediate variables, as they have not yet been empirically studied 
in the context of EC participation.

The subjective norms highlighted in the theory of planned behavior 
result in network interactions and social learning. In theory on social 
networks influencing the adoption of innovation, three classes of models 
are defined [51]: 1. Social contagion, in which people adopt when they 
meet other adopters. 2. Social influence, where people adopt if enough 
peers have adopted as well, based on conformity. And 3. Social learning: 
In which people adopt once they see enough empirical evidence to 
convince them. In this model we use social learning, as it connects to the 
detailed individual decision-making process, similar to [43].

Determinants which are not included in these frameworks, but which 
have been studied extensively are socio-economic and demographic 
factors such as income, gender, age, and level of education. However, 
their effects differ in significance amongst studies [56,57,62,65].

2.2. Collective decision-making

To create a conceptual model of the collective decision-making 
process we use the well-established Institutional Analysis and Devel
opment (IAD) framework [50]. This framework analyzes how institu
tional arrangements affect collective action and performance in diverse 
environments. It does this with a focus on behavioral and institutional 
components, which are well represented in empirical research on ECs 
but lack in modelling studies [53]. The framework has been extensively 
used to study development in local energy systems [78,79] and ECs [80]. 
Furthermore, it has been used as a framework and conceptual founda
tion for agent-based models in renewable energy systems [81–83] and 
ECs [84].

The IAD framework evolves around the Action situation and the 
resulting patterns of interactions and outcomes. The action situation is 
affected by the actors interacting in it, the biophysical conditions in 
which it operates, the attributes of the community, and the rules-in-use 
[50]. The first section highlights the drivers of EC development based on 
these conditions, attributes, and rules, which are summarized in Table 2. 
The second section uses the action situation to define a conceptual 
model of collective decision-making in EC development.

The biophysical conditions entail the environment in which the EC 
operates, such as availability of suitable sites for renewables and the 
available infrastructure such as grid connection capacity. Both are 
increasingly becoming bottlenecks in new renewable energy projects in 
the Netherlands [85].

The attributes of the community focus on social attributes, such as 
social norms and values, leadership roles, social networks, and learning 
[86]. In ECs, this is reflected in the heterogeneous characteristics of 
householders and their networks. Key internal dimensions of the 

functioning of ECs are shared visions, good communication, leadership 
roles, and professional expertise [1,87]. We summarize this in the term 
professional capacity. Although members of ECs are usually highly 
motivated, they often lack professional capacity [13,88–90]. Further
more, many communities depend on a few altruistic volunteers and 
energy enthusiasts [25,91–93]. However, the willingness to volunteer is 
limited. Data shows a relatively small but stable percentage of people are 
willing to volunteer in neighborhood work [94]. The level of profes
sionalization and reliance on volunteers of ECs differs per country, 
where UK initiatives appear to be more professional than their German, 
Dutch, and American counterparts [95]. In Canada, Boucher and Pigeon 
even note a decline in ECs due to ‘volunteer burnout’ [90]. Profession
alization strategies such as a strong role for umbrella organizations and 
market intermediaries to enhance this professional capacity have 
received considerable attention in the literature [12,13,89,95–98]. 
Although professionalization could have some downsides, such as ten
sion with local involvement and participatory decision-making [62,64], 
it is necessary for further scaling.

In line with this professionalization, many ECs experience learning as 
they grow, mature, and scale. Small-scale or early-stage ECs are driven 
mainly by environmental and community values [57], while later stages 
show a stronger economic focus [57], and more market-driven practices 
[99]. This way, ECs can grow from small, volunteer-driven organiza
tions to large and professional community energy service providers 
[57,59,100]. Professionalization strategies have been structurally 
analyzed in a database based on the local energy monitor from HIER 
[101] and de Bakker et al. [102] by analyzing professional partnerships 
of energy communities. All ECs in the Netherlands' connection to 
different partners has been tracked. An overview of the partners and 
share of ECs cooperating with such a partner is given in Fig. 3. Three 
types of partnerships are included, all of which have come up in the 
Dutch cooperative energy sector in recent years [85,101]: 

• Umbrella organizations – in the Netherlands, 17 umbrella organi
zations are active, one with a national span (Energie Samen) and 16 
local organizations, either regional subsidiaries of Energie Samen or 
separate organizations. Umbrella organizations help in sharing 
knowledge and expertise with their members. Furthermore, Energie 
Samen advocates for improved policy and regulation and cooperates 
with international umbrella organizations in REScoopEU on the 
European level.

• Project development agencies or firms – These organizations assist 
ECs in developing renewable energy projects.

• Resale partnerships and other market intermediaries – These orga
nizations are energy suppliers, helping ECs resell their energy, often 
aimed at selling to local customers.

The final attributes of the community include its socio-economic 
context, such as the financial resources and technical expertise avail
able within the community, and its cultural context. For instance, 
countries with a strong tradition of cooperatives and social enterprises 
often have more ECs [103], whereas this movement has faced challenges 

Table 2 
Overview of key drivers and barriers on the collective and institutional levels.

Drivers Level Empirical evidence

Level of professionalization EC [12,24,60,85,95]
Intermediaries and professional support EC [1,12,85,93,97,98]
Leadership and initiators EC [2,25,67,85,91,93]
Learning capacity EC [1,88,98,100]
Availability of capital EC [1,9,24,85]
Availability of subsidies Institutional [1,9,24]
Technical potential (sites and grid 

connection)
Institutional [60,85]

Easy and clear regulatory frameworks and 
administrative process

Institutional [9,24,60,75,85,98]
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in former centrally planned economies [104].
Rules-in-use refer to the rules that govern the action situation. In the 

case of ECs, these rules have been well established and formalized, 
although differences exist amongst ECs [105] and legislative contexts 
[87]. Rules-in-use exist within the EC (e.g. how does the collective make 
decisions), and within the legislative context (e.g. subsidies, energy 
market regulations, building permits, formalized participation pro
cesses, etc.). For internal decision-making and strategic governance 
most ECs work with a board. Participation by other members generally 
takes the form of annual general meetings, community meetings on key 
decisions, or informal engagement [105]. The legislative context is often 
mentioned as one of the key barriers to EC development 
[9,24,60,75,85,98]. ECs require clear roles regarding market access, 
clear regulations regarding permits, subsidies, and energy sharing [98].

2.3. Conceptual model

We have used these insights to draw up a conceptual model. The 
conceptual model is used to modify and expand the BENCH-EC model. 
To get to this conceptual model we have taken three steps. First, we use 
the action situation as described in the IAD-framework to get an over
view of the core actors, their positions, actions, and outcomes. Second, 
we draw a flow-chart of the conceptual model of key actions and their 
outcomes. The analysis of the action situation and the included factors in 
the decision-making processes are based on the theoretical background 
as described in the previous sections.

The action situation is the core unit of analysis in the IAD-framework 
and defined as the place where individuals or actors interact, make 
decisions, and exchange information, resources, or services [50]. An 
action situation consists of seven working parts, described in detail in 
Appendix B and summarized in Table 3. These actions largely align with 
other ABMs describing EC formation and development [67,106], and 
follow the most common set-up of EC membership. Households can 
group up and collectively start an EC if enough volunteers are present 
within the area. Then, if the EC is formed, other households in the area 
can become members and fund a new project, in which the EC develops 
renewable generation assets. Although ECs have branched out much 
broader, this is still the most common type of participation, and espe
cially as we calibrate the model to historic data, this is the most relevant 
form of EC formation and development.

The action situation described in Table 3 is transferred to a con
ceptual model using an agent-based modelling perspective (see Fig. 4 for 
a flow chart of the actors, their positions and decisions). Like the IAD- 
framework, ABMs focus on actors and their actions and interactions. 
In the action situation and like Ghorbani et al. [67], and Fouladvand 
et al. [107], households can decide whether they want to participate in 
an EC, and if so, in which form. Furthermore, if an EC is started, the EC 
as a collective decides if it is expanding with new renewable generation 

projects or not. These actions are summarized as follows: 

1. Households who are willing to participate can: 
a. Initiate an EC if they are willing to invest the time and money and 

no local EC exists.
b. Initiate an EC project if they are willing to invest the time and 

money and a local EC exists.
c. Invest in an EC project if they are willing to invest and a local EC is 

initiating a project.
d. Influence their peers and be involved in social learning.

1. Collective action occurs in three ways: 
a. Initiators can start a new EC if enough initiators occur in their 

social network.
b. Initiators can start a new EC project if there are enough initiators 

and professional capacity in the EC, and the spatial requirements 
of the project can be met within the district.

Fig. 3. Share of ECs per capacity building strategy. Data gathered from HIER [47] and public data sources such as the websites of ECs, of umbrella organizations, and 
of resale partners.

Table 3 
Summary of the action situation.

Parts of an action 
situation

Results in case

Set of actors - Householders
- Energy communities

The positions - Not involved
- Member
- Initiator
- Board member

Set of allowable 
actions

- Become member
- Become initiator
- Become a board member
- Start and energy community
- Start a renewable energy project
- Influence peers
- ECs can enhance their professional capacity by learning 

from other ECs and intermediaries
Potential outcomes - Development in the number of energy community 

members
- Development in the number of energy communities
- Development in renewable energy generation projects
- Social learning amongst individuals
- Learning amongst collectives

Level of control over 
choice

- Householders require investment capacity
- Energy communities require capacity (financial, 

knowledge, and know-how), permits, and suitable sites 
for new projects.

- A mutual dependency exists where the EC depends on its 
members for financial capacity, and members require 
the capacity of the EC to initiate, build, and operate the 
renewable energy asset.

Information available - Freely available but limited amongst actors
Costs and benefits of 

outcomes
- Energy generated results in revenues
- Dividends paid from EC to investing members
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c. Learn from building projects and interacting with other ECs and 
intermediaries.

3. The BENCH-EC model

The model builds upon the BENCH model, an empirically validated, 
agent-based adoption model representing energy related decision- 
making processes of households [43–45]. The original BENCH model 
has been strongly adapted and expanded upon for the case of ECs. First, 
the households, their characteristics and the decision-making frame
work have been adapted to the relevant individual decision-making 
mechanisms as described in Section 2.1. Second, an additional layer of 
collective decision-making with energy communities, their projects and 
investment decisions have been added to the model. Third, the model 
has been expanded and is now able to simulate all households in the 
Netherlands. Fourth, the model analysis methods have been expanded 
with a method to calibrate bottom-up behavior to top-down EC devel
opment, and a new set of scenarios and scenario analysis has been 
devised. This all creates the novel BENCH-EC model. In this section we 
give an overview of the model, highlighting data sources, model struc
ture, decision functions, and initialization settings. See Table 4 and the 
‘Overview, Design concepts, and Details (ODD) protocol [108,109] in 
Appendix B for an overview, and the remainder of this section for more 
detail. The model can be downloaded from GittHub here.

The original BENCH model, and thus also this extension, are agent- 
based models (ABM). ABM is the most suitable approach to studying 
bottom-up dynamics based on stakeholder behavior, decision-making, 
and interactions [110]. Agents can be heterogeneous actors, able to 
interact and learn from each other and their environment [111]. This 
enables the modeler to study emergent behavior and non-linear transi
tion pathways [33,112]. Furthermore, ABMs are spatially and tempo
rally explicit, enabling variety amongst agents if they live in another 

location and decision-making at any moment in time.
ABMs have been used extensively to model energy transition path

ways [33,112,113]. Typical usages include energy markets, policy, and 
investments [114–116], energy management and controls in smart grids 
[117–120], and adoption and diffusion studies [34,37,44,121]. Similar 
topics are apparent in ABMs specifically aimed at ECs, where peer-to- 
peer trading and energy management are most apparent, followed by 
household decisions in adoption and participation [53].

3.1. Data and model initialization

The model is initialized by creating representative agent pop
ulations. And overview of all input and data sources is given in Appendix 
C and further explained in this section.

First, two contextual layers – municipalities and districts – are 
created. These are implemented as classes that store relevant data and 
link to agent populations by tracking which agents reside in each district 
and municipality. At the municipal level, the model tracks the number of 
ECs and the total remaining potential for wind, rooftop PV, and PV 
fields. At the district level, it defines the number of households, the share 
of low-income households, and the rate of home ownership. Districts 
also form the basis for the local component of ECs. In the model, we 
assume that only one EC can emerge per region. This reflects the typical 
local character of EC development and avoids introducing complex 
competition between multiple local ECs. Regions are defined by clus
tering all districts within a 5-km radius inside the same municipality. 
This approach produces ECs consisting of many districts in urban areas 
and ECs containing only one or a few districts in rural areas, aligning 
with the geographical patterns observed in the empirical data. [101].

With this layer set, a population of all 8.3 million households in the 
Netherlands is initialized. The households' variables are a combination 
of the sociodemographic variables known on district level (percentage of 

Fig. 4. Flow chart of possible actions and interactions per timestep. In this, actions are categorized in individual decisions made on an individual household basis, 
and collective decisions made by a group of households or EC as a collective.
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low-income households, homeownership, and willingness to volunteer), 
and sociopsychological variables based on the work from Koirala et al. 
[63] (awareness of ECs, environmental concern, renewables attitude, 
financial attitude, and time availability). All socio-psychological values 
are set stochastically using normal distributions, exact input values and 
distributions are noted in Appendix C. To preserve correlations amongst 
the variables we apply the following method: A covariance matrix is 
constructed from standard deviations and the correlation matrix, and its 
Cholesky decomposition is computed. Independent standard normal 
samples are multiplied by the Cholesky factor to generate correlated 
normal variables, which are then shifted by their respective means to 
obtain the final correlated behavioral drivers. The factor loadings used 
as weights to determine latent variables are also based on Koirala et al. 
[63].

With the households initialized, household networks are set. Each 
agent connects 25 other households in a small-world network where the 
connection likelihood is based on geographical distance and personal 
similarity. Small world networks are the most common form of social 
networks in agent-based models, also used in other ABMs on the for
mation of ECs [67,84,106]. Creating this form of structural heteroge
neity within agent characteristics and networks is important to replicate 
a social system adequately [122], it creates clusters of agents, which are 
critical in the process of adoption and diffusion [123]. Connections are 
always bidirectional, meaning that agents added to a households' 
network will also add this specific household to their own network. 
Networks are created by iterating through all households in the district 
and then finding contacts who are within a 10 % range of the house
hold's attitude towards ECs. The non-similar share is either random from 
the municipality, or random from all households in the Netherlands. The 
networks from the sensitivity analysis to network structure are either 
completely random, or random within the same municipality.

3.2. Individual decision-making process

The variables described in the initialization section define each 
household's underlying characteristics. In the following section, we 
detail how these characteristics are transformed into the decision- 
making constructs—awareness, attitudes, subjective norms, and 
PBC—that drive agents' choices in the model. Similarly to most of the 
data, this is based on the work by Koirala et al. [62], appended with key 
factors on home-ownership, time availability and willingness to 
volunteer.

The final construct, willingness to participate (WtP), represents the 
household's intention to engage in an EC. At each time step, this value is 
evaluated to determine whether the household becomes willing to invest 
or willing to initiate. A household enters either category only if its will
ingness to participate exceeds a threshold value, which is identical for all 
agents and determined during model calibration. For willingness to invest, 
an additional condition applies: the household cannot be classified as 
low-income. For willingness to initiate, the household must also exhibit 
willingness to volunteer. Meeting these criteria does not automatically 
result in investment or initiation; rather, these states indicate eligibility, 
while actual participation depends on the subsequent collective 
decision-making process.

WtP is calculated based on Eq. (1). Attitude is a combination of initial 
constructs renewables attitude and financial attitude. Subjective norm is 
set as the average of all attitudes in the network. Personal norms is a 
combination of awareness of consequence with subjective norms. And 
lastly, PBC is set as the average of time availability and financial 
availability. Both have been mentioned as significant predictors to 
(WtP), where lack of time is even seen as the most significant barrier in 
general [62]. Income is not part of PBC as it has no [61] or limited [62] 
significant effect on WtP. However, a minimum income level is assumed 
as it requires financial means to invest in a project.

Like WtP, personal norms and attitude are set using weights and 
normalization. Awareness of consequences is a latent construct in itself 
based on environmental concern and awareness of ECs. 

WtP =
(
PN*wpn +Att*watt + SN*wsn +PBC*wPBC

)/(
wpn +watt +wsn +wPBC

)

(1) 

• WtP = willingness to participate
• PN = personal norm
• Att = attitude
• SN = subjective norm
• PBC = perceived behavioural control
• wx = weight from factor loading

3.3. Individual learning process

Every timestep social learning occurs. People who have become 
member or initiator spread the word to their network. By doing this, 
they influence their peers' awareness and subjective norms, ultimately 
raising their willingness to participate. The rate to which this is raised 
depends on the learning rate factor, which is defined based on calibra
tion and their willingness to participate. In other words, people who are 
very positive about ECs will be more influential in spreading the word 
than people who are just above the threshold of adopting. This process is 
based on Niamir et al. [43].

The model includes a social interaction process through which EC 
members can influence the environmental attitudes of other households 
in their social network. Each member annually influences 64 % of its 
contacts [121]. For these contacts, the household's subjective norm and 
awareness of consequences are increased proportionally to the influ
encing household's own values, scaled by a learning rate (Eqs. (2)-(3)). 
Both variables are bounded between 0 and 1. After each update, the 
contacted household recalculates its behavioral intention. This 

Table 4 
Model overview.

Model component Description

Spatial scale The national scale of the Netherlands, from which all 
districts and households are represented individually

Temporal scale/ 
timesteps

Model simulation is 38 years (2012–2050) in annual 
timesteps, in which 2012–2024 replicates historical data. 
Model calibration is based on simulating 2012–2024 in 
annual timesteps

Agent populations Householders represent all the households in the 
Netherlands, energy communities represent all ECs in the 
Netherlands.

Agent heterogeneity Householders are initialized based on neighborhood 
statistics from the Netherlands, leading to a stochastically 
determined population within a neighborhood. 
Heterogeneity occurs in their financial means, 
environmental attitudes, personal norms, social norms, and 
social networks.

Process overview - Household decision to participate in an EC
- Household decision to lead an EC or EC project
- Household network interaction and learning
- Collective decision to initiate an EC
- Collective decision to initiate an EC project
- Collective network interaction and learning

Network Household network diffusion and learning are based on a 
small-world network. 
Collective network diffusion is based on membership of 
umbrella organizations and professional partnerships.

Learning and feedback 
loops

Households learn as the peers in their network who have 
joined an EC will spread the word, which results in an 
update of subjective norms and awareness. 
ECs learn based on their number of professional 
partnerships and membership in an umbrella organization.

Results and outcomes - Number of ECs
- Number of EC projects
- Percentage of the households participating in an EC
- Installed capacity in EC projects
- Percentage of electricity generated by ECs
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mechanism represents social diffusion of pro-environmental attitudes 
within household networks. The learning rate is a global variable, 
defined in the calibration process and subject to change in the scenarios. 

SNcontact = SNcontact + SNhousehold*lr (2) 

Awarenesscontact = Awarenesscontact +Awarenesshousehold*lr (3) 

3.4. Collective decision-making process

EC formation and project development are driven by the annual 
decision-making outcomes of individual households. A new EC is 
established when the number of households willing to initiate within a 
region exceeds the threshold of five. This condition applies only if no EC 
already exists in that region. Once established, each EC launches an 
initial project, reflecting the common pattern that ECs are founded 
around a concrete energy initiative.

As the simulation progresses, existing ECs may initiate additional 
projects provided that sufficient professional capacity, willing investors, 
and suitable sites are available. First, the maximum number of new 
projects per year is defined. Second, as long as the boundary conditions 
on professional capacity, investors and sites are met, new projects up to 
this maximum are started.

To calculate the maximum number of new projects, the total 
maximum number of projects within the last 5 years is defined based on 
the ECs professionalism, using an exponential scaling formula derived 
from historical data (Eq. (4)). Then the number of projects started in the 
last 5 years is subtracted to determine the number of new projects. For 
each potential new project, it checks boundary conditions (professional 
capacity, investors, and project type availability) before starting a 
project. 

Pmax(pr) = max
{
1, c*ek*pr} (4) 

• Pmax(pr) = max number of projects
• c = baseline
• k = growth rate
• pr = professionalism

When all boundary conditions are met, a standardized project is 
initiated, representing an average case in terms of capacity and number 
of participants. Project types are drawn probabilistically from the 
observed technology mix, which is assumed to remain constant over the 
simulation period.

Project initiation is subject to three constraints. First, site availability 
is tracked at the municipal level based on the technical potential for 
wind, large-scale rooftop PV, and ground-mounted PV. Each completed 
project reduces the remaining potential of its category. If the preferred 
technology is unavailable, the model selects the next feasible option; 
once all site types are exhausted, no further projects can be built. 
Competition with commercial developers is not modelled.

Second, professional capacity reduces the number of initiators 
required to start a project—from five at zero capacity to one at full 
capacity—and limits the number of projects an EC can undertake. This 
limit follows a calibrated logarithmic function, corresponding to 1.9 
projects per five years at current capacity levels and eight projects at full 
capacity. In transition scenarios, the upper bound is increased to 30, 
while in regular scenarios it remains unchanged to avoid unrealistically 
strong learning effects at low-capacity levels.

Third, investor availability is assessed by counting nearby house
holds willing to invest. A project can proceed only if this number exceeds 
the empirical threshold of 94 investors. Once all conditions are met, the 
project is initiated, triggering learning effects that update professional 
capacity and shape future project development.

3.5. Collective learning process

The professional capacity of an energy community (EC) evolves 
endogenously over time and reflects the community's organizational 
maturity and ability to develop energy projects. As stated above, higher 
professionalism lowers internal coordination barriers and increases 
project throughput. Specifically, professionalism reduces the number of 
initiators required to start a project and determines the maximum 
number of projects an EC can undertake.

In the model, this capacity is shaped by three complementary 
learning mechanisms: (1) the formation of professional partnerships, (2) 
experiential learning from project implementation, and (3) the gradual 
decay of accumulated knowledge. Together, these mechanisms deter
mine the EC's professionalism, a continuous measure in the range [0,1], 
which affects both the number of initiators required to start new projects 
and the maximum number of projects an EC can manage within a given 
period. 

• Learning from partnerships – ECs acquire new professional part
nerships over time, such as memberships in umbrella organizations 
or collaborations with resellers and project developers. Partnership 
acquisition is modelled as a probabilistic process that occurs only 
when the EC has not yet reached the maximum partnership score. 
When a new partnership is formed, professionalism increases by a 
fixed increment, after which the variable is capped at one. This 
mechanism reflects the observation that communities expand their 
access to external expertise gradually and irregularly, often through 
networking or engagement with intermediary organizations.

• Learning from projects – In addition to partnerships, ECs accu
mulate internal knowledge through the successful implementation of 
energy projects. Each completed project increases the EC's learned 
capacity as a fixed proportion of the remaining gap to the maximum 
attainable expertise (Eq. (5)). This bounded, diminishing-returns 
process captures the idea that early projects contribute strongly to 
organizational learning. Learned capacity is restricted to a maximum 
value of one.

Learned capacityt+1 =Learned capacityt

+(1 − Learned capacityt)*learning rate
(5) 

• Learning decay – To reflect leaving volunteers, loss of continuity in 
governance, and general fading of institutional memory, the model 
incorporates a forgetting mechanism. In each time step, a constant 
fraction of the EC's learned capacity (1 %) is lost (Eq. (6)). This en
sures that professional capacity can decline in periods without 
project activity, and that sustained activity is required to maintain 
high levels of organizational capability.

Learned capacityt+1 = Learned capacityt *(1 − decay rate) (6) 

Together, these mechanisms form a reinforcing but decay-moderated 
feedback loop: project experience and partnerships increase profes
sionalism, enabling further project development, while inactivity erodes 
capacity and constrains future growth.

3.6. Validation and calibration

Troost et al. [124] argue validation of ABMs should not be treated as 
a single exercise, but as a systematic set of context-appropriate decisions 
taken throughout model development and usage. Key is aligning the 
model, and thus validation methods, to the desired purpose. As we aim 
to identify the potential of energy communities using bottom-up deci
sion-making processes, it makes sense to calibrate these processes to 
historic data. In our scenario analysis we then explore continuation of 
these calibrated values or shifts in trends in ‘what if’ scenarios.

The model is calibrated based on historical data. This is done to 
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overcome the intention-behavior gap, which was unaddressed in the 
studies used to quantify the weights and values of the decision-making 
variables. The model is calibrated based on data from the years 
2012–2024 on five key parameters of thresholds and learning rates (see 
Table 5 for an overview). We created a sample model for the province of 
Limburg, and simulated 2100 combinations of parameter values. Cali
bration was done on a single province instead of the full country to 
reduce simulation time, and for each combination of input values 10 
replications were simulated and averaged to minimize the effect of 
stochastic uncertainty. Lastly, we set a range for each parameter based 
on initial broader calibration runs and manual simulation runs investi
gating model behavior at different parameter values.

The objective function was specified as the root mean squared error 
(RMSE) between the model-generated and historical datasets on the 
number of ECs and EC projects. Two optimization algorithms were used: 
a Genetic Algorithm based on the Non-dominated Sorting Genetic Al
gorithm II (NSGA-II) [125], and OptQuest [126], a general-purpose 
global optimization tool developed by OptTek Systems, Inc. The re
sults indicate that OptQuest outperformed the genetic approach, which 
converged prematurely to a local minimum. In contrast, OptQuest 
maintained greater solution diversity, reaching lower objective 
outcomes.

3.7. Policy strategies and scenarios

The scenario analysis has two goals. First, we want to identify 
probable trajectories based on the calibration process to historical data. 
This we have complemented with scenarios on enhanced social learning 
from an individual perspective, and enhanced capacity building and 
collective learning from an EC perspective, and a combination of these. 
These scenarios show gradual growth and are valuable as they are based 
on historic data, however, they do not capture the radical changes 
required in the energy transition, or the full range of positive reinforcing 
feedback loops and tipping dynamics that are associated with transitions 
in general [127], and ECs in particular [18]. Therefore, we have added 
scenarios which show radical innovation and institutional and legisla
tive change. This has enabled us to further explore model dynamics and 

thresholds that could unlock a much higher potential for ECs in the 
future energy system. Note, scenarios with lower learning rates than the 
baseline are also possible, however, we have not further detailed this, 
results would fit in the range between the current and baseline scenario. 
The combined hybrid projects scenario can be seen as a best case. The 
scenarios are summarized in Table 6 and the dynamics are detailed in 
the following section.

Social learning (SL) is one of the key dynamics in the diffusion of 
innovations [128]. It has been extensively studied in the field of 
renewable energy [129] and broadly applied in agent-based models 
[130,131]. When looking at the individual decision-making framework, 
social interactions impact subjective norms, awareness, and attitude. 
From a modelling perspective it means households who have joined the 
EC are more effective in spreading the word and telling their peers about 

Table 5 
Calibration variables, range, result and their description.

Actor Name Result Range Description

Household Household 
willingness to 
invest threshold

0.6334 0.6–0.7 Households who have a 
higher willingness to 
participate than this 
threshold become 
willing to invest.

Household Household 
willingness to 
initiate 
threshold

0.0571 0.02–0.25 Households who have a 
higher willingness to 
participate than this 
threshold and are 
willing to volunteer 
become willing to 
initiate. The threshold 
is set as addition to the 
willingness to invest 
value.

Household Household 
learning rate

0.0097 0.002–0.02 The effect to which 
households who join 
others influence the 
peers in their network

Collective Professional 
capacity 
threshold

0.8817 0.8–0.99 ECs with this 
professional capacity 
can start a new project.

Collective Collective 
learning rate

0.0586 0.05–0.1 Learning rate of ECs 
when starting a new 
project, collaborating 
with other ECs, or 
through professional 
partnerships

Table 6 
Scenario overview.

Core scenarios Description

Baseline Thresholds and learning rates are set to 
calibrated values of national data from 
2009 until 2024, simulating the scenario 
of current trends towards 2050.

Social Learning Enhanced social learning raises the 
impact of network interactions resulting 
in increased awareness and social norms. 
This scenario entails a doubling in the 
social learning factor compared to the 
calibrated value used in the baseline 
scenario. Measures to achieve this could 
be e.g. knowledge exchange platforms, 
leveraging opinion leaders, and 
improving visibility.

Collective Learning and Capacity 
Building

Enhanced professional capacity raises the 
learning effect of new projects on the 
professional capacity of the EC. Increased 
professional capacity leads to lower 
thresholds on the number of initiators, 
making it easier for ECs to start more 
projects. This scenario entails a doubling 
in the collective learning factor 
compared to the calibrated value used in 
the baseline scenario. Measures to 
achieve this could be e.g. professional 
partnerships or improving the legal 
framework thus reducing required 
professional expertise.

Combined We test if both measures combined have 
non-linear interaction effects

Transition scenarios
Energy-as-a-service (High social 

learning)
This scenario drastically increases social 
learning, as we assume ECs directly 
become competitive energy suppliers, 
thus raising their visibility and reducing 
the barrier to entry like, joining any other 
energy supplier. The scenario entails an 
eightfold increase in social learning rate.

Organizational, institutional and 
legislative breakthroughs (High 
collective learning)

This scenario reflects drastic 
breakthroughs in institutions and 
legislative, making it much easier for ECs 
to start new projects. The scenario entails 
an eightfold increase in collective 
learning rate.

Combined energy-as-a-service and 
organizational breakthroughs

This scenario combines the previous two. 
Furthermore, we have amplified how 
much this learning affects the maximum 
capacity of ECs to start new projects 
based on the professional capacity of the 
EC.

Combined hybrid projects The hybrid projects scenario extends the 
combined energy-as-a-service and 
organizational breakthroughs scenario, 
but raises the installed capacity per 
member as it assumes part of the project 
is funded by external sources, based on 
the professional capacity of the EC.
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ECs.
Few policies towards this have been taken so far. Concrete examples 

include facilitating knowledge sharing through peer-to-peer knowledge 
exchange platforms, leveraging opinion leaders, and improving visibil
ity. All areas where ECs have a unique opportunity due to their locality, 
visibility, and presence in local social networks [132]. Amongst others, 
REScoop has published communication guides to enhance this learning 
from the EC perspective, documenting methods on improved storytell
ing, engagement and awareness raising [133]. Specific methods include 
broadening the target audience and using targeted messages. While 
initial EC enthusiasm was often driven by climate concerns, targeted 
messages for new groups could be more financially motivated [75]. Or 
by creating synergies with local organizations or companies, or with 
energy ambassadors or coaches who perform free energy scans at 
members households [133].

Professional Capacity is used as an umbrella term addressing 
multiple institutional bottlenecks in developing ECs. Section 2 high
lights difficulties regarding the dependence on volunteers and chal
lenging legal, financial, and institutional frameworks. Enhancing 
professionalization in ECs is a way to address these issues.

Concrete examples are umbrella organizations to facilitate inter- 
community learning. Professional partnerships with project develop
ment agencies specialized in legal, financing, and technical assistance or 
partnerships with cooperative energy suppliers facilitate market access. 
Or hybrid pathways in which local authorities, intermediaries, aggre
gators, and ECs collaborate towards a shared community energy vision 
[134]. Real world examples include Windunie, a cooperatively owned 
wind and energy project developer [135], Section 2.2. highlights part
nerships between ECs and these other stakeholders. Furthermore, 
increasing professional capacity reflects a policy and lobbying effort to 
reduce complexity in the legislative framework, such as permits or 
market access. Umbrella organizations have an active role in lobbying 
and policy making and managed to strengthen the roles of ECs in the 
European and Dutch energy market directives [19,136,137]. From the 
model perspective, enhancing professional capacity or reducing insti
tutional complexity led to the same result.

Transition scenarios include much stronger feedback loops and 
radical breakthroughs. There are ample signs which show that ECs have 
the potential to enable these dynamics. Energy-as-a-service refers to 
the concept of energy communities evolving from asset owners to 
combined asset owners and energy suppliers. This would drastically 
raise awareness and visibility in the public domain. Another example is 
branching out of ECs to energy savings, heat, and smart grids. This way 
they become visible in all aspects of the energy sector, interacting with a 
broader group of people who spread knowledge and awareness. Orga
nizational, institutional and legislative breakthroughs represent all 
learning that happens through successful projects. Amongst others the 
new formalized role ECs have in legislation [19], legislation on public 
ownership of energy assets, and reductions in the legislative burden to 
build new assets. These two scenarios are also combined, in which the 
learning rate affecting the number of new projects built is also steep
ened, leading to experienced ECs being able to rapidly scale up. Lastly, 
we explore the potential of hybrid projects which are co-owned by ECs, 
so the installed capacity per member is reduced, but the total installed 
capacity quickly rises on. This works well for scaling but does mean a 
change in the justice and distributional effects of ECs.

4. Results

The results illustrate the non-linear and interrelated dynamic of both 
policies. Furthermore, we highlight key sensitivities and their effects. 
The results presented in this section show the outcome of a Monte Carlo 
analysis where each scenario is replicated 100 times to account for 
stochastic variation in the model. From these runs, the mean and the 90 
% quantile intervals are reported.

In general, the results show two key trends. First, the number of ECs 

will reconfigure to the pace it had before the Covid crisis, and plateau 
between 850 and 900 ECs. This plateauing is caused by the geographical 
component in EC formation, once a region has an EC, new participants 
will join the existing EC instead of starting a new one. Above 850 most 
communities simply have an EC so new formation will become scarcer. 
Although ECs plateau, the number of projects, members, and the total 
installed capacity of wind and PV projects keep growing rapidly as ECs 
keep expanding with new projects (see Fig. 5). We highlight just mem
bers as it is a key metric to EC development, and with these scenarios 
membership and installed capacity grows linearly based on the number 
of projects started. The rate of growth strongly depends on the social 
learning and professionalization strategies implemented.

In the baseline scenario model results show a trend in which ECs 
remain relatively small towards 2050. This is impactful, as within this 
timeframe most investments towards a sustainable energy system need 
to be made, thus rapid acceleration is required to gain a lasting impact in 
transition pathways. EC membership grows from less than 2 % of 
households in 2023 to 11 % in 2050. This results in an installed capacity 
of 4.1 GW. Although this is over a sixfold increase from today's installed 
capacity and membership, it is still a relatively small part (3 %–7 %) of 
the total required renewable energy capacity in transition visions. Note, 
this does not only show the challenge of ECs, but of the required scale of 
growth in renewables in general. Also, it shows that if learning slows 
compared to the past 10-year trends, it could below the capacity and 
membership mentioned in this section.

In the Social Learning scenario, the growth trends show only a 
minor increase in membership and installed capacity, with 4.7GW and 
12 % of the households in 2050. This shows that with the calibrated 
values, the most pressing bottleneck is professional capacity, or the 
ability of ECs to easily start new projects. The Collective Learning and 
Professional Capacity Building scenario shows a much more rapid 
increase towards 17 % of the households being members with 6.6 GW 
installed capacity. This shows that there would be enough households 
willing to join if more projects could be initiated. Combining both 
measures reinforces their effects, showing the reinforcing feedback loop 
between successful projects, households learning from them, resulting in 
more successful projects and more collective learning. This results in 8.5 
GW and 22 % of the households being member.

The transition scenarios show a much broader range of possible 
outcomes. They reflect a broad range of model dynamics with impactful 
policy implications (see Fig. 6).

The first two scenarios, Energy-as-a-service’ and ‘Organizational, 
institutional and legislative breakthroughs' have similar trends as the 
original scenarios, but much stronger as the learning rates are also 
increased. The combined and hybrid projects scenario has more inter
esting dynamics. In this combined transition scenario, the collective 
learning rate was further amplified in the function determining the 
number of projects ECs can do. So, ECs with a high professional capacity 
could start many more projects, unlocking the potential of households 
willing to invest but no ECs starting projects near them. Note that 
amplifying this function only gave positive results at these high levels at 
these high levels of learning rates, whereas in the baseline scenarios this 
led to lower results as ECs did not have fast enough learning to reach 
high levels of professionalization. This again shows the importance of 
coaligned learning in all aspects of EC development. When either indi
vidual learning or collective learning halted, they become bottlenecks, 
and when both are strong, they trigger reinforcing feedback loops to
wards much higher growth scenarios. Also note that this is the first 
scenario in which the S-curve reaches a stage of flattening out. This is 
reached because of two reasons; In rural areas with a high potential for 
renewables but a low number of households, most people who would 
want to join have already joined. Whereas in urbanized areas there are 
many households who would want to join but there are too few local 
sites for the development of renewables. This touches upon an inter
esting limit to ECs, in which bringing benefits to local communities is 
important, so therefore we applied this locality in the model as well. On 
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the other hand, stretching the boundaries of this would enable more 
people who do not live in areas where a lot of collective renewables will 
be built, to join as well. Potentially enlarging the distributional effects of 
ECs, while reducing the benefits for those living near the generation 
assets who also experience the associated negative impacts.

Lastly, we analyzed a hybrid projects scenario in which project size 
increases with professional capacity, while maintaining the same num
ber of investors required. This simulates co-ownership of projects in 
which ECs collaborate with utilities or other investment funds, which 
occurs a lot, especially in bigger projects. Also this scenario shows an 
important tradeoff for ECs, whereas the installed capacity could rise a 
lot, resulting in more renewable energy. The total number of households 
involved is reduced, as many sites get taken by projects who are only co- 
owned by local communities. In reality an EC should always balance 
between local bottlenecks. If these forms of co-ownership could kickstart 

a project which otherwise would not have been possible, it is important 
to collaborate, especially as this enables collective learning. However, 
especially on the long term and when available sites are scarce, a focus 
on local ownership could be more important. ECs have to balance these 
two core values.

One key dynamic is how social learning increases the willingness to 
participate throughout the population. In Fig. 7, this is plotted in three 
histograms. The left histogram shows the initial normal distribution, the 
middle shows the distribution after a simulation run for the baseline 
scenario, and the right histogram is an illustrative much higher social 
learning scenario. As networks are closely knit, and social learning re
inforces people's attitudes and norms within this network, more learning 
leads to more segregated groups, with highly enthusiastic frontrunners 
who have learned a lot over the simulation period and laggers who have 
maintained unaffected. This is an important dynamic when looking at 

Fig. 5. Results of the percentage of households becoming member of ECs in the different scenarios, the line is the mean and the shaded region shows the central 90 % 
interval (5th–95th percentile) across 100 stochastic runs.

Fig. 6. The transition scenarios show much more rapid growth, and non-linearity in total installed capacity (PV and wind projects) and members.
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the inclusive and distributional effects of ECs, where some are riding 
along and sharing the profits while others remain excluded.

4.1. Model uncertainty and sensitivity

As this study is explorative, it is as essential to understand sensitive 
model components and uncertainties as it is to see scenario results of 
policy strategies. In this section, we explain the stochastic uncertainty of 
the model, highlight the most sensitive parameters, and analyze the 
effect of different network structures. Similar to [138] we perform a 
stability analysis for stochastic uncertainty, and a one-at-a-time (OAT) 
sensitivity analysis on the five calibrated parameters. Lastly, we per
formed an interaction analysis on these five parameters.

Stochastic uncertainty has a moderate effect on model results. Within 
the 90 % uncertainty interval, the upper and lower bounds deviate 10 % 
from the mean in the baseline scenario. This is because the initialization 
of social networks, household characteristics, and EC professionalization 
strategies are all stochastic processes. Furthermore, the results follow a 
normal distribution pattern, indicating that most are closer to the mean 
than these bounds.

For the OAT analysis on the five calibrated parameters, we used local 
perturbation varying each parameter plus or minus 10 % from the 
calibrated value, in steps of 2 % (see Fig. 8). Only the willingness to 
invest parameter shows strong non-linearity. This makes sense as, 
especially in early stages of the simulation in which little learning has 
occurred, households become members of ECs based on their initial 
value for willingness to invest, which is normally distributed. If this 
value is raised slightly, many more households are willing to join. Sec
ond, the willingness to initiate is defined based on the willingness to 
invest, so increasing this also affects the number of households who 
initiate an EC.

When looking at the interaction effect of the same parameters the 
same effects are magnified. In this analysis, the five parameters varied in 
three steps, 90 % - 100 % - 110 % from the calibrated value, creating a 
full parameter sweep over 243 parameter configurations with 10 itera
tions per parameter. The results are shown in a fan graph (Fig. 9) dis
playing several quantile ranges. The interquartile range (25–75 %) 
shows relatively stable results for EC projects. For ECs the same vari
ability as shown in the willingness to invest parameter in the OAT- 
analysis is observed. The ranges for both values are like the OAT- 
analysis, showing there are no overly strong interaction effects be
tween these parameters in the baseline scenario. The scenario analysis of 
course shows there are interaction effects observable at much greater 

parameter variations, which replicate the expected behavior from the 
conceptual model.

4.2. Network structure

Next to parameter sensitivity we tested structural uncertainty related 
to network modelling. As described in Section 3.2.2., the most common 
social network structure is a small-world network. However, these have 
been applied differently in agent-based adoption and diffusion models. 
Where some consider small-world networks based on geographical 
proximity, others include similarities in attitude and behavior [67,139]. 
We compared the small-world similar network, where individuals are 
more likely to connect if they live nearby and have similar interests, with 
a small-world network based on only geographical proximity and a 
random network (See Fig. 10). The results show a strong impact of 
network type on the formation of ECs and the development of new 
projects. In the small-world similar network, the initial group of like- 
minded people connects with each other and reinforces their ideas, 
leading to rapid learning within this group; however, there are also 
increasing differences within and outside these groups. In the other 
network topologies, this learning has much less effect and it is less 
focused towards others who are already near the threshold values for 
willingness to initiate or invest, showing how important this dynamic 
and how networks determine this spread. This significant effect calls for 
more studies on how social networks determine and evolve EC partici
pation. Lastly, we explored the effects of dynamic networks, in which 
every agent changes a share of its contacts annually. This has no sig
nificant effect on the model results (see Appendix D.).

5. Discussion, limitations and future work

This work represents a novel effort in quantifying the potential of 
energy communities from a demand-side perspective. The explorative 
nature of the study also means there are many points up for discussion 
and future research. In general, modelling and simulating social systems 
comes with many challenges and uncertainties. Models are always 
simplifications of reality. Therefore, we highlight two key aspects of this 
study in the discussion sessions. We start by discussing the modelling 
framework and assumptions used in this study followed by policy and 
practical implications.

Fig. 7. Histogram of the distribution of the willingness to participate amongst households with the mean value in blue. Histogram A displays the household dis
tribution at the start of the simulated period, histogram B at the end of the base case simulation run, and histogram C at the end of a simulation run with much higher 
learning effects. Although learning is required for accelerated adoption, it does result in a bimodal distribution creating a group of front runners and laggards, which 
raises questions on the inclusivity of energy communities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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Fig. 8. Results of sensitivity analysis with number of ECs (left) and EC projects (right) for the five calibrated variables ranging from 90 % - 110 % of the calibrated 
value in 2 % steps, with 10 iterations per step.
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5.1. Modelling framework and assumptions

Modelling social systems in transition is always highly uncertain. It 
requires the translation of a vast body of social science studies and 
environmental psychology towards concrete functions and assumptions. 
These are by nature always highly specific and contextual, whereas the 
model is used to draw some more general conclusions about scaling and 
growing, thus requiring only the core dynamics and not the contextual 
detail that characterizes these cases. While at the same time, many of the 
challenges encountered by ECs are highly contextual. Taking the historic 
evolution pathway into account is essential in understanding the 
development of ECs in their local context. From a psychological 
perspective the significance and magnitude differ not just per study or 
EC, but even within groups of EC members [57,58,61,62]. In other 
words, community energy participation is heterogeneous and complex 
[56]. Although literature propagates more comparative research on 
geographical factors [92,140,141], it also shows evidence for generic 
factors relevant to all, such as the environmental attitude and awareness 
of citizens and the level of professionalization of ECs [2]. We have used 
these more general factors, combined with the IAD-framework and a 
conceptual model which is like other ABMs on EC development, to 
ensure the model reflects these core dynamics. However, we would 

encourage other researchers to create similar models based on other 
frameworks and compare them to our results to identify key bottlenecks 
and growth opportunities in a more robust way.

The challenge in using these social science studies as a foundation 
becomes even stronger when modelling transitions. As these will almost 
by definition change decision-making processes of both individuals and 
ECs. For example, Bauwens already shows that drivers to join an energy 
community might differ based on the development phase the commu
nity is in [57]. Future work should target more behavioral research on 
determinants of participating in energy communities in different tran
sition scenarios and contexts, and how these can be included in models. 
As even though this level of complexity is hard to account for in a model, 
the model does bring value in showing key dynamics, potential ranges of 
outcomes, and policies which could help those. For example by quan
tifying how tradeoffs between professional partnerships and local 
ownership, or locality versus inclusivity impact future growth 
trajectories.

In terms of data and calibration, the same challenge occurs. The 
model was calibrated on historical data, meaning that reflects historical 
change processes. The baseline scenario thus only reflects a scenario in 
which the future energy system context is completely the same as the 
one of the past 15 years. This of course is not true for a system in 

Fig. 9. Fan chart of the sensitivity analysis with interaction effects varying calibrated parameters between 90 % and 110 %.

Fig. 10. Evaluation of network types in baseline scenario.
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transition. We have tried to overcome this by using the model in an 
exploratory way, highlighting key dynamics in a broad set of scenarios 
ranging from a small increase in learning rates to completely transi
tioned systems.

Other uncertain processes to accurately represent in a model of a 
social system in transition include: 

• Environmental and behavioral decision-making determinants and an 
evolving decision-making framework. Individual decision-making 
on EC participation is heterogeneous and complex [56], and differs 
per studied cases [57,58,61,62]. In future research, this framework 
could be further evaluated and compared to multi-stage decision 
frameworks (e.g. [36,142]), which can have a higher explanatory 
value for larger, more complicated decisions. Furthermore, the effect 
of different interpretations of the framework can be further evalu
ated, as different translations from framework to model can lead to 
significantly different results [66].

• Social learning, which is an intricate phenomenon where the 
learning rate depends on the characteristics of the innovation, the 
adopter, and the relationship and network structure between the 
influencer and the adopter [143–145]. However, as no detailed and 
heterogeneous data on social learning in the case of ECs exists, we 
have taken a simplified approach where learning is more homoge
nous and only depends on the attitude of the adopter. The same is 
true for networks, which are dynamic and evolving in real-world 
social systems [146], but are assumed to be constant in the model.

• Network dynamics, social learning, and collective learning all result 
in positive reinforcing feedback loops. The model lacks a balancing 
feedback loop in which people who are willing to participate lose 
interest if expectations are not met, or results are unsatisfactory. This 
has not been incorporated as no valid data has been found to 
empirically underpin this dynamic. ABMs concerning short-term 
decisions with many evaluation moments do include these dy
namics (e.g., switching energy providers, however, in examples with, 
for example, the adoption of PV, electric vehicles, or switching en
ergy providers, this is usually excluded [37,44,121]. Fouladvand 
et al. do include it in their model on thermal energy communities, 
however, their set-up is different as members pay a monthly fee. 
Making it not a ‘one-of-kind’ decision but one with monthly feedback 
[106].

• The model takes a demand-side approach, focusing on consumers 
and their willingness to participate and lead ECs. Future research 
should focus on a more holistic energy sector approach, including 
competition with commercial renewable energy developers and 
looking at different subsidy schemes and legislation to enhance the 
development of ECs above commercial parties. Currently, almost all 
renewable energy in the Netherlands receives a type of feed-in pre
mium, where competition occurs over a fixed subsidy fund. For 
smaller EC projects a separate fund is available, allowing slightly 
more subsidy per kWh as these small-scale community driver pro
jects are usually more expensive per kWh [147,148]. Detailed 
analysis of the competition for subsidies between commercial and 
non-commercial projects is important to better understand the sup
ply side of EC developments.

• Aligning to EU policies [136,149] and recent efforts to gather data on 
energy communities on the European level [30], future work lies in 
scaling the presented model and framework to the European level as 
well. Strong points for discussion when attempting this are the 
generalization of local institutional and behavioral drivers, as stated 
in the first points of this section. However, when researchers can 
gather behavioral data for multiple countries methods exist to scale 
this to the supranational level [36].

With this paper we contribute to the work on energy communities 
with a completely novel approach looking at the national potential from 
a bottom-up model of EC formation and development. With this we build 

on existing literature in social sciences and psychology detailing the 
underlying dynamics and bottlenecks of development in ECs. We add to 
the small body of literature modelling EC development bottom-up, 
especially by scaling it to a full country level and connecting it to 
transition scenarios. And we highlight how explorative ABMs can be 
used to determine key tradeoffs and trends in transitions.

5.2. Policy and practical implications

Connecting empirical social and behavioral sciences to energy 
transition pathways and policy planning is a central challenge. With this 
research we aim to contribute more quantified narratives to policy
makers and ECs. From a policy maker perspective, ECs require more 
stimulus, both from the professional capacity as from the peer-to-peer 
learning effects. As these two trigger interacting feedback loops, al
ways both should be stimulated simultaneously, otherwise the factor 
which is not advanced will limit the potential returns of these policies. It 
should also be noted that when not triggering these feedback loops, the 
potential of ECs could.

More detailed findings from the transition scenarios show two 
important tradeoffs ECs must consider. First, there is a trade-off between 
generating as much renewable energy as possible and enabling as much 
local ownership of these projects as possible. Where professional part
nerships could enable more rapid growth, and with that trigger learning 
curves, it does mean there is less space for local citizens to be included in 
these projects. This trade-off should be made for every EC separately, as 
it greatly depends on the number of available sites versus the number of 
citizens that could be involved. Although ECs should consider that in 
these transition scenarios with rapid learning, the number of people 
willing to participate could strongly rise in the future.

The second trade-off highlights the distributional and justice effects 
of ECs. This has two sides; the learning dynamics in the model tend to 
move towards more polarized attitudes towards ECs, whereas in some 
groups strong social learning has occurred, this has not yet trickled 
down to the entire population. Second, this is not just determined by 
group preferences, but also by location. Where ECs in urban areas have 
less room to grow in terms of available project size, these people might 
be excluded from investing in collective renewable energy assets 
because of the locality principle ingrained in ECs. Broadening the scope 
of what local is in this case would enable these people to join and 
accelerate further development, however, loses some of the strong 
relation between local benefits being generated for the people who also 
experience the negative consequences.

6. Conclusion

This study has been the first to quantify the potential impact of en
ergy communities in the Dutch energy system. In this, we took a 
demand-driven approach, focusing on the role of consumers becoming 
involved in EC projects and institutional barriers to the development of 
ECs. This way we explored the role of social network dynamics and 
policy strategies on transition pathways of the energy community sector.

The core conclusion is that if we want to attain high quantities of 
renewable energies in a fair and just way by means of ECs, they should 
be greatly stimulated towards the transition scenarios. If these transi
tions occur, the potential is high with over 30 % of the households 
invested in renewables and up to 40 GW of generation capacity. 
Furthermore, even as ECs are seen as one of the most promising concepts 
for new renewable generation assets, even in these transition scenarios 
they do not reach the required capacity for a renewable energy system. 
When advancing on the current trajectory, ECs will likely remain a niche 
concept in the coming decades. This is in line with institutional analysis 
[150], as well as environmental psychology studies [57,61]. Note that 
the baseline scenario advances current trends, if institutional and eco
nomic barriers prevail, results could be below the scenarios explored in 
this paper. In view of the high promises and benefits of ECs and the focus 
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on policy programs, this can be seen as a missed opportunity. Even more 
so, as these coming decades are vital in shaping the energy system of the 
future, the time to enhance local participation is now.

Policy strategies to enhance social learning, collective learning and 
EC professionalization are most impactful within the proposed model 
and could double the installed capacity and connected households. 
However, even with these policies, ECs remain a niche in the renewable 
energy landscape. More radical innovations and disruptive regime 
changes are required for ECs to become central actors in the renewable 
energy field.

In other words, policymakers and other stakeholders should focus on 
learning for maximum acceleration within the scope of the model and 
aim towards more radical innovations or paradigm shifts to break 
beyond the niche.

Some potential solutions exist, such as the mainstreaming of com
munity energy by energy suppliers. However, the effect of these nov
elties is yet to be determined. These findings are in line with qualitative 
analysis, which almost all propagate for raising awareness, reducing 
institutional barriers, and raising subsidies [150].

Lastly, we show that the uncertainty around model outcomes is quite 
large, and there is ample room for discussion and expansion. This is 
natural to the explorative nature of the study, as it is a first of its kind and 
shows potential for future research to investigate better the levers pol
icymakers have at their disposal. On top of that, it does not impact the 
broader system dynamics. From this, we can derive the larger policy 
recommendations for any system with interacting, reinforcing feedback 
loops and bottlenecks: Alleviate bottlenecks to enable system growth 
through reinforcing feedback loops. And in the case of ECs, these key 
bottlenecks are households willing to participate and EC 
professionalization.

The key challenge in modelling future potential of a system in 
transition is balancing empirical validation against past data, with the 
need to capture broader transition dynamics, including radical in
novations, mainstreaming, and the adoption to institutional, legislative 
and policy development feedback loops. We addressed this by devel
oping a validated baseline alongside a wide range of exploratory sce
narios and sensitivity tests.

Beyond the scenario results, we reflect on the value and limits of 

ABMs for studying long-term transition dynamics. Compared with 
earlier quantification approaches, this method provides greater detail by 
incorporating household-level characteristics and mechanisms of EC 
development. In contrast to the qualitative work on which the model 
builds, the ABM offers a systematic exploration of possible outcomes, 
highlighting interactions, feedback loops, and quantitatively significant 
processes that can inform further qualitative research.

CRediT authorship contribution statement

Naud Loomans: Writing – original draft, Visualization, Validation, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Leila Niamir: Writing – review & editing, Methodology, 
Conceptualization. Caroline Zimm: Writing – review & editing. Floor 
Alkemade: Writing – review & editing.

Declaration of Generative AI and AI-assisted technologies in the 
writing process

Statement: During the preparation of this work the author(s) used 
ChatGPT4 to improve readability and language. After using this tool/ 
service, the authors reviewed and edited the content as needed and take 
full responsibility for the content of the published article.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:

Naud Loomans reports financial support was provided by the Dutch 
Research Council. If there are other authors, they declare that they have 
no known competing financial interests or personal relationships that 
could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Dutch Research Council (NWO) 
[grant number 17628].

Appendix A. Definition of energy communities

Table A1 
Key concepts of energy communities in literature and the definition used in this paper.

Concept Range in literature Definition in paper

Participation Ranges from direct ownership and control to collective decision-making Collective decision-making
Activities Energy generation, aggregation, storage, energy efficiency services, and charging services 

for electric vehicles
Energy generation and supply

Members Citizens, small- or medium-sized enterprises, and local authorities Citizens (households), both consumers and prosumers
Place and scale Either locally in the proximity of energy assets or without local context Local and in the proximity of generation assets, based on 

neighborhood or municipality boundaries
Technologies From all energy technologies (CEC) to just renewable, smart grids, storage, and energy 

efficiency technologies (REC)
Wind, (rooftop) solar, and electric vehicles

Business 
models

Collective energy generation, prosumers, local energy markets, (flexibility) aggregators, 
energy service companies, and mobility cooperatives

Collective generation and supply through energy supplier
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Appendix B. ODD protocol

Table B1 
ODD protocol.

Guiding protocol BENCH-EC

A. Overview A.1. Purpose The BENCH-EC is designed to study the potential impact of energy communities by modelling energy community growth 
based on a combination of individual decision-making of heterogenous individuals and collective decision-making at the 
community level.

A.2. Entities, state variables and 
scales

Agents are heterogenous households with varying socio-demographic characteristics and attitudes towards ECs. These 
agents can form energy communities and start community projects at a collective level. 
One timestep represents one year. Each run consists of 42 timesteps, spanning the period 2009–2050. After this initialization 
the model first replicates EC formation and development of historical data, to ensure similar social learning patterns occur. 
The period 2023–2050 gives simulated model results.

A.3. Process overview Each timestep a household goes through several processes:  

1. Asses behavioral factors
2. Calculate willingness-to-participate
3. Become an EC member, EC initiator or project initiator based on the willingness-to-participate or maintain uninvolved.
4. If involved, influence peers in network
Each timestep a community goes through several processes:  

1. Asses professional capacity and available sites
2. Initiate a new project or not
3. Learn from professional partnership and umbrella organization

B. Design 
concept

B.1.Theoretical and Empirical 
background

This model extends upon the BENCH-v3 model. Individual decision making is thus based on a theoretical framework 
consisting of a combination of the theory of planned behavior (TPB) and the norm activation theory (NAT) 
Collective decision-making is based on an analysis of ECs using the IAD framework. Social learning occurs in a small-world 
network and collective learning is based on professional partnerships.

B.2. Individual decision making We build on a framework from [36], and extend it by decisions being made at the collective level.
B.3. Heterogeneity The following variables are heterogeneous, using Cholesky decomposition on the covariance matrix to generate correlated 

variables:  

- Awareness of ECs
- Environmental attitude
- Financial attitude
- Time availability
- Home ownership
- Income class
- Social network

B.4. Interactions, social dynamics 
and learning

By social learning adopters interact with their network by updating their awareness and subjective norms based on the 
adopters' willingness-to-participate. Collective learning occurs by membership of an umbrella organization.

B.5. Spatial scale All households and districts in the Netherlands
B.6. Individual prediction Individuals do not predict future states
B.7. Stochasticity Sources of stochasticity are:  

1. Initialization settings where socio-demographic, behavioral attributes, and network connections are assigned in a sto
chastic process

2. Social learning is partly stochastic.
B.8. Observation The model observes changes in the number of energy communities, EC projects, community members, installed capacity and 

electricity generation.
B.9. Implementation details The model is coded in AnyLogic 8.9.1. and open-source available on Github

C. Details C.1. Initialization Agents are initialized by creating dwellings based on district level statistics, followed by assigning socio-demographic and 
behavioral data.  

We initialize the model in 2009. In the data the rapid growth in energy communities starts from 2009 onwards. Some initial 
(11) ECs were around before 1990, after which growth stagnated for two decades.

C.2. Input data Data on energy communities is available from the local energy monitor [101]. 
Data on households per district from the Dutch Bureau of Statistics [151]. 
Data on attitudes and awareness regarding ECs from [61,62].

C.3. Action situation The action situation is based on the IAD Framework as described in Section 3.1. 
Set of actors – Individual households, energy communities, umbrella organizations, and business intermediaries.  

Positions – Householders can have four positions based on their personal preferences and characteristics.  

• They are not involved if they are not connected to an EC yet.
• They can become an investor of an EC if one is operational in their proximity, and they are interested based on their 

willingness to participate
• They can become an initiator if they are interested but there is no EC active in their proximity yet.
• They can become a project initiator if they are interested and there is an EC operational in their proximity.
Energy communities want the number of projects, and so expand their local energy generation and create local revenue and 
sustainable energy. 
Umbrella organizations have the goal to spread knowledge and enhance collective learning 
Intermediaries have a business model to offer support to ECs who often lack capacity in knowledge, skills and finance.  

Actions:  

(continued on next page)
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Table B1 (continued )

Guiding protocol BENCH-EC

• Households can become an investor of an EC
• Households can become willing to initiate an EC
• Households can become willing to initiate an EC project
• Households can influence peers through social learning
• A group of initiating households can start an EC
• An EC can start a new project
Potential outcomes – Outcomes include the growth of existing communities in number of members, the initiation of new 
energy communities, and the development of new energy generation projects. This will be reflected in the level of 
participation in energy communities, money invested in energy assets and saved emissions.  

Level of control over choice – The level of control is high. For householders, investment capacity is required to become a 
member. For ECs, professional capacity and available sites are required for new projects. A mutual dependency exists 
between the EC depending on its members, and members requiring the capacity of the EC to initiate, build, and operate the 
renewable energy asset.  

Information available – Information is freely available, although information, knowledge and awareness gaps exist 
amongst households. Furthermore, capacity and investments are required for the EC to start a new project.  

Cost and benefits of outcomes – Benefits occur in revenues being generated because of energy sold if a renewable energy 
asset is built. These are redistributed amongst the members by dividends.

C.4. Model documentation Model documentation can be found in section 3 of this paper.

Appendix C. Input variables with assumptions

Table C1 
List of input variables with distribution and sources.

Agent Variable Distribution Description

Household Awareness of ECs Normal (μ = 0.45, σ 
= 0.24)

Is the household aware of ECs. Distribution is assumed normal, mean and SD are from Koirala, et al. 
[62] and normalized.

Environmental concern Normal (μ = 0.82, σ 
= 0.20)

The level of environmental concern. Distribution is assumed normal, mean and SD are from Koirala, 
et al. [62] and normalized.

Renewables attitude Normal (μ = 0.61, σ 
= 0.25)

The attitude towards renewables. Distribution is assumed normal, mean and SD are from Koirala, et al. 
[62] and normalized.

Financial attitude Normal (μ = 0.74, σ 
= 0.22)

The focus on financial returns when investing in ECs. Distribution is assumed normal, mean and SD are 
from Koirala, et al. [62] and normalized.

Time availability Normal (μ = 0.35, σ 
= 0.23)

The time availability to participate in an EC. Distribution is assumed normal, mean and SD are from 
Koirala, et al. [62] and normalized.

Home ownership Binary Randomly assigned based on district home ownership percentage.
Low-income household Binary Randomly assigned based on district low-income percentage.
Willingness to volunteer Binary Randomly assigned based on global willingness to volunteer percentage.
Municipality Empirical Initiated from district
District Empirical Initiated from district
Local EC Empirical Initiated from district/EC

Energy community 
project

Location List of current ECs with respective projects from the local energy monitor [47]
Type Wind, Rooftop PV, 

field PV
List of current ECs with respective projects from the local energy monitor [47]

Capacity List of current ECs with respective projects from the local energy monitor [47]
Construction year List of current ECs with respective projects from the local energy monitor [47]

Energy community Municipality Empirical Municipality from list of current ECs with respective projects from the local energy monitor [47]
EC projects Empirical List of current ECs with respective projects from the local energy monitor [47]
Member of umbrella 
organization

Boolean Based on empirical distribution from [102] and own data collection

Has reselling partnerships Boolean Based on empirical distribution from [102] and own data collection
Has project development 
partnerships

Boolean Based on empirical distribution from [102] and own data collection

Municipality Remaining PV rooftop 
potential (MW)

Empirical Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a 
viability factor set to have the total potential match to the average values stated in Dutch energy 
transition scenarios [153], resulting in a total potential of 23.4 GW

Remaining PV field 
potential (MW)

Empirical Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a 
viability factor set to have the total potential match to the average values stated in Dutch energy 
transition scenarios [153], resulting in a total potential of 29.1 GW

Remaining wind potential 
(MW)

Empirical Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a 
viability factor set to have the total potential match to the average values stated in Dutch energy 
transition scenarios [153], resulting in a total potential of 19.2 GW

Has EC Empirical Based on data from the Lokale Energie Monitor [47]
District Low-income households 

(%)
Empirical District statistics from [151]

Home ownership (%) Empirical District statistics from [151]
Households (#) Empirical District statistics from [151]
Nearest EC Empirical Based on data from the Lokale Energie Monitor [47]

(continued on next page)
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Table C1 (continued )

Agent Variable Distribution Description

Global Willingness to volunteer Empirical National statistics from [94]
Network size 25 Average number of contacts used in models that influence energy related decision-making [67,84,106]
Share of contacts in 
proximity

90 % Share of contacts in proximity used for small-world network building based on [121]

Share of similar contacts 90 % Share of similarly minded contacts used for small-world network building based on [121]
Share annual contacts 64 % Share of contacts in network contacted annually on EC related decisions based on [121]

Table C2 
Correlation matrix of variables. Values with an asterisk are assumed, other values are taken from Koirala, et al. [62].

Environmental concern Renewables attitude Financial attitude Awareness EC Time available

Environmental concern 1
Renewables attitude 0.4 1
Financial attitude 0.23 0.26 1
Awareness EC 0.4 0.4 0.4 1
Time available 0.4 0.4 0.4 0.4 1

Table C3 
Factor loadings used as weights of variables to latent constructs. All values—except those marked with 
an asterisk—are normalized estimates taken from Koirala, et al. [62]. Variables marked with an asterisk 
were not available in the original study and.

Variable 1 Variable 2 Factor loading 
normalized

Home ownership Pbc 0.17
Time availability Pbc 0.83
Environmental concern Awareness of consequences 0.50*
Awareness EC Awareness of consequences 0.50*
Renewables attitude attitude 0.22
Financial attitude attitude 0.36
Awareness of consequences Personal norms 0.50*
Subjective norms Personal norms 0.50*
Attitude Willingness to participate 0.32
Subjective norms Willingness to participate 0.27
Pbc Willingness to participate 0.07
Personal norms Willingness to participate 0.34

Appendix D. Dynamic network

As individual learning through social networks is a key dynamic of the model, we investigated dynamic networks. In most ABMs focused on 
adoption in energy technologies, networks are considered static [40,154–158] all have static networks, and review studies elaborately discuss network 
structure but not dynamic network evolution [35,159]. Furthermore, rates of new contacts and their influence in energy related decisions is unknown. 
Therefore, in this model we also adopted a static network. However, we investigated the effects of dynamic shifts in networks by adding a scenario in 
which for every household 10 % of the contacts is renewed annually (see Fig. D1 for the results). The effects are negligible, mostly because the new 
contacts are generated using the earlier described small world algorithm in which people find contacts near them with similar characteristics. On a 
larger societal level this leads to similar patterns in social learning and thus development in awareness and norms. 
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Fig. D1. Comparison of static network in the baseline scenario versus a dynamic network in which 10 % of every household's contacts are renewed annually ac
cording to the small world network algorithm.

Data availability

All data and code is publicly available and open-source. It can be 
downloaded through GitHub
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[140] N. Šahović, P.P. da Silva, Community renewable energy - research perspectives, 
Energy Procedia 106 (2016) 46–58. Dec. https://doi.org/10.1016/j.egypro.20 
16.12.104.

[141] S. Guerreiro, I. Botetzagias, Empowering communities – the role of intermediary 
organisations in community renewable energy projects in Indonesia, Local 
Environ. 23 (2) (2018) 158–177, https://doi.org/10.1080/ 
13549839.2017.1394830.

[142] C.A. Klöckner, A. Nayum, Specific barriers and drivers in different stages of 
decision-making about energy efficiency upgrades in private homes, Front. 
Psychol. 7 (2016), https://doi.org/10.3389/fpsyg.2016.01362. Sept.

[143] R. Iyengar, C. Van den Bulte, T.W. Valente, Opinion leadership and social 
contagion in new product diffusion, Mark. Sci. 30 (2) (2011) 195–212. Mar. 
https://doi.org/10.1287/mksc.1100.0566.

[144] V. Buskens, Spreading information and developing trust in social networks to 
accelerate diffusion of innovations, Trends Food Sci. Technol. 106 (2020) 
485–488. Dec. https://doi.org/10.1016/j.tifs.2020.10.040.

[145] D.J. Langley, T.H.A. Bijmolt, J.R. Ortt, N. Pals, Determinants of social contagion 
during new product adoption, J. Prod. Innov. Manag. 29 (4) (2012) 623–638, 
https://doi.org/10.1111/j.1540-5885.2012.00929.x.

[146] A. Vespignani, Modelling dynamical processes in complex socio-technical 
systems, Nat. Phys. 8 (1) (2012) 32–39. Jan. https://doi.org/10.1038/nph 
ys2160.

[147] PBL, Datasets SDE++ en SCE | Planbureau voor de Leefomgeving, June 04. 
Accessed: Aug. 09, 2024. [Online]. Available: https://www.pbl.nl/sde/datasets 
-sde-en-sce, 2024.

[148] RVO, “SDE++ Features,” RVO.nl, Accessed: Aug. 09, 2024. [Online]. Available: 
https://english.rvo.nl/en/subsidies-financing/sde/features, 2025.

[149] European Commission, Directive (EU) 2018/2001 of the European Parliament 
and of the Council of 11 December 2018 on the promotion of the use of energy 
from renewable sources (recast) (Text with EEA relevance.) 328, 2018. Accessed: 
June 11, 2024. [Online]. Available: http://data.europa.eu/eli/dir/2018/2001/ 
oj/eng.
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