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ABSTRACT

Energy communities (ECs) are seen as a promising concept towards a just energy transition. They can act as a
catalyst for social tipping points and accelerate the shift to renewable energy while keeping benefits to local
communities. However, no quantitative assessment of ECs' role in future energy system configurations exists.
This study fills this gap by quantifying the potential impact of ECs in the Netherlands from 2025 to 2050.

We do this by developing a theoretically and empirically grounded agent-based model (BENCH-EC) to explore
the formation and development of ECs over time and space. The model benefits from established theoretical
frameworks on individual and collective decision-making for EC participation and formation and is calibrated
using historical data. A set of scenarios is designed to evaluate various policies and assess the potential uptake
and impacts of ECs over time.

Our findings show that the potential for ECs is large with over 40 % of the households involved and up to 38
GW of installed capacity of renewables. However, this strongly depends on the chosen scenarios and requires
radical breakthroughs and transition processes. The calibrated baseline scenario results in 10 % of the households
involved, and 4 GW installed capacity.

This research poses a novel model framework and area of quantitative projections and highlights how
exploring different scenarios can pinpoint key tradeoffs in locality and inclusivity. Furthermore, it shows how
policies require a combination of increased professional capacity and social learning to harvest the interaction

effects between those.

1. Introduction

Energy communities (ECs) and other citizen-led energy initiatives
are seen as a promising organizational innovation to accelerate the en-
ergy transition. An EC is a group of individuals, businesses, or organi-
zations collaborating to produce, manage, and share renewable energy
locally, often through solar PV or wind projects. These communities aim
to increase local energy independence, promote sustainability, and
empower members by allowing them to share in the economic and
environmental benefits of locally generated energy [1-4].

There is a broad variety of definitions for ECs [5-7], encompassing
various forms of participation [8,9], activities, technologies, scales [10],
and business models [11-13]. For the purposes of this study, we define
ECs as citizen-led organizations based on local ownership and collective
decision-making, focusing on developing wind and solar projects within
their proximity. See Appendix A for an overview of definitions. Common
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examples include neighborhoods or districts collectively investing in
local rooftop solar PV systems, solar parks, or wind turbines. This is the
most prevalent and studied type of ECs within Europe [8].

Energy communities can contribute to the energy transition in two
main ways: First, ECs facilitate a more inclusive and just energy tran-
sition, ensuring that the benefits of renewable energy projects flow back
to local communities [14]. Second, they can be instrumental in accel-
erating the pace of the transition by increasing public acceptance and
balancing local renewable energy systems. They can also serve as niches
or incubators for pioneering decentralized energy systems, in which
community driven values are prioritized over market-driven motives
[15,16]. This community-based structure fosters knowledge sharing,
creating network effects and driving the spread of information. More-
over, by integrating supply and demand within decentralized, local, and
smart energy systems, ECs facilitate the adoption of complementary
renewable technologies, such as smart grids, electric vehicles, demand-
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side management, and energy storage [17]. Together, these elements
position ECs as potential catalysts of social tipping dynamics in the en-
ergy transition. They strengthen positive feedback loops and reduce
resistance to change [18], enabling a rapid shift towards a sustainable
energy system.

The prospects of ECs are underlined by their rapid growth over the
past decades. In the period 2000-2021, ECs and other citizen-led com-
munity energy initiatives in the EU have started over 22,000 energy
projects, connected over 2 million people, and raised €6-11 billion in
investments [8]. Furthermore, they take center stage in policy and
climate scenarios. They are prominent actors in the European Clean
Energy Package [19], play a significant role in the United States In-
flations Reduction Act of 2022 [20], and are seen as instrumental in the
transition to renewable energy systems in energy transition pathways
[21], by the IPCC [22], International Energy Agency (IEA) [23], and
International Renewable Energy Agency (IRENA) [24].

Despite their recognized role, there is a notable knowledge gap in
quantifying ECs' impact on future energy system configurations [16].
While extensive research has examined the economic, financial, insti-
tutional, and socio-political drivers and barriers affecting EC develop-
ment [1,2,5,25,26], these studies are largely qualitative, without any
data-driven models to assess the quantitative potential of ECs. Conse-
quently, researchers have called for more quantitative approaches to
analyze EC formation and development [14,16,27-30]. On the energy
supply side, traditional energy system models offer quantitative insights
but lack mechanisms to simulate community-led investments and
bottom-up social dynamics that drive EC growth, omitting critical
behavioral and policy feedback loops [31,32] On the energy demand
side, adoption and diffusion models of renewable energy technologies
address individual behavioral decisions but have not incorporated col-
lective decision-making processes or the interactions that drive
community-based energy adoption [33-42]. In short, a quantitative
analysis of the potential impact of ECs is needed to evaluate their po-
tential contribution to the energy transition.
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In this study, we aim to address this research gap by examining how
energy communities (ECs) can contribute to energy transition pathways
and their potential impact on future energy systems. Additionally, we
investigate the most effective strategies and policies for accelerating the
development of ECs. To achieve this, we combine qualitative and
quantitative methods, providing a comprehensive analysis of ECs' role in
the evolving energy landscape. We first develop a conceptual framework
to better understand the system, investigating EC growth and develop-
ment, which incorporates both individual and collective decision-
making process rooted in theorical and empirical studies (Section 2).
Accordingly, we develop an agent-based model to identify the best
strategies in ECs development. This is achieved by further developing
the BENCH-v3 model, an empirically validated agent-based model rep-
resenting energy related decision-making processes of households
[43-45]. The model is modified to the case of energy communities, and
the collective decision-making process is incorporated (Section 3). The
developed BENCH-EC could serve as a decision-support tool for poli-
cymakers, enabling them to run a variety of socio-technical scenarios
and set regulations and policy accordingly (Section 4).

This study takes the Netherlands as a demonstration case for the
model. The Netherlands has the second most ECs in Europe, with the
highest number of ECs per capita. Furthermore, Dutch ECs are relatively
diverse in generation sources, with wind, solar and combined projects
[46]. ECs in the Netherlands have experienced accelerated growth over
the past 15 years. The installed capacity of EC owner assets has increased
over 2100 % in this period (see Fig. 1, panel a). As of 2024, there are 702
active ECs which together have developed over 1400 renewable elec-
tricity projects (mostly wind and solar) [47]. Theses ECs are spread
throughout the Netherlands, present in both urban and rural areas (see
Fig. 1, panel b). Nearly 80 % of municipalities host at least one EC, while
in larger municipalities typically multiple ECs are active serving sepa-
rate districts or villages within a municipality. Although there is a rapid
growth trend, only 1.6 % of Dutch households are members of an EC,
which underlines its status as a niche.
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(Data and figure from [47].)
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2. Modelling energy communities

To gain a deeper understanding of how ECs evolve and develop over
time and across different spatial contexts, we draw on existing literature
rooted in pro-environmental behavior and socio-technical innovation
theories [48-51]. This approach allows us to explore the dynamics of
ECs from two distinct levels of decision-making: individual and collec-
tive. By examining these layers, we can better understand how indi-
vidual behaviors and collective actions interact to shape the trajectory of
ECs, influencing their growth, sustainability, and impact (see Fig. 2 for
an overview). Individual households determine their willingness to
participate and invest in an EC, a group of individuals willing to
participate collectively forms an EC, and an EC as an organization de-
cides upon new renewable energy projects. This approach provides a
comprehensive lens through which to analyze the complex social and
technical factors that drive the success of ECs adoption and
development.

2.1. Individual decision-making

The individual decision-making framework is an extension of the
BENCH-v3 model, applied to the case of EC development. The BENCH-
v3 model is an agent-based model simulating energy-related decision-
making by householders, which can invest in renewable energy tech-
nologies, adopt energy efficient behavior, or switch to more sustainable
energy suppliers [36,43,44]. The model is theoretically grounded in the
combination of the Theory of Planned Behavior (TPB) [48] and the
Norm-Activation Theory (NAT) [52]. This approach acknowledges the
complexity of decision-making and moves beyond the traditional,
simplified models that rely on cost optimization and perfect rationality
[53]. Instead, it offers a more realistic approach, particularly suited for
energy related decision-making [45,54,55].

In this section we evaluate empirical evidence to these theories in the
case of EC participation, considering both current members of ECs
[56-60], and citizens in general [28,61,62]. Furthermore, we included
studies of similar concepts, such as local smart energy systems, to
encompass the broad diversity in definitions [63,64]. These earlier
studies used different decision-making frameworks. The TPB is the most
used generic framework in three studies, while others create a variety of
non-generic energy community specific frameworks [58,61,65]. Despite
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this variety, several key determinants consistently emerge across most
studies (see Table 1 for an overview).

The TPB is one of the most widely used models for studying house-
hold adoption and diffusion of energy-related behaviors. [34,45,66]. In
the context of EC participation, the TPB is frequently applied to analyze
and model factors that influence households' decisions [58,61,67]. Ac-
cording to the TPB, a person's intention to act is influenced by three main
factors: attitude towards the behavior, subjective norms (SN), and
perceived behavioral control (PBC) [48]. Subjective norms are shaped
by interactions within a person's social network, while PBC refers to the
individual's ability to take action, such as having the necessary time,
money, or resources to make an investment decision [66].

From these factors attitude is most significant, as a key determinant
in all reviewed studies. Attitude towards ECs comprises multiple facets,
such as environmental attitude, attitude towards renewables, and
financial attitude. This relates to the community logic, where many
people invest in ECs not for its profits but for the community and
environmental benefits [65,68]. Community identity and trust are other
key determinants, which are either included in attitude when using TPB
or a single determinant in specific frameworks. However, the signifi-
cance of the effect differs amongst studies and ECs; small-scale and
highly local initiatives require higher levels of trust than larger and more
professionalized initiatives [59]. The general trend shows that strong
local bonds and networks are an important determinant of the number of
ECs [69]. This also relates to subjective norms as described in the TPB.

Table 1
Determinants of individual decision-making on EC participation.

Determinants Level Empirical evidence
Environmental attitude Individual [9,28,56-65,68,70,75]
Financial attitude and motives Individual [9,57,59-62,64,65,68,76,77]
Perceived behavioral control Individual [58,61,65]
Community identity and trust or Individual [9,28,56,59,61,62,64,68,69]
social capital
Awareness Individual [9,62,63]
Socio-demographic factors (e.g., Individual [28,56,57,62,65,70]
home ownership, income, and
education level)
Subjective norms, peer influence, and  Individual [9,28,56-59,61,64,65]
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Fig. 2. Schematic representation of interactions in multi-layered decision-making processes in energy communities.
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As ECs often depend on close-knit networks of environmentally minded
peers, this can be especially strong. Furthermore, the TPB highlights the
difference between behavior and intention, which is particularly strong
in EC participation, by including PBC. To illustrate the significance of
this gap, the intention to participate in an EC is repeatedly above 4 on a
scale from 1 to 5 [58,61,62], however just 1.6 % of households actually
participates in the Netherlands. Concrete examples of PBC in the case of
ECs are homeowners, ownership of rooftop PV systems [57,61,70], and
time availability [62]. Even though these factors do not actually exclude
people from participating in an EC, they are often perceived as a barrier.

The NAT adds another four factors to individual decision-making:
Awareness of consequences, problem awareness, responsibility, and
personal norms [71], which adds to the explanation of energy-related
behavior [52,71,72] and is often used for studying prosocial and altru-
istic behavior [71]. Especially awareness proves well studied in ECs
[9,62,63]. In combining the TPB and NAT, we follow the work of
[73,74], adding awareness and personal norms to the decision-making
process. Interactions with the TPB occur at personal norms, a medi-
ating variable partly determined by subjective norms. However, unlike
these studies and the BENCH-v3 model, we omit responsibility and guilt
as intermediate variables, as they have not yet been empirically studied
in the context of EC participation.

The subjective norms highlighted in the theory of planned behavior
result in network interactions and social learning. In theory on social
networks influencing the adoption of innovation, three classes of models
are defined [51]: 1. Social contagion, in which people adopt when they
meet other adopters. 2. Social influence, where people adopt if enough
peers have adopted as well, based on conformity. And 3. Social learning:
In which people adopt once they see enough empirical evidence to
convince them. In this model we use social learning, as it connects to the
detailed individual decision-making process, similar to [43].

Determinants which are not included in these frameworks, but which
have been studied extensively are socio-economic and demographic
factors such as income, gender, age, and level of education. However,
their effects differ in significance amongst studies [56,57,62,65].

2.2. Collective decision-making

To create a conceptual model of the collective decision-making
process we use the well-established Institutional Analysis and Devel-
opment (IAD) framework [50]. This framework analyzes how institu-
tional arrangements affect collective action and performance in diverse
environments. It does this with a focus on behavioral and institutional
components, which are well represented in empirical research on ECs
but lack in modelling studies [53]. The framework has been extensively
used to study development in local energy systems [78,79] and ECs [80].
Furthermore, it has been used as a framework and conceptual founda-
tion for agent-based models in renewable energy systems [81-83] and
ECs [84].

The IAD framework evolves around the Action situation and the
resulting patterns of interactions and outcomes. The action situation is
affected by the actors interacting in it, the biophysical conditions in
which it operates, the attributes of the community, and the rules-in-use
[50]. The first section highlights the drivers of EC development based on
these conditions, attributes, and rules, which are summarized in Table 2.
The second section uses the action situation to define a conceptual
model of collective decision-making in EC development.

The biophysical conditions entail the environment in which the EC
operates, such as availability of suitable sites for renewables and the
available infrastructure such as grid connection capacity. Both are
increasingly becoming bottlenecks in new renewable energy projects in
the Netherlands [85].

The attributes of the community focus on social attributes, such as
social norms and values, leadership roles, social networks, and learning
[86]. In ECs, this is reflected in the heterogeneous characteristics of
householders and their networks. Key internal dimensions of the
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Table 2
Overview of key drivers and barriers on the collective and institutional levels.

Drivers Level Empirical evidence

Level of professionalization EC [12,24,60,85,95]

Intermediaries and professional support EC [1,12,85,93,97,98]

Leadership and initiators EC [2,25,67,85,91,93]

Learning capacity EC [1,88,98,100]

Availability of capital EC [1,9,24,85]

Availability of subsidies Institutional [1,9,24]

Technical potential (sites and grid Institutional [60,85]
connection)

Easy and clear regulatory frameworks and Institutional [9,24,60,75,85,98]

administrative process

functioning of ECs are shared visions, good communication, leadership
roles, and professional expertise [1,87]. We summarize this in the term
professional capacity. Although members of ECs are usually highly
motivated, they often lack professional capacity [13,88-90]. Further-
more, many communities depend on a few altruistic volunteers and
energy enthusiasts [25,91-93]. However, the willingness to volunteer is
limited. Data shows a relatively small but stable percentage of people are
willing to volunteer in neighborhood work [94]. The level of profes-
sionalization and reliance on volunteers of ECs differs per country,
where UK initiatives appear to be more professional than their German,
Dutch, and American counterparts [95]. In Canada, Boucher and Pigeon
even note a decline in ECs due to ‘volunteer burnout’ [90]. Profession-
alization strategies such as a strong role for umbrella organizations and
market intermediaries to enhance this professional capacity have
received considerable attention in the literature [12,13,89,95-98].
Although professionalization could have some downsides, such as ten-
sion with local involvement and participatory decision-making [62,64],
it is necessary for further scaling.

In line with this professionalization, many ECs experience learning as
they grow, mature, and scale. Small-scale or early-stage ECs are driven
mainly by environmental and community values [57], while later stages
show a stronger economic focus [57], and more market-driven practices
[99]. This way, ECs can grow from small, volunteer-driven organiza-
tions to large and professional community energy service providers
[57,59,100]. Professionalization strategies have been structurally
analyzed in a database based on the local energy monitor from HIER
[101] and de Bakker et al. [102] by analyzing professional partnerships
of energy communities. All ECs in the Netherlands' connection to
different partners has been tracked. An overview of the partners and
share of ECs cooperating with such a partner is given in Fig. 3. Three
types of partnerships are included, all of which have come up in the
Dutch cooperative energy sector in recent years [85,101]:

e Umbrella organizations — in the Netherlands, 17 umbrella organi-
zations are active, one with a national span (Energie Samen) and 16
local organizations, either regional subsidiaries of Energie Samen or
separate organizations. Umbrella organizations help in sharing
knowledge and expertise with their members. Furthermore, Energie
Samen advocates for improved policy and regulation and cooperates
with international umbrella organizations in REScoopEU on the
European level.
Project development agencies or firms — These organizations assist
ECs in developing renewable energy projects.
e Resale partnerships and other market intermediaries — These orga-
nizations are energy suppliers, helping ECs resell their energy, often
aimed at selling to local customers.

The final attributes of the community include its socio-economic
context, such as the financial resources and technical expertise avail-
able within the community, and its cultural context. For instance,
countries with a strong tradition of cooperatives and social enterprises
often have more ECs [103], whereas this movement has faced challenges
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Share of ECs active in capacity building
strategies

Market intermediary

Cooperative resale partnership

Resale partnership G

Umbrella organisation

Fig. 3. Share of ECs per capacity building strategy. Data gathered from HIER [47] and public data sources such as the websites of ECs, of umbrella organizations, and

of resale partners.

in former centrally planned economies [104].

Rules-in-use refer to the rules that govern the action situation. In the
case of ECs, these rules have been well established and formalized,
although differences exist amongst ECs [105] and legislative contexts
[87]. Rules-in-use exist within the EC (e.g. how does the collective make
decisions), and within the legislative context (e.g. subsidies, energy
market regulations, building permits, formalized participation pro-
cesses, etc.). For internal decision-making and strategic governance
most ECs work with a board. Participation by other members generally
takes the form of annual general meetings, community meetings on key
decisions, or informal engagement [105]. The legislative context is often
mentioned as one of the key barriers to EC development
[9,24,60,75,85,98]. ECs require clear roles regarding market access,
clear regulations regarding permits, subsidies, and energy sharing [98].

2.3. Conceptual model

We have used these insights to draw up a conceptual model. The
conceptual model is used to modify and expand the BENCH-EC model.
To get to this conceptual model we have taken three steps. First, we use
the action situation as described in the IAD-framework to get an over-
view of the core actors, their positions, actions, and outcomes. Second,
we draw a flow-chart of the conceptual model of key actions and their
outcomes. The analysis of the action situation and the included factors in
the decision-making processes are based on the theoretical background
as described in the previous sections.

The action situation is the core unit of analysis in the IAD-framework
and defined as the place where individuals or actors interact, make
decisions, and exchange information, resources, or services [50]. An
action situation consists of seven working parts, described in detail in
Appendix B and summarized in Table 3. These actions largely align with
other ABMs describing EC formation and development [67,106], and
follow the most common set-up of EC membership. Households can
group up and collectively start an EC if enough volunteers are present
within the area. Then, if the EC is formed, other households in the area
can become members and fund a new project, in which the EC develops
renewable generation assets. Although ECs have branched out much
broader, this is still the most common type of participation, and espe-
cially as we calibrate the model to historic data, this is the most relevant
form of EC formation and development.

The action situation described in Table 3 is transferred to a con-
ceptual model using an agent-based modelling perspective (see Fig. 4 for
a flow chart of the actors, their positions and decisions). Like the IAD-
framework, ABMs focus on actors and their actions and interactions.
In the action situation and like Ghorbani et al. [67], and Fouladvand
et al. [107], households can decide whether they want to participate in
an EC, and if so, in which form. Furthermore, if an EC is started, the EC
as a collective decides if it is expanding with new renewable generation

Table 3
Summary of the action situation.

Parts of an action Results in case

situation
Set of actors - Householders

- Energy communities
The positions - Not involved

- Member

- Initiator

Board member
Set of allowable Become member

actions

Become initiator
Become a board member
Start and energy community
Start a renewable energy project
- Influence peers
- ECs can enhance their professional capacity by learning
from other ECs and intermediaries
Development in the number of energy community
members
Development in the number of energy communities
Development in renewable energy generation projects
Social learning amongst individuals
Learning amongst collectives
Level of control over - Householders require investment capacity

choice - Energy communities require capacity (financial,
knowledge, and know-how), permits, and suitable sites
for new projects.
A mutual dependency exists where the EC depends on its
members for financial capacity, and members require
the capacity of the EC to initiate, build, and operate the
renewable energy asset.
Information available Freely available but limited amongst actors
Costs and benefits of - Energy generated results in revenues

outcomes - Dividends paid from EC to investing members

Potential outcomes

projects or not. These actions are summarized as follows:

1. Households who are willing to participate can:
a. Initiate an EC if they are willing to invest the time and money and
no local EC exists.
b. Initiate an EC project if they are willing to invest the time and
money and a local EC exists.
c. Invest in an EC project if they are willing to invest and a local EC is
initiating a project.
d. Influence their peers and be involved in social learning.
1. Collective action occurs in three ways:
a. Initiators can start a new EC if enough initiators occur in their
social network.
b. Initiators can start a new EC project if there are enough initiators
and professional capacity in the EC, and the spatial requirements
of the project can be met within the district.
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Is willing to
invest

Has
initiators,
Investors,

capacity, and
pace?

Update capacity
from collective
learning

Initiate project

Investin EC
project

‘ Collective decision
- Collective action

O Individual decision
D Individual action

Fig. 4. Flow chart of possible actions and interactions per timestep. In this, actions are categorized in individual decisions made on an individual household basis,

and collective decisions made by a group of households or EC as a collective.

c. Learn from building projects and interacting with other ECs and
intermediaries.

3. The BENCH-EC model

The model builds upon the BENCH model, an empirically validated,
agent-based adoption model representing energy related decision-
making processes of households [43-45]. The original BENCH model
has been strongly adapted and expanded upon for the case of ECs. First,
the households, their characteristics and the decision-making frame-
work have been adapted to the relevant individual decision-making
mechanisms as described in Section 2.1. Second, an additional layer of
collective decision-making with energy communities, their projects and
investment decisions have been added to the model. Third, the model
has been expanded and is now able to simulate all households in the
Netherlands. Fourth, the model analysis methods have been expanded
with a method to calibrate bottom-up behavior to top-down EC devel-
opment, and a new set of scenarios and scenario analysis has been
devised. This all creates the novel BENCH-EC model. In this section we
give an overview of the model, highlighting data sources, model struc-
ture, decision functions, and initialization settings. See Table 4 and the
‘Overview, Design concepts, and Details (ODD) protocol [108,109] in
Appendix B for an overview, and the remainder of this section for more
detail. The model can be downloaded from GittHub here.

The original BENCH model, and thus also this extension, are agent-
based models (ABM). ABM is the most suitable approach to studying
bottom-up dynamics based on stakeholder behavior, decision-making,
and interactions [110]. Agents can be heterogeneous actors, able to
interact and learn from each other and their environment [111]. This
enables the modeler to study emergent behavior and non-linear transi-
tion pathways [33,112]. Furthermore, ABMs are spatially and tempo-
rally explicit, enabling variety amongst agents if they live in another

location and decision-making at any moment in time.

ABMs have been used extensively to model energy transition path-
ways [33,112,113]. Typical usages include energy markets, policy, and
investments [114-116], energy management and controls in smart grids
[117-120], and adoption and diffusion studies [34,37,44,121]. Similar
topics are apparent in ABMs specifically aimed at ECs, where peer-to-
peer trading and energy management are most apparent, followed by
household decisions in adoption and participation [53].

3.1. Data and model initialization

The model is initialized by creating representative agent pop-
ulations. And overview of all input and data sources is given in Appendix
C and further explained in this section.

First, two contextual layers — municipalities and districts — are
created. These are implemented as classes that store relevant data and
link to agent populations by tracking which agents reside in each district
and municipality. At the municipal level, the model tracks the number of
ECs and the total remaining potential for wind, rooftop PV, and PV
fields. At the district level, it defines the number of households, the share
of low-income households, and the rate of home ownership. Districts
also form the basis for the local component of ECs. In the model, we
assume that only one EC can emerge per region. This reflects the typical
local character of EC development and avoids introducing complex
competition between multiple local ECs. Regions are defined by clus-
tering all districts within a 5-km radius inside the same municipality.
This approach produces ECs consisting of many districts in urban areas
and ECs containing only one or a few districts in rural areas, aligning
with the geographical patterns observed in the empirical data. [101].

With this layer set, a population of all 8.3 million households in the
Netherlands is initialized. The households' variables are a combination
of the sociodemographic variables known on district level (percentage of
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Table 4
Model overview.

Model component Description

The national scale of the Netherlands, from which all
districts and households are represented individually
Model simulation is 38 years (2012-2050) in annual
timesteps, in which 2012-2024 replicates historical data.
Model calibration is based on simulating 2012-2024 in
annual timesteps
Householders represent all the households in the
Netherlands, energy communities represent all ECs in the
Netherlands.
Householders are initialized based on neighborhood
statistics from the Netherlands, leading to a stochastically
determined population within a neighborhood.
Heterogeneity occurs in their financial means,
environmental attitudes, personal norms, social norms, and
social networks.
Household decision to participate in an EC
Household decision to lead an EC or EC project
Household network interaction and learning
Collective decision to initiate an EC
Collective decision to initiate an EC project
- Collective network interaction and learning
Household network diffusion and learning are based on a
small-world network.
Collective network diffusion is based on membership of
umbrella organizations and professional partnerships.
Learning and feedback ~ Households learn as the peers in their network who have
loops joined an EC will spread the word, which results in an
update of subjective norms and awareness.
ECs learn based on their number of professional
partnerships and membership in an umbrella organization.
Results and outcomes - Number of ECs
- Number of EC projects
- Percentage of the households participating in an EC
- Installed capacity in EC projects
- Percentage of electricity generated by ECs

Spatial scale
Temporal scale/
timesteps

Agent populations

Agent heterogeneity

Process overview

Network

low-income households, homeownership, and willingness to volunteer),
and sociopsychological variables based on the work from Koirala et al.
[63] (awareness of ECs, environmental concern, renewables attitude,
financial attitude, and time availability). All socio-psychological values
are set stochastically using normal distributions, exact input values and
distributions are noted in Appendix C. To preserve correlations amongst
the variables we apply the following method: A covariance matrix is
constructed from standard deviations and the correlation matrix, and its
Cholesky decomposition is computed. Independent standard normal
samples are multiplied by the Cholesky factor to generate correlated
normal variables, which are then shifted by their respective means to
obtain the final correlated behavioral drivers. The factor loadings used
as weights to determine latent variables are also based on Koirala et al.
[63].

With the households initialized, household networks are set. Each
agent connects 25 other households in a small-world network where the
connection likelihood is based on geographical distance and personal
similarity. Small world networks are the most common form of social
networks in agent-based models, also used in other ABMs on the for-
mation of ECs [67,84,106]. Creating this form of structural heteroge-
neity within agent characteristics and networks is important to replicate
a social system adequately [122], it creates clusters of agents, which are
critical in the process of adoption and diffusion [123]. Connections are
always bidirectional, meaning that agents added to a households'
network will also add this specific household to their own network.
Networks are created by iterating through all households in the district
and then finding contacts who are within a 10 % range of the house-
hold's attitude towards ECs. The non-similar share is either random from
the municipality, or random from all households in the Netherlands. The
networks from the sensitivity analysis to network structure are either
completely random, or random within the same municipality.
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3.2. Individual decision-making process

The variables described in the initialization section define each
household's underlying characteristics. In the following section, we
detail how these characteristics are transformed into the decision-
making constructs—awareness, attitudes, subjective norms, and
PBC—that drive agents' choices in the model. Similarly to most of the
data, this is based on the work by Koirala et al. [62], appended with key
factors on home-ownership, time availability and willingness to
volunteer.

The final construct, willingness to participate (WtP), represents the
household's intention to engage in an EC. At each time step, this value is
evaluated to determine whether the household becomes willing to invest
or willing to initiate. A household enters either category only if its will-
ingness to participate exceeds a threshold value, which is identical for all
agents and determined during model calibration. For willingness to invest,
an additional condition applies: the household cannot be classified as
low-income. For willingness to initiate, the household must also exhibit
willingness to volunteer. Meeting these criteria does not automatically
result in investment or initiation; rather, these states indicate eligibility,
while actual participation depends on the subsequent collective
decision-making process.

WP is calculated based on Eq. (1). Attitude is a combination of initial
constructs renewables attitude and financial attitude. Subjective norm is
set as the average of all attitudes in the network. Personal norms is a
combination of awareness of consequence with subjective norms. And
lastly, PBC is set as the average of time availability and financial
availability. Both have been mentioned as significant predictors to
(WtP), where lack of time is even seen as the most significant barrier in
general [62]. Income is not part of PBC as it has no [61] or limited [62]
significant effect on WtP. However, a minimum income level is assumed
as it requires financial means to invest in a project.

Like WtP, personal norms and attitude are set using weights and
normalization. Awareness of consequences is a latent construct in itself
based on environmental concern and awareness of ECs.

WP = (PN*Wyy + Att*Way + SN*Wen -+ PBC*Wppc ) / (Wpn + Warr + Wen + Wpac)
@

e WtP = willingness to participate

e PN = personal norm

o Att = attitude

e SN = subjective norm

e PBC = perceived behavioural control
e w, = weight from factor loading

3.3. Individual learning process

Every timestep social learning occurs. People who have become
member or initiator spread the word to their network. By doing this,
they influence their peers' awareness and subjective norms, ultimately
raising their willingness to participate. The rate to which this is raised
depends on the learning rate factor, which is defined based on calibra-
tion and their willingness to participate. In other words, people who are
very positive about ECs will be more influential in spreading the word
than people who are just above the threshold of adopting. This process is
based on Niamir et al. [43].

The model includes a social interaction process through which EC
members can influence the environmental attitudes of other households
in their social network. Each member annually influences 64 % of its
contacts [121]. For these contacts, the household's subjective norm and
awareness of consequences are increased proportionally to the influ-
encing household's own values, scaled by a learning rate (Egs. (2)-(3)).
Both variables are bounded between 0 and 1. After each update, the
contacted household recalculates its behavioral intention. This
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mechanism represents social diffusion of pro-environmental attitudes
within household networks. The learning rate is a global variable,
defined in the calibration process and subject to change in the scenarios.

SNcontact = SNcontact + SNhousehold *Ir (2)

Awareness oniace = AWAreness onict + AWarenessyousehota™ Ir 3)
3.4. Collective decision-making process

EC formation and project development are driven by the annual
decision-making outcomes of individual households. A new EC is
established when the number of households willing to initiate within a
region exceeds the threshold of five. This condition applies only if no EC
already exists in that region. Once established, each EC launches an
initial project, reflecting the common pattern that ECs are founded
around a concrete energy initiative.

As the simulation progresses, existing ECs may initiate additional
projects provided that sufficient professional capacity, willing investors,
and suitable sites are available. First, the maximum number of new
projects per year is defined. Second, as long as the boundary conditions
on professional capacity, investors and sites are met, new projects up to
this maximum are started.

To calculate the maximum number of new projects, the total
maximum number of projects within the last 5 years is defined based on
the ECs professionalism, using an exponential scaling formula derived
from historical data (Eq. (4)). Then the number of projects started in the
last 5 years is subtracted to determine the number of new projects. For
each potential new project, it checks boundary conditions (professional
capacity, investors, and project type availability) before starting a
project.

P™(pr) = max{1,c*e"?"} C))

e P™¥(pr) = max number of projects
e ¢ = baseline

e k = growth rate

e pr = professionalism

When all boundary conditions are met, a standardized project is
initiated, representing an average case in terms of capacity and number
of participants. Project types are drawn probabilistically from the
observed technology mix, which is assumed to remain constant over the
simulation period.

Project initiation is subject to three constraints. First, site availability
is tracked at the municipal level based on the technical potential for
wind, large-scale rooftop PV, and ground-mounted PV. Each completed
project reduces the remaining potential of its category. If the preferred
technology is unavailable, the model selects the next feasible option;
once all site types are exhausted, no further projects can be built.
Competition with commercial developers is not modelled.

Second, professional capacity reduces the number of initiators
required to start a project—from five at zero capacity to one at full
capacity—and limits the number of projects an EC can undertake. This
limit follows a calibrated logarithmic function, corresponding to 1.9
projects per five years at current capacity levels and eight projects at full
capacity. In transition scenarios, the upper bound is increased to 30,
while in regular scenarios it remains unchanged to avoid unrealistically
strong learning effects at low-capacity levels.

Third, investor availability is assessed by counting nearby house-
holds willing to invest. A project can proceed only if this number exceeds
the empirical threshold of 94 investors. Once all conditions are met, the
project is initiated, triggering learning effects that update professional
capacity and shape future project development.
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3.5. Collective learning process

The professional capacity of an energy community (EC) evolves
endogenously over time and reflects the community's organizational
maturity and ability to develop energy projects. As stated above, higher
professionalism lowers internal coordination barriers and increases
project throughput. Specifically, professionalism reduces the number of
initiators required to start a project and determines the maximum
number of projects an EC can undertake.

In the model, this capacity is shaped by three complementary
learning mechanisms: (1) the formation of professional partnerships, (2)
experiential learning from project implementation, and (3) the gradual
decay of accumulated knowledge. Together, these mechanisms deter-
mine the EC's professionalism, a continuous measure in the range [0, 1],
which affects both the number of initiators required to start new projects
and the maximum number of projects an EC can manage within a given
period.

e Learning from partnerships — ECs acquire new professional part-
nerships over time, such as memberships in umbrella organizations
or collaborations with resellers and project developers. Partnership
acquisition is modelled as a probabilistic process that occurs only
when the EC has not yet reached the maximum partnership score.
When a new partnership is formed, professionalism increases by a
fixed increment, after which the variable is capped at one. This
mechanism reflects the observation that communities expand their
access to external expertise gradually and irregularly, often through
networking or engagement with intermediary organizations.
Learning from projects — In addition to partnerships, ECs accu-
mulate internal knowledge through the successful implementation of
energy projects. Each completed project increases the EC's learned
capacity as a fixed proportion of the remaining gap to the maximum
attainable expertise (Eq. (5)). This bounded, diminishing-returns
process captures the idea that early projects contribute strongly to
organizational learning. Learned capacity is restricted to a maximum
value of one.

Learned capacity, , =Learned capacity, ®)
+ (1 — Learned capacity,)*learning rate

e Learning decay - To reflect leaving volunteers, loss of continuity in
governance, and general fading of institutional memory, the model
incorporates a forgetting mechanism. In each time step, a constant
fraction of the EC's learned capacity (1 %) is lost (Eq. (6)). This en-
sures that professional capacity can decline in periods without
project activity, and that sustained activity is required to maintain
high levels of organizational capability.

Learned capacity, ; = Learned capacity, *(1 — decay rate) (6)

Together, these mechanisms form a reinforcing but decay-moderated
feedback loop: project experience and partnerships increase profes-
sionalism, enabling further project development, while inactivity erodes
capacity and constrains future growth.

3.6. Validation and calibration

Troost et al. [124] argue validation of ABMs should not be treated as
a single exercise, but as a systematic set of context-appropriate decisions
taken throughout model development and usage. Key is aligning the
model, and thus validation methods, to the desired purpose. As we aim
to identify the potential of energy communities using bottom-up deci-
sion-making processes, it makes sense to calibrate these processes to
historic data. In our scenario analysis we then explore continuation of
these calibrated values or shifts in trends in ‘what if* scenarios.

The model is calibrated based on historical data. This is done to
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overcome the intention-behavior gap, which was unaddressed in the
studies used to quantify the weights and values of the decision-making
variables. The model is calibrated based on data from the years
2012-2024 on five key parameters of thresholds and learning rates (see
Table 5 for an overview). We created a sample model for the province of
Limburg, and simulated 2100 combinations of parameter values. Cali-
bration was done on a single province instead of the full country to
reduce simulation time, and for each combination of input values 10
replications were simulated and averaged to minimize the effect of
stochastic uncertainty. Lastly, we set a range for each parameter based
on initial broader calibration runs and manual simulation runs investi-
gating model behavior at different parameter values.

The objective function was specified as the root mean squared error
(RMSE) between the model-generated and historical datasets on the
number of ECs and EC projects. Two optimization algorithms were used:
a Genetic Algorithm based on the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [125], and OptQuest [126], a general-purpose
global optimization tool developed by OptTek Systems, Inc. The re-
sults indicate that OptQuest outperformed the genetic approach, which
converged prematurely to a local minimum. In contrast, OptQuest
maintained greater solution diversity, reaching lower objective
outcomes.

3.7. Policy strategies and scenarios

The scenario analysis has two goals. First, we want to identify
probable trajectories based on the calibration process to historical data.
This we have complemented with scenarios on enhanced social learning
from an individual perspective, and enhanced capacity building and
collective learning from an EC perspective, and a combination of these.
These scenarios show gradual growth and are valuable as they are based
on historic data, however, they do not capture the radical changes
required in the energy transition, or the full range of positive reinforcing
feedback loops and tipping dynamics that are associated with transitions
in general [127], and ECs in particular [18]. Therefore, we have added
scenarios which show radical innovation and institutional and legisla-
tive change. This has enabled us to further explore model dynamics and

Table 5
Calibration variables, range, result and their description.
Actor Name Result Range Description
Household  Household 0.6334  0.6-0.7 Households who have a

willingness to
invest threshold

higher willingness to
participate than this
threshold become
willing to invest.
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thresholds that could unlock a much higher potential for ECs in the
future energy system. Note, scenarios with lower learning rates than the
baseline are also possible, however, we have not further detailed this,
results would fit in the range between the current and baseline scenario.
The combined hybrid projects scenario can be seen as a best case. The
scenarios are summarized in Table 6 and the dynamics are detailed in
the following section.

Social learning (SL) is one of the key dynamics in the diffusion of
innovations [128]. It has been extensively studied in the field of
renewable energy [129] and broadly applied in agent-based models
[130,131]. When looking at the individual decision-making framework,
social interactions impact subjective norms, awareness, and attitude.
From a modelling perspective it means households who have joined the
EC are more effective in spreading the word and telling their peers about

Table 6
Scenario overview.

Core scenarios Description

Baseline Thresholds and learning rates are set to
calibrated values of national data from
2009 until 2024, simulating the scenario
of current trends towards 2050.
Enhanced social learning raises the
impact of network interactions resulting
in increased awareness and social norms.
This scenario entails a doubling in the
social learning factor compared to the
calibrated value used in the baseline

Social Learning

scenario. Measures to achieve this could
be e.g. knowledge exchange platforms,
leveraging opinion leaders, and
improving visibility.

Enhanced professional capacity raises the
learning effect of new projects on the
professional capacity of the EC. Increased
professional capacity leads to lower
thresholds on the number of initiators,
making it easier for ECs to start more
projects. This scenario entails a doubling
in the collective learning factor
compared to the calibrated value used in
the baseline scenario. Measures to
achieve this could be e.g. professional
partnerships or improving the legal
framework thus reducing required
professional expertise.

We test if both measures combined have
non-linear interaction effects

Collective Learning and Capacity
Building

Combined

Transition scenarios
Energy-as-a-service (High social
learning)

This scenario drastically increases social
learning, as we assume ECs directly
become competitive energy suppliers,

Household  Household 0.0571 0.02-0.25 Households who have a
willingness to higher willingness to
initiate participate than this
threshold threshold and are

willing to volunteer
become willing to
initiate. The threshold
is set as addition to the
willingness to invest
value.

Household  Household 0.0097  0.002-0.02  The effect to which
learning rate households who join

others influence the
peers in their network

Collective Professional 0.8817  0.8-0.99 ECs with this
capacity professional capacity
threshold can start a new project.

Collective Collective 0.0586  0.05-0.1 Learning rate of ECs

learning rate

when starting a new
project, collaborating
with other ECs, or
through professional
partnerships

Organizational, institutional and
legislative breakthroughs (High

collective learning)

Combined energy-as-a-service and
organizational breakthroughs

Combined hybrid projects

thus raising their visibility and reducing
the barrier to entry like, joining any other
energy supplier. The scenario entails an
eightfold increase in social learning rate.
This scenario reflects drastic
breakthroughs in institutions and
legislative, making it much easier for ECs
to start new projects. The scenario entails
an eightfold increase in collective
learning rate.

This scenario combines the previous two.
Furthermore, we have amplified how
much this learning affects the maximum
capacity of ECs to start new projects
based on the professional capacity of the
EC.

The hybrid projects scenario extends the
combined energy-as-a-service and
organizational breakthroughs scenario,
but raises the installed capacity per
member as it assumes part of the project
is funded by external sources, based on
the professional capacity of the EC.
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ECs.

Few policies towards this have been taken so far. Concrete examples
include facilitating knowledge sharing through peer-to-peer knowledge
exchange platforms, leveraging opinion leaders, and improving visibil-
ity. All areas where ECs have a unique opportunity due to their locality,
visibility, and presence in local social networks [132]. Amongst others,
REScoop has published communication guides to enhance this learning
from the EC perspective, documenting methods on improved storytell-
ing, engagement and awareness raising [133]. Specific methods include
broadening the target audience and using targeted messages. While
initial EC enthusiasm was often driven by climate concerns, targeted
messages for new groups could be more financially motivated [75]. Or
by creating synergies with local organizations or companies, or with
energy ambassadors or coaches who perform free energy scans at
members households [133].

Professional Capacity is used as an umbrella term addressing
multiple institutional bottlenecks in developing ECs. Section 2 high-
lights difficulties regarding the dependence on volunteers and chal-
lenging legal, financial, and institutional frameworks. Enhancing
professionalization in ECs is a way to address these issues.

Concrete examples are umbrella organizations to facilitate inter-
community learning. Professional partnerships with project develop-
ment agencies specialized in legal, financing, and technical assistance or
partnerships with cooperative energy suppliers facilitate market access.
Or hybrid pathways in which local authorities, intermediaries, aggre-
gators, and ECs collaborate towards a shared community energy vision
[134]. Real world examples include Windunie, a cooperatively owned
wind and energy project developer [135], Section 2.2. highlights part-
nerships between ECs and these other stakeholders. Furthermore,
increasing professional capacity reflects a policy and lobbying effort to
reduce complexity in the legislative framework, such as permits or
market access. Umbrella organizations have an active role in lobbying
and policy making and managed to strengthen the roles of ECs in the
European and Dutch energy market directives [19,136,137]. From the
model perspective, enhancing professional capacity or reducing insti-
tutional complexity led to the same result.

Transition scenarios include much stronger feedback loops and
radical breakthroughs. There are ample signs which show that ECs have
the potential to enable these dynamics. Energy-as-a-service refers to
the concept of energy communities evolving from asset owners to
combined asset owners and energy suppliers. This would drastically
raise awareness and visibility in the public domain. Another example is
branching out of ECs to energy savings, heat, and smart grids. This way
they become visible in all aspects of the energy sector, interacting with a
broader group of people who spread knowledge and awareness. Orga-
nizational, institutional and legislative breakthroughs represent all
learning that happens through successful projects. Amongst others the
new formalized role ECs have in legislation [19], legislation on public
ownership of energy assets, and reductions in the legislative burden to
build new assets. These two scenarios are also combined, in which the
learning rate affecting the number of new projects built is also steep-
ened, leading to experienced ECs being able to rapidly scale up. Lastly,
we explore the potential of hybrid projects which are co-owned by ECs,
so the installed capacity per member is reduced, but the total installed
capacity quickly rises on. This works well for scaling but does mean a
change in the justice and distributional effects of ECs.

4. Results

The results illustrate the non-linear and interrelated dynamic of both
policies. Furthermore, we highlight key sensitivities and their effects.
The results presented in this section show the outcome of a Monte Carlo
analysis where each scenario is replicated 100 times to account for
stochastic variation in the model. From these runs, the mean and the 90
% quantile intervals are reported.

In general, the results show two key trends. First, the number of ECs
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will reconfigure to the pace it had before the Covid crisis, and plateau
between 850 and 900 ECs. This plateauing is caused by the geographical
component in EC formation, once a region has an EC, new participants
will join the existing EC instead of starting a new one. Above 850 most
communities simply have an EC so new formation will become scarcer.
Although ECs plateau, the number of projects, members, and the total
installed capacity of wind and PV projects keep growing rapidly as ECs
keep expanding with new projects (see Fig. 5). We highlight just mem-
bers as it is a key metric to EC development, and with these scenarios
membership and installed capacity grows linearly based on the number
of projects started. The rate of growth strongly depends on the social
learning and professionalization strategies implemented.

In the baseline scenario model results show a trend in which ECs
remain relatively small towards 2050. This is impactful, as within this
timeframe most investments towards a sustainable energy system need
to be made, thus rapid acceleration is required to gain a lasting impact in
transition pathways. EC membership grows from less than 2 % of
households in 2023 to 11 % in 2050. This results in an installed capacity
of 4.1 GW. Although this is over a sixfold increase from today's installed
capacity and membership, it is still a relatively small part (3 %7 %) of
the total required renewable energy capacity in transition visions. Note,
this does not only show the challenge of ECs, but of the required scale of
growth in renewables in general. Also, it shows that if learning slows
compared to the past 10-year trends, it could below the capacity and
membership mentioned in this section.

In the Social Learning scenario, the growth trends show only a
minor increase in membership and installed capacity, with 4.7GW and
12 % of the households in 2050. This shows that with the calibrated
values, the most pressing bottleneck is professional capacity, or the
ability of ECs to easily start new projects. The Collective Learning and
Professional Capacity Building scenario shows a much more rapid
increase towards 17 % of the households being members with 6.6 GW
installed capacity. This shows that there would be enough households
willing to join if more projects could be initiated. Combining both
measures reinforces their effects, showing the reinforcing feedback loop
between successful projects, households learning from them, resulting in
more successful projects and more collective learning. This results in 8.5
GW and 22 % of the households being member.

The transition scenarios show a much broader range of possible
outcomes. They reflect a broad range of model dynamics with impactful
policy implications (see Fig. 6).

The first two scenarios, Energy-as-a-service’ and ‘Organizational,
institutional and legislative breakthroughs' have similar trends as the
original scenarios, but much stronger as the learning rates are also
increased. The combined and hybrid projects scenario has more inter-
esting dynamics. In this combined transition scenario, the collective
learning rate was further amplified in the function determining the
number of projects ECs can do. So, ECs with a high professional capacity
could start many more projects, unlocking the potential of households
willing to invest but no ECs starting projects near them. Note that
amplifying this function only gave positive results at these high levels at
these high levels of learning rates, whereas in the baseline scenarios this
led to lower results as ECs did not have fast enough learning to reach
high levels of professionalization. This again shows the importance of
coaligned learning in all aspects of EC development. When either indi-
vidual learning or collective learning halted, they become bottlenecks,
and when both are strong, they trigger reinforcing feedback loops to-
wards much higher growth scenarios. Also note that this is the first
scenario in which the S-curve reaches a stage of flattening out. This is
reached because of two reasons; In rural areas with a high potential for
renewables but a low number of households, most people who would
want to join have already joined. Whereas in urbanized areas there are
many households who would want to join but there are too few local
sites for the development of renewables. This touches upon an inter-
esting limit to ECs, in which bringing benefits to local communities is
important, so therefore we applied this locality in the model as well. On
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Fig. 5. Results of the percentage of households becoming member of ECs in the different scenarios, the line is the mean and the shaded region shows the central 90 %

interval (5th-95th percentile) across 100 stochastic runs.
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Fig. 6. The transition scenarios show much more rapid growth, and non-linearity in total installed capacity (PV and wind projects) and members.

the other hand, stretching the boundaries of this would enable more
people who do not live in areas where a lot of collective renewables will
be built, to join as well. Potentially enlarging the distributional effects of
ECs, while reducing the benefits for those living near the generation
assets who also experience the associated negative impacts.

Lastly, we analyzed a hybrid projects scenario in which project size
increases with professional capacity, while maintaining the same num-
ber of investors required. This simulates co-ownership of projects in
which ECs collaborate with utilities or other investment funds, which
occurs a lot, especially in bigger projects. Also this scenario shows an
important tradeoff for ECs, whereas the installed capacity could rise a
lot, resulting in more renewable energy. The total number of households
involved is reduced, as many sites get taken by projects who are only co-
owned by local communities. In reality an EC should always balance
between local bottlenecks. If these forms of co-ownership could kickstart

a project which otherwise would not have been possible, it is important
to collaborate, especially as this enables collective learning. However,
especially on the long term and when available sites are scarce, a focus
on local ownership could be more important. ECs have to balance these
two core values.

One key dynamic is how social learning increases the willingness to
participate throughout the population. In Fig. 7, this is plotted in three
histograms. The left histogram shows the initial normal distribution, the
middle shows the distribution after a simulation run for the baseline
scenario, and the right histogram is an illustrative much higher social
learning scenario. As networks are closely knit, and social learning re-
inforces people's attitudes and norms within this network, more learning
leads to more segregated groups, with highly enthusiastic frontrunners
who have learned a lot over the simulation period and laggers who have
maintained unaffected. This is an important dynamic when looking at
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Fig. 7. Histogram of the distribution of the willingness to participate amongst households with the mean value in blue. Histogram A displays the household dis-
tribution at the start of the simulated period, histogram B at the end of the base case simulation run, and histogram C at the end of a simulation run with much higher
learning effects. Although learning is required for accelerated adoption, it does result in a bimodal distribution creating a group of front runners and laggards, which
raises questions on the inclusivity of energy communities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

the inclusive and distributional effects of ECs, where some are riding
along and sharing the profits while others remain excluded.

4.1. Model uncertainty and sensitivity

As this study is explorative, it is as essential to understand sensitive
model components and uncertainties as it is to see scenario results of
policy strategies. In this section, we explain the stochastic uncertainty of
the model, highlight the most sensitive parameters, and analyze the
effect of different network structures. Similar to [138] we perform a
stability analysis for stochastic uncertainty, and a one-at-a-time (OAT)
sensitivity analysis on the five calibrated parameters. Lastly, we per-
formed an interaction analysis on these five parameters.

Stochastic uncertainty has a moderate effect on model results. Within
the 90 % uncertainty interval, the upper and lower bounds deviate 10 %
from the mean in the baseline scenario. This is because the initialization
of social networks, household characteristics, and EC professionalization
strategies are all stochastic processes. Furthermore, the results follow a
normal distribution pattern, indicating that most are closer to the mean
than these bounds.

For the OAT analysis on the five calibrated parameters, we used local
perturbation varying each parameter plus or minus 10 % from the
calibrated value, in steps of 2 % (see Fig. 8). Only the willingness to
invest parameter shows strong non-linearity. This makes sense as,
especially in early stages of the simulation in which little learning has
occurred, households become members of ECs based on their initial
value for willingness to invest, which is normally distributed. If this
value is raised slightly, many more households are willing to join. Sec-
ond, the willingness to initiate is defined based on the willingness to
invest, so increasing this also affects the number of households who
initiate an EC.

When looking at the interaction effect of the same parameters the
same effects are magnified. In this analysis, the five parameters varied in
three steps, 90 % - 100 % - 110 % from the calibrated value, creating a
full parameter sweep over 243 parameter configurations with 10 itera-
tions per parameter. The results are shown in a fan graph (Fig. 9) dis-
playing several quantile ranges. The interquartile range (25-75 %)
shows relatively stable results for EC projects. For ECs the same vari-
ability as shown in the willingness to invest parameter in the OAT-
analysis is observed. The ranges for both values are like the OAT-
analysis, showing there are no overly strong interaction effects be-
tween these parameters in the baseline scenario. The scenario analysis of
course shows there are interaction effects observable at much greater
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parameter variations, which replicate the expected behavior from the
conceptual model.

4.2. Network structure

Next to parameter sensitivity we tested structural uncertainty related
to network modelling. As described in Section 3.2.2., the most common
social network structure is a small-world network. However, these have
been applied differently in agent-based adoption and diffusion models.
Where some consider small-world networks based on geographical
proximity, others include similarities in attitude and behavior [67,139].
We compared the small-world similar network, where individuals are
more likely to connect if they live nearby and have similar interests, with
a small-world network based on only geographical proximity and a
random network (See Fig. 10). The results show a strong impact of
network type on the formation of ECs and the development of new
projects. In the small-world similar network, the initial group of like-
minded people connects with each other and reinforces their ideas,
leading to rapid learning within this group; however, there are also
increasing differences within and outside these groups. In the other
network topologies, this learning has much less effect and it is less
focused towards others who are already near the threshold values for
willingness to initiate or invest, showing how important this dynamic
and how networks determine this spread. This significant effect calls for
more studies on how social networks determine and evolve EC partici-
pation. Lastly, we explored the effects of dynamic networks, in which
every agent changes a share of its contacts annually. This has no sig-
nificant effect on the model results (see Appendix D.).

5. Discussion, limitations and future work

This work represents a novel effort in quantifying the potential of
energy communities from a demand-side perspective. The explorative
nature of the study also means there are many points up for discussion
and future research. In general, modelling and simulating social systems
comes with many challenges and uncertainties. Models are always
simplifications of reality. Therefore, we highlight two key aspects of this
study in the discussion sessions. We start by discussing the modelling
framework and assumptions used in this study followed by policy and
practical implications.
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Fig. 8. Results of sensitivity analysis with number of ECs (left) and EC projects (right) for the five calibrated variables ranging from 90 % - 110 % of the calibrated
value in 2 % steps, with 10 iterations per step.
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Fig. 10. Evaluation of network types in baseline scenario.

5.1. Modelling framework and assumptions

Modelling social systems in transition is always highly uncertain. It
requires the translation of a vast body of social science studies and
environmental psychology towards concrete functions and assumptions.
These are by nature always highly specific and contextual, whereas the
model is used to draw some more general conclusions about scaling and
growing, thus requiring only the core dynamics and not the contextual
detail that characterizes these cases. While at the same time, many of the
challenges encountered by ECs are highly contextual. Taking the historic
evolution pathway into account is essential in understanding the
development of ECs in their local context. From a psychological
perspective the significance and magnitude differ not just per study or
EC, but even within groups of EC members [57,58,61,62]. In other
words, community energy participation is heterogeneous and complex
[56]. Although literature propagates more comparative research on
geographical factors [92,140,141], it also shows evidence for generic
factors relevant to all, such as the environmental attitude and awareness
of citizens and the level of professionalization of ECs [2]. We have used
these more general factors, combined with the IAD-framework and a
conceptual model which is like other ABMs on EC development, to
ensure the model reflects these core dynamics. However, we would
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encourage other researchers to create similar models based on other
frameworks and compare them to our results to identify key bottlenecks
and growth opportunities in a more robust way.

The challenge in using these social science studies as a foundation
becomes even stronger when modelling transitions. As these will almost
by definition change decision-making processes of both individuals and
ECs. For example, Bauwens already shows that drivers to join an energy
community might differ based on the development phase the commu-
nity is in [57]. Future work should target more behavioral research on
determinants of participating in energy communities in different tran-
sition scenarios and contexts, and how these can be included in models.
As even though this level of complexity is hard to account for in a model,
the model does bring value in showing key dynamics, potential ranges of
outcomes, and policies which could help those. For example by quan-
tifying how tradeoffs between professional partnerships and local
ownership, or locality versus inclusivity impact future growth
trajectories.

In terms of data and calibration, the same challenge occurs. The
model was calibrated on historical data, meaning that reflects historical
change processes. The baseline scenario thus only reflects a scenario in
which the future energy system context is completely the same as the
one of the past 15 years. This of course is not true for a system in
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transition. We have tried to overcome this by using the model in an
exploratory way, highlighting key dynamics in a broad set of scenarios
ranging from a small increase in learning rates to completely transi-
tioned systems.

Other uncertain processes to accurately represent in a model of a
social system in transition include:

e Environmental and behavioral decision-making determinants and an
evolving decision-making framework. Individual decision-making
on EC participation is heterogeneous and complex [56], and differs
per studied cases [57,58,61,62]. In future research, this framework
could be further evaluated and compared to multi-stage decision
frameworks (e.g. [36,142]), which can have a higher explanatory
value for larger, more complicated decisions. Furthermore, the effect
of different interpretations of the framework can be further evalu-
ated, as different translations from framework to model can lead to
significantly different results [66].

Social learning, which is an intricate phenomenon where the
learning rate depends on the characteristics of the innovation, the
adopter, and the relationship and network structure between the
influencer and the adopter [143-145]. However, as no detailed and
heterogeneous data on social learning in the case of ECs exists, we
have taken a simplified approach where learning is more homoge-
nous and only depends on the attitude of the adopter. The same is
true for networks, which are dynamic and evolving in real-world
social systems [146], but are assumed to be constant in the model.
Network dynamics, social learning, and collective learning all result
in positive reinforcing feedback loops. The model lacks a balancing
feedback loop in which people who are willing to participate lose
interest if expectations are not met, or results are unsatisfactory. This
has not been incorporated as no valid data has been found to
empirically underpin this dynamic. ABMs concerning short-term
decisions with many evaluation moments do include these dy-
namics (e.g., switching energy providers, however, in examples with,
for example, the adoption of PV, electric vehicles, or switching en-
ergy providers, this is usually excluded [37,44,121]. Fouladvand
et al. do include it in their model on thermal energy communities,
however, their set-up is different as members pay a monthly fee.
Making it not a ‘one-of-kind’ decision but one with monthly feedback
[106].

The model takes a demand-side approach, focusing on consumers
and their willingness to participate and lead ECs. Future research
should focus on a more holistic energy sector approach, including
competition with commercial renewable energy developers and
looking at different subsidy schemes and legislation to enhance the
development of ECs above commercial parties. Currently, almost all
renewable energy in the Netherlands receives a type of feed-in pre-
mium, where competition occurs over a fixed subsidy fund. For
smaller EC projects a separate fund is available, allowing slightly
more subsidy per kWh as these small-scale community driver pro-
jects are usually more expensive per kWh [147,148]. Detailed
analysis of the competition for subsidies between commercial and
non-commercial projects is important to better understand the sup-
ply side of EC developments.

Aligning to EU policies [136,149] and recent efforts to gather data on
energy communities on the European level [30], future work lies in
scaling the presented model and framework to the European level as
well. Strong points for discussion when attempting this are the
generalization of local institutional and behavioral drivers, as stated
in the first points of this section. However, when researchers can
gather behavioral data for multiple countries methods exist to scale
this to the supranational level [36].

With this paper we contribute to the work on energy communities
with a completely novel approach looking at the national potential from
a bottom-up model of EC formation and development. With this we build
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on existing literature in social sciences and psychology detailing the
underlying dynamics and bottlenecks of development in ECs. We add to
the small body of literature modelling EC development bottom-up,
especially by scaling it to a full country level and connecting it to
transition scenarios. And we highlight how explorative ABMs can be
used to determine key tradeoffs and trends in transitions.

5.2. Policy and practical implications

Connecting empirical social and behavioral sciences to energy
transition pathways and policy planning is a central challenge. With this
research we aim to contribute more quantified narratives to policy-
makers and ECs. From a policy maker perspective, ECs require more
stimulus, both from the professional capacity as from the peer-to-peer
learning effects. As these two trigger interacting feedback loops, al-
ways both should be stimulated simultaneously, otherwise the factor
which is not advanced will limit the potential returns of these policies. It
should also be noted that when not triggering these feedback loops, the
potential of ECs could.

More detailed findings from the transition scenarios show two
important tradeoffs ECs must consider. First, there is a trade-off between
generating as much renewable energy as possible and enabling as much
local ownership of these projects as possible. Where professional part-
nerships could enable more rapid growth, and with that trigger learning
curves, it does mean there is less space for local citizens to be included in
these projects. This trade-off should be made for every EC separately, as
it greatly depends on the number of available sites versus the number of
citizens that could be involved. Although ECs should consider that in
these transition scenarios with rapid learning, the number of people
willing to participate could strongly rise in the future.

The second trade-off highlights the distributional and justice effects
of ECs. This has two sides; the learning dynamics in the model tend to
move towards more polarized attitudes towards ECs, whereas in some
groups strong social learning has occurred, this has not yet trickled
down to the entire population. Second, this is not just determined by
group preferences, but also by location. Where ECs in urban areas have
less room to grow in terms of available project size, these people might
be excluded from investing in collective renewable energy assets
because of the locality principle ingrained in ECs. Broadening the scope
of what local is in this case would enable these people to join and
accelerate further development, however, loses some of the strong
relation between local benefits being generated for the people who also
experience the negative consequences.

6. Conclusion

This study has been the first to quantify the potential impact of en-
ergy communities in the Dutch energy system. In this, we took a
demand-driven approach, focusing on the role of consumers becoming
involved in EC projects and institutional barriers to the development of
ECs. This way we explored the role of social network dynamics and
policy strategies on transition pathways of the energy community sector.

The core conclusion is that if we want to attain high quantities of
renewable energies in a fair and just way by means of ECs, they should
be greatly stimulated towards the transition scenarios. If these transi-
tions occur, the potential is high with over 30 % of the households
invested in renewables and up to 40 GW of generation capacity.
Furthermore, even as ECs are seen as one of the most promising concepts
for new renewable generation assets, even in these transition scenarios
they do not reach the required capacity for a renewable energy system.
When advancing on the current trajectory, ECs will likely remain a niche
concept in the coming decades. This is in line with institutional analysis
[150], as well as environmental psychology studies [57,61]. Note that
the baseline scenario advances current trends, if institutional and eco-
nomic barriers prevail, results could be below the scenarios explored in
this paper. In view of the high promises and benefits of ECs and the focus
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on policy programs, this can be seen as a missed opportunity. Even more
so, as these coming decades are vital in shaping the energy system of the
future, the time to enhance local participation is now.

Policy strategies to enhance social learning, collective learning and
EC professionalization are most impactful within the proposed model
and could double the installed capacity and connected households.
However, even with these policies, ECs remain a niche in the renewable
energy landscape. More radical innovations and disruptive regime
changes are required for ECs to become central actors in the renewable
energy field.

In other words, policymakers and other stakeholders should focus on
learning for maximum acceleration within the scope of the model and
aim towards more radical innovations or paradigm shifts to break
beyond the niche.

Some potential solutions exist, such as the mainstreaming of com-
munity energy by energy suppliers. However, the effect of these nov-
elties is yet to be determined. These findings are in line with qualitative
analysis, which almost all propagate for raising awareness, reducing
institutional barriers, and raising subsidies [150].

Lastly, we show that the uncertainty around model outcomes is quite
large, and there is ample room for discussion and expansion. This is
natural to the explorative nature of the study, as it is a first of its kind and
shows potential for future research to investigate better the levers pol-
icymakers have at their disposal. On top of that, it does not impact the
broader system dynamics. From this, we can derive the larger policy
recommendations for any system with interacting, reinforcing feedback
loops and bottlenecks: Alleviate bottlenecks to enable system growth
through reinforcing feedback loops. And in the case of ECs, these key
bottlenecks are households willing to participate and EC
professionalization.

The key challenge in modelling future potential of a system in
transition is balancing empirical validation against past data, with the
need to capture broader transition dynamics, including radical in-
novations, mainstreaming, and the adoption to institutional, legislative
and policy development feedback loops. We addressed this by devel-
oping a validated baseline alongside a wide range of exploratory sce-
narios and sensitivity tests.

Beyond the scenario results, we reflect on the value and limits of

Appendix A. Definition of energy communities

Table Al
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ABMs for studying long-term transition dynamics. Compared with
earlier quantification approaches, this method provides greater detail by
incorporating household-level characteristics and mechanisms of EC
development. In contrast to the qualitative work on which the model
builds, the ABM offers a systematic exploration of possible outcomes,
highlighting interactions, feedback loops, and quantitatively significant
processes that can inform further qualitative research.
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Key concepts of energy communities in literature and the definition used in this paper.

Concept Range in literature Definition in paper
Participation Ranges from direct ownership and control to collective decision-making Collective decision-making
Activities Energy generation, aggregation, storage, energy efficiency services, and charging services Energy generation and supply
for electric vehicles
Members Citizens, small- or medium-sized enterprises, and local authorities Citizens (households), both consumers and prosumers

Place and scale

Technologies From all energy technologies (CEC) to just renewable, smart grids, storage, and energy
efficiency technologies (REC)
Business Collective energy generation, prosumers, local energy markets, (flexibility) aggregators,
models energy service companies, and mobility cooperatives

Either locally in the proximity of energy assets or without local context

Local and in the proximity of generation assets, based on
neighborhood or municipality boundaries
Wind, (rooftop) solar, and electric vehicles

Collective generation and supply through energy supplier




N. Loomans et al.

Appendix B. ODD protocol

Table B1
ODD protocol.
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Guiding protocol

BENCH-EC

A. Overview A.1. Purpose

A.2. Entities, state variables and
scales

A.3. Process overview

B. Design B.1.Theoretical and Empirical
concept background

B.2. Individual decision making
B.3. Heterogeneity

B.4. Interactions, social dynamics
and learning

B.5. Spatial scale

B.6. Individual prediction

B.7. Stochasticity

B.8. Observation

B.9. Implementation details
C. Details C.1. Initialization

C.2. Input data

C.3. Action situation

The BENCH-EC is designed to study the potential impact of energy communities by modelling energy community growth
based on a combination of individual decision-making of heterogenous individuals and collective decision-making at the
community level.

Agents are heterogenous households with varying socio-demographic characteristics and attitudes towards ECs. These
agents can form energy communities and start community projects at a collective level.

One timestep represents one year. Each run consists of 42 timesteps, spanning the period 2009-2050. After this initialization
the model first replicates EC formation and development of historical data, to ensure similar social learning patterns occur.
The period 2023-2050 gives simulated model results.

Each timestep a household goes through several processes:

1. Asses behavioral factors

2. Calculate willingness-to-participate

3. Become an EC member, EC initiator or project initiator based on the willingness-to-participate or maintain uninvolved.
4. If involved, influence peers in network

Each timestep a community goes through several processes:

1. Asses professional capacity and available sites

2. Initiate a new project or not

3. Learn from professional partnership and umbrella organization

This model extends upon the BENCH-v3 model. Individual decision making is thus based on a theoretical framework
consisting of a combination of the theory of planned behavior (TPB) and the norm activation theory (NAT)

Collective decision-making is based on an analysis of ECs using the IAD framework. Social learning occurs in a small-world
network and collective learning is based on professional partnerships.

We build on a framework from [36], and extend it by decisions being made at the collective level.

The following variables are heterogeneous, using Cholesky decomposition on the covariance matrix to generate correlated
variables:

Awareness of ECs
Environmental attitude

- Financial attitude

- Time availability

- Home ownership

- Income class

Social network

By social learning adopters interact with their network by updating their awareness and subjective norms based on the
adopters' willingness-to-participate. Collective learning occurs by membership of an umbrella organization.

All households and districts in the Netherlands

Individuals do not predict future states

Sources of stochasticity are:

1. Initialization settings where socio-demographic, behavioral attributes, and network connections are assigned in a sto-
chastic process

2. Social learning is partly stochastic.

The model observes changes in the number of energy communities, EC projects, community members, installed capacity and

electricity generation.

The model is coded in AnyLogic 8.9.1. and open-source available on Github

Agents are initialized by creating dwellings based on district level statistics, followed by assigning socio-demographic and

behavioral data.

We initialize the model in 2009. In the data the rapid growth in energy communities starts from 2009 onwards. Some initial
(11) ECs were around before 1990, after which growth stagnated for two decades.

Data on energy communities is available from the local energy monitor [101].

Data on households per district from the Dutch Bureau of Statistics [151].

Data on attitudes and awareness regarding ECs from [61,62].

The action situation is based on the IAD Framework as described in Section 3.1.

Set of actors — Individual households, energy communities, umbrella organizations, and business intermediaries.

Positions — Householders can have four positions based on their personal preferences and characteristics.

e They are not involved if they are not connected to an EC yet.

o They can become an investor of an EC if one is operational in their proximity, and they are interested based on their
willingness to participate

e They can become an initiator if they are interested but there is no EC active in their proximity yet.

e They can become a project initiator if they are interested and there is an EC operational in their proximity.

Energy communities want the number of projects, and so expand their local energy generation and create local revenue and

sustainable energy.

Umbrella organizations have the goal to spread knowledge and enhance collective learning

Intermediaries have a business model to offer support to ECs who often lack capacity in knowledge, skills and finance.

Actions:

(continued on next page)
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Table B1 (continued)
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Guiding protocol

BENCH-EC

C.4. Model documentation

Households can become an investor of an EC
Households can become willing to initiate an EC
Households can become willing to initiate an EC project
Households can influence peers through social learning
A group of initiating households can start an EC

e An EC can start a new project

Potential outcomes — Outcomes include the growth of existing communities in number of members, the initiation of new
energy communities, and the development of new energy generation projects. This will be reflected in the level of
participation in energy communities, money invested in energy assets and saved emissions.

Level of control over choice - The level of control is high. For householders, investment capacity is required to become a
member. For ECs, professional capacity and available sites are required for new projects. A mutual dependency exists
between the EC depending on its members, and members requiring the capacity of the EC to initiate, build, and operate the
renewable energy asset.

Information available — Information is freely available, although information, knowledge and awareness gaps exist
amongst households. Furthermore, capacity and investments are required for the EC to start a new project.

Cost and benefits of outcomes — Benefits occur in revenues being generated because of energy sold if a renewable energy
asset is built. These are redistributed amongst the members by dividends.
Model documentation can be found in section 3 of this paper.

Appendix C. Input variables with assumptions

Table C1

List of input variables with distribution and sources.

Agent

Variable

Distribution

Description

Household

Energy community
project

Energy community

Municipality

District

Awareness of ECs
Environmental concern
Renewables attitude
Financial attitude
Time availability

Home ownership
Low-income household
Willingness to volunteer
Municipality

District

Local EC

Location

Type

Capacity

Construction year
Municipality

EC projects

Member of umbrella
organization

Has reselling partnerships
Has project development
partnerships

Remaining PV rooftop
potential (MW)

Remaining PV field
potential (MW)

Remaining wind potential
mMw)

Has EC

Low-income households
(%)

Home ownership (%)
Households (#)

Nearest EC

Normal (p = 0.45, ¢
=0.24)

Normal (p = 0.82, ¢
= 0.20)

Normal (p = 0.61, ¢
= 0.25)

Normal (p = 0.74, ¢
=0.22)

Normal (p = 0.35, ¢
=0.23)

Binary

Binary

Binary

Empirical

Empirical

Empirical

Wind, Rooftop PV,
field PV

Empirical
Empirical
Boolean

Boolean
Boolean

Empirical

Empirical

Empirical

Empirical
Empirical

Empirical
Empirical
Empirical

Is the household aware of ECs. Distribution is assumed normal, mean and SD are from Koirala, et al.
[62] and normalized.

The level of environmental concern. Distribution is assumed normal, mean and SD are from Koirala,
et al. [62] and normalized.

The attitude towards renewables. Distribution is assumed normal, mean and SD are from Koirala, et al.
[62] and normalized.

The focus on financial returns when investing in ECs. Distribution is assumed normal, mean and SD are
from Koirala, et al. [62] and normalized.

The time availability to participate in an EC. Distribution is assumed normal, mean and SD are from
Koirala, et al. [62] and normalized.

Randomly assigned based on district home ownership percentage.

Randomly assigned based on district low-income percentage.

Randomly assigned based on global willingness to volunteer percentage.

Initiated from district

Initiated from district

Initiated from district/EC

List of current ECs with respective projects from the local energy monitor [47]

List of current ECs with respective projects from the local energy monitor [47]

List of current ECs with respective projects from the local energy monitor [47]

List of current ECs with respective projects from the local energy monitor [47]

Municipality from list of current ECs with respective projects from the local energy monitor [47]
List of current ECs with respective projects from the local energy monitor [47]

Based on empirical distribution from [102] and own data collection

Based on empirical distribution from [102] and own data collection
Based on empirical distribution from [102] and own data collection

Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a
viability factor set to have the total potential match to the average values stated in Dutch energy
transition scenarios [153], resulting in a total potential of 23.4 GW

Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a
viability factor set to have the total potential match to the average values stated in Dutch energy
transition scenarios [153], resulting in a total potential of 29.1 GW

Value based on theoretical maximum per municipality as defined by NP RES [152], multiplied by a
viability factor set to have the total potential match to the average values stated in Dutch energy
transition scenarios [153], resulting in a total potential of 19.2 GW

Based on data from the Lokale Energie Monitor [47]

District statistics from [151]

District statistics from [151]
District statistics from [151]
Based on data from the Lokale Energie Monitor [47]

(continued on next page)
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Table C1 (continued)
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Agent Variable Distribution Description
Global Willingness to volunteer Empirical National statistics from [94]
Network size 25 Average number of contacts used in models that influence energy related decision-making [67,84,106]
Share of contacts in 90 % Share of contacts in proximity used for small-world network building based on [121]
proximity
Share of similar contacts 90 % Share of similarly minded contacts used for small-world network building based on [121]
Share annual contacts 64 % Share of contacts in network contacted annually on EC related decisions based on [121]

Table C2

Correlation matrix of variables. Values with an asterisk are assumed, other values are taken from Koirala, et al. [62].

Environmental concern

Renewables attitude Financial attitude Awareness EC Time available

Environmental concern 1

Renewables attitude 0.4 1

Financial attitude 0.23 0.26 1

Awareness EC 0.4 0.4 0.4 1

Time available 0.4 0.4 0.4 0.4 1
Table C3

Factor loadings used as weights of variables to latent constructs. All values—except those marked with
an asterisk—are normalized estimates taken from Koirala, et al. [62]. Variables marked with an asterisk
were not available in the original study and.

Variable 1 Variable 2 Factor loading
normalized

Home ownership Pbc 0.17

Time availability Pbc 0.83
Environmental concern Awareness of consequences 0.50*
Awareness EC Awareness of consequences 0.50*
Renewables attitude attitude 0.22
Financial attitude attitude 0.36
Awareness of consequences Personal norms 0.50*
Subjective norms Personal norms 0.50*
Attitude Willingness to participate 0.32
Subjective norms Willingness to participate 0.27

Pbc Willingness to participate 0.07
Personal norms Willingness to participate 0.34

Appendix D. Dynamic network

As individual learning through social networks is a key dynamic of the model, we investigated dynamic networks. In most ABMs focused on
adoption in energy technologies, networks are considered static [40,154-158] all have static networks, and review studies elaborately discuss network
structure but not dynamic network evolution [35,159]. Furthermore, rates of new contacts and their influence in energy related decisions is unknown.
Therefore, in this model we also adopted a static network. However, we investigated the effects of dynamic shifts in networks by adding a scenario in
which for every household 10 % of the contacts is renewed annually (see Fig. D1 for the results). The effects are negligible, mostly because the new
contacts are generated using the earlier described small world algorithm in which people find contacts near them with similar characteristics. On a
larger societal level this leads to similar patterns in social learning and thus development in awareness and norms.
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Fig. D1. Comparison of static network in the baseline scenario versus a dynamic network in which 10 % of every household's contacts are renewed annually ac-
cording to the small world network algorithm.

Data availability

All data and code is publicly available and open-source. It can be
downloaded through GitHub
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