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ARTICLE INFO ABSTRACT

Keywords: Integrated solutions across processes, sectors, and systems can deliver value that exceeds the sum of their parts.
System inte%_raﬁ"ﬂ Sector coupling, for example, is increasingly recognized as a key enabler for balancing intermittent renewable
Sector coupling electricity, while creating new interdependencies and systemic risks. Yet, the capacity of energy system models to

Nexus thinking
Network integration
Industrial symbiosis

anticipate such synergies and trade-offs remains uneven. This article presents a structured review of Austria's
energy system modelling landscape, mapping over 800 publications from 54 research groups. We classify
modelling capacities across technical, temporal, and spatial integration dimensions and identify significant gaps

Elli):::ilzsk in areas such as bioenergy, circularity, and extreme event modelling, alongside promising advances in heating
Emergence networks, electricity sector coupling, and energy communities. The growing attention to operational flexibility in
long-term models offers a window of opportunity to better anticipate shocks, structural breaks, and resilience
considerations. The openly shared integration fitness tables derived from this review aim to foster collaboration
and capacity-building across modelling silos. We argue that advancing System Integration Impact Assessment
requires uncertainty-aware modelling frameworks capable of capturing synergies, trade-offs, and systemic risks.
Embracing uncertainty rather than reducing it can help design transformation pathways that are not only sus-
tainable but also robust and flexible. Ultimately, this shift could bring together environmental and economic
efficiency, safety, and security into a shared paradigm, elevating sustainable development toward reliable

development.
1. Introduction of the human system has focused on fossil fuel deployment [1,2]. During
the first oil crisis, Energy System Models (ESMs) emerged to test least-
1.1. Background cost energy security policies. Over time, their focus shifted toward
anticipating carbon dioxide (CO:) emissions from energy use and
Since the 1970s, modelling capacities for the Earth system have exploring pathways to achieve an economy-wide, carbon-neutral energy
evolved around representing atmospheric circulations, while modelling supply [3]. In the following decades, computer-aided quantitative

Abbreviations: 3D, Three dimensions; ABM, Agent-Based Modelling; CGE, Computational General Equilibrium; CO2, Carbon Dioxide; DHC, District Heating and
Cooling; IEA TCP, International Energy Agency Technology Collaboration Programme; 10, Input-Output Modelling; LCA, Life Cycle Assessment; LCC, Life Cycle
Costing; NECP, National Energy and Climate Plans; NREL, National Renewable Energy Laboratory; ONIP, Austrian Integrated Infrastructure Plan; PV, Photovoltaic;
SDGs, Sustainable Development Goals; SSPs, Shared Socioeconomic Pathways.

* Corresponding author at: Institute of Chemical, Environmental and Bioscience Engineering, Thermal Process Engineering - Computational Fluid Dynamics,
Technische Universitat Wien, Getreidemarkt 9/166, A-1060, Vienna, Vienna, Austria.
E-mail address: schipfer@iiasa.ac.at (F. Schipfer).
URL: https://www.schipfer.eu (F. Schipfer).

https://doi.org/10.1016/j.erss.2025.104505
Received 11 February 2025; Received in revised form 23 November 2025; Accepted 6 December 2025

Available online 24 December 2025
2214-6296/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:schipfer@iiasa.ac.at
https://www.schipfer.eu
www.sciencedirect.com/science/journal/22146296
https://www.elsevier.com/locate/erss
https://doi.org/10.1016/j.erss.2025.104505
https://doi.org/10.1016/j.erss.2025.104505
http://crossmark.crossref.org/dialog/?doi=10.1016/j.erss.2025.104505&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Schipfer et al.

scenario modelling became increasingly central to policymaking
worldwide. This is evidenced by its institutionalization through the
founding of international organizations such as the International Energy
Agency' (IEA) in 1974 and the Intergovernmental Panel on Climate
Change? (IPCC) in 1988, both of which place long-term energy and
climate assessment at their core.

As a result of this historical trajectory, the policy modelling land-
scape has become largely focused on potential changes in the energy
system, particularly emphasizing cost efficiency and greenhouse gas
(GHG) reductions. This focus has made it difficult for other critical topics
to achieve comparable institutional and methodological maturity or
recognition in policymaking. Recent high-level reviews and reports
highlight, for example, the limited integration of bioenergy [4], the
broader bioeconomy including food and biobased material provision [5]
and hydrogen [6] into established modelling infrastructure. In a recent
paper, several potential low-hanging fruits are identified, such as CO2
networks, heat grids, material trade networks, and various forms of
storage and flexibilization beyond electricity, that could be integrated
into existing energy system modelling frameworks at low cost to
significantly expand their scope [7].

More complex than simply adding missing energy system functions
may be the challenge of “coupling circularity performance and climate
action,” as advocated by Nikas et al. [8], who propose a novel trans-
disciplinary modelling paradigm to support multisector integration.
Taking an even broader view, the Alliance of Sustainable Universities in
Austria emphasizes an interdisciplinary agenda that considers in-
teractions among all 17 Sustainable Development Goals (SDGs), rather
than focusing solely on ‘climate action’ and ‘clean energy for all’ [9].

In 2016 and 2017, a high-level report by the U.S. National Renew-
able Energy Laboratory (NREL) [10], along with a journal paper
collection and guest editorial [11], described how a wide range of en-
ergy system planning aspects can be jointly addressed under the concept
of ‘system integration’. These publications recognized the ‘value prop-
osition’ of integrated systems in ‘unlocking flexibility.” Interconnecting
various energy domains, jointly considering operation and planning,
and addressing different geographical scales enable the coordinated,
reliable, cost-effective, and environmentally sound balancing of energy
resources [11].

However, based on discussions and publications from the Interna-
tional Energy Agency Bioenergy Technology Collaboration Programme
(IEA TCP)—which dedicates a Task’ to ‘flexibilization and system
integration’—we must acknowledge that some aspects of system inte-
gration are more readily implemented in existing models than others. In
particular, the flexibility arising from the versatility of bioenergy prac-
tices remains a challenging candidate [12]. To the best of our knowl-
edge, a comprehensive review assessing the readiness of modelling
practices for taking into account system integration impacts is still
lacking. An initial global search in Scopus for publications with ‘energy
system integration’ in the title, abstract, or keywords yielded 348
research papers and 33 reviews covering a wide range of topics.”
Frequently cited international publications focus on areas such as energy
communities [13], smart cities [14], distributed multi-energy systems
[15], the energy-water nexus [16], energy storages [17], and the po-
tential of energy system flexibilization through power sector coupling
[15].

1.2. Outline and contributions of this review

Our unique contribution lies in the structured review of the Modelling
Readiness Level [18] for various aspects of system integration. We

! https://www.iea.org/about/history accessed 10.02.2025.
2 https://www.ipce.ch/about/history/ accessed 10.02.2025.
3 https://task44.ieabioenergy.com/ accessed 10.02.2025.

4 https://www.scopus.com/ search on 08.12.2024.
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therefore pose the question: how well are existing models equipped to
anticipate the synergies and trade-offs of integrated versus isolated
processes, systems, networks, economic sectors, and societal goals? With
this, we aim to advance a novel field of System Integration Impact
Assessment by raising awareness of the value propositions associated
with system integration. We derive valuable insights into the historical
context, current focus areas, and the opportunities and barriers to
unlocking flexibility for the coordinated, reliable, cost-effective, and
environmentally sustainable balancing of energy and other resources.

The methodology section begins by defining system integration and
distilling its core value propositions. We then describe the review
methodology, which we apply to our case study region—Austria. While
this study is geographically limited, the methodology is designed to be
applicable to other and larger regions in future research. We deliberately
chose Austria for this initial case study to enable a quasi-comprehensive
mapping of research groups actively engaged in a wide range of energy
modelling topics. Austria is a member of the IEA and the IPCC and plays
a leading role in international collaborations such as the European
Climate and Energy Modelling Forum (ECEMF) and the Integrated
Assessment Modelling Consortium (IAMC). Its relatively small
size—representing only 2 % of the European Union's population [19]—
makes it feasible to assess the national energy system modelling land-
scape comprehensively and to position Austria's modelling ecosystem as
a suitable first case study. Furthermore, recent national policy discus-
sions in Austria have emphasized the need for greater system integra-
tion, raising the question of whether the existing modelling ecosystem is
adequately equipped to support integration planning.

In the results and discussion section, we first present a structured
overview of the identified system integration aspects, and the modelling
capacities observed in the case study. While the review is centered on
economy-wide energy system scenario modelling, it also highlights op-
portunities for interdisciplinary learning and cross-fertilization from
other fields that are relevant to modelling system integration impacts.
We then place the case study findings in an international context to
assess their generalizability. Finally, we summarize the Modelling
Readiness Level for System Integration Impact Assessment based on the
Austrian case study, identifying key development opportunities and
barriers. Additionally, we provide the results of our mapping exercise to
the research community in the form of downloadable spreadsheets,
enabling quick identification of complementary skills.

2. Methodology
2.1. Understanding ‘system integration’ (Stage 0)

We build on the definition of Energy System Integration (ESI) by
O'Malley and Kroposki [11]:

“ESI is the process of coordinating the operation and planning of
energy systems across multiple pathways and/or geographical scales
to deliver reliable, cost-effective energy services with minimal
impact on the environment.” [11]

By unpacking this definition, we aim to make it more actionable. It
highlights three key dimensions of coordination: a technological
dimension through “multiple pathways,” a temporal dimension
through “operation and planning,” and a spatial dimension through
“multiple geographical scales.” Additionally, the definition outlines
objectives that go beyond economic and environmental efficiency to
include resilience and reliability. Each of these three dimensions en-
compasses a wide range of topics, which we explore in our review:

e Technical or sectoral integration impacts arise when different
physical resources, processes, systems, and networks are coupled.
Cross-connectors, such as conversion technologies, heat exchangers,
and infrastructure links, enable this integration. Examples include
supporting intermittent renewable electricity generation with gas-
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fired power plants and power-to-gas technologies, which connect gas
and electricity grids [20]; electrification strategies in the trans-
portation and heating sectors [21,22]; and the efficient imple-
mentation of combined heat and power plants [23]. Additional cross-
connectors include high-temperature heat pumps for industrial
electrification [24], as well as bioenergy, hydrogen, and CO> man-
agement strategies in industrial networks [25]. Broader still, the
water-energy nexus addresses the impact of cooling systems in nuclear
and thermal power plants, reservoir-based hydropower, bioenergy
supply, and hydrogen synthesis on water systems [26].

Temporal integration impacts occur when strategic, long-term
developments are considered alongside short-term and operational
aspects, while also accounting for shocks, events, and recovery
processes. Temporal cross-connectors include all forms of storage,
savings, redundancies, and backups. Examples include various en-
ergy storage technologies, such as pumped hydro, compressed air,
hydrogen, batteries, flywheels, and supercapacitors, designed to shift
energy surpluses to cover shortages over minutes, hours, days, or
even seasons [27]. Biomass and bioenergy carriers (e.g., straw bales,
wood pellets, pyrolysis oil, ethanol, biogas, biomethane) are often
stored in low-cost, low-tech ways that contribute to seasonal energy
security, and are increasingly considered for short-term balancing as
well [12]. Thermal energy storage, whether sensible, latent, or
thermochemical, is discussed in the context of concentrating solar
power [28] and residential heating, including the thermal storage
potential of buildings [29].

Spatial integration impacts emerge when physical resources, pro-
cesses, systems, and networks are coupled across different locations.
Again, cross-connectors such as conversion technologies and infra-
structure links play a key role. Energy system models vary in spatial
scope, from regional to global, and in their resolution of “nodes,”
which may represent municipalities, countries, or world regions
[30]. Spatially resolved studies often inform the potential for
biomass, photovoltaic, and wind energy production, as reviewed by
Martinez-Gordon et al. [31]. However, detailed representations of
nodes and edges are more commonly found in network expansion
studies [32] and bioenergy supply chain research [33]. Multi-level
governance involves integration across different tiers of govern-
ment, from municipal to provincial and national levels [34]. Energy
communities can provide autonomy to stakeholder groups
embedded within national markets [13]. Social aspects at the indi-
vidual level, such as behavior, lifestyle, actor heterogeneity, public
acceptance, participation, and ownership, are typically addressed
using Agent-Based Models (ABMs) [35].

2.2. Building a bibliometric dataset of relevant publications (Stage 1)

The objective of Stage 1 was to identify publications by researchers
who are currently or were recently affiliated with Austrian institutions
and are actively publishing on topics relevant to integrated energy
system modelling. For this purpose, we used the relatively new Author
Discovery functionality provided by the Scopus database.” We restricted
the searchable corpus to publications with an Austrian affiliation from
2020 onward. To broaden the scope beyond the limitations of a narrow
keyword search, we reviewed the complete publication lists of each
identified author using both Scopus and OpenAlex. This approach
significantly reduced the bias introduced by a limited set of search terms
or database.

From an initial pool of approximately 4000 titles, we identified 863
unique publications. Their bibliometric data were downloaded in Bib-
TeX format and imported into the reference management tool EndNote
21™,

A large portion of the dataset (465 unique publications) was

5 https://scopus.com/ accessed 17.10.2024.
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identified using the term energy system. These publications cover a wide
range of topics, including electricity and gas grids, fossil fuels, hydro-
power, photovoltaics, and other renewable energy sources. However,
this search alone missed authors working on related topics such as bio-
energy, biomass, and waste, which contributed an additional 133 publi-
cations to the final dataset.

In previous work [7,12], we emphasized resilience and reliability as
key aspects of system integration. To capture related research, we also
used the keywords risk and uncertainty. However, these terms primarily
returned publications from the medical and biotechnological fields. In
contrast, the term disaster was more commonly associated with research
on natural hazards. We identified 161 publications using this term,
which we included for further analysis regarding their relevance to in-
tegrated energy infrastructure planning. The term risk management
yielded another 51 unique publications, mostly focused on safety and
security in technical systems—topics that are also potentially relevant
for energy systems. Finally, 17 additional publications were identified
using the term tipping point.

The full list of publications is provided in the Supplementary mate-
rials. The review methodology and how Stage 1 links to the next Stage 2
and Stage 3 is illustrated in Fig. 1.

2.3. Quasi-comprehensive mapping of Austrian research groups (Stage 2)

The objective of Stage 2 is to map Austrian research groups and af-
filiations that are, or could be, relevant to integrated energy system
modelling—focusing on their modelling expertise and national and in-
ternational co-authorship networks.

To achieve this, we extended the BibTeX file with additional meta-
data, including abbreviations for each research institute and the specific
group within the institute associated with the most prominent Austrian-
affiliated author of each publication. We used the R Bibliometrix pack-
age® to cluster Austrian-affiliated authors and, in a later step, to analyze
collaboration networks between research groups.

We further enriched the BibTeX file by adding columns that describe
the thematic focus of each publication using a standardized set of key-
words. For this, we used the EndNote 21™ software’ to create and apply
tags to each abstract. Each abstract was tagged with one or more key-
words. While individual abstracts may not always provide sufficient
detail for precise categorization, tagging over 800 publications with 21
distinct keywords yields representative distributions that offer valuable
insights when analyzed bibliometrically.

We grouped the 21 keywords into thematic clusters relevant to sys-
tem integration dimensions:

e Technical dimension:
Resources group (14 keywords): e.g., electricity, bioenergy, heat
Sectors group (7 keywords): e.g., industry, mobility, housing
e Spatial dimension:
Spatial group (6 keywords): e.g., national, region, supply chains
e Temporal dimension:
Temporal group (5 keywords): e.g., strategic, operation, event

Additionally, we reserved a separate column for six focus keywords to
flag whether a publication explicitly addresses topics such as integration,
flexibility, or uncertainty.

The intermediate output of Stage 2 is a spreadsheet that enables
filtering and ranking of researchers or research groups based on the
number of tagged publications in the bibliometric dataset (see Supple-
mentary materials). This spreadsheet provides a statistical overview of
the most active authors and groups, along with their thematic focus
areas. It also allows for visual identification of integration gaps and

6 https://www.bibliometrix.org/home/ accessed 17.10.2024.
7 https://endnote.com/de/product-details/ accessed 17.10.2024.
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Fig. 1. Presents a flow diagram illustrating the methodology of multi-stage meta-analysis and in-depth review.

Source: own illustration.

collaboration opportunities across the Austrian modelling landscape.
The large number of analyzed abstracts help mitigate minor in-
consistencies in the tagging process.

2.4. Modelling Readiness Level (MRL) evaluation of system integration
aspects (Stage 3)

In Stage 3, we build upon the structured framework and compre-
hensive overview table developed in Stage 2 to guide the aggregation,
representation, and evaluation of the bibliometric dataset. To qualita-
tively assess current modelling capabilities for addressing various as-
pects of system integration, we adapt the Modelling Readiness Level
(MRL) framework proposed by Hammerschmid et al. [18]. Originally
developed for process models, the MRL framework consists of nine
levels—modelled after the Technology Readiness Levels (TRLs)—
culminating in “digital predictive twins” that are fully implemented and
actively support the operation of commercial plants.

In contrast, energy system models primarily serve to inform the
strategic development of economy-wide infrastructure, including gen-
eration fleets, reserves, and cross-border trade. Unlike process-level
systems, the complexity, scale, and socio-technical nature of entire
economies make the concept of a fully operational digital twin currently
infeasible. Accordingly, we reinterpret the MRL framework as a quali-
tative and relative metric that offers a structured, yet inherently sub-
jective, evaluation of a modelling approach's preparedness for practical
deployment and decision-making.

Our adapted MRL assessment is based on the following five criteria:

e Adoption by the research community: The degree of establishment

and standardization of modelling practices, including documenta-

tion and acceptance.

Data availability: The accessibility, quality, comprehensiveness, and

spatial/temporal resolution of relevant data.

Calibration potential: The extent to which models can be calibrated

using historical or empirical data.

Transferability to practice: The ability of the model to generate

actionable insights and inform operational strategies.

e Commercialization and application status: The extent to which
models and algorithms are integrated into commercial tools, prod-
ucts, or real-world applications.

Finally, we contextualize the case study results within the broader
international landscape to assess their generalizability. This compara-
tive perspective allows us to identify common patterns and divergences
across different modelling environments. We then synthesize the
Modelling Readiness Level for System Integration Impact Assessment as
demonstrated in the Austrian case study, highlighting key development
opportunities and barriers to broader implementation.

3. Results and discussion

3.1. Energy system modelling in Austria — a weakly linked community of
experts

Our curated dataset includes publications from 54 research groups
across 25 institutes and universities. A full list of these groups, their
affiliations, and abbreviations is provided in Table 2 in the Annex. Fig. 2
illustrates the clustered co-authorship network among these research
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Fig. 2. Co-authorship network of Austrian research groups relevant to integrated energy system modelling.

Source: own illustration using the R Bibliometrix package.

groups. The bibliometric analysis reveals weak co-authorship links be-
tween many groups, indicated by single joint publications (dotted red
lines), and stronger links where multiple joint publications exist (black
lines, clustered within colored circles).

The largest collaboration cluster—Cluster A—shows ongoing coop-
eration among nine research groups, primarily from the University of
Natural Resources and Life Sciences (BOKU) and the International
Institute for Applied Systems Analysis (IIASA). However, these groups
currently focus more on climate risk and disaster risk management than
on energy systems. We discuss the relevance of their modelling ap-
proaches for energy system applications in Section 3.3.

Cluster B highlights collaboration between Montan Universitat
Leoben (Montan Uni), Johannes Kepler Universitat Linz (JKU), and the
Austrian Institute of Technology (AIT), with a focus on long-term energy
strategies for Austrian industries (see Section 3.2.6). AIT also appears in
Clusters C and D: Cluster C is more process-modelling-oriented (AIT,
TU Wien, Siemens GmbH; see Section 3.2.1), while Cluster D is more
system-modelling-focused (AIT, TU Wien, and Bioenergy and Sustain-
able Technologies GmbH (BEST); see Section 3.2.8). TU Wien also
connects to Clusters E and F, which focus on integrated assessment
modelling (Section 3.2.9), with one cluster centered around IIASA and
the other around BOKU.

Overall, Fig. 2 reveals a large but weakly interconnected community
of energy system modelling groups in Austria. Fewer than half of the
identified groups appear to collaborate with one another. Even within
large universities, collaboration between individual research groups is
limited. Only a few groups—particularly at IIASA, TU Wien, BOKU, and
Montan Uni—show co-authorship links with more than four other
Austrian-based groups.

The bibliometric analysis summarized in Table 1 provides an over-
view of publication activity since 2020, categorized by integration di-
mensions and sectoral focus (housing, industry, mobility, and multi-
sector).

The data presented in Table 1 highlight several key characteristics of
the Austrian energy system modelling landscape. Most notably, there is
a pronounced concentration of research activity in the housing sector,
particularly in the context of regional modelling of strategic heating
transitions. These models frequently incorporate multiple energy vec-
tors, such as heat, electricity, natural gas, and bioenergy, and span a
range of spatial scales, from regional to national and international
levels. This suggests a well-established modelling capacity for assessing
residential heating strategies within integrated energy systems.

A second area of strength lies in multi-sector modelling at national
and international scales, with a strong emphasis on the electricity sector

Table 1

Occurrence of publications for selected topic combinations in our literature
dataset. Source: own evaluation based on the BibTeX file in the Supplementary
materials.

Multi-sector Housing Industry Mobility
Technological dimension
Multi-resource 7 26 6 2
Electricity 23 40 18 20
Heat 6 63 15 1
Bioenergy 8 9 9 5
Other 11 11 10 8
Temporal dimension
Multi-temporal 4 5 1 3
Strategic 57 50 13 16
Operational 12 25 23 13
Events 7 3 5 6
Spatial dimension
Multi-spatial 7 15 4 4
International, national 43 47 22 17
Supply chains, networks 11 20 12 21
Regional, local 36 63 19 16

and its role in the electrification of heating, mobility, and industrial
processes. However, the data also reveals a relatively low ratio of
operational to strategic modelling within this category, in contrast to the
housing sector, where operational aspects are more frequently
addressed. Notably, a significant subset of multi-sector publications
adopts a regional or local perspective, indicating growing interest in
decentralized energy planning. These findings underscore the increasing
importance of flexibility measures to address the variability of renew-
able electricity generation and highlight the methodological challenges
of integrating operational dynamics into strategic models. While the
concept of energy communities is beginning to gain traction among
Austrian research groups, their integration into national, economy-wide
energy system models remains limited.

In contrast, the modelling of energy systems for the industrial and
mobility sectors is comparatively underdeveloped. In the case of in-
dustry, we include process engineering models that focus on plant-level
operations, which offer valuable insights for two purposes: (1) informing
strategic, economy-wide industry modelling, and (2) adapting process
integration methods for broader system integration. The mobility sector
is even less represented, with relevant publications primarily addressing
supply chains, road networks, charging infrastructure, and the role of
electric vehicle fleets as distributed storage assets.

Finally, temporal integration remains the least developed dimension
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across the dataset. This is particularly noteworthy given that temporal
integration is essential for evaluating whether technical and spatial
integration efforts achieve their intended benefits in terms of system
reliability. The limited attention to temporal dynamics is surprising and
suggests a critical gap in current modelling practices. In Section 3.4, we
further explore this issue by outlining a potential trajectory for the
evolution of international energy system modelling—from a historical
focus on long-term uncertainties, toward the integration of short-term
operational variability, and ultimately, the incorporation of disruptive
and extreme events.

3.2. Energy system modelling integration opportunities and challenges

Table 2 introduces a range of system integration aspects and presents
their corresponding Modelling Readiness Levels (MRLs), as assessed for
the Austrian energy system modelling community. These MRLs reflect
the current state of modelling capabilities to capture integration impacts
across technical, temporal, and spatial dimensions. The evaluation is
based on representative modelling groups and collaborations identified
in our case study, along with relevant references.

The following subsections (Sections 3.2.1 to 3.2.9) provide a detailed
discussion of each integration aspect, including the rationale behind the
assigned MRL, illustrative modelling examples, and key opportunities
and challenges for advancing integration readiness.

3.2.1. Process heat integration

Process intensification and heat integration represent some of the
earliest engineering domains to quantitatively model the impacts of
energy flow integration. The industrialization of many world regions
during the fossil fuel era was driven by efforts to reduce heat losses,
supported by advances in the numerical and graphical representation of
heat flows—most notably through Sankey diagrams [227]. While our
focus lies on economy-wide energy systems rather than individual in-
dustrial processes, this well-established domain offers valuable meth-
odological insights for broader system integration.

In the Austrian context, two research groups are selected to represent

Table 2

Modelling Readiness Levels (MRLs) of different system integration aspects based
on the case study of the Austrian energy system modelling community. Source:
own evaluation.

MRL System integration Modelling groups and  References
aspects collaborations
High Process heat TU Wien IET [36-51]
integration TU Wien ICEBE [52-55]
Medium Heating network TU Wien EEG [56-671
modelling Uni Innsbruck [68-74]
High - Electricity sector TU Graz IIE [75-82]
Medium coupling TU Wien EEG [64,83-94]
Boku INWE [95-97]1
TU Wien BPI [98-102]
Medium Electricity and gas TU Graz IIE [76-78,103,104]
grid optimization
Low but Energy community TU Wien EEG, AIT [86,92,105-121]
growing integration IES, BEST
fast TU Wien ICT [122-127]
TU Wien NES [128-134]
AIT DRC [135,136]
Low Multisector coupling AIT IES, Montan Uni, [137-149]
- industry JKU
Wegener Center [150-153]
Low Multisector coupling ~ BOKU SEC [154-164]
- circularity TU Wien IWR [165-177]
Uni Graz ITE [178-186]
WU Wien [187-189]
Low Hybrid energy IIASA BNR [190-207]
systems - bioenergy BEST, TU Graz IRT [208-215]
Low Energy-food-water IIASA ECE, IIASA [216-226]

nexus

BNR
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the field of process integration: TU Wien IET [36-51], which focuses on
integrating different heat levels in sectors such as iron and steel pro-
duction, and TU Wien ICEBE [52-55], which specializes in thermo-
chemical process integration, for example in gasification systems for
biofuel production. A particularly promising concept for transfer from
process to system engineering is Heat Exchanger Network Synthesis
(HENS). HENS optimizes variable stream temperatures and flow ca-
pacities to enhance heat integration in industrial plants [42]. It has been
applied to identify synergies in hydrogen, synthetic natural gas, and
ammonia production in steel mills [51], to plan heat exchange network
refurbishment [41], and to retrofit multi-period heat exchanger net-
works in the process industry [48].

HENS is a mature methodology, particularly in the temporal inte-
gration of intermittent process heat levels at the plant scale. Its capacity
to estimate the impact of integrating multiple energy vectors makes it
highly relevant for broader energy system modelling. Knottner and
Hofmann [228] highlight the intersection between electricity sector
flexibility and the planning of integrated, flexible industrial energy
systems. They provide an overview of industrial energy flexibility,
associated incentives, and its integration into the decision variables,
constraints, and objectives of mathematical optimization models.

Flexibility in process engineering is typically addressed through
operational optimization and energy storage, including the conversion
between multiple energy carriers. This is achieved by combining four
functional units: conversion, storage (thermal and mass), input, and
output [38], as well as through integrated energy and production
scheduling [39]. These approaches offer conceptual bridges to model-
ling intermittent renewable electricity at the sectoral level.

Practical relevance is further demonstrated by Austrian contribu-
tions to the International Energy Agency (IEA) Industrial Energy-Related
Technologies and Systems (IETS) Technology Collaboration Programme
(TCP), particularly in the identification, quantification, and operational
recovery of excess heat in industry [229]. Through system synthesis,
design, and operation, industrial energy supply systems are increasingly
optimized with consideration for district heating integration [44].

We assess the MRL for process integration in Austria as high,
particularly with respect to the temporal integration of intermittent
process heat. HENS and its derivative tools offer significant potential for
informing system-level modelling of integration and flexibility. Their
application at the industrial site level benefits from excellent data
availability and strong industry engagement, providing empirical vali-
dation of how integrated energy flows can enhance system efficiency
and reliability.

3.2.2. Heating network modelling

District heating (DH) networks offer a means of connecting industrial
waste heat to surrounding residential areas. Unlike process integration
at a specific industrial site, DH modelling presents distinct challenges
related to data availability, spatial resolution, and implementation,
particularly due to the involvement of numerous heterogeneous
decision-makers, such as households. Consequently, the primary focus
of DH modelling lies in spatial integration.

Representative Austrian research groups in this domain include TU
Wien EEG [56-67] and the University of Innsbruck [68-74]. Expansion
modelling for district heating and cooling networks (DHCNSs) in Austria
[58] and at the European level [56] is typically based on spatially
explicit mapping exercises. Recent work has also addressed the inte-
gration of process cooling into district cooling networks [59-61],
contributing to scenario development for cooling energy demand in
Austria through 2050 under varying climate conditions, and analyzing
the aggregated impact of cooling options on the electricity grid [62,63].

Spatial matching techniques combine diverse datasets to identify
industrial excess heat potentials for district heating [57] and explore the
use of industrial excess cooling for residential applications [59].
Bespoke models have been developed for investment portfolio optimi-
zation in Austrian DH utilities, including the integration of heat pumps
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[64], and for evaluating business models for biomass-based DH systems
under flexible heat demand conditions [65]. Internationally, DH
network expansion modelling has been implemented in the EMPIRE
model for Norway [66], while spreadsheet-based tools have been used to
assess heating and cooling storage needs under renewable electricity
scenarios for selected countries [67].

We estimate the MRL for district heating network modelling in
Austria to be medium. Current modelling efforts are well-established in
the spatial integration of heat flows for residential heating—and
increasingly, residential cooling. The spatial matching of industrial
waste heat sources with residential demand, along with spatially explicit
network expansion planning, provides a methodological foundation that
could be extended to other infrastructure networks, such as hydrogen,
bioenergy supply, and CO: transport.

While industrial waste heat remains the traditional primary energy
source for DH, recent publications indicate a shift toward sector
coupling with the electricity system. The integration of heat pumps,
flexible heating strategies based on intermittent renewable electricity,
and associated storage requirements introduces new opportunities for
combined spatial, temporal, and sectoral integration. DH modelling thus
emerges as a promising platform for advancing system-wide integration
strategies. Despite promising methodological advances, current heating
network models lack validated demand data and robust spatial network
representations, limiting their transferability to practice.

3.2.3. Electricity sector coupling

We define electricity sector coupling as the electrification of sectors
that have traditionally relied on primary energy carriers other than
electricity, most notably residential heating (with or without district
heating networks) and mobility for personal and goods transport. Elec-
trification options for these sectors are commercially available, and
electricity system modellers are increasingly expanding their scopes to
explore how sectoral integration can enhance the flexibility of electricity
systems, particularly in accommodating intermittent renewable
generation.

Representative Austrian research groups in this field include TU Graz
IEE [75-82], TU Wien EEG [64,83-94], BOKU INWE [95-97], and TU
Wien BPI [98-102]. A key development is the transfer of temporal
integration methods from operational, process-focused electricity sector
models to strategic, economy-wide system models. For example, the
open-source Low-carbon Expansion Generation Optimization (LEGO)
model combines short-term unit commitment with long-term generation
and transmission expansion planning. LEGO's development is informed
by the techno-economic simulation model ATLANTIS, which integrates a
physical model based on direct current load flow with an economic
optimization framework [80]. LEGO is modular and temporally flexible,
supporting thematic extensions such as battery storage, hydrogen inte-
gration, demand-side management in residential heating, and electric
vehicle charging [79]. Future work on LEGO emphasizes time series
aggregation to improve computational efficiency [81] and better
incorporate network and ramping constraints [82].

From a more building operations perspective, the CESAR-P mod-
el—combined with EnergyPlus—has been applied to a Swiss building
stock model to evaluate national-scale retrofit strategies [98]. This
model is further integrated with the multi-objective optimization tool
Energy Hub to test electrified flexibility solutions for grid services [99]
and to derive uncertainty-aware flexibility envelopes [100]. Similar
approaches using TRNSYS estimate synergies between battery storage,
hydrogen storage, and residential heating [101]. Machine learning-
based surrogate models have also been developed to enhance the
computational performance of conventional retrofit models such as
Energy Hub and the Urban Building Energy Modelling (UBEM) tool [102].

In contrast, sector coupling between the electricity and mobility
sectors is less developed in Austria. Relevant studies address bidirec-
tional charging infrastructure, electric car sharing, and on-site PV gen-
eration in residential buildings, often requiring Mixed-Integer Linear
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Programming (MILP) frameworks [89]. The EDisOn model applies a
four-step optimization approach to minimize dispatch costs while using
electric vehicle fleets as flexible demand [90]. Fast-charging infra-
structure along Austrian highways is planned using the HighCharge MILP
model, which employs a node-based allocation approach based on traffic
flows [91]. Hydrogen fuel production and storage are also optimized at
microgrid laboratory facilities [92]. More detailed operational model-
ling, such as topography-based route planning for electric vehicles [93]
and the aggregation of diverse driving profiles into electricity demand
projections for the transport sector [94], is likely required to advance
this area.

We estimate the MRL for sector coupling modelling in Austria to be
relatively high for the electrification of residential heating, but lower for
the mobility sector. Promising approaches are emerging from opera-
tional electricity system modelling and building energy simulation, both
of which benefit from good data availability and calibration potential.
However, integrating the mobility sector poses greater challenges due to
the need for highly dynamic representations of heterogeneous decision-
makers (i.e., drivers), combined with high temporal and spatial resolu-
tion across electricity networks, road infrastructure, charging stations,
and households.

3.2.4. Integrating modelling of electricity and gas grids

The Integrated Austrian Network Infrastructure Plan (ONIP) simulates
the operation of Austria's high-level electricity and gas networks under
future conditions to assess integrated expansion requirements for both
systems [230]. While this policy document plays a central role in
infrastructure planning, it discloses remarkably little about its under-
lying data sources and modelling methodologies. Nevertheless, state-of-
the-art approaches to integrated electricity and gas grid expansion
modelling are reviewed by TU Graz IEE [76], and their insights have
been applied to extend the LEGO model for flexible, integrated, sector-
coupled energy system optimization. This includes a novel gas flow
formulation to support the ramp-up of the hydrogen sector [78].

To our knowledge, TU Graz IEE is the only Austrian research group
that credibly combines operational and strategic modelling expertise
across both gas [76-78,103,104] and electricity networks (see previous
section). For example, the multi-objective bi-level optimization model
GASMOPEC has been applied to analyze investment options in natural
gas pipelines and regasification terminals within the EU framework
[103]. This model builds on operational and technical expertise in
combined-cycle gas turbines and unit commitment modelling [104], and
includes MILP-based modelling for optimal hydrogen feed-in through
natural gas grid blending and transport [77].

We assess the MRL for integrated electricity and gas grid modelling
in Austria as medium. While the modelling work of TU Graz IEE appears
to inform national policy planning, only one research group is actively
publishing in this area. Moreover, the ONIP itself appears to rely on a
combination of isolated, stand-alone modelling approaches that do not
fully capture integration impacts. Separate assessments are conducted
for residential heating electrification, power-to-gas conversion, and
various storage technologies. However, key integration mechanisms,
such as demand-side management, curtailment, and the endogenous
interaction between electricity and gas networks, are not comprehen-
sively modelled.

Although the plan benefits from the operational expertise of the
involved research group, it lacks a broader systems integration
perspective and a structured evaluation of integration impacts.
Advancing the MRL in this area will require more cohesive modelling
frameworks that explicitly account for the synergies, tradeoffs, and
threats of integrated electricity and gas infrastructures.

3.2.5. Energy community integration

Energy communities (ECs) offer a promising framework for inte-
grating multiple levels of governance and decision-making. Introduced
in 2019 through the EU's Clean Energy for All Europeans Package,
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Renewable Energy Communities (RECs) enable energy sharing among
households, municipalities, and small and medium-sized enterprises
located in close proximity, as defined in Articles 2 and 22 of the second
Renewable Energy Directive [231].

Despite their recent emergence, several Austrian research groups are
already actively engaged in EC modelling. Notable contributors include
AIT IES (often in collaboration with TU Wien EEG) [86,92,105-121], TU
Wien ICT [122-127], TU Wien NES [128-134], and AIT DRC [135,136].
Early modelling efforts employ bespoke MILP-based models in MATLAB
and Pyomo to develop business cases for energy supply contracting and
energy sharing, accounting for electricity and heat loads in
neighborhood-scale communities [111]. These models also explore the
effects of CO: pricing on cost savings for ECs involving electric devices,
vehicles, and heat pumps [112], and include peer-to-peer trading
mechanisms with community battery storage [113].

Thermodynamic models combined with technology cost data are
used to estimate the cost-saving potential of district heating temperature
reductions [111,114], while inter-regional heating networks are
explored for buffering energy price volatility and enhancing waste heat
integration [115]. The Resource Utilization in Sector Coupling (RUTIS)
framework supports the design of business models that extend beyond
energy to include services such as waste disposal and water management
[86,116].

Other bespoke models address the profitability of PV self-
consumption [117], dynamic participation in peer-to-peer electricity
trading [118], and the influence of foresight and forecasting on com-
munity member behavior and system performance [119,120]. Opera-
tional control strategies, such as Model Predictive Control (MPC), are
applied to optimize the dispatch of flexible assets [121], and are also
used in strategic expansion modelling, including for Austria's only
microgrid laboratory facility [92].

Operational considerations are further extended to model flexibility
offerings from prosumers and demand-side management [123] with
corresponding signaling mechanisms [124,127]. MPC is also applied to
mixed energy resources within individual ECs [122,126], and its impact
is simulated on community-level energy balances [125]. A particularly
promising approach that bridges operational and strategic modelling is
the LINK-based holistic architecture, which minimizes data exchange re-
quirements between ECs and electricity systems [131,133]. This archi-
tecture has also been applied to Positive Energy Districts [129] and to
enhance power grid resilience through flexibility [128].

We assess the MRL for EC integration modelling in Austria as rela-
tively low but rapidly advancing. A growing number of research groups
are addressing diverse aspects of ECs. However, it remains to be seen
how effectively these insights can support integrated planning across
multiple governance levels—from individual households to commu-
nities, regions, and transnational energy systems. Moreover, recent
project® work has identified a notable blind spot in EC research: the
limited attention to bioenergy, particularly biogas, which holds signif-
icant potential for community-building and local energy autonomy.

3.2.6. Multi-sector coupling — energy system and industry

While sector coupling, as discussed in Section 3.2.3, primarily ad-
dresses the electrification of the heating and transport sectors, many
industrial processes remain classified as hard-to-abate. These processes
often require high-temperature heat beyond the capabilities of current
heat pump technologies, as well as carbon and other material inputs. As
a result, industrial transformation is frequently treated as a distinct
modelling challenge.

Representative Austrian research groups working on integrated en-
ergy system and industry modelling include a consortium of AIT IES,

8 EEGas project - Analysis of energy communities as enablers of system
integration of renewable gases, coordinated by AIT. Online: https://projekte.ffg
.at/projekt/4805451, accessed 25.06.2025.
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Montan Universitit Leoben, and JKU [137-149], as well as the TU Graz
Wegener Center [150-153]. The Austrian energy model region New
Energy for Industry (NEFI) envisions a climate-neutral industrial sector
by 2040 [145,146]. Initial deep decarbonization scenarios for Austria's
manufacturing industry have been developed, using sector-specific
Sankey diagrams to identify opportunities for energy efficiency im-
provements, electrification, fuel switching, carbon capture and storage,
and circular economy strategies [138,143,144].

Industry-specific studies include techno-economic assessments of
CO:2 capture from cement and steel production, and its utilization via
power-to-methane processes [137]. Synergy potentials between the gas
and electricity sectors are explored for various renewable gas production
pathways under energy efficiency and sufficiency scenarios, using the
Open Energy Modelling Framework (oemef), operational modelling, and
exergy-based optimization [147,148]. Broader European potentials for
valorizing biogenic and fossil CO2 are assessed [149], building on
detailed, spreadsheet-based carbon management strategies developed
for Austria [140,141].

Pathways for decarbonizing the Austrian and European iron and steel
sectors are informed by a combination of qualitative stakeholder
engagement and scenario development using the computable general
equilibrium (CGE) model WEGDYN [150,152]. Life cycle assessment
(LCA) methods are also applied to estimate national integration poten-
tials between thermal and material waste recycling and industrial sec-
tors such as cement and paper [151].

We assess the MRL for integrated energy system and industry
transformation modelling in Austria as relatively low. Only a limited
number of research groups are publishing on systemic industrial
decarbonization, and many of these efforts are recent and rely on
spreadsheet-based methods rather than established modelling frame-
works. Data availability and validation remain significant challenges, as
industries are often reluctant to disclose information that could
compromise their competitive advantage—particularly regarding en-
ergy efficiency and primary energy substitution.

Nonetheless, there is a clear opportunity to strengthen integration by
linking industrial transformation models with established frameworks
for industrial waste heat utilization in district heating and cooling sys-
tems (see Section 3.2.2). Such cross-sectoral integration could enhance
both the strategic and operational readiness of Austria's energy system
modelling landscape.

3.2.7. Multi-sector coupling — energy system and materials

The development and deployment of energy infrastructure,
including photovoltaic and wind power plants, networks, batteries,
buildings, insulation materials, and other energy-related compo-
nents—require substantial energy inputs across their life cycles. These
inputs, often referred to as grey energy [186], are increasingly considered
in the context of Circular Economy discussions and material flow
modelling.

Representative Austrian research groups working at the intersection
of energy systems and material flows include BOKU SEC [154-164], TU
Wien IWR [165-177], Uni Graz ITE [178-186], and WU Wien
[187-189]. Among the modelling approaches used, Computable General
Equilibrium (CGE) and Input-Output (I0) models offer the highest levels
of spatial and sectoral aggregation. Traditionally applied to assess
macroeconomic effects based on monetary flows, these models are also
capable of estimating economy-wide energy and material balances.

The multi-regional input-output model EXIOBASE3 [159] is widely
used for material flow accounting, not only for industrial sectors but also
for the broader socioeconomic metabolism of the global economy [157].
It has been applied to assess global mobility infrastructure stocks [160],
to explore the relationship between infrastructure density and well-
being [161], and to compare these findings to the material footprint of
personal mobility in Vienna [162]. In the context of electricity infra-
structure, EXIOBASE3 has been used to create global inventories of
material stocks [163] and to conduct scenario modelling of future
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material requirements [164]. When combined with the physical multi-
regional input-output model FABIO, it also supports modelling of
energy-agriculture linkages, highlighting imbalances in energy return
on energy investment [187].

Circular Economy principles are explored through various modelling
approaches. For example, the statistical entropy method has been
applied to European building stocks to relate material concentration,
emissions, and energy consumption [169], and to develop sustainability
indicators for Austria's construction and demolition waste management
strategies [172]. Bespoke models assess both embodied and operational
impacts to derive renovation and construction quotas for Austria's
building sector [178,232]. Building life cycle assessments (LCAs) have
been conducted for all European countries using regionalized in-
ventories [180], and prospective LCAs have been developed for the
Austrian building stock to evaluate the impact of sufficiency measures
[179]. Recent studies increasingly focus on carbon footprint assessments
and the CO: storage potential of biobased building materials [183-185].
The Scalable, high-definition Life Cycle Engineering (SLiCE) model repre-
sents the first formal building data model to integrate grey energy into
its algorithm, enabling dynamic impact assessments and systematic
hotspot analyses of building construction and operation [186].

We assess the MRL for integrating material flows, Circular Economy
principles, and energy system modelling in Austria as relatively low.
This aligns with the international modelling landscape, where similar
gaps have been identified by Nikas et al. [8]. While Austrian research
groups have made significant progress using CGE and IO models to
represent the entire economy and various material flows, these models
typically operate at low spatial and temporal resolution. As a result, they
offer limited insights into the flexibility potential that could be unlocked
through multi-sector coupling.

Nonetheless, the integration of CO: management strategies,
including carbon capture and storage, biogenic carbon sequestration in
wood-based construction, and the role of traditional sectors such as
waste incineration, highlights the growing need to better understand the
interdependencies between energy and material systems. Advancing the
MRL in this area will require bridging the gap between macroeconomic
modelling and operational energy system analysis.

3.2.8. Hybrid energy systems — integrating bioenergy

Rapid electrification across all sectors is essential for achieving
Austria's climate targets. However, bioenergy will continue to play a
critical role during the transition and beyond, particularly in industrial
process heat, residential heating, and hard-to-abate sectors such as
aviation and shipping. Austria currently leads an international collab-
oration focused on the versatile system integration and flexibilization
potential of commercially available solid, liquid, and gaseous bioenergy
technologies [12,233,234].

Representative Austrian research groups in bioenergy system
modelling include IIASA BNR [190-207] and BEST [208-215]. Despite
this, modelling capacities that address the full versatility of bioenergy
remain limited. No group currently simulates the dynamic interactions
between renewable electricity and bioenergy, or with other energy
vectors such as hydrogen.

The Global Biosphere Management Model (GLOBIOM) simulates
annual biomass supply based on global agriculture, forestry, and bio-
energy land-use databases. It supports scenario development for ligno-
cellulosic energy crops [196], natural forest carbon potentials [203],
and socio-economic aspects of agriculture and forestry [204,205], albeit
at low spatial and temporal resolution. Recently, GLOBIOM was
included in the first comparative study of global biomass supply models
[200].

On the operational side, the BeWhere model—a spatially explicit,
mixed-integer linear programming (MILP) tool—is used for LCA and life
cycle costing (LCC) of biobased plastic production [206], and for eval-
uating the rollout of palm oil-based biorefineries in Indonesia [194].
BeWhere has also been applied to assess fuel switching to bioenergy with
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carbon capture and storage (CCS) in the European iron and steel in-
dustry [197].

We assess the MRL for integrating bioenergy into electrification
strategies in Austria as low. This aligns with findings by Welfle et al. [4],
who identify similar gaps in the international modelling community.
While some models consider the diversity of bioenergy feedstocks,
supply chains, and conversion technologies, we have not identified any
model-based publications that explicitly address the flexibilization po-
tential or broader system integration impacts of hybrid energy systems
combining high shares of intermittent renewable electricity with flexible
bioenergy.

3.2.9. Food-water-energy nexus

Hydropower and bioenergy modelling reveal complex in-
terdependencies between energy, water, and food systems. Hydropower
storage capacities can have both beneficial and adverse effects on
agricultural irrigation, while sourcing primary products and residues
from agriculture and forestry for bioenergy can influence the availability
of water, food, and materials—either positively or negatively.

To the best of the authors' knowledge, only IIASA currently hosts
modelling capacities in Austria that explicitly address the food-water-
energy nexus [216-226]. The GLOBIOM model is linked with other
large-scale optimization frameworks to derive integrated management
strategies for the Food, Water, and Energy Security Nexus [216-218]. The
global energy system optimization model MESSAGE has been used to
assess the impact of energy storage on energy and water security in
Central Asia [219]. When coupled with the multi-regional input-output
model EXIOBASE, MESSAGE enables analysis of macroeconomic effects,
emerging consumption patterns, and upstream/downstream supply
chains related to energy technologies [220].

Further integration is achieved by coupling MESSAGE with the CGE
model AIM/Hub, allowing for comparative analysis with stand-alone
model versions [221]. MESSAGE and GLOBIOM are also linked via a
dedicated nexus module to explore interactions between population
growth, economic development, energy, land, and water resources
[222]. This model combination is soft-linked to the detailed global
power system model PLEXOS-World [223]. Recent reviews underscore
ITASA's ambition to develop leading modelling capacities for the climate,
land, energy, and water nexus [224,225], and a new tool—Nexus Solution
Tool (NEST)—has been introduced to optimize multi-scale trans-
formations across energy, water, and land systems [226].

Despite the sophistication of these internationally recognized
modelling suites, we estimate the MRL for food-water-energy nexus
modelling in Austria to be relatively low. The integration of these do-
mains is constrained by the large number of decision variables and the
limited number of parameters that can be hard linked across models. As
a result, spatial and temporal resolutions are typically coarse, which
limits the ability to capture short-term dynamics and localized impacts.

Nevertheless, these models do simulate certain integration dynamics,
such as resource competition and trade-offs between land use for food
versus energy crops, albeit typically at a relatively coarse temporal
resolution, without accounting for temporal flexibility. The emphasis on
trade-offs often overshadows the exploration of synergies, particularly
among integrated food, materials, and energy systems, such as the bio-
economy [7]. As discussed in the introduction, IAMs have traditionally
linked climate and energy scenarios through CO: emissions as the pri-
mary coupling parameter. Recent advancements, as outlined in this
section, have expanded the set of linked parameters. However, the
explicit assessment of deliberate sectoral integration to harness the
benefits of cohesive policy planning does not yet appear to be a central
focus of IAMs.

3.3. Austrian disaster risk management — a missing link for temporal
integration

In addition to the system integration aspects discussed in Section 3.3,
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we use our literature dataset and Austrian case study to estimate the
MRL for integrating extreme events and structural breaks into energy
system models:

Currently, only a few Austrian research groups are actively pub-
lishing on the integration of extreme events into energy system models.
Representative groups include BOKU INWE [97,235-239] and IIASA
ECE [240-247]. For instance, the Medea power system model—a
technology-rich, partial-equilibrium model of the Austro-German elec-
tricity and district heating markets—has been applied to wind and PV
expansion scenarios in Austria and adapted for Brazil [97,238,239]. This
model integrates strategic scenario planning with the simulation of
extreme freezing events, such as those that triggered the 2021 Texas
rolling blackouts [236,237], and incorporates risk mitigation strategies
using Modern Portfolio Theory [95].

The MESSAGE model has been used to simulate the impacts of pan-
demics, wars, and global energy transitions across the energy system,
including upstream fuel supply, renewable energy investments, energy
service demand, and implications for energy equity [244]. Adaptive
capacities are quantified within the Shared Socioeconomic Pathways
(SSP) framework [245]. These methods have also been applied to assess
climate-induced urban heat stress [246] and the need for equitable ac-
cess to cooling technologies [247].

We estimate the MRL for integrating risks and extreme events,
whether induced by Earth system dynamics or human system disrup-
tions, into Austrian energy system models to be relatively low. Table 3
categorizes different risk sources and summarizes Austria's current
modelling capacities and their respective focus areas. This breakdown
helps identify which types of extreme events are currently considered
and highlights non-energy modelling capacities that could serve as
valuable links for expanding temporal integration in energy system
models.

Austria hosts an internationally recognized collaboration network in
the field of Disaster Risk Management (DRM), with a strong focus on
flood risk and mountain resilience. Key contributors include BOKU,
ITIASA, the University of Salzburg, and Geosphere Austria [248-282].
Quantitative DRM methods encompass spatiotemporal flood vulnera-
bility assessments, including the mapping of homogeneous regions,
hotspots, and typologies [263,264], and the development of risk
frameworks for integration into Austria's National Meteorological and
Hydrological Services [265]. A national event-based loss and damage
database has also been established [266].

Recent approaches combine data-driven and participatory methods,
such as Impact Chain-based climate risk and vulnerability assessments
[267], pandemic and epidemic risk management at the municipal level
[268], and evaluations of non-economic flood-related losses [269].
These efforts also address Austria's intolerable risks from climate change
and the limits of adaptation [270].

Formalized quantitative risk modelling focuses on Austria's flood risk
management apparatus [271] employing supply-side I0 models to es-
timate indirect economic impacts [272], and combining CGE and ABM
approaches for multi-model flood event analysis [273]. These insights
are empirically tested within participatory governance frameworks
[274], enabling multi-hazard and multi-risk assessments that explore
the interconnectedness of different risk types [275].

Advanced concepts such as risk layering are used to differentiate,
prioritize, and orchestrate risk management options for both incre-
mental and transformative change [276,277]. Firm-level data and tools
from network analysis and system dynamics are proposed to quantify
systemic risks, identify vulnerable interconnections in supply chains,
and design mitigation strategies [278]. Integrative frameworks are
being developed to address individual risks that may trigger systemic or
network-level failures [279], including simultaneous disruptions in food
supply chains [280], fiscal risks such as the inability of governments to
finance disaster losses [281], and existential risks and global reasons for
concern [282].

Energy system modelling groups in Austria could benefit
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significantly from engaging with this well-established DRM community,
particularly in relation to extreme events originating in the hydrosphere
and geosphere. Other risk domains are also being modelled in Austria,
including forest fire risks by IIASA BNR [283-288], and supply chain
risks by BOKU [289-293] and CSH [294-298].

However, our literature dataset reveals a lack of modelling efforts
addressing other critical risk domains. These include biosphere-related
risks (e.g., pests, biodiversity collapse), technosphere risks (e.g., sup-
ply chain blockages, accidents, storage fires, congestion), cybersphere
threats (e.g., cyberattacks, communication failures), and econosphere
disruptions (e.g., market crashes, currency instability, border closures,
sanctions). Many of these events can be expected to be documented in
relatively robust historical datasets, often more complete than those
available for extremes induced by global warming, and should therefore
be prioritized in future energy system modelling efforts.

Integrating these diverse risk sources into energy system models
would not only enhance temporal integration but also improve system
resilience and preparedness. Advancing the MRL in this area requires a
deliberate effort to bridge the gap between energy modelling and the
broader DRM landscape, leveraging existing expertise and data to
simulate and optimize responses to both gradual and abrupt disruptions.

3.4. Uncertainties in energy system models: from trends, to fluctuations,
to extremes

Historically, energy system models have focused on comparing sce-
narios of uncertain trend developments, initially centered on political
and socio-economic uncertainties and later incorporating uncertain
climate trajectories (see Introduction). More recently, attention has
shifted toward expanding strategic models with operational components
to address the intermittent nature of photovoltaic and wind power
generation, and to explore how system integration can provide the
flexibility needed to balance these fluctuations (see Section 3.3). In
Section 3.4, we further highlighted the emerging focus on modelling
extreme events. This evolution is summarized in Table 4, which opens
the discussion on a broader trajectory of energy system modelling.

Most modelling approaches handle uncertainties by analyzing sen-
sitivities across ensembles of deterministic scenarios, which tends to
underestimate the relevance of probabilistic effects [299]. While sce-
nario analysis may suffice for capturing long-term trend uncertainties,
mitigated through strategic flexibility, it often fails to adequately
represent short- and medium-term variabilities, which require opera-
tional flexibility [300].

To better capture the effects of flexibility, especially for short-term
fluctuations, energy system models are increasingly incorporating
probabilistic and operational methods. These include stylized temporal
integration using high-resolution time series, stochastic programming,
and semi-dynamic balancing approaches based on typical days [301].
The next frontier involves integrating extreme events into energy system
models, and how transformation pathways can be designed flexible
enough to be reliable under a large set of unforeseen circumstances.
However, energy system models simulating the effects of extreme events
are still a niche area both in Austria and globally, as noted by McCollum
et al. [302]. Some IAMC authors have even advocated for the inclusion
of currently neglected catastrophic climate change scenarios in future
IPCC assessments [303].

Risk-based methods such as real options analysis, stochastic opti-
mization, and mean-variance portfolio theory aim to bridge strategic
and event-based modelling. However, these approaches remain
underutilized in energy system modelling [304]. Most reviews agree
that the proper representation of uncertainty remains one of the field's
central challenges [30,35,305-307]. Moreover, the push for higher
spatial and sectoral integration multiplies the number of decision vari-
ables, and with them, the associated uncertainties.

Table 4 offers a simplified overview of the types of uncertainties
relevant to energy system modelling. Kirchner et al. [308] provide a
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Table 3
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Different risk sources and Austria's risk modelling capacities and their risk focus. Source: own evaluation.

Risk Sources | Modelled risks

Groups and references

Earth system risk sources and risks

Extreme weather impact on
electricity supply

BOKU INWE [97, 235-239]

Atmosphere Heat stress and residential cooling | IIASA ECE [240-247]
Flood risks and alpine risk BOKU ILAP, BOKU IAN, Uni
‘ management but no link to energy | Salzburg, IASA POPJUS, IIASA
Hydro/Cryosphere | system modelling yet ASA, Geosphere Austria
i [248-282]
Geosphere
Forest fires modelling, but no link | IIASA BNR [283-288]
’ to energy system yet
Biosphere

Human system risk sources and risks

Sociosphere

Wars, pandemics, few publications
on effects on energy system

IIASA ECE [244, 245]

Supply chain risks but not for the
energy system yet

BOKU PWL [289-293]

Technosphere

Supply chain risk cascades

CSH [294-298]

border risks
Econosphere

Market crash, currency risks,

No literature identified

@ F| %

Cybersphere

Cyber-attacks, failing Internet and
Communication technologies

No literature identified

Table 4

Modelling readiness levels (MRL) for energy system

Source: Own assessment.

models capturing different types of uncertainties.

Trends Variabilities Extremes

Earth system High MRL Medium MRL Low but growing

Considered on global warming on weather seasonality MRL

uncertainties in ESMs and day-nighttime on climate
extremes

Human system High MRL Medium MRL Lowest MRL

Considered on socio-economic on costs and prices, on accidents,

uncertainties in ESMs | trends on trade market crashes,
wars, cyber-
threats

Potential Energy System Modelling Evolution

more nuanced classification, distinguishing between statistical,
scenario-based, qualitative, deliberately ignored, and consciously
recognized but unaddressed uncertainties. These arise from various
sources, including system boundaries and resolution, input data, system
drivers, parameter calibration, model structure, hardware and software
limitations, outcome extrapolation, and the translation of results into
decision support. In contrast, the uncertainty types addressed in Table 4
are intended to help modellers quickly reflect on how their models
incorporate temporal integration and which types of uncertainties could
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be represented to simulate the impacts of system integration more
effectively.

3.5. System Integration Impact Assessment (SIIA) — embracing
uncertainties

We advocate for energy system modellers, funding agencies, and
policymakers to adopt a more deliberate and structured approach to
assessing the impacts of system integration. The Austrian case study
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reveals significant disparities in the modelling of different system inte-
gration aspects. While policy documents frequently claim to be “inte-
grated,” the modelling frameworks underpinning them often are not.
This disconnect is evident in the Osterreichischer Netzinfrastrukturplan
(ONIP), which addresses electricity and gas grid integration, and simi-
larly in Austria's Integrated National Energy and Climate Plan (NECP)
[309], where system integration and climate impacts are scarcely re-
flected in the underlying energy system models.

Truly integrated planning, such as that envisioned in the ONIP and
NECP, should be grounded in models capable of capturing interactions
and synergies across networks, production and consumption systems,
and climate-related objectives. However, the current MRL of modelling
frameworks remains limited in their ability to simulate the value prop-
osition of integrated planning by explicitly representing these in-
teractions, synergies, trade-offs, and threats.

The Austrian case study underscores the urgent need for the energy
system modelling community to reflect on the meaning of “integration”
and to develop models that can endogenously capture its effects. We
propose the concept of System Integration Impact Assessment (SIIA),
which builds on the long-standing tradition of technology assessment in
the United States and German [310,311]. SIIA should aim to objectively
evaluate both the benefits and risks of integrated versus separate sys-
tems and solutions.

Flexibility is a key emergent property of integrated systems. We
define flexibility as the ability to shift (energy) resources through time,
space, between sectors, and options. This ability can be used to balance
shortages with surpluses, thereby simultaneously increasing resource
efficiency and system reliability [7,128,130,312-314]. However, this
ability can also be misused by shifting resources from regions, times, or
sectors that need them to areas where there is already a surplus,
resulting in systemic risks, including the potential for cascading failures
[273,315,316]. Therefore, SIIA must place equal emphasis on support-
ing the design and operation of combined infrastructures, technologies,
and sectors by enhancing and safeguarding:

(a) overall resource efficiency for a large variety of different types of
resources, and

(b) system reliability in the face of uncertain trends, variabilities, and
extreme events.

We estimate the current MRL for SIIA in Austria to be relatively low,
though promising developments can be highlighted within both the
energy system modelling and disaster risk management communities.
The growing focus on temporal integration of intermittent renewables
and complementary flexibility options presents a timely opportunity to
explore the value proposition of system integration beyond the elec-
tricity sector and anticipate how systems can be designed to embrace not
only the uncertainty of renewable intermittency but also more severe
disruptions arising from natural or anthropogenic events.

3.6. Limitations

A key limitation of this study lies in its geographically constrained
scope, focusing exclusively on main authors with an Austrian affiliation.
While this allowed for a quasi-comprehensive mapping of national
modelling capacities, the methodology developed and tested here
should be applied to larger datasets, additional countries, and broader
literature corpora, including sources beyond Scopus and OpenAlex, and
potentially in languages other than English. Despite this limitation, the
core insights derived from the Austrian case study are expected to hold
relevance for energy system modellers globally, particularly in high-
lighting the uneven modelling readiness across system integration
aspects.

International collaboration is essential for the Austrian energy sys-
tem modelling community, as evidenced by the fact that most publica-
tions in the literature database underlying this manuscript include at
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least one co-author affiliated with a non-Austrian institution. Germany,
the United States, Great Britain, Switzerland, the Netherlands, Italy,
Sweden and Norway are the most relevant countries for the co-authoring
with Austrian affiliations. The international co-authorship network is
illustrated in a previous version of this publication (accessible online”).
However, it was beyond the scope of this study to assess the extent to
which international collaboration addresses the methodological gaps
identified for advancing System Integration Impact Assessment.

Another limitation of this study lies in the limited in-depth discussion
of modelling approaches that could integrate strategic, operational, and
risk-based modelling approaches, particularly in the context of extreme
events. Future work should demonstrate how these methods can be
combined to better capture the synergies, trade-offs, and threats asso-
ciated with temporal, sectoral, and spatial integration. Of particular
interest are positive and negative tipping points, which may lead to
structural breaks that are either devastating for specific sectors and so-
cieties or desperately needed and transformative in ways that signifi-
cantly enhance and democratize social welfare. The ability to model
such dynamics could help overcome path dependencies and support the
design of robust, sustainable pathways in the face of polycrises. How-
ever, this capability also raises ethical considerations, as it could be
misused to identify vulnerabilities and intentionally destabilize systems.
As such, advancing this line of research must be accompanied by a
critical reflection on dual-use risks and the governance of modelling
practices.

4. Conclusions and recommendations

Policy decision making is becoming increasingly complex. On the
one hand, the climate and biodiversity crises, combined with the
interconnectedness of the global population governed across multiple
levels, amplify the uncertainties that must be considered to ensure
robust decisions. On the other hand, humanity actively pursues com-
plexifications such as in the organization of energy resources, to induce
flexibility and buffer the effects of uncertainty. System integration en-
ables us to embrace such uncertainties, which may stand in contrast to
uncertainty reduction strategies that rely on simplifying systems and
limiting flexibility.

System Integration Impact Assessment (SIIA) should support
decision-makers with modelling-backed strategies to explain emer-
gence, and to amplify beneficial and mitigate detrimental impacts of
planned complexification. In doing so, SIIA can help counteract the
compartmentalization of problem-solving capacities, whether in the
form of academic silos, separately administered and planned sectors, or
even tendencies to retreat from international collaboration. SIIA can
strengthen the narrative for integration by providing evidence and
know-how on its societal value, while also identifying concrete threats
emerging from integrated systems and how to address them.

We present a case study of Austrian-hosted energy system models
embedded in an international context. Many of these models currently
focus on capturing the effects of intermittent renewables and how they
can be balanced through flexibility options enabled by temporal, spatial,
and sectoral integration. We find varying Modelling Readiness Levels
(MRLs) across different integration aspects and discuss opportunities
and barriers for MRL improvements, including the interdisciplinary
translation of methods.

Regarding sector integration, electricity and heating systems emerge
as promising nuclei for extending integration to lower-MRL sectors such
as mobility, industry, and bioenergy. Austria hosts established models
with spatial representations of electricity and heating networks, which
could serve as steppingstones for improving spatial integration. To
capture the effects of different prosumer topologies, multi-level gover-
nance, and energy communities—an emerging modelling theme in some

9 https://zenodo.org/records/15276174 (accessed 2025.11.22).
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groups—energy system models will need to incorporate multiple spatial
resolution layers. Furthermore, Austria hosts internationally renowned
Integrated Assessment Models (IAMs), which could facilitate the
assessment of integration impacts beyond trade-offs, including a more
pronounced focus on synergies between entangled energy, food, mate-
rials, and water sectors.

Most notably, we observe a growing awareness of different types of
uncertainties, which could boost the temporal integration of energy
system models. Many modelling groups are working to implement
operational considerations into long-term scenario models to better
capture the stochasticity of intermittent renewables. We understand this
development as an opening window of opportunity to also model shocks
and structural breaks. To advance temporal integration, energy system
models may need to adapt methods, datasets, and tools from other dis-
ciplines, such as process engineering for operational aspects and disaster
risk management for extreme events. These perspectives could shed new
light on the value of storage, interconnectivity, and systemic resilience.

We recommend structurally planning for SIIA by recognizing the
different MRLs of various system integration challenges and by sup-
porting especially low-MRL topics such as bioenergy and bioeconomy
modelling, as well as rapidly advancing areas like energy community
modelling. The parallel development and proliferation of selected sys-
tem integration aspects proves useful for rapid prototyping of models
and science-policy interfaces. However, the combination of different
system integration aspects will only be as strong as its weakest link.

With this publication, we provide a first assessment of the MRL of
Austrian SITIA approaches. Together with the openly shared and
frequently downloaded researcher and research group dataset, this work
should serve as a basis for establishing collaborations that can advance
SIIA in Austria and internationally. Future conceptual work on SIIA must
better highlight not only the synergies but also the threats of system
integration, and how knowledge about the flexibility and reliability of
coupled sectors could potentially be misused to trigger cascading vul-
nerabilities and system collapse. This dual-use aspect of SIIA deserves
careful attention.
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