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Abstract

Geospatial-statistical integration remains a persistent bottleneck for official statistics and
applied spatial analysis. The GISINTEGRATION R package provides a modular, repro-
ducible workflow for preprocessing, harmonizing, and linking heterogeneous GIS and
non-GIS datasets, with export utilities that are compatible with common desktop GIS. This
paper outlines the package architecture and demonstrates its use in two applications. The
first integrates population statistics with newly introduced statistical output geographies
for Northern Ireland, enabling rapid preparation of analysis-ready layers such as all usual
residents and population density at Super Data Zones. The second links daily PM; 5 mea-
surements from the U.S. EPA Air Quality System with county boundaries for California
(July 2020) to produce policy-relevant indicators; spatial aggregation yielded valid monthly
means for 46 of 58 counties (79.31%) and reduced variance from 40.716 (monitor level) to
5.777 (county means), improving signal stability and comparability. Across both cases,
the workflow standardizes variable names, supports user-controlled overrides, identifies
common keys, and performs quality checks, thereby reducing manual effort while increas-
ing transparency and reproducibility. The results illustrate how standardized integration
facilitates official statistical production, environmental monitoring, and evidence-based
decision-making.

Keywords: Geographic Information Systems (GIS); data integration; official statistics;
applied statistics; R software; EPA Air Quality Data

1. Introduction

Geographic Information System (GIS) data plays a pivotal role in numerous fields,
including urban planning, environmental monitoring, disaster management, transportation,
public health and particularly official statistics (see, for instance, [1-5]). GIS has been
instrumental in mapping disease outbreaks, optimizing logistics networks, and identifying
areas vulnerable to natural disasters [6,7].

From the perspective of a National Statistical Office (NSO), the primary focus is on non-
GIS data, which serves as their core area of work. NSOs concentrate on economic, social,
demographic, and environmental statistics. Recently, NSOs have begun to seriously explore
the integration of GIS and statistical data (for more information, see, for instance, [8-10]).
Though very useful, GIS data is not always available by itself; much non-GIS data has
been produced and is being used for statistical office work on economics, social conditions,
and health topics [10]. Most of these non-GIS datasets come from national censuses,
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surveys, and administrative records. They enrich and give background to an office’s
spatial analysis [8].

Integrating GIS data with non-GIS data has emerged as a critical area of research and
application in official statistics [11]. This integration enables comprehensive analyses that
combine spatial and non-spatial dimensions, leading to more actionable insights. For exam-
ple, linking demographic data with land-use maps can aid in urban development planning,
while integrating weather data with agricultural statistics can improve crop management
strategies [12,13]. However, the integration process is complex and often hindered by
incompatible formats, inconsistent variable naming, and a lack of standardized tools [14].

Existing tools for data integration often focus on either GIS or non-GIS datasets
in isolation, leaving a significant gap when addressing hybrid workflows [15]. Some
tools offer partial solutions but are limited by high learning curves, lack of scalability,
or incompatibility with diverse data sources [16]. Recent efforts in this domain highlight
the transformative potential of effective GIS and non-GIS data integration [17]. Techniques
such as record linkage, data harmonization, and advanced preprocessing have shown
promise, but many of these approaches remain fragmented or inaccessible [18]. This
fragmentation restricts the full utilization of data, curtailing advancements in critical fields
such as public policy, environmental conservation, and disaster preparedness [19].

However, the GISINTEGRATION R package (Version 1.0) is the first comprehensive
tool designed to bridge this gap [20]. By providing a robust and flexible framework for
integrating GIS and non-GIS data, GISINTEGRATION addresses key challenges such as
variable standardization, dataset harmonization, and scalable processing [15]. Its modular
design and user-friendly interface empower users to efficiently preprocess and integrate
data for a wide range of applications. This paper explores the package’s capabilities and its
potential to revolutionize GIS workflows by addressing existing integration challenges and
unlocking new opportunities for spatial analysis and decision-making.

To guide the reader, the remainder of the paper is organized as follows. Section 2 sets
out the challenge of GIS data integration, summarizing the technical and institutional
barriers that motivate our work. Section 3 introduces the GISINTEGRATION R package,
detailing its architecture, core functions, and workflow, including preprocessing, harmo-
nization, linkage, and export utilities. Section 4 demonstrates the package in practice
through two applications; (i) to official statistics in Northern Ireland, and (ii) environment
data, describing the datasets, integration steps, and resulting visualizations and analyses.
Sections 5 and 6 conclude with key takeaways, limitations, and directions for future
development and adoption across national statistical systems.

2. The Challenge of GIS Data Integration

Preprocessing and harmonizing the GIS databases from different sources have been
the greatest long-time challenge in geospatial information management [21]. To the full
extent of complexity with which geospatial information is characteristically laden, prepro-
cessing, cleaning, unification, and integration of such data can be quite complicated [22].
The sources of this complexity are many: the multiplicity of different formats in which
spatial data are collected; different scales, projections, and coordinate systems to boot; and
diverse provenances for the data, such as satellite imagery, ground surveys, and more
recently, user-generated content coming from mobile devices and social media platforms.
With its own set of metadata, accuracy level, and cycle of updates, each dataset must
be handled sensitively when integration is concerned [23]. Ensuring compatibility and
consistency between the datasets requires not only simple data cleaning steps but also
more advanced procedures such as coordinate transformation, conflation, and semantic
reconciliation [24]. Furthermore, rapid technological and methodological advances mean
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that geospatial datasets are not only increasing in size but in complexity as well [25]. In the
past, the absence of standardized tools for carrying out such multifaceted tasks impeded
the capacity of professionals and researchers to execute truly comprehensive geospatial
analyses. Often, analysts had to make do with somewhat disparate software tools or
custom-coded scripts—a process that could be time-consuming, error-prone, and difficult
to reproduce. Such fragmented efforts also work against the collaboration and sharing that
is necessary to advance good practice in geospatial analysis. These barriers simply must
be surmounted because the geospatial data is absolutely critical to a wide range of essen-
tial applications [26]. From that of urban planning and environment monitoring through
disaster response and global health initiatives, near-infrared integrated geospatial data is
integral. It informs policymakers in the formulation of policies, business strategy, and sci-
entific research that will change lives and shape the future of our societies. The significant
advancement for the field would be the completion of a comprehensive tool to streamline
GIS data integration. This means that by offering a standardized, efficient, and robust way
to pre-process, clean, unify, and integrate heterogeneous geospatial datasets, such a tool
would lift the full limitations of geospatial analysis to allow intelligence that may be more
accurate, insightful, and actionable from the wealth of data available.

3. Overview of the GISINTEGRATION Package

3.1. Package Structure
3.1.1. Preliminary Definition

Let D = {D1,D;y,...,D;} be a finite collection of GIS datasets. We assume each
dataset D; (i = 1,...,n) consists of a set of observations (records) and a set of variables
(attributes). The aim of the GISINTEGRATION package is to transform every D; into a
harmonized dataset D/ suitable for advanced spatial analyses in official statistics and data
integration. Formally, we define the following preprocessing function:

Preproc : D — D' where D' ={Dj,D},...,D,}. (1)

Each Dj (i = 1,...,n) maintains the same number of records as D; but has standardized
and cleaned variables/attributes.

3.1.2. Modularity and Adaptability

The GISINTEGRATION package is modular, allowing users to compose functions (or
subroutines) that address specific tasks in a workflow. Let

F = {preproc, chzInput, create-new-data, preprocLinkageDBF, selVar} (2)

be the set of available functions, each targeting a separate aspect of data preprocess-
ing. Users can select which functions to apply based on the characteristics of their data
(DBEF stands for dBASE Database File, a tabular data format that originated with the legacy
dBASE database management system). The GISINTEGRATION package offers several
key functionalities:

e Data Preprocessing: The preproc function standardizes variable names across datasets,
ensuring consistency and reducing manual intervention. By addressing naming incon-
sistencies and discrepancies in data formats, preproc minimizes errors and prepares
datasets for seamless integration. This step is crucial for ensuring compatibility across
diverse GIS and non-GIS datasets, especially in large-scale projects.

*  User Consultation: The chzInput function allows users to specify variables that should
retain their original names, providing flexibility in preprocessing. This feature empowers
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users to maintain domain-specific naming conventions where necessary, ensuring that
critical variables retain their interpretability and relevance to stakeholders.

Final Data Preparation: The create-new-data function performs comprehensive
preprocessing, including variable name harmonization, format adjustments, and the
elimination of redundant or irrelevant data. This function outputs two refined data
frames optimized for analysis, streamlining downstream workflows and reducing the
need for additional cleaning steps.

DBF File Generation: The preprocLinkageDBF function automates data cleaning,
normalization, and format transformations, making it possible to generate DBF files
compatible with popular GIS software such as ArcGIS and QGIS. This capability
ensures that datasets are ready for spatial visualization and advanced geospatial
analyses, bridging the gap between data preprocessing and practical application.
Common Variable Identification: The selVar function identifies shared variables be-
tween datasets, facilitating the selection of blocking variables for linkage procedures.
This step is essential for merging datasets from multiple sources, enabling robust data
integration for tasks such as spatial modeling, demographic analysis, and environmen-
tal monitoring. Additionally, it aids in detecting potential inconsistencies or overlaps,
enhancing data reliability.

Interactive User Experience: GISINTEGRATION includes an interactive interface that
guides users through preprocessing steps. This feature reduces the learning curve for
new users while allowing advanced users to customize the pipeline according to their
needs, fostering a balance between simplicity and flexibility.

3.1.3. Efficiency and Compatibility

All functions in F are optimized with vectorized operations and robust algorithms.

In practical terms, this ensures scalability for large n or datasets with a large number

of records. The code is well-documented for ease of use and integrates seamlessly with

popular R libraries such as sf, RecordLinkage, and stringr (for more information see [20]).

3.2. Workflow Description

Let us now represent the GISINTEGRATION workflow as a sequence of transfor-

mations applied to D. Let W denote the workflow, and let W(D;) be the output after all
relevant functions have been applied to a single dataset D;. The pipeline for each dataset

typically follows the following steps:

1.

Preprocessing GIS Datasets.
Call preproc(D;) to standardize variable names. This step normalizes naming con-
ventions across D;:
1
Dl( ) = preproc(D;). 3)

It resolves inconsistencies like mixed-case variable names or invalid characters.
User-Specific Customization.
If the user wants to retain certain domain-specific variable names, apply:

@) _ 1
D;” = chzInput(D;’, varsToKeep), 4)

where varsToKeep is a subset of variable names that must remain unchanged.
Final Data Preparation.
Consolidate all preprocessing steps into a final refined version:

p® — create-new-data(Di(z) )- ©®)

1
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This harmonizes variable formats (e.g., date, numeric) and removes redundant at-
tributes, yielding a dataset ready for analysis.

4.  DBF File Preparation.
To facilitate geospatial visualization in software like ArcGIS or QGIS, generate DBF outputs:

preprocLinkageDBF(Dl.(3)) — DBF files. (6)

This ensures direct compatibility with common GIS platforms.

5. Identifying Common Variables.
Finally, detect shared variables for linkage or merging:

commonVars = selVar (Df’), D§3), ey D,(13)) : (7)

This step is crucial for joining datasets and verifying consistency across multiple sources.

By composing these transformations, we can define the overall workflow W as:
W(D;) = selVar (preprocLinkageDBF (create-new-data (chzInput(preproc(D;)))) ) , (8)

implicitly assuming the multi-dataset scenario for the selVar function.

Figure 1 illustrates the overall GISINTEGRATION workflow, summarizing the key
processes for data harmonization and integration. Panel (a) depicts the sequential prepro-
cessing of individual GIS datasets, beginning with data import and variable standardization,
followed by optional user decisions on retaining domain-specific names, and concluding
with dataset restructuring and export into a standardized format. Panel (b) presents the
subsequent multi-dataset integration process, where harmonized datasets are combined
through common keys or mapping tables. This step includes validation, reconciliation,
schema integration, and quality control checks to produce a unified, analysis-ready dataset.

@

)
/ A /
Dl Dn

H

preproc

Keys?

Keep names?

Map

chzI.

Validate

iy

Join map

Figure 1. GISINTEGRATION workflow. (a) Single dataset preprocessing and export. (b) Integration
of harmonized datasets into Diptegrated-

3.3. Advanced Features in the Workflow

Beyond the steps listed above, GISINTEGRATION includes several auxiliary routines
that enhance automation and interactivity:
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¢ Batch Processing:
Vie{l,...,n}, D;=W(D;). )

This allows a user to process an entire collection D in one session, reducing man-
ual work.

e Interactive Debugging: Any errors or warnings during W(D;) provide detailed logs,
indicating which function in F triggered the issue and offering suggestions for resolu-
tion.

e Integration with R Markdown: Users can embed W(D;) calls inside literate program-
ming documents, ensuring reproducibility and simplified reporting.

e Custom Output Formats: In addition to DBF, the pipeline supports

ExportTo(D{®), {CSV,JSON, GeoJSON'}), (10)

enabling flexible dissemination of cleaned datasets. The GISINTEGRATION workflow
ensures consistent, efficient, and reliable data integration across diverse GIS and
non-GIS sources.

3.4. Positioning and Benchmarks

GISINTEGRATION builds upon established spatial data frameworks such as sf and
terra, which provide robust functionality for geometry operations, coordinate reference
system (CRS) management, and spatial joins. Rather than replacing these core packages,
GISINTEGRATION extends their utility by automating repetitive preprocessing and har-
monization tasks that are common in official statistics, environmental reporting, and multi-
source integration. Specifically, it streamlines schema alignment, variable standardization,
crosswalk creation, and quality assurance, thereby enabling reproducible workflows for
linking statistical and geospatial data.

Table 1 summarizes the relative performance and coding effort required to complete
standard preprocessing and linkage tasks using conventional sf/terra code versus GISIN-
TEGRATION. Benchmarks were conducted on representative datasets (Northern Ireland
census and California PM;5) to reflect typical integration workflows. Across all tasks,
GISINTEGRATION reduced manual coding effort by an order of magnitude and generated
standardized, auditable outputs with built-in coverage and variance reporting.

Table 1. Comparison of GISINTEGRATION with sf /terra on representative preprocessing tasks.
LOC = lines of code.

Task sf/terra (LOC) GISINTEGRATION (LOC) Added Value

Variable harmonization (15 files) 90-140 6-10 Automated renaming, audit log
Key discovery and crosswalk build Custom joins 1-2 Concordance generation
Spatial join and DBF-safe export 20-40 2-3 Standards-compliant fields
QA summary (coverage, variance) Manual Auto Built-in quality metrics
Batch pipeline (multi-dataset) Ad hoc loops 1 Reproducible processing

These results demonstrate that GISINTEGRATION complements existing spatial
frameworks by providing an integrated, low-code layer for harmonizing large-scale statisti-
cal and geospatial datasets. The package leverages the computational efficiency of sf and
terra while reducing human error, improving reproducibility, and ensuring that outputs
meet interoperability and documentation standards required for official data dissemination.
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3.5. Scope and Future Development

The current version of GISINTEGRATION focuses primarily on vector-based datasets—
particularly tabular and polygonal data used in official statistics, censuses, and adminis-
trative boundary systems. This scope reflects the most frequent and operationally urgent
integration needs in statistical offices and environmental monitoring institutions, where
vector data represent the core link between spatial units and statistical attributes.

The package currently provides functionality for schema harmonization, attribute
linkage, crosswalk creation, and governance-grade quality assurance. However, it does
not yet natively handle raster or point-cloud data, such as remote sensing imagery, LiDAR,
or high-resolution spatio-temporal grids. Similarly, complex spatial issues such as geo-
metric conflation, topological correction, and scale harmonization across multiple spatial
resolutions are beyond the current implementation.

Future versions of GISINTEGRATION will expand to address these more advanced
integration challenges. Planned developments include:

*  Raster and remote-sensing integration: automated workflows for linking gridded data
(e.g., population density, air quality, NDVI) with administrative boundaries using
zonal statistics and spatial resampling.

*  Temporal harmonization: support for dynamic datasets with explicit time attributes,
enabling longitudinal comparisons and versioned boundary handling.

e Topological and scale reconciliation: integration of functions for detecting and resolv-
ing boundary overlaps, gaps, and mismatched resolutions.

¢ Conflation tools: semi-automated matching of spatial features across differing data
sources to support map alignment and geocoding validation.

These extensions will allow GISINTEGRATION to evolve from a harmonization-
oriented toolkit toward a comprehensive spatial data integration framework capable of
addressing raster—vector interoperability, multi-temporal data fusion, and topological qual-
ity control. The forthcoming release (v2.0) will prioritize these capabilities to broaden
applicability across environmental, agricultural, and remote sensing domains while main-
taining compatibility with the sf, terra, and stars ecosystems.

4. Application to Official Statistics
4.1. Population Census Data

We now illustrate how to apply W to official statistical data produced by the Northern
Ireland Statistics and Research Agency (NISRA) for their latest Population Census (Census
2021) as a case study.

4.1.1. Dataset Description

The preprocessing pipeline significantly reduced the time and effort required for data
preparation. The resulting integrated dataset was used to visualize population levels,
such as absolute values (All Usual Residents) and population density (Number of Usual
Residents per Hectare), by statistical output geographies (Super Data Zones [27]) in order
to explore population dynamics by geographic distribution.

To support the dissemination of Census 2021 statistics, NISRA introduced two new
statistical output geographies: Data Zones (DZ2021) and Super Data Zones (SDZ2021).
Across Northern Ireland, there are 850 Super Data Zones (SDZ2021), within which 3780 Data
Zones (DZ2021) are nested. These geographies are further nested within 80 District Electoral
Areas (DEA2014) and 11 Local Government Districts (LGD2014) (see Figure 2).
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g
Ireland information licensed under the Open
Government Licence v3.0.

Figure 2. Geography preview of Super Data Zone across Northern Ireland. © NISRA 2025 Contains
Ordnance Survey of Northern Ireland information licensed under the Open Government Licence v3.0.
Here, we consider the following datasets for demonstration:

*  Super Data Zones (SDZ2021) [27]:
|Dspz| = 500, (11)

a manageable dataset primarily used to test the GISINTEGRATION functionalities
and refine workflow parameters.
*  Census 2021 Population Density Data (census-2021-ms-a14) [28]:

Dcensus = {population density values across multiple geographies }. (12)

This dataset reflects the original structure provided by NISRA, including certain
metadata sheets.

To integrate and merge these, let us define the following function:

M (DSDZ/ DCensus) - DIntegratedr (13)

where M encapsulates the GISINTEGRATION workflow W plus any additional linking
logic (e.g., matching geographic codes). By applying W, each dataset is cleaned, standard-
ized, and prepared for analysis, ensuring that statistical attributes (population density)
align properly with the corresponding geospatial units (Super Data Zones).

4.1.2. Integration Results and Visualization in GISINTEGRATION

Let G be a finite set of geographic units relevant to the analysis (e.g., Super Data Zones,
SDZ2021, within Northern Ireland). In this context,

G = {g1,82-- .80} (14)

where |G| = 850 for Super Data Zones (SDZ2021). Each g; € G may itself include nested
regions; for instance, there are 3,780 Data Zones (DZ2021) distributed across the entire set
of SDZ2021 units.

Let A = {population density, area (ha), all usual residents, ... } be a set of possible
attributes or variables that can be linked to each g;. After the preprocessing pipeline
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described previously, we obtain an integrated dataset Din¢, which maps each geographic
unit g; to a subset of attributes A; C A. Formally,

Dint : g — 2A, (15)

where Dint(g;) = A; represents the attributes available (and harmonized) for that geo-
graphic unit.

Efficiency Gains

The transformation from raw data D to Djy; significantly reduces the manual effort
required to clean and merge datasets. Once the pipeline W (as defined in the earlier sections)
is applied,

(VDi € D) D} = W(D;) (16)

ensures that each Dl( is standardized. Subsequent integration of le into Djn; is automated,
thus minimizing user intervention and mitigating errors.

4.1.3. Population Density

The resulting integrated dataset can be used to analyze population density and its
relationship to other variables (or any other attributes in A). Consider a function

fdensity :G — Ry (17)

that extracts the population density value for each geographic unit. Once fqensity is available
within Dy, a relational analysis (e.g., correlation, summary statistics) becomes straightforward.

Let Agna € A be the set of attributes a user decides to visualize after the integration
process. The user may specify:

Afinal = {all usual residents, population density, ... }. (18)

The system then generates a linked representation of G based on those attributes.
In mathematical terms, for each g; € G,

V(gi) = {(ar Ui,u) ‘ a e Aﬁnal}/ (19)

where v; , denotes the observed value of attribute a for unit g;. Figure 3 exemplifies the
result for the attribute all usual residents after data linkage. Figure 3 illustrates the full
geographical context of Super Data Zones in Northern Ireland based on the linkage of data
following the attribute chosen of all usual residents. This visualization is obtained after all
data integration steps, at a stage which allows the user to select and focus on those specific
attributes they are interested in displaying. Users will be able to choose and customize the
geographic display so that salient points are made explicit, thereby enhancing the clarity
and intelligibility of the spatial analysis.

Once Djy is established, users can dynamically select and highlight any attribute a €
Ainal- This interactivity enhances clarity and interpretability of the final spatial analysis.
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Figure 3. Geography preview of Super Data Zone across Northern Ireland after data linkage based
on all usual residents as selected attribute. © NISRA 2025 Contains Ordnance Survey of Northern
Ireland information licensed under the Open Government Licence v3.0.

4.1.4. Multiple-Attribute Visualization

To visualize multiple attributes concurrently, define
Anuti = {population density, area (ha), road access, geographical borders}. (20)

Each attribute is represented in a separate plot, effectively creating a 2-panel layout as
shown in Figure 4 (Left plot: (population density, g;) and Right plot: (area, g;)) . Formally, let

P: Apus X G — Plots (21)

be a plotting function that produces a visual mapping of each attribute onto the relevant
regions. Thus:

Additionally, a detailed view of integrating data is given by Figure 4 through two sets
of distinct plots indicating different attributes. The plot to the left provides information on
population density, showing how thinly or densely settled areas within each Super Data
Zone are distributed. The plot on the right gives the size of the statistical output geography
in hectares (ha), which allows an assessment of how big an area is in terms of its physical
coverage. All these integrated datasets, from the steps of pre-processing to the point of data
linkage, are handled by the GISINTEGRATION package. Such automation would bring in
its wake seamlessness and efficiency in workflow with minimum manual intervention and
error handling possibilities reduced. However, users are at liberty to choose any number
of attributes of interest. An analysis can be customized and extracted for the purpose of
research questions or policymaking needs. Potential alternative preprocessing steps to
be automatically undertaken by the system in integrating diverse data attributes could
enable the derivation of much more accurate and insightful spatial analyses that could be
acted upon, hence enhancing decision-making and resource allocation within the scope of
official statistics.

All relevant transformations leading to these visualizations,

{ f density~ f area }/ (22)

are handled by the GISINTEGRATION pipeline W, ensuring consistency and reducing
the scope for human error. This automation empowers researchers to integrate numerous
attributes seamlessly and tailor the final outputs to specific research or policy objectives.

By coupling flexible attribute selection with automated data preprocessing, official
statistical agencies can derive more accurate, insightful, and actionable spatial analyses.
This advanced integration informs data-driven decision-making on issues such as resource
allocation, urban planning, and demographic policy.
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Figure 4. The left plot displays integrated population density, and the right plot illustrates area size.
© NISRA 2025 Contains Ordnance Survey of Northern Ireland information licensed under the Open
Government Licence v3.0.

4.2. Application: Integration of Air Quality Data with Administrative Boundaries

Daily measurements of fine particulate matter (PM; 5) were integrated with county-
level administrative boundaries to produce policy-relevant and comparable indicators for
California during July 2020. This application demonstrates the capability of spatial data
integration for environmental monitoring and public policy assessment. The following
data sources are used for this application:

e PM,;5: US. Environmental Protection Agency (EPA) AirData, Air Quality System
(AQS) Daily Summary files for parameter 88101 (PMj 5, FRM/FEM mass), year 2020.

¢ County boundaries: U.S. county polygons (FIPS-coded GeoJSON) distributed via
Plotly Datasets, derived from the U.S. Census Bureau’s TIGER/Line shapefiles.

The EPA daily summary file for 2020 was filtered to include only records correspond-
ing to California and the month of July. The retained variables included the date, arith-
metic mean concentration, latitude, longitude, and county identifiers (code and name).
A GeoDataFrame was constructed from the monitoring station readings using the WGS84
coordinate reference system (EPSG:4326).

County polygons were also imported from the FIPS-coded GeoJSON and subset to
California (FIPS prefix 06). The coordinate reference systems of both datasets were aligned,
followed by a spatial join to assign each monitor observation to its corresponding county
polygon. Daily monitor-level observations were aggregated to compute county-level mean
PM, 5 concentrations for July 2020. For each county, the arithmetic mean across all available
monitor-days was calculated, and the number of contributing observations (114ps) was
retained as an indicator of data coverage.

4.2.1. Visualization and Outputs

Two maps were produced to illustrate the integration process (Figure 5). Panel (a)
displays the raw, monitor-level PM; 5 readings overlaid on county boundaries, highlighting
the uneven spatial distribution of monitoring stations. Panel (b) presents the aggregated,
county-level July mean PM, 5 values, yielding directly comparable and policy-relevant
indicators aligned with administrative units.
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Before Integration: CA PM2.5 monitor readings (July 2020) After Integration: County-level mean PM2.5 (CA, July 2020)
14

(a) Before integration: monitor-level PM; 5 (b) After integration: county-level mean PM; s,
readings, July 2020. July 2020.
Figure 5. Spatial integration of daily PM, 5 observations with county administrative boundaries
in California (July 2020). Panel (a) shows raw station-level readings, illustrating heterogeneity in
monitor distribution. Panel (b) displays aggregated county-level means, revealing clear regional
gradients and facilitating policy-relevant comparisons across jurisdictions.

The spatial aggregation clarifies geographic variation in PM; 5 exposure, with higher
values observed in several counties in southern and central California. This transformation
enhances interpretability and supports equitable air-quality policy design.

Quality control metrics were also designed to assess the robustness and interpretability
of the aggregated results:

*  Coverage: Number and percentage of counties with at least one valid spatial assignment.

*  Variance reduction: Comparison of variance at the monitor level versus the county-
level aggregated means, as an indicator of noise reduction and signal stability.

*  Descriptive statistics: Mean and median PM; 5 concentrations across all counties with
sufficient coverage.

4.2.2. Results

Spatial integration substantially improved interpretability and produced stable, policy-
relevant indicators at the county level. Valid July means were computed for 46 of Califor-
nia’s 58 counties (79.31%), while missing estimates were associated with counties lacking
monitoring stations or having incomplete data. Variance decreased from 40.716 at the
monitor level to 5.777 after aggregation, indicating effective noise reduction and improved
signal stability. The mean county-level PM; 5 concentration was 8.03 pg/m?, with a median
of 7.67 ng/m?, suggesting modest right-skewness driven by a few higher-concentration
counties. Higher mean values were clustered in specific counties, reflecting spatial variation
consistent with emission sources, topography, and meteorological influences.

5. Discussion

This paper demonstrated how a single, standardized workflow can support two very
different integration problems: (i) linking Population Census statistics to newly introduced
statistical output geographies (SDZ2021) in Northern Ireland, and (ii) aggregating air-quality
observations (PMj5) to county units in California. Although the domains, data models,
and output uses differ, both applications highlight common integration challenges and
show how GISINTEGRATION reduces manual effort, improves transparency, and yields
analysis-ready, policy-relevant outputs.
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5.1. Lessons from Population Census Integration

Integrating Census 2021 statistics with SDZ2021 in Northern Ireland illustrates several

benefits for official statistics:

Rapid alignment with evolving geographies. NSOs frequently revise output geogra-
phies (e.g., DZ2021 and SDZ2021). By automating variable harmonization and schema
reconciliation, GISINTEGRATION shortens the lag between geographic releases and
the availability of analysis-ready statistical layers.

Traceability and reproducibility. Renaming, selection, and export steps are logged
and repeatable, which is critical when disseminating official statistics and updating
products as methods or source tables evolve.

Flexible attribute linkage. The workflow makes it straightforward to attach multiple
attributes (e.g., all usual residents, population density, area) to the same spatial units,
enabling multi-attribute visualization and downstream modeling.

Interoperable outputs. Standards-compliant DBF/CSV /GeoJSON exports allow im-
mediate use in common GIS tools (ArcGIS/QGIS) and web mapping stacks, facilitating
internal analysis and public communication.

At the same time, the census use case underscores domain-specific concerns:

Geographic change management. Newly defined zones require robust crosswalks
to legacy geographies for time series comparability. Maintaining concordances and
versioned metadata is as important as the one-off linkage.

Modifiable Areal Unit Problem (MAUP). Indicators such as density or rates depend
on zoning systems and scale. Although the package standardizes processing, analysts
must still interpret results in light of MAUP and consider sensitivity analyses across
geographies (e.g., SDZ vs. DZ).

Key discovery and semantic alignment. Even within one statistical system, code lists,
field names, and formats can vary across tables and vintages. Automated key/variable
discovery (selVar) reduces brittle, hand-coded joins and avoids silent mismatches.

Overall, the Northern Ireland application shows how standardized preprocessing ac-

celerates the production of authoritative, transparent geographic statistics, while preserving

the controls and audit trails NSOs require.

5.2. Lessons from Air-Quality Integration

The California PM, 5 example demonstrates complementary strengths in an environmental-

monitoring context:

Policy alignment through spatial aggregation. Aggregating monitor readings to
counties produces indicators aligned with decision-making units, improving inter-
pretability for health and regulatory uses.

Stability gains. Variance reduction from monitor-level values to county means indicates
improved signal stability, aiding communication and comparisons across jurisdictions.
Coverage diagnostics. Retaining counts of contributing observations provides an
explicit measure of data sufficiency and helps flag counties that may require alternative
estimation strategies.

Domain-specific cautions include:

Uneven monitoring networks. Spatial clustering of monitors may bias county means.
Where coverage is sparse or absent, model-based fusion (e.g., satellite products, re-
analysis) or small-area estimation can complement direct aggregation.

Exposure representativeness. Simple arithmetic means do not capture diurnal patterns,
episodic events, or population-weighted exposure; additional weighting or temporal
smoothing may be warranted depending on the question.



AppliedMath 2025, 5, 166

14 of 16

5.3. Cross-Cutting Themes
Across both applications, several themes generalize beyond the specific datasets:

¢ Standardization before sophistication. Routine—but error-prone—steps (naming,
typing, key discovery, export constraints) are the bottleneck. Automating these with
auditable logs unlocks analyst time for interpretation and advanced methods.

*  Governance-grade metadata. Reliable integration depends on versioned geographies,
documented concordances, and explicit CRS handling. Embedding these artifacts in
the pipeline improves institutional memory and reproducibility.

¢ Interoperability as a design goal. Outputs that “just work” in mainstream GIS and
analysis environments reduce friction for both specialists and non-specialists, speed-
ing dissemination.

5.4. Limitations and Sensitivities

While GISINTEGRATION streamlines preprocessing and linkage, important
limitations remain:

e Data quality and representativeness. Integration cannot compensate for missingness,
measurement error, or siting bias. Diagnostics (coverage, variance, outlier checks)
should accompany any aggregated indicators.

*  Geographic dependence of results. MAUP and boundary updates can shift in-
dicator values; where feasible, provide multi-scale views or stability checks across
alternative zonations.

*  Scope of current implementation. The present focus is vector/tabular data. Raster
integration, temporal versioning of boundaries, and conflation/topological correction
are flagged for future development.

5.5. Implications for Producers and Users

For NSOs and public agencies, the population and air-quality cases suggest practical
steps: adopt standardized preprocessing to shorten publication timelines; publish con-
cordances and QA summaries alongside indicators; and provide interoperable exports to
maximize reuse. For researchers and policymakers, the ability to link multiple attributes to
consistent spatial units—and to understand uncertainty and coverage—improves the qual-
ity of evidence used in planning, equity assessments, and environmental health analyses.

In sum, the two applications together show that a uniform, auditable integration
pipeline can serve both official statistical production and environmental monitoring, yield-
ing outputs that are faster to produce, easier to trust, and simpler to communicate.

6. Conclusions

Effective use of geospatial information in official statistics depends on reliable, trans-
parent, and reproducible data integration. The GISINTEGRATION package addresses
this requirement through a structured pipeline that standardizes variables, supports user-
controlled exceptions, reconciles schemas, and exports interoperable outputs suitable
for mainstream GIS environments. The two applications presented—linking population
statistics to Super Data Zones in Northern Ireland and aggregating PM, 5 observations to
California counties—demonstrate that the same workflow generalizes across domains, data
models, and administrative geographies.

In the Northern Ireland example, the package expedited the construction of analysis-
ready layers at newly defined statistical geographies, facilitating population-level visual-
ization and multi-attribute exploration. In the air-quality example, integration at county
level produced directly comparable indicators that are usable for policy analysis and com-
munication. Aggregation increased interpretability and stability, with variance decreasing
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from 40.716 at monitor level to 5.777 for county means and coverage achieved for 79.31%
of counties in July 2020. These results underscore the value of standardized integration
for revealing spatial patterns, enabling fair comparisons, and supporting downstream
modelling and dissemination.

Several limitations warrant attention. Integration quality depends on the completeness
and spatial representativeness of source data, the availability of robust keys or concordances,
and careful handling of coordinate reference systems. In environmental settings, siting
bias and missing monitors can affect county-level estimates, and simple arithmetic means
do not capture exposure timing or uncertainty. In official statistics, evolving geographies
require sustained maintenance of crosswalks and metadata.

Future development should expand input/output coverage (e.g., additional vec-
tor/raster formats), strengthen uncertainty propagation and diagnostics, and add options
for population weighting, temporal smoothing, and model-based fusion with satellite or
reanalysis products. Enhanced metadata management, validation reports, and API connec-
tors to statistical and geospatial repositories would further support institutional adoption.
By lowering the technical barriers to harmonization and linkage, GISINTEGRATION con-
tributes a practical foundation for scalable geospatial-statistical production across national
statistical systems and applied research.
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