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ABSTRACT
Continuous auditing research has grappled with the challenge of managing the abundance of detected exceptions in internal 
audit applications for the past 30 years. A key issue in continuous auditing involves the uncontrolled proliferation of exceptions, 
where the sheer volume makes manual follow-up impractical, undermining the viability of the technology. The root cause of 
this problem is the combination of strong class imbalance and the predominant rule-based systems design. Prior investigations 
have attempted ad hoc remedies like introducing additional layers to prioritize the most suspicious exceptions or aggregating 
data. Currently, there is no universal method to address this prioritization challenge, leaving internal auditors without a means 
to focus specifically on exceptions most likely to represent genuine faults. Our research explores the origin of this prioritization 
dilemma and proposes a systems design that can deal appropriately with class imbalance. This solution allows full control of 
the exception volume by a simple approach in machine learning called thresholding and combined with methods to interpret 
the output of a continuous auditing system our design effectively focuses the internal auditors' attention on the most significant 
exceptions. We discuss the implications of thresholding for practice and the literature.

1   |   Introduction

Traditional audit sampling examines only hundreds of re-
cords from millions, risking undetected errors. While risk-
based auditing targets high-risk transactions, detecting rare 
errors in large datasets remains challenging (Teitlebaum and 
Robinson  1975), and judgment-based approaches suffer from 
bias (Hall et  al.  2000). An alternative, made possible by ad-
vances in data technology, is to forego sampling and instead 
review the entire population (Issa  2013; Li et  al.  2016; No 
et al. 2019). These techniques involve calculating the likelihood 
of a transaction being incorrect and then manually investigat-
ing the most suspicious cases. Such use of computers in auditing 

is called continuous auditing (CA). CA, pioneered by Groomer 
and Murthy (1989) and Vasarhelyi and Halper (1991), focuses on 
detecting exceptions—suspicious or irregular transactions—for 
internal auditor follow-up. While our application focuses on in-
ternal audit activities that could be characterized as continuous 
monitoring, we maintain the CA framework to align with the 
established literature that consistently positions internal audit 
exception detection under the CA umbrella (Vasarhelyi and 
Halper 1991; Alles et al. 2006; Eulerich and Kalinichenko 2018). 
Despite extensive conceptual development and numerous defi-
nitions (Kogan et  al.  1999; Rezaee et  al.  2002; Vasarhelyi and 
Halper 1991; Woodroof and Searcy 2001), CA primarily serves to 
identify exceptions for internal auditor investigation (Byrnes and 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). Intelligent Systems in Accounting, Finance and Management published by John Wiley & Sons Ltd.

https://doi.org/10.1002/isaf.70022
https://doi.org/10.1002/isaf.70022
mailto:
https://orcid.org/0000-0002-4436-5920
https://orcid.org/0000-0002-4971-2864
https://orcid.org/0000-0003-2050-7004
mailto:jan.svanberg@hig.se
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fisaf.70022&domain=pdf&date_stamp=2025-12-10


2 of 17 Intelligent Systems in Accounting, Finance and Management, 2025

Mcquilken  2012; Eulerich and Kalinichenko  2018; Vasarhelyi 
et  al.  2012). CA systems have limited adoption. Eulerich and 
Kalinichenko  (2018) note that while CA systems can identify 
anomalies based on predefined criteria, they are “not com-
monly used by organizations” (p. 142). Few studies examine ac-
tual CA implementations (El-Masry and Reck 2008; Gonzalez 
et al. 2012; Rikhardsson and Dull 2016; Vasarhelyi et al. 2012), 
with real-world data usage often highlighted as a contribution 
(Wei et al. 2024).

The gap between CA theory and practice explains implementa-
tion difficulties. While CA theoretically increases efficiency and 
effectiveness, a critical practical challenge is controlling output 
volume. CA systems often generate overwhelming numbers of 
exceptions, leaving internal auditors uncertain which to inves-
tigate (Alles et  al.  2006,  2008; Perols and Murthy  2012). This 
exception overload undermines CA's practical benefits.

While some CA designs may avoid exception overload—such 
as process mining for internal control evaluation or machine 
learning for fraud risk assessment (Ding et  al.  2019; Perols 
et al. 2017)—the literature lacks evidence comparing design ef-
fectiveness in managing output volume.

This study addresses why CA systems generate overwhelming 
exception volumes and proposes thresholding methods en-
abling internal auditor control. Unlike previous rule-based ap-
proaches requiring organization-specific expertise (Issa  2013; 
Li et  al.  2016), our machine learning-based method provides 
generally applicable prioritization through probability estimates 
combined with SHAP interpretation methods.

Random sampling, which is to treat all exceptions equally as if 
there is no information about the likelihood that an exception is 
true or not, may have the merits of simplicity and ease of use, rep-
resentative coverage of a whole dataset, and avoidance of over-
fitting a more precise prioritization method and thus avoidance 
of a too narrow audit focus. The latter may therefore be more 
compliant with audit standards than a method that can identify 
true exceptions more effectively and efficiently. Even if the inter-
nal audit designs its methods discretionarily, compliance with 
external audit standards makes the internal audit more reliable 
and useful for the external auditors (Malaescu and Sutton 2015) 
and may therefore be an issue to consider when choosing CA 
architecture. However, we do not consider random sampling an 
effective prioritization method, as it does not enhance the qual-
ity of the sample by identifying a higher proportion of true ex-
ceptions than what exists in the overall population. To improve 
the efficiency of manual follow-ups, it is crucial for CA system 
development to adopt more effective methods for prioritizing ex-
ceptions. Relying on random sampling leads to inefficient use of 
internal auditors' time.

Issa  (2013) investigated alternatives to random sampling in a 
doctoral thesis motivated by the scarcity of studies that address 
the problem of processing large numbers of identified excep-
tions and proposing methodologies to detect and subsequently 
prioritize such exceptions with the purpose of avoiding excep-
tion overload. These prioritization techniques were intended 
to direct auditors' and management's investigations towards 
the more suspicious cases. These methodologies were all based 

on rules that incorporated the internal auditors' expertise. In a 
rule-based CA system the main idea was to have auditors assign 
a suspicion score based on what rule the transaction violates. A 
later study by Li et al. (2016) investigated a similar solution on 
real company data and found that the addition of extra layers of 
rules (suspicion scores) results in effective prioritization of ex-
ceptions. Results show that the methods designed to enhance 
the prioritization performance of rule-based implementations 
of CA systems offer improved prioritization, saving the internal 
audit costs and increasing its ability, and adding a learning fea-
ture that updates the suspicion scores, adding further capacity 
compared to simply random sampling. This more structured, 
adaptive, and risk-focused prioritization is clearly superior to 
random sampling. The downside of, at least the Li et al. (2016) 
implementation, is its technical complexity, the initial setup 
process, the need for adaptation and maintenance, and its 
organization-idiosyncratic nature.

Methods that require a lot of situation-specific development 
cannot be assumed to function equally well in all organizations. 
The fact that Issa (2013) and Li et al. (2016) were successful with 
their rule-based CA systems that prioritize exceptions with sus-
picion scores does not guarantee that the specific conditions in 
the investigated data or organization did not present themselves 
as a good fit with the employed methods and that the method 
therefore is highly organization-idiosyncratic. The rules and the 
suspicion scores could be very different from those presented by 
Issa (2013) and by Li et al. (2016) when developed in other orga-
nizations and there is no guarantee that a CA system prioritizing 
exceptions well enough can be developed.

Another limitation of their proposed solution is that the develop-
ment of a functional rule-based CA system requires extensive col-
laboration with internal audit, as well as the audit team's ability 
to provide the CA developers with relevant information. However, 
this is not always something that can be relied upon. There is no 
guarantee that a rule-based CA system delivers sufficient precision 
and that suspicion scores add to the performance of the system so 
that the prioritized exceptions are a good enough sample of the 
transactions for auditors' follow-up. The ad hoc solutions proposed 
by Issa (2013) and Li et al. (2016) advocate the combination of pre-
diction methods in a layered fashion, where the output of one layer 
serves as the input for the subsequent one. Layers of classifiers pose 
challenges in terms of interpretation, being potentially intricate, 
time-consuming, expensive, or even unfeasible for the internal au-
ditors to understand. A layered rule-based CA system has a trade-
off between predictive performance and interpretability for which 
there is no guarantee with the layered design that interpretability 
can be maintained at acceptable levels of exception prioritization. 
There is a risk that developers need to add such complex detection 
and prioritization methods that interpretability is lost. Finally, the 
main objection to the CA system designs discussed by Issa (2013) 
and Li et al. (2016) is that they are rule-based. Transactions may be 
hundreds of thousands, but the errors that internal auditors look 
for are typically few. In machine learning terms, this is referred to 
as class imbalance. A rule-based design is, in our view, harder to 
make work effectively than other designs when there is significant 
class imbalance. The reason is that the rule-based design offers no 
easily implementable method to set a threshold for the probability 
at which a transaction should be classified as an exception. This 
is why it is difficult to prioritize exceptions in a rule-based design.
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This argumentation is straightforward but literature reviews 
offer little insight into the information overload problem. 
Reviews focus on themes such as reasons for using CA (Brown 
et al. 2007; Hassan et al. 2023), statistical, mathematical, and 
IT instruments as enabling technologies for CA (cf. Eulerich 
and Kalinichenko 2018) and some basic tools that developers 
would know about, for example, time series, cross-sectional 
regressions, and continuity equations are mentioned briefly 
by Brown et  al.  (2007). When discussing enabling technolo-
gies Brown et  al.  (2007) mainly cites a conceptual paper by 
Rezaee et al. (2002) and a key concept for prioritizing excep-
tions; the belief functions or suspicion scores are only men-
tioned in passing. It seems as though the exception overload 
issue is unknown to the literature reviews. There are of course 
many other practical challenges with new and complicated 
internal audit systems such as CA, for example, extracting 
data from an ERP system (Wang and Kogan  2020), but the 
reasons why CA systems can generate such a large volume of 
exceptions that the technology becomes unusable for internal 
auditing is a key issue for the future of CA systems that can-
not be ignored. The present study contributes to the literature 
(1) by introducing thresholding as a method to prioritize de-
tected exceptions in CA applications. The study demonstrates 
how probability estimates for the exceptions can be used as 
assessments of the likelihood that a suspicious exception is a 
true exception. In addition to prioritizing exceptions based on 
likelihood estimates, the study contributes to the literature by 
(2) describing how the SHapley Additive exPlanations (SHAP) 
interpretation methodology (Lundberg et al. 2020; Lundberg 
and Lee 2017) can provide internal auditors with further sup-
port in assessing which exceptions should be prioritized, as 
exceptions can be understood in a causal context.

We examine CA application development at Sweden's 
National Government Employee Pensions Board (SPV), serv-
ing 1,100,000 employees and pensioners across 250 employ-
ers. The pilot project developed methods to identify errors in 
pension registers, testing whether CA could enhance internal 
audit efficiency. SPV had no prior CA experience. Our CA 
application differs from previous systems by using standard 
machine learning algorithms without organization-specific 
rule-based constraints, providing generally applicable excep-
tion prioritization through probability estimates and variable 
importance metrics for auditor interpretation on comprehen-
sive population data.

This paper proceeds with a literature review on CA volume con-
trol, followed by our case study findings and threshold accuracy 
analysis demonstrating SHAP's role in auditor interpretation.

2   |   Literature Review

When introducing full-population auditing methods, auditors 
are faced with the choice between a rule-based design and an 
automated design. In a rule-based design, auditors establish 
specific rules to flag suspicious events, functioning similarly to 
expert systems. This approach is appealing because it leverages 
auditors' expertise, making the process intuitive and easier to 
comprehend. Alternatively, auditors can use data science tech-
niques to detect errors with a higher level of technical autonomy, 

either through unsupervised learning (outlier detection) or 
supervised learning. Unsupervised learning is entirely data-
driven (Alghushairy et al. 2021) and can be effectively applied 
in CA systems (Wei et  al.  2024), whereas supervised learning 
requires auditors to provide a preclassified dataset of true and 
false exceptions (Caroline and Thomas 2021).

In the following, exceptions refer to deviations that may repre-
sent actual errors in the data or simply anomalies that deviate 
from a normal pattern. We also use the term error to refer spe-
cifically to actual data errors. An exception can thus be either an 
error or a false alarm. Determining which is present typically 
requires manual verification. A CA system that identifies ex-
ceptions can therefore return both errors and false alarms. The 
term anomalies is used in its lexical sense.

2.1   |   Exception Overload: A Core Challenge in CA 
Implementation

An obstacle preventing widespread CA adoption is exception 
overload—the generation of more suspicious transactions than 
internal auditors can practically investigate. Alles et al.  (2006, 
2008) documented this problem in pilot implementations, where 
CA systems produced overwhelming volumes of alerts that ex-
ceeded audit department capacity. Perols and Murthy  (2012) 
confirmed that even modest exception volumes can surpass au-
ditors' analytical capabilities, leading to system abandonment. 
This overload problem directly undermines CA's theoretical 
benefits. When auditors cannot investigate detected exceptions 
due to volume constraints, the economic value of comprehensive 
population testing disappears. Organizations consequently re-
vert to traditional sampling methods or disable CA systems en-
tirely, explaining the limited practical adoption despite decades 
of research (Eulerich and Kalinichenko 2018).

The effectiveness of full-population auditing depends on audi-
tors' expertise in identifying risk factors and assigning appro-
priate weights when determining suspicion levels. However, 
this reliance on judgment creates a fundamental dilemma. 
Unsupervised outlier detection, while promising, cannot dis-
tinguish between relevant and irrelevant deviations, often 
producing overwhelming numbers of potentially insignificant 
exceptions. This creates “exception overload”—the core chal-
lenge preventing CA adoption in practice. Exception overload 
occurs when CA systems generate more suspicious transac-
tions than auditors can investigate (Kim and Vasarhelyi 2012; 
Thiprungsri and Vasarhelyi  2011). When investigation be-
comes impractical due to volume, CA's economic benefits dis-
appear, explaining limited adoption despite decades of research 
(Eulerich and Kalinichenko 2018). Issa and Kogan (2014) argued 
that managing large volumes of exceptions detected for reasons 
unknown to auditors is challenging, supported by behavioral 
studies showing humans struggle to analyze such exceptions ef-
fectively (Iselin 1988; Kleinmuntz 1990). Therefore, even mod-
est exception volumes can exceed auditors' capacity to address 
them effectively.

The issue of overload is not universally applicable to all CA sys-
tems. By focusing CA on business process controls, it is possi-
ble to limit the number of alerts through a technique known as 
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process mining. Although process mining is well-established, 
few studies have examined its application in accounting and 
auditing (Duan et  al.  2024; Jans and Hosseinpour  2019). This 
methodology has proven effective for evaluating internal con-
trols as well as financial statements (Werner et al. 2021).

While process mining may be pivotal for future CA implemen-
tations, our focus is on error detection at the transactional level. 
This level involves a vast number of observations, often number-
ing in the millions. Analyzing such large datasets is the focus 
of numerous studies, including Zhaokai and Moffitt (2019), who 
developed a contract analytics framework to facilitate the anal-
ysis of entire populations of contracts, traditionally assessed 
through sampling. Visualization is another powerful tool that 
can enhance the audit process (Abdullah 2015). While process 
mining offers an alternative for assessing internal control effec-
tiveness through event log data, it is not designed for transac-
tional analysis (Jans et al. 2013).

At the transactional level, addressing the overload issue in full-
population testing is particularly challenging due to the sheer 
volume of transactions and the corresponding number of poten-
tial errors. Recent literature has begun to explore the problem 
of exception overload and exception detection in this context. Li 
et al.  (2016) propose a method that assigns suspicion scores to 
each transaction based on violations of predefined expert rules, 
setting a threshold for further investigation. While this rule-
based design is intuitive for auditors, it relies on accurate ex-
pert knowledge of error characteristics and lacks a mechanism 
to control the volume of detected exceptions, making overload 
a significant risk. Furthermore, while the belief functions are 
set by internal auditors, their definition involves elements that 
are not suitable for decision-making and they are eventually up-
dated by a learning feature that makes interpretation of the pri-
oritized exceptions more and more difficult as the systems learn 
(Rozario and Issa 2020).

Similarly, No et al. (2019) introduce a rule-based approach that 
employs weighted filters based on risk factors for suspicion scor-
ing. In their study, the suspicion scores serve as proxies for au-
ditors' judgments, aiming to reduce exception volume through 
serially linked rule-based classifiers resembling a previous study 
by Issa (2013). In a more recent study, Freiman et al. (2022) uti-
lize a multidimensional audit data sampling methodology on a 
real-world general ledger dataset, demonstrating its effective-
ness in managing exception overload.

The discussion is not new. Alles et  al.  (2006) noted that even 
in control-oriented designs, the volume of generated alarms 
can overwhelm internal auditors (Jans and Hosseinpour 2019; 
Perols and Murthy 2012). As data processing increases and the 
effectiveness of detection techniques diminishes, the number of 
alarms is likely to rise. The system's ability to accurately identify 
suspicious events hinges on the technology used for data classi-
fication, directly impacting audit efficiency. Limited resources 
within audit departments further constrain the capacity to in-
vestigate exceptions (Chan and Vasarhelyi 2011).

It is crucial to distinguish between control-oriented and data-
oriented CA systems, as the former typically generates fewer 
exceptions than the latter due to the nature of the task. This 

distinction, highlighted by Kogan et  al.  (1999), involves find-
ing a trade-off between control-oriented and data-oriented CA 
procedures, which relates to the level of data aggregation em-
ployed. Selecting an appropriate level of data aggregation can 
help manage the volume of detected exceptions. Most literature 
has focused on control-oriented CA (Wei et al. 2024), operating 
at a higher level of aggregation.

A recent development by Yoon et al. (2021) illustrates how ag-
gregation can mitigate the overload problem. Their approach 
utilizes three layers: The first identifies unusual transactions 
as nonroutine errors, the second flags transactions violating 
internal controls as exceptions, and the third detects transac-
tions deviating from standard business behaviors as anomalies. 
While their study found that aggregated data can reduce audit 
effectiveness, it emphasizes the need to find the right level of ag-
gregation for effective CA systems. The challenge remains that 
increasing abstraction may cause many errors to go undetected, 
compromising the CA system's reliability as a component of in-
ternal audit.

Another recent study that deals with prioritization is Rozario 
and Issa (2020). This study adopted and modified Issa's (2013) 
framework, according to which prioritization is based on 
weights defined by expert knowledge from domain specialists. 
For auditors, simple weights that they themselves define may 
be easier to interpret compared to the less transparent belief 
functions methodology used by Li et al. (2016). The study was 
conducted within the internal audit department of a US county, 
using real data with the task of identifying duplicate payments. 
Results of the case study showed that the proposed framework 
significantly improves both efficiency and effectiveness com-
pared to traditional methods auditors use to address duplicate 
payments, such as visually scanning transactions or reviewing 
a sample. Whereas sampling and visual scanning can only find 
the same proportion of errors that the dataset has, the analytics 
for prioritization enabled auditors to find about 4/7th of the er-
rors or 3/4th of the errors when manually following up only 15% 
of the suspicious exceptions after prioritization. Nevertheless, 
the proposed method includes idiosyncratic elements because 
the effectiveness of the method in finding true errors depends on 
the ability of internal auditors to identify relevant indicators that 
predict the errors and define accurate weights on the indicators 
to maximize the performance of the classifier used for prioriti-
zation. This ability will vary from organization to organization.

2.2   |   Rule-Based vs. Probability-Based Exception 
Detection: Design Differences

Exception overload in CA systems stems from design choices 
in detection architectures. Rule-based systems, dominant in 
CA literature (Kogan et al. 1999; Li et al. 2016; No et al. 2019), 
detect exceptions through explicit logical rules defined by do-
main experts. Probability-based systems use machine learning 
algorithms to assign likelihood scores based on patterns learned 
from historical data. These approaches differ in their mecha-
nisms for controlling exception volume.

Rule-based CA systems evaluate transactions against pro-
grammed detection rules such as “IF transaction amount 
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> $50,000 THEN flag as exception” (Issa 2013; Li et al.  2016). 
Multilayered implementations prioritize detected exceptions 
using belief functions or suspicion scores (Li et al. 2016; Rozario 
and Issa  2020). Auditors can trace which rules a transaction 
violated.

Threshold-setting challenges emerge in multidimensional 
contexts. A procurement system might flag: (1) transactions 
> $50,000, (2) vendors < 2 years old, (3) noncompetitive bids, 
and (4) tax haven locations. A transaction at $49,999 to a 
25-month-old vendor in the Cayman Islands evades Rules 1–2 
while violating 3–4. A legitimate $75,000 IT investment with 
a startup triggers Rules 1–2. Distinguishing these requires 
additional exception rules or manual review. Because these 
“automated rules are strictly formal, the existing rules have 
a significant amount of imprecision” (Alles et al. 2004, 7)—a 
statement that underlines the difficulty with using a combina-
tion of rules to control the exception volume. Volume control 
requires trial and error. If $50,000 generates 10,000 exceptions, 
auditors might adjust to $75,000 but cannot predict the result-
ing volume without rerunning the system. Adjustments in one 
dimension interact unpredictably with other rules. Dynamic 
business environments compound this—organizational 
growth changes transaction distributions, requiring threshold 
recalibration. Alles et al. (2004, 6) state that rules “has to be 
reexamined and updated on a regular basis” in order to ensure 
appropriate thresholds. Hayes-Roth et al. (1983) documented 
this knowledge acquisition bottleneck for expert systems. It 
follows from the logic of rule-based designs that you have 
to adjust one or more rules in order to change the detection 
volume, and it can be difficult to know how the rule changes 
transform into a detection volume change.

Probability-based systems such as supervised machine learn-
ing algorithms learn patterns from historical labeled data, 
producing probability scores (0–1) for each transaction rep-
resenting exception likelihood (Ngai et  al.  2011; West and 
Bhattacharya 2016). Auditors set a single probability thresh-
old (e.g., 0.7 = flag transactions ≥ 70% probability). Precision–
recall curves show exact trade-offs between false positives 
and true positives at every threshold value before implemen-
tation (Zou et  al.  2016). Thus, the designer does not have to 
guess the detection volume; it can be an easily controlled as-
pect of the design of the detection system. Algorithms implic-
itly learn complex, nonlinear relationships without explicit 
rule specification. They consider hundreds of variables simul-
taneously, weighting each according to empirical predictive 
power. Models retrain on updated data to adapt to changing 
conditions automatically. This addresses combinatorial explo-
sion—learning from data which patterns predict exceptions 
rather than requiring explicit specification.

Furthermore, with this type of method interpretability requires 
post hoc methods. SHAP values quantify each variable's contri-
bution to individual predictions (Lundberg and Lee  2017), re-
vealing which characteristics influenced probability scores.

We can now compare the two types of approaches and identify 
applicable conditions. Probability-threshold advantages mani-
fest when: (1) exception volumes exceed capacity by orders of 
magnitude, (2) multidimensional risk patterns involve complex 

interactions, (3) class imbalance is severe (error rates < 5%), (4) 
business environments change frequently, and (5) domain ex-
pertise for complete rule specification is limited. Rule-based 
approaches remain applicable when volumes are manageable 
(< 500), patterns are simple, regulations require explicit criteria, 
or historical training data are insufficient. The choice involves 
trade-offs between volume control predictability and inherent 
interpretability.

From a control-oriented CA perspective, implementing a rule-
based program and prioritizing with belief functions, akin to 
past expert systems, is both logical and intuitive. Previous litera-
ture frequently advocates for rule-based systems to identify sus-
picious items based on expert knowledge (Li et al. 2016; Perols 
and Murthy 2012). However, this approach has notable down-
sides. To clarify how different approaches address the exception 
volume challenge, Table 1 summarizes the main methods used 
in CA systems along with their capabilities for volume control.

As Table  1 demonstrates, existing approaches either sacrifice 
detection capability (sampling, aggregation) or lack direct vol-
ume control mechanisms (rule-based systems). Our threshold-
ing approach uniquely combines precise volume control with 
probability-based prioritization.

Rule-based CA systems require extensive process documen-
tation and exhaustive error definitions, making them deter-
ministic rather than probabilistic. While most CA designs are 
rule-based (Kogan et al. 1999; Murthy 2004; Rezaee et al. 2002; 
Woodroof and Searcy  2001), they lack exploratory capabilities 
and often require multiple classifier layers for adequate perfor-
mance. This results in organization-specific solutions that may 
be impractical across different contexts.

Organization-specific prioritization methods create inconsisten-
cies (Issa and Kogan 2014). These approaches assume auditors 
can assess all detected exceptions, making feasibility dependent 
on exception volume—viable in some organizations but unman-
ageable in others. Data aggregation reduces exception volume by 
treating thousands of events as one but causes significant infor-
mation loss (Yoon et al. 2021). While popular for audit planning 
rather than substantive testing (Eulerich et  al.  2020), highly 
aggregated analytical procedures can achieve accuracies as low 
as 50%.

Understanding why transaction-level CA designs in the lit-
erature often suffer from exception overload requires insight 
into rule-based implementations. In these designs, exception 
volume is typically controlled by adding or tightening rules, 
which reduces detections gradually. Data aggregation, another 
rule-based technique, raises abstraction by ignoring case dif-
ferences. Studies like Li et al.  (2016) and Issa  (2013) highlight 
the appeal of rule-based systems for auditors but reveal their 
limitations: they lack mechanisms to control exception volume 
through probability thresholds and have suboptimal accuracy. 
We see three main problems with the previous literature's focus 
on rule-based designs and data aggregation. Firstly, rule-based 
systems do not provide a “volume control” to adjust the num-
ber of exceptions, forcing auditors to manually tweak rules and 
check outcomes only after running the system, offering limited 
predictability and control.
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Secondly, reducing detections in traditional CA designs often 
requires layering rules, which complicates the interpretability 
of results. While individual rules are easy to understand, the 
combined effect of multiple interacting rules becomes complex, 
making it harder to assess the reasons behind detections.

Thirdly, evidence on CA systems using disaggregated data is 
scarce. Errors can increase with higher levels of aggregation, 
supporting the idea that accuracy improves with more granu-
lar data (Chen and Leitch 1999; Hoitash et al. 2006; Leitch and 
Chen 2003). This suggests that refraining from data aggregation 
is critical for achieving high accuracy in CA systems. While ag-
gregation is often used to manage exception overload, it comes at 
the cost of accuracy. As Yoon et al. (2021) state, “A large volume 
of alarms in a CA system can reduce audit efficiency… leading 
to reliance on aggregated data with low accuracy as the effect” 
(p. 14). This trade-off is inherent in rule-based designs, which 
regulate exception volume through rules and aggregation, but 
may not apply to other designs.

Our proposed CA design incorporates thresholding for direct 
exception volume control, allowing auditors to manage detected 
exceptions like adjusting radio volume. Thresholding sets clas-
sification boundaries based on probability scores (Sibiya and 
Sumbwanyambe  2021), ensuring only exceptions surpassing 
chosen thresholds are flagged. This provides flexible, data-
driven exception management—more effective and adaptable 
than current rule-based literature approaches.

CA classification models output probability scores indicating 
the likelihood of genuine faults. Thresholds determine which 
exceptions warrant follow-up, creating precision–recall trade-
offs. These readily available metrics provide internal auditors 
with complete insight for threshold decisions.

While uncommon in CA designs, thresholding is essential for 
class imbalance—where one class significantly outweighs an-
other in binary datasets. Class imbalance occurs in practical 
scenarios like fraud detection (Krambia-Kapardis et  al.  2010), 
where the minority group represents the focal class of interest 
(Johnson and Khoshgoftaar 2019). This imbalance causes over-
classification of majority groups due to higher prior probability 
(Chawla et  al.  2004), with challenges exacerbated by big data 
complexities and class rarity. Model performance deteriorates as 
imbalance increases (Weiss and Provost 2001), making methods 
for severe class imbalance imperative for effective CA exception 
detection.

In CA, class imbalance creates exception detection overload 
through poor classification accuracy—either excessive false 
positives or insufficient true positives. Both scenarios render 
methods practically ineffective. Too few exceptions allow er-
rors to go undetected (like nets with overly large mesh catch-
ing no fish), while too many exceptions overwhelm auditors 
with false alarms (like nets with small mesh catching un-
wanted fish). For internal auditors, the optimal level involves 
identifying enough errors to make manual follow-up practi-
cally feasible, provided the detection method has sufficient 
predictive performance (precision and recall). When the al-
ternative is random selection from CA output, prioritization 
methods offer significant value.T
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The application of thresholding with machine learning algorithms 
has been extensively employed to enhance classification out-
comes (Chen et al. 2006; Zou et al. 2016). As an algorithm-level 
technique, it adjusts the bias towards a specific class by modify-
ing the classification threshold utilized for assigning class labels 
to probability estimates. A decision threshold of 0.5 means that 
the positive class label is assigned when the classifier estimates 
a posterior probability greater than or equal to 0.5. Lowering the 
threshold causes the classifier to assign the positive class label to 
observations with lower confidence, with more positives as a re-
sult. At threshold 0, all cases are positives (declaring all accounting 
as suspicious does not help the auditor much), and at 1, they are all 
negatives (handing the auditor no detected exceptions is equally 
useless). Consequently, the trade-off between class-wise perfor-
mance scores must be taken into account. Arguably, it is a critical 
mistake to use the default threshold 0.5 when data are imbalanced 
because in auditing it is in the nature of the task that data are im-
balanced with the resulting overclassification bias causing a need 
for a decision about the threshold. Nevertheless, thresholding is 
not a concept that the CA literature has employed.

A reason for not adopting thresholding might be that the data 
are often too imbalanced. A critical gap might therefore exist 
between technical capability and practical adoption in auditing 
applications of machine learning. Despite decades of research 
in fraud detection using anomaly detection techniques, few or-
ganizations implement these methods in practice. This imple-
mentation paradox—where technically sound methods fail in 
practice—stems from fundamental data limitations that must be 
examined in the context of CA applications. Machine learning 
approaches to fraud detection face a fundamental obstacle: fraud 
rates are typically so low (< 0.01%) that training effective models 
becomes impossible. Even with sophisticated training methods, 
the scarcity of fraud cases prevents model development, explain-
ing why this research stream, despite being decades old, sees 
limited practical application in audit and assurance activities.

Our CA application addresses data quality errors rather than 
fraud, creating fundamentally different implementation con-
ditions. Data quality errors occur at substantially higher rates 
(3%–7% in our study) compared to fraud (< 0.01%), providing 
sufficient positive examples for model training. Thus, in some 
other situations the data may be too imbalanced for our method. 
Additionally, organizations typically maintain historical correc-
tion records that serve as natural training labels, unlike fraud 
detection where true labels are rarely available.

Successful implementation nevertheless requires specific organi-
zational conditions. Organizations need historical error correc-
tion data with a minimum of 1000 labeled errors and error rates 
exceeding 1% for adequate model training. Stable data structures 
and business processes are essential, along with systematic error 
identification and correction procedures. Conversely, organi-
zations should avoid this approach when error rates fall below 
0.5% due to insufficient training data, when business processes 
change rapidly causing model instability, when no systematic 
error correction history exists, or when data governance matu-
rity is insufficient to support the implementation.

While thresholding is a well-established technique in machine 
learning for handling class imbalance, its systematic application 

to CA exception volume control has not been explored in the 
literature. Previous CA research has focused primarily on im-
proving detection accuracy through rule refinement or layered 
classifiers but has not addressed the volume control problem 
that prevents practical implementation. The contribution of 
thresholding to CA lies in providing probability-based priori-
tization with direct volume control, where auditors can adjust 
exception volume similarly to adjusting classification thresh-
olds in machine learning applications. This approach differs 
from organization-specific rule-based solutions by offering gen-
erally applicable, threshold-adjustable classification methods 
that address the exception overload problem documented in CA 
implementations.

To fill a void in CA research our study systematically explores the 
application of thresholding to address class imbalance in signifi-
cantly imbalanced CA data. The CA dataset in this study exhibits a 
class distribution where the erroneous entries constitute 5% of the 
entire dataset. We conduct experiments with different threshold 
levels to demonstrate how the volume of detected exceptions can 
be controlled using this technique. In machine learning literature, 
there is a conceptual idea of an optimal threshold level, but in the 
context of CA, this level depends on parameters such as the cost of 
following up on an exception and the value of detecting a genuine 
anomaly. Unfortunately, in this study, we do not have access to 
precise values for these parameters.

In an ideal scenario, these parameters could be calculated or 
estimated, and an optimal threshold level would ideally then 
be determined so that the cost of following up on exceptions 
at the threshold level equals the economic value of detecting 
them. Unfortunately, in practice, it is not always possible to pre-
cisely determine these values, and there remains a challenge 
of adjusting the threshold level in a way that balances the cost 
of follow-up and the value of anomaly detection. However, this 
problem is a luxury that should be afforded to the internal audi-
tors because without thresholding the auditors may be unable to 
control the exception volume.

We address these issues with previous CA systems research by 
describing the development process leading up to a data level 
CA system that relies on generally applicable machine learning 
algorithms that allow thresholding and builds on state-of-the-
art interpretation methods in machine learning. We investigate 
two research questions:

R1: How can thresholding be used as a method to control the 
volume of detected exceptions of a data level CA application?

R2: What contribution can a variable importance measure 
provide to the organization's understanding of the causes 
of register data errors?

3   |   Method and Data

3.1   |   The Organizational Context

Statens Pensionsverk (SPV), which is the state government's 
occupational pensions agency, stands as one of Sweden's major 
providers of pension services, overseeing the administration of 
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occupational pensions for more than 1,100,000 people, includ-
ing current and former government employees and pensioners. 
Additionally, SPV manages pension data from approximately 
250 authorities and selects companies with government con-
tracts. Its responsibilities encompass calculating pension premi-
ums, providing forecasts and statistics to the government, and 
serving about 250 employees. This agency plays a pivotal role 
in responding to inquiries from pensioners, government em-
ployees, and employers. Its tasks extend to the computation and 
disbursement of occupational pensions, calculation of liability 
and premiums for employers, and the compilation of pension 
statistics.

In accordance with government regulation (1997:909), SPV is 
entrusted with the administration of pensions for a substantial 
portion of government employees in Sweden. This involves 
the management of a service register for individuals covered 
by permanent occupational pension regulations. State author-
ities, serving as employers, are mandated to furnish SPV with 
the requisite information for maintaining this register. SPV 
has established regulations (AgVFS 2016:1 A1) delineating 
the process by which employers must provide accurate and 
complete monthly information on employment, in line with 
the agency's stipulated requirements outlined in a document 
known as Transfer Requirements. The organizational context 
is meticulously regulated, necessitating employers reporting 
to SPV to adhere to prescribed methods for reporting employ-
ment information. Accurate reporting is a prerequisite for en-
suring that government employees in authorities receive their 
entitled pension upon retirement. Keeping track of how much 
people have worked and how much they were paid is a vital 
part of SPV's obligations, so SPV needs to keep this record 
as accurately as possible. The purpose of this project from 
SPV's perspective is to develop a method that can assist SPV 
in identifying registry entries that justify manual follow-up. 
The project is explorative and the interest of SPV was to see 
whether machine learning technology could benefit the man-
ual work of internal auditors.

The reporting of employment conditions is an ongoing process, 
with certain reports carrying particular significance. One cru-
cial instance is the termination of employment. Despite govern-
ment authorities being mandated to report such terminations 
and their reasons, a noteworthy number of errors persist, posing 
challenges for SPV in identification. SPV has published a docu-
ment on its website outlining the agency's requirements for em-
ployers' reporting of employment information. This document 
stipulates that, upon termination of employment, the monthly 
report submitted by the employer must include the date of ter-
mination, along with the reason for termination. The document 
details various reasons, each with distinct implications for pen-
sion outcomes. Examples include retirement with a disability 
pension, retirement with an old-age pension for specific profes-
sions, retirement before the age of 65, retirement with pension 
compensation, retirement in accordance with transitional provi-
sions, deceased status, and other retirement scenarios. The doc-
ument lists 20 different reasons for leaving that employers must 
specify. Termination of employment holds not only significant 
importance for SPV's accurate registration but also provides ac-
cess to labeled data.

SPV maintains an internal control framework that regularly 
conducts internal audits. However, challenges arise in rectifying 
errors related to the absence of reports for employment termi-
nations, making it difficult for SPV to detect and address such 
discrepancies. Instances persist where individuals remain in the 
system despite having concluded their employment several years 
prior. Typically, employers are the ones to identify cases where 
employment has ceased but has not been reported to SPV, al-
though there is no guarantee that this oversight will consistently 
occur. Identifying such inaccuracies involves a labor-intensive 
process, and the authority faces constraints in internal audit 
resources to systematically detect these exceptions on a large 
scale without adequate system support. Consequently, SPV re-
quires a CA system to facilitate the identification of unreported 
employment terminations. The system needs not report excep-
tions in real time but can be used as an audit analytic when the 
employment data register is audited. If compared to the idea of 
a CA system providing real-time assurance, the application we 
are studying here is a more limited application that is tested in 
a pilot project with the purpose to demonstrate whether a ma-
chine learning application can be useful for internal auditors as 
they seek to improve the quality of SPV's data.

Section 3.2 delineates how SPV can identify inaccurate entries 
of employment terminations in its registers. During the second 
quarter of 2022, information for over 280,000 individuals was re-
ported to SPV. Registers of previously self-corrected employment 
terminations provide valuable resources for the CA system's de-
velopment. In collaboration with SPV, our research group has 
identified the most pertinent indicators to form the cornerstone 
of the CA system, with Section 3.2 providing comprehensive de-
tails on the data and research design. Identifying indicators with 
predictive power for detecting true errors is helped if auditors 
are able to highlight contexts that may correlate with the occur-
rence of actual errors. It is not even necessary that they can do 
that because developers can investigate models with hundreds 
of indicators and narrow-down to the most important ones in 
a trial and error fashion. In contrast, this task is much simpler 
than the one auditors face in a rule-based design, where they 
must possess detailed knowledge of the specific conditions that 
cause errors and the exact indicator levels likely associated with 
errors. In a rule-based design, auditors are required to formalize 
the model, including assigning weights to parameters and set-
ting threshold levels for indicators to identify exceptions. This 
means they need a deep, precise understanding of the rules and 
how each factor interacts, whereas a predictive model can iden-
tify patterns without requiring the same level of explicit detail 
about the causes and specific thresholds for each indicator.

3.2   |   Data and Research Design

The purpose of the CA system examined in this study is to assist 
the internal audit in its efforts to identify errors in the reported 
employment data. We do not have access to an integrated IT in-
frastructure, which is a prerequisite for real-time monitoring of 
internal controls, so we choose a design that provides assurance 
through analytical procedures by investigating one registry, al-
beit a large one, that would require years of work to fully inves-
tigate manually. We avoid rule-based classifiers for the reasons 
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explained regarding their deficiencies when it comes to provid-
ing a likelihood estimate because such a design does not nor-
mally give us probability estimates for each detected exception. 
Instead, we use supervised machine learning models that pro-
vide probability estimates for each detected exception and iden-
tify qualified exceptions as those with a suspicious score above a 
threshold. We are interested only in models that allow us to con-
trol the volume of detected exceptions with the threshold level.

Before describing the research design, we describe data. SPV's 
internal audit expert provided a dataset with more than 130 in-
dicators for each employee in the register. Most indicators are 
relevant only to particular employee categories, which means 
that a lot of indicators are missing for a particular employee. The 
dataset covers data for 131,039 individuals of which 6538, approx-
imately 5%, had been labeled as exceptions through a labelling 
procedure by the internal audit expert. SPV's expert developed 
an analytical formula with which to define termination dates as 
retroactively added or removed. This defines a register error that 
has been retroactively corrected, and we use this as our proxy 
for a register error in this study. The presence of retroactive cor-
rections signals that a register error has been in place for some 
time that has eventually been identified by SPV or the employer. 
Thus, the retroactive corrections can be used as labels of incor-
rect entries but do not cover all register errors because they may 
not have been detected and corrected. The discovered and cor-
rected entries most likely constitute only a fraction of the actual 
number of incorrect entries because there is no viable method to 
detect them all manually so the purpose of the CA system is to 
learn a method to detect not only these 6538 errors but to ensure 
data quality in the registers and ultimately to assure the quality 
of the services provided by SPV by detecting a large fraction of 
the now unknown register errors. Since new registry data is con-
tinuously entered, there is also a need for a method that allows 
for the continuous review of incoming information to correct er-
rors in real time and even prevent errors. The register contains 
many features that each employee may or may not have or may 
be related to: Employment categories such as managers covered 
by regulations, air traffic controllers, certain military positions, 
reserve officers, train drivers, professional officers at the age of 
60, pilots, combined positions at universities and colleges, and 
insurance medical and dental advisors within the insurance 
agency. Different age categories apply for different employment 
categories. Employments are in three main types of contracts—
with monthly payment, without monthly payment and with less 
than 20% of full time, without monthly payment and with more 
than 20% of full time. A number of reasons for being absent from 
work are given such as illness, part-time retirement, on leave for 
military service within the armed forces, unpaid leave, fully on 
leave for another employment with entitlement to occupational 
pension, on part-time leave for another employment, or fully on 
leave for another employment without entitlement to occupa-
tional pension.

The retroactive corrections, our labels, are selected using several 
criteria, some of which are difficult to decipher without detailed 
knowledge of how the register is constructed. We relied on the 
internal audit expert for this assessment. The register errors re-
late only to the situation when the employer has not reported ter-
mination of employment or has reported termination although 
the employment is still there. There are several limitations to 

which errors we focus on. Firstly, only employment periods cor-
responding to employment with at least 20% employment are 
included. Small part-time employments are excluded from the 
study because dealing with them in the register would require 
manual preparation of the register so that it is consistent with 
our definition of retroactively adding or removing an employ-
ment termination date as our definition of a register entry error. 
Secondly, we also used the distinction that for an employment to 
be considered to have an expiry date, there must be no employ-
ment for at least 30 days after the employment's last registered 
entries. Thus, there should be a period in which the person has 
apparently not worked at all for the employer. Thirdly, for an 
expiry date to exist as the originally reported expiry date, there 
must exist an entered expiry date when considering only data 
valid at the end of the second month after the expiry date. This 
criterion targets falsely registered expiries, cases in which em-
ployment continues despite that the employer has reported a ter-
mination at some point.

We anticipate that the incorrect entries have heterogeneous, 
nonlinear and multidimensional relationships with the indica-
tors identified by the internal audit as potentially related to the 
likelihood that an entry is incorrect. We therefore expect that 
an estimation method with a high capacity for capturing com-
plexity and nonlinearity should be more effective at learning to 
predict the incorrect entries than linear models or models used 
in statistics. For these reasons, we find the ML models that are 
known for their complexity-handling capacity more favorable 
for assessing whether an entry is incorrect or not than the often-
used rule-based methods or statistical methods. ML allows the 
prediction of exceptions when distributions are unknown and 
when the estimated relationships are severely nonlinear (Duda 
et al. 2001). This methodology has been used in similar areas, 
for example, in finance for credit scoring (Cleofas-Sánchez 
et  al.  2016) and bankruptcy prediction (Gerlein et  al.  2016), 
which are applications having features in common with our 
problem, for example, class imbalance. A broad spectrum of al-
gorithms can be deployed to classify our type of data with vary-
ing results, such as Nearest Neighbor, Linear Support Vector 
Machine, Radial Basis Function Support Vector Machine, 
Random Forest, Logistic Regression, Artificial Neural Network, 
Gradient Boosting, Naïve Bayes, and Quadratic Discriminant 
Analysis, but because there is a close relationship between the 
tree-based algorithms and the interpretation method SHAP we 
opted for the algorithm XGBoost, that is, tree-based and suited 
for nonlinear and complex data.

XGBoost in a CA system allows for thresholding by outputting 
probabilistic scores or confidence levels for each prediction, 
which auditors can use to set flexible thresholds based on risk 
tolerance. For example, auditors can decide to investigate only 
transactions that exceed a certain probability of being an excep-
tion (e.g., 80% or higher). This thresholding capability enables 
a tailored prioritization of exceptions, where the cutoff can be 
adjusted based on factors such as audit resources, risk levels, 
and specific case requirements. Prioritization of exceptions can 
therefore be achieved through thresholding. Our reason for 
using an algorithm such as XGBoost becomes evident when con-
trasted with rule-based CA systems. A rule-based implemen-
tation lacks this flexibility because it operates on binary logic. 
Each rule either flags a transaction as an exception or it does not, 
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without any associated confidence score or gradient. As a result, 
auditors must rely solely on the set rules to filter exceptions and 
cannot easily adjust sensitivity based on probability or risk level. 
If auditors want to change the strictness of detection, they need 
to redefine the rules themselves, which is more rigid and less 
adaptable than the dynamic thresholding that XGBoost offers.

We sort the persons in the register into two (disjoint) categories 
based on whether they are considered false entries or not and 
denote false entries as positive cases and correct entries as neg-
ative cases. Our goal is to capture the attribute interactions that 
describe a register post as high risk of being a false entry.

XGBoost, or eXtreme Gradient Boosting, is a powerful and pop-
ular open-source machine learning algorithm that is widely 
used for supervised learning tasks such as classification and re-
gression (Qiu et al. 2022). It is an ensemble algorithm that com-
bines the strengths of multiple decision tree models to improve 
predictive accuracy (Le et al. 2019; Zhou et al. 2020).

In XGBoost, decision trees are constructed iteratively in a pro-
cess called boosting. Each tree is built to correct the errors made 
by the previous tree, with the final prediction being a weighted 
combination of all the trees in the ensemble. The “extreme” in 
XGBoost refers to the fact that it employs a regularized form of 
gradient boosting that can handle complex datasets and prevent 
overfitting (Zhang et al. 2020).

One of the key advantages of XGBoost is its speed and scalability 
(Qiu et al. 2022). It is designed to be highly efficient, with par-
allel processing capabilities that enable it to handle large data-
sets with millions of features and billions of rows. XGBoost also 
provides built-in support for missing values and can handle a 
variety of data types.

XGBoost has been successfully applied to a wide range of ma-
chine learning tasks, including image classification, natural 
language processing, and fraud detection. It is widely used in 
industry (Qiu et al. 2022) and has won numerous machine learn-
ing competitions on platforms such as Kaggle. Gradient boosting 
is one of the strongest classifiers for various tasks (Sigrist and 
Hirnschall 2019).

3.3   |   Experiments

To assess the predictive performance of ML algorithms on a 
previously unseen set of test instances, indicative of individual 
data in the register, a common practice is to partition the dataset 
into training and test sets. The training set is used to train the 
ML algorithm, while the test set evaluates its performance on 
independent data. However, when data scarcity or a more robust 
estimate of generalization performance is required, an alterna-
tive method is warranted. In addressing this, a recommended 
approach is k-fold cross-validation. This method involves divid-
ing the dataset into k disjoint partitions (folds) and iteratively 
training the learning model on k–1 folds, reserving onefold 
for testing. The outcome yields k performance measures, and 
their mean provides a reliable estimate of generalization per-
formance. Although various approaches exist for selecting the 
number of folds, k, this study adopts the widely used value of 10, 

resulting in tenfold cross-validation (Guyon 1997). To ensure an 
equal representation of positive and negative cases in each test 
set, a stratified tenfold cross-validation strategy is employed in 
this study. For the ML algorithm, the hyperparameter chosen is 
a learning rate of 0.1, while the remaining parameters adhere 
to the default values for SciKit-learn version 0.22 (Pedregosa 
et al. 2011).

The evaluation of machine learning models involves the use 
of diverse metrics, each capturing distinct aspects of learning 
ability (Alpaydin 2010). In this study, we employ five widely ac-
cepted performance measures: precision, recall, F-measure, the 
area under the ROC curve, and precision–recall curve (PRC). 
To assess and compare the performance of machine learning 
algorithms, we initially compute precision and recall for the 
estimators.

Precision and recall are defined using key metrics such as true 
positive (TP), false positive (FP), true negative (TN), and false 
negative (FN), as outlined in Equations (1–5) (refer to Table 2). 
Precision, representing the fraction of true positives relative to 
the total number of positive case predictions, mirrors the preci-
sion of a dart player hitting the target concerning the attempts 
made. Recall, on the other hand, signifies the fraction of true-
positive predictions relative to all positive cases in the data, 
indicating the predictor's ability to identify the largest possible 
fraction of incorrectly labeled entries in our dataset.

Precision serves as a metric to gauge the classifier's sensitivity, 
specifically its accuracy in predicting controversy and noncon-
troversy classes. It is calculated as the correct positive fraction 
divided by the total number of positive predictions (Equation 1). 
Given the conflicting nature of precision and recall—for in-
stance, a classifier predicting every company as having a con-
troversy would yield a recall positive of 100%—the f-measure 
(Equation  3) effectively captures the trade-off between these 
two metrics.

The area under the ROC curve is determined by plotting true 
positives (Equation 4) against false positives (Equation 5). This 
measure estimates the probability of a classifier ranking a true-
positive instance ahead of a false-positive instance, providing 
insights into its ranking performance. Similarly, the PRC evalu-
ates the mean precision for multiple recall thresholds, akin to the 
f-measure, offering a perspective on the precision–recall trade-
off. The area under the PRC is defined as the region beneath 
the plot of precision (Equation  1) versus recall (Equation  2). 
Notably, both the area under the ROC curve and the PRC are 

TABLE 2    |    Basic performance measures.

Measures of performance Equation

Precision =
TP

TP+FP
(Equation 1)

Recall = TP

TP+FN
(Equation 2)

F −measure = 2×Precision×Recall

Precision+Recall
(Equation 3)

Truepositive =
TP

TP+FN
(Equation 4)

Falsepositive =
FP

FP+TN
(Equation 5)
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advantageous as they remain insensitive to the class distribution 
in the training and testing data, in contrast to accuracy.

4   |   Results

In an organization that implements CA the auditors can be 
notified immediately and may initiate detailed investigation 
as an exception is detected. The auditor may then decide to 
correct the error before the next round of audit starts, and if 
the exception detection system is good enough, it will enable 
auditors to get rid of a lot of the errors prior to the next round 
of auditing. This could be on a daily basis or as seldom as once 
per month. In our experiments we do not use real-time error 
correction but test our exception detection methods on un-
corrected data. Exception detection would perform better on 
data that has been gradually cleaned from exceptions because 
some of the errors are noise that tend to be detected as false 
positives. Our purpose is to propose and validate a one-step, 
standard application framework that prioritizes exceptions 
in the CA environment well enough to not require further 
layers of ad hoc exception prioritization that is the approach 
in previous studies (cf. Li et al. 2016). Our purpose is also to 
demonstrate a method of detecting and prioritizing exceptions 
that explains reasons for identifying an exception in a manner 
intelligible to an internal auditor. Prioritization of exceptions 
enables auditors to focus on those suspicious register entries 
that are more likely to be irregular transactions and other sus-
picious entries. Prioritization in most CA setups would depend 
on both how high accuracy the CA system can achieve after 
training and the extent that this can be maintained over time. 
The latter is because the process the ML model learns to rep-
resent may not be stationary, and in most cases, it is not. The 
levels and dynamics of the activity of, for example, accounts 
payable can shift rather dramatically over time. In our case, 
we do not have this problem. We treat the whole dataset as if 
it was entered into the books at the same time and could all 
be audited as it came in. Thus, our case is similar to what an 
auditor would confront with the audit at the end of a financial 
period. All data are already on the table. In our case, it means 
that we do not have to treat data as a flow generated from a 
nonstationary model, but as a time-independent phenome-
non where all we need to do is to capture the process through 
which incorrect entries occur. The experiment therefore relies 
not on two criteria to evaluate the performance of the frame-
work as in the normal CA case: Normally, the first criterion is 
the ability to effectively prioritize erroneous exceptions higher 
than non-erroneous exceptions or, in ML terminology, prior-
itize true positives higher than false positives. The second 
criterion adopted in the normal CA case is the framework's 
ability to improve its prioritization performance after each it-
erative run. Because we do not have a nonstationary process, 
we neglect the second criterion—we do not adopt continuous 
learning.

The predictive performance of the learning algorithms is pre-
sented in Table 3. An initial understanding of how the identi-
fication of suspected errors operates can be obtained from the 
values. The values illustrate that, in its default configuration, 
the algorithm chooses to flag 18% of the total 6538 suspected 
errors found in the file. Additionally, we observe a precision of 

0.70, indicating that the algorithm makes a correct assessment 
in 70% of the cases where it deems an entry to be an error. A re-
call of 0.18 signifies that, with its default settings, the algorithm 
captures 18% of the labeled errors present in the registry (18% 
of 6538).

These values suggest the feasibility of capturing the suspected 
errors using an XGBoost algorithm. However, it may seem prac-
tically unrealistic to follow up as many suspected deviations as 
18% of 6538, which, when scaled to the entire registry, would 
result in a significantly larger number of suspected errors. 
Therefore, it could be of practical relevance to explore how the 
number of suspected errors can be adjusted to any level with 
which internal auditors are comfortable.

To illustrate the possibility of adjusting the model's proba-
bility threshold we conducted multiple runs with different 
threshold values in Table 4. In contrast to rule-based classifi-
cation, which typically does not provide a probability value for 
each identified suspected error in a registry, machine learning 
algorithms normally have this capability; and in Table 4, the 
advantage of using such algorithms rather than a rule-based 
classifier becomes apparent. The threshold value represents 
the minimum probability at which the model classifies a reg-
ister entry as an error. The threshold can be set to anything 
between 0 and 1 by the internal auditor who is using the CA 
system. As the threshold value increases, the model enhances 
its accuracy by demanding higher certainty in its classifica-
tions, leading to a rise in precision albeit at the cost of recall. 
Notably, the algorithm faces challenges due to significant 
class imbalance, struggling to attain a high confidence level 
for identified errors.

Despite these challenges, the model attains a precision of 0.73 
when the threshold value is set at 0.5. Determining the fea-
sibility of identifying a specific percentage of registry errors 
requires a comprehensive cost–benefit analysis. If the expense 
of investigating the detected exceptions is outweighed by the 
benefit of accurately identifying 73% of errors, the procedure 
is deemed efficient. At the 0.5 threshold level, the model 
successfully identifies 18% of all errors in the file, compris-
ing 1177 accurately identified errors and 435 false alarms. 
Consequently, auditors must evaluate whether they can man-
age the 1612 identified exceptions and, if not, explore strate-
gies to enhance efficiency or choose to investigate a smaller 
set of exceptions that costs less to follow up because it contains 
a lower percentage of false alarms.

TABLE 3    |    Performance measures.

Precision Recall f1 Numbers

Positives 0.96 1.00 0.98 124,501

Negatives 0.70 0.18 0.28 6538

Accuracy 0.96 131,039

Macro average 0.83 0.59 0.63 131,039

Weighted 
average

0.95 0.96 0.94 131,039
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In the absence of a method that offers precision the internal 
auditors only have the option to prioritize by random sampling. 
They would have to randomly select the number of exceptions 
from the output of the CA system that they are able to follow up 
and all detected exceptions have the same likelihood of being 
selected for follow-up. This procedure is obviously less effi-
cient than restricting the number of exceptions to those with 
the highest likelihood of being the true errors the auditors are 
looking for, with output levels illustrated in Table 4. The latter 
approach would minimize the internal auditors' follow-up of 
false alarms.

The control of the volume of detected exceptions by internal 
auditors is achieved by shifting the detection model's per-
formance along the horizontal axis where threshold values 
are indicated from 0 to 0.5 in Figure  1. The higher the con-
fidence required by the model, the more selective it must be 
in choosing what exceptions to output. As precision increases 
(blue curve) with increasing threshold values, the proportion 

TABLE 4    |    Thresholds and exception detection volumes.

Threshold p = 0.1

Precision Recall f1 Sample

Non-errors 0.98 0.89 0.98 124,501

Errors 0.26 0.70 0.28 6538

Accuracy 0.96 131,039

Macro average 0.62 0.80 0.66 131,039

Weighted average 0.95 0.88 0.91 131,039

ThresholdThreshold p= 0.15

Precision Recall f1 Sample

Non-errors 0.98 0.93 0.95 124,501

Errors 0.31 0.62 0.41 6538

Accuracy 0.91 131,039

Macro average 0.64 0.77 0.68 131,039

Weighted average 0.94 0.91 0.92 131,039

Threshold p = 0.20

Precision Recall f1 Sample

Icke-fel 0.97 0.95 0.96 124,501

Fel 0.36 0.51 0.42 6538

Accuracy 0.93 131,039

Macro average 0.67 0.73 0.69 131,039

Weighted average 0.94 0.93 0.93 131,039

ThresholdThreshold  p  = 0.25= 0.25

Precision Recall f1 Sample

Non-errors 0.97 0.98 0.97 124,501

Errors 0.47 0.35 0.40 6538

Accuracy 0.95 131,039

Macro average 0.72 0.66 0.69 131,039

Weighted average 0.94 0.95 0.94 131,039

Threshold p = 0.30

Precision Recall f1 Sample

Non-errors 0.96 0.99 0.97 124,501

Errors 0.53 0.29 0.38 6538

Accuracy 0.95 131,039

Macro average 0.75 0.64 0.68 131,039

Weighted average 0.94 0.95 0.94 131,039

Threshold p = 0.35

Precision Recall f1 Sample

Non-errors 0.96 0.99 0.98 124,501

Errors 0.59 0.26 0.36 6538

(Continues)

Threshold p = 0.35

Precision Recall f1 Sample

Accuracy 0.96 131,039

Macro average 0.77 0.62 0.67 131,039

Weighted average 0.94 0.95 0.94 131,039

Threshold p = 0.40

Precision Recall f1 Sample

Non-errors 0.96 0.99 0.98 124,501

Errors 0.65 0.23 0.33 6538

Accuracy 0.95 131,039

Macro average 0.80 0.61 0.66 131,039

Weighted average 0.94 0.95 0.94 131,039

Threshold p = 0.45

Precision Recall f1 Sample

Icke-fel 0.96 1.00 0.98 124,501

Fel 0.69 0.20 0.31 6538

Accuracy 0.95 131,039

Macro average 0.82 0.60 0.64 131,039

Weighted average 0.95 0.95 0.94 131,039

Threshold p = 0.50

Precision Recall f1 Sample

Non-errors 0.96 1.00 0.98 124,501

Errors 0.73 0.18 0.29 6538

Accuracy 0.96 131,039

Macro average 0.84 0.59 0.63 131,039

Weighted average 0.95 0.96 0.94 131,039

TABLE 4    |    (Continued)
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of exceptions that the model correctly identifies (orange recall 
curve) decreases from the total 6513. The point at which the 
precision and recall measures meet is about 0.225 where the 
classifier offers a precision of about 0.4. This metric may be 
much too low if manual follow-up is considered necessary for 
all detected exceptions because most of the exceptions are false 
alarms at this low precision. It is clearly visible from Figure 1 
however that an internal audit function can choose whatever 
combination of precision- and recall levels it finds appropriate, 
considering its resources and its cost benefit trade-off for man-
ual follow-up.

Finally, internal auditors need additional information on de-
tected exceptions to decide whether to follow up. In complex CA 
systems, if auditors see the output as a “black box” with no in-
sight into why exceptions were flagged, they treat all exceptions 
equally. Even when classifiers provide likelihood estimates, er-
rors vary in materiality or severity. Without detailed informa-
tion, auditors are forced to choose exceptions blindly, leading to 
inefficient investigations. In multilayer rule-based CA systems, 
this often results in reliance on random sampling. Alternatively, 
the auditors may be able to address the exception overload prob-
lem by turning off entire groups of controls (rules) and thus 
ignore what the auditors think are the least severe exceptions 
(Alles et  al.  2006). Fortunately, exception characterization is 
possible using metrics like SHAP values, which show how 
much each variable contributes to classifying a registry item as 
an exception. SHAP values can be calculated for all variables, 
such as employment data in a pension register, to indicate their 

importance in detecting errors. These values can be displayed in 
local SHAP plots for individual cases or global SHAP plots for 
an overview of all exceptions. A global plot for our data is shown 
in Figure 2.

The horizontal axis shows SHAP values for each variable's 
contribution to classifying employment contracts as excep-
tions. Each contract is represented by a colored dot (blue for 
low values, red for high). A positive SHAP value increases the 
likelihood of an exception, while a negative value decreases it. 
For example, employees of Authority_585549 are less likely to 
have errors in SPV's register, indicating reliable data reporting, 
whereas Authority_22913269 has more exceptions, signaling 
poor data quality. High monthly or additional salary increases 
the likelihood of classification as an exception. Local SHAP 
plots show contributions for individual data points, helping au-
ditors prioritize investigations based on the likelihood and na-
ture of the error. The SHAP values provide a “fingerprint” of 
each exception, aiding auditors in assessing which cases to focus 
on, much like risk-based audit planning.

Figure  2 gives an overview of the model's behavior across all 
data points, while a corresponding but local SHAP plot would 
show how each variable influences the classification of a single 
data point as correct or an error. This information helps auditors 
assess each exception. Using their experience, auditors can de-
termine which cases need attention and which can be resolved 
through routine communication or ignored. In many CA sys-
tems, multiple SHAP values provide a detailed “fingerprint” of 
each exception, allowing auditors to prioritize investigations 
similarly to risk-based audit planning.

SHAP provides unique value in CA applications compared to 
other audit contexts for several specific reasons. First, CA sys-
tems generate continuous streams of exceptions where auditors 
need rapid interpretation capabilities—SHAP's real-time vari-
able importance explanations enable immediate prioritization 
decisions without requiring extended analysis periods typical in 
traditional auditing. Second, unlike periodic audit applications, 
CA environments benefit from SHAP's ability to incorporate 
new variables into updated results seamlessly as business pro-
cesses evolve, maintaining system relevance without complete 
redesign. Third, the high-volume, time-sensitive nature of ex-
ception handling in CA makes SHAP's automated interpretation 
particularly valuable compared to the manual analysis required 
in traditional audit contexts. Each exception receives an imme-
diate “fingerprint” of contributing factors, enabling auditors to 
make informed decisions about investigation priorities within 
the operational timeframes required by continuous monitoring.

Furthermore, SHAP enables auditors to build institutional 
knowledge about error patterns over time, creating learning 
effects not available in point-in-time audit applications. As au-
ditors observe recurring SHAP patterns associated with true 
errors, they develop enhanced judgment about which excep-
tions warrant immediate attention versus those that can be ad-
dressed through routine procedures. This cumulative learning 
aspect distinguishes CA applications from traditional auditing 
where interpretation insights are typically project-specific rather 
than building systematic organizational knowledge about error 
characteristics.

FIGURE 1    |    The precision–recall trade-off and thresholding.

FIGURE 2    |    A global SHAP-plot summary of how all employments 
were classified as exceptions or not.
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5   |   Discussion and Conclusion

This study proposes using thresholding, a simple feature in many 
machine learning algorithms, to help internal auditors manage 
the number of exceptions detected in CA systems. Unlike meth-
ods described in the literature, this approach directly reduces 
exception overload. While auditors may sometimes use ran-
dom sampling to reduce exceptions, this does not prioritize the 
most likely or serious errors and thus is not a true prioritization 
method. Overall, the literature presents three main strategies to 
make manual follow-up more manageable.

The common approach in the literature is to layer rule-based 
classifiers and adopt belief functions or Delphi weights to finally 
filter detected exceptions to a manageable volume. Perols and 
Murthy  (2012) proposed a multilayered system starting with 
rule-based detection, followed by classifiers to reduce excep-
tions. However, this adds complexity, making the system opaque 
and costly to develop, especially with supervised learning re-
quiring labeled data. Li et  al.  (2016) introduced an exception 
prioritization method using Dempster–Shafer belief functions, 
which assigns suspicion scores and iteratively ranks exceptions 
for manual classification, creating an active learning system.

Yoon et al. (2021) suggested data aggregation as an alternative, 
which simplifies data by grouping issues but risks losing crucial 
details, making the system appear efficient while potentially 
missing key errors.

A more general approach is to frame the issue as process min-
ing rather than just exception detection. While process min-
ing methods exist in machine learning literature, no evidence 
supports that they can solve the exception overload problem. 
Process mining is a control-focused CA design that does not 
quite address the same problem as transaction-level exception 
detection and therefore is not quite comparable. Furthermore, 
conceptual descriptions (Jans et al. 2011; Jans et al. 2013; Jans 
and Hosseinpour 2019) suggest easy implementation and some 
evidence of usefulness exists (Duan et al. 2024), but until proven 
effective, simpler solutions should be considered. One such op-
tion is thresholding to control the CA system outputs, which 
would require shifting from rule-based systems to other ma-
chine learning methods. The need for thresholding is evident 
because in extreme cases, researchers have even suggested turn-
ing off alarms to reduce exceptions (Alles et al. 2006, 2008).

In practice, however, auditors may have to rely on traditional 
approaches that auditors follow in addressing the problem of 
duplicate payments, which comprise either visually scanning 
the transactions or examining a sample. Either way, the auditors 
will not be able to obtain a higher precision than the propor-
tion of items in the CA output that are true errors, which could 
be in the range of 7/6980 as in Rozario and Issa (2020), that is, 
not more than 0.1%, which means that manual follow-up needs 
to cover a lot of ground. With their solution the auditors would 
not know just by looking at the output which of the detected ex-
ceptions have the highest likelihood of being true errors rather 
than false alarms, so auditors are suggested by Rozario and 
Issa  (2020) to manually investigate all 800 with the expected 
outcome of finding 4 out of the totally 7 true errors that existed 
in the population. That is a lot better than manually following 

up the 6980 but with thresholding they would clearly be better 
off. Because they would have to follow up only a small fraction 
of the 800 and, because their efforts can be more intelligently in-
vested, find a higher fraction of the errors that exist in the popu-
lation. It is the class imbalance that makes the internal auditors' 
job so difficult and therefore it is unintelligible why they should 
not use the commonly recognized method for dealing with class 
imbalance.

What would the internal auditors do with thresholding? They 
would still have a tough job but would not have to work blind-
folded. First, they would adjust the number of detected excep-
tions in the same way they adjust their car radio. Second, they 
would determine the optimal output number as a trade-off be-
tween the effort they can put into manual follow-up and the 
benefit of finding a true error. The CA system with thresholding 
ensures that they always obtain the most likely true errors what-
ever volume they choose. With all previous techniques using 
rule-based classifiers, including belief functions, the auditors 
cannot without redesigning the system adjust output volume. 
Third, internal auditors not only obtain the detected exceptions 
that are the most likely of being true errors, but also, for each 
exception, they get the likelihood estimate that the exception is 
a true error. It is obvious that, if the estimates are correct, the 
auditors do not start with the ones having the lowest likelihood. 
They obviously take the ones with the highest likelihood first. 
No other method known to the literature can do this. Auditors 
can see immediately on the screen the risk they take by ignoring 
a certain exception. No other method offers such maneuverabil-
ity. Fourth, by adding the feature importance estimate, unique 
to each exception, auditors can deviate from the likelihood esti-
mates as they plan how they invest their efforts. A local SHAP 
plot tells the auditors which circumstances the CA system con-
sidered most crucial for identifying an item as an exception. The 
experienced auditors may determine the seriousness or materi-
ality of a potential error by just looking at the SHAP plot, which 
is delivered in real time with each exception. As we see it, there 
is no other method in CA literature that offers the same level of 
interpretability of detected exceptions.

These aspects of thresholding and SHAP plots stand in stark 
contrast to traditional rule-based systems, which neither align 
well with thresholding nor offer an effective initial interpreta-
tion of exceptions. Designs like those of Li et al. (2016) require 
extensive customization based on auditors' expertise, making 
them difficult to generalize. In contrast, our approach, which 
leverages supervised learning with machine learning algo-
rithms, offers off-the-shelf solutions to these fundamental chal-
lenges in CA systems.

A question regarding our approach concerns the trade-off 
between data-driven exception prioritization and expertise-
based threshold setting. Domain expertise can inform thresh-
old calibration, and under certain conditions, expertise-based 
approaches may outperform generalized methods. “General 
applicability” means the algorithmic framework—supervised 
learning with probability-based thresholding—can be de-
ployed across contexts without organization-specific rule en-
gineering for each implementation. The method provides a 
standardized technical approach, while learned patterns adapt 
to organization-specific characteristics through training data. 
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Probability-based thresholding provides advantages when (1) 
articulating complete detection rules is difficult, while provid-
ing labeled examples is feasible; (2) exception patterns involve 
complex interactions among many variables; (3) business pro-
cesses evolve, requiring frequent recalibration; and (4) organi-
zations need standardized methodology across multiple units. 
Expert-based thresholding applies when (1) exception patterns 
are simple and stable; (2) regulatory requirements demand ex-
plicit decision criteria; (3) organizations possess readily artic-
ulable domain knowledge; and (4) historical training data are 
insufficient (error rates < 0.5%, < 1000 labeled examples). The 
approaches are complementary. Our method incorporates ex-
pertise through: feature engineering (experts identify relevant 
variables), threshold refinement (initial thresholds adjusted 
based on organizational context), exception interpretation 
(SHAP explanations enable expert validation), and hybrid ar-
chitectures (rule-based filters combined with ML prioritiza-
tion). Our contribution demonstrates that probability-based 
thresholding addresses documented limitations of rule-based 
designs—exception overload, calibration difficulties, and adap-
tation challenges—in transaction-level applications with severe 
class imbalance.

Our study faces several limitations, particularly in the applica-
tion of supervised learning within the CA implementation. One 
notable challenge is the use of binary CA indicators, which, 
while useful in specific contexts, may lack universal applica-
bility across all accounting processes, such as booking on CPD 
accounts in ERP systems. The binary classification approach 
simplifies decision-making but may oversimplify complex fi-
nancial transactions, leading to a loss of nuance. Additionally, 
our explanation of these indicators may not fully capture the 
variability in how they can or should be applied to different 
systems. Future work should explore more flexible, multiclass 
models and refine the application of CA indicators to better ac-
count for the diverse nature of organizational systems, ensur-
ing that supervised learning is adapted to varying accounting 
environments.

Data Availability Statement

The data that support the findings of this study are available from 
Participating company. Restrictions apply to the availability of these 
data, which were used under license for this study. Data are available 
from the author(s) with the permission of Participating company.
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