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ABSTRACT

Continuous auditing research has grappled with the challenge of managing the abundance of detected exceptions in internal
audit applications for the past 30years. A key issue in continuous auditing involves the uncontrolled proliferation of exceptions,
where the sheer volume makes manual follow-up impractical, undermining the viability of the technology. The root cause of
this problem is the combination of strong class imbalance and the predominant rule-based systems design. Prior investigations
have attempted ad hoc remedies like introducing additional layers to prioritize the most suspicious exceptions or aggregating

data. Currently, there is no universal method to address this prioritization challenge, leaving internal auditors without a means

to focus specifically on exceptions most likely to represent genuine faults. Our research explores the origin of this prioritization

dilemma and proposes a systems design that can deal appropriately with class imbalance. This solution allows full control of
the exception volume by a simple approach in machine learning called thresholding and combined with methods to interpret
the output of a continuous auditing system our design effectively focuses the internal auditors’ attention on the most significant
exceptions. We discuss the implications of thresholding for practice and the literature.

1 | Introduction

Traditional audit sampling examines only hundreds of re-
cords from millions, risking undetected errors. While risk-
based auditing targets high-risk transactions, detecting rare
errors in large datasets remains challenging (Teitlebaum and
Robinson 1975), and judgment-based approaches suffer from
bias (Hall et al. 2000). An alternative, made possible by ad-
vances in data technology, is to forego sampling and instead
review the entire population (Issa 2013; Li et al. 2016; No
et al. 2019). These techniques involve calculating the likelihood
of a transaction being incorrect and then manually investigat-
ing the most suspicious cases. Such use of computers in auditing

is called continuous auditing (CA). CA, pioneered by Groomer
and Murthy (1989) and Vasarhelyi and Halper (1991), focuses on
detecting exceptions—suspicious or irregular transactions—for
internal auditor follow-up. While our application focuses on in-
ternal audit activities that could be characterized as continuous
monitoring, we maintain the CA framework to align with the
established literature that consistently positions internal audit
exception detection under the CA umbrella (Vasarhelyi and
Halper 1991; Alles et al. 2006; Eulerich and Kalinichenko 2018).
Despite extensive conceptual development and numerous defi-
nitions (Kogan et al. 1999; Rezaee et al. 2002; Vasarhelyi and
Halper 1991; Woodroof and Searcy 2001), CA primarily serves to
identify exceptions for internal auditor investigation (Byrnes and
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Mcquilken 2012; Eulerich and Kalinichenko 2018; Vasarhelyi
et al. 2012). CA systems have limited adoption. Eulerich and
Kalinichenko (2018) note that while CA systems can identify
anomalies based on predefined criteria, they are “not com-
monly used by organizations” (p. 142). Few studies examine ac-
tual CA implementations (El-Masry and Reck 2008; Gonzalez
et al. 2012; Rikhardsson and Dull 2016; Vasarhelyi et al. 2012),
with real-world data usage often highlighted as a contribution
(Wei et al. 2024).

The gap between CA theory and practice explains implementa-
tion difficulties. While CA theoretically increases efficiency and
effectiveness, a critical practical challenge is controlling output
volume. CA systems often generate overwhelming numbers of
exceptions, leaving internal auditors uncertain which to inves-
tigate (Alles et al. 2006, 2008; Perols and Murthy 2012). This
exception overload undermines CA's practical benefits.

While some CA designs may avoid exception overload—such
as process mining for internal control evaluation or machine
learning for fraud risk assessment (Ding et al. 2019; Perols
et al. 2017)—the literature lacks evidence comparing design ef-
fectiveness in managing output volume.

This study addresses why CA systems generate overwhelming
exception volumes and proposes thresholding methods en-
abling internal auditor control. Unlike previous rule-based ap-
proaches requiring organization-specific expertise (Issa 2013;
Li et al. 2016), our machine learning-based method provides
generally applicable prioritization through probability estimates
combined with SHAP interpretation methods.

Random sampling, which is to treat all exceptions equally as if
there is no information about the likelihood that an exception is
true or not, may have the merits of simplicity and ease of use, rep-
resentative coverage of a whole dataset, and avoidance of over-
fitting a more precise prioritization method and thus avoidance
of a too narrow audit focus. The latter may therefore be more
compliant with audit standards than a method that can identify
true exceptions more effectively and efficiently. Even if the inter-
nal audit designs its methods discretionarily, compliance with
external audit standards makes the internal audit more reliable
and useful for the external auditors (Malaescu and Sutton 2015)
and may therefore be an issue to consider when choosing CA
architecture. However, we do not consider random sampling an
effective prioritization method, as it does not enhance the qual-
ity of the sample by identifying a higher proportion of true ex-
ceptions than what exists in the overall population. To improve
the efficiency of manual follow-ups, it is crucial for CA system
development to adopt more effective methods for prioritizing ex-
ceptions. Relying on random sampling leads to inefficient use of
internal auditors' time.

Issa (2013) investigated alternatives to random sampling in a
doctoral thesis motivated by the scarcity of studies that address
the problem of processing large numbers of identified excep-
tions and proposing methodologies to detect and subsequently
prioritize such exceptions with the purpose of avoiding excep-
tion overload. These prioritization techniques were intended
to direct auditors’ and management's investigations towards
the more suspicious cases. These methodologies were all based

on rules that incorporated the internal auditors' expertise. In a
rule-based CA system the main idea was to have auditors assign
a suspicion score based on what rule the transaction violates. A
later study by Li et al. (2016) investigated a similar solution on
real company data and found that the addition of extra layers of
rules (suspicion scores) results in effective prioritization of ex-
ceptions. Results show that the methods designed to enhance
the prioritization performance of rule-based implementations
of CA systems offer improved prioritization, saving the internal
audit costs and increasing its ability, and adding a learning fea-
ture that updates the suspicion scores, adding further capacity
compared to simply random sampling. This more structured,
adaptive, and risk-focused prioritization is clearly superior to
random sampling. The downside of, at least the Li et al. (2016)
implementation, is its technical complexity, the initial setup
process, the need for adaptation and maintenance, and its
organization-idiosyncratic nature.

Methods that require a lot of situation-specific development
cannot be assumed to function equally well in all organizations.
The fact that Issa (2013) and Li et al. (2016) were successful with
their rule-based CA systems that prioritize exceptions with sus-
picion scores does not guarantee that the specific conditions in
the investigated data or organization did not present themselves
as a good fit with the employed methods and that the method
therefore is highly organization-idiosyncratic. The rules and the
suspicion scores could be very different from those presented by
Issa (2013) and by Li et al. (2016) when developed in other orga-
nizations and there is no guarantee that a CA system prioritizing
exceptions well enough can be developed.

Another limitation of their proposed solution is that the develop-
ment of a functional rule-based CA system requires extensive col-
laboration with internal audit, as well as the audit team's ability
to provide the CA developers with relevant information. However,
this is not always something that can be relied upon. There is no
guarantee that a rule-based CA system delivers sufficient precision
and that suspicion scores add to the performance of the system so
that the prioritized exceptions are a good enough sample of the
transactions for auditors’ follow-up. The ad hoc solutions proposed
by Issa (2013) and Li et al. (2016) advocate the combination of pre-
diction methods in a layered fashion, where the output of one layer
serves as the input for the subsequent one. Layers of classifiers pose
challenges in terms of interpretation, being potentially intricate,
time-consuming, expensive, or even unfeasible for the internal au-
ditors to understand. A layered rule-based CA system has a trade-
off between predictive performance and interpretability for which
there is no guarantee with the layered design that interpretability
can be maintained at acceptable levels of exception prioritization.
There is a risk that developers need to add such complex detection
and prioritization methods that interpretability is lost. Finally, the
main objection to the CA system designs discussed by Issa (2013)
and Li et al. (2016) is that they are rule-based. Transactions may be
hundreds of thousands, but the errors that internal auditors look
for are typically few. In machine learning terms, this is referred to
as class imbalance. A rule-based design is, in our view, harder to
make work effectively than other designs when there is significant
class imbalance. The reason is that the rule-based design offers no
easily implementable method to set a threshold for the probability
at which a transaction should be classified as an exception. This
is why it is difficult to prioritize exceptions in a rule-based design.
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This argumentation is straightforward but literature reviews
offer little insight into the information overload problem.
Reviews focus on themes such as reasons for using CA (Brown
et al. 2007; Hassan et al. 2023), statistical, mathematical, and
IT instruments as enabling technologies for CA (cf. Eulerich
and Kalinichenko 2018) and some basic tools that developers
would know about, for example, time series, cross-sectional
regressions, and continuity equations are mentioned briefly
by Brown et al. (2007). When discussing enabling technolo-
gies Brown et al. (2007) mainly cites a conceptual paper by
Rezaee et al. (2002) and a key concept for prioritizing excep-
tions; the belief functions or suspicion scores are only men-
tioned in passing. It seems as though the exception overload
issue is unknown to the literature reviews. There are of course
many other practical challenges with new and complicated
internal audit systems such as CA, for example, extracting
data from an ERP system (Wang and Kogan 2020), but the
reasons why CA systems can generate such a large volume of
exceptions that the technology becomes unusable for internal
auditing is a key issue for the future of CA systems that can-
not be ignored. The present study contributes to the literature
(1) by introducing thresholding as a method to prioritize de-
tected exceptions in CA applications. The study demonstrates
how probability estimates for the exceptions can be used as
assessments of the likelihood that a suspicious exception is a
true exception. In addition to prioritizing exceptions based on
likelihood estimates, the study contributes to the literature by
(2) describing how the SHapley Additive exPlanations (SHAP)
interpretation methodology (Lundberg et al. 2020; Lundberg
and Lee 2017) can provide internal auditors with further sup-
port in assessing which exceptions should be prioritized, as
exceptions can be understood in a causal context.

We examine CA application development at Sweden's
National Government Employee Pensions Board (SPV), serv-
ing 1,100,000 employees and pensioners across 250 employ-
ers. The pilot project developed methods to identify errors in
pension registers, testing whether CA could enhance internal
audit efficiency. SPV had no prior CA experience. Our CA
application differs from previous systems by using standard
machine learning algorithms without organization-specific
rule-based constraints, providing generally applicable excep-
tion prioritization through probability estimates and variable
importance metrics for auditor interpretation on comprehen-
sive population data.

This paper proceeds with a literature review on CA volume con-
trol, followed by our case study findings and threshold accuracy
analysis demonstrating SHAP's role in auditor interpretation.

2 | Literature Review

When introducing full-population auditing methods, auditors
are faced with the choice between a rule-based design and an
automated design. In a rule-based design, auditors establish
specific rules to flag suspicious events, functioning similarly to
expert systems. This approach is appealing because it leverages
auditors’ expertise, making the process intuitive and easier to
comprehend. Alternatively, auditors can use data science tech-
niques to detect errors with a higher level of technical autonomy,

either through unsupervised learning (outlier detection) or
supervised learning. Unsupervised learning is entirely data-
driven (Alghushairy et al. 2021) and can be effectively applied
in CA systems (Wei et al. 2024), whereas supervised learning
requires auditors to provide a preclassified dataset of true and
false exceptions (Caroline and Thomas 2021).

In the following, exceptions refer to deviations that may repre-
sent actual errors in the data or simply anomalies that deviate
from a normal pattern. We also use the term error to refer spe-
cifically to actual data errors. An exception can thus be either an
error or a false alarm. Determining which is present typically
requires manual verification. A CA system that identifies ex-
ceptions can therefore return both errors and false alarms. The
term anomalies is used in its lexical sense.

2.1 | Exception Overload: A Core Challenge in CA
Implementation

An obstacle preventing widespread CA adoption is exception
overload—the generation of more suspicious transactions than
internal auditors can practically investigate. Alles et al. (2006,
2008) documented this problem in pilot implementations, where
CA systems produced overwhelming volumes of alerts that ex-
ceeded audit department capacity. Perols and Murthy (2012)
confirmed that even modest exception volumes can surpass au-
ditors’ analytical capabilities, leading to system abandonment.
This overload problem directly undermines CA's theoretical
benefits. When auditors cannot investigate detected exceptions
due to volume constraints, the economic value of comprehensive
population testing disappears. Organizations consequently re-
vert to traditional sampling methods or disable CA systems en-
tirely, explaining the limited practical adoption despite decades
of research (Eulerich and Kalinichenko 2018).

The effectiveness of full-population auditing depends on audi-
tors' expertise in identifying risk factors and assigning appro-
priate weights when determining suspicion levels. However,
this reliance on judgment creates a fundamental dilemma.
Unsupervised outlier detection, while promising, cannot dis-
tinguish between relevant and irrelevant deviations, often
producing overwhelming numbers of potentially insignificant
exceptions. This creates “exception overload”—the core chal-
lenge preventing CA adoption in practice. Exception overload
occurs when CA systems generate more suspicious transac-
tions than auditors can investigate (Kim and Vasarhelyi 2012;
Thiprungsri and Vasarhelyi 2011). When investigation be-
comes impractical due to volume, CA's economic benefits dis-
appear, explaining limited adoption despite decades of research
(Eulerich and Kalinichenko 2018). Issa and Kogan (2014) argued
that managing large volumes of exceptions detected for reasons
unknown to auditors is challenging, supported by behavioral
studies showing humans struggle to analyze such exceptions ef-
fectively (Iselin 1988; Kleinmuntz 1990). Therefore, even mod-
est exception volumes can exceed auditors’ capacity to address
them effectively.

The issue of overload is not universally applicable to all CA sys-
tems. By focusing CA on business process controls, it is possi-
ble to limit the number of alerts through a technique known as
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process mining. Although process mining is well-established,
few studies have examined its application in accounting and
auditing (Duan et al. 2024; Jans and Hosseinpour 2019). This
methodology has proven effective for evaluating internal con-
trols as well as financial statements (Werner et al. 2021).

While process mining may be pivotal for future CA implemen-
tations, our focus is on error detection at the transactional level.
This level involves a vast number of observations, often number-
ing in the millions. Analyzing such large datasets is the focus
of numerous studies, including Zhaokai and Moffitt (2019), who
developed a contract analytics framework to facilitate the anal-
ysis of entire populations of contracts, traditionally assessed
through sampling. Visualization is another powerful tool that
can enhance the audit process (Abdullah 2015). While process
mining offers an alternative for assessing internal control effec-
tiveness through event log data, it is not designed for transac-
tional analysis (Jans et al. 2013).

At the transactional level, addressing the overload issue in full-
population testing is particularly challenging due to the sheer
volume of transactions and the corresponding number of poten-
tial errors. Recent literature has begun to explore the problem
of exception overload and exception detection in this context. Li
et al. (2016) propose a method that assigns suspicion scores to
each transaction based on violations of predefined expert rules,
setting a threshold for further investigation. While this rule-
based design is intuitive for auditors, it relies on accurate ex-
pert knowledge of error characteristics and lacks a mechanism
to control the volume of detected exceptions, making overload
a significant risk. Furthermore, while the belief functions are
set by internal auditors, their definition involves elements that
are not suitable for decision-making and they are eventually up-
dated by a learning feature that makes interpretation of the pri-
oritized exceptions more and more difficult as the systems learn
(Rozario and Issa 2020).

Similarly, No et al. (2019) introduce a rule-based approach that
employs weighted filters based on risk factors for suspicion scor-
ing. In their study, the suspicion scores serve as proxies for au-
ditors’ judgments, aiming to reduce exception volume through
serially linked rule-based classifiers resembling a previous study
by Issa (2013). In a more recent study, Freiman et al. (2022) uti-
lize a multidimensional audit data sampling methodology on a
real-world general ledger dataset, demonstrating its effective-
ness in managing exception overload.

The discussion is not new. Alles et al. (2006) noted that even
in control-oriented designs, the volume of generated alarms
can overwhelm internal auditors (Jans and Hosseinpour 2019;
Perols and Murthy 2012). As data processing increases and the
effectiveness of detection techniques diminishes, the number of
alarms is likely to rise. The system's ability to accurately identify
suspicious events hinges on the technology used for data classi-
fication, directly impacting audit efficiency. Limited resources
within audit departments further constrain the capacity to in-
vestigate exceptions (Chan and Vasarhelyi 2011).

It is crucial to distinguish between control-oriented and data-
oriented CA systems, as the former typically generates fewer
exceptions than the latter due to the nature of the task. This

distinction, highlighted by Kogan et al. (1999), involves find-
ing a trade-off between control-oriented and data-oriented CA
procedures, which relates to the level of data aggregation em-
ployed. Selecting an appropriate level of data aggregation can
help manage the volume of detected exceptions. Most literature
has focused on control-oriented CA (Wei et al. 2024), operating
at a higher level of aggregation.

A recent development by Yoon et al. (2021) illustrates how ag-
gregation can mitigate the overload problem. Their approach
utilizes three layers: The first identifies unusual transactions
as nonroutine errors, the second flags transactions violating
internal controls as exceptions, and the third detects transac-
tions deviating from standard business behaviors as anomalies.
While their study found that aggregated data can reduce audit
effectiveness, it emphasizes the need to find the right level of ag-
gregation for effective CA systems. The challenge remains that
increasing abstraction may cause many errors to go undetected,
compromising the CA system's reliability as a component of in-
ternal audit.

Another recent study that deals with prioritization is Rozario
and Issa (2020). This study adopted and modified Issa's (2013)
framework, according to which prioritization is based on
weights defined by expert knowledge from domain specialists.
For auditors, simple weights that they themselves define may
be easier to interpret compared to the less transparent belief
functions methodology used by Li et al. (2016). The study was
conducted within the internal audit department of a US county,
using real data with the task of identifying duplicate payments.
Results of the case study showed that the proposed framework
significantly improves both efficiency and effectiveness com-
pared to traditional methods auditors use to address duplicate
payments, such as visually scanning transactions or reviewing
a sample. Whereas sampling and visual scanning can only find
the same proportion of errors that the dataset has, the analytics
for prioritization enabled auditors to find about 4/7th of the er-
rors or 3/4th of the errors when manually following up only 15%
of the suspicious exceptions after prioritization. Nevertheless,
the proposed method includes idiosyncratic elements because
the effectiveness of the method in finding true errors depends on
the ability of internal auditors to identify relevant indicators that
predict the errors and define accurate weights on the indicators
to maximize the performance of the classifier used for prioriti-
zation. This ability will vary from organization to organization.

2.2 | Rule-Based vs. Probability-Based Exception
Detection: Design Differences

Exception overload in CA systems stems from design choices
in detection architectures. Rule-based systems, dominant in
CA literature (Kogan et al. 1999; Li et al. 2016; No et al. 2019),
detect exceptions through explicit logical rules defined by do-
main experts. Probability-based systems use machine learning
algorithms to assign likelihood scores based on patterns learned
from historical data. These approaches differ in their mecha-
nisms for controlling exception volume.

Rule-based CA systems evaluate transactions against pro-
grammed detection rules such as “IF transaction amount
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>$50,000 THEN flag as exception” (Issa 2013; Li et al. 2016).
Multilayered implementations prioritize detected exceptions
using belief functions or suspicion scores (Li et al. 2016; Rozario
and Issa 2020). Auditors can trace which rules a transaction
violated.

Threshold-setting challenges emerge in multidimensional
contexts. A procurement system might flag: (1) transactions
> $50,000, (2) vendors < 2years old, (3) noncompetitive bids,
and (4) tax haven locations. A transaction at $49,999 to a
25-month-old vendor in the Cayman Islands evades Rules 1-2
while violating 3-4. A legitimate $75,000 IT investment with
a startup triggers Rules 1-2. Distinguishing these requires
additional exception rules or manual review. Because these
“automated rules are strictly formal, the existing rules have
a significant amount of imprecision” (Alles et al. 2004, 7)—a
statement that underlines the difficulty with using a combina-
tion of rules to control the exception volume. Volume control
requires trial and error. If $50,000 generates 10,000 exceptions,
auditors might adjust to $75,000 but cannot predict the result-
ing volume without rerunning the system. Adjustments in one
dimension interact unpredictably with other rules. Dynamic
business environments compound this—organizational
growth changes transaction distributions, requiring threshold
recalibration. Alles et al. (2004, 6) state that rules “has to be
reexamined and updated on a regular basis” in order to ensure
appropriate thresholds. Hayes-Roth et al. (1983) documented
this knowledge acquisition bottleneck for expert systems. It
follows from the logic of rule-based designs that you have
to adjust one or more rules in order to change the detection
volume, and it can be difficult to know how the rule changes
transform into a detection volume change.

Probability-based systems such as supervised machine learn-
ing algorithms learn patterns from historical labeled data,
producing probability scores (0-1) for each transaction rep-
resenting exception likelihood (Ngai et al. 2011; West and
Bhattacharya 2016). Auditors set a single probability thresh-
old (e.g., 0.7 =flag transactions >70% probability). Precision-
recall curves show exact trade-offs between false positives
and true positives at every threshold value before implemen-
tation (Zou et al. 2016). Thus, the designer does not have to
guess the detection volume; it can be an easily controlled as-
pect of the design of the detection system. Algorithms implic-
itly learn complex, nonlinear relationships without explicit
rule specification. They consider hundreds of variables simul-
taneously, weighting each according to empirical predictive
power. Models retrain on updated data to adapt to changing
conditions automatically. This addresses combinatorial explo-
sion—learning from data which patterns predict exceptions
rather than requiring explicit specification.

Furthermore, with this type of method interpretability requires
post hoc methods. SHAP values quantify each variable's contri-
bution to individual predictions (Lundberg and Lee 2017), re-
vealing which characteristics influenced probability scores.

We can now compare the two types of approaches and identify
applicable conditions. Probability-threshold advantages mani-
fest when: (1) exception volumes exceed capacity by orders of
magnitude, (2) multidimensional risk patterns involve complex

interactions, (3) class imbalance is severe (error rates <5%), (4)
business environments change frequently, and (5) domain ex-
pertise for complete rule specification is limited. Rule-based
approaches remain applicable when volumes are manageable
(< 500), patterns are simple, regulations require explicit criteria,
or historical training data are insufficient. The choice involves
trade-offs between volume control predictability and inherent
interpretability.

From a control-oriented CA perspective, implementing a rule-
based program and prioritizing with belief functions, akin to
past expert systems, is both logical and intuitive. Previous litera-
ture frequently advocates for rule-based systems to identify sus-
picious items based on expert knowledge (Li et al. 2016; Perols
and Murthy 2012). However, this approach has notable down-
sides. To clarify how different approaches address the exception
volume challenge, Table 1 summarizes the main methods used
in CA systems along with their capabilities for volume control.

As Table 1 demonstrates, existing approaches either sacrifice
detection capability (sampling, aggregation) or lack direct vol-
ume control mechanisms (rule-based systems). Our threshold-
ing approach uniquely combines precise volume control with
probability-based prioritization.

Rule-based CA systems require extensive process documen-
tation and exhaustive error definitions, making them deter-
ministic rather than probabilistic. While most CA designs are
rule-based (Kogan et al. 1999; Murthy 2004; Rezaee et al. 2002;
Woodroof and Searcy 2001), they lack exploratory capabilities
and often require multiple classifier layers for adequate perfor-
mance. This results in organization-specific solutions that may
be impractical across different contexts.

Organization-specific prioritization methods create inconsisten-
cies (Issa and Kogan 2014). These approaches assume auditors
can assess all detected exceptions, making feasibility dependent
on exception volume—viable in some organizations but unman-
ageable in others. Data aggregation reduces exception volume by
treating thousands of events as one but causes significant infor-
mation loss (Yoon et al. 2021). While popular for audit planning
rather than substantive testing (Eulerich et al. 2020), highly
aggregated analytical procedures can achieve accuracies as low
as 50%.

Understanding why transaction-level CA designs in the lit-
erature often suffer from exception overload requires insight
into rule-based implementations. In these designs, exception
volume is typically controlled by adding or tightening rules,
which reduces detections gradually. Data aggregation, another
rule-based technique, raises abstraction by ignoring case dif-
ferences. Studies like Li et al. (2016) and Issa (2013) highlight
the appeal of rule-based systems for auditors but reveal their
limitations: they lack mechanisms to control exception volume
through probability thresholds and have suboptimal accuracy.
We see three main problems with the previous literature's focus
on rule-based designs and data aggregation. Firstly, rule-based
systems do not provide a “volume control” to adjust the num-
ber of exceptions, forcing auditors to manually tweak rules and
check outcomes only after running the system, offering limited
predictability and control.
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Comparison of continuous auditing approaches for exception volume management.

TABLE 1

Interpretability

Advantages Disadvantages Volume control method

Description

Approach

High

Simple, established practice Misses rare errors Manual sample size selection

Random/judgmental selection

Traditional sampling

Medium

Rule adjustment only

No probability estimates

Expert-defined detection rules Intuitive for auditors

Rule-based CA

Low

Layered classifiers with Improved prioritization Complex, organization-specific Indirect through layers

Multilayer rules
(Li et al. 2016)

belief functions

Medium

Reduces alert volume Loss of transactional detail Aggregation level selection

Analysis at higher

Data aggregation

abstraction levels

(Yoon et al. 2021)

High
High (with SHAP)

Event log pattern analysis Control-focused insights Not transaction-level Process scope definition

Process mining

Probability-based classification Direct volume control Requires labeled training data Probability-threshold

ML + thresholding
(this study)

adjustment

with prioritization

Secondly, reducing detections in traditional CA designs often
requires layering rules, which complicates the interpretability
of results. While individual rules are easy to understand, the
combined effect of multiple interacting rules becomes complex,
making it harder to assess the reasons behind detections.

Thirdly, evidence on CA systems using disaggregated data is
scarce. Errors can increase with higher levels of aggregation,
supporting the idea that accuracy improves with more granu-
lar data (Chen and Leitch 1999; Hoitash et al. 2006; Leitch and
Chen 2003). This suggests that refraining from data aggregation
is critical for achieving high accuracy in CA systems. While ag-
gregation is often used to manage exception overload, it comes at
the cost of accuracy. As Yoon et al. (2021) state, “A large volume
of alarms in a CA system can reduce audit efficiency... leading
to reliance on aggregated data with low accuracy as the effect”
(p. 14). This trade-off is inherent in rule-based designs, which
regulate exception volume through rules and aggregation, but
may not apply to other designs.

Our proposed CA design incorporates thresholding for direct
exception volume control, allowing auditors to manage detected
exceptions like adjusting radio volume. Thresholding sets clas-
sification boundaries based on probability scores (Sibiya and
Sumbwanyambe 2021), ensuring only exceptions surpassing
chosen thresholds are flagged. This provides flexible, data-
driven exception management—more effective and adaptable
than current rule-based literature approaches.

CA classification models output probability scores indicating
the likelihood of genuine faults. Thresholds determine which
exceptions warrant follow-up, creating precision-recall trade-
offs. These readily available metrics provide internal auditors
with complete insight for threshold decisions.

While uncommon in CA designs, thresholding is essential for
class imbalance—where one class significantly outweighs an-
other in binary datasets. Class imbalance occurs in practical
scenarios like fraud detection (Krambia-Kapardis et al. 2010),
where the minority group represents the focal class of interest
(Johnson and Khoshgoftaar 2019). This imbalance causes over-
classification of majority groups due to higher prior probability
(Chawla et al. 2004), with challenges exacerbated by big data
complexities and class rarity. Model performance deteriorates as
imbalance increases (Weiss and Provost 2001), making methods
for severe class imbalance imperative for effective CA exception
detection.

In CA, class imbalance creates exception detection overload
through poor classification accuracy—either excessive false
positives or insufficient true positives. Both scenarios render
methods practically ineffective. Too few exceptions allow er-
rors to go undetected (like nets with overly large mesh catch-
ing no fish), while too many exceptions overwhelm auditors
with false alarms (like nets with small mesh catching un-
wanted fish). For internal auditors, the optimal level involves
identifying enough errors to make manual follow-up practi-
cally feasible, provided the detection method has sufficient
predictive performance (precision and recall). When the al-
ternative is random selection from CA output, prioritization
methods offer significant value.
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The application of thresholding with machine learning algorithms
has been extensively employed to enhance classification out-
comes (Chen et al. 2006; Zou et al. 2016). As an algorithm-level
technique, it adjusts the bias towards a specific class by modify-
ing the classification threshold utilized for assigning class labels
to probability estimates. A decision threshold of 0.5 means that
the positive class label is assigned when the classifier estimates
a posterior probability greater than or equal to 0.5. Lowering the
threshold causes the classifier to assign the positive class label to
observations with lower confidence, with more positives as a re-
sult. At threshold 0, all cases are positives (declaring all accounting
as suspicious does not help the auditor much), and at 1, they are all
negatives (handing the auditor no detected exceptions is equally
useless). Consequently, the trade-off between class-wise perfor-
mance scores must be taken into account. Arguably, it is a critical
mistake to use the default threshold 0.5 when data are imbalanced
because in auditing it is in the nature of the task that data are im-
balanced with the resulting overclassification bias causing a need
for a decision about the threshold. Nevertheless, thresholding is
not a concept that the CA literature has employed.

A reason for not adopting thresholding might be that the data
are often too imbalanced. A critical gap might therefore exist
between technical capability and practical adoption in auditing
applications of machine learning. Despite decades of research
in fraud detection using anomaly detection techniques, few or-
ganizations implement these methods in practice. This imple-
mentation paradox—where technically sound methods fail in
practice—stems from fundamental data limitations that must be
examined in the context of CA applications. Machine learning
approaches to fraud detection face a fundamental obstacle: fraud
rates are typically so low (< 0.01%) that training effective models
becomes impossible. Even with sophisticated training methods,
the scarcity of fraud cases prevents model development, explain-
ing why this research stream, despite being decades old, sees
limited practical application in audit and assurance activities.

Our CA application addresses data quality errors rather than
fraud, creating fundamentally different implementation con-
ditions. Data quality errors occur at substantially higher rates
(B3%-7% in our study) compared to fraud (<0.01%), providing
sufficient positive examples for model training. Thus, in some
other situations the data may be too imbalanced for our method.
Additionally, organizations typically maintain historical correc-
tion records that serve as natural training labels, unlike fraud
detection where true labels are rarely available.

Successful implementation nevertheless requires specific organi-
zational conditions. Organizations need historical error correc-
tion data with a minimum of 1000 labeled errors and error rates
exceeding 1% for adequate model training. Stable data structures
and business processes are essential, along with systematic error
identification and correction procedures. Conversely, organi-
zations should avoid this approach when error rates fall below
0.5% due to insufficient training data, when business processes
change rapidly causing model instability, when no systematic
error correction history exists, or when data governance matu-
rity is insufficient to support the implementation.

While thresholding is a well-established technique in machine
learning for handling class imbalance, its systematic application

to CA exception volume control has not been explored in the
literature. Previous CA research has focused primarily on im-
proving detection accuracy through rule refinement or layered
classifiers but has not addressed the volume control problem
that prevents practical implementation. The contribution of
thresholding to CA lies in providing probability-based priori-
tization with direct volume control, where auditors can adjust
exception volume similarly to adjusting classification thresh-
olds in machine learning applications. This approach differs
from organization-specific rule-based solutions by offering gen-
erally applicable, threshold-adjustable classification methods
that address the exception overload problem documented in CA
implementations.

To fill a void in CA research our study systematically explores the
application of thresholding to address class imbalance in signifi-
cantly imbalanced CA data. The CA dataset in this study exhibits a
class distribution where the erroneous entries constitute 5% of the
entire dataset. We conduct experiments with different threshold
levels to demonstrate how the volume of detected exceptions can
be controlled using this technique. In machine learning literature,
there is a conceptual idea of an optimal threshold level, but in the
context of CA, this level depends on parameters such as the cost of
following up on an exception and the value of detecting a genuine
anomaly. Unfortunately, in this study, we do not have access to
precise values for these parameters.

In an ideal scenario, these parameters could be calculated or
estimated, and an optimal threshold level would ideally then
be determined so that the cost of following up on exceptions
at the threshold level equals the economic value of detecting
them. Unfortunately, in practice, it is not always possible to pre-
cisely determine these values, and there remains a challenge
of adjusting the threshold level in a way that balances the cost
of follow-up and the value of anomaly detection. However, this
problem is a luxury that should be afforded to the internal audi-
tors because without thresholding the auditors may be unable to
control the exception volume.

We address these issues with previous CA systems research by
describing the development process leading up to a data level
CA system that relies on generally applicable machine learning
algorithms that allow thresholding and builds on state-of-the-
art interpretation methods in machine learning. We investigate
two research questions:

R1: How can thresholding be used as a method to control the
volume of detected exceptions of a data level CA application?

R2: What contribution can a variable importance measure
provide to the organization's understanding of the causes
of register data errors?

3 | Method and Data
3.1 | The Organizational Context
Statens Pensionsverk (SPV), which is the state government's

occupational pensions agency, stands as one of Sweden's major
providers of pension services, overseeing the administration of
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occupational pensions for more than 1,100,000 people, includ-
ing current and former government employees and pensioners.
Additionally, SPV manages pension data from approximately
250 authorities and selects companies with government con-
tracts. Its responsibilities encompass calculating pension premi-
ums, providing forecasts and statistics to the government, and
serving about 250 employees. This agency plays a pivotal role
in responding to inquiries from pensioners, government em-
ployees, and employers. Its tasks extend to the computation and
disbursement of occupational pensions, calculation of liability
and premiums for employers, and the compilation of pension
statistics.

In accordance with government regulation (1997:909), SPV is
entrusted with the administration of pensions for a substantial
portion of government employees in Sweden. This involves
the management of a service register for individuals covered
by permanent occupational pension regulations. State author-
ities, serving as employers, are mandated to furnish SPV with
the requisite information for maintaining this register. SPV
has established regulations (AgVFS 2016:1 Al) delineating
the process by which employers must provide accurate and
complete monthly information on employment, in line with
the agency's stipulated requirements outlined in a document
known as Transfer Requirements. The organizational context
is meticulously regulated, necessitating employers reporting
to SPV to adhere to prescribed methods for reporting employ-
ment information. Accurate reporting is a prerequisite for en-
suring that government employees in authorities receive their
entitled pension upon retirement. Keeping track of how much
people have worked and how much they were paid is a vital
part of SPV's obligations, so SPV needs to keep this record
as accurately as possible. The purpose of this project from
SPV's perspective is to develop a method that can assist SPV
in identifying registry entries that justify manual follow-up.
The project is explorative and the interest of SPV was to see
whether machine learning technology could benefit the man-
ual work of internal auditors.

The reporting of employment conditions is an ongoing process,
with certain reports carrying particular significance. One cru-
cial instance is the termination of employment. Despite govern-
ment authorities being mandated to report such terminations
and their reasons, a noteworthy number of errors persist, posing
challenges for SPV in identification. SPV has published a docu-
ment on its website outlining the agency's requirements for em-
ployers' reporting of employment information. This document
stipulates that, upon termination of employment, the monthly
report submitted by the employer must include the date of ter-
mination, along with the reason for termination. The document
details various reasons, each with distinct implications for pen-
sion outcomes. Examples include retirement with a disability
pension, retirement with an old-age pension for specific profes-
sions, retirement before the age of 65, retirement with pension
compensation, retirement in accordance with transitional provi-
sions, deceased status, and other retirement scenarios. The doc-
ument lists 20 different reasons for leaving that employers must
specify. Termination of employment holds not only significant
importance for SPV's accurate registration but also provides ac-
cess to labeled data.

SPV maintains an internal control framework that regularly
conducts internal audits. However, challenges arise in rectifying
errors related to the absence of reports for employment termi-
nations, making it difficult for SPV to detect and address such
discrepancies. Instances persist where individuals remain in the
system despite having concluded their employment several years
prior. Typically, employers are the ones to identify cases where
employment has ceased but has not been reported to SPV, al-
though there is no guarantee that this oversight will consistently
occur. Identifying such inaccuracies involves a labor-intensive
process, and the authority faces constraints in internal audit
resources to systematically detect these exceptions on a large
scale without adequate system support. Consequently, SPV re-
quires a CA system to facilitate the identification of unreported
employment terminations. The system needs not report excep-
tions in real time but can be used as an audit analytic when the
employment data register is audited. If compared to the idea of
a CA system providing real-time assurance, the application we
are studying here is a more limited application that is tested in
a pilot project with the purpose to demonstrate whether a ma-
chine learning application can be useful for internal auditors as
they seek to improve the quality of SPV's data.

Section 3.2 delineates how SPV can identify inaccurate entries
of employment terminations in its registers. During the second
quarter of 2022, information for over 280,000 individuals was re-
ported to SPV. Registers of previously self-corrected employment
terminations provide valuable resources for the CA system's de-
velopment. In collaboration with SPV, our research group has
identified the most pertinent indicators to form the cornerstone
of the CA system, with Section 3.2 providing comprehensive de-
tails on the data and research design. Identifying indicators with
predictive power for detecting true errors is helped if auditors
are able to highlight contexts that may correlate with the occur-
rence of actual errors. It is not even necessary that they can do
that because developers can investigate models with hundreds
of indicators and narrow-down to the most important ones in
a trial and error fashion. In contrast, this task is much simpler
than the one auditors face in a rule-based design, where they
must possess detailed knowledge of the specific conditions that
cause errors and the exact indicator levels likely associated with
errors. In a rule-based design, auditors are required to formalize
the model, including assigning weights to parameters and set-
ting threshold levels for indicators to identify exceptions. This
means they need a deep, precise understanding of the rules and
how each factor interacts, whereas a predictive model can iden-
tify patterns without requiring the same level of explicit detail
about the causes and specific thresholds for each indicator.

3.2 | Data and Research Design

The purpose of the CA system examined in this study is to assist
the internal audit in its efforts to identify errors in the reported
employment data. We do not have access to an integrated IT in-
frastructure, which is a prerequisite for real-time monitoring of
internal controls, so we choose a design that provides assurance
through analytical procedures by investigating one registry, al-
beit a large one, that would require years of work to fully inves-
tigate manually. We avoid rule-based classifiers for the reasons
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explained regarding their deficiencies when it comes to provid-
ing a likelihood estimate because such a design does not nor-
mally give us probability estimates for each detected exception.
Instead, we use supervised machine learning models that pro-
vide probability estimates for each detected exception and iden-
tify qualified exceptions as those with a suspicious score above a
threshold. We are interested only in models that allow us to con-
trol the volume of detected exceptions with the threshold level.

Before describing the research design, we describe data. SPV's
internal audit expert provided a dataset with more than 130 in-
dicators for each employee in the register. Most indicators are
relevant only to particular employee categories, which means
that a lot of indicators are missing for a particular employee. The
dataset covers data for 131,039 individuals of which 6538, approx-
imately 5%, had been labeled as exceptions through a labelling
procedure by the internal audit expert. SPV's expert developed
an analytical formula with which to define termination dates as
retroactively added or removed. This defines a register error that
has been retroactively corrected, and we use this as our proxy
for a register error in this study. The presence of retroactive cor-
rections signals that a register error has been in place for some
time that has eventually been identified by SPV or the employer.
Thus, the retroactive corrections can be used as labels of incor-
rect entries but do not cover all register errors because they may
not have been detected and corrected. The discovered and cor-
rected entries most likely constitute only a fraction of the actual
number of incorrect entries because there is no viable method to
detect them all manually so the purpose of the CA system is to
learn a method to detect not only these 6538 errors but to ensure
data quality in the registers and ultimately to assure the quality
of the services provided by SPV by detecting a large fraction of
the now unknown register errors. Since new registry data is con-
tinuously entered, there is also a need for a method that allows
for the continuous review of incoming information to correct er-
rors in real time and even prevent errors. The register contains
many features that each employee may or may not have or may
be related to: Employment categories such as managers covered
by regulations, air traffic controllers, certain military positions,
reserve officers, train drivers, professional officers at the age of
60, pilots, combined positions at universities and colleges, and
insurance medical and dental advisors within the insurance
agency. Different age categories apply for different employment
categories. Employments are in three main types of contracts—
with monthly payment, without monthly payment and with less
than 20% of full time, without monthly payment and with more
than 20% of full time. A number of reasons for being absent from
work are given such as illness, part-time retirement, on leave for
military service within the armed forces, unpaid leave, fully on
leave for another employment with entitlement to occupational
pension, on part-time leave for another employment, or fully on
leave for another employment without entitlement to occupa-
tional pension.

The retroactive corrections, our labels, are selected using several
criteria, some of which are difficult to decipher without detailed
knowledge of how the register is constructed. We relied on the
internal audit expert for this assessment. The register errors re-
late only to the situation when the employer has not reported ter-
mination of employment or has reported termination although
the employment is still there. There are several limitations to

which errors we focus on. Firstly, only employment periods cor-
responding to employment with at least 20% employment are
included. Small part-time employments are excluded from the
study because dealing with them in the register would require
manual preparation of the register so that it is consistent with
our definition of retroactively adding or removing an employ-
ment termination date as our definition of a register entry error.
Secondly, we also used the distinction that for an employment to
be considered to have an expiry date, there must be no employ-
ment for at least 30days after the employment's last registered
entries. Thus, there should be a period in which the person has
apparently not worked at all for the employer. Thirdly, for an
expiry date to exist as the originally reported expiry date, there
must exist an entered expiry date when considering only data
valid at the end of the second month after the expiry date. This
criterion targets falsely registered expiries, cases in which em-
ployment continues despite that the employer has reported a ter-
mination at some point.

We anticipate that the incorrect entries have heterogeneous,
nonlinear and multidimensional relationships with the indica-
tors identified by the internal audit as potentially related to the
likelihood that an entry is incorrect. We therefore expect that
an estimation method with a high capacity for capturing com-
plexity and nonlinearity should be more effective at learning to
predict the incorrect entries than linear models or models used
in statistics. For these reasons, we find the ML models that are
known for their complexity-handling capacity more favorable
for assessing whether an entry is incorrect or not than the often-
used rule-based methods or statistical methods. ML allows the
prediction of exceptions when distributions are unknown and
when the estimated relationships are severely nonlinear (Duda
et al. 2001). This methodology has been used in similar areas,
for example, in finance for credit scoring (Cleofas-Sanchez
et al. 2016) and bankruptcy prediction (Gerlein et al. 2016),
which are applications having features in common with our
problem, for example, class imbalance. A broad spectrum of al-
gorithms can be deployed to classify our type of data with vary-
ing results, such as Nearest Neighbor, Linear Support Vector
Machine, Radial Basis Function Support Vector Machine,
Random Forest, Logistic Regression, Artificial Neural Network,
Gradient Boosting, Naive Bayes, and Quadratic Discriminant
Analysis, but because there is a close relationship between the
tree-based algorithms and the interpretation method SHAP we
opted for the algorithm XGBoost, that is, tree-based and suited
for nonlinear and complex data.

XGBoost in a CA system allows for thresholding by outputting
probabilistic scores or confidence levels for each prediction,
which auditors can use to set flexible thresholds based on risk
tolerance. For example, auditors can decide to investigate only
transactions that exceed a certain probability of being an excep-
tion (e.g., 80% or higher). This thresholding capability enables
a tailored prioritization of exceptions, where the cutoff can be
adjusted based on factors such as audit resources, risk levels,
and specific case requirements. Prioritization of exceptions can
therefore be achieved through thresholding. Our reason for
using an algorithm such as XGBoost becomes evident when con-
trasted with rule-based CA systems. A rule-based implemen-
tation lacks this flexibility because it operates on binary logic.
Each rule either flags a transaction as an exception or it does not,
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without any associated confidence score or gradient. As a result,
auditors must rely solely on the set rules to filter exceptions and
cannot easily adjust sensitivity based on probability or risk level.
If auditors want to change the strictness of detection, they need
to redefine the rules themselves, which is more rigid and less
adaptable than the dynamic thresholding that XGBoost offers.

We sort the persons in the register into two (disjoint) categories
based on whether they are considered false entries or not and
denote false entries as positive cases and correct entries as neg-
ative cases. Our goal is to capture the attribute interactions that
describe a register post as high risk of being a false entry.

XGBoost, or eXtreme Gradient Boosting, is a powerful and pop-
ular open-source machine learning algorithm that is widely
used for supervised learning tasks such as classification and re-
gression (Qiu et al. 2022). It is an ensemble algorithm that com-
bines the strengths of multiple decision tree models to improve
predictive accuracy (Le et al. 2019; Zhou et al. 2020).

In XGBoost, decision trees are constructed iteratively in a pro-
cess called boosting. Each tree is built to correct the errors made
by the previous tree, with the final prediction being a weighted
combination of all the trees in the ensemble. The “extreme” in
XGBoost refers to the fact that it employs a regularized form of
gradient boosting that can handle complex datasets and prevent
overfitting (Zhang et al. 2020).

One of the key advantages of XGBoost is its speed and scalability
(Qiu et al. 2022). It is designed to be highly efficient, with par-
allel processing capabilities that enable it to handle large data-
sets with millions of features and billions of rows. XGBoost also
provides built-in support for missing values and can handle a
variety of data types.

XGBoost has been successfully applied to a wide range of ma-
chine learning tasks, including image classification, natural
language processing, and fraud detection. It is widely used in
industry (Qiu et al. 2022) and has won numerous machine learn-
ing competitions on platforms such as Kaggle. Gradient boosting
is one of the strongest classifiers for various tasks (Sigrist and
Hirnschall 2019).

3.3 | Experiments

To assess the predictive performance of ML algorithms on a
previously unseen set of test instances, indicative of individual
data in the register, a common practice is to partition the dataset
into training and test sets. The training set is used to train the
ML algorithm, while the test set evaluates its performance on
independent data. However, when data scarcity or a more robust
estimate of generalization performance is required, an alterna-
tive method is warranted. In addressing this, a recommended
approach is k-fold cross-validation. This method involves divid-
ing the dataset into k disjoint partitions (folds) and iteratively
training the learning model on k-1 folds, reserving onefold
for testing. The outcome yields k performance measures, and
their mean provides a reliable estimate of generalization per-
formance. Although various approaches exist for selecting the
number of folds, k, this study adopts the widely used value of 10,

resulting in tenfold cross-validation (Guyon 1997). To ensure an
equal representation of positive and negative cases in each test
set, a stratified tenfold cross-validation strategy is employed in
this study. For the ML algorithm, the hyperparameter chosen is
a learning rate of 0.1, while the remaining parameters adhere
to the default values for SciKit-learn version 0.22 (Pedregosa
et al. 2011).

The evaluation of machine learning models involves the use
of diverse metrics, each capturing distinct aspects of learning
ability (Alpaydin 2010). In this study, we employ five widely ac-
cepted performance measures: precision, recall, F-measure, the
area under the ROC curve, and precision-recall curve (PRC).
To assess and compare the performance of machine learning
algorithms, we initially compute precision and recall for the
estimators.

Precision and recall are defined using key metrics such as true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN), as outlined in Equations (1-5) (refer to Table 2).
Precision, representing the fraction of true positives relative to
the total number of positive case predictions, mirrors the preci-
sion of a dart player hitting the target concerning the attempts
made. Recall, on the other hand, signifies the fraction of true-
positive predictions relative to all positive cases in the data,
indicating the predictor's ability to identify the largest possible
fraction of incorrectly labeled entries in our dataset.

Precision serves as a metric to gauge the classifier's sensitivity,
specifically its accuracy in predicting controversy and noncon-
troversy classes. It is calculated as the correct positive fraction
divided by the total number of positive predictions (Equation 1).
Given the conflicting nature of precision and recall—for in-
stance, a classifier predicting every company as having a con-
troversy would yield a recall positive of 100%—the f-measure
(Equation 3) effectively captures the trade-off between these
two metrics.

The area under the ROC curve is determined by plotting true
positives (Equation 4) against false positives (Equation 5). This
measure estimates the probability of a classifier ranking a true-
positive instance ahead of a false-positive instance, providing
insights into its ranking performance. Similarly, the PRC evalu-
ates the mean precision for multiple recall thresholds, akin to the
f-measure, offering a perspective on the precision-recall trade-
off. The area under the PRC is defined as the region beneath
the plot of precision (Equation 1) versus recall (Equation 2).
Notably, both the area under the ROC curve and the PRC are

TABLE 2 | Basic performance measures.

Measures of performance Equation
ision = —& Equation 1
Precision TPr TP (Eq )
=_Tr Equation 2
Recall PN (Eq )

2 X Precision X Recall
Precision + Recall

F — measure = (Equation 3)

TP .
Truepsive = TPrEN (Equation 4)
False P (Equation 5)

positive = FP+TN
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advantageous as they remain insensitive to the class distribution
in the training and testing data, in contrast to accuracy.

4 | Results

In an organization that implements CA the auditors can be
notified immediately and may initiate detailed investigation
as an exception is detected. The auditor may then decide to
correct the error before the next round of audit starts, and if
the exception detection system is good enough, it will enable
auditors to get rid of a lot of the errors prior to the next round
of auditing. This could be on a daily basis or as seldom as once
per month. In our experiments we do not use real-time error
correction but test our exception detection methods on un-
corrected data. Exception detection would perform better on
data that has been gradually cleaned from exceptions because
some of the errors are noise that tend to be detected as false
positives. Our purpose is to propose and validate a one-step,
standard application framework that prioritizes exceptions
in the CA environment well enough to not require further
layers of ad hoc exception prioritization that is the approach
in previous studies (cf. Li et al. 2016). Our purpose is also to
demonstrate a method of detecting and prioritizing exceptions
that explains reasons for identifying an exception in a manner
intelligible to an internal auditor. Prioritization of exceptions
enables auditors to focus on those suspicious register entries
that are more likely to be irregular transactions and other sus-
picious entries. Prioritization in most CA setups would depend
on both how high accuracy the CA system can achieve after
training and the extent that this can be maintained over time.
The latter is because the process the ML model learns to rep-
resent may not be stationary, and in most cases, it is not. The
levels and dynamics of the activity of, for example, accounts
payable can shift rather dramatically over time. In our case,
we do not have this problem. We treat the whole dataset as if
it was entered into the books at the same time and could all
be audited as it came in. Thus, our case is similar to what an
auditor would confront with the audit at the end of a financial
period. All data are already on the table. In our case, it means
that we do not have to treat data as a flow generated from a
nonstationary model, but as a time-independent phenome-
non where all we need to do is to capture the process through
which incorrect entries occur. The experiment therefore relies
not on two criteria to evaluate the performance of the frame-
work as in the normal CA case: Normally, the first criterion is
the ability to effectively prioritize erroneous exceptions higher
than non-erroneous exceptions or, in ML terminology, prior-
itize true positives higher than false positives. The second
criterion adopted in the normal CA case is the framework's
ability to improve its prioritization performance after each it-
erative run. Because we do not have a nonstationary process,
we neglect the second criterion—we do not adopt continuous
learning.

The predictive performance of the learning algorithms is pre-
sented in Table 3. An initial understanding of how the identi-
fication of suspected errors operates can be obtained from the
values. The values illustrate that, in its default configuration,
the algorithm chooses to flag 18% of the total 6538 suspected
errors found in the file. Additionally, we observe a precision of

TABLE 3 | Performance measures.

Precision Recall f1 Numbers
Positives 0.96 1.00 0.98 124,501
Negatives 0.70 0.18 0.28 6538
Accuracy 0.96 131,039
Macro average 0.83 0.59 0.63 131,039
Weighted 0.95 0.96 0.94 131,039

average

0.70, indicating that the algorithm makes a correct assessment
in 70% of the cases where it deems an entry to be an error. A re-
call of 0.18 signifies that, with its default settings, the algorithm
captures 18% of the labeled errors present in the registry (18%
of 6538).

These values suggest the feasibility of capturing the suspected
errors using an XGBoost algorithm. However, it may seem prac-
tically unrealistic to follow up as many suspected deviations as
18% of 6538, which, when scaled to the entire registry, would
result in a significantly larger number of suspected errors.
Therefore, it could be of practical relevance to explore how the
number of suspected errors can be adjusted to any level with
which internal auditors are comfortable.

To illustrate the possibility of adjusting the model's proba-
bility threshold we conducted multiple runs with different
threshold values in Table 4. In contrast to rule-based classifi-
cation, which typically does not provide a probability value for
each identified suspected error in a registry, machine learning
algorithms normally have this capability; and in Table 4, the
advantage of using such algorithms rather than a rule-based
classifier becomes apparent. The threshold value represents
the minimum probability at which the model classifies a reg-
ister entry as an error. The threshold can be set to anything
between 0 and 1 by the internal auditor who is using the CA
system. As the threshold value increases, the model enhances
its accuracy by demanding higher certainty in its classifica-
tions, leading to a rise in precision albeit at the cost of recall.
Notably, the algorithm faces challenges due to significant
class imbalance, struggling to attain a high confidence level
for identified errors.

Despite these challenges, the model attains a precision of 0.73
when the threshold value is set at 0.5. Determining the fea-
sibility of identifying a specific percentage of registry errors
requires a comprehensive cost-benefit analysis. If the expense
of investigating the detected exceptions is outweighed by the
benefit of accurately identifying 73% of errors, the procedure
is deemed efficient. At the 0.5 threshold level, the model
successfully identifies 18% of all errors in the file, compris-
ing 1177 accurately identified errors and 435 false alarms.
Consequently, auditors must evaluate whether they can man-
age the 1612 identified exceptions and, if not, explore strate-
gies to enhance efficiency or choose to investigate a smaller
set of exceptions that costs less to follow up because it contains
a lower percentage of false alarms.
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TABLE 4 | Thresholds and exception detection volumes.

TABLE4 | (Continued)

Threshold p=0.1

Threshold p=10.35

Precision Recall f1 Sample Precision Recall f1 Sample
Non-errors 0.98 0.89 0.98 124,501 Accuracy 096 131,039
Errors 0.26 0.70 0.28 6538 Macro average 0.77 0.62 0.67 131,039
Accuracy 0.96 131,039 Weighted average 0.94 0.95 0.94 131,039
Macro average 0.62 0.80 0.66 131,039 Threshold p=0.40
Weighted average 0.95 0.88 091 131,039 Precision Recall f1  Sample
Threshold p=0.15 Non-errors 0.96 0.99 0.98 124,501
Precision Recall f1  Sample Errors 0.65 0.23 0.33 6538
Non-errors 0.98 0.93 0.95 124,501 Accuracy 0.95 131,039
Errors 0.31 0.62 0.41 6538 Macro average 0.80 0.61 0.66 131,039
Accuracy 091 131,039 Weighted average 0.94 0.95 0.94 131,039
Macro average 0.64 0.77 0.68 131,039 Threshold p=0.45
Weighted average 0.94 0.91 0.92 131,039 Precision Recall f1  Sample
Threshold p=0.20 Icke-fel 0.96 1.00 0.98 124,501
Precision Recall f1  Sample Fel 0.69 0.20 0.31 6538
Icke-fel 0.97 0.95 096 124,501 Accuracy 0.95 131,039
Fel 0.36 0.51 0.42 6538 Macro average 0.82 0.60 0.64 131,039
Accuracy 0.93 131,039 Weighted average 0.95 0.95 0.94 131,039
Macro average 0.67 0.73 0.69 131,039 Threshold p=0.50
Weighted average 0.94 0.93 0.93 131,039 Precision Recall f1  Sample
Threshold p=0.25 Non-errors 0.96 1.00 0.98 124,501
Precision Recall f1  Sample Errors 0.73 0.18 0.29 6538
Non-errors 0.97 0.98 0.97 124,501 Accuracy 096 131,039
Errors 0.47 0.35 0.40 6538 Macro average 0.84 0.59 0.63 131,039
Accuracy 0.95 131,039 Weighted average 0.95 0.96 0.94 131,039
Macro average 0.72 0.66 0.69 131,039
Weighted average 0.94 0.95 0.94 131,039 In the absence of a method that offers precision the internal
Threshold p=0.30 auditors only have the option to prioritize by random sampl'lng.
They would have to randomly select the number of exceptions
Precision Recall f1  Sample from the output of the CA system that they are able to follow up
NON-errors 0.96 0.99 097 124.501 and all detected exceptions have the same likelihood of being
' selected for follow-up. This procedure is obviously less effi-
Errors 0.53 029 038 6538 cient than restricting the number of exceptions to those with
Accuracy 0.95  131.039 the highest likelihood of being the true errors the auditors are
looking for, with output levels illustrated in Table 4. The latter
Macro average 0.75 0.64  0.68 131,039 approach would minimize the internal auditors’ follow-up of
Weighted average 0.94 095 094 131,039 false alarms.
Threshold p=0.35 The control of the volume of detected exceptions by internal
Precision Recall fl1  Sample auditors is achieved by shifting the detection model's per-
formance along the horizontal axis where threshold values
Non-errors 0.96 0.99 0.98 124,501 are indicated from 0 to 0.5 in Figure 1. The higher the con-
Errors 0.59 0.26 0.36 6538 fidence required by the model, the more selective it must be
in choosing what exceptions to output. As precision increases
(Continues) (blue curve) with increasing threshold values, the proportion
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FIGURE1 | The precision-recall trade-off and thresholding.
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FIGURE 2 | A global SHAP-plot summary of how all employments
were classified as exceptions or not.

of exceptions that the model correctly identifies (orange recall
curve) decreases from the total 6513. The point at which the
precision and recall measures meet is about 0.225 where the
classifier offers a precision of about 0.4. This metric may be
much too low if manual follow-up is considered necessary for
all detected exceptions because most of the exceptions are false
alarms at this low precision. It is clearly visible from Figure 1
however that an internal audit function can choose whatever
combination of precision- and recall levels it finds appropriate,
considering its resources and its cost benefit trade-off for man-
ual follow-up.

Finally, internal auditors need additional information on de-
tected exceptions to decide whether to follow up. In complex CA
systems, if auditors see the output as a “black box” with no in-
sight into why exceptions were flagged, they treat all exceptions
equally. Even when classifiers provide likelihood estimates, er-
rors vary in materiality or severity. Without detailed informa-
tion, auditors are forced to choose exceptions blindly, leading to
inefficient investigations. In multilayer rule-based CA systems,
this often results in reliance on random sampling. Alternatively,
the auditors may be able to address the exception overload prob-
lem by turning off entire groups of controls (rules) and thus
ignore what the auditors think are the least severe exceptions
(Alles et al. 2006). Fortunately, exception characterization is
possible using metrics like SHAP values, which show how
much each variable contributes to classifying a registry item as
an exception. SHAP values can be calculated for all variables,
such as employment data in a pension register, to indicate their

importance in detecting errors. These values can be displayed in
local SHAP plots for individual cases or global SHAP plots for
an overview of all exceptions. A global plot for our data is shown
in Figure 2.

The horizontal axis shows SHAP values for each variable's
contribution to classifying employment contracts as excep-
tions. Each contract is represented by a colored dot (blue for
low values, red for high). A positive SHAP value increases the
likelihood of an exception, while a negative value decreases it.
For example, employees of Authority_585549 are less likely to
have errors in SPV's register, indicating reliable data reporting,
whereas Authority_22913269 has more exceptions, signaling
poor data quality. High monthly or additional salary increases
the likelihood of classification as an exception. Local SHAP
plots show contributions for individual data points, helping au-
ditors prioritize investigations based on the likelihood and na-
ture of the error. The SHAP values provide a “fingerprint” of
each exception, aiding auditors in assessing which cases to focus
on, much like risk-based audit planning.

Figure 2 gives an overview of the model's behavior across all
data points, while a corresponding but local SHAP plot would
show how each variable influences the classification of a single
data point as correct or an error. This information helps auditors
assess each exception. Using their experience, auditors can de-
termine which cases need attention and which can be resolved
through routine communication or ignored. In many CA sys-
tems, multiple SHAP values provide a detailed “fingerprint” of
each exception, allowing auditors to prioritize investigations
similarly to risk-based audit planning.

SHAP provides unique value in CA applications compared to
other audit contexts for several specific reasons. First, CA sys-
tems generate continuous streams of exceptions where auditors
need rapid interpretation capabilities—SHAP's real-time vari-
able importance explanations enable immediate prioritization
decisions without requiring extended analysis periods typical in
traditional auditing. Second, unlike periodic audit applications,
CA environments benefit from SHAP's ability to incorporate
new variables into updated results seamlessly as business pro-
cesses evolve, maintaining system relevance without complete
redesign. Third, the high-volume, time-sensitive nature of ex-
ception handling in CA makes SHAP's automated interpretation
particularly valuable compared to the manual analysis required
in traditional audit contexts. Each exception receives an imme-
diate “fingerprint” of contributing factors, enabling auditors to
make informed decisions about investigation priorities within
the operational timeframes required by continuous monitoring.

Furthermore, SHAP enables auditors to build institutional
knowledge about error patterns over time, creating learning
effects not available in point-in-time audit applications. As au-
ditors observe recurring SHAP patterns associated with true
errors, they develop enhanced judgment about which excep-
tions warrant immediate attention versus those that can be ad-
dressed through routine procedures. This cumulative learning
aspect distinguishes CA applications from traditional auditing
where interpretation insights are typically project-specific rather
than building systematic organizational knowledge about error
characteristics.
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5 | Discussion and Conclusion

This study proposes using thresholding, a simple feature in many
machine learning algorithms, to help internal auditors manage
the number of exceptions detected in CA systems. Unlike meth-
ods described in the literature, this approach directly reduces
exception overload. While auditors may sometimes use ran-
dom sampling to reduce exceptions, this does not prioritize the
most likely or serious errors and thus is not a true prioritization
method. Overall, the literature presents three main strategies to
make manual follow-up more manageable.

The common approach in the literature is to layer rule-based
classifiers and adopt belief functions or Delphi weights to finally
filter detected exceptions to a manageable volume. Perols and
Murthy (2012) proposed a multilayered system starting with
rule-based detection, followed by classifiers to reduce excep-
tions. However, this adds complexity, making the system opaque
and costly to develop, especially with supervised learning re-
quiring labeled data. Li et al. (2016) introduced an exception
prioritization method using Dempster—Shafer belief functions,
which assigns suspicion scores and iteratively ranks exceptions
for manual classification, creating an active learning system.

Yoon et al. (2021) suggested data aggregation as an alternative,
which simplifies data by grouping issues but risks losing crucial
details, making the system appear efficient while potentially
missing key errors.

A more general approach is to frame the issue as process min-
ing rather than just exception detection. While process min-
ing methods exist in machine learning literature, no evidence
supports that they can solve the exception overload problem.
Process mining is a control-focused CA design that does not
quite address the same problem as transaction-level exception
detection and therefore is not quite comparable. Furthermore,
conceptual descriptions (Jans et al. 2011; Jans et al. 2013; Jans
and Hosseinpour 2019) suggest easy implementation and some
evidence of usefulness exists (Duan et al. 2024), but until proven
effective, simpler solutions should be considered. One such op-
tion is thresholding to control the CA system outputs, which
would require shifting from rule-based systems to other ma-
chine learning methods. The need for thresholding is evident
because in extreme cases, researchers have even suggested turn-
ing off alarms to reduce exceptions (Alles et al. 2006, 2008).

In practice, however, auditors may have to rely on traditional
approaches that auditors follow in addressing the problem of
duplicate payments, which comprise either visually scanning
the transactions or examining a sample. Either way, the auditors
will not be able to obtain a higher precision than the propor-
tion of items in the CA output that are true errors, which could
be in the range of 7/6980 as in Rozario and Issa (2020), that is,
not more than 0.1%, which means that manual follow-up needs
to cover a lot of ground. With their solution the auditors would
not know just by looking at the output which of the detected ex-
ceptions have the highest likelihood of being true errors rather
than false alarms, so auditors are suggested by Rozario and
Issa (2020) to manually investigate all 800 with the expected
outcome of finding 4 out of the totally 7 true errors that existed
in the population. That is a lot better than manually following

up the 6980 but with thresholding they would clearly be better
off. Because they would have to follow up only a small fraction
of the 800 and, because their efforts can be more intelligently in-
vested, find a higher fraction of the errors that exist in the popu-
lation. It is the class imbalance that makes the internal auditors'
job so difficult and therefore it is unintelligible why they should
not use the commonly recognized method for dealing with class
imbalance.

What would the internal auditors do with thresholding? They
would still have a tough job but would not have to work blind-
folded. First, they would adjust the number of detected excep-
tions in the same way they adjust their car radio. Second, they
would determine the optimal output number as a trade-off be-
tween the effort they can put into manual follow-up and the
benefit of finding a true error. The CA system with thresholding
ensures that they always obtain the most likely true errors what-
ever volume they choose. With all previous techniques using
rule-based classifiers, including belief functions, the auditors
cannot without redesigning the system adjust output volume.
Third, internal auditors not only obtain the detected exceptions
that are the most likely of being true errors, but also, for each
exception, they get the likelihood estimate that the exception is
a true error. It is obvious that, if the estimates are correct, the
auditors do not start with the ones having the lowest likelihood.
They obviously take the ones with the highest likelihood first.
No other method known to the literature can do this. Auditors
can see immediately on the screen the risk they take by ignoring
a certain exception. No other method offers such maneuverabil-
ity. Fourth, by adding the feature importance estimate, unique
to each exception, auditors can deviate from the likelihood esti-
mates as they plan how they invest their efforts. A local SHAP
plot tells the auditors which circumstances the CA system con-
sidered most crucial for identifying an item as an exception. The
experienced auditors may determine the seriousness or materi-
ality of a potential error by just looking at the SHAP plot, which
is delivered in real time with each exception. As we see it, there
is no other method in CA literature that offers the same level of
interpretability of detected exceptions.

These aspects of thresholding and SHAP plots stand in stark
contrast to traditional rule-based systems, which neither align
well with thresholding nor offer an effective initial interpreta-
tion of exceptions. Designs like those of Li et al. (2016) require
extensive customization based on auditors’ expertise, making
them difficult to generalize. In contrast, our approach, which
leverages supervised learning with machine learning algo-
rithms, offers off-the-shelf solutions to these fundamental chal-
lenges in CA systems.

A question regarding our approach concerns the trade-off
between data-driven exception prioritization and expertise-
based threshold setting. Domain expertise can inform thresh-
old calibration, and under certain conditions, expertise-based
approaches may outperform generalized methods. “General
applicability” means the algorithmic framework—supervised
learning with probability-based thresholding—can be de-
ployed across contexts without organization-specific rule en-
gineering for each implementation. The method provides a
standardized technical approach, while learned patterns adapt
to organization-specific characteristics through training data.
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Probability-based thresholding provides advantages when (1)
articulating complete detection rules is difficult, while provid-
ing labeled examples is feasible; (2) exception patterns involve
complex interactions among many variables; (3) business pro-
cesses evolve, requiring frequent recalibration; and (4) organi-
zations need standardized methodology across multiple units.
Expert-based thresholding applies when (1) exception patterns
are simple and stable; (2) regulatory requirements demand ex-
plicit decision criteria; (3) organizations possess readily artic-
ulable domain knowledge; and (4) historical training data are
insufficient (error rates <0.5%, <1000 labeled examples). The
approaches are complementary. Our method incorporates ex-
pertise through: feature engineering (experts identify relevant
variables), threshold refinement (initial thresholds adjusted
based on organizational context), exception interpretation
(SHAP explanations enable expert validation), and hybrid ar-
chitectures (rule-based filters combined with ML prioritiza-
tion). Our contribution demonstrates that probability-based
thresholding addresses documented limitations of rule-based
designs—exception overload, calibration difficulties, and adap-
tation challenges—in transaction-level applications with severe
class imbalance.

Our study faces several limitations, particularly in the applica-
tion of supervised learning within the CA implementation. One
notable challenge is the use of binary CA indicators, which,
while useful in specific contexts, may lack universal applica-
bility across all accounting processes, such as booking on CPD
accounts in ERP systems. The binary classification approach
simplifies decision-making but may oversimplify complex fi-
nancial transactions, leading to a loss of nuance. Additionally,
our explanation of these indicators may not fully capture the
variability in how they can or should be applied to different
systems. Future work should explore more flexible, multiclass
models and refine the application of CA indicators to better ac-
count for the diverse nature of organizational systems, ensur-
ing that supervised learning is adapted to varying accounting
environments.

Data Availability Statement

The data that support the findings of this study are available from
Participating company. Restrictions apply to the availability of these
data, which were used under license for this study. Data are available
from the author(s) with the permission of Participating company.
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