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A B S T R A C T

Domestic automation technologies are increasingly promoted as time- and energy-saving solutions, yet limited 
empirical evidence exists on how they are incorporated into everyday routines or how they influence household 
energy demand. Existing studies rarely examine real-world use over extended periods, leaving behavioural ad
aptations and indirect energy impacts underexplored. This paper addresses these gaps through a 15–18 month 
longitudinal mixed-methods experimental study of automation with 10 UK households, examining how the 
automation of floor cleaning reshapes time use and energy demand. Data were collected through repeated time- 
use diaries, smart-plug energy monitoring, app-based usage logs, participant reflections, and follow-up in
terviews. By integrating time-use analysis with typologies of indirect energy impacts, we quantify how auto
mation alters when, how, how long and how often tasks are performed, frequently increasing total task duration 
and layering energy demand.

During the trial, floor-cleaning frequency increased on average by 32% and total cleaning duration by 189%, 
while occupants’ manual cleaning time decreased by 45 %. Energy demand direct from the device declined in 
some households but increased in others due to more frequent device operation, reflecting diverse patterns of 
substitution, efficiency, and rebound effects. Longer-term follow-up showed use of the device became partially 
routine, with most households maintaining higher cleaning duration but reduced frequency relative to the trial 
period. The findings demonstrate that the energy outcomes of domestic automation are highly contingent on how 
technologies are embedded within household routines. The study highlights the need for context-responsive 
design, behavioural-aware energy policy, and further investigation of how digitally mediated routines shape 
domestic energy demand.

1. Introduction

Digital automation is increasingly embedded in everyday consumer 
technologies, offering promises of time savings, efficiency gains, and 
flexibility, benefits long associated with industrial automation [1]. The 
classic aim of automation has been to replace human manual control, 
planning and problem solving by automatic devices and computers [2]. 
In the home, automation technologies such as automatic vacuum 
cleaners (AVCs), smart thermostats, and smart lighting systems are now 
performing tasks once managed and conducted manually by household 
members. From a sustainability perspective, such technologies are often 
promoted as being energy efficient and claim to support low-carbon 
lifestyles through their ability to avoid unnecessary energy use and by 

enabling demand-side flexibility through shifting consumption to 
cheaper, less constrained periods [3,4]. However, the actual energy 
implications depend less on technical potential and more on how these 
technologies are adopted and used in real life [5,6].

However, we cannot assume that people will use automation in the 
way it was designed. Decades of sociotechnical research show that 
technologies are often adopted, adapted, or abandoned in ways that 
diverge from their intended function [7–9]. Studies of domestic tech
nologies illustrate how social norms, household routines, and material 
contexts shape their uptake and use. For example, Cowan [10] docu
ments how the washing machine reshaped expectations of cleanliness, 
while more recent work points to similar dynamics with smart appli
ances such as fridges [11]. Broader sociotechnical analyses likewise 
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highlight the role of routines and contexts in shaping adoption [8,12].
A time-use perspective provides a valuable lens for understanding 

how domestic automation reshapes household routines and energy de
mand. As time is a universally constrained resource, this approach 
makes it possible to examine how households allocate time across 
energy-consuming domestic and non-domestic activities. When applied 
to the study of domestic automation, it offers deeper insight into how 
digital technologies alter everyday behaviours and, in turn, influence 
overall energy demand [13,14]. Importantly, automation can affect not 
only the energy used directly to perform a task, but also have wider 
indirect consequences. These arise through behavioural and temporal 
shifts such as changes in when, how often or how long tasks are per
formed, or what new activities fill the time saved. As we show in this 
paper, such indirect impacts can either reinforce or undermine the en
ergy savings anticipated from automation, and require a behavioural 
lens to be fully understood.

An underexplored distinction in existing research is between auto
mation of the planning of an activity (e.g., scheduling, timing, coordi
nation) and automation of the execution (the physical performance of the 
task). Many domestic activities consist of subtasks across planning and 
execution phases, and technologies often automate only some of these. 
For example, AVCs may automate the act of vacuuming but not the 
preparatory steps such as tidying up [15]. This partial automation en
ables users to adapt, work around or ignore certain functions, producing 
diverse routines with differing implications for time use, energy de
mand, and user agency. Positioning planning and execution automation 
as analytically separate promises a more precise understanding of where 
behavioural change emerges and how energy demand is redistributed. 
Our study explicitly operationalises this distinction to examine how each 
form of automation reshapes task timing, frequency and duration, and 
the resulting direct and indirect energy impacts.

We focus on AVCs as an illustrative case of domestic automation, as 
they clearly expose the behavioural and routine-based mechanisms 
through which automation affects time use and energy demand. Build
ing on this case, we extend the literature and evidence in three impor
tant ways: 1) we collect and analyse longitudinal data through an 
experimental trial, capturing change in automation use, time allocation 
and energy use; 2) we utilise a wide range of mixed methods to provide 
rich insights into the underexplored behavioural and temporal dynamics 
of domestic automation; and 3) we focus on automation’s direct, as well 
as indirect impacts on energy, offering novel evidence on household 
energy demand in an increasingly automated world.

The remainder of this paper is structured as follows. Section 2 re
views relevant literature on domestic automation and energy and time- 
use impacts. We then pinpoint important research gaps to derive our 
research questions. Section 3 presents our analytical framework which 
captures the relationship between use of automation, changes in time- 
use patterns, and the subsequent direct and indirect energy implica
tions. We outline the mixed-methods approach used to track longitudi
nal changes and Section 4 presents key findings. Section 5 discusses 
these findings considering broader debates on automation and rebound 
effects, and Section 6 concludes with practical, policy and further 
research implications.

2. Literature review

2.1. Domestic automation and energy

Automation technologies originally focused on industrial and mili
tary contexts, developed to improve efficiency, productivity, safety, and 
control in structured environments [16,17]. From the 1950s onwards, 
domestic settings began to see early forms of automation, with appli
ances such as washing machines and dishwashers introduced to reduce 
physical labour and save time [18,19]. More recently, digital (internet- 
enabled) automation has rapidly extended further into domestic life, 
performing repetitive tasks such as cleaning, cooking, grocery shopping 

and climate control (Table 1). Many of these devices and services pro
mote themselves not only as convenient and time saving, but also 
energy-efficient [20,21]. Several simulation studies substantiate such 
energy claims with Wilson et al. [22] and Mahmood et al. [23] providing 
an overview of such research. However, unlike industrial settings and 
simulation models, the domestic sphere presents a far more complex and 
socially embedded setting. Here, household routines and norms play a 
significant role in shaping how automation is adopted and used 
[7,10,24], raising questions about the energy-related consequences 
[5,25,26].

Energy research in the domestic automation field has primarily 
focused on energy-intensive activities like climate control, and studied 
technologies such as home energy management systems (HEMS), 
designed to monitor, control and optimise energy consumption in 
buildings. Studies tend to concentrate on energy consumption simula
tions [27,28] or focus on the early stages of adoption, examining con
sumers’ adoption intentions e.g., [29,30], technology acceptance e.g., 
[31], and factors influencing uptake e.g., [32,33].

In contrast, few studies track actual users over time to capture do
mestic processes, routine integration and ongoing engagement e.g., 
[12,34,35]. Automation of routinised and repetitive chores like floor 
cleaning has received far less academic attention [36,37], likely due to 
the assumption that their energy impact is negligible.

Another line of research has investigated the energy impacts of 

Table 1 
Categorised overview of routinised, ubiquitous ‘chore’ activities in households 
with examples of automation and market available devices or services (adapted 
from Bieser and Vrain, forthcoming).

Category Activity Automation 
Example

Example

Managing home −
hygiene, care, finances

Floor cleaning Automatic 
vacuum cleaners

iRobot 
Roomba 
Combo

Clothes 
ironing

Automatic ironing 
machine

Scanovus

Window 
cleaning

Robotic window 
cleaners

Ecovac 
Winbot

Paying bills Automated bill 
payment systems

Direct debits

Financial 
investing

Robo-advisors Betterment

Feeding pets Automated food 
dispenser

Petlibro

Playing with 
pets

Robotic pet 
companion

Oro

Cutting the 
lawn

Robotic 
lawnmower

Robomow

Garden 
watering

Automated 
watering system

Gardena

Retail – non-grocery Shopping in 
general

Automated 
restocking 
delivery service

Amazon Dash

Paying for 
products

Just-walk-out 
technology

Amazon Go

Retail – grocery Grocery 
shopping

Grocery delivery 
apps

Ocado pre- 
filled basket

Meal delivery 
services

HelloFresh 
auto prep

Managing home −
lighting, devices, 
appliances

Locking 
doors/ 
windows

Smart locks August Lock

Switching 
lights

Smart lighting 
systems

Philips Hue

Managing home −
cooking, dishwashing, 
other food related

Food 
preparation

Automated 
cooking machines

Thermomix

Brewing coffee Automated coffee 
machines

Nespresso 
Smart

Managing home −
heating, cooling, hot 
water, + own energy

Managing 
indoor climate

Smart thermostats Nest

Air 
purification

Automated air 
purifiers

Dyson Pure 
Cool
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digital technologies. Horner et al. [38] and Bremer et al. [39] summarise 
and conceptualise such effects, distinguishing direct and indirect im
pacts. Direct energy impacts refer to the energy use during the manu
facture, operation, and disposal of digital devices and associated 
infrastructures (e.g., data centres and networks). Such impacts are 
relatively easy to measure. For example, measuring device-level metrics 
during operation, such as the electricity used to charge a robotic lawn 
mower which has been empirically measured at approximately 4.80 
kWh per week [40]. However, the ubiquity and high frequency of rou
tinised domestic activities may have significant cumulative effects when 
indirect impacts are considered.

Indirect energy impacts refer to the changes in energy consumption 
resulting from altered processes, systems, and behaviours. Such impacts 
are often further distinguished into substitution, efficiency, and rebound 
effects:

Substitution effects occur when digital products and services 
replace traditional options, e.g., the streaming of digital media reduces 
the need for physical production and distribution [41]. However, sub
stitution can also lead to higher energy use (ibid). For instance, watering 
plants manually at home requires no electrical equipment, while auto
mated irrigation systems depend on energy-consuming components like 
sensors and control units.

Efficiency (or optimisation) effects occur when ICT use reduces the 
use of another resource, such as energy [42]. For example, smart ther
mostats that adjust heating based on weather and occupancy, or auto
mated cars that accelerate and brake more efficiently than human 
drivers and thereby save fuel [43]. In practice, efficiency and substitu
tion effects frequently overlap, making it challenging to separate them 
clearly.

Rebound effects occur when reductions in energy demand from 
(digitally-enabled) efficiency or substitution trigger additional con
sumption, either of the same goods or service, or of others [44–46]. In 
time-use terms, due to the fixed 24 hour time budget on a given day, 
changes in time allocation to one activity triggers shifts in the duration, 
or the timing and sequence of other activities. If those activities are more 
energy intensive than the replaced activities, net energy use increases, 
implying a time rebound effect [47]. Drawing from the rebound typol
ogy in Lange et al. [48], they may manifest through automation as: 

• higher task frequency (e.g. cleaning more often because it takes less 
time);

• energy of enabled parallel tasks (e.g., TV watching while AVC is 
cleaning);

• reallocation of saved time to higher-energy activities (e.g., baking).

Traditional rebound literature focuses on economic mechanisms 
such as income and substitution effects [46], but more recent work calls 
for attention to motivational, temporal, and psychological dimensions e. 
g., [49,50]. Guzzo et al. [50] highlight how efficiency gains can produce 
time-use rebounds, where saved time is spent on other energy- 
consuming activities. Mizobuchi & Hiroaki [51]’s randomised control 
trial found that participants with AVCs reallocated their time to other 
activities such as cleaning and cooking, and increased their household 
energy consumption.

Overall, indirect effects are driven by complex behavioural processes 
and are usually considered more relevant than direct effects from an 
energy perspective [52]. Given this, and the behavioural complexity of 
domestic settings, we are particularly interested in capturing not only 
direct, but also indirect impacts and do so through a time-use 
perspective.

2.2. Time-use effects of automation

One of automation’s core value propositions is time saving. How
ever, many scholars suggest there is a “substitution myth” regarding the 
belief that automation merely replaces human effort. Carr [25] and 

others e.g., [53,54] argue that automation often not only transforms the 
activity itself but also reshapes entire daily routines and time use in ways 
that are difficult to predict. Cowan [10] similarly highlights how his
torical domestic technologies, like washing machines led not to reduced 
housework and the saving of time but to higher expectations for clean
liness and more frequent laundering. This dynamic is not necessarily 
unique to legacy appliances and clothes washing; smart fridges that 
recommend and order groceries may reshape shopping frequency and 
food waste patterns [55,56], while automated lighting systems may shift 
expectations for comfort and ambiance [57]. In their framework on 
ICT’s influence on activity planning and execution, Bieser & Hilty [14] 
break down an activity into aspects and identify how each is impacted 
by ICT, for example activity scheduling is impacted by the relaxation of 
time constraints. Despite the growing sophistication of domestic auto
mation technologies, the literature rarely differentiates between plan
ning automation and execution automation. However, this distinction is 
crucial as each type triggers different behavioural responses and time- 
use adaptations, yet empirical studies typically treat ‘automation’ as a 
single category.

Additional considerations of time use, relevant to the context of 
automation, are raised by Smetschka et al. [58] and Bergener & San
tarius [59]. Smetschka et al. [58] stresses that time-use consequences 
vary by household characteristics such as income, size, and built envi
ronment. For instance, higher-income households may use freed time 
provided by automation for leisure activities involving greater energy 
use, while others may use it for unpaid care or work. Bergener & San
tarius [59] point out how an individual’s pace of life, feelings of being 
rushed, and the time constraints caused by other responsibilities such as 
work, care or chores can impact upon their time use. These nuances 
remain poorly captured in current automation research, along with a 
lack of understanding on how time-use patterns evolve over time after 
automation is introduced [60]. Initial use experienced during short trials 
[61] may differ from routinised use, and the novelty of automation may 
wear off over time, leading to behavioural drift or disuse [62,63]. Lon
gitudinal studies are particularly important for capturing such trends.

2.3. Research gaps and research questions

Overall, existing literature points towards the following four 
research gaps: 1) limited empirical research on the energy impacts of 
automation in routine domestic tasks; (2) lack of longitudinal studies 
tracking users’ behavioural adaptation or disuse over time; (3) insuffi
cient attention to indirect impacts on energy use through a time-use 
perspective; and (4) limited empirical differentiation between plan
ning automation and execution automation, despite evidence that each 
produces distinct behavioural and energy effects. In the study underly
ing this article, we address these research gaps by developing an inte
grated framework that links automation to time use and energy impacts. 
We use this framework as an analytical lens (see Section 3.1), applying it 
to the example automation application of AVCs and tackle the following 
research questions: 

RQ1: How does the adoption of automation alter time-use patterns in 
the home over time?
RQ2: What are the direct and indirect energy implications of 
automation?

3. Methodology

3.1. Analytical framework linking automation, time and energy

To guide our analysis, we developed a framework that integrates 
Bieser & Hilty’s [14] activity-aspects and time use framework with 
Horner et al.’s [38] typology of direct and indirect energy impacts. As 
shown in Table 2, our framework maps how aspects of automation 
planning and execution phases can generate direct energy impacts, as 
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well as indirect impacts mediated by time-use changes. We illustrate the 
different time-use impacts of automation through the example of AVCs, 
however the framework is applicable to a wide range of domestic 
automation technologies (for example those listed in Table 1). The 
framework highlights that assuming automation technologies save time 
and energy is overly simplistic, as the net energy impact depends on the 
combined magnitude of all individual impacts outlined in Table 2.

In principle, from a time-use perspective, automation introduces a 
second time budget: that of the machine or additional agent (e.g., a 
robot). Although the user is theoretically freed from the task, the robot’s 
activity adds to overall time allocated to household processes. This, 
along with new associated activities to automation that the user per
forms (e.g., the set-up, preparation or supervision), also have conse
quences on overall time use and energy consumption.

Overall, we anticipate that the energy impacts of automation will 
depend less on the device’s technical capabilities (direct energy impacts) 
and more on behavioural adaptations over time (indirect energy im
pacts), particularly the time-use dynamics outlined in Table 2. Although 
such automation-induced time rebound effects may appear subtle at the 
individual level, we argue they can cumulatively contribute to signifi
cant shifts in daily time-use patterns and overall household energy 
consumption when scaled.

3.2. General study set-up

We conducted a longitudinal mixed-methods experimental design 
study of automation in UK households, using AVCs as a case study. We 
followed households before, during, and one year after the introduction 
of AVCs and collected data on their usage patterns and experiences. By 
drawing on three phases, we move beyond assumptions of static, 
optimal or intended use, as well as short-term novelty effects of trials. 
Using data collected in all phases, we examine the behavioural conse
quences of domestic automation over time and how such changes impact 
household energy use.

We focus on AVCs and floor cleaning due to its ubiquity and routine 
nature, making it highly relevant for understanding everyday automa
tion and it’s impacts on time use and energy. Although AVCs require 
periodic user intervention and are not fully autonomous, these partial- 
automation characteristics are common across many domestic automa
tion technologies marketed as “smart”. Moreover, a wide range of con
sumer AVC technologies are commercially available that automate both 
the planning (e.g., scheduling when and where) and the execution (e.g. 
physical execution) aspects of floor cleaning. The market of AVCs 

automating floor cleaning has experienced rapid growth, reaching a 
value of $9.37 billion in 2024, and projected to expand further to $11.14 
billion in 2025 [64]. The growth has been attributed to changing life
styles and time constraints along with awareness and technological 
improvements [64].

3.3. Participating households

A sample of 10 households was selected from a broader three-year 
living lab infrastructure (2022–2025) based in and around Oxford, 
UK. As part of the living lab, participants continued living in their own 
homes under real-world conditions while trialling and reflecting on 
digital technologies. All 47 living lab households were invited to com
plete a short screening survey, and a total of 35 households responded. 
From these, we employed purposive sampling to select 10 households 
that provided variation in household composition (e.g., family type and 
size), prior levels of digital automation experience across daily life do
mains, and levels of activity intensity (e.g., cleaning frequency). Only 
households with no prior experience using AVCs were eligible to avoid 
bias from existing familiarity. The decision to recruit 10 households was 
shaped by the longitudinal, mixed-methods design and the availability 
of five AVC units, which required staggered deployment and intensive 
researcher engagement.

Selected households received detailed information and gave 
informed consent in accordance with ethical protocols. As an incentive, 
participants trialled an AVC with mopping capabilities for 30 days, with 
the opportunity to enter a prize draw to win one, and all got to keep a 
smart energy monitoring plug used during the study. This reward-based 
approach is commonly used in living lab research e.g., [65] and was 
used to support participant retention in a longitudinal design, minimise 
attrition, and compensate for the time burden of data collection 
activities.

3.4. Data collection

Data collection was conducted between June 2023 and November 
2024. To capture behavioural time use and energy-related changes 
before and after the introduction of the device, a three-phase, multi- 
method data collection protocol was implemented (Fig. 1). As the study 
involved only five AVC units for 10 households, data collection was 
staggered across households. All fieldwork was conducted by a single 
researcher to ensure continuity, build trust and minimise attrition—a 
critical factor in longitudinal research. The full set of data collection 

Table 2 
Mapping how automation of the planning and execution phase of an activity can have different direct and indirect impacts via time use on energy demand, drawing 
from Bieser and Hilty [14] and Horner et al. [38]. We only consider direct energy use during device operation and not for manufacturing or disposing it. AVC =
automatic vacuum cleaner.

Bieser and Hilty Horner et al.

Phase Activity Aspect Time-use impacts of domestic automation Potential time-use impacts 
Example of AVC

Direct energy 
impacts

Indirect energy impacts

Activity 
planning

1. Activity selection Delegation of planning to digital systems 
requiring energy input

Delegating cleaning schedule to 
companion app

X (negligible) −

​ 2. Activity scheduling Shifts when activities are performed (e.g., 
alignment with off-peak times)

Scheduling cleaning overnight − Efficiency gains

​ 3. Planning horizon, 
duration and 
frequency

Changes in how far ahead tasks are scheduled, 
how often they are planned and task frequency

Ease of scheduling encourages 
more frequent cleaning

− Potential efficiency; 
Potential same activity 
rebound

Activity 
execution

4. Associated activity 
manner

Alters frequency or type of associated activities Tidying up before AVC runs Depends on 
activity

Depends on activity

​ 5. Activity manner Changes how an activity is performed (e.g. 
electrification of tasks)

Replacing manual sweeping 
with electric vacuuming

X Substitution

​ 6. Activity duration Tasks completed more quickly; time freed may 
be reallocated to other activities

AVC completes task quickly, 
user reallocated time to cooking

X Efficiency gains; Other 
activity rebound

​ 7. Activity 
fragmentation

Tasks interrupted or partially completed due to 
system failures or user interventions

AVC stops mid-cycle and 
requires manual restart

n/a n/a

​ 8. Parallelisation Enables simultaneous performance of multiple 
activities

Watching TV while AVC is 
cleaning

− Other activity rebound
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resources used in this study is provided in Data Availability.
Phase 1 − Pre-trial (30 days): To establish baseline data, each 

household was provided with 1) a smart energy monitoring plug (Kasa 
KP115) to measure electricity consumption in kWh of their existing VC 
and 2) a printed ‘Mission Pack’ which included a cleaning diary for 
visible placement (e.g., kitchen wall), which participants used to record 
floor-cleaning time-use data (i.e., frequency, timing, duration of in
stances) and contextual data (i.e., cleaned room(s), cleaning method, 
and responsible household member). Table A.1 in the Appendix outlines 
the different aspects of floor cleaning captured by the diary. A home- 
visit interview lasting between 60–90 minutes was conducted at the 
end of the pre-trial to verify diary entries, clarify cleaning routines, 
collect smart plug data and document general experience of automation 
use across 24 activities spanning 13 domains of daily life to provide 
additional contextual household insights.

Phase 2 − Trial (30 days): Following the interview, households 
received the AVC and were asked to install its companion app and to 
follow the manufacturer’s instructions for setup. The AVC model pro
vided to all households (Deebot N10) was a mid-range robotic vacuum 
with vacuuming and mopping functions, app-based mapping, zoned 
cleaning, and optional scheduling. It required manual emptying of the 
dust bin. These capabilities allowed for both planning and execution 
automation but still required some user input. Participants were given a 
brief safety and setup orientation on first use, as required by insurance 
protocols, but no guidance was provided on optimal usage, energy im
plications, or recommended routines. This was intentional to avoid 
influencing behaviour and to allow naturalistic integration of the device 
into household routines. App tracking was enabled to log time spent 
(minutes) using the companion app, and the smart plug was reassigned 
to the AVC’s charging base. At the start of the trial, participants 
completed a short survey about their time allocation across work, chores 
and care, and measures of their pace of life [59].

Each week, participants completed tasks (Appendix, Table A.2) via 
instant messaging which tracked their AVC engagement and gathered 
rich qualitative reflections on their experiences and behaviours. These 
tasks included uploading screenshots of app usage data, filming first use 
reactions, providing qualitative reflections on time savings, and 
continuing the cleaning diary for any cleaning instances conducted by a 
household occupant. If summer travel disrupted continuity of data 
collection, the trial period was either extended or adjusted to ensure 
analysis represented 30 days.

Post-trial, all participants aged over 12 completed an online survey 
of closed and open-ended questions covering time use and behavioural 
change. The survey took on average 17 minutes to complete. A final 

home visit allowed the researcher to retrieve the AVC, collect smart plug 
and app data, and ensure completeness of weekly tasks. A prize draw 
randomly selected five households to retain an AVC post-trial.

Phase 3 − Follow-up (15–18 months later): Online interviews with all 
10 households’ adult participants captured long-term changes in rou
tines, ongoing or discontinued device use, and the persistence of time 
and energy impacts. Interviews lasted between 20–30 minutes. Four of 
the five households that did not win the prize draw, purchased an AVC 
(the same model) resulting in nine households owning an AVC.

3.5. Mixed methods data analysis

A diverse range of data types was collected across the phases, 
combining objective measures (e.g., app-based logs, energy consump
tion from smart plugs), with subjective accounts (e.g., diaries, qualita
tive reflections, photos and surveys) (Fig. 2). Screenshots, written and 
audio entries were manually transcribed, and photos/videos were 
qualitatively described then organised by question or theme. All 
participant-generated materials (diaries, surveys, weekly reflections and 
interviews) were complete, with no missing entries. However, quanti
tative datasets varied in completeness across instruments. The AVC app 
logs, while reliably capturing total cleaning time and total cleaning 
occasions, provided detailed per-occasion records for only around two 
weeks for most households. Analyses therefore drew on the available 
detailed logs as these offered the richest behavioural insight. Smart-plug 
and diary data were more complete overall but varied slightly in dura
tion across households (e.g., 27–35 diary days; 28 app-usage days; 
27–32 smart-plug days).

To ensure comparability across households, all quantitative datasets 
were standardised to 7-days, with values divided by the number of 
recorded days to generate per-day rates and subsequently multiplied by 
seven. Although AVC units were rotated across households, all trials 
occurred within the same summer period, minimising seasonal 
variation.

3.5.1. Assessing uptake of automation
To investigate impacts of automation, it was first essential to assess 

actual uptake, as ownership or access does not guarantee usage. Using 
the framework presented in Table 2, we disaggregated the subtasks 
involved in floor-cleaning, mapped the automation potential of AVCs, 
and used a wide range of data sources to assess automation uptake by the 
households per floor cleaning sub-task (Appendix, Table A.3).

Fig. 1. Research protocol outlining the data collection timeline. The three phases are numbered, with discrete data collection placed above the timeline and 
continuous or weekly data collection placed below.
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3.5.2. Assessing changes in time-use patterns
Diary data from Phases 1 and 2 and app based data from Phase 2 (and 

Phase 3 where possible) were used to calculate shifts in timing, fre
quency and duration, and time spent on the new associated activity of 
companion app usage. As no diary was completed during the follow-up 
Phase 3, time-use changes were assessed from recall-based interviews 
covering the previous seven days, a period considered reasonable for 
reliable recall by participants [66].

Data across the phases were standardised to seven days to enable 
comparison. To deepen the understanding of shifts in time-use patterns, 
all qualitative responses were coded in NVivo v14 using a mixed 
inductive and deductive approach. Codes were developed around 
themes such as perceived time savings, multi-tasking, shifts in routines 
and disruptions. Results were used to triangulate patterns captured in 
diaries and monitored app behaviours.

3.5.3. Assessing energy impacts
Changes in direct energy use from the activity planning were deemed 

negligible as participants did not engage with the companion app in any 
substantial way. We focussed on calculating the energy use from the 
activity execution of floor cleaning through smart plug data (Phases 1 
and 2). Where data was missing from six plugs in Phase 1 and one plug in 
Phase 2, additional calculations used manufacturer wattage specifica
tions and diary-reported durations to estimate energy consumption. For 
Phase 3, established data from Phases 1 and 2 on device wattage per 
household were used in combination with the recall interview data on 
time spent floor cleaning. Comparative energy values were converted to 
kWh.

To assess the indirect energy impacts outlined in Table 2 we 
compared AVC time-use logs and occupant completed cleaning diaries 
from Phase 1 and 2 to identify shifts in when the task was performed 
(efficiency) and how often and for how long each method of cleaning 
(sweeping, mopping, VC and AVC) was used (substitution). Rebound 
effects were similarly captured through diary comparisons, with quali
tative results to the question 'What activities have you been doing whilst 
the [AVC] is cleaning your floor?' coded by activity type to determine 

the potential indirect energy consumption of such parallel tasks enabled 
by automation.

4. Results

4.1. Automation uptake

4.1.1. Household composition and prior experience
First, we examine participating households’ composition, prior 

automation experience, and observed automation uptake across the 
planning and execution aspects of floor cleaning during Phase 2 and 3 
(Table 3). Although no clear relationship emerged between sustained 
uptake and household composition nor prior automation experience, the 
household with the highest prior experience (HH3) demonstrated the 
most integrated and enduring use of automation (across planning and 
execution). They purchased an additional AVC unit for upstairs and by 
Phase 3 had also adopted a robotic lawnmower. Such results suggest 
prior familiarity with other forms of automation may amplify positive 
reinforcement effects. However, other households with low or medium 
prior experience also adopted and engaged with the device, indicating 
that background familiarity is not a necessary condition for uptake.

Notably, four of the five households who did not win a device in the 
prize draw went on to purchase one. For instance, participant 5.1 re
ported “we bought one even before the prize draw…the same model, same 
set-up”. This suggests hands-on experience during the trial was a 
stronger determinant of perceived value and subsequent purchase 
compared to prior automation familiarity alone.

However, device ownership did not ensure sustained or compre
hensive use of all automation potential. Patterns of partial automation 
were most common (Table 3). Many households used the AVC to auto
mate execution of cleaning but retained manual control over when, 
where and how cleaning was initiated (the planning phase).

Reasons included a preference for spontaneity and a desire for flex
ibility. For example, participant 10.1 adopted a technique that bypassed 
the automation functions “So I prefer to just get her [AVC] and I press the 
button and I shut the door and she just does her thing. And then she can't find 

Fig. 2. Examples of data collected: a) time-use log from the automatic vacuum cleaner (AVC) companion app; b) app usage tracking; c) smart plug app energy log; d) 
participant-submitted photos reflecting automation experience.
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her base at the end. But I just pick her up and put her back”. As for dis
continuance, three households (HH1, 6 and 7) reported the device was 
not in use during Phase 3, due to situational disruptions, i.e., home 
renovations, moving house, or device malfunction. This highlights the 
sensitivity of automation uptake to broader domestic and material 
conditions, and the importance of context in sustaining technology use.

4.1.2. Time-use contexts
Time-use contexts such as time spent on paid work, household 

chores, care responsibilities and perceived pace of life were anticipated 
to shape automation uptake particularly among those responsible for 
cleaning. Results are provided in Supplementary Information (SI) Ta
bles 1 and 2, and SI Fig. 1. Interpretation of the results reveals AVC usage 
during the trial is not linearly related to pace of life scores, total time 
burden, nor time spent specifically on chores (SI Fig. 1). In our sample, 
perceived time pressure, rather than actual time allocation, correlates 
more with delegation of cleaning to automation as the two individuals 
(participants 8.1 and 3.1) reporting ‘always’ feeling rushed had very 
high AVC usage. Overall, uptake and engagement varied widely across 
households, with hands-on trial experience emerging as a stronger 
determinant of sustained use than prior automation familiarity.

4.2. Impacts of automation on time-use patterns

For the remaining subsections, we map activity aspect(s) from the 
analytical framework in Table 2 to the subheadings. Each aspect links to 
both time-use and energy dimensions, but we present them where their 
implications are most directly observable, while noting overlaps.

4.2.1. Changes in when the activity is performed (aspect 2)
The introduction of automation had limited impact on shifting the 

scheduling of when cleaning occurred across households. In most cases, 
the timing of activity remained consistent with prior patterns, whether 
structured or ad hoc. Households with existing evening or daily cleaning 
patterns continued these rhythms into Phase 2, simply incorporating the 
AVC into established slots—typically later in the evening or layered with 
weekend routines. For households with more flexible or irregular pre- 
trial patterns, the use of automation similarly followed an ad hoc 
form, suggesting that automation did not significantly reconfigure 
temporal structures. Only three households demonstrated a noticeable 
shift: HH4 and HH5 moved away from evening cleaning, with HH5 
being the only household to use the automation planning functionality, 
scheduling two cleans per day during Phase 2. This resulted in a nar
rowing of cleaning time window, which HH10 also experienced. Data is 
provided in SI Table 3.

4.2.2. Changes in frequency and duration of activity during trial (aspects 3 
and 6)

The introduction of AVCs in Phase 2 increased cleaning frequency by 
an average of 32 % from a baseline of six occasions per week and 
increased total floor cleaning duration by 189 % from a baseline of 52 
minutes per week (SI Fig. 2). However, occupant time spent cleaning 
dropped by 45 % (equivalent to an average reduction of 24 minutes per 
week). In eight of the ten households, the AVC undertook the majority of 
cleaning, often accounting for over 90 % of cleaning time (SI Table 4 e. 
g., HH3: 92 %; HH5: 99 %).

Fig. 3a shows results for floor cleaning completed by occupants and 

Table 3 
Summary of participating households’ composition and home type, ordered by prior automation experience. Automation uptake is shown for the planning and 
execution of floor cleaning during Phase 2 and 3. Ownership of an automated vacuum cleaner (AVC) post-trial is also indicated.

ID Automation uptake 
Phase 2

Automation uptake 
Phase 3

Household composition (age) Home type 
(# bedrooms)

Prior automation 
experience a

Activity 
planning

Activity 
execution

Ownership post-trial Activity 
planning

Activity 
execution

HH2 Couple (40 s), two children (<12) Semi-detached 
(5)

Low None

HH6 Couple (60 s) Detached (3) Low Purchased 1

HH9 Single empty nester (50 s) Terrace (3) Low Won 1

HH10 Single (40 s), one child (<12), one 
teenager

Semi-detached 
(3)

Low Purchased 1

HH1 Couple (30 s), one toddler Semi-detached 
(4)

Medium Won 1

HH4 Couple (30 s) Terrace (3) Medium Purchased 1

HH5 Couple (40 s), one teenager Terrace (3) Medium Purchased 1

HH7 Couple (40 s), two children < 12 Semi-detached 
(4)

High Won 1

HH8 Couple (30 s) Semi-detached 
(3)

High Won 1

HH3 Couple (50 s), son (20 s) Detached (4) High Won 1 + purchased 
1

automation used, occupant maintained control.
a Household’s adoption of automation across domains: low (none); medium (1–2 domains e.g., entertainment: smart speaker and home management devices: smart 
doorbell); high (>2 domains).
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3b the overall floor cleaning, which includes the AVC usage in Phases 2 
and 3. Among households with high baseline cleaning habits, overall 
frequency did not alter much in Phase 2, but the number of occasions for 
occupants carrying out the cleaning decreased, along with time spent on 
the activity. For instance, HH1 cleaned 10 times and spent 63 mins/ 
week in Phase 1, shifting to 11 times per week – with seven of those 
instance carried out by household members themselves and for only 9 
mins/week during Phase 2, consisting of quick 1–2 minute sweep ups 
after dinner time with a toddler. For one household (HH4) recorded 
floor-cleaning time increased from 3 mins/week to 58 mins/week. This 
pattern suggests that the AVC facilitated more frequent upkeep whilst 
keeping occupant involvement low (<1min/week). Fig. 3 presents the 
changes in time spent (duration) and number of occasions (frequency) 
on floor cleaning in each household, over the three phases.

Although quantitative data indicated clear time savings for the par
ticipants (illustrated in Fig. 3a where occupant time spent per week in 
column 2, is less than column 1), their perceptions of time were more 
complex. In most cases, perceived time savings broadly matched 
recorded reductions in manual effort (SI Table 4). However, many 
participants described invisible burdens associated with preparation, 
supervision or device maintenance (not captured in Fig. 3) which added 
to perceived time spent on the activity of floor cleaning. As participant 
1.1 noted “I feel like I spend the same amount of time because I have to tidy 
up more now before it [AVC] runs”. Such reflections discussed further in 
Section 4.2.4 illustrate the reconfiguration rather than removal of labour 
with manual effort distributed to more frequent occasions rather than 
fully eliminated.

4.2.3. Long-term changes in frequency and duration of activity (aspects 3 
and 6)

During Phase 3, over one year after the trial, change from pre-trial 
cleaning patterns was less stark. Relative to Phase 1 baselines, long- 
term cleaning frequency decreased by 4 % and duration increased by 
44 % (SI Fig. 2). However, occupant time spent cleaning had still 
dropped on average by 31 %.

Examining household level data, patterns diverge more compared to 
during the trial (Phase 2). Some households sustained high levels of 
automation (e.g. HH5: 98 % AVC usage; HH4: 75 %, SI Table 4) whilst 
others either reduced or entirely discontinued use. In cases of dis
continued use, occupant cleaning time either reverted to pre-trial levels 
or declined even further than pre-trial levels (Fig. 3a). HH7, for example, 
recorded no net gain in time saved, nor perceived any gain by Phase 3, 
“We feel the floors are being cleaned the same as before. The trial didn’t 
change anything” [participant 7.1]. Caution should be taken when 
interpreting results from Phase 3 as data collected for only the previous 
7 days is likely to have missed households’ ‘big cleans’ that appear to 
happen at least every month but not every week.

4.2.4. Changes to planning and associated activities (aspects 1 and 4)
For many households, planning and preparation time increased 

during the trial due to more frequent floor cleaning. Participant 7.1 
reflected post-trial “more time planning, moving and tidying but less on 
cleaning. Time has just shifted to different tasks”. Over time, however, 
several households streamlined routines to reduce preparation effort. 
For example, participant 3.1, reported a “knock-on effect” where “we 
don’t leave things on the floor... no more floordrobe” and by Phase 3 the 

Fig. 3. Waterfall graphs indicating sequential change in time and number of occasions spent floor cleaning for 10 households across the three study phases. Arrows 
indicate direction of change (increase/decrease): a) floor cleaning by occupants, b) total floor cleaning which includes the automatic vacuum cleaner (AVC) in Phases 
2 and 3. Phase 1 represents the pre-trial baseline, Phase 2 reflects change relative to the baseline during the 30 day trial, and Phase 3 reflects subsequent change to the 
trial at the long-term follow-up. HH 3,5 and 7′s results off the chart are indicated by text.
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household had modified furniture layouts to accommodate the device, 
such as attaching bedside tables to walls to remove obstacles from the 
floor.

Other new activities also emerged due to automation. Most notably, 
households took on supervisory roles and occasional troubleshooting. 
Participant 4.1 described in Phase 2 “Last week I spent two plus hours 
supervising [the AVC] getting stuck and being available to untangle rugs out 
of the rollers.” Together, these examples illustrate how automation 
generated new forms of domestic labour rather than eliminating existing 
ones.

Additionally, the AVCs brought about companion app usage, which 
varied but was generally low. Seven households used the app for under 
an hour across the 30 day trial, typically just for activation or checking 
routes. Others recorded 3 to 4.5 hours of usage largely during the 
‘burdensome’ set up phase. By Phase 3, two of the households using an 
AVC completely discontinued app use and reverted to pressing a manual 
button on the device. The rest used it for approximately one minute each 
time they wanted to: "just set it off" [participants 4.1, 9.1]; "see where it is 
in a room and whether I can open the door" [participant 9.1]; or "check what 
an error is" [participant 5.1].

4.2.5. Enabled parallelisation (aspect 8)
Responses to the question regarding parallel tasks are summarised 

per household in Table 4. Most participants reported using the time 
when the AVC was active to do domestic chores. As participant 3.1 
explained “once I cleaned all the skirting boards, another time I dusted all the 
spider corners… I use the [AVC] to double my cleaning effort. As the floors 
look cleaner it makes the stairs and other areas look more dirty, I have to keep 
up.” However, some participants also reported spending the time on 
additional leisure and relaxation such as watching TV, reading or having 
a cup of tea.

Overall, across households, these patterns show that automation 
primarily reconfigured domestic routines and time-use patterns through 
intensification, fragmentation, and greater parallelisation, rather than 
simply reducing labour. Next, we focus on what these shifts mean for 
energy consumption.

4.3. Impacts of automation on energy use

4.3.1. Direct and indirect energy impacts of activity (aspect 5)
Fig. 4 presents the weekly energy use (kWh) from floor cleaning 

across the three study phases, distinguishing occupant operated vac
uuming (blue) from AVC use (orange).

Pre-trial (Phase 1) vacuuming consumed an average of 0.38 kWh per 
week, compared to 0.27 kWh for automatic cleaning and 0.10 kWh for 
additional occupant cleaning during Phase 2. However, closer inspec
tion of household-level trends in Fig. 4 reveal aggregate figures mask 
important variation depending on usage patterns and contexts.

For households 3, 5, 8, 9, 10, 1, 2 and 6, majority of energy use has 
shifted from conventional vacuums to AVCs in Phase 2, suggesting a 
strong substitution effect. For households 3, 5, 4, 8 and 9, total cleaning 
energy use even increased in Phase 2, indicating a clear rebound effect. As 
outlined in Sections 4.2.2 and 4.2.3, AVCs were operated more 
frequently in Phase 2, compared to pre-trial occupant cleaning. These 
higher frequencies across all but one household (HH5) explain the 
observed rebound effects.

Only in HH7, occupant cleaning remained dominant in terms of 
energy (and time) use despite automation, suggesting partial or incon
sistent AVC usage. Efficiency effects are difficult to observe in the avail
able data. On average, the AVCs had a lower power draw than their 
manual counterparts. However, a wide variation was found with the 
watts of the AVCs (despite being the same model across households – SI 
Table 5). This is presumably due to changes in settings e.g. suction 
power.

A year later, in Phase 3, average weekly energy use decreased to 0.13 
kWh for AVCs and increased to 0.30 kWh for VCs used by occupants. 
However, results from HH7 skew the average result with much higher 
energy consumption from their VC (Fig. 4). All but one household (HH2) 
reported perceiving their floors were being cleaned more than or the 
same as before the trial. In some households (e.g., HH8 and 9), data 
suggest that energy use declined as the novelty effect wore off, as 
participant 9.1 implied “I made much more of an effort because obviously 
you wanted to in the trial, one wanted to find out how good it was… but now 
I've sort of relaxed and I'll only stick it on when needed.” This pattern in
dicates a joint substitution and efficiency effect driven by replacement of 
manual vacuuming and the lower wattage of AVCs. Although HH3 and 4 
lowered energy consumption in Phase 3 relative to Phase 2, their energy 
use remained higher than in Phase 1, indicating a sustained rebound 
effect. Meanwhile, HH1, 2, and 6 discontinued AVC usage, and their 
energy use for VC cleaning dropped compared to Phase 1, but HH7’s 
reversion to fully cleaning themselves with the use of VCs resulted in 
greater energy consumption than Phase 1.

Next, we look solely at the method of cleaning used and how much 
households shifted from manual sweeping and mopping to electricity 
consuming vacuuming. The results show a significant shift. The pro
portion of time using electrical methods rose sharply for the vast ma
jority of households in Phase 2 and remained high in Phase 3 (Fig. 5a), 
while the proportion of cleaning occasions involving electrical appli
ances showed more variability (Fig. 5b). Household level data available 
in SI Table 6. This suggests that although AVCs were used for longer 
durations, manual methods continued to be intermittently employed, 
with qualitative insights revealing such occasions were mainly quickly 
sweeping a targeted zone e.g., kitchen after cooking. Overall, these in
sights confirm the joint occurrence of substitution and efficiency effects 
in many households.

4.3.2. Indirect energy impacts of other activities (aspect 6)
Another indirect energy impact not captured by smart plugs and 

diaries is the energy consumed by other activities conducted in the saved 
time. Conclusive statements about time reallocation and the energy 
implications are not possible, because AVC adoption can lead to broader 
shifts in the timing and sequencing of activities that can only be captured 
with full-day or − week time-use diaries. However, our results in Section 

Table 4 
Automation enabled parallelisation reported by households.

ID Parallel tasks during Phase 
2

Parallel tasks during 
Phase 3

High 
automation

HH3 Not relaxed, working, 
cleaning surfaces, 
bathroom and windows

Working from home, in 
the evening on computer 
(but not whilst watching 
TV)

HH5 Working, making breakfast Anything: sleeping, out 
of home, working, 
watching TV

Partial 
automation

HH4 Work outside home, 
cooking, watching TV, 
working at home, 
supervising [AVC]

Meeting, cooking

HH8 First times supervising, 
then cooking, reading, out 
of home

Sleeping, out of home 
shopping

HH9 Cooking, cleaning surfaces 
and vacuuming stairs, 
chores, laundry, 
supervising [AVC]

Cleaning upstairs, 
working, hanging out 
washing, watching TV

HH10 Laundry, put out the bins, 
cleaning surfaces, cooking

Making lunch and 
dinner

Discontinued 
use

HH1 Child care bedtime routine, 
and washing up

n/a

HH2 Other chores, laundry, 
cooking, surface cleaning, 
reading, playing with 
children

n/a

HH6 Having a cup of tea, 
gardening, working

n/a

HH7 Cleaning surfaces, working n/a
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4.2.5 provide some insights on what participants were doing while the 
AVCs were running. The results suggest that most participants carried 
out low-energy activities such as other cleaning or maintenance tasks, 

caregiving, reading, relaxing, or sleeping. Also, there was little evidence 
that parallel activities led to increased (energy-intensive) travelling, as 
participants were typically present or at work while the AVCs were 

Fig. 4. Stacked clustered bar chart showing the energy use in kWh/week from floor cleaning across the three study phases for both 1) Automatic vacuum cleaner 
(AVC) (orange) and 2) occupant cleaning with their regular vacuum (blue).

Fig. 5. Box and whisker plots illustrating the change in floor cleaning method for all households: a) the percentage of floor cleaning time using electrical methods, 
and b) the percentage of occasions using electrical methods.
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operating. Taken together, these results demonstrate how automation 
produces overlapping substitution, efficiency, and rebound effects, 
shaped by household routines and usage patterns.

5. Discussion

Our study contributes evidence that the real-world impacts of do
mestic automation are shaped not only by technical performance, but by 
how such technologies are embedded in and interact with everyday 
routines. Using a time-use lens and longitudinal design, we traced direct 
and indirect energy effects stemming from changes in when, how, how 
often, and how long tasks are performed, including the parallelisation of 
activities. These patterns of temporal redistribution help explain why 
some households experienced efficiency gains or substitution effects, 
while others saw minimal change or additive rebound effects.

Our findings demonstrate the value of integrating Horner et al. [38]’s 
typology of indirect energy impacts with Bieser & Hilty [14]’s activity- 
aspect and time-use framing. This integrated framework allows for a 
more nuanced analysis of both home automation’s downstream conse
quences and all automation with impacts on time and energy, extending 
beyond device-level assessments to capture dynamic behavioural in
teractions and cumulative impacts.

5.1. Automation and time-use patterns

To address RQ1 (how the adoption of automation alters household 
time-use patterns over time), our findings show that automation did not 
simply displace manual effort but catalysed broader behavioural adap
tations, most notably increased activity frequency, added planning 
effort, and greater parallelisation of tasks. Rather than saving time, 
automation frequently redistributed domestic labour by layering new 
preparatory and supervisory activities onto existing routines. In partic
ular, deliberately distinguishing between planning and execution auto
mation yielded valuable insights. For instance, many households 
initially experienced increased planning efforts after adoption, reducing 
time savings; however, these effects diminished over time as learning 
and adaptation took place.

These shifts were partly contingent on household-specific factors 
such as pace-of-life rhythms, spatial arrangements, and material con
figurations, revealing how automation becomes embedded in situated 
practices. Taken together, such patterns contest dominant narratives of 
domestic automation as time-saving and instead demonstrate how it 
reorganises, intensifies, or reconfigures domestic labour. This 
mechanism-based interpretation reinforces and extends classic socio
technical insights into the co-evolution of technology and household 
routines, echoing recent scholarship that emphasises how automation- 
induced change is conditioned by domestic materiality and everyday 
rhythms [7,10,26,67–70].

5.2. Direct and indirect energy impacts

In relation to RQ2 (the direct and indirect energy implications of 
automation), our findings demonstrate that automation’s energy out
comes depend less on technical efficiency and more on behavioural and 
temporal dynamics. Across households, planning automation (e.g., 
scheduling) intensified device use and contributed to additive energy 
demand, while execution automation enabled ‘layering’, increasing 
overall domestic activity. These behavioural pathways help explain the 
coexistence of substitution, efficiency, and rebound effects observed in 
the study.

Our differentiation into planning and execution automation also 
revealed that many households rarely engaged with scheduling func
tions. This explains that execution automation alone did not substan
tially reconfigure the timing of cleaning. Pre-existing habits, household 
rhythms, and social factors such as work schedules or family dynamics 
play a greater role in determining when cleaning occurred, raising 

questions about the extent to which automation can support load 
shifting or demand flexibility. These patterns illustrate how indirect 
impacts, including rebound effects, manifest not only in total energy 
used, but in when and how that energy is consumed. As AVCs draw 
energy primarily during charging rather than during task execution, our 
direct energy findings apply specifically to devices with similar 
charging-based profiles; however, the indirect, behaviourally mediated 
mechanisms we identify are not dependent on this characteristic. This 
multifaceted understanding aligns with Horner et al.'s taxonomy of in
direct impacts, particularly behavioural, systemic, and structural di
mensions and reinforces the need for integrated assessments that 
capture subtle but cumulatively significant shifts in household energy 
demand, patterns that conventional device-level efficiency metrics often 
miss [71].

5.3. Generalising beyond vacuums: A broader automation lens

While our study focused on AVCs, Table 1 illustrates a wider land
scape of domestic automation, ranging from automated watering sys
tems to smart locks and automated cooking devices. Many of these 
technologies share key characteristics: they decouple task execution 
from occupant presence, enable scheduling, and often operate with 
limited feedback on cumulative use. As shown in our framework 
(Table 2), such features carry significant implications for energy demand 
depending on how they are embedded in routines, when they operate, 
and what activities they displace or enable. Our findings therefore 
reflect underlying behavioural mechanisms rather than device-specific 
properties, supporting the analytical relevance of AVCs as a case 
through which to examine wider automation dynamics. Although these 
mechanisms emerged in the context of floor-cleaning automation, other 
forms of domestic automation may introduce additional behavioural 
considerations not captured in our study. In particular, user education 
and perceived safety may shape how confidently people rely on planning 
features, such as scheduling, in systems that require configuration or are 
viewed as risky to leave unsupervised. Together, these mechanisms 
suggest that small domestic devices can serve as early indicators of 
broader transformations in digitally mediated household energy prac
tices. Their impacts, whether substitutional or additive, mirror patterns 
emerging in other domains of domestic life.

The growing presence of digitally enabled automation agents such as 
several listed in Table 1 (e.g., automated window cleaners, robotic lawn 
mowers, automated pet feeders) expands the time budgets available for 
substituting human tasks [72] and reshapes existing activity patterns. In 
some cases, these systems even introduce entirely new behaviours. The 
overall energy impact will depend on the cumulative use of these devices 
and the nature of the human activity reconfigurations they induce. If 
time freed through automation is not redirected towards low-energy 
activities, net household energy demand may rise due to the addi
tional consumption of the devices themselves [49,60].

As automation diffuses across tasks and contexts, its aggregate 
impact on energy systems will depend not only on how much energy is 
used, but also on when that energy is demanded, and whether this 
timing aligns with system-level constraints or opportunities, such as 
dynamic time-of-use tariffs and the need for greater demand flexibility.

6. Conclusion

6.1. Implications for practice, policy and future research

Our empirical findings relate specifically to floor-cleaning automa
tion, but they reveal behavioural mechanisms such as routine restruc
turing, increased task layering, and rebound effects that are likely 
relevant across other forms of domestic automation. Building on these 
demonstrated patterns, we suggest that context-responsive design and 
energy policy should account for how automation can increase task 
frequency, extend total task duration, and introduce new preparatory or 
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supervisory demands, rather than focusing solely on device-level effi
ciency. These broader implications are offered as informed reflections 
rather than definitive generalisations.

6.1.1. Practical implications: design and consumer use
Automation technologies such as AVCs and those listed in Table 1, 

must be designed with greater attention to context-responsive use. De
vices equipped with adaptive learning capabilities, for example for AVCs 
being able to recognise dirt levels, adjust to user routines, and tailor 
operation to actual need, could reduce redundant use and mitigate 
rebound effects. Importantly, such responsiveness should be coupled 
with transparent interfaces that make cumulative energy and time use 
visible to users. Providing real-time feedback on energy consumption 
and scheduling patterns could help users make more informed decisions 
about when and how frequently automation is deployed and help them 
manage their energy bills [73,74].

6.1.2. Policy implications: supporting sustainable automation
Existing policy frameworks such as the EU Eco-design Directive 

(2009/125/EC) and Energy Labelling Regulation (2017/1369) typically 
assess appliances based on their rated technical efficiency under 
standardised conditions. However, as our findings show, the real-world 
energy impacts of automation depend heavily on how technologies are 
embedded into household routines. Therefore, policy instruments must 
evolve to account for these indirect and behavioural dimensions. For 
instance, eco-labelling schemes and appliance energy ratings could be 
extended to include dynamic usage factors. This might involve a new 
category or ‘behavioural risk rating’ that flags devices prone to excessive 
or redundant use due to automation features such as remote scheduling 
or absence of feedback loops. These expanded labels could inform 
consumer purchasing decisions by highlighting not just how much en
ergy a product uses under lab test conditions, but how its design and use- 
patterns may influence household-level rebound effects.

Policy tools such as public procurement guidelines and rebate 
schemes could also prioritise automation products that support demand- 
side flexibility. For example, incentives could be offered for smart de
vices that are responsive to grid carbon intensity signals, or that include 
user-facing dashboards making energy/time trade-offs transparent 
[75,76]. These measures would help shift market expectations away 
from automation as purely a convenience or luxury good, and toward its 
responsible integration within sustainable domestic practices. Finally, 
public awareness campaigns could challenge prevailing norms around 
convenience, hygiene, and automation, especially where these drive 
unnecessary or excessive use. By reframing domestic automation as a 
tool for sustainable time and energy management, not just labour 
saving, policy can help shape more climate-aligned consumption 
narratives.

6.1.3. Further research implications
Despite the proliferation of domestic automation technologies, 

research on their time use and energy implications remains narrow in 
scope, typically centred on short-term trials in developed countries 
contexts. Future studies on automation would benefit from using a 
similar longitudinal, mixed-methods approach to the one presented in 
this paper, but also including methods of 24hr time-use diaries to cap
ture not only immediate changes in time use but also the reallocation of 
time. It is particularly important to examine whether automation dis
places, complements, or amplifies existing labour, and how such out
comes are mediated by household characteristics, built environment, 
and evolving expectations of convenience and cleanliness.

6.2. Concluding remarks

As domestic automation continues to diffuse across ever greater 
household activities and in more and more households, its impacts on 
time use, household labour, and energy demand require closer scrutiny. 

This study uses the automation of vacuum cleaners as a demonstrative 
example and shows they can reduce manual effort and lower average 
energy consumption. However, these gains are contingent on how 
technologies are embedded within everyday routines. Automation does 
not operate in a vacuum (pun intended): it alters the timing, frequency, 
and social meaning of tasks. To ensure that domestic automation con
tributes to, rather than detracts from, goals of energy demand reduction 
and demand flexibility for decarbonisation, future interventions must 
account for behavioural dynamics, promote flexible and responsive 
design, and consider the diversity of domestic contexts. Addressing these 
challenges will be essential as households increasingly become sites of 
automated, digitally-mediated consumption. Only then can domestic 
automation become a force for low-carbon transitions rather than a 
source of rebound and emissions creep.
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energy savings in smart homes? a call to embrace rebound effects in sustainable 
HCI, ACM J. Comput. Sustain. Soc. 1 (1) (2023) 1–24, https://doi.org/10.1145/ 
3608115.

[40] N. Grossi, M. Fontanelli, E. Garramone, A. Peruzzi, M. Raffaelli, M. Pirchio, 
L. Martelloni, C. Frasconi, L. Caturegli, M. Gaetani, S. Magni, J. Scott McElroy, 
M. Volterrani, Autonomous mower saves energy and improves quality of tall fescue 
lawn, HortTechnology 26 (6) (2016) 825–830, https://doi.org/10.21273/ 
HORTTECH03483-16.

[41] V. Court, S. Sorrell, Digitalisation of goods: a systematic review of the determinants 
and magnitude of the impacts on energy consumption, Environ. Res. Lett. 15 (4) 
(2020), https://doi.org/10.1088/1748-9326/ab6788.

[42] L.M. Hilty, B. Aebischer, ICT for sustainability: an emerging research field, Adv. 
Intell. Syst. Comput. 310 (2015) 3–36, https://doi.org/10.1007/978-3-319-09228- 
7_1.

[43] B.K. Sovacool, D.D. Furszyfer Del Rio, Smart home technologies in Europe: A 
critical review of concepts, benefits, risks and policies, Renew. Sustain. Energy Rev. 
120 (2020), https://doi.org/10.1016/j.rser.2019.109663. Elsevier Ltd.

[44] F. Amanta, P. Kumar, M. Seger, E. Vrain, The Impacts of Digitalised Daily Life on 
Climate Change, 2024. https://doi.org/10.5871/digital-society/9780856726880 
.001.

[45] S. Lange, V. Frick, M. Gossen, J. Pohl, F. Rohde, T. Santarius, The induction effect: 
why the rebound effect is only half the story of technology’s failure to achieve 
sustainability, Front. Sustain. 4 (2023), https://doi.org/10.3389/ 
frsus.2023.1178089.

[46] S. Sorrell, The Rebound Effect : An Assessment of the Evidence for Economy-Wide 
Energy Savings From Improved Energy Efficiency, UK Energy Research Centre, 
2007. https://ukerc.ac.uk/publications/the-rebound-effect-an-assessment-of-the-e 
vidence-for-economy-wide-energy-savings-from-improved-energy-efficiency.
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