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ABSTRACT  
 
The aim of this study is to investigate the mechanisms underlying systemic risk mitigation in scale-free networks by 
modeling the roles of memorized capital, social learning, and centrality-based heuristics. The study employs a network–
agent dynamic approach to examine how node centrality shapes protection decisions and vulnerability distributions. Using 
advanced computational methods and interactive simulations, the study systematically tracks key state variables and 
shows that nodes with higher centrality tend to invest more substantially in protection, indicating a positive relationship 
between centrality and proactive risk management. These findings provide new insights into risk propagation and 
highlight that local decision rules may converge to suboptimal equilibria when left uncoordinated. By demonstrating the 
critical role of strategic collaboration and regulatory oversight, the results outline potential pathways toward enhanced 
network resilience, offering both theoretical and practical contributions to systemic risk mitigation across interconnected 
domains. 
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Introduction 
 
Systemic risk, a critical concept across various fields, refers to the likelihood that localized failures or chains of such 
events can trigger the collapse of a larger system1. It highlights situations where difficulties faced by a single entity can 
spread throughout the system, potentially causing widespread disruption or even total failure. Events such as the 2008 
global financial crisis, the COVID-19 pandemic, and cascading power grid failures like the 2003 Northeast blackout 
illustrate this dynamic. A defining feature of systemic risk is its interconnectedness and capacity for rapid propagation2, 
meaning the failure of one component can quickly affect others and trigger cascading disruptions. Consequently, research 
has centered on understanding network structures, mechanisms of propagation, and strategies to reduce this spread3. 

Growing system complexity and interconnectedness have intensified interest in systemic risk. Researchers from various 
disciplines have developed advanced models to better capture and predict its dynamics4,5. This work has broadened the 
concept beyond finance and epidemiology to other complex systems6. Examples include disease outbreaks spreading 
through transportation networks, competitive advantages diffusing through sports leagues as teams adopt successful 
strategies, and technological innovations propagating through industrial ecosystems. Recent studies increasingly adopt a 
network perspective, emphasizing that the structure linking nodes (e.g., institutions, individuals, or countries) critically 
shapes how failures propagate7,8. This growing focus highlights the need to understand network structure and connectivity 
to mitigate systemic risk effectively. Systemic risk analysis offers broad applicability, providing policymakers, regulators, 
and stakeholders with essential insights to build systems resilient to shocks. It also supports designing policy interventions 
that prevent cascading failures and strengthen overall resilience9,10.  

Despite mounting evidence of systemic risk across networked health systems11, a clear gap remains in the literature12: 
insufficient distinction between the likelihood of failure contagions and the potential for these defaults to propagate13. 
Although related, these dynamics arise from different mechanisms and require distinct modeling approaches. Estimating 
default likelihood centers on individual risk factors and behaviors, whereas understanding propagation depends on 
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network interconnectedness14. Studies show that many models overlook the influence of network–agent dynamics—
patterns shaped by spatial and temporal heterogeneity—across systems15,16. Spatial heterogeneity reflects variation in 
network properties (e.g., node degree, clustering) across regions, while temporal heterogeneity captures evolving node 
states and connections over time17. In financial networks, spatial heterogeneity appears as variation in bank sizes and 
interconnectedness, while temporal heterogeneity reflects shifting lending relationships and capital levels. In 
epidemiological networks, spatial heterogeneity corresponds to differing population densities and contact patterns, while 
temporal heterogeneity reflects seasonal mobility and changing immunity levels. This oversight limits models that aim to 
predict failure spread in real systems and underscores the need to understand how structure and connectivity shape 
systemic risk propagation. To address this gap, this study examines systemic risk across diverse networks, focusing on the 
interplay among structure, connectivity, propagation, and individual investment in protection.  

We integrate principles from graph theory into complex systems, offering a heuristic understanding of contagion 
dynamics and how network properties shape risk likelihood8, to fields such as financial markets, public health, 
infrastructure networks, and competitive dynamics that have long drawn scholarly and policy interest18,19. Although 
system failure is often a low-probability event, its consequences can rapidly reverberate across the network20. This 
phenomenon appears when a single adverse condition triggers a domino effect that spreads widely21. Empirical work 
highlights systemic risks arising from extreme events intensified by segmented production structures. Building on these 
findings, our investigation examined the impact of investment, conceptualized as stochastic memorized capital with 
adaptive strategies—on these systems, incorporating social learning and evolutionary dynamics22. This perspective aligns 
with research emphasizing the influence of individual behaviors on resilience to isolated and systemic risks. Our model 
also examines the dual role of network connectivity in shaping systemic risk4 and influencing investment decisions. Dense 
connections can heighten contagion likelihood, yet diversification benefits may offset this risk5. To evaluate the model, 
we simulated a random shock to an individual within the network, hypothesizing that increased connections would raise 
risk potential despite diversification gains.  

While existing network contagion models have offered valuable insights into systemic risk propagation, they often treat 
protection investment as fixed or uniform across nodes, overlooking how network position shapes risk exposure and 
optimal protection levels. This becomes critical when highly connected nodes underinvest, creating system-wide 
vulnerabilities—whether in banking networks where major institutions skimp on liquidity buffers, hospital networks 
where central facilities underinvest in infection control, or sports leagues where dominant teams neglect injury prevention. 
To handle these points, our approach introduces three innovations. First, we implement a saturating protection function 
[𝑝p = 𝑝p,max/(1 + 𝑐p,1/2/(𝑓p𝑐))] that reflects diminishing returns on investment. Second, we propose a centrality-based 

heuristic (𝑓p = 𝑓p0 + 𝑓p1𝐶) in which nodes adjust protection according to network position, with 𝑓p0 representing 

baseline protection and 𝑓p1 capturing centrality responsiveness. Third, we integrate memorized capital [𝑐௠ = 𝑚௘ ∗

𝑐௡௘௪ + (1 − 𝑚௘) ∗ 𝑐௢௟ௗ] with social learning [𝑝i = 1/(1 + exp (−𝑠∆𝑐))], allowing adaptive strategies informed by past 
success. (see Methods for details). This scheme enables analysis of how local optimization interacts with networks to 
generate emergent outcomes, yielding insights beyond traditional models. By examining structure alongside strategic 
interventions and risk mitigation behaviors, we clarify systemic vulnerabilities and support the development of informed 
mitigation strategies for interconnected systems. 

 

Results 

Our results show how systemic risk arises and spreads through interconnected networks, with implications for financial 
contagion, disease transmission, and competitive dynamics in sports. Simulations indicate that centrality-based protection 
strategies reduce systemic vulnerability, though optimal connectivity and learning remain important considerations. 
 
Schematic illustration of the spread of failures and protection against them 
 
The spread of failures in complex systems is a major concern for researchers and policymakers. Understanding how 
failures propagate and implementing effective protective measures are essential for system stability and resilience.  
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Failure propagation is strongly shaped by network structure and the degree of interconnectedness among entities. To 
capture these dynamics, researchers have developed mechanisms that quantify the importance of variables in a network23. 
These models help identify features capable of disseminating failures and clarify propagation patterns. As illustrated in 
Fig. 1, the spread of failures depends on interconnectedness, the balance between failure probability and protection 
potential. Failures can be mitigated through interventions (such as vaccination in disease networks) that lower failure 
probability or strategies (such as diversification in financial systems) that enhance protection potential18,19. Understanding 
these fundamentals is essential for strengthening resilience in interconnected systems.  
 
Failures across various network structures 
 
The simulation results in Fig. 2 show how failures propagate across network types with distinct vulnerability patterns 
under full connectivity (0–100). Random (Erdős–Rényi), regular, small-world (Watts–Strogatz), and scale-free (Barabási–
Albert) networks exhibit differing responses to systemic risks. Visualizations present node and link failures as cumulative 
or isolated events per degree. Random networks show resilience that shifts with network parameters. Regular networks, 
defined by uniform connections, can amplify systemic risks unless critical density is reached. Small-world networks, with 
high clustering and short path lengths, initially localize failures but later permit rapid propagation. Scale-free networks, 
shaped by power-law degree distributions, emphasize the role of hubs—vulnerable to targeted attacks yet robust against 
random failures. 
 
Examining network structures reveals varied responses to failures. Although failure potential increases across all 
topologies, scale-free networks respond more rapidly under similar failure probabilities [node failure (𝑝௡) and link failure 
(𝑝௟)] at low connectivity degrees24. This mirrors real systems: financial networks concentrate risk in highly connected 
institutions, airline networks rely on hubs where disruptions cascade, disease transmission is driven by super-spreaders, 
and tactical innovations in sports diffuse from dominant teams. These parallels motivate further analysis of scale-free 
networks. 
 
Illustration of conditions maximizing the failure probability in scale-free networks 

Centrality in this context relates to the initial network property values (i.e., G[𝑛, 𝑚]). According to our model’s 
operational principle (see Methods), localized failures can escalate into system breakdowns. At each time step, every node 
faces a failure probability 𝑝n , and this failure can propagate along each link with probability 𝑝l, driving systemic 
contagion. Simulations revealed a strong correlation between contagion and the node with the highest eigenvector 
centrality14 (see Appendix 1, Table S1, Table S2, and Fig. S1). For example, infection (1) first occurred at node 5, which 
had the highest centrality (Table 1). 

Table 1. Numerical results for eigenvector centrality in a scale-free graph of 𝑛 = 10 nodes with 𝑚 expected degrees. 
𝑛𝑜𝑑𝑒𝑠 (𝑛) 0 1 2 3 4 5 6 7 8 9 

𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟_𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 0.21 0.22 0.21 0.22 0.22 0.45 0.42 0.39 0.35 0.32 
𝑐𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑛 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 0 0 0 0 1 1 1 1 1 1 

Note: Values were obtained from the simulation with the failure states between failed (1) and not failed (0). 

 
We examined an intermediate degree of connectivity that heightens a network’s contagion potential, drawing on centrality 
effects and the “rich-get-richer” phenomenon25. Because our model can run under conditions where 𝑓p0 = 𝑓p1 = 0 (no 

strategy evolution), we validated this by illustrating average failure probability as a function of connectivity and observing 
emerging trends. This search aimed to identify patterns consistent with prior studies on contagion in financial networks21. 
We hypothesized that identifying a connectivity value that maximizes failure would provide a strong candidate for 
initializing parameters in our evolutionary dynamics. 
 
Table 2. Numerical results for connectivity in a scale-free graph of 𝑛 = 100 nodes with 𝑚 expected degrees. 
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𝑑𝑒𝑔𝑟𝑒𝑒 (𝑚) 1 2 ⋯ 10 20 ⋯ 40 50 ⋯ 

𝑓𝑎𝑖𝑙. 𝑝𝑟𝑜𝑏 0.292 0.589 ⋯ 0.990 0.999 ⋯ 0.999 0.999 ⋯ 
𝑚𝑒. 𝑐𝑎𝑝𝑖 3.023 1.671 ⋯ 1.008 1.000 ⋯ 1.000 1.000 ⋯ 

Note: Values were obtained under these conditions: network = scale-free graph, number of nodes = 100, number of connections per 
node = 1–99 (𝑓𝑎𝑖𝑙. 𝑝𝑟𝑜𝑏=failure probability, 𝑚𝑒. 𝑐𝑎𝑝𝑖= memorized capital), and time steps = 100,000 (periods 1–100,000).  

 
Our analysis produced notable observations (Table 2, Fig. 3.1): a peak emerged at approximately 10% connectance, 
forming a plateau between low and high connectivity levels. Connectance refers to the ratio of actual connections to the 
theoretical maximum number of links in the network (see Appendix 2, Table S3, Fig. S2 and S3 for details). To validate 
selecting 10% connectance for subsequent analyses, we conducted simulations across the full connectivity range. All four 
network topologies, random, regular, small-world, and scale-free, exhibited a consistent threshold near 10% connectivity. 
Below this threshold, failure probability increased sharply as isolated nodes became integrated into the network. Beyond 
this point, failure probability plateaued, indicating diminishing returns for cascade propagation. The consistency across 
structurally distinct networks, from the uniform degree distribution of regular networks to the heavy-tailed distribution of 
scale-free networks, demonstrates that the 10% threshold arises from the interaction between local failure propagation 
(governed by 𝑝l) and overall network connectivity, independent of specific structural properties. Although this threshold 
may shift under different conditions, such as alternative model parameters or varying network sizes, it aligns with real-
world patterns. Epidemiological studies indicate that outbreaks become self-sustaining when infected individuals contact 
about 10% of their community, and research on innovation diffusion reports a comparable tipping point for adoption.  
 
Excluding self-links, the number of possible connections equals the product of nodes and one less than nodes, divided by 
two. This suggests an optimal connectance of ~ 0.1, which provides meaningful interaction potential yet creates 
challenges for the social evolution of preventive measures. For systemically important institutions, capping direct 
exposures at about 10% of participants, similar to limits in banking regulation, is recommended. Rather than allowing 
unchecked hub growth, regulators could require segmentation once thresholds are reached. In public health, this 
corresponds to limiting gathering sizes to 10% of a community during outbreaks. In sports, leagues may likewise restrict 
direct competition (e.g., divisional play) to 10% of teams to balance exposure and stability. Our findings support tiered 
network designs where regional subsystems maintain ~10% internal connectivity and link more sparsely to global hubs, 
mirroring regional payment processing. As systems expand, sustaining 10% connectance requires active management, 
revealing natural limits to scaling without hierarchical organization. These results clarify how connectivity can both 
amplify and suppress failure spread while altering failure likelihood. 
 
Interplay of centrality-based heuristics  

Observations in Fig. 3.2 show that social learning parameters strongly shape system dynamics. Moderate imitation 
probability (i.e., 𝑝r = 0.1) yields superior long-term outcomes, producing lower average failure rates than other values. 
This result indicates that excessive imitation spreads suboptimal strategies, whereas moderate learning maintains strategy 
diversity and local optimization. Similar patterns appear across domains: financial institutions that mimic competitors 
indiscriminately often fail together, while selective adaptation promotes resilience. In epidemic control, communities that 
moderately adopt others’ prevention measures perform better than those with rigid or chaotic responses. We examined the 
effects of evolutionarily informed parameters, memory, imitation (𝑝r; see Appendix 3, Fig. S4 and S5 for more details), 
and exploration (𝑝e; see Appendix 4, Fig. S6.1–S10.3 for the details) on failure probability. High parameter values 
accelerate social evolution, while low values slow adaptation. Simulations predict an intermediate minimum failure 
probability for these social variables, consistent with a complex system shaped by multiple interacting factors.  
 
Table 3: Numerical results for eigenvector_centrality [𝐴𝑥 = 𝜆𝑥]. 

𝑛𝑜𝑑𝑒(𝑖) 0 1 ⋯ 10 11 ⋯ 50 51 ⋯ 75 76 ⋯ 98 99 

𝑣𝑎𝑙𝑢𝑒(𝜆𝑥) 0.24 0.10 ⋯ 0.12 0.22 ⋯ 0.08 0.09 ⋯ 0.08 0.06 ⋯ 0.04 0.04 
Note: Eigenvector_centrality was obtained from the left-hand side of Fig. 4; type of network = scale-free (Barabási–Albert model), 
number of nodes = 100, number of connections per node = 10.  
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Fig. 4.1 illustrates the relationship between an agent’s centrality (Table 3) and investment in protection. Each point 
represents an individual: color denotes centrality, and vertical position reflects protection investment (see Appendix 5.1, 
Supplement Fig. S11.1 ~ S11.3 for more cases). The simulations show that agents with higher eigenvector centrality 
invest more in protection. Eigenvector centrality, calculated via the power method, measures global network connectivity. 
Agents with greater centrality, due to their broader influence and faster information flow, are more likely to invest. To test 
the heuristic’s robustness, we compared it with alternative strategies. Fig. 4.2 shows that network-aware strategies 
outperform random allocation, uniform protection, and degree-, betweenness-, and closeness-based approaches (Appendix 
5.2, Fig. S12 and S13 for the details). We then extended simulations to track long-term failure stabilization and evaluate 
the dynamics of the adopted strategy, incorporating three key adjustments.  
 
Table 4: Numerical results for eigenvector_centrality [𝐴𝑥 = 𝜆𝑥]. 

𝑛𝑜𝑑𝑒(𝑖) 0 1 ⋯ 10 11 ⋯ 50 51 ⋯ 75 76 ⋯ 98 99 

𝑣𝑎𝑙𝑢𝑒(𝜆𝑥) 0.08 0.13 ⋯ 0.32 0.21 ⋯ 0.08 0.07 ⋯ 0.06 0.05 ⋯ 0.05 0.05 
Note: Eigenvector_centrality was obtained from the left-hand side of Fig. 5; type of network = scale-free (Barabási–Albert model), 
number of nodes = 100, number of connections per node = 10.  

 
Fig. 5 illustrates the relationship between eigenvector centrality (Table 4, Appendix 6 for ordering by eig_centrality 
[node]) and protection investment (top panel: 𝑛 = 1000, 𝑚 = 100; bottom panel: 𝑛 = 100, 𝑚 = 10). Semi-transparent lines 
track the evolution of selected individuals over time, and an additional panel examines the interaction among eigenvector 
centrality, failure rates, and strategic dynamics. Our proposed heuristic, 𝑓p = 𝑓p0 + 𝑓p1𝐶, is depicted visually, showing 

that nodes with higher centrality invest more in protection. Ordering nodes by centrality highlights the slope and 
intersection of this relationship. Regression analysis yields an R² value (0.987) for 𝑓p, confirming strong significance and 
validating the heuristic across contexts. Analogous to how major banks hold higher capital reserves, central hospitals 
maintain surge capacity, key infrastructure nodes require redundancy, and star athletes receive enhanced injury 
prevention, systemic importance necessitates proportional protection. Directional strategy effects, with 𝑓p0 = negative 

and 𝑓p1 = positive, offer insight into micro-scale interactions between failure and protection. Importantly, the strong 

centrality–protection correlation emerges from system dynamics rather than model specification. As shown in 
Supplementary Appendices 3–6, this pattern appears only under specific conditions: moderate imitation (𝑝௥), moderate 

exploration (𝑝௘), and sufficient memory (𝑚௘). Under alternative settings—particularly high exploration noise (𝜎௘) or low 

memory and imitation rates (𝑝௥)—the system exhibits diverse outcomes, including negative 𝑓p1 values (inverse centrality 

relationship) or near-zero R² values (no systematic relationship; Supplement Fig. S11.3). These findings demonstrate that 
the model genuinely explores strategy space, with centrality-based protection becoming the evolutionarily stable strategy 
only when agents can reliably evaluate and imitate successful strategies (see Appendix 7 for more validation). 
 
Empirical calibration and validation 
 
Fig. 6.1 compare phase portraits under different sigma values, linking model behavior to real-world scenarios (reflecting 
parameter values from Fig. 5). The portraits show a predominantly positive relationship between 𝑓p0 and 𝑓p1, indicating 

that nodes with higher eigenvector centrality tend to invest (𝑓p) more in protection, consistent with Fig. 5. The exploration 

mechanism, influenced by the sigma value (𝜎௘), is central to this shift. Agents with probability 𝑝e adjust one of their 

strategy values (𝑓p0 or 𝑓p1) by a normally distributed increment with mean 0 and standard deviation 𝜎௘, reflecting their 

propensity for experimentation or responses to environmental changes. Higher randomness disrupts the synchronization 
seen in deterministic settings, producing scattered, anti-synchronized dynamics.  
 
Fig. 6.2 further illustrates how 𝑓p0 and 𝑓p1 respond to varying noise levels 𝜎e. Notably, 𝑓p1 remains relatively stable at 

low to moderate 𝜎e values (e.g., 0.0001 up to 0.1), whereas 𝑓p0 varies more, with the horizontal line rising as 𝜎e increases. 
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This shows that 𝑓p0 is more sensitive to stochastic shifts in agent strategies, while 𝑓p1 maintains steadier trajectories under 

moderate noise. These noise-sensitivity patterns have practical implications. Systems with low exploration noise maintain 
stable protection strategies, such as mature financial markets with established regulations or disease management under 
routine protocols. High-noise environments, such as emerging markets, novel outbreaks, or sports leagues with frequent 
rule changes, exhibit greater volatility, particularly in baseline protection levels. By overlapping vertical diagrams at 
selected 𝜎e values, we highlight stable versus unstable tendencies in 𝑓p1. When 𝜎e remains small, the vertical arrows 

converge to a stable point, reflecting synchronized protection investments. In contrast, a hypothetical “ 𝜎e = 0.0” line 
shows how a fully deterministic yet unstable reference can diverge when perturbed. Thus, although 𝑓p1 generally retains 

stability under moderate 𝜎e, 𝑓p0 rises with increasing noise, demonstrating how randomness in exploratory behavior 

amplifies one dimension of the protective strategy while leaving the other comparatively stable.  
 
Mechanical rationalization for systemic risk management 
 
These comparisons motivate the model mechanism (Fig. 7; see Methods for details) and affirm its relevance to real-world 
systems, showing that centrality’s influence on protection investment persists as the system evolves While Fig. 5 and 6 
indicated that highly central nodes increase protection under moderate noise, Fig. 7 illustrates network convergence 
toward equilibrium: central nodes maintain high protection, whereas peripheral nodes invest less. This adaptive balance 
reflects the model’s contagion-tracking process, where heavily protected hubs act as firewalls stabilizing the failure rate. 
Over time, nodes align protection with centrality, as reducing investment increases individual failure risk. The lower panel 
shows that protection (𝑓p) embedded in its strategic components (𝑓p0 and 𝑓p1) and centrality (𝐶) is essential for systemic 

stability, demonstrating how dynamic strategies mitigate propagation risk. Such self-organization appears in domains such 
as banking, health systems, and sports, though the resulting order may still be globally suboptimal, highlighting the need 
for coordinated intervention. 
 
To connect this framework with real-world applications, we validated our centrality-based protection model using datasets 
from finance, epidemiology, and sports, each demonstrating distinct network-mediated risk dynamics. Fig. 8 synthesizes 
these findings across three perspectives. The left panel shows that our protection function 𝑝p = 𝑝p,max/(1 + 𝑐p,1/2/(𝑓p𝑐)) 

captures domain-specific saturation patterns in voluntary prevention adoption (see Supplementary Appendix 10, Table 
S11). The right panel demonstrates consistent social learning dynamics, with Fermi adoption curves producing selection 
strengths (𝑠) between 0.9–1.1, suggesting behavioral mechanisms governing strategy imitation that hold across contexts. 
The middle panel confirms strong predictive accuracy (mean 𝑟 = 0.694), showing that centrality-based protection 
strategies apply across domains, mitigating financial contagion through capital buffers, reducing disease transmission via 
vaccination, and preserving competitive advantage through injury prevention, thereby validating the framework’s 
practical relevance and its Fermi learning function for systemic risk management (see Supplementary Appendix 11, Fig. 
S14). 
 
 

Discussion 
 
In this study, we developed a network model to examine how failures spread and how protection evolves. Our approach 
builds on established contagion while introducing a centrality-based heuristic that extends traditional foundations. 
 
First, we proposed a method comparable to existing network processes for simulating risk propagation, incorporating a 
mechanism that distinguishes our model from prior formulations. Traditional models suggest that denser connections 
increase contagion risk by expanding transmission channels, meaning highly connected nodes, banks, transportation hubs, 
or influential individuals, have greater failure potential. Eigenvector centrality quantifies this relationship, linking risk to 
individual characteristics and connection patterns. Our model further shows that increased connectivity also enables risk 
sharing21, mitigating failure probabilities. Simulations revealed that although connectivity raises contagion likelihood, it 
simultaneously introduces stabilizing effects. These findings have practical implications for financial, social, 
transportation, and competitive sports networks. The positive correlation between centrality and optimal protection 
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investment suggests that current regulatory mechanisms appropriately strengthen oversight of systemically important 
nodes. Furthermore, the enhanced failure probability observed at medium connectivity (≈ 10%) reflects the “robust-yet-
fragile” behavior of real networks: sufficient interconnectedness supports liquidity sharing during normal periods yet 
accelerates contagion under stress16. This implies that optimal network design may require explicit constraints on 
maximum node degree, a concept reflected in concentration limits but not fully embedded in systemic risk policy. 
 
Second, our research examined how individuals invest in protection, drawing on social learning principles such as 
imitation, exploration, stochastic influences, and the moving average effect shaping decision-making27. We focused on 
dilemmas where personal incentives can undermine collective outcomes28,29, consistent with “the evolution of 
cooperation”30. This dynamic appears across domains: banks collaborating on stress tests31, health systems coordinating 
pandemic responses12, and sports leagues sharing injury-prevention strategies26. Simulations revealed that nodes with 
higher eigenvector centrality invest more in protection, a pattern strengthened when nodes are reordered by centrality 
ranking23. We propose strategic interventions, such as enforceable agreements that penalize harmful behavior, to 
strengthen cooperation and reduce dependence on mutual trust32,33. These findings advance understanding of failure and 
protection dynamics in networked systems and offer pathways for promoting cooperative risk management. 
 
Third, recent global crises highlight the systemic vulnerabilities captured by our model. The 2008 financial crisis showed 
how the collapse of highly connected institutions, such as Lehman Brothers, triggered cascading failures across banking 
networks, requiring bailouts even for less-exposed institutions34. COVID-19 similarly revealed how hub hospitals became 
overwhelmed and how super-spreader events accelerated infections, forcing emergency reallocations of critical 
resources35,36. Both crises demonstrated that networks may appear stable yet collapse abruptly when pushed beyond 
critical thresholds37. These events support our model’s predicted optimal connectivity (~10%), observed in interbank 
exposure limits and pandemic restrictions. This threshold reflects consistent patterns across domains and underscores the 
need for regulatory mechanisms that balance connectivity’s benefits with contagion risks38,39. More than a model artifact, 
this threshold represents a phase transition in cascade dynamics, analogous to percolation transitions in physical systems. 
Below it, networks cannot sustain global cascades; above it, giant components enable system-wide failures. Real-world 
systems often self-organize near this critical region, highlighting the need for coordinated schemes that preserve beneficial 
interconnectedness while limiting rapid contagion. 
 
Fourth, based on our simulation results, the model suggests a centrality-based heuristic in which each agent selects a 
protection level that evolves through social learning and strategy exploration. These points reflect dual-process theory, 
which posits that decision-making draws on both intuitive (heuristic) and analytical processes40. This aligns with 
Kahneman’s observations that biased intuitive judgments can lead to suboptimal outcomes41. In our simulations, 
comparing protective success with and without the centrality-based heuristic illustrates the complex dynamics of decision-
making under crisis conditions, underscoring the importance of understanding how heuristic strategies guide protective 
behavior in uncertain environments. Previous research supports this view, highlighting the value of behavioral principles 
in shaping investment decisions during instability42 and emphasizing the need to recognize and counter biases in 
intervention strategies—a theme echoed in our findings. Moreover, our results show that the protective strategy 𝑓p can be 

highly sensitive to stochastic effects (𝜎e), mirroring real-world uncertainties, yet certain components (particularly 𝑓p1, 

linked to network centrality) remain comparatively robust at moderate noise levels (up to 𝜎e = 0.1). In contrast, 𝑓p0, 

lacking direct engagement through centrality, exhibits more pronounced variability, underscoring how heuristic-driven 
decisions may diverge sharply as 𝜎e increases and demonstrating the model’s ability to capture realistic, noise-driven 
instabilities in agent behavior40,42. 
 
Finally, building on these mechanisms, our analysis shows that centrality’s influence on investment persists over time, 
driving convergence toward stable but differentiated protection levels. High-centrality nodes act as firewalls, investing 
heavily in protective measures, while peripheral nodes allocate fewer resources 43. This produces a steady-state 
equilibrium in which each node’s strategy reflects its connectivity, though this outcome may not be collectively optimal. 
Our findings suggest that collaborative agreements and regulatory oversight can enhance resilience by aligning individual 
incentives with systemic stability.44  
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Several limitations guide interpretation. The memorized capital mechanism [𝑐௠ = 𝑚௘ ∗ 𝑐௡௘௪ + (1 − 𝑚௘) ∗ 𝑐௢௟ௗ] captures 
short-term adaptation, whereas longer memory horizons, as shown in multi-agent studies45, could alter protection 
dynamics. Temporal interaction frequency highlighted in recent network research46, may also modulate contagion speed. 
Although our model assumes daily synchronous interactions, real networks operate on heterogeneous timescales that may 
create temporal firewalls limiting cascades. Compared with similar centrality-based protection studies47, our saturating 
protection function and memorized capital dynamics produce distinct equilibria, including protection plateaus that prevent 
over-investment by central nodes. The single protection variable 𝑓p simplifies real instruments such as capital, liquidity, 

or derivatives. All nodes follow identical behavioral rules despite real systems comprising diverse agent types. Agents 
imitate successful strategies but do not learn optimal responses or anticipate others’ actions strategically. Parameters such 
as 𝑝n, 𝑝l, and 𝜎e require empirical grounding beyond our sensitivity analysis15,37. Despite these limitations, the model 
shows how local optimization can generate globally suboptimal outcomes, offering a game-theoretic perspective on 
interventions that shift networks toward more resilient29, higher-investment regimes. 
 
Consequently, our research offers new perspectives on how risk and failure propagate in networked systems, emphasizing 
the value of leveraging high-quality connections for effective risk sharing48. Public health officials can design gathering 
restrictions that balance social needs with contagion risk, and sports leagues can structure competitions to maintain 
competitive balance without tactical monotone49. The centrality-based protection heuristic provides a unified core for 
guiding protective investment decisions. These insights inform contagion management and support robust systemic risk 
strategies. Focusing on node centrality, protective investment, and strategic cooperation mechanisms44 highlights essential 
elements for strengthening network resilience. 
 
 

Methods 

The simulation captures how network topology, individual decision-making, and systemic risk interact. We construct the 
network algorithm and initialize heterogeneous agents with different capital endowments, protection strategies, and 
positions. The dynamic phase unfolds in iterative timesteps, each comprising four sequential processes: failure 
propagation via shocks and contagion, protection-mediated resolution, capital updates with memory effects, and strategy 
evolution through social learning and exploration (Fig. 7, upper left panel). This approach adopts deliberate 
simplifications to highlight key mechanisms (see Appendix 8 for the pseudocode): binary failure states aligned with 
regulatory and empirical thresholds, a saturating protection function reflecting diminishing returns, and a static network 
topology to separate behavioral from structural effects. These abstractions allow tractable analysis while preserving 
essential risk dynamics (Fig. 7, upper right panel). Subsequent subsections outline each component, with mathematical 
formulations and parameters provided where relevant. 
 
Network Properties: Our study is based on a scale-free network designed for structural comparisons (Fig. 2), using a 
custom algorithm referencing the Barabási–Albert model to depict interconnected systems prone to systemic risk. We 
used the (𝑛, 𝑚, 𝑠𝑒𝑒𝑑) function to generate a graph with preferential attachments. The notation is as follows: 𝑛 = the total 
number of nodes in the graph, 𝑚 = the number of edges attached from a new node to existing nodes, and 𝑠𝑒𝑒𝑑 = a seed 
for the random number generator for reproducibility (see Appendix 9’s Table S4 for the details). The graph employs 
“preferential attachment,” meaning that the more connected a node is, the more likely it is to receive new links. Nodes are 
added individually, and each new node connects to 𝑚 existing nodes with a probability proportional to their degree. The 
function begins with an initial network of 𝑚 nodes. For each new node, a probability is computed for each existing node 𝑖 
using 
 
𝑝(𝑖) = 𝑘i / 𝑘  
 
where 𝑝(𝑖) is the probability of connecting to node 𝑖, 𝑘i is the degree of node 𝑖 (the number of connections node i has to 

other nodes), and 𝑘 is the sum of all node degrees. The new node is then connected to 𝑚 existing nodes according to these 
probabilities, and the procedure continues until 𝑛 nodes populate the graph. We selected this function for its simplicity, 
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reliability in scientific research, computational efficiency, and reproducibility via a fixed random seed. Because our study 
does not require additional flexibility, this approach provides a clear and consistent method for generating scale-free 
networks. This feature highlights their ubiquity and resilience, governed by the rule: 
 
𝑝i = 𝑘i / ∑ 𝑝𝑖 i  
 
Here, 𝑘i is the degree of node i, and the sum extends over all nodes j. The network begins with a connected array of 
𝑚0 nodes. Each new node attaches to 𝑚 < 𝑚0 existing nodes with probability proportional to their link count. The 
resulting degree distribution follows 
 
𝑝(𝑘)~𝑘ିఊ  
 
where 𝑘 is a node’s degree, and 𝛾 denotes the degree exponent. For many real-world networks, this value typically ranges 
between 2 and 3. In our model, the network comprises 𝑛 nodes or agents, representing the finite number of participants in 
systems exposed to systemic risk. These nodes are interconnected through preferential attachment, a defining feature of 
scale-free networks in which highly connected nodes are more likely to attract new links. This structure is represented by 
an adjacency matrix 𝐴, which records the connections between nodes.  

𝑎𝑖,𝑗 = {
1 𝑖𝑓 {𝑖, 𝑗} ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 → 𝐴(𝑚, 𝑛) =

1

2

3

4

1     2     3     4

቎

0 1

1 0

0 0

1 1
0 1

0 1

0 1

1 0

቏ 
 → 

deg(𝑣2𝑚) = 3 

 
deg(𝑣2𝑛) = 3 

 
In the schematic adjacency matrix 𝑎௜,௝, whose entries derive from 𝐴(𝑚, 𝑛), the node (or vertex) 2 has three 
connections [deg(𝑣ଶ௠) = 3, deg(𝑣ଶ௡) = 3].  
 
Network Size: We primarily use 𝑛 = 100, 𝑚 = 10 for core analyses. Optimal connectivity emerges from balancing 
protection costs against cascade risks. Following percolation theory for scale-free networks, the critical threshold for 
global cascades is 𝑘c = 𝑘/𝑘ଶ/𝑘 − 1, where 𝑘 is the average degree and 𝑘ଶ is the second moment of the degree 

distribution. Protection cost scales as 𝐶p ∝ 𝑘𝑓௣, while cascade damage scales as 𝐷 ∝ 𝑘2
𝑃(𝑐𝑎𝑠𝑐𝑎𝑑𝑒), where 

𝑃(𝑐𝑎𝑠𝑐𝑎𝑑𝑒) is the probability of system-wide failure. Optimal connectivity 𝑘∗ minimizes total expected loss: 

𝐿(𝑘) = 𝐶p(𝑘) + 𝑃(𝑓𝑎𝑖𝑙𝑢𝑟𝑒)𝐷(𝑘). Taking the derivative and setting 𝑑𝐿/𝑑𝑘 = 0 yields 𝑘∗ ≈ ඥ𝐶p/𝐷, where 𝐶p 

and 𝐷 are the derivatives of the cost and damage functions. For our parameter values, this gives 𝑘∗ ≈ 0.1𝑛, 
corresponding to 10% connectivity (empirically demonstrated in Fig. 3.1). Scaling to more nodes or 
connections to strengthen the system during evolutionary dynamics also alters network behavior in several ways: (i) 
in larger networks, eigenvector centrality values become more dispersed, influencing heuristic calibration; (ii) full 
simulations involving many nodes and long timesteps (i.e., 𝑡 = 3,000,000, 𝑟 = 10) require substantial computational 
resources; and (iii) the saturating protection function parameters need recalibration for different network sizes 
(parameter sensitivity; see S12 in Appendix 5.2). To address scalability concerns, we validated the model across 
multiple networks with comparative analyses (Fig. 4.1, 4.2, 5, 6.2). Although quantitative thresholds shift, the 
qualitative link between centrality and optimal protection remains consistent. Building on these mechanisms, we 
structured the analysis around principles involving network and agent properties, failure and payoff dynamics, and 
strategy evolution. 
 
Failure Dynamics: The model captures the binary nature of systemic risk, with each agent transitioning between two 
states: “not failed” or “failed.” All agents begin in the “not failed” state, highlighting how a single transition may 
precipitate broader systemic failure. At each timestep, a node may fail spontaneously with probability 𝑝n. This failure 

potential can spread along each link with probability 𝑝l, underscoring the contagion process inherent in systemic risk.  
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Failure propagation was simulated through iterative processes in which nodes may fail due to initial conditions (𝑝n) or 

through spread from connected nodes (𝑝l). This dual mechanism reflects the complexity of real-world systemic risks, from 
bank failures causing financial contagion, to patient-zero events in epidemics, to injuries cascading through sports teams, 
capturing both random initial shocks and structured network-driven transmission (see Appendix 9, Table S5 for details). 
 
The failure potential becomes an actual failure with probability 1 − 𝑝p, r reflecting how mitigation efforts reduce failure 

likelihood. We calculate 𝑝p using 

 
𝑝p = 𝑝p,max/(1 + 𝑐p,1/2/(𝑓p𝑐))  

 
This formulation incorporates an agent’s capital 𝑐, the fraction 𝑓p invested in protection, the maximum protection 

level 𝑝p,max, and the half-maximal effective concentration 𝑐p,1/2, highlighting the relationship between individual risk 

behaviors and systemic propagation (see Appendix 9, Table S6 for the details). Conceptually, this represents the 
effectiveness of an agent’s protection strategy. The protective effect increases as invested capital (𝑓p𝑐) rises, but the 

benefit diminishes once investment nears or exceeds 𝑐p,1/2. The parameter 𝑐p,1/2 therefore denotes the threshold at which 
protection effectiveness reaches 50% of its maximum, a value with concrete empirical interpretations across domains (see 
Supplementary Appendix 10 for more detail). 
 
Investing additional capital in protection eventually yields diminishing returns in reducing failure probability. This reflects 
a saturation effect: beyond a certain point, adding resources does not proportionally improve protection. Thus, agents 
cannot eliminate failure risk simply by overspending; instead, they must balance investing enough to meaningfully reduce 
risk without wasting capital on negligible gains. This dynamic is central to our model’s analysis of systemic risk 
mitigation. 
 
Protection Function Derivation: Our protection function derives from first principles of risk management. Consider an 
agent investing fraction 𝑓p of capital 𝑐 in protection. The protection effectiveness must satisfy three constraints: (i) zero 

investment yields zero protection 𝑝p(0) = 0, (ii) protection saturates at maximum lim
௙p௖→ஶ

𝑝p = 𝑝p,max, (iii) diminishing 

marginal returns 
𝑑2𝑝p

𝑑ቀ𝑓p𝑐ቁ
2 < 0. These constraints, together with cost-benefit optimization, where agents maximize expected 

utility 𝑈 = (1 − 𝑝failure)𝑐𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑓p𝑐, yield the first-order condition 
ௗ௎

ௗ௙p
= 𝑝p൫𝑓p𝑐൯𝑐 × 𝑐௥௘௠௔௜௡௜௡௚ − 𝑐 = 0. Solving for 

the optimal protection function that satisfies all constraints produces the hyperbolic form [𝑝p = 𝑝p,max/(1 +

𝑐p,1/2/(𝑓p𝑐))]. This form arises naturally from empirical optimization principles analogous to resource allocation under 

diminishing returns (see Appendix 11, for more detail). 
 
Payoff Dynamics: The payoff dynamics assume each agent receives a unit payoff at every timestep. This is added to 
capital 𝑐, which is then allocated to maintenance (𝑓m) and protection (𝑓p), yielding updated capital (see Appendix 9, Table 

S7 for the details): 
 
 𝑐௡௘௪ = 1 + ൫1 − 𝑓m − 𝑓p൯𝑐 
 
Reflecting recent findings on memory effects, we incorporated a stochastic moving average [MA(1)] mechanism into the 
dynamics; 𝑥௡ =  𝜀௡ +  𝑏ଵ𝜀௡ିଵ. Each agent retains a “memory” of its capital, described by  
 
𝑐௠ = 𝑚௘ ∗ 𝑐௡௘௪ + (1 − 𝑚௘) ∗ 𝑐௢௟ௗ  
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Here, 𝑚௘ represents memory strength, weighting current capital (𝑐௡௘௪) against the remembered capital (𝑐௢௟ௗ and thereby 
modeling the agent’s perception of its state (see Appendix 9, Table S8 for the details). 
 
Our memorized capital mechanism represents a significant departure from traditional evolutionary game approaches, 
which often assume myopic best-response dynamics or instantaneous fitness comparisons. By incorporating the stochastic 
moving average 𝑐௠, we capture three features absent in standard models: (i) time-horizon effects through weighted 
historical performance, (ii) information processing through exponential decay (memory parameter 𝑚௘), and (iii) strategy 
assessment via a smoothed success trajectory. This innovation reflects empirical evidence that institutions evaluate 
strategies based on sustained performance rather than instantaneous outcomes, banks assess capital policies across 
business cycles, hospitals evaluate protocols across cohorts, and sports teams measure prevention effectiveness over 
seasons. The memory parameter 𝑚௘ thereby captures institutional inertia: lower values (persistent memory) characterize 
conservative sectors like banking, whereas higher values (adaptive memory) suit dynamic environments such as pandemic 
response (see Appendix 3 for the details). 
 
Strategy Dynamics. In interconnected networks, each agent develops a strategy to manage capital and reduce failure risk. 
The primary variable is the protection level, 𝑓p, which agents adjust to lower systemic vulnerability. Each agent 

determines its protection level through the heuristic: 
 
 𝑓p = 𝑓p0 + 𝑓p1𝐶 

 
This heuristic is truncated to the interval (0,1 − 𝑓m), ensuring that the sum of the protection and maintenance fractions 
(𝑓p0 and 𝑓p1) does not exceed 1, reflecting each agent’s limited resources. In this heuristic, 𝑓p0 represents a baseline 

protection level maintained regardless of network position, whereas 𝑓p1 adjusts protection in response to an agent’s 

centrality. The centrality term 𝐶 is normalized to (0,1), indicating that more central agents invest more in protection. The 
strategy values 𝑓p0 and 𝑓p1 evolve through two mechanisms: social learning and strategy exploration. In social learning, at 

each timestep, an agent with probability 𝑝r selects another agent as a role model and imitates that agent’s strategy values 

with probability 𝑝i (see Appendix Table S9 for the details): 
 
𝑝i = 1/(1 + exp (−𝑠∆𝑐))  

 
Here, 𝑠 denotes selection strength, and ∆𝑐 is the difference between the role model’s memorized capital and the focal 
agent’s memorized capital. A larger ∆𝑐 value indicates greater accumulated success, increasing the likelihood of imitation. 
This Fermi-based learning rule is empirically observed across domains such as banking, epidemiology, and sports 
(Appendix 11). Strategy exploration reflects agents’ tendency toward experimentation: at each timestep, with probability 
𝑝e an agent randomly selects one of its two strategy values (𝑓p0 and 𝑓p1) and modifies it by a normally distributed 

increment with mean 0 and standard deviation 𝜎e (see Table S10 in Appendix 9).  
 
We selected the Fermi update rule for strategy imitation based on bounded rationality theory in institutional decision-
making40,50. Unlike perfectly rational agents, real-world decision-makers such as bank executives, public health officials, 
or team managers operate with cognitive limits and incomplete information. Utility maximization under uncertainty is 
expressed as 𝑈i(adopt) − 𝑈i(keep) = 𝛽[𝜋j − 𝜋i] + 𝜀. where 𝛽 reflects sensitivity to performance differences, 𝜋 denotes 

observed payoffs, and 𝜀 represents decision noise. Under logit choice assumptions, this yields the Fermi probability 𝑝i =

1/(1 + exp (−𝑠∆𝑐)), where 𝑠 = 𝛽/𝜎𝜀 represents the signal-to-noise ratio in institutional decision-making. Empirical 
studies in organizational learning support this formulation51, which captures the S-shaped adoption curves observed in 
innovation diffusion. The selection-strength parameter 𝑠 reflects “institutional confidence,” the precision with which 
organizations assess and adopt successful strategies: (i) 𝑠 < 1 (low confidence high-uncertainty environments with noisy 
performance signals (e.g., emerging markets, novel pathogens); (ii) 𝑠 = 1 (moderate confidence): balanced assessments 
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typical of mature systems (e.g., established banking sectors, endemic disease management); (iii) 𝑠 > 1 (high confidence): 
clearer performance indicators with lower ambiguity (e.g., regulated markets, standardized sports leagues).  
 
This alteration reflects that agents may adjust their strategies through random exploration or in response to changing 
environmental conditions. The interaction of these mechanisms enables our model to examine how agents’ behaviors and 
strategic choices influence systemic risk propagation in interconnected networks. 
 
Model Initialization and Iteration: The simulation begins by randomly assigning agents to network nodes, each 
initialized with capital (𝑐) and strategy values (𝑓p0 and 𝑓p1). Initial capital is drawn from a uniform distribution ranging 

from 0 to 1, and strategy values are drawn from a normal distribution with a specified mean and standard deviation. These 
values are then constrained to the interval (0,1). The model proceeds through discrete time steps in which agents update 
their capital based on current capital, maintenance investment (𝑓m), and the shock experienced. Simultaneously, agents 

adjust their protection strategy (𝑓p) through social learning and strategy exploration, as described in the Strategy 

Dynamics section. Iteration across time steps reveals how network structure, protection strategies, and initial conditions 
shape systemic risk. The coupled dynamics of risk propagation, capital growth, and strategy adaptation show how agent 
behavior contributes to network resilience or vulnerability (see Appendices 7–9 for details). 
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Figure legends 
 

Figure 1. Protection dynamics in scale-free networks under different scenarios. The left panel (A) illustrates sufficient protection with 
adequate capital (cyan), where protected nodes (blue) resist a failure cascade despite initial failures. The right panel (C) shows 
insufficient protection leading to system-wide failure (red nodes). Network visualization uses node color (blue = protected, red = 
failed) and size (proportional to degree) to depict state evolution (the upper portion of panel B). The phase diagram identifies critical 
protection thresholds for preventing cascading failures (the lower portion of panel B); it presents the phase space of protection strength 
versus failure probability, showing how the equilibrium point (white circle) shifts between safe (blue) and failed (red) regions. 
 
Figure 2. Conceptual comparison of failure across different networks. The upper plots illustrate structural properties of each network 
type and highlight vulnerability patterns under varying connectivity and failure probabilities. The bottom plots show the relationship 
between normalized failure probabilities (𝑥-axis) and transformed failure probabilities (𝑦-axis). Color intensity reflects failure-rate 
density, and error bars represent interquartile ranges across simulations. Note: they depict variations in failure outcomes as functions 
of initial failure probabilities 𝑝n and 𝑝l, across several network topologies (number of nodes = 100).  
 
Figure 3.1. Simulation results for selected connectivity levels across network topologies. Failure probability (red circles) and 
memorized capital (blue circles) are plotted as functions of connectivity for random (Erdős–Rényi), regular, small-world (Watts–
Strogatz), and scale-free (Barabási–Albert) networks. All topologies display a critical transition near 10% connectivity (vertical gray 
line), after which failure probability plateaus and memorized capital stabilizes near unity. Simulation parameters: number of nodes = 
100; number of connections per node = 1–99, 𝑝max= 1, 𝑐p,1/2 = 0.05, initial failure 𝑝n = 0.1, 𝑝l = 0.3, initial capital c = 1, maintenance 
𝑓m = 0.1, time steps = 1–100,000 (periods 1–100,000), realization = 1 (see Appendix 2 for more details). Error bars represent standard 
deviation over time. 
 
Figure 3.2. Combined simulation results for memorized capital under varying imitation and exploration levels (0.0–0.9). The left 
panel uses the following parameters: type of network = scale free (Barabási–Albert model), number of nodes = 100, number of 
connections per node = 10, 𝑝௠௔௫  = 1, 𝑐௣,ଵ/ଶ = 0.05, initial failure 𝑝௡ = 0.1, 𝑝௟  = 0.3, initial capital 𝑐 = 1, maintenance 𝑓௠ = 0.1, 
strength of selection, 𝑠 = 1, 𝜎௘  = 0.001, and time steps = 10,000. Observations from grids with differing spacings (0.001–0.009; 0.01–
0.09; 0.1–0.9) are combined into one panel. The right panel shows network property results focused on imitation (pr = 0.1–0.9) when 
exploration is low, pe = 0.1 (left portion), and exploration is high, pe = 0.9 (right portion). Type of network = scale free (Barabási–
Albert model), number of nodes = 500, number of connections per node = 10, 𝑝௠௔௫  = 1, 𝑐௣,ଵ/ଶ = 0.05, initial failure 𝑝௡ = 0.1, 𝑝௟  = 0.3, 
initial capital 𝑐 = 1, maintenance 𝑓௠ = 0.1, strength of selection, 𝑠 = 1, 𝜎௘  = 0.001, time steps = 100,000, realization = 1. 

Figure 4.1. Representation of network properties and simulation results. Upper panel: The left portion shows the average value 
(me_ca = memorized capital, failure) across expected degree (m = 1–99: horizontal axis), illustrating why m = 10 is used in 
simulations. The right portion displays the scale-free network type (Barabási–Albert model) and its preferential attachment features; 
number of nodes = 100; number of connections per node = 10. Bottom panel: Simulation results for memorized capital with imitation 
(𝑝௥ = 0.1) values. Initialized parameters: network type = scale-free, number of nodes = 100, number of connections per node = 
10, 𝑝௠௔௫= 1, 𝑐௣,ଵ/ଶ = 0.05, initial failure 𝑝௡ = 0.1, 𝑝௟  = 0.3, initial capital 𝑐 = 1, maintenance 𝑓௠ = 0.1, strength of selection, 𝑠 = 1, 𝜎௘  = 
0.001, time steps = 50,000. Right portion: average value (me_ca = memorized capital, failure) according to the expected degree (𝑚 = 
1–99: horizontal axis). See Appendix 5 for results using expanded and alternative parameter combinations; expanded results with time 
steps = 10,000, and alternative results with exploration (𝑝e = 0.9), imitation (𝑝r = 0.1); exploration (𝑝e = 0.9), imitation (𝑝r = 0.9).  
 
Figure 4.2. Comparative analysis of protection heuristics and empirical validation. Upper left: temporal evolution of failure rates 
comparing centrality-based protection with random and uniform allocation strategies. Upper center: scatter plot showing the 
correlation between eigenvector centrality and protection investment (R²). Upper right comparison of centrality metrics showing 
eigenvector centrality outperforms degree, betweenness, and closeness. Bottom left: heatmap of network performance as a function of 
nodes (𝑛) and connections (𝑚), with R² values indicating predictive accuracy. Bottom right: multi-domain empirical validation of 10% 
optimal connectivity. All domains show performance peaks at 9–12% connectivity (mean: 10.3%, standard deviation: 1.2%). The 
theoretical model (gray curve) aligns with empirical patterns, and the shaded region denotes the optimal (8–12%) zone. See Appendix 
5.2 for detailed methodology and data sources. 
 
 
Figure 5. Selected individual results referenced by Fig. 4.1. Upper panel initialized parameters: network type = scale-free (Barabási–
Albert), number of nodes = 1000, number of connections per node = 100, 𝑝max= 1, 𝑐p,1/2= 0.05, initial failure 𝑝n = 0.1, 𝑝l = 0.3, initial 
capital c = 1, maintenance 𝑓m = 0.1, strength of selection, s = 1, 𝜎e = 0.0001, time steps = 30,000, realization = 10 (left portion), time 
steps = 300,000, realization = 5 (right portion). The lower panel presents results for a smaller network with number of nodes = 100, 
number of connections per node = 10, 𝑝max= 1, 𝑐p,1/2= 0.05, initial failure 𝑝n = 0.1, 𝑝l = 0.3, initial capital c = 1, maintenance 𝑓m = 0.1, 
strength of selection, s = 1, 𝜎e = 0.0001, time steps = 3,000,000, realization = 1. The right portion shows investment values (vertical 
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axis) at 𝑡 =3,000,000 according to the eigenvector_centrality (horizontal axis) value (color bar) for each strategy value (right), and its 
regression (see legend: calculated R-squared for 𝑓p , 𝑓p0, and 𝑓p1).  
 
Figure 6.1. Comparative phase portraits illustrating the effects of different stochastic influences. The left plot shows the phase portrait 
under low noise (𝜎 = 0.001), where the system exhibits a stable, synchronized relationship between 𝑓p values, converging toward a 
stable attractor (marked by a yellow density circle). Scatter markers represent protection investment (𝑓p), with colors indicating 
intensity (low: blue, high: red), while arrows show the convergence direction. The middle and right plots represent increased noise 

levels (𝜎e = 0.01 and 𝜎e = 0.1, respectively), illustrating how greater stochastic influences introduce variability and anti-synchronized 
dynamics.  
 
Figure 6.2. Comparative diagrams illustrating how distinct stochastic influences (𝜎e) shape final outcomes in the (𝑓p0 and 𝑓p1) planes. 

The horizontal axis shows six noise levels (𝜎e ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}), and the circles represent each noise level’s 

average attractor (𝑓p0 and 𝑓p1). The color map depicts the kernel density of aggregated outcomes, and the center arrows indicate local 
directions of strategy shifts around a midpoint. Notably, two overlapping vertical diagrams (with flow lines in 𝑓p0, 𝑓p1-space) highlight 

stable versus unstable behaviors: At 𝜎e = left vertical line, arrows converge toward a stable fixed point in 𝑓p1. At an artificial 𝜎e = 
drawn to the far right, arrows diverge, illustrating an unstable reference point. Note: for the simulation shown in the top panel, number 
of nodes = 100, connection probability = 0.1%, time period = 10,000, realization = 10; for the simulation in the bottom panels, number 
of nodes = 100 (left) and 1000 (right), connection probability = 0.1%, time period = 10,000, realization = 10 (showing similar trends 
despite minor sensitivity differences due to variation in nodes and connections). 
 
Figure 7. Mechanical rationalization for protection–failure and social dynamics. The upper-left plot presents a simplified sequential 
workflow, and the right plot shows its mechanism in detail as a flowchart. Boxes depict key state variables (e.g., c for capital, 𝑚௖ for 
memorized capital) and strategic elements (𝑓p for the protection fraction), whereas ellipses denote parameters such as 𝑝n, 𝑝l, and 𝑝e. 
Solid arrows illustrate direct influences, e.g., capital updates, failure transitions, and social learning pathways, while dashed arrows 
highlight auxiliary effects, including memory weighting and maintenance costs. Empirically, the lower panels show how simulated 
agents explore the parameter space and converge toward characteristic regimes, capturing the interplay between protection strategies, 
failure rates, and social adaptation within the model workflow. Colored flow lines in blue represent a system with high protection and 
minimal failure propagation. By contrast, the rightmost panel shows flow lines in red, reflecting a highly vulnerable system with 
strong failure propagation and low maximum protection. Intermediate panels illustrate a gradual transition driven by investment (𝑓𝑝) 

embedded in its strategic (𝑓𝑝0 and 𝑓𝑝1) centrality (𝐶) between these extremes (three sets of trajectories are overlaid on the data).  

 
Figure 8. Empirical calibration and cross-domain validation of the centrality-based protection framework. Left panel: Protection 
effectiveness versus normalized investment reveals domain-specific saturation dynamics following the hyperbolic function 𝑝p =

𝑝p,max/(1 + 𝑐p,1/2/(𝑓p𝑐)), with fitted half-saturation constants (𝑐p,1/2) for banking, epidemiology, and sports, all demonstrating strong 

fits (R²). Right panel: Social learning dynamics show consistent Fermi-type adoption patterns 𝑝i = 1/(1 + exp (−𝑠∆𝑐)) across 
domains, with selection strengths 𝑠 = 0.9–1.1, indicating universal behavioral responses to performance differentials (regions reflect 
domain-specific learning neighborhoods). Middle panel: A three-dimensional validation surface confirms robust predictive power, 
with strong correlations between model predictions and empirical outcomes (banking, epidemiology, sports mean 𝑟 = 0.694; See 
Appendix 10 and 11 for details and data sources). 
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