
NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

An Introduction To The

DB
Relational Database Management System

J. Robert Ward

February 1982
PP-82-1

Professional PapeTS do not report on work of the International
Institute For Applied Systems Analysis. but are produced and dis
tributed by the Institute as an aid to staff members in furthering
their professional activities. Views or opinions expressed are those
of the author and should not be interpreted as representing the
view of either the Institute or its National Member Organisations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria.





- iii -

ABSTRACT

This paper is an introductory guide to using the Db programs to
maintain and query a relational database on the UNrxt operating
system.

In the past decade. increasing interest has been shown in the
development of relational database management systems. Db is an
attempt to incorporate a flexible and powerful relational database
system within the user environment presented by the UNIX operat
ing system.

The family of Db programs is useful for maintaining a database
of information that is updated infrequently. A retrieval command
to Db is phrased in a language based on the Relational Algebra.

These programs are written in portable C and are currently
implemented on a PDP-1l170 and a VAX-ll/7BO:f:.

tUNIX is a Trademark of Bell Laboratories.
~DP and VAX are Trademarks of Di&i,tal Equipment Corporation.





-v-

Contents
Users requiring only a basic knowledge of the Db programs may omit the

sections marked with a O.

1 Introduction 1
1.1 Database Management Systems 1
1.2 The Db Programs 1
1.3 Terminology 1
1.3.1 Query 2
1.3.2 Relation 2
1.3.3 Domain : 2
1.3.4 Attribute 3
1.3.5 Tuple 3
1.3.6 Field 3
1.3.7 Cardinality And Degree 4
1.3.8 Key 4
1.4 The Various Programs 4
1.5 Constructing A Database 4
1.6 Current Implementations 4
1.7 Access Methods Library 4
1.8 Examples Used In This Paper 5

2 Dbcreate - Creating A New Relation From Ascii Data 6
2. 1 Arguments To Dbcreate .. , '" 6
2.2 Input Data To Dbcreate 6
2.3 The Various Data Types 8
2.4 Restrictions On Domain Names B
2.5 Dbcreate Sorts Data Into Order 8
2.6 Keeping Duplicate Tuples 9
2.7 Creating One Relation Similar To Another 9 0
2. B Specifying The Maximum Length Of String Domains 9 0
2.9 Miscellaneous Options To Dbcreate 10 0

3 Dbappend - Adding More Ascii Data To A Relation 11 0
3.1 Appending Duplicate Tuples 11 0

4 Dbls - Listing Information About Relations 12

5 Db - Retrieving Data From A Database 14
5.1 Presenting Commands To Db 14
5.2 Listing A Relation 15
5.3 Processing A Single Relation 16
5.3.1 Selection - Retrieving Specific Tuples 16
5.3.2 Projection - Specifying Certain Domains 19
5.3.3 Combining Both Selection And Projection 20
5.3.4 Sorting A Relation 20
5.3.5 Removing Duplicate Tuples 21
5.3.6 Creating New Domains With The Projection Operator 22
5.3.7 Syntactic Sugar For Assignments 23 0
5.4 Scalar Expressions 23
5.4.1 Types Of Expressions 23
5.4.2 Packed Decimallntegers 24 0



5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.6
5.6.1
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.8.7
5.8.8
5.8.9
5.9
5.10
5.11
5.11.1
5.11.2
5.12
5.13
5.14

6
6.1
6.1.1
6.2
6.3
6.4

7
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

- vi-

Casts - Converting The Type Of Expressions 24 0
The Types Of Constants 25 0
Character Strings 25 0
The Conditional Operator 26 0
Accessing Individual Bits From A Data Field 27 0

Procedures Incorporated Into Db 27 0
Procedures For Character Strings 27 0
Procedures For Converting Strings To Numeric Values 28 0
Miscellaneous Procedure 28 0
Procedures For Calendar Dates 30 0

Aggregation Of Tuples 32 0
More Concerning Aggregations 34 0

Operators Processing Two RelatioRs 34
Union Of Two Relations 34
Intersection Of Two Relations 35
DitIerence or Two Relations 36
Join or Two Relations 37
Cartesian Product or Two Relations 39 0
Parentheses In Relational Expressions 41 0

Preserving The Output From Db 42
Creating A New Relation 43
Appending Output To A Relation 43 0
Relations Are Locked 44 0
Listed Output To A File 44
Appending Listed Ascii Output 44 0
Print! Output To An Ascii File 44 0
Stdin And Stdout 45 0
Relational Assignments Are Expressions 46 0
Interleaved Output 47 0

Identifiers Containing Special Characters 48 0
Keywords 48 0
More Than One Command In A Query 49

Macros And Temporary Relations 49 0
Shell Commands 49 0

Pre-Processor Input 50 0
Comments 52 0
Historical Syntax 52 0

Dbedx - Interactive Screen Editor For Relations 53
Edit And Replace Mode 53

Leaving Dbedx 53
Append Mode 55
Delete Mode 58
Possible Problems With Dbedx 58 0

Dbmodify - Changing The Internal Structure Of A Relation 59 0
Arguments To Dbmodify 59 0
Preserving Duplicate Tuples 59 0
Storage Modes 60 0
When Optimised Access Is Possible 63 0
Appending Tuples To A Relation 63 0
Primary And Overflow Pages 63 0
When To Use Dbmodify 63 0
Secondary Indices 64 0



- vii-

8 Practical Usage 65 0
8.1 Restrictions 65 0
8.2 Optimising Dbcreate '" 65 0
8.3 Optimising Dbappend 65 0
8.4 Optimising Access To A Relation 65 0
8.5 Optimisation Of A Db Query 65 0
8.5.1 Optimisation Of Selections 66 0
8.5.2 Optimisation Of Projections 66 0
8.5.3 Optimisation Of Sorting 66 0
8.5.4 Optimisation Of Temporary Relations 67 0
8.5.5 Optimisation Of The Product Operator 67 0
8.6 Measuring Disc Read And Write Operations 68 0
8.7 Common Problems When Using Db 68 0
8.8 The PDP-1l170 Implementation 69 0

9 Conclusion 70
9.1 Current Applications For Db 70
9.2 The Design Objectives Of Db 70
9.3 Further Improvements To The Db Programs 71
9.4 Overview 71

10 Bibliography 72 0

11 Acknowledgements 73 0

Appendix I
AppendiX II
Appendix III
AppendiX N
Appendix V
Appendix VI

- Summary Of The Available Data Types 74 0
- Summary Of The Scalar Operators 75 0
- Summary or The Scalar Procedures 77 0
- Summary Of The Relational Operators 79 0
- Summary Of The Syntax Of The Db Query Language 80 0
- A Demonstration Session Of The Db Programs 84 0





1. Introduction
This paper is an introduction to using the Db programs on a UNIX operating

system. It assumes the user has a basic familiarity with UNIX but not necessarily
with any database system. Many of the principles of relational databases may be
absorbed through a process of "osmosis" while reading this paper and by learn
ing to use Db. A further introduction to the basics of relational database sys
tems is to be found in Sandberg (1981).

This paper is written for newcomers to database systems, as well as those
having a specialised knowledge in this field. The Db system is a generalised fam
ily of programs that attempts to fulfill many differing requirements. This docu
ment is a complete guide to these programs and includes many details that are
not necessary to a beginner. Users needing only a basic knowledge may omit
the sections marked with a O.

Volume 1 of the IIASA edition of the UNIX Programmer's Manual contains a
summary of the Db programs.

1.1. Database Management Systems

The data within a database is maintained exclusively by a set of programs
termed a Database Management System (DBMS). These programs act as an
interface between the user and the data. They ensure that the data is kept in a
compact and consistent format, and allow the user to ask a wide range of ques
tions about the data.

A DBMS can be described by the view of the data it presents to the user. For
instance, in a hierarchic database, the data is structured in the form of a tree,
similar to the structure of a UNIX ille system.

The Db programs deal with relational databases. In a relational database.
the data is structured as a set of two-dimensional tables. This approach tends to
simplify the user's concept of how the data needs to be stored or accessed: the
idea of storing data Within a table is intuitive. Db can combine such tables
together, or restrict output to be a small part of one table.

1.2. The Db Programs
The family of Db programs provides a general tool for maintaining relational

databases on the UNIX operating system. This family is comprised of a few indivi
dual programs that allow a user to create, maintain and query a relational data
base. In addition a library of Access Method procedures exists that enables
users to write their own specialised programs for data retrieval and manipula
tion.

Db does not provide any special user environment in which to access a data
base. For instance. it has no special protection facilities of its own, and there
are no commands, say, to delete a relation. Instead it is assumed that these
facilities already exist within the framework of UNIX.

Db is useful for maintaining data that in a sense remains static. Although
Db allows users to update or replace information, it would be of little use in a
transaction system - an airline ticket booking database for instance - where the
updates are extremely frequent and far outnumber the queries to the system.

1.3. Terminology
Relational database theory has its own special vocabulary. An explanation

of some common phrases is given here.



-2-

1.3.1. Query

A query is a small command or program given to a database system
instructing it how to manipulate some data from a database.

Db has its own language in which a query must be presented. This language
has many ideas borrowed from the implementation language C.

1.3.2. Relation
A relational database consists of a set of two-dimensional tables termed

relations. All the data in the database is contained entirely within such tables.
Each relation in the database has a unique name so that it can be identified.

A Db relation is contained entirely within a single binary tile. These relation
files have a special format that can be read only by the Db programs.
ExaTTlJ)le. An example of a relation is shown here. It relates a few English and
German nouns and includes the corresponding definite articles.

english
Danube
book
bridge
cat
cow
cupboard
dog
girl
head
horse
house
human being
tree
woman

article
die
das
die
die
die
der
der
das
der
das
das
der
der
die

german
Donau
Buch
Bruecke
Katze
Kuh
Schrank
Hund
Maedchen
Kopf
Pferd
Haus
Mensch
Baum
Frau

1.3.3. Domain
A column of data from such a relation is called a domain. Thus a domain

represents a "vertical slice" of a relation. Each domain in a relation has a
unique name. A domain is constrained to hold one particular type of data. For
instance. a domain might hold four byte fioating point numbers but not any
other data type.



-3-

ExaTr!iJle Using the example of the above relation, the domain german is shown
here -

german
Donau
Buch
Bruecke
Katze
Kuh
Schrank
Hund
Maedchen
Kopf
Pferd
Haus
Mensch
Baum
Frau

1.3.4. Attribute

An attribute refers to a property of a particular domain. for instance its
name. Another attribute is the type of data stored within that domain.

In the Db system, a domain may hold any of the fundamental data types
found in the C language as well as character string values. On the VAX imple
mentation. the Db programs also support packed decimal values.

1.3.5. Tuple

A single row from a relation is termed a tuple. A tuple represents a "hor
izontal slice" of a relation.

There is never any information implied by the order of tuples in a relation.
The Db programs take advantage of this fact and. generally. add new tuples to a
relation at whichever point they consider most appropriate. As a result. Db may
print a relation in a seemingly random order. unless instructed to do otherwise.

For reasons beyond the scope of this guide. a relation is usually structured
so that each tuple is unique. However Db does not enforce this rule strictly.
This issue is discussed in Date ( 1977).
Example An example of a single tuple from the relation above is shown here -

english
cupboard

article
der

german
Schrank

1.3.6. Field

A single atomic item of data is termed a field. A field is represented by the
intersection of a specific tuple with a specific domain.
ExaTTIfPle Here is an example of a single field from the above relation -

:I Katze I



-4-

1.3.7. Cardinality And Degree
The number of tuples in a relation is termed its cardinality. The number of

domains is termed its degree.

Exa'l7ij2le The sample relation shown above has a cardinality of fourteen and a
degree of three.

1.3.8. Key
Usually a relation will be formed so that the fields from one or more

domains are unique. Any tuple could then be uniquely identified by specifying a
single field from this domain. Such a field is said to be a key and the
corresponding domain is said to be a key domain.

ExaTT!JJle In the sample relation, such a key domain could be english. In this
domain the fields are all different and so specifying an English noun would deter
mine an entire tuple. In the same way. domain germ.an could also be a key
domain. The domain article. however, would not be a suitable key domain since
its fields take on only one of three possible values and are not unique.

1.4. The Various Programs
Dbcreate reads ascii data and converts it to the special file format required

by the Db programs. This is generally the first step in setting up a database.
Dbappend is used to place additional ascii data into a relation.
Dbls gives the user information about the data stored in a database. It is

the Db equivalent of the standard UNIX ls command.
Db is the main query processor. Db will list data from a database, create

new items of data. or append data to an existing database. Finally. Db will com
bine or transform existing data from a database.

Dbedx invokes a screen editor, allowing the user to edit a relation interac
tively.

Dbmodify "cleans up" a relation. It frees unused disc space and generally
tidies up a relation.

1.5. Constructing A Database
Learning how to use a database system and learning how to construct an

actual database are two different problems. This paper addresses the former
problem. that is. how to use the Db programs to manage a database. When set
ting up a database, there are various principles to be followed in deciding how to
exploit any dependencies present in the data. A good introduction to databases
in general, and this problem in particular, is found in Date ( 1977 ).

1.6. Current Implementations
Db is currently implemented on a PDP-ll /70 and a VAX-ll /760. both run

ning under the UNlX operating system (Ritchie/Thompson 1974). It is written
almost entirely in portable C (Kernighan/Ritchie 1978), with the exception of
approximately thirty lines of assembler code in the VAX. version. Moreover the
query language implemented for Db has a syntax strongly reminiscent of C.

1.7. Access Methods Library
There is a library of routines that one may use to access data from a data

base. These procedures can be called from a C or Fortran program. They allow
the user to write his own specialised programs to retrieve and process data. A
full description of these routines is in the IIASA edition of the UNIX Programmer's



- 5-

Manual. These pages also describe how Db relations are formatted internally.

1.8. Examples Used In This Paper
This paper includes examples of Db queries and the output that they pro

duce when applied to a very simple database. Most examples refer to a small
hypothetical database that might be used in a book lending library. This library
system is composed of three relations books. loans and people that are intro
duced in sections 2.5, 5.5.4 and 5.7.4.



- 6-

2. Dbcreate - Creating ANew Relation From Ascii Data
The Dbcreate program is used to convert ascii data into the particular file

format known to the Db programs. Dbcreate is generally the first step in setting
up a database.

2.1. Arguments To Dbcreate

Dbcreate reads ascii data from the standard input and forms a new relation
file containing this data. The first argument to Dbcreate is the name of the new
relation.

The remaining arguments specify the names of the domains and their data
types. Each remaining argument consists of a name, followed by a slash ( / ),
followed by a single character specifying the type of data for that domain. Here
is a list of the available type characters and their corresponding data types.
(This table is a subset of the one shown in appendix 1.)

Type Character Data Type
c Char Integer

s or i Short Integ er
u Unsigned Short Integer
I Long Integer
f Floating Point
d Double Precision Floating Point
S Character String
p 15 Digit Packed Decimal
P 31 Digit Packed Decimal

2.2. Input Data To Dbcreate
The input data to Dbcreate is assumed to be in free format with each input

tuple on a separate line. All fields within a tuple are usually delimited by white
space; that is, by spaces or new-line characters.

If Dbcreate encounters invalid data - for instance it might possibly read
some alphabetic characters when it expected a number - it will complain and
skip the rest of the input line. It will then continue to read the rest of the input
data.

It is possible to delimit input fields with characters other than white space.
This is most useful when Dbcreate is formatting a relation containing string
fields. Since. by default, Dbcreate considers a space to mean the end of a field,
this makes it impossible to create a relation containing string fields consisting
of several words. The solution is to delimit each item of data in the input by
some character other than a space. For instance, the fields could be sur
rounded by slashes or periods. Use the -df option to inform Dbcreate of another
delimiting character.

Even the last field in a tuple must be terminated by the delimiting charac
ter. If Dbcreate reads a field without a delimiter, it complains and skips to the
next line of input data.

Special characters, such as a line-feed or even the current delimiting char
acter itself, can be incorporated into a string field using the backslash conven
tion employed by both the C language and Db ( see section 5.4.5 ).

It is perfectly acceptable to have null string fields. However, Dbcreate does
not permit null numeric fields. Each numeric field must be given an explicit



-7-

value in the input data.

When reading input data from a terminal, Dbcreate prompts for each new
tuple with a ">". The input data is then terminated by a control-D on a line by
itself. When reading from a file, Dbcreate reads until the end of the tile.

ExaTrljple The C Shell command
dbcreate books bookno/s author/S title/S < intile

creates a new relation in a file called books. This new relation has three
domains. The first is called bookno and holds short integer values. The other
two domains are called title and author respectively. These hold character
string values.

Some suitable input data. read from the file intile. might be as follows -

1 Austen Persuasion
2 Shaw Pygmalion
3 Zola Nana
4 Austen Emma

Example If, however, it is necessary to include titles of more than one word in
the relation. the following command and data are appropriate. Here the -dl/
option in the argument list informs Dbcreate to expect each input field to be
delimited by a slash. Note that even the last field on each line is delimited.

dbcreate books bookno/s author/S title/S-df/

1/Austen/Persuasion/
2 /Shaw/Pygmalion/
3/Zola/Nana/
4/Austen/Emma/
5/Austen/Pride And Prejudice/
6/Hardy/Tess or The D'Urbervilles/
7 /Hardy / Jude The Obscure /
B/Hardy /Far From The Madding Crowd/
9/Eliot/The Mill On The Floss/
10/Eliot/Silas Marner/
11 /Hardy!The Mayor Of Casterbridge /

The new relation books may now be viewed by typing the command
db books

(In general. the command db relation will list the entire contents of relation to
the standard output.) The following output will appear on the terminal -

bookno
1
2
3
4
5
6
7
B
9

10
11

author
Austen
Shaw
Zola
Austen
Austen
Hardy
Hardy
Hardy
Eliot
Eliot
Hardy

title
Persuasion
Pygmalion
Nana
Emma
Pride And Prejudice
Tess or The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mill On The Flos s
Silas Marner
The Mayor or Casterbridge



-8-

2.3. The Various Data Types

When creating a large relation it is wise to choose an appropriate data type
for each domain. The Db programs recognise several types of numeric data so
that accurate information can be preserved without wasting unnecessary disc
space. A table summarising the available data types is shown in appendix 1.

The Db programs support four different data types that can hold integral
numbers, and two data types for floating point numbers.

Character string fields are stored sensibly and do not take up more space
than is needed for each field. Any character, with the exception of a null (binary
zero) byte can be stored.

On the VAX-ll/780 implementation, the Db programs also accomodate
packed decimai values. These have no eqUivalent in C, nor in Fortran. They per
mit large integer numbers to be stored away in a relation. Two ranges of packed
decimal values are used by the Db programs. One range holds numbers to a 15
digit accuracy and the other to 31 digit accuracy.

2.4. Restrictions On Domain Names

Domain names can be composed of any sequence of characters but they are
limited to a length of twenty. Each domain within a single relation must have a
unique name.

2.5. Dbcreate Sorts Data Into Order
Unless told otherwise, Dbcreate sorts the input data into order before

creating a new relation. By default, a new relation is sorted in ascending order
of the first domain.

It also removes duplicate tuples from the new relation. (Two tuples are con
sidered to be duplicates if their corresponding fields have identical values.) The
number of tuples actually placed into the new relation will be reported if one
uses the -p option to Dbcreate (see section 8.6).
Example The command

dbcreate books author/S bookno/s title/S-dr1
with the data

Austen/ l/Persuasion/
Shaw/ 2/Pygmalion/
Zola/3/Nana/
Austen/4/Emma/
Austen/5/Pride And Prejudice/
Austen/5/Pride And Prejudice/
Austen/5/Pride And Prejudice/
Hardy/6/Tess Of The D'Urbervilles/
Hardy/7/Jude The Obscure /
Hardy/8/Far From The Madding Crowd/
Hardy/8/Far From The Madding Crowd/
Hardy/8/Far From The Madding Crowd/
Eliot/9/The Mill On The Floss/
Eliot /10/Silas Marner /
Hardy/11 /The Mayor Of Casterbridge /

would produce the following output when listed by the command 
db books



author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola

bookno
1
4
5
9

10
6
7
B

11
2
3

- 9-

title
Persuasion
Emma
Pride And Prejudi.ce
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana

Notice that Dbcreate has sorted the relation by the first domain. in this
case by author. The tuples "Pride And Prejudice" and "Far From The Madding
Crowd" that appeared more than once in the input data, now occur only once in
the new relation.

2.6. Keeping Duplicate Tuples
It is possible to prevent the removal of duplicate tuples if necessary by a -k,

for "keep", option in the argument list to Dbcreate.
Furthermore. the original order of the input data may be preserved in the

new relation by the -heap option to Dbcreate. This will speed up the action of
Dbcreate since the tuples no longer have to be sorted. As a side effect this flag
implies that duplicate tuples are to be kept; that is, the -heap option automati
cally sets the -k option. As may be expected. there are good reasons why
Dbcreate should sort the input data into order. These are discussed below (see
section 7.3).

2.7. Creating One Relation Similar To Another 0

Once a relation exists. it is possible to create a new relation with identical
attributes without respecifying the domain names and data types. The -like
option to Dbcreate indicates that a new relation should be created "like" an old
one. Only the domain names and their associated data types are copied from
the original relation to the new relation. The actual data is not copied.
Exarn;>le The command

dbcreate newbooks -like books -dl.#
creates a new relation newbooks with the same domains and domain types as
those of the relation books. The delimiter -df option must still be specified to
Dbcreate if reqUired. In this example, input fields are to be delimited by sharp
signs. Data is read from the standard input.

2.8. Specifying The Maximum Length Of String Domains 0

Dbcreate has a facility which allows a limited form of data checking. It may
be instructed to reject character string fields that exceed a certain length. One
may specify an integer after an IS in the list of domain names and types given
to Dbcreate. Any input field longer than this value causes Dbcreate to complain
and reject the input tuple.

This maximum length is remembered in the relation file and may be subse
quently copied to another new relation by the -like option. This length restric
tion will also apply when appending new tuples to the relation by the programs
Dbappend and Dbedx.



- 10 -

Exa1Tl3Jle
dbcreate payroll surname/S20 address/S40 comments/S salary11

This creates a new relation payroll. The domains surname and address are
constrained to hold strings no greater than twenty and forty characters respec
tively. There is no restriction on the length of fields in domain comments.
(Actually this is not strictly true since no tuple can exceed a certain maximum
size. This limit, though, is fairly generous. See section 8.1 below.)

2.9. Miscellaneous Options To Dbcreate 0

The -p option in an argument list makes Dbcreate report the number of
tuples placed into the new relation. This figure may be less than the number of
input data tuples if some of the input tuples are duplicates.

The -9 option forces Dbcreate to output a relation to the standard output.
There must still be a relation name in the argument list. although it need not be
the name of the file where the output is finally sent. This option is useful for
sending a new relation through a UNIX pipe to another Db program for further
processing. Thus, Dbcreate may be used as a filter in a chain of piped
processes. Its purpose would then be to convert ascii data to a relational format
readable by the Db programs.

The -s option suppresses any sorting or removal of duplicate tuples. That is,
the -s option also sets the -heap and -k options.
Example The C Shell command

dbcreate stdout -like payroll -s -p > outfile
creates a new relation in outtile. This new relation has similar attributes to a
relation called payroll.

Example The command
dbcreate stdout -s name/S20 initial/S2 age/u Idb .

reads data from the standard input and converts it to Db format. The output
from Dbcreate is piped to Db for further processing.



- 11 -

3. Dbappend - Adding More Ascii Data To A Relation 0
The program Dbappend is used to append more tuples to a relation. Dbap

pend reads ascii data from the standard input, just as Dbcreate does, and adds
the tuples to the relation.

The input data for Dbappend has the same format as it does for Dbcreate.
The delimiting character for each input field may be specified by a -df option.

F4:afT!1lle The command
dbappend books -df+

with the input data

Lawrence + 12+Women In Love+
Lawrence + 13+The Virgin And The Gypsy+
Lawrence+ 14+Sons And Lovers+
Hemingway+ 15+For Whom The Be 11 Tolls +

places these new tuples into books. The entire relation may now be listed by the
command

db books
producing the following output -

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

bookno
1
4
5
9

10
6
7
8

11
2
3

12
13
14
15

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

This relation will serve as the basis for many future examples.

3.1. Appending Duplicate Tuples 0

Dbappend normally refuses to append a tuple if it is a duplicate of some
tuple already present in the relation. (This does not apply if the relation was
orginally created with the -heap option of Dbcreate.) By specifying a -k option in
the argum~nt list, Dbappend will insert new tuples regardless of whether they
are already present in the relation. This speeds up Dbappend, since it no longer
needs to check for duplicated tuples.

As shown by the example above, placing new tuples into a relation destroys
the original sorting order. In practice. the order is not disrupted excessively
and new tuples are inserted close to where they should be according to the sort
ing order. If it is really necessary to restore the order of sorted tuples, use the
program Dbmodify (see section 7.1).



- 12-

4. Dbls - Listing Information About Relations
The program Dbls is used to list information about a set of relations. It is

the Db equivalent of the standard UNIX ls program. Its arguments are the names
of relations to be examined. Arguments may also be the names of directories in
the file system hierarchy: Dbls then examines the files under the nameddirec
tories. It there are no arguments Dbls examines every file in the current direc
tory.

If the first argument is a -lor -v option, then Dbls becomes "verbose" and
lists even more information than it would do usually.

By default. Dbls complains if it finds a file that is not a Db relation or a file
that cannot be opened. For instance, one might not have the required permis
sions to read a relation file. These complaints may be suppressed by a 1" option.
Thus, the command

dbls -w
lists information concerning any relations found in the current directory. It
would ignore any files that are not relations or that could not be examined
because of permission restrictions.
Example The command

dbls books
lists basic information about books. The output might be -

books
Mode
Sort

Tuples
15

Deg
3

Pages
1+ 0

Domains
author IS booknols title/S

The output reports the number of tuples. the degree of the relation. as well
as the names and types of each domain (described by the same type character
as for Dbcreate). A Mode of Sort indicates that the relation has been sorted.
The page numbers are explained below (see section 7.6).



- 13 -

ExaTrlJ)le The command
dbls -v

lists all information about relations in the current directory. For the relation
books the output might be -

Mode Tuples Deg Pages Fix Max Fl Modified Size
books Sort 15 3 1+ 0 12 50 VU Dec 1 11:37 1981 2048

Domain Ty Key Fl Print Otts Fix Max Smallest Largest
author S 1 VA 9 2 9
bookno s 2 A 6 6 2 1 15

title S 3 VA 26 8 26

In addition to the basic information. Dbls reports the modification date of
the relation and the size of the file in bytes. Dbls lists the name, data type and
the smallest and largest valued fields currently held in each domain. (This infor
mation is not kept for string or packed decimal domains.)

The flags V and U in the output indicate that the tuples are of variable size
and that the relation has been updated since it was created or cleaned up by
Dbmodify. Flag V in the attributes information says that those fields are of vari
able length. Flag A indicates that the domain is sorted on ascending values. A D
flag would indicate that the domain is sorted on descending values.

Other values are printed mainly for system debugging purposes and indi
cate how a relation is structured internally.



- 14-

5. Db - Retrieving Data From A Database
Db is used to retrieve data from a set of relation tlles. The user presents a

query command to Db, informing it how existing relations are to be combined, or
how new data is to be calculated from the information in a database. Db can
also create new relations or append tuples to existing ones.

Any output produced by Db is itself in a tabular or relational format. This
also applies to any intermediate results. A temporary result may become the
input to another command. That is. an input relation can be processed in one
way and the result passed on to a later command for further processing.

A query is formulated in a very high-level language. Some of the commands
bear a superficial resemblance to the familiar arithmetic operators. However,
they do not deal with single numbers but instead instruct Db to manipulate
whole relations of data.

5.1. Presenting Commands To Db
There are three ways in which a query can be presented to Db. For a short.

simple query the easiest way is to type the query in the argument list to Db, that
is, on the same line as the db command itself.

This method has the advantage that theC Shell will remember previous
commands (if its history variable is set) and allows one to repeat or make small
changes to a Db query. It has the disadvantage that it tends to be clumsy to use
for more complicated queries. Moreover, many characters used in Db queries
have a special meaning to the C Shell and so, in general, the command to Db
must be surrounded by single quotes. The various functions of the C Shell and
how it interprets special characters are described in Joy (1980).

The second way is to let Db read commands from the standard input. This
is usually a terminal, although the input may be redirected from a file by the C
Shell. If reading from a terminal, the command input is terminated by a
control-D on a line by itself. Reading commands from the standard input has
the advantage that a permanent record of the query can be kept in a tlle.
Another advantage is that the C Shell cannot impose its own interpretation on
various characters from the input.

The third way is to use the -F option to Db. This option is followed immedi
ately by the name of a file from which the commands are read. This option is
useful if relational data is being piped to Db. In this case, Db would be reading
data from the standard input and so could not read commands from the stan
dard input at the same time. Only one -F option is allowed.

Whether Db is reading its commands from a terminal, from a file or from an
argument list, the input is always in free format. White space is sometimes
necessary to separate adjacent words. Apart from this, spaces and new-lines
can be inserted anywhere.

Exa77liJle The C Shell command
db payroll

prints the entire contents of the relation payroll.
Example, This command

db < query
makes Db read its commands from the file query.
Example The command

db
by itself causes Db to wait for commands to be typed on the terminal. Input is
terminated by a control-D.



- 15-

Exa'ffl3)le The command
db -Fcommands.db

makes Db read from the file commands.db.
ExamPle Finally. the command

dbcreate stdout -like payroll -s Idb -Fcommands.db
invokes both the Dbcreate and Db programs simultaneously. The data produced
by Dbcreate becomes the input to Db. The data fed to Db is processed according
to the query commands in the file commands.db

5.2. Listing A Relation
As demonstrated above. simply typing the name of a relation by itself

causes all its data to be printed. The usual output is preceded by a header
showing the domain names. The listed fields are normally justified, that is, they
are formatted properly.

By default. the headers are repeated once per screen when output is going
to a terminal. They are repeated every sixty lines when output is sent to a file,
so that the file can be printed in a reasonable format on a line-printer. By using
the -h option of Db. the frequency of these headers may be changed, or the
headers can be suppressed altogether. If an option -h2O, say. is present in the
argument list to Db, the headers are repeated once every twenty lines in the
output. If there is no number after this option, the headers are not listed at all.

The -df option can also be used with Db, just as with Dbcreate or Dbappend.
When given to Db, this option specifies a delimiting character which is listed
after each field of output. The default character is a space. This option is useful
if the output is to be further processed by programs such as the standard UNIX
utilities. awk or sed.

There is also a -«It option that can be used to specify a character to be out
put after each complete tuple. The default is a new-line character. Use of delim
iter characters other than the defaults will switch off justification.

p;'xa'ffl3)le The command
db books

prints the entire contents of the relation books to the standard output. By
default, the output includes headers. and the printed fields are justified. Assum
ing books to be the same example of a relation used above, the output is -

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

bookno
1
4
5
9

10
6
7
B

11
2
3

12
13
14
15

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls



- 16 -

F:1:arn;ple This command -
db -h -dl@ books

produces -

Austen@l@Persuasion@
Austen@4@Emma@
Austen@5@Pride And Prejudice@
Eliot@9@The Mill On The Floss@
Eliot@10@Silas Marner@
Hardy@6@Tess Of The D'Urbervilles@
Hardy@7@Jude The Obscure@
Hardy@8@Far From The Madding Crowd@
Hardy@l1@The Mayor Of Casterbridge@
Shaw@2@Pygmalion@
Zola@3@Nana@
Lawrence@12@Women In Love@
Lawrence@13@The Virgin And The Gypsy@
Lawrence@14@Sons And Lovers@
Hemingway@15@For Whom The Bell Tolls@

5.3. Processing A Single Relation
The operators introduced below all act upon a single relation. The selection

and projection operators restrict output to the desired information. For
instance, one can specify precisely which tuples are to be listed from a large
relation, or which domains are to be printed.

The sort operators are useful to order tuples in a listed output.

5.3.1. Selection - Retrieving Specific Tuples
The selection operator ( :: ) tells Db to select only certain tuples from a

relation.
One can regard the: : operator as meaning "such that" or "where". Its main

purpose is to reduce or narrow down the range of printed tuples. This selection
operator is used to form a horizontal subset of a relation.

The name of a relation from which tuples are to be extracted appears on
the left hand side of this operator. On the right hand side is an expression. Only
tuples from the relation which match the expression or qualification on the right
hand side are selected.

The qualification on the right hand side of the: : operator can be any gen
eral scalar expression, that is, an expression which can eventually be calculated
and reduced to a single value. The syntax of the qualification is based on the
syntax of the C language itself. The following paragraphs describe how the selec
tion operator works.

A name appearing in the expression on the right hand side is taken to refer
to a domain from the source relation. By specifying domain names, fields can be
compared to specific values or with one another, and a selection made on this
basis.

Integer and floating point numbers are allowed and indeed are generally
needed. (Db also recognises octal or hexadecimal integers should they be
required. Octal integers start with 0, 00 or 00 and hexadeCimal integers com
mence with Ox or ox. ) Character string constants are permitted: they are sur
rounded by double quotes.



- 17 -

Domain names and constants are combined with the following operators -
+. -.•. I. X. ==. !=. <. <=. >. >=. llcllc. 1\ and!. These operators have direct
equivalents in the C language. A summary of these operators is in appendix II.
There are others, used to manipulate bit fields, that are discussed later (see sec
tion 5.4.7). A qualification may also call upon any of the functions incorporated
into Db (see section 5.5).

For every tuple from the source relation, Db evaluates the qualification to a
single number. If this value is not zero, the tuple is printed. Otherwise the tuple
is discarded. In this respect the selection operator has a strong similarity to
the if ( ..... ) or while ( ..... ) statements of the C language.

Ezam;ple The query command
books:: bookno == 9

produces the following output when given to Db -

author bookno title
Eliot 9 The Mill On The Floss

The English equivalent of this query is "List tuples from relation books such that
fields from domain bookno have the value 9". In this example there is only one
such tuple.

Example The query
books:: bookno <::::; 5

produces the following output when given to Db -

author bookno title
Austen
Austen
Austen
Shaw
Zola

1
4
5
2
3

Persuasion
Emma
Pride And Prejudice
Pygmalion
Nana

In this case five tuples are listed. The English version of this query is "List tuples
from relation books where fields from domain bookno are less than or equal to
5".

Note that if this query were presented to Db on the command line and not
from a file or the terminal, then it would have to be enclosed in single quotes.
Otherwise the C Shell would interpret the command to mean that Db should read
input from a file named = , which is not the intended meaning. For example,
this C Shell command is suitable -

db 'books :: bookno <::::; 5'
Another way of presenting this query to Db would be to escape the < with a
backslash -

db books:: bookno \<= 5
Exa"'Wle The query

books :: author == "Austen"

bookno

produc es this output -
==============
author
Austen
Austen
Austen

1
4
5

Persuasion
Emma
Pride And Prejudice

In this example we have asked for "tuples where the author field is 'Austen"'.



- 18 -

Note the double quotes around the word "Austen". Without the quotes. Db
would interpret the query as meaning "List tuples where the author field has the
same value as the Austen field." It would then complain because there is no
domain name d Austen in this relation.
Exa.TTIJ2le The query

books :: author == title
produces the output -

author bookno title

Db prints the headings. but because there are no tuples with identical author
and title fields, none are printed.
Rxa.mple The following query lists all tuples where the author fields are alpha
betically less than 'Hardy'.

books :: author < "Hardy"

titlebookno

The output would be -
==============
author
Austen
Austen
Austen
Eliot
Eliot

1
4
5
9

10

Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner

This example shows how an inequality can be used to compare string fields. The
output consists of those tuples where the author field contains names up to. but
not including, 'Hardy'.

ExaT7lJ)le The query
books :: bookno + 3 > 10

bookno

produces the output -
=~===:=:::::::===~=======
author
Eliot
Eliot
Hardy
Hardy
Lawrence
Lawrence
Lawrence
Hemingway

9
10
8

11
12
13
14
15

The Mill On The Flos s
Silas Marner
Far From The Madding Crowd
The Mayor Of Casterbridge
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

In this example. tuples having a bookno value greater than seven are listed.
Exa.rru>le Finally, the query_

books :: author == "Austen" " author == "Zola"
lists those tuples where the author field is either 'Austen' or ·Zola'. The output
would be-

author bookno title
Austen
Austen
Austen
Zola

1
4
5
3

Persuasion
Emma
Pride And Prejudice
Nana



- 19-

5.3.2. Projection - Specifying Certain Domains

The projection operator ( "" ) requests Db to list only certain columns from
a relation.

The projection operator forms a vertical subset of a relation. in the same
way that a selection operator forms a horizontal subset. Only those domains
that the user requests are listed after a projection.

The name of the source relation from which data is read appears on the left
hand side of the projection operator. On the right side. the user specifies a list
of those domains in which he is interested. The domains are printed in the same
order in which their names appear in the list.
E;z;ample The Db query

books "" title author
lists only the domains title and author from relation books. The output is -

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

E;z;aTnlJle The Db query

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

books "" author
lists only the author domain from the relation. The output is -

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

In this example, Db has created several duplicated tuples. One might wish
to form a list of authors. with each author appearing only once in the output.



- 20 -

The solution to this problem is given below (see section 5.3.5).
Exa~le If one were to pose the query

books X% badcolumn
then Db would rightly complain with the diagnostic -

db - Line 1 - Invalid domain name badcolumn of relation books
because there is no domain named badcolumn in this relation.
Exa~le Similarly the query

books %% title title
is also in error, since domain names must be always unique. Db would produce
the diagnostic -

db - Relation (Project) - Domain name title not unique

5.3.3. Combining Both Selection And Projection
Both the selection and projection operators produce output which is still in

tabular format. In other words, the output from either operator is itself a rela
tion.

Since a selection gives a horizontal slice of a relation and a projection gives
a vertical slice, the two may be combined to narrow down a large relation to the
information desired.

The following example shows how relational operators can be combined in
Db. Every relational operator in Db produces another relation as its output. So,
the result of any operator can become the input to another.
Example To answer the question "Which books in the library are written by
Austen ?", one uses the following query -

books :: author == "Austen" %% title
The output is -

title
Persuasion
Emma
Pride And Prejudice

5.3.4. Sorting A Relation
Db possesses a powerful sort operator ( ##). On the left of this operator is

the relation to be sorted. On the right hand side is a list of domain names upon
which the sort takes place.

Numeric fields are sorted according to their value and character string
fields according to their lexographic order.

The sort takes place using the first domain in the list. and then on the
second domain and so on. If any name in the domain list is preceded by a
hyphen the order of the sort is reversed for that domain.
Exa77l;Ple The query to sort the entire books relation on the domain title is 

books ## title
The output is -



- 21 -

author bookno title
Austen
Hardy
Hemingway
Hardy
Zola
Austen
Austen
Shaw
Eliot
Lawrence
Hardy
Hardy
Eliot
Lawrence
Lawrence

4
B

15
7
3
1
5
2

10
14

6
11

9
13
12

Emma
Far From The Madding Crowd
For Whom The Bell Tolls
Jude The Obscure
Nana
Persuasion
Pride And Prejudice
Pygmalion
Silas Marner
Sons And Lovers
Tess Of The D'Urbervilles
The Mayor Of Casterbridge
The Mill On The Floss
The Virgin And The Gypsy
Women In Love

Exarn:ple To sort the relation by author and then backwards on the domain title
the query is -

books ## author -title

bookno

with the output -
=======:=====:==========
author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Hemingway
Lawrence
Lawrence
Lawrence
Shaw
Zola

5
1
4
9

10
11

6
7
B

15
12
13
14
2
3

Pride And Prejudice
Persuasion
Emma
The Mill On The Floss
Silas Marner
The Mayor Of Casterbridge
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
For Whom The Bell Tolls
Women In Love
The Virgin And The Gypsy
Sons And Lovers
Pygmalion
Nana

5.3.5. Removing Duplicate Tuples
There is a variation of the sort operator that performs the same function

except that it removes duplicate tuples in the sorting process. This operator is
typed # . as opposed to the two sharps for the previous operator.

Sometimes it is desirable to remove duplicate tuples. sometimes they must
be retained. In practice, duplicate tuples arise when a projection operator has
removed one or more domains.
EXCI~le To produce a list of authors, with each author appearing only once in
the output, the query is -

books XX author # author
The output is -



- 22-

author
Austen
Eliot
Hardy
Hemingway
Lawrence
Shaw
Zola

5.3.6. Creating New Domains With The Projection Operator
The projection operator is used to remove unwanted domains from a listed

relation. It can also be used to form additional domains, based on data from a
source relation.

On the right hand side of the projection operator appears a list of domain
names, as described above. Alternatively, instead of a single name appearing in
the list, an assignment may be made to a new domain. The syntax of an assign
ment is : the name of the new domain. followed by a = operator, followed by an
expression. The expression is evaluated for each source tuple and the result
placed into the new domain. Any arbitrary expression can be used on the right
hand side of the = sign.

Thus the projection operator can be used. say, to add the fields in two
domains together on a tuple by tuple basis.

Example In these examples, a new relation data will be used. The relation was
created with the command

dbcreate data event/s datal/f data2/f
and its contents are -

event datal data2
1 3.4 4.5
2 -3.6 6.8
3 0.001 3.2
4 2.9 6.7
5 10.1 9.8

One might wish to list the fields of domain datal when multiplied by a constant
value. Such a query might be -

data XX datal mult = datal • 3.75
The output is -

datal
3.4

-3.6
0.001

2.9
10.1

mult
12.75
-13.5

0.00375
10.875
37.875

Exam:ple If one wished to list data with two new domains. sum which is the addi
tion of datal and data2, and di1f which is the difference of the two. one would use
the follOWing query -

data XX event datal dala2 sum =datal + data2 di1f =datal - da182
The listed output is -



- 23 -

event datal data2 sum diff
1 3.4 4.5 7.9 -1.1
2 -3.6 6.8 3.2 -10.4
3 0.001 3.2 3.201 -3.199
4 2.9 6.7 9.6 -3.8
5 10.1 9.8 19.9 0.3

Note that the domains event datal and data2 must appear after the projection if
they are to be included in the output. The command

data XX datal = datal • data2
is not ambiguous since domain datal appears only once in the output. In this
case the output is -

datal
15.3

-24.48
0.0032

19.43
98.98

5.3.7. Syntactic Sugar For Assignments
The construction

data XX datal += data2
is exactly equivalent to

data XX datal =datal + data2
There are also similar operators -=, ~, /= and X=. Thus one could use a

query such as
data XX event datal data2 -= datal

5.4. Scalar Expressions
Scalar expressions occur in selection or projection operations. A scalar

expression can eventually be calculated and evaluated to a single value.
It is important to understand how scalar expressions are evaluated. Scalar

expressions have. a similar syntax and semantics to expressions in the C
language. This section lists the properties of such expressions.

5.4.1. Types Of Expressions
When a relation is created by Dbcreate every domain has an associated data

type, for instance. long integer or character string. A complete table of these
types is shown in appendix 1. Most of these types have direct equivalents in both
the C language and Fortran. For instance the type floa.t of Db corresponds with
rea.l-4 of Fortran.

The data type unsigned of Db corresponds to unsigned short of the C
language. A type of int in Db corresponds to short in the C language. In Db.
unsigned and Unsigned shoTt are synonymous, and so are int and short.

Db usually permits expressions involving mixed types and will convert
values from one type to another if necessary. Using the example of relation
data, where event is a domain of short integers and datal is a domain of floating
point numbers. the following query would be perfectly acceptable to Db -

data :: event> datal
However Db would object if it were presented with this query-

o



- 24-

books:: tiUe == bookno
In this example Db is being asked to compare a string of characters with a
numeric value. Instead Db would print the message -

db - Line 1 - Operands of == are string and short
This means that the == operator is being asked to compare a string value with a
short integer value. something Db refuses to do.

The numeric data types can be assigned back and forth and compared with
one another. When Db performs arithmetic on two operands of different types, it
always chooses a result which retains as much accuracy as possible. For exam
ple, adding a long integer with a float number produces a result which is
another float.

Strings lie in a class of their own and cannot be compared or converted to
numeric fields (but see section 5.5.2).

5.4.2. Packed Decimal Integers 0
On the VAX implementation, Db also supports packed decimal values. These

permit signed integer numbers of greater precision than is possible with long
integers. There are two types of packed decimal integers: pack15 numbers are
kept to a 15 digit accuracy and packSl numbers to a 31 digit accuracy. Packed
decimal arithmetic is always carried out to full precision. However a packed
decimal value requires at least twice the space of a long integer and arithmetic
calculations may be slower.

The only exception to the rule that numeric fields are freely interchange
able is in the case of packed decimal values. These can only be compared with
one another or with long integers. They cannot be compared or converted to
either of the tloating point types. Similarly, long integers can be converted to
packed decimal values but the floating point types cannot.

5.4.3. Casts - Converting The Type Of Expressions 0
It is sometimes necessary to be able to convert the type of an expression.

For instance. the way in which arithmetic is performed depends on the data
types of the operands. In the case of the data relation above. we might wish to
find the values of the event domain when divided by 2. Such a query might be -

data XX event eventdiv2 =event I 2
and the output is -

event
1
2
3
4
5

eventdiv2
o
1
1
2
2

Because domain event is of type short integer, and the division is also by an
integer number, the arithmetic is according to the rules of integer division. The
results in output domain eventdiv2 are themselves integers and are therefore
truncated.

If one wishes the division to be performed exactly, there are two possible
solutions. The first is to use a query such as -

data "" event eventdiv2 = event I 2.0
In this case the divisor is a floating point number and so the division is per
formed exactly.



- 25-

The second solution is to use a cast to convert the type of event before the
division takes place. Casts in Db have the same syntax as they do in the C
language. An expression is preceded by a type name in parentheses : the
expression is evaluated and then converted to the required data type. Thus
another way of solving this problem would be to type -

data X" event eventdiv2 = (ftoat)event I 2
In this example the domain event is cast to a type of float before being used in
the division. The output would then be -

====:::=====
event eventdiv2

1 0.5
2 1
3 1.5
4 2
5 2.5

Another reason to use casts is that they can alter the printing width of
listed output. Numeric fields are always printed in a width large enough for the
biggest number that can be held in a given data type. For instance. long
integers are printed in a width of eleven characters since that is required to
print the widest number that can be held. One could use a cast to convert, say,
a domain of long integers to one of unsigned. short numbers. Then the printing
width would only be five characters.

A final reason for the existence of casts is when Db is creating a new rela
tion from eXisting data (see section 5.8). Then it may be important to ensure
that the domain types in the new relation are the desired ones to avoid wasting
disc space.

5.4.4. The Types Of Constants
Integer constants, including octal and hexadecimal values. are always con

sidered to be long integers. Similarly floating point constants are always con
sidered to be double precision.

5.4.5. Character Strings
Within a double quoted character string a backslash ( \ ) has a special

meaning. For instance, the sequence \n is interpreted as a new-line character.
This table shows all the special characters which can be introduced with a
backslash. When any other character is preceded by a backslash, the backslash
is ignored.

Sequence KeaninJ! To Db
\n new line
\t tab
\b backspace
\f form feed
\r carrlae:e return
\" double quote
\\ \

Normally, a string constant must appear on a single line in a query. Db
prints a diagnostic if it finds a string that is not terminated by a double quote on
the same line. However. the sequence \newline or \newline tabs is ignored
within a string constant. so a long string can be broken up over several lines if



- 26-

necessary.
Example

"This is an example of a very long string constant\
that is split into two lines"

5.4.6. The Conditional Operator 0
Db has a conditional operator similar to that of the C language. This facility

allows one to use an "if ... then ... else ... " construct in an expression. The syn
tax of a conditional expression is

erpr1 ? expr2: expr3
If expr1 turns out to be true, that is non-zero. the whole expression has the
value returned by expr2. Otherwise the value of the entire conditional expres
sion is erpr3.

This operator can be used in a projection, say. to force a domain to take on
positive values, or to assign a value to a domain only under certain conditions.
Example The following query lists the absolute values of fields taken from
domain datal of relation data.

data "" datal abs =datal > 0.0 ? datal : -datal
The output is -

datal
3.4

-3.6
0.001

2.9
10.1

abs
3.4
3.6

0.001
2.9

10.1

Example With the following query, one could list the tiUe domain of books
replacing all titles whose author is "Hardy" by a string of asterisks -

books "" title = author == "Hardy" ? "••••_ ...' : tiUe
The output would be -

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
••••••••
••••••••
••••••••
••••••••
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls



- 27-

5.4.7. Accessing Individual Bits From A Data Field 0
Db supports operators that allow one to retrieve single bits from short or

unsigned short data fields. This feature is normally not required unless one is
storing large quantities of data that could be compressed into a width of a few
bits. This table shows the operators that can be used to access individual bits
within a field - .

Operator Purpose

I Bitwise Or
& Bitwise And
..... Bitwise Exclusive Or
« Bitwise Left Shift
» Bitwise Right Shift

N UnarY Bitwise Complement

There are also assignment operators 1=. llc=......=. «= and »= (see section
5.3.7). All these operators have the same semantics as they do in the C
language. except that they may only be applied to short or unsigned short
operands. They all return short values. The shift operators are guaranteed to
return a logical as opposed to an arithmetic shift.
Exa.mPle In order to retrieve tuples from a hypothetical relation bits where only
the second or third bits of domain bitwise are set to 1, one would use this query

bits :: ( bitwise lie (short)0x6 ) != 0
The cast (short) is required since the llc operator does not accept a long integer
as one of its operands. The parentheses are also reqUired since the precedence
of the llc operator is less than that of !=.

5.5. Procedures Incorporated Into Db 0
A number of useful procedures are incorporated into Db. Some of these

routines are useful for dealing with character strings and some for converting
character strings to numeric values. There are also powerful routines for pro
cessing calendar dates. A summary of these procedures is in appendix 111.

Built-in procedures can be used in any selection expression or in an assign-
ment for a projection list. .

An argument to one of these procedures can be a number. a string enclosed
in double quotes or a name referring to a domain. An argument can even be the
result of another procedure so nested calls to procedures are permitted.

Db complains if the number of arguments to a procedure is incorrect, or if
the data type of an argument is wrong and cannot be converted.

5.5.1. Procedures For Character Strings 0
The built-in routines strcat. substr. strlen and regex all deal with character

string fields.
Strcat returns a string which is the concatenation of its two arguments.
Substr returns a part of a string argument. The first argument is the

string. the second the character position from which the sub-string is to be
taken and the third is the length of the sub-string.

Strlen returns the number of characters in its argument.
Perhaps the most useful routine for dealing with strings is regex. This

returns a value of one if a string matches a given regular expression pattern and



- 28 -

zero otherwise. Regular expression syntax is the same as that provided inside
the UNIX ed program.. This procedure can be used to see if a field from a tuple
matches a pattern and make a selection accordingly. Its first argument is the
desired pattern, the second is the string to be matched.

5.5.2. Procedures For Converting Strings To Numeric Values 0

Db will not convert a character string to a numeric value unless explicitly
instructed. The following procedures are available for such a conversion.

The procedures stol, stod and stop3! take a single argument, which must be
a string. and convert it to its equivalent numeric value. The ditIerence is in the
type of the returned value. Stol regards its argument as a long integer. Stod
and stop3! regard it as being a floating point number or as a 31 digit packed
decimal number respectively.

None of these procedures complain if an argument is not a recognisable
number. They will simply return a value of zero.

5.5.3. Miscellaneous Procedure 0

The routine count can be used to number consecutive tuples. The first time
it is called, count saves its argument in an internal counter, and returns the
same value. In subsequent calls the argument is ignored but the counter is
incremented and returned.

Unfortunately there is no way to reset the counter. Nor is count very sensi
ble if called from more than one place in a query.

ExamPle Using relation books again, the query
books"" author length =strlen( author)

produces -

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

length
6
6
6
5
5
5
5
5
5
4
4
8
8
8
9

Again, the projection has created several duplicated tuples. A cleaner way of
asking the same query is -

books ,,% author length =strlen( author) # author
This produces -



- 29 -

author
Austen
Eliot
HardY
Hemingway
Lawrence
Shaw
Zola

length
6
5
5
9
8
4
4

ExamPle This query
books XX subtiUe = substr( tiUe, 5, 9 ) title

obtains a sub-string from each tiUe field. Each sub-string is formed by taking
nine characters from tiUe, beginning at position five. For comparison, the tiUe
field is included here too. The output is -

subtitle
uasion

e And Pre
Mill On T
s Marner
Of The D
The Obsc

From The
Mayor Of
alion

n In Love
Virgin An
And Love

Whom The

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

Excurl\Ple To find those tuples where a domain matches a certain pattern, one
would use the regex procedure. The query

books :: regex( "The" , tiUe )
finds any tuples with "The" somewhere in the tiUe domain. The output in this
case is -

author
Eliot
Hardy
Hardy
Hardy
Hardy
Lawrence
Hemingway

bookno
9
6
7
8

11
13
15

title
The Mill On The Floss
Tess Of The D'Urbernlles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
The Virgin And The Gypsy
For Whom The Bell Tolls

ExamPle Similarly, this query lists titles beginning with "The" 
books :: regex( ""'The", tiUe ) "" tiUe



- 30 -

title
The Mill On The Floss
The Mayor Of Casterbridge
The Virgin And The Gypsy

Exa.mple The procedure count is used to number tuples. For instance to obtain
a list of numbered authors one could use this query -

books %X author # author XX number = count( 1 ) author
with the output -

number
1
2
3
4
5
6
7

author
Austen
Eliot
Hardy
Hemingway
Lawrence
Shaw
Zola

Exa.mple In order to obtain only the first four tuples from books one would use
this query-

books :: count( 1 ) <= 4
The output is -

author
Austen
Austen
Austen
Eliot

bookno
1
4
5
9

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss

5.5.4. Procedures For Calendar Dates 0

Db includes a powerful set of routines for processing calendar dates. These
procedures accept as arguments dates represented by long integers in the form
YYYYMMDD. For instance the date "31st December 1981" is represented by the
integer 19811231.

These procedures will work with any valid Gregorian Calendar date. A year
of less than 100 is assumed to refer to the 20th century, not the early Christian
era.

If the date procedures are given a non-existent date, Db complains and the
procedure continues, assuming another valid date. For instance, the date
19810229 is incorrect since Anno Domini 1981 was not a leap year, and hence
there was no 29th February. Db would print a diagnostic and continue, assuming
instead that the correct date is 19810301 (1st March 1981).

The procedures df.-prettyand dt...Ypretty each return a string representing
their date argument in a "pretty" or "very pretty" format. Similarly the pro
cedures dt...Jr"eekday and dt....JIlonth return a string representing the weekday
name and the month name of the given date.

Dt....days returns the number of days occurring between two dates. The pro
cedure dt..JIundays returns the number of inclusive Sundays lying between two
dates.

The first argument to dt.J)1fset is a date. The second is an offset, positive or
negative, measured in days from that date. This procedure returns the new



- 31 -

date.

The procedures dtJtos and dtJtol convert a date to a character string and
vice versa. In the case of dUtos the first argument is a date and the second
argument is a delimiter string. This returns a string of the form
"1981XXX12XXX31" where "xxx" is the delimiter. DtJtol takes a string of the
form "81X12X31" or "811231" and converts it to the equivalent long integer date
format.

Dt...ll3tol takes three arguments: a year number, month number and day
number. It returns the equivalent date as a single long integer.

Finally. dUoday returns the date on which Db is invoked.

Example These examples will use a new relation loans that was created by the
command .

dbcreate loans bookno/s personno/s datedue/l
The entire relation might be -

bookno
5
6
7
8

13
14
15

personno
1
1
1
3
2
2
7

datedue
811231
811231
820107
820110
820106
820106
810423

To print the datedue domain in a "pretty" format, one can use either the
dt..pretty or dt...Ypretty procedures. The query
loans '''' datedue pretty =dLpretty( datedue ) vpretty =dt...ypretty( datedue )
produces this listing -

datedue
811231
811231
820107
820110
820106
820106
810423

pretty
Thu 31 Dec 1981
Thu 31 Dec 1981
Thu 7 Jan 1982
Sun 10 Jan 1982
Wed 6 Jan 1982
Wed 6 Jan 1982
Thu 23 Apr 1981

vpretty
Thursday 31 December 1981
Thursday 31 December 1981
Thursday 7 January 1982
Sunday 10 January 1982
Wednesday 6 January 1982
Wednesday 6 January 1982
Thursday 23 April 1981

Example To find which of these dates is before today (assuming today's date to
be 3rd December 1981). the query is -

loans:: dUays( dtJ,oday(), datedue) > 0
This produces -

bookno
15

personno
7

date due
810423

Exa~le To add an offset of 100 days to fields from datedue and to list both the
original and the new dates in a "pretty" format, the query is -
loans XX old =dt~retty( datedue ) new =dLpretty( dtJ>trset( datedue, 100) )

The output is -



old

- 32-

new
Thu 31 Dec 1981
Thu 31 Dec 1981
Thu 7 Jan 1982
Sun 10 Jan 1982
Thu 31 Dec 1981
Wed 6 Jan 1982
Wed 6 Jan 1982
Thu 23 Apr 1981

Sat 10 Apr 1982
Sat 10 Apr 1982
Sat 17 Apr 1982
Tue 20 Apr 1982
Sat 10 Apr 1982
Fri 16 Apr 1982
Fri 16 Apr 1982
Sat 1 Aug 1981

5.6. Aggregation Of Tuples 0

Db possesses an aggrega.tion operator that allows the user to group tuples
together by their field values and to find, say, the minimum or maximum values
within each group. This is a generalised operator by which the user can split up
a relation into groups and perform some totaling or counting operation on the
tuples of each group.

The syntax of the aggregation operator ( @@ ) is roughly the same as that of
the projection operator. On the left hand side is the source relation from which
Db reads tuples. On the right hand side is a list of domain names or assign
ments.

Each domain name appearing by itself on the right hand side specifies how
the source domain is to be grouped for the purposes of aggregation. The source
relation is split up into groups of tuples based on the values in these domains.
Therefore one can specify that Db should aggregate a relation grouping its
tuples by their values in certain domains.

Assignments to new domains are paired together so that there are two
assignments for each new domain of the output. The first initialisation assign
ment is performed only for the first tuple from each group of the source rela
tion. The second assignment is performed for every tuple from the source rela
tion.

In either assignment, one may refer to a field from a source tuple or to one
from the output tuple. By referring to a field in the output tuple, one can, say,
add a field from the input to this value and hence keep a running total in the
output. In order to avoid ambiguity, domain names referring to the source rela
tion are always preceded by a period ( .). This operator can preserve the form
of the input relation, that is, the output can be made to have exactly the same
attributes as the source relation.

The aggregation operator does not automatically sort the source relation
into order before grouping the tuples together. So in a typical query, it would
be used in conjunction with one of the sort operators.
EXGTTIJ)le These examples use the data and loans relations shown in sections
5.3.6 and 5.5.4.

One might wish to group the loans relation by its personno domain, and
then to count the number of tuples within each group. Firstly this relation
should be sorted by personno and then aggregated into groups by this domain.
The first assignment, performed for the first tuple in each group, initialises a
new domain count by assigning it a value of zero. The second assignment, per
formed for every tuple from a group, increments count by one. Therefore,
count will eventually contain the number of tuples for each group from loans.
The query could be either -

loans H# personno @@ personna count =0 count =count + 1



- 33-

or -
loans ## personno @@ personno count = 0 count += 1

and the output is -

personno
1
2
3
4
7

count
3
2
1
1
1

E:ra.TTlJ)le Similarly, to count the number of titles for each author from the
books relation, the query is -

books ## author @@ author count = 0 count += 1
and the output is -

author count
Austen 3
Eliot 2
Hardy 4
Hemingway 1
Lawrence 3
Shaw 1
Zola 1

Exa.'T7!!Ple One might wish to find the minimum value of domain datal from rela
tion data. In this case the relation is not to be split up into groups and the out
put relation will consist of one single tuple. Since the input relation is not to be
grouped, there is no need for it to be sorted beforehand. The output domain
might be called. say. minl and it is initialised from the first tuple of the source
relation. Then, for every source tuple, both the input and output fields are
examined to determine the lower value and this is assigned back to the output
tuple. So if an output field has a lower value than the input, it is assigned back
to itself. Therefore, the output field always contains the minimum valued field
yet encountered from the source.

The conditional operator is used to decide which of the input or output
fields has the lower value. Because there is a need to refer to datal from the
source, this domain is preceded by a period in the query. The query to Db is 

data @@ minl = .datal minl = .datal < minl ? .datal : minl
The output is -

min1
-3.6

Exa.Tl1J2le In order to total domains datal and data2 and to produce a listing with
the same names for these domains, one uses this query-

data @@ datal = 0.0 datal += .datal data2 = 0.0 data2 += .data2
Since both datal and data2 are floating point, it is necessary to initialise the
output domains to be floating point values, in this case 0.0. Again there is no
need to sort the relation before the aggregation. The output is -

datal
12.801

data2
31



- 34-

Example Finally, to find the earliest value of datedue from the relation loans.
again grouping this relation by personno. one would use this query -

loans H# personno @@ personno datedue =.datedue
datedue =.datedue < datedue ? .datedue : datedue

The output is -

personno
1
2
3
4
7

datedue
811231
820106
820110
811231
810423

5.6.1. :More Concerning Aggregations 0
The first initialisation assignment can sometimes be omitted. If so, the out

put domain is of type long and is set to zero. Thus the first example of section
5.6 could have been written as -

loans H# personno @@ personno count += 1

Any arbitrary expression can appear in either assignment. So to concaten
ate each title field from relation books together, producing one output tuple for
every author. one could use this query -

books ## author @@ author title =""
title =strcat( title. strcat( .title. "I" ) )

In this example, title is initialised to a null string. Then for every tuple
from the source relation, title becomes a concatenation of itself with a
corresponding input field. There is a nested call to the built-in procedure strcat
so that the titles are separated by slashes. The output is -

author
Austen
Eliot
Hardy
Hemingway
Lawrence
Shaw
Zola

title
Emma/Persuasion/Pride And Prejudice/
The Mill On The Floss/Silas Marner/
Jude The Obscure/Tess Of The D'Urbervilles/Jude The Obscure/ ......
For Whom The Bell Tolls /
The Virgin And The Gypsy/Women In Love/Sons And Lovers/
Pygmalion/
Nana/

5.7. Operators Processing Two Relations
All the relational operators that have been introduced so far process a sin

gle relation. The operators described below mani.pulate two relations. For
instance, the union operator concatenates two relations together. Similarly,
the join. operator cross-references two relations by matching their respective
tuples.

5.7.1. Union Of Two Relations
Two entire relations may be concatenated together by the union operator

( ++). This operator is similar to the familiar addition operator of standard
arithmetic. One can regard it as "adding" two relations together.

Both relations must have the same degree. The domains need not have th.e
same names in both relations, but the data types must be compatible with one



- 35-

another. So if the first domain of the left hand relation holds strings then so
must the first domain of the right hand relation. Similarly, if a given domain in
one relation holds floating point values, the corresponding domain of the second
relation must hold floating point or integer fields, but not strings or packed
decimal integers.

The result has domains "'Vith the same names and types as those from the
left relation.

Example Using a new relation newbooks which is-

author
Bronte
Eliot
Hemingway
Hemingway
Lawrence
Lawrence

bookno
16
21
19
20
17
18

title
Wuthering Heights
Daniel Deronda
The Old Man And The Sea
The Snows Of Kilimanjaro
Aaron's Rod
The Prussian Officer

the query

produces -
books ++ newbooks

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Har-dy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway
Bronte
Eliot
Hemingway
Hemingway
Lawrence
Lawrence

bookno
1
4
5
9

10
6
7
8

11
2
3

12
13
14
15
16
21
19
20
17
18

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls
Wuthering Heights
Daniel Deronda
The Old Man And The Sea
The Snows Of Kilimanjaro
Aaron's Rod
The Prussian Officer

Example However, if one tried to concatenate books and data together, Db pro
duces this error diagnostic -

db - Line 1 - Invalid domains author and event of relations books and data
meaning that these domains are incompatible with one another. (Author is a
domain of character strings and event is a domain of short integers. )

5.7.2. Intersection Of Two Relations

The intersection operator ( .. ) shows which tuples from one relation
correspond to those from another. Tuples from both relations are compared
together to find any that match. This operator r-eturns those tuples from the



- 36-

left operand matching any from the right operand. Thus the output consists of a
subset of the left hand relation.

In both relations there must be at least one domain with the same name. It
is these common domains that are examined to find matching tuples.

Should there be more than one domain with the same name in both rela
tions then tuples are considered to match only if ALL the common domains have
identical values.
Exam;ple The query

books .. loans
is the way one would phrase the question "Which books are currently out on
loan?" Books has domains author, bookno and title. Loans has domains bookno,
personno and datedue so the only common domain from both relations is
bookno. The output consists of tuples from books with a bookno value that
appears somewhere in loans. The output is -

author
Austen
Hardy
Hardy
Hardy
Lawrence
Lawrence
Hemingway

bookno
5
6
7
8

13
14
15

title
Pride And Prejudice
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

ExaUlJ)le In the same way, the query
loans .. books

shows all the tuples from loans that match one or more tuples from books -

bookno
5
6
7
8

13
14
15

personno
1
1
1
3
2
2
7

datedue
811231
811231
820107
820110
820106
820106
810423

5.7.3. DitIerence Of Two Relations
The difference operator ( - -) again compares tuples from two relations. It

returns those tuples from the left hand operand that do not match any from the
right hand operand. Thus the output consists of a subset of the left hand rela
tion. This is the converse operation to intersection ; it returns tuples from the
left hand relation not corresponding to any from the right hand relation.

Matching is performed in exactly the same way for the intersection opera
tor. So again, there must be at least one commonly named domain from both
relations.

ExamPle In order to answer the question "Which books are still in the library?"
the query to Db is -

books - loans
and the output is -



author
Austen
Shaw
Zola
Austen
Eliot
Eliot
Hardy
Lawrence

bookno
1
2
3
4
9

10
11
12

- 37-

title
Persuasion
Pygmalion
Nana
Emma
The Mill On The Floss
Silas Marner
The Mayor Of Casterbridge
Women In Love

5.7.4. Join Of Two Relations

The join operator ( • .) is perhaps the most useful of all the operators that
process two relations. This operator can be used to cross-reference two rela
tions.

The output from a join is the concatenation of every tuple from the left
hand relation with every corresponding tuple from the right hand operand.
Matching is done in the same way for the difference and intersection operators.
so there must be at least one domain with the same name in both relations. The
duplicated domains are removed from the output. Tuples from either relation
not matching any from the other are discarded and do not form part of the
result.

The join operator is commutative. That is, the same information is listed
regardless of the way in which the operands are presented to Db, although the
domains may appear in a different order. The difference and intersection opera
tors are not commutative since the command books .. loans produces a very
different output to loans .. books

ExamPlg In order to obtain a full cross-reference listing of the relations books
and loans one uses this query -

books - loans
and the output is -

author
Austen
Hardy
Hardy
Hardy
Lawrence
Lawrence
Hemingway

bookno
5
6
7
8

13
14
15

title
Pride And Prejudice
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

personno
1
1
1
3
2
2
7

datedue
811231
811231
820107
820110
820106
820106
810423

Examplg The query -

produces -
loans •• books



- 38 -

bookno personno datedue author title
5 1 811231 Austen Pride And Prejudice
6 1 811231 Hardy Tess Of The D'Urbervilles
7 1 820107 Hardy Jude The Obscure
8 3 620110 Hardy Far From The Madding Crowd

13 2 620106 Lawrence The Virgin And The Gypsy
14 2 820106 Lawrence Sons And Lovers
15 7 810423 Hemingway For Whom The Bell Tolls

These two examples have produced the same information although the order of
output domains is different.
Exa.mple This example uses a new relation called people which relates names
and addresses to person numbers. This relation might be -

lname
Fischer
Francis
Mednieks
Medow
Novachkov
Schweeger
Ward

fname
Denise
Michael
Zig
Serge
Asen
Bernhard
Robert

address
Biedermannsdorf
Vienna
Laxenburg
Baden
Vienna
Klosterneuburg
Vienna

personno
5
6
3
2
7
4
1

Using this sample relation, the join of loans and people is formed by the
query -

loans - people
The output is -

bookno personno datedue lname fname address
6 1 811231 Ward Robert Vienna
5 1 811231 Ward Robert Vienna
7 1 820107 Ward Robert Vienna

14 2 820106 Medow Serge Baden
13 2 820106 Medow Serge Baden
8 3 620110 Mednieks Zig Laxenburg

15 7 810423 Novachkov Asen Vienna

Exa.mple One could join all three relations and eliminate uninteresting domains
by the query -

books •• loans •• people %% fname lname address title
This produces -

fname
Robert
Robert
Robert
Serge
Serge
Zig
Asen

lname
Ward
Ward
Ward
Medow
Medow
Mednieks
Novachkov

address
Vienna
Vienna
Vienna
Baden
Baden
Laxenburg
Vienna

title
Tess Of The D'Urbervilles
Pride And Prejudice
Jude The Obscure
Sons And Lovers
The Virgin And The Gypsy
Far From The Madding Crowd
For Whom The Bell Tolls

Exa.mple The join of books and new-books would list only those tuples which are
identical in both relations since they both have the same domains. In this case
there are no such tuples.



- 39 -

Exa~le Db objects if there are no common domains from either relation. For
instance this query -

books·· data
produces the message -

db - Line 1 - No common domains of relations books and data

5.7.5. Cartesian Product Of Two Relations 0
The Cartesian product ( -- ) forms new tuples from two relations by con

catenating every tuple from the left hand relation with each tuple in turn from
the right hand relation. That is, it forms all possible combinations of tuples from
both relations.

So if the left hand relation contains, say. eleven tuples, and the right hand
relation has twelve. the product of the two would have 132 tuples.

This product operator differs from the join. intersection and difference
operators which require that there should be at least one commonly named
domain from both operands. Instead, it insists that the domain names of both
source relations all be different. This restriction exists so that the result tuples
can be formed by concatenating the left and right hand tuples together while
ensuring that the domain names of the result are unique.

The second example below shows how this operator can be used in conjunc
tion with the aggregation operator to total up a relation over various ranges of
values that are specified in another relation. The third example shows how this
operator can be used to simulate a join of two relations.
Example Using the relations newbooks and people again, one may form the pro
duct of these two relations with the query

newbooks -- people
The result would have domains author bookno title lname fnam.e address and
personno and would contain every possible combination of tuples from both
relations.
example, The product operator can be used in conjunction with the aggregation
operator to form totals of domains whose fields lie within various ranges. Using
the example of relation data again. one might wish to find totals of domains
datal and data2 for various ranges of event that are specified in a second rela
tion. Suppose there is a relation ranges detailing the ranges of domain event to
be summed up. This relation might be -

low high
1 3
1 5
2 4
3 5

description
One To Three
Everything
Two To Four
Three To Five

Domains low and high contain the lowest and highest values of the ranges of
event used in summing up datal and data2 The entire query to sum up the rela
tion over these ranges is -

ranges -- data
:: IOlf <= event && event <= high
@@ low high description

total1 = 0.0 totall += .datal
total2 =0.0 total2 += .data2

The first line of this query forms the product of ranges and data. This product is



- 40-

low high description event datal data2
1 3 One To Three 1 3.4 4.5
1 3 One To Three 2 -3.6 6.8
1 3 One To Three 3 0.001 3.2
1 3 One To Three 4 2.9 6.7
1 3 One To Three 5 10.1 9.8
1 5 Everything 1 3.4 4.5
1 5 Everything 2 -3.6 6.8
1 5 Everything 3 0.001 3.2
1 5 Everything 4 2.9 6.7
1 5 Everything 5 10.1 9.8
2 4 Two To Four 1 3.4 4.5
2 4 Two To Four 2 -3.6 6.8
2 4 Two To Four 3 0.001 3.2
2 4 Two To Four 4 2.9 6.7
2 4 Two To Four 5 10.1 9.8
3 5 Three To Five 1 3.4 4.5
3 5 Three To Five 2 -3.6 6.8
3 5 Three To Five 3 0.001 3.2
3 5 Three To Five 4 2.9 6.7
3 5 Three To Five 5 10.1 9.8

The second line of the query selects only those tuples from this intermediate
relation where event is in the range specified by low and high. After the first
two lines of the query, the data becomes -

low high description event datal data2
1 3 One To Three 1 3.4 4.5
1 3 One To Three 2 -3.6 6.8
1 3 One To Three 3 0.001 3.2
1 5 Everything 1 3.4 4.5
1 5 Everything 2 -3.6 6.8
1 5 Everything 3 0.001 3.2
1 5 Everything 4 2.9 6.7
1 5 Everything 5 10.1 9.8
2 4 Two To Four 2 -3.6 6.8
2 4 Two To Four 3 0.001 3.2
2 4 Two To Four 4 2.9 6.7
3 5 Three To Five 3 0.001 3.2
3 5 Three To Five 4 2.9 6.7
3 5 Three To Five 5 10.1 9.8

Because the product operator has produced tuples in the correct order there is
no need for them to be sorted before the aggregation. The final line s of the
query aggregate the tuples to produce -

low high description total! tota12
1 3 One To Three -0.199 14.5
1 5 Everything 12.801 31
2 4 Two To Four -0.699 16.7
3 5 Three To Five 13.001 19.7

Example One can use the product operator to form a join of two relations if one
explicitly states the domains that are to be matched. For instance this query 

ranges ~~ data:: event == loW'



bookno

- 41 -

joins ranges and data together by matching their domains event and low respec
tively. The output is -

low high description event datal data2
1 3 One To Three 1 3.4 4.5
1 5 Everything 1 3.4 4.5
2 4 Two To Four 2 -3.6 6.8
3 5 Three To Five 3 0.001 3.2

5.7.6. Parentheses In Relational Expressions 0
Normally, relational operators group from left to right. For instance, Db

evaluates this query by performing the union operation before the join -
books ++ newbooks •• loans

Parentheses can be used in relational expressions just as they can be used
in arithmetic expressions. One may use parentheses to override the default
order of evaluation.
ExC7.mple The following example takes tuples from books that do not match any
from loans. It then concatenates them with tuples from books that do match.
So this is a very indirect way of listing the relation books.

( books .. loans) ++ ( books -loans)
The output is -

=====================
author
Austen
Hardy
Hardy
Hardy
Lawrence
Lawrence
Hemingway
Austen
Shaw
Zola
Austen
Eliot
Eliot
Hardy
Lawrence

5
6
7
8

13
14
15

1
2
3
4
9

10
11
12

Pride And Prejudice
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls
Persuasion
Pygmalion
Nana
Emma
The Mill On The Floss
Silas Marner
The Mayor Of Casterbridge
Women In Love

Example One might wish to produce a listing of books with some indication as to
whether each book is currently out on loan. The following query is suitable -

( books .. loans X% author title out ="Yes" )
++
( books -loans XX author title out ="No" ) ## author title

The output is -



author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Hemingway
Lawrence
Lawrence
Lawrence
Shaw
Zola

- 42-

title out
Emma No
Persuasion No
Pride And Prejudice Yes
Silas Marner No
The Mill On The Floss No
Far From The Madding Crowd Yes
Jude The Obscure Yes
Tess Of The D'Urbervilles Yes
The Mayor Of Casterbridge No
For Whom The Bell Tolls Yes
Sons And Lovers Yes
The Virgin And The Gypsy Yes
Women In Love No
Pygmalion No
Nana No

The first line of the query produces tuples from books which match any from
loans. The second line produces tuples that do not match those from loans.
These two sets of tuples are concatenated together by the union operator and
then sorted in order of author and title.
Example In order to find out how many books each person has out on loan, one
would use this query -

( ( people ··loans ) @@ lname fname borrowed += 1 )
++
( ( people - loans) = lname fname borrowed = 0 ) ## lname mame

The first line of this query produces tuples from people who have borrowed one
or more books from the library. An aggregation is used to count the number of
books for each person. The final line produces tuples from people who have not
borrowed any books. These two sets of tuples are concatenated together by the
union operator, and then sorted in order of lname and fname. The output is -

lname
Fischer
Francis
Mednieks
Medow
Novachkov
Schweeger
Ward

fname
Denise
Michael
Zig
Serge
Asen
Bernhard
Robert

borrowed
o
o
1
2
1
o
3

5.8. Preserving The Output From Db
Db can be instructed to send its output to a file. The output can be either

in relational format or in ascii. The former is normally more useful, since a new
relation created by Db can then be used in further queries. Ascii output is use
ful when a listing is to be printed or viewed at a terminal.

When Db is instructed to send its output to a specific destination, it usually
does not produce a listing on the standard output. That is, the operators
described below normally suppress printed output.



- 43-

5.6.1. Creating A New Relation

Db can be instructed to place its output in a new relation file instead of list
ing it to the standard output. The creation operator ( <= ) informs Db to place
its output in a new relation. Once the new relation is formed, it can be used in
further Db queries just as any other relation.

If the relation should already exist. its previous contents will be overwrit
ten. The creation of the new relation is subject to the usual access restrictions
imposed by the UNIX system. One must have the necessary permissions to create
the new file.

On the right hand side of this operator is a relational expression that is
evaluated and placed into a file whose name appears on the left hand side.

There is a second creation operator ( => ) that has exactly the same pur
pose except that the flow of tuples goes from left to right. For this operator, the
file name is on the right hand side and the expression on the left.

In most programming languages, assignments are usually made from right
to left. However most of the Db operators introduced so far encourage one to
think of a flow of tuples from left to right. The user should choose whichever
form of this operator he prefers.
Example This query is the same as the one shown in section 5.3.5 except that no
listing is sent to the standard output. Instead the information is placed into a
new relation authorlist.

authorlist <=books %7a author # author

Example The next query is the same as the one shown in section 5.6 but output
is produced in a new relation titlecount.

books ## author @@ author count = 0 count += 1 => titlecount
Example In the follOWing example. the relations books and newbooks are con
catenated together to create a new composite relation allbooks.

allbooks <= books ++ newbooks

5.6.2. Appending Output To A Relation 0

Db can append generated output to an eXisting relation. The append opera
tors ( <+ and +> ) are very similar to the creation operators described above
but output is added to an existing relation. Should the relation not exist. then it
will be created. Again. one must have the necessary permissions to write to the
relation file.

Any output appended to an eXisting relation must be compatible with that
relation. For instance. the degree of the output must agree with that of the rela
tion. The corresponding domains of the generated tuples and those of the desti
nation relation must have compatible data types.

Db does not guarantee that new tuples will preserve the sorting order, if
any, of the relation. There again. the sorting order will not be disturbed greatly.
Tuples are inserted into the relation regardless of whether they are duplicates.

Eza.mple In order to append the relation newbooks directly into books one uses
this query-

books <+ newbooks
Alternatively, this query performs exactly the same purpose 

newbooks +> books



- 44-

5.8.3. Relations Are Locked 0
Db does not permit one to copy part or all of one relation on to itself. No

tuples can be placed into a relation if one is already reading data from that rela
tion. For example, the query

books <+ newbooks
must be written so and not as

books <= books ++ newbooks
This would require tuples from books to be copied on to themselves. Db would
produce the diagnostic -

db - Relation books - Open error: Relation already opened for writing
Db also incorporates a locking mechanism that protects a relation from

being ruined by more than one person trying to update it at the same time. In
order to protect the structure of a relation, Db forbids the user to update it
when anyone else is updating or even reading information from it. Conversely.
one is not allowed to read from a relation when it is being updated by someone
else. Should a user be adding new data to books, say, then Db would refuse any
one else access to the same relation. Db would produce this diagnostic -

db - Relation books - Open error: Relation locked by another process

5.8.4. Listed Output To A File
Db can be instructed to send listed ascii output to a file, in the same way

that one can tell it to send output to a relation. The operators are <== and
==>. They are used in a query in exactly the same way that the creation opera
tors are used. The only difference is they produce not a relation but an ascii file
that may be printed or viewed by standard UN1X programs such as more.

The listed output is intl.uenced by the global -h, -df and -dt options
presented to Db. These options were described in section· 5.2. Again, one must
have the necessary permissions to create the new file.
Exa.~le This query produces an ascii listing of relation people in the file prin
tout

printout <== people

5.8.5. Appending Listed Ascii Output 0
The operators <++ and ++> may be used to send ascii output to a file.

They are similar to the listing operators described above. except that the file is
not created afresh. Instead, Db opens the output file for appending more data.
Exa.~le This query would append data from loans to the file printout

loans ++> printout

5.8.6. Printf Output To An Ascii File 0
One can call upon the standard C library procedure print! when listing

tuples in ascii. This feature gives the user a great deal of power in formatting
listed output. The user may choose an output format very different to the
default method of printing used by Db. Printf is described fully in the UNIX
Programmer's Manual.

This facility can be use with any of the four ascii listing operators described
above. On the same side of the operator as the output tile name, one may also
incorporate a double quoted string. This string is then used as the format argu
ment to repeated calls of pri:nt! to list successive tuples to the file.

The number of fields one requests print! to list must be no more than the
degree of the output. The types of the output domains must match the conver
sion specifications in the format string. Thus, the conversion %8 would be used



- 45-

to list a string domain, %D for a long integer, and so on.
Output produced by print! is not governed by the global printing flags

described in section 5.2. Nor are any headers listed when using this facility.
Unfortunately. because print! is a standard C function. it cannot list

packed decimal fields.
Example One could list the entire contents of relation people into the output
flle peopleout according to some format string. Such a query and its output in
peopleout might be -

peopleout "Nam.e: "S. "8 - Address: "S _. Personno: "d\n" <== people

Name: Fischer, Denise ••• Address: Biedermannsdorf ••• Personno: 5
Name: Francis, Michael··· Address: Vienna ••• Personno: 6
Name: Mednieks. Zig ..... Address: Laxenburg ••• Personno: 3
Name: Medow, Serge ••• Address: Baden ••• Personno: 2
Name: Novachkov, Asen ••• Address: Vienna ••• Personno: 7
Name: Schweeger, Bernhard ••• Address: Klosterneuburg ••• Personno: 4
Name: Ward. Robert ••• Address: Vienna ••• Personno: 1

Example Similarly, one could list relation data in some special format. One
might wish to list the floating point fields in a width of, say, six characters, with
two after the decimal point. Such a query and its printed output in the file
datalist might be -

data ==> "Event = "d. Data values = %6.2f. %a.2f\n" datalist

Event = 1, Data values = 3.40, 4.50
Event =2. Data values = -3.60. 6.80
Event = 3, Data values = 0.00, 3.20
Event = 4. Data values = 2,90, 6.70
Event =5. Data values = 10.10, 9.80

5.8.7. Stdin And Stdout 0
Stdin and stdout are two special keywords used to force Db to read data

from the standard input or to write relational data or an ascii listing to the stan
dard output.

The keyword stdin may be used anywhere inside a query in place of a rela
tion name. It tells Db to read a relation from the standard input. Thus rela
tional data. created by a program such as Dbcreate. can be piped to the stan
dard input of Db. (When Db is reading a relation from a pipe. the relation should
normally be a heap without any overtlow pages. Otherwise, Db may be unable to
read the relation.)

When stdout is used with one of the <= or => operators, relational data is
sent to the standard output instead of a named relation. Thus relational data
formed by Db can be piped to a specialised user program to be processed
further.

Stdout can also be used with any of the ascii listing operators <== ==>
<++ or ++>. In this case, printed listings go to the standard output. One can
also use the name stdout in place of a file name to make Db send output, for
matted by pri:nt! ' to the standard output.
E.aTTlrPle The C Shell command

dbcreate -s stdout -like payroll I db stdin
invokes the Dbcreate and Db programs simultaneously. Data in relational for
mat is piped from Dbcreate to Db. The keyword stdin makes Db read a relation
from its standard input, in this case the piped data. Db would then simply print



- 46-

all the data given to it by Dbcreate.

Exa'CT/lPle This query makes Db send its output. in relational format, to the stan
dard output for further processing.

stdout <=books •• loans

Exa'CT/lPle One may use both stdin and stdout at the same time. For instance,
three programs - Dbcreate, Db and a special user program - could be linked
together by pipes in this C Shell command -

dbcreate "11 stdout -like loans I db 'stdout <= stdin X" datedue' I a.out
Db uses a projection to remove all domains except datedue from the relation
read from the standard input. In turn, Db sends this relational output to be
read by the specialised program a.out. This user program would make use of
routines in the Access Methods library to read the data produced by Db.

Example This query would make Db print the data relation according to the
given print! format. The listing goes to the standard output.

data ==> "Event = "d, Data values = "6.2f, "6.2f\n" stdout

5.8.8. Relational Assignments Are Expressions 0

Any of the relational or ascii output operators may appear in part of a more
complicated relational expression. These operators may be thought of as filters
that divert output into a file or to the standard output. They all yield a result
that is the same as their operand. Thus, the result from anyone of these opera
tors may be further processed in the same command.

When any of the assignment operators described above appear in a query,
Db normally suppresses any listing to the standard output. However, one may
explicitly instruct Db to print to the standard output by using the keyword
stdout. Thus output can be diverted into a file as well as being listed on the
standard output. One must then tell Db to send output to both destinations.
Example This query produces both a listing of loans on the standard output and
a copy of the relation in newloans.

newloans <= stdout <== loans
ExaTnJJle This query copies a part of books to subsetl and a part of loans to
subset2. These smaller relations are then joined together and the final output is
placed into tinal.

tinal <= ( subsetl <= books :: bookno >= 6)
••
(subset2 <= loans :: bookno <= 13)

The output placed into subsetl is -

author
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Lawrence
Lawrence
Lawrence
Hemingway

bookno
9

10
6
7
8

11
12
13
14
15

title
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

The output in subset2 becomes -



bookno
5
6
7
8

13

The output in final is then -

- 47-

personno
1
1
1
3
2

datedue
811231
811231
820107
820110
820106

author
Hardy
Hardy
Hardy
Lawrence

bookno
6
7
8

13

title
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Virgin And The Gypsy

personno
1
1
3
2

datedue
811231
820107
820110
820106

5.8.9. Interleaved Output 0

Db can send multiple streams of ascii output to the same file. This is useful
when one is aggregating a relation. For instance, one can list tuples from a rela
tion with a total of their domains produced at the bottom of the output.

Tuples are interleaved in the output only when there are no intermediate
sorts between the listing operations.

Example One could list all tuples from relation data. with the total of domains
datal and data2 produced at the end of the output. The second line of the fol
lowing query tells Db to list the source tuples. They are then aggregated and
printed according to the printf format on the last line -

data
==> stdout
@@ datal = 0.0 datal += .datal data2 = 0.0 data2 += .data2
==> stdout "Total of datal is %6.2f. Total of data2 is %6.2f\n" ;

The output is -

event
1
2
3
4
5

Total of datal is

datal
3.4

-3.6
0.001

2.9
10.1

12.80, Total of data2 is

data2
4.5
6.8
3.2
6.7
9.8

31.00

ExaTTlJ2le One could expand the example of section 5.7.5 so that Db produces a
list of tuples with their aggregation listed after each group. The query is -

ranges ...... data
:: low <= event && event <= high
==> stdont
@@lowhigh

totall = 0.0 total1 +:::; .datal
total2 = 0.0 total2 +:::; .data2

==> stdout "Low:::; %d,High = %d,Totall=%6.2f,Total2=%6.2f\n"

The third line of the query forces Db to list each tuple before it is aggregated.
The final line prints the aggregated tuples according to the given printf format.
The output is interleaved, with the result of each aggregation appearing after



- 48-

the corresponding group of tuples. The output is -

low high description event datal
1 3 One To Three 1 3.4
1 3 One To Three 2 -3.6
1 3 One To Three 3 0.001

Low = l.High = 3,Total1= -0.20,Total2= 14.50
1 5 Everything 1 3.4
1 5 Everything 2 -3.6
1 5 Everything 3 0.001
1 5 Everything 4 2.9
1 5 Everything 5 10.1

Low = l.High = 5.Total1= 12.80.Total2= 31.00
2 4 Two To Four 2 -3.6
2 4 Two To Four 3 0.001
2 4 Two To Four 4 2.9

Low = 2,High = 4,Total1= -0.70,Total2= 16.70
3 5 Three To Five 3 0.001
3 5 Three To Five 4 2.9
3 5 Three To Five 5 10.1

Low = 3.High = 5,Total1= 13.00,Tota12= 19.70

data2
4.5
6.8
3.2

4.5
6.8
3.2
6.7
9.8

6.8
3.2
6.7

3.2
6.7
9.8

5.9. Identifiers Containing Special Characters 0

Identifiers, or names, are used in Db to signify relations or domains. By
default, a name should start with a letter or the underscore character ( _ ) and
continue with a sequence of letters, digits or underscores.

Sometimes is is necessary to have file names containing other characters,
for instance a slash ( / ). An alternative way of specifying a name is to surround
any sequence of characters with single quotes ( , ).

Characters within a single quoted identifier that are preceded by a
backslash have the same special meaning that they would have in a double
quoted string.

If one is presenting a query to Db in an argument list. one must ensure that
Db "sees" the single quotes. The C Shell strips away the quotes unless they are
preceded by a backslash.

Exa7TI!Ple In order to create a new relation in the file
/tmp/relations/newpeople one could use a query such as -

, /tmp/relations/newpeople' <= people
If this query were presented to Db on the command line, then one would have to
precede the quotes by a backslash. Otherwise the C Shell would remove the
quotes and they would not be passed on to Db. The following C Shell command
would be suitable -

db \' /tmp/relations /newpeople\' \ <= people

5.10. Keywords 0

The following identifiers have a special meaning to Db. Preferably, they
should not be used as the names of relations or domains.

char short unsigned long int float double pack15 pack31 stdin stdout
If it is necessary to use one of these keywords in the context of a relation or

domain name, the special meaning may be suppressed by enclosing the
identifier in single quotes ( , ).



- 49-

Exam;ple One might wish to list a domain stdout from a relation float. This
query is suitable -

'ftoat' X% 'stdout'

5.11. More Than One Command In A Query
One may present Db with a sequence of commands in one query. Each com

mand is separated by a semi-colon ( ; ). The commands are executed one after
the other. An error detected at any stage prevents any further processing.
Exam;ple The example shown in section 5.8.8 could have been written as -

subset! <= books :: bookno >= 6;
subset2 <= loans :: bookno <= 13 ;
final <= subset! - subset2 ;

Example One might wish to view relations books and loans and then the join of
these two. This query is suitable -

books ; loans ; books •• loans

5.11.1. Macros And Temporary Relations 0
There is one last assignment operator ( =) that is used to assign a rela

tional expression to a name. Wherever that name appears in subsequent com
mands, it is expanded as a macro to become the full relational expression.

One may think of this feature as being an assignment to a temporary rela
tion that is thrown away once the entire query is executed.

Macros can improve the readability of a query. They are generally more
efficient than using a real relation to hold temporary results. An intermediate
real relation must usually be written out to a disc file and then read back in
again. Macros avoid this inefficiency.

However, the fact that this operator represents a macro implies that Db
must evaluate the expression as many times as it is subsequently used. One
should choose carefully whether to use this macro facility or to create a real
relation that can be removed once the query is finished.
p;xam;ple The query shown in section 5.7.5 could have been written as 

a =ranges ........ data;
b = a:: loW' <= event && event <= high;
b @@ loW' high description

total1 = 0.0 total1 += .data1
total2 = 0.0 total2 += .dat82

E:xam;ple Similarly, the query of section 5.7.6 could have been written as 

a =books .. loans %X author title out ="Yes" ;
b = books - loans XX author title out ="No" ;
c =a ++ b;
c H# author title;

5.11.2. Shell Commands 0
Db can call upon a Shell to execute some UNIX command from a query. The

syntax to execute a shell is an exclamation mark ( ! ) followed by a command
enclosed in double quotes. This feature can be used, say, to delete unwanted
temporary relations. or to echo a comment from a query.

Db tries to invoke one's usual shell program. to execute the command. This



- 50-

works as follows: if the SHELL variable is set in the user's environment, then Db
calls upon that shell to execute the given command. If it is not set, the standard
UNIX Shell ( Sh ) is used. One may use the C Shell command printenv to deter
mine whether the SHELL variable is set.

A non-zero return code from the shell halts any further processing by Db.
In an effort to conserve the number of files it opens, Db may close the stan

dard input. If one wishes to start up an interactive shell from a query, one
should direct the input to be from the terminal.
ExaT1'ij'Jle In order to introduce a comment before a listing of a relation one
could use a query such as -

! "echo This Is A Complete Listing Of Relation Data" : Data

ExaT1'ij'Jle In order to start up an interactive C Shell from a query, one would use
the command-

! "cm </dev/tty" :

5.12. Pre-Processor Input 0

When Db reads input from a terminal or from a file, the query is sent firstly
through the C pre-processor. This pre-processor allows one to define macros
more advanced than with the simple facility outlined above. The C pre
processor is explained fully in Kernighan/Ritchie (1978).

Macros defined in pre-processor statements can be used to improve the
syntax of a Db query. For instance, one may find the pre-processor useful to
define a suitable form of an aggregation syntax, that can then be used in subse
quent statements.

The pre-processor can include other files into a query. For instance, one
can make several global definitions in one file that is then shared amongst
several queries. In this way, common definitions can be kept in one central
place.

Db accepts options -D, -U and -I as do the UNIX C compiler and lint. There
may be any number of these options in an argument list to Db.

A -D option defines a name to the pre-processor, just as if one had used a
'# define' statement in a query. Therefore one may make external definitions to
a query. An option of the form

-DNAME=detinition
tells the pre-processor to define NAME as definition. An option of the form

-DNAllE
defines NAlIE as 1.

The -U option removes any initial definition of a name. It is similar to an
'# undef' pre-processor statement.

The -I option informs Db of a directory in which to search for any '# include'
files. For instance, the option

-lItmp/dbdefs
tells the pre-processor to look for' # include' files in the directory /tmp/dbdefs.

Db also accepts a -E option. This runs only the pre-processor. Thus one can
view how the pre-processor transforms a query, instead of it being executed by
Db.
Example One might wish to improve upon the standard Db syntax for aggrega
tions. One could use a '# define' statement in order to have a definition for total
ing a floating point domain. In order to total up domains datal and data2 of
relation data" one could use this query -



- 51 -

# define SUMUP( dom) dom = 0.0 dom += .dom
data @@ S1JM:UP( datal) SUMUP( data2 )

One can see how the pre-processor expands this query by invoking Db with its -E
option. The output would be -

data @@ datal = 0.0 datal += .datal data2 = 0.0 data2 += .data2

Exa'T7llJle One could extend this definition of SUMUP so that it could be used with
any data type of field. In this example, an extra parameter is given to SUKUP so
that the initialisation gives the correct data type to the output domain. For
instance -

# define SUMUP( dom, type) dom = (type)O dom += .dom
da.ta @@ SUMUP( event, short) SUMUP( datal, float) SUMUP( data2, :Ooat )

Rzarn;ple In a similar fashion. one can form a definition to extract the minimum
value of any domain. Such a definition and its usage is -

# define MIN( dom ) dom = .dom dom = dom < .dom ? dom : .dom
data @@ MIN( datal) MIN( data2)

r;xaTTIJJle One can use the pre-processor to read from a file before continuing
with the rest of the query. Definitions such as SUMUP and MIN could be kept in
a file defines.db and then accessed in a query by the pre-processor statement -

# include "defines.db"
r;xaTTIJJle One might have a query, say, that creates a temporary real relation
during its evaluation. Normally, this temporary relation would be deleted once
the query has finished running. However, when debugging the query, it might be
preferable to keep the relation afterwards. By using the folloWing query, one
could choose whether to keep or delete the relation -

# Undef DEBUG
! "rm temprel" ;
# endif

When debugging the query one invokes Db by the command-
db-DDEBUG

This defines the name DEBUG to the pre-processor. After the query has been
debugged. one invokes Db without this option. Db would then call upon a shell to
execute the rm temprel command.
r;xample A query might normally use a default input relation. Sometimes,
though, one might wish to use a different source relation. The pre-processor
could set up a standard default. For example, one can set up the default rela
tion to be people by including the following lines -

# ifndef INPUT
# define INPUT people
#endif

When the query is run, any occurences of INPUT are automatically replaced by
people. However. when Db is invoked by the command -

db -DINPUT=newpeople
the pre-processer replaces any references to INPUT by newpeople.



- 52-

5.13. Comments 0
Any text surrounded by /. and ./ is ignored within a query.
On the implementation of Db at IIASA, any text after // and up to the end of

a line is also ignored.
Exa'1YlJ)le

/.

- This is an example of a comment in a query
./

1/ This is another comment

5.14. Historical Syntax: 0

For historical reasons, there is an alternative syntax for the union, intersec
tion, difference and join operators. In some circumstances. one may use the
single character operators +. - or • respectively. As a word of warning, these
operators have an undefined precedence. They are archaic and so should not be
used.



- 53-

6. Dbedx - Interactive Screen Editor For Relations
The program Dbedx allows one to use the screen editor edx to edit a rela

tion. Alternatively, one may use Dbedx to append new tuples to a relation or to
delete tuples from a relation. The screen editor edx is described in Pearson
(1980).

A relation is locked while being edited. Only one person may edit a relation
at any time.

There are three modes of using Dbedx. The default mode is 'edit and
replace'.

6.1. Edit And Replace Mode

In this mode, one uses edx to edit specified tuples in a relation. The
modified tuples are put back into the relation and replace their original ver
sions.

Tuples are edited one at a time. A 'template' of domain names is listed
down the left-hand side of the screen and each field appears on a separate line.

The user invokes Dbedx with a command similar to a selection expression of
Db. Only those tuples that match the expression are edited so that one can
specify exactly which tuples are to be edited from a large relation. For example
the C Shell command -

dbedx: books :: bookno == 4
tells Dbedx to edit only tuples from books where the domain bookno has a value
of four. The selection expression to Dbedx must usually be carefully quoted so
that the C Shell does not impose its own interpretation on special characters.
For instance, in order to edit those tuples from books where the author field is
'Austen', say, one would use a C Shell command such as

dbedx: 'books :: author == "Austen'"
Another possibility would be the command -

dbedx: books :: author == \"Austen\"
Once a tuple is displayed on the screen, one may make any required

changes to the fields. The template, however, must be left undisturbed. In
order to replace the current tuple into the relation and move on to the next, one
types escape w. The edited tuple is placed back into the relation and the next
tuple is displayed.

Dbedx refuses to move onto the next tuple if there are any detectable mis
takes in the edited version or if the template has somehow been changed. The
user must reedit the tuple correctly before Dbedx will accept it.

Once all the matching tuples have been edited, Dbedx prompts with a mes
sage

Overwrite (y In) ?
A reply of y tells Dbedx to overwrite the original relation with all the edited
changes. A reply of n tells Dbedx to leave the original relation unchanged as
though no editing had been done. Any changes are then discarded. Therefore if
one has made some mistake in editing a relation, one still has a chance to
retrieve back the original data.

6.1.1. Leaving Dbedx
One has the option of leaving the Dbedx program before all the matching

tuples have been edited. Instead of typing escape w after a tuple had been
changed, one may type escape q. Dbedx prompts with the message

Continue (y/n/d)?



- 54-

A reply of n puts back the edited tuple and then finishes the Dbedx session.
This gives the user a chance to finish editing before all the matching tuples have
been shown. One must then reply to the "Overwrite (y In)?" question.

A reply of d deletes the displayed tuple from the relation. Dbedx then con
tinues with the remainder of the matching tuples. Thus one can step through a
relation, deleting any unwanted tuples.

A reply of y places the tuple back into the relation just as if the user had
initially typed escape w. Dbedx then continues with the next tuple.
Exa~le Using the example of relation books again, one might wish to edit
those tuples where the author field is 'Hardy'. The C Shell command is -

dbedx 'books :: author == "Hardy'''
Dbedx displays the first tuple on the screen. This appears as -

lauthor Hardy
Ibookno 6
Ititle Tess Of The D'Urbervilles



- 55-

ExamPle One must always provide Dbedx with a selection expression even if one
wishes to edit all the tuples in a relation. Thus to edit all tuples in relation data,
say, the command is -

dbedx data :: 1
The first image on the screen appears as -

Ievent
Idatal
Idata2

1
3.4
4.5

6.2. Append Mode

Dbedx can be used to append new tuples to a relation. The user invokes
Dbedx with a -a , for "append", option: Dbedx displays a blank template down
the left hand side of the screen. One can fill in the template with some field
values and then type escape w to insert the tuple. The tuple will be placed into
the relation and a new blank template will be drawn.

To leave Dbedx, one types escape q after a tuple has been completed.
Dbedx responds with the

Continue (y/n/d)?
question and the user replies y. n or d. A reply of y causes Dbedx to display a
new blank template. A reply of n terminates the session and a reply of d deletes
the new tuple.

Again, Dbedx will complain if a tuple cannot be read properly. The user
must reedit the tuple and then retype escape w before Dbedx will move onto the
next.

Once the user decides to leave Dbedx by typing escape q, he must answer
the

Overwrite (y In) ?
question. A reply of y causes all the new tuples to be placed into the new rela
tion. A reply of n discards the new tuples and leaves the original relation
untouched.

One may use the control- c comrol- z feature of edx to reproduce lines on
the terminal. This can save one from having to reenter many similar tuples over
again. The first tuple can be entered and then be repeated down the screen.
One can then make small changes to each tuple and insert them all together by
typing a single escape w. This also applies when one is using 'edit and replace'
mode to change existing tuples.



- 56-

EXrI.'Ul3Jle The C Shell command
dbedx -a people

allows one to add new tuples to people. Dbedx draws a blank template on the
screen. This appears as -

IlnCl:lle .
I fncrIE .
laddress .
Ipersonno ..

One then fills in the template. For instance. it could be completed so that the
screen appears as -

Ilname Godwin-Toby
Ifncrre Wi 11 i ern
Iaddress , Vienna
Ipersonno B



- 57-

One can now make edz move to the top of the screen and duplicate the first four
domains by typing

control-g control-c 4 control-z control-x
The screen then becomes -

Ilname GodWin-Toby
I fmrm Wi 11 ian
Iaddress Vienna
Ipersonno B
Ilmrm Godwin-Toby
I fDalE Wi 11 icm
Iaddress Vienna
Ipersonno B

One could make some small change to the second tuple and insert both together
by typing escape w.



- 58-

6.3. Delete Mode

Dbedx can also be used to delete tuples from a relation. One invokes Dbedx
with a -D , for "delete", flag. One must give Dbedx a selection expression, just as
when using it in 'edit and replace' mode. Only those tuples that match the
expression are removed. This option does not use the edx editor. Instead Dbedx
just reports how many tuples would be deleted trom the relation. The user must
then respond to the

Overwrite (yin) ?
question before Dbedx destroys the tuples.
Exa'UlJ2le In order to remove all those tuples from books whose author field is
'Lawrence', the command is -

dbedx -D 'books :: author == "Lawrence'"
Dbedx then informs the user how many such tuples there are -

dbedx - 3 tuple(s) deleted

dbedx - Overwrite (yin) ?

One would then reply y or n according to whether the tuples are to vanish for
ever.

Example In order to delete entries from people where the address field is
'Vienna', one could use the regex procedure to locate these tuples. Such a com
mand is-

dbedx -D 'people :: regex( "Vienna". address )'

6.4. Possible Problems With Dbedx 0

Unfortunately one must go through the tuples in sequence. There is no pos
sibility to go back and reedit a tuple. Another difficulty is that Dbedx copies the
entire relation into the user's current directory before any editing occurs. It is
this copied relation that is edited, not the original. This operation can be very
time consuming for editing a large relation. Copying the file does at least give
one a chance to throwaway any mistaken changes and so preserve the original
relation.

Internally within Dbedx, binary 03 and 04 bytes have a special meaning and
so Dbedx cannot edit a relation which contains these characters. In practice.
this technicality presents no problem.

One must use the backslash convention of Dbcreate and Db to enter a string
field containing new-line characters (see section 5.4.5). Fields containing such
special characters are displayed using the same convention.

Space left by replacing or deleting tuples is not reclaimed. Moreover, Dbls
may report incorrect values for the minimum and maximum valued fields of
each domain. Both these problems can be corrected by cleaning up the relation
with Dbmodify.



- 59-

7. Dbmodify - Changing The Internal Storage Structure Of A Relation 0

The program Dbmodify is used to change the internal storage structure of a
relation. It reclaims unused disc storage left by deleting or replacing tuples
with Dbedx. Dbmodify can also restore the sorting order of a relation after it
has been disrupted by appending tuples with Db, Dbappend or Dbedx.

By resorting a relation. Dbmodify ensures that later access by Db is optim
ised. Db can sometimes locate selected tuples from a large relation without hav
ing to read the whole file.

7.1. Arguments To Dbmodify 0

By default, Dbmodify sorts an entire relation into order, freeing any unused
disc space as it does so. The first argument to Dbmodify is the name of a rela
tion. Subsequent arguments in10rm it on which domains the relation is to be
sorted.

7.2. Preserving Duplicate Tuples 0

Dbmodify normally does not include any duplicated tuples in the modified
relation. A -k or -heap option instructs Dbmodify to preserve duplicate tuples.

Exam;ple The books relation was created in section 2.5. The sorting order of
this relation was disrupted by adding new tuples (see section 3). Presently. the
entire relation is -

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Shaw
Zola
Lawrence
Lawrence
Lawrence
Hemingway

bookno
1
4
5
9

10
6
7
8

11
2
3

12
13
14
15

title
Persuasion
Emma
Pride And Prejudice
The Mill On The Floss
Silas Marner
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mayor Of Casterbridge
Pygmalion
Nana
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

One can permanently modify the order of this relation by the C Shell command 
dbmodify books bookno

This instructs Dbmodify to sort books on the domain bookno. Afterwards, one
can view the relation by the command-

db books
The resulting relation is -



author
Austen
Shaw
Zola
Austen
Austen
Hardy
Hardy
Hardy
Eliot
Eliot
Hardy
Lawrence
Lawrence
Lawrence
Hemingway

bookno
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

- 60-

title
Persuasion
Pygmalion
Nana
Emma
Pride And Prejudice
Tess Of The D'Urbervilles
Jude The Obscure
Far From The Madding Crowd
The Mill On The Floss
Silas Marner
The Mayor Of Casterbridge
Women In Love
The Virgin And The Gypsy
Sons And Lovers
For Whom The Bell Tolls

Example. Similarly. the order of tuples in relation people can be permanently
changed by the command -

dbmodify people personno

lname
Ward
Medow
Mednieks
Schweeger
Fischer
Francis
Novachkov

fname
Robert
Serge
Zig
Bernhard
Denise
Michael
Asen

address
Vienna
Baden
Laxenburg
Klosterneuburg
Biedermannsdorf
Vienna
Vienna

personno
1
2
3
4
5
6
7

7.3. Storage Modes 0
A storage mode reflects the way in which the tuples are ordered inside a

relation. Any relation can have one of three dit't:erent storage modes. A storage
mode should be chosen carefully when a relation is being formed by Dbcreate or
cleaned up by Dbmodify. Db can locate selected tuples very quickly if the
correct mode has been chosen.

A heap storage mode is perhaps the most useful for small relations or for
relations which are accessed infrequently. The tuples in a heap relation are con
tained in a random order. No optimisation is possible to locate tuples within a
heap since no ordering information is kept. A heap relation is formed by using
the -heap flag of Dbcreate or Dbmodify. Although it may be more inefficient for
Db or other programs to access such a relation, it is faster to create or modify
one since no sorting is necessary.

In general, a sort storage mode is the m'ost appropriate and hence this is
the default for Dbcreate and Dbmodify. Db can locate selected tuples very
efficiently if one has used a selection expression requesting tuples that match
some given qualification. Db looks at the selection expression and decides
whether it can avoid reading the entire relation from disc. If possible Db uses a
binary search strategy to locate the requested tuples. For this to happen, the
relation must have been sorted on the key domain whose name appears in the
qualification. If the selection has been specified for some other domain, it is still
necessary to read the whole relation.



- 61 -

Hash relations are formed by a -hash fiag to Dbcreate or Dbmodify.
Although the tuples appear to be in a random order, Db can locate specific ones
very swiftly provided that all the key values have been specified and that they all
are exact equalities. When forming a hash relation. one can also specify a fill
factor. A -f option followed by a fioating-point number indicates the factor by
which one eventually expects the relation to grow in size. Sufficient space is
reserved for the file: new tuples can be appended without disturbing the storage
structure.

The key domains of sorted or hashed relations should be chosen on the anti
cipated type of access to those relations. Although this may appear to be an
unnecessary difficulty, doing so can help Db to locate specific tuples. This is
especially important when Db examines large relations.
ExaTllJ)le

dbmodify -heap books
This command modifies books so that it becomes a heap relation. Db can

not optimise access to such a relation and the entire file must be read in when
ever it is processed. However this modification would reclaim any unused disc
space.
ExaTllJ)le The following command sorts people on domain personno

dbmodify people personno
A query such as -

people :: persono == ?
or -

people :: personno <= 9 &;&; lnam.e == "Ward"
enables Db to find the requested tuples very qUickly. However a query such as -

people :: fnam.e == "Robert"
still forces Db to read the whole relation since the qualification is not in terms of
personno.
ExaTllJ)le, A command to sort books firstly by author and then by title is 

dbmodify books author title
This relation becomes 

author
Austen
Austen
Austen
Eliot
Eliot
Hardy
Hardy
Hardy
Hardy
Hemingway
Lawrence
Lawrence
Lawrence
Shaw
Zola

bookno
4
1
5

10
9
B
7
6

11
15
14
13
12

2
3

title
Emma
Persuasion
Pride And Prejudice
Silas Marner .
The Mill On The Floss
Far From The Madding Crowd
Jude The Obscure
Tess Of The D'Urbervilles
The Mayor Of Casterbridge
For Whom The Bell Tolls
Sons And Lovers
The Virgin And The Gypsy
Women In Love
Pygmalion
Nana

Dbls informs one of how a relation is structured. A mode of Sort shows the
relation has been marked as sorted. The order of the sort is shown underneath
the column Key. A value of 1 here indicates that the sort is firstly on author.
The value 2 in the Key column shows that the secondary sort key is title. The



- 62-

output would be -

Mode Tuples Deg Pages Fix Max Fl Modified Size
books Sort 15 3 1+ 0 12 50 VU Jan 7 18:25 1982 2048

Domain Ty Key Fl Print OtIs Fix Max Smallest Largest
author S 1 VA 9 2 9
bookno s 6 6 2 1 15

title S 2 VA 26 8 26

This storage structure would be useful for Db queries that qualify tuples by the
domain author. For instance -

books :: author == "Austen"
or -

books:: regex( "Madding". title) && author <= "Hardy"
Exa.TTlJJle A hash storage structure is suitable when one wishes to retrieve tuples
given all their key values. For example, the command -

dbmodify -hash -f3 people lname fname
modifies people so that it can be accessed qUickly by Db when given values of
both lname and fname. The -f3 flag tells Dbmodify that the relation is eventu
ally expected to grow in size by a factor of three. Again, Dbls would report the
keyed domains of this relation -

Mode Tuples Deg Pages Fix Max Fl Modified Size
books Hash 7 4 3+ 0 16 54 V Jan 7 18:25 1982 4096

Domain Ty Key Fl Print OtIs Fix Max Smallest Largest
lname S 1 V' 9 2 9
fname S 2 V 8 6 8

address S 15 10 15
personno s 8 14 2 1 7

This storage mode would be useful for the query -
people :: lname == "Ward" &elk fname == "Robert"

However it would not be suitable for a query such as -
people :: lname == "Ward"

or -
people :: lname <= "Ward" &elk fname == "Roberl"

In the first case only one key domain has been specified. All the key domains
need to be qualified so that Db can quickly locate specific tuples from a hashed
relation. In the last example. both domains have been specified but they need to
be exact equalities for a hashed relation.



- 63 -

7.4. When Optimised Access Is Possible 0

As a word of warning, optimised access to a relation is only possible when a
key domain is being compared to a specific value. It is not possible to optimise
access to tuples selected by procedures such as regex.

ExaTTlJ>le This query makes a selection according to a specific value. In this
example, the required tuples could be found efficiently.

books :: author == "Zola"

Exa~le The following query requires the entire relation to be read in 
books :: regex( "Zola". author)

7.5. Appending Tuples To A Relation 0

Because there is no ordering information for heap relations, new tuples are
placed at the end of a relation file.

For sorted relations. tuples are placed as closely as possible to where they
should go according to the sorting order. However no existing tuples are ever
moved to make room for the new ones. Adding many new tuples to a relation
will eventually destroy the original order of the relation. A similar slow destruc
tion of the internal format also happens to some extent with hashed relations.

This implies that the strategy employed by Db to locate specific tuples
eventually becomes degraded. When new tuples are added to a relation, the
sorting order is slowly disrupted. Db is then forced to read in more of a relation
file than would otherwise be necessary.

It also means that appending yet more tuples becomes slower since pro
grams such as Db or Dbappend must read more of a relation in order to deter
mine where each new tuple should be placed.

7.6. Primary And Overtlow Pages 0

When a relation is created. or cleaned up by Dbmodify, all the tuples are
placed into blocks of disc storage termed primary pages. Afterwards, when
further tuples are added. the primary pages become full and the additional
tuples are put on to overflow pages. These are the two figures reported under
the Pages column of Dbls. When the number of overflow pages becomes large
compared with the number of primary pages, the strategy used by Db or other
programs to locate specific tuples becomes less efficient. If this happens, it is
time for the relation to be reformatted by Dbmodify.

7.7. When To Use Dbmodify 0

When extensive modifications have been made to a relation by Dbedx, it is
advisable to use Dbmodify to reclaim disc space left by deleted or changed
tuples.

Be cause the Db programs always attempt to find the most suitable place to
insert a new tuple in a sorted or hashed relation, it can sometimes be useful to
modify it to a heap format beforehand. This speeds up insertion of new tuples
since neither Dbappend nor Db need search the file to see where each tuple
should be placed. New tuples simply go at the end of the file. Once the tuples
have been successfully appended to the relation, Dbmodify could then be used
again to return it back to its original format.



- 64-

7.8. Secondary Indices 0
As described a:bove, Dbmodify can form a sorted or hashed relation so that

accessing tuples by a particular key value is very efficient. Sometimes it may be
desirable to access a large relation by different key domains.

When one wishes to examine a relation on other key values one can con
struct a secondary index. This is small table placed into the relation file that
enables Db to access tuples on other key domains very qUickly. A relation may
have any number of secondary indices. Db looks at a relation to see if there are
any suitable indices by which to improve access.

A secondary index is formed by a -i flag to Dbmodify.
Secondary indices become useful tor large relations, tor instance relations

larger than about 100 kbytes. Each secondary index is updated when new tuples
are added or deleted. Unfortunately, when Dbmodify reformats the primary
relation itself. it destroys these indices and they must then be regenerated.

ExalT/lPle One may usually wish to access tuples from books given values of
bookno as keys. This command structures the relation so that Db quickly finds
these tuples -

dbmodify books bookno
Sometimes. though. it might also be desirable to find tuples when given values of
author. It would then be useful to construct a secondary index for this domain.
Such a command is -

dbmodify -i books author



- 65-

8. Practical Usage 0

This chapter discusses the more practical aspects of using Db. When main
taining a large relational database. it may be important to understand how to
make a Db query more efficient. Possible problems that may occur are also
mentioned.

8.1. Restrictions 0
Few restrictions are imposed by the Db programs. This section comments

on the present limitations.

Domain names are limited to a maximum of twenty characters. Each
domain within a single relation must have a unique name. There is no limit on
the number of domains in any relation.

There is no inherent limit on the size of a relation file. A relation may grow
to any length. given that there is sufficient disc space and that no other external
constraints apply.

Although there is no maximum length imposed on the length of any field,
there is a restriction on the total size of each tuple. No tuple may have a length
exceeding 1000 bytes. In practice this limit is generous and should not be
reached.

This imposition also applies to any tuples generated internally by Db. For
instance a projection could possibly create very wide tuples.

The complexity of any command in a query is limited by the maximum
number of open files permitted by the system. Db sometimes uses real tem
porary relations for sorting purposes and so the maximum number of real rela
tions that can be accessed is usually less than this number.

8.2. Optimising Dbcreate 0

By default, Dbcreate sorts the input data into order. Dbcreate may be fas
ter if the -heap option is specified so that it does not have to sort the input data.

8.3. Optimising Dbappend 0

Dbappend is faster when appending tuples to a heap relation since the
order of new tuples is then unimportant. It does not have to search the relation
to decide where each new tuple should be placed.

If one is appending tuples to a sorted or hashed relation, Dbappend can be
made faster by specifying the -k option so that it does not have to search the
relation for duplicated tuples.

8.4. Optimising Access To A Relation 0

The purpose of Dbmodify to format a relation so that Db can qUickly access
specified tuples has already been mentioned. This issue was discussed in section
7.3.

8.5. Optimisation Of A Db Query 0

A Db query may generally be written in one of several different ways. each
one producing the same output. Some methods will be more efficient than oth
ers. Db does not rearrange a query to make it run faster but instead executes a
query exactly as it is written. In terms of efficiency, it can be useful to know
how best to formulate a query.



- 66 -

8.5.1. Optimisation Of Selections 0
Whenever possible, one should use a selection as the first step in a query to

limit the quantity of processed tuples. The alternative, to process all the input
tuples somehow and then select the required ones, is less efficient.

It is usually more efficient to select tuples by specifying exact values for
their keyed domains, rather than by using procedures such as regex.

Ezarn:ple This query selects specified tuples and then sorts them into order 
books :: author == "Hardy" ## title

This is a more efficient query than the following, which sorts the entire relation
before selecting the required tuples -

books ## title :: author == "Hardy"

8.5.2. Optimisation Of Projections 0
Projections should usually occur as late as possible in a query. A projection

is typically used to form new domains in the output. The flow of data may be
minimised by avoiding the creation of extra domains until they are needed. Pro
cessing time may be further reduced by combining successive projections
together into one step.
EzaTTl,J')le This query forms new domains sum and dill' from the relation data.
The output is sorted by datal.

data ## datal ::"% event datal data2 sum = datal + data2 di1I' = datal - data2
This is a more efficient query than the following, that creates the extra domains
before sorting them into order. The volume of data to be sorted is therefore
increased.

data %X event datal data2 sum = datal + data2 cliff = datal - data2 ## datal
Exarn:ple An efficient query for forming the domains sum and ditr from relation
datais -

data ::"::" event datal data2 sum =datal + data2 di.tI' =datal - data2
This is a more efficient method than the following which uses two projections to
form the same output -

data ::"::" event datal data2 sum = datal + data2
::"" event datal data2 sum di1I' = datal - data2

8.5.3. Optimisation Of Sorting 0
The sort operator is frequently used to order listed output. to remove dupli

cate tuples from a relation, or to ensure that a subsequent aggregation receives
tuples in order. However. sorting a large relation can be a slow operation and
should be avoided unless necessary. The output from a join, intersection or
d.ifference operation is always sorted in ascending order of the domains used for
matching the two relations. There is then no point in explicitly resorting the
output on the same domains.
Example One might wish to view the join of loans and people and sort the out
put in order of domain personno. In this case, the common domain used for
matching tuples from both relations is personno and so there is no need for
explicitly sorting the output. A suitable query is -

loans - people
and the output is -



- 67-

bookno personno datedue lname fname address
6 1 811231 Ward Robert Vienna
5 1 811231 Ward Robert Vienna
7 1 820107 Ward Robert Vienna

14 2 820106 Medow Serge Baden
13 2 820106 Medow Serge Baden
8 3 820110 Mednieks Zig Laxenburg

15 7 810423 Novachkov Asen Vienna

8.5.4. Optimisation Of Temporary Relations 0

Using the macro feature to form a "temporary" relation is generally more
efficient than using a real disc relation to hold an intermediate result. One must
be careful, however, that the macro is not expanded more than once. Moreover,
the maximum number of open files permitted by the system cannot be
exceeded.

ExaTTlJ)le In order to repeat the third example of section 5.7.6. an equivalent
query is -

a = people - loans @@ lname fname borrowed += 1 :
b = people -loans "" lname fname borrowed = 0 ;
e = a++ b:
e ## lname fname ;

The following example is less efficient: the query uses real relations to hold the
temporary results. In this case, real files tmpl. tm.p2 and tm.p3 are written out
and then read back in again. Using the macro facility avoids this inefficiency.

tmpl <= people ··loans @@ lname fname borrowed += 1 ;
tmp2 <= people - loans "" lname fname borrowed =0 ;
tmp3 <= tmpl ++ tm.p2 ;
tmp3 ## lname fname :
! "rm tmpl tmp2 tmp3" ;

One may sometimes be able to avoid rereading a relation file. This is possi
ble by using the output from a list or creation operator, instead of discarding it.

Example One might wish to form a listed output of people on the standard out
put, and a copy of this relation in peopy. An efficient way of producing both
printed output and the copied relation is -

peopy <= stdout <== people
A less efficient method of achieving the same result is to read the people rela
tion twice. Such a way is -

pcopy <= people;
stdout <== people;

8.5.5. Optimisation Of The Product Operator 0

Because of the way the product operator is implemented, it may be more
efficient if the right hand operand is the smaller of the two relations.

E'xaznple Given two relations, large and small. the following query will usually be
more efficient than if the operands were reversed -

large ........ small



- 68-

8.6. Measuring Disc Read And Write Opere-lions 0

When one of the Dbcreate, Dbappend. Dbedx or Dbmodify programs is
invoked with a -p option, the program reports the number of disc read and write
operations before completion.

If Db is invoked with this option. it reports the number of disc reads and
writes after each command in a query. It also reports the quantity of processing
steps applied to each tuple.

These figures. especially those derived from Db. may be useful to locate
inefficiencies in processing.
e:z:a.TYIJ2le The following message might be produced by Dbmodify when invoked
with its -p option. It indicates that Dbmodify read in four and wrote out two disc
blocks during processing.

dbmodify - 4 Page Reads, 2 Page Writes
E:z:arn,ple The following message might be produced by Db after listing the rela
tion books-

db - 1 Page Reads, 0 Page Writes. 31 Coroutine Calls
In this example, Db has read only one disc block. Thirty-one tuples have been
processed. This figure is derived as follows: 15 tuples have been read in, 15
tuples have been printed and a final end-of-file tuple has been processed.

8.7. Common Problems When Using Db 0

This section details the most common errors that occur when using Db.
For each command in a query. Db performs whatever checking is required

and then attempts to execute that command. Unless noted otherwise, an error
at any stage will generally halt processing.

In terms of efficiency. it is usually preferable to use the macro facility to
form temporary results. Doing so, however. may make Db try to open more rela
tion tlles than the system will allow. This is especially true if Db has to perform
an intermediate sort on the data. in which case it uses one or more real tem
porary files. The solution is to split up the processing by using a real relation
file to hold temporary results. Unfortunately, the number of real files needed
for sorting purposes may be dependent on the data and cannot always be
predicted in advance.

Db complains if one tries to concatenate together two relations of different
degrees. It also objects if any domains of the two relations cannot be con
catenated because their data types are incompatible.

There must be at least one common domain between the two relations for a
join. intersection or difference operation. Should there be more than one com
monly named domain, tuples are considered to match only if ALL their common
domains have identical values. The data types of the these matching domains
must allow them to be comparable.

Conversely, the operands of a Cartesian product must have no commonly
named domains.

The sort operator will generally sort a relation only on the specified
domainS. The order of any other domains is unpredictable. Even if tuples have
been previously sorted in a specific way, any original ordering is likely to be dis
rupted unless one instructs Db otherwise. (This aho applies when using Dbmo
dify to sort a relation.)

Db usually permits scalar expressions involving mixed data types and con
verts the type of an expression if necessary. String values, however, are not
converted to a numeric type unless one explicitly uses one of the procedures



- 69-

siol. stod or stop31. Packed decimal values can only be converted to one
another or to long integers. A conversion to a floating point type can happen
only through an explicit intermediate conversion to a Long integer. The bit
operators all require short or unsigned short operands. An integer constant
must be cast to one of these types if it is to be used as an operand.

An invalid argument to a scalar procedure will usually generate a diagnostic
but processing will continue.

Arithmetic interrupts, for instance a division by zero, are trapped and gen
erate a diagnostic. Db continues if possible, but some exceptions cannot be
recovered and so halt the program.

Should an 110 error occur - for instance a disc file system might become
full while Db is producing a new relation - Db will halt processing.

8.8. The PDP-1l/70 Implementation 0

The versions of the Db programs running on the VAX-111780 and the PDP
11/70 are almost identical in terms of their functionality. One difference is that
the PDP does not support packed decimal integers.

The VAX computer has a much larger main memory space than the PDP.
The Db programs make use of this potential memory area in order to optimise
sorting of relations. Therefore a query run on the VAX version of Db tends to
execute faster than on the PDP version.

When Db is processing a query on the PDP, it may occasionally run out of
necessary main memory. This problem can usually be solved if one uses real
tiles to hold temporary results and so break up a complicated command into
smaller units. It is also helpful if one is processing relations whose degree is
small. since Db no longer needs to allocate internal information to process extra
domains.



- 70-

9. Conclusion

This chapter lists some subjective thoughts concerning the Db relational
database management system.

9.1. CUlTent Applications For Db

At the time of writing. Db has been fully operational for almost twelve
months. It is being used to manage several databases at IIASA.

One application has been implemented for the Personnel Department at
IIASA. This database is used to maintain information concerning employees at
the Institute. Since most people who maintain this database are unfamiliar with
the UNIX system, a C Shell command processor is used to interface between the
DBMS and the users. This command processor hides many details of the data
base implementation from those who maintain the data. The database is
updated frequently by using Dbedx to change or add new iniormation.

Another application has been formed for the Resources And Environment
Task at IIASA. A database has been constructed to store large quantities of
experimental data. This database currently has a size of over 1 megabyte and
contains relations with a cardinality of over BOOOO tuples. The typical queries
presented to Db are not complex but involve processing joins over such large
relations. The database is eventually expected to grow to a size of perhaps 10
megabytes.

A third example of its current use at IIASA is an application for the Budget
And Finance Department. Db maintains a database of monetary transactions on
a set of accounts. It is used to calculate the tax returns on these accounts and
to perform various totaling operations on the data. For this application the car
dinality of the input data is small (approximately 2000 new tuples per month).
However, the queries that have been developed for the tax calculations and for
evaluating the movements on each account are complicated. Despite the small
quantity of input data, Db may generate over one million internal tuples during
processing. Because of the financial nature of the task, it is essential that all
arithmetic processing be accurate. Therefore packed decimal arithmetic is
used throughout.

9.2. The Design Objectives Of Db

A primary goal for the design of Db was to integrate it as well as possible
into the existing framework of the UNIX operating system. The Db system does
not attempt to create a new environment for the user. Unlike some relational
database systems. notably Ingres (Stonebraker et a1. 1976), Db does not impose
a new world of commands on to the user. Nor does it duplicate features already
present within UNIX. For instance, Db has no special commands to print a rela
tion or to delete a relation from a database.

There is no notion of a database catalogue that must be updated whenever a
relation is changed. Instead, all information concerning a relation is contained
within one file. This simplifies the implementation, since there is no need to
duplicate existing facilities. For instance, relations can be protected by the
standard UNIX commands chmod and chown.

One of the major goals of the Db implementation has been efficiency of pro
cessing. The response time to a query and the resources used by a DBMS
depend partly on how well it interfaces with the data on disc. Using an efficient
set of procedures to access disc data improves performance. The routines
developed for the Db programs allow fast access to disc data and ensure that it
is kept in a compact format.



- 71 -

How a DBMS processes the data once it has been retrieved from disc also
atIects performance. The Db query processor takes advantage of a pipe-line
algorithm to transform or to combine data. This pipe-line ensures that tem
porary results need not normally be written out to an intermediate disc file.

9.3. Further Improvements To The Db Programs
For the proposed applications at IIASA, it was necessary that Db should run

on both a VAX-1l178D and a PDP-ll 170. The implementation has therefore been
written almost entirely in portable C. The only exception is a few lines of assem
bler code in the VAX version that provide an interface to the machine's packed
decimal instruction set. One or two frequently called procedures could be made
faster by rewriting them in assembler language. This might well benefit the
overall execution time of typical queries.

It is doubtful whether the access methods library could otherwise be
improved. The algorithms used to locate or store tuples in a relation appear to
be reasonably fast. The sorting algorithm that is invoked when Db must join,
intersect, or find the difference of two relations, has been heavily optimised. It
does. however, sutrer on the PDP version where there is a lack of main memory
space.

To improve performance. Db should recognise whether a new relation being
formed is sorted in any way. If so, then the new relation should be marked as
being sorted. Presently, all relations formed by Db are heaps. Db should also
take advantage of any sorting order in relations when joining them together. At
the moment. any relations to be joined are resorted, despite any initial ordering
they may have. These two points may be corrected in the future.

Some improvements could be made to the Db query processor. For
instance. it would perhaps be beneficial if one could explicitly state the match
ing domains for a join, intersection or difference operation. The ability to define
one's own relational procedures in a query might also be useful.

It would be of benefit if there were some means by which a user's code
could be directly executed on relational data. Presently, one must use the
acce ss methods library to retrieve data from a relation if one wishes to apply
some specialised routines. One should be able to compose a routine in C or in
Fortran that could then be compiled and the resulting object module called
directly from Db.

9.4. Overview
Db is currently being used to maintain several databases each of which has

its own special requirements. The fact that the Db family of programs may be
integrated into a UNIX environment has facilitated construction of these data
bases.

Any data processing system can be ultimately judged by how well it can be
applied to solving real problems. Despite its limitations, the Db system seems to
have been largely successful in this respect.



- 72-

10. Bibliography 0

1. C. J. Date.
An Introduction To Database Systems, Second Edition,
Addison-Wesley Publishing Company, Reading. Massachusetts (1977).

2. W. Joy,
An Introduction To The C Shell.
Computer Science Division, Department Of Electrical Engineering And Com
puter Science. University Of California, Berkeley (1980).

3. B. W. Kernighan and D. M. Ritchie,
The C Programming Language I

Prentice-Hall, Englewood Clift's, New Jersey (1978).

4. M. M. L. Pearson.
Using The Computer To Communicate : An Introduction To To Text Process
ing At IIASA - The Edx And Nroff Programs. (Working Paper WP- 80- 111)
IIASA, A-2361 Laxenburg, Austria (JUly 1980).

5. D. M. Ritchie and K. Thompson,
The UNIX Time- Sharing System,
Communications Of The ACM, Volume 17, No.7 (July 1974).

6. G. Sandberg,
A Primer On Relational Database Concepts,
IBM Systems Journal. Volume 20, No.1 (1981).

7. M. Stonebraker, E. Wong, P. Kreps and G. Held,
The Design And Implementation Of Ingres,
ACM Transactions On Database Systems, Volume 1, No.3 (September 1976).



-73 -

11. Acknowledgements 0

I would like to thank James Kulp who suggested many useful design features
for Db and who assisted with debugging the system.

I am also very grateful to Carolyn Lathrop and Martina Joestl for their care
ful and patient assistance in producing this paper.



- 74-

pe
Db Name Bvte Width ~e Of ValuesType Char

Data TVDe c char 1 -128 to 127
Char intee;er s or i short 2 -32768 to 32767
Short integer- or

int
ger u unsigned 2 oto 65535

Unsigned int& or
unsigned short

1 long 4 -2147483648
Long integer to

2147483647

.(');1;;. f float 4 ± 1O±3li
Floatine; POl ....... on d double 8 ±10±~

.~l
Double precJ.. al p pack15 8 ±1010-1
Packed deci~al P pack31 16 ±10;Jl-1
Packed deci~ne; S Variable
Character st.:f:

1

~ary Of The Available Data Types 0
Appendix 1- j.Dg table summarises the scalar data types supported by the Db

The folloW""~ each data type, it shows the type character for Dbcreate and
programs. Fo& sponding type for Db, the space it occupies in a relation, and the
Dbls, the corr ...-;:! e of values.

rmitted ranp'"



- 75-

Appendix n - Summary Of The Scalar Operators 0

The following table summarises the scalar operators available in Db. The
table is listed in order of increasing precedence of the operators.

Operator Purpose Precedence Binds I Returns Remarks
?: Conditional 1 rie:ht

"
Logical Or 2

left short&& LO.l!ical And 3
I Bit Or 4- Operands- Bit Exclusive Or 5 must be

& EitAnd 6 left short short or
unsigned
short

--
!=
< Comparison 7 left short
<= Operators

>
>=
« Bit Left Shift Operands
» Bit Right Shift must be

B left short short or
unsigned
short

+ Addition
9- Subtraction

lit Multiplication
I Division

Depends
left On

% Modulus 10 Operands t Operands
cannot be
float or
double

- Unary Minus
! Unary Lo.e;ical Not
"" Unary Bit Operand

Complement 11 right
short must be

short or
unsigned

Ishort

t The type returned by an arithmetic operator depends on the types of its
operands. The following table summarises the types returned by these opera
tors. Any combinations of data types not found in this table are impermissible.



- 76-

Left Operand Rie:ht Oi>erand I Type Returned
char char
short short

char
unsi.e:ned short unsi.e:ned short

lone: lon.e:
fioat fioat

double double
char short
short short

short
unsigned short unsi.e;ned short

lone: lone:
fioat fioat

double double
char unsi.e;ned short
short unsie:ned short

unsigned short
unsie:ned short unsie:ned short

lone: lone:
fioat fioat

double double
char lone:
short long

unsie:ned short lone:

long
lone: lon.e:
fioat fioat

double double
pack15 pack15
oack31 oack31

char fioat
short fioat

fioat
unsigned short fioat

lone: fioat
fioat fioat

double double
char double
short double

double
unsi.e;ned short double

lone: double
fioat double

double double
lone: pack15

pack15 pack15 pack15
oack31 oack31

long pack31
pack31 pack15 pack31

pack31 pack31



- 77 -

Appendix III - Summary Of The Scalar Procedures 0
The following table summarises the scalar procedures currently incor

porated into Db. It describes the arguments for each procedure and their
expected types.

Procedure Returns Type Returned Types ExPected
regex 1 if pattern #1 short string, string

matches string
#2. o if pattern
does not match
string

strcat Concatenation string string, string
of #1 with #2

substr Substring of #1 string string, unsigned. unsigned
beginning at
position #2 (
origin of 1 ) and
of lenlZth #3

strlen Length of string unsigned string
#1

count For 1st call sets long long
and returns
internal
counter with
#1. Afterwards
increments and
returns counter

stol Equivalent long long string
integer of
strine: /11

stod Equivalent dou- double string
ble of strin2: #1

stop31 Equivalent 31 pack31 string
digit packed
decimal value
of strine # 1

dtJiays Number of days long long, long
between two
dates #1 and #2

dt-ltos String of form string long, string
"1981X12X31"

where X is #2
dt-lIlonth Month name of string long

date #1
dt,Jlffset New date from long

I
long, long

date #1 and
offset in days #2

dt..,pretty Pretty format string long
of date #1



- 78 -

Procedure Returns Twe Returned Types EXDected
dtJtol Long integer long string

date from
string #1 in for-
mat

"811231"
or

"81X12X31"
where X is any
single charac-
ter

dtJundays # inclusive Sun- long long. long
days between
two dates #1
and #2

dt.J,oday Date on which long
Db is invoked

dt....ll3tol Equivalent long long unsigned. unsigned. unsigned
integer date
from year #1,
month #2 and
day #3

dt..Ypretty Very pretty for- string long
mat of date #1

dt....JY'"eekday Name of week- string long
day of date #1



- 79-

Appendix IV - Summary Of The Relational. Oparators 0
The following table summarises the relational operators implemented in Db.

The table is listed in order of increasing precedence of the operators. It also
lists the section in which each operator is described.

Operator Purpose Precedence Binds Section
<-- Ascii Create 5.8.4--
<++ Ascii Append

right
5.8.5

Relation Create
1

5.8.1<=
<+ Relation Append 5.8.2

==> Ascii Create 5.8.4
++> Ascii Append

left
5.8.5

Relation Create
2

5.8.1=>
+> Relation Append 5.8.2
.. Selection 5.3.1..

%% Projection 5.3.2
@@ N;gregation 5.6
# Sort 5.3.5

(removing duplicate tuples)

## Sort
3 left

5.3.4
(keeping duplicate tuples)

++ Union 5.7.1
.. Intersection 5.7.2
- Difference 5.7.3
•• Join 5.7.4

........ Cartesian Product 5.7.5



- 80-

Appendix V - Summary Of The Syntax Of The Db Query Language 0

This appendix formally describes the syntax of the query language accepted
by Db. This language is described downwards from the highest level syntactic
construction recognised by Db.

Symbols appearing down the left hand margin represent the names of non
terminal symbols being defined. Their corresponding definitions appear on the
right hand side. Some definitions are recursive. Multiple definitions appear on
successive lines. For instance. a commandlist is defined as either a commandi
tem or as a commandlist followed by a commanditem.

Syntactic items in italic type represent non-terminal symbols. Items in
bold type represent terminal symbols.

The syntax definitions of constants are not given here.

program

commandlist

commanditem

command:

shell :

rel...:rn.aera

rel...exp :

rel~rint

command
commandl~tcommand

commanditem
commandl~tcommanditem

command:

rel...exp
rel...:rnacro
shell
commanditem

! const...$tT"in.g

identifier = rel...exp

reLprimary
selection
projection
aggregation
join
intersection
union
difference
product
sort
rel~rint

identiJi,er <+ relJxp
relJvalue <= rel...exp
rel..plvalue <== rel...exp
rel~lvalu.e <++ rel...exp
relJxp +> identiJi,er
rel...exp => relJvalue
rel...exp ==> reLplvalu.e
relJxp ++> reLplvalu.e



rel..primary

relation

rel.J,value

rel..plvalue

selection

projection

projlist

projitem

projassign

aggregation

join

product

intersection

union

d.ifference

- 81 -

relation
(reLBxp )

identifier
stdin

identifier
stdout

rel.J,value
consCstring rel.J,value
retJvalue const.....string

relJxp :: scalarJxp
relJxp : scal arJ%p

relJ%p = projlist
relJ%p "projlist

projitem
projlist projitem

projd-omain
identifier:: scalarJ%p
identifier projassign scalarJ%p

+=
-=::

1=
,,::
«=
»=
lie::
I::
~=
relJ%p @@ projlist
relJ%p @ projlist

relJ%p - relJ%p
relJxp • relJxp

relJ%p ~ ... relJxp
relJ%p ... TelJ%p

relJxp .. relJ%p
relJ%p . relJ%p

relJ%p ++ rel...sxp
relJ%p + relJxp

relJxp - TeLJ%p
relJ:rp -relJxp



sort .

sortlist

sortitem

projdomain

scalarJX]J

scalar

scalar-function

arglist

argitem

cast:

- 82 -

relJX]J ## sortlist
relJX]J # sortlist

sortitem
sortlist sortitem

identifier
- identifier

identifier
. identifier

scalar
scalarJ:t:p < scalarJX]J
scalarJ:t:p <= scalarJX]J
scalarJ:t:p > scalarJX]J
scalarJ:t:p >= scalarJX]J
scalarJ:t:p == scalarJX]J
scalarJ:t:p != scalarJX]J
scalarJ:t:p IIscalarJxp
sca.larJ:t:p && scalarJX]J
scalarJ:t:p ~ scalarJX]J

scalarJ:t:p IscalarJX]J
scalarJ:t:p & scalarJX]J
scalarJ:t:p << scalarJX]J
scalarJ:t:p >> scalarJX]J
scalarJ:t:p + scalarJxp
scalarJ:t:p - scalarJ:t:p

scalarJ:t:p • scalarJXp
scalarJ:t:p I scalarJX]J

scalarJ:t:p " scalarJX]J
scalarJ:t:p ? scalarJX]J : scalarJXp

scalar...primary
( cast) scalar
- scalar
! scalar
.... scalar
scalar-function
( scalarJX]J )

identifier ( )
identifier ( arglist )

argitem
arglist , argitem

scalarJ:t:p

char
short
unsigned
unsigned short
long



scalar-:pri:mary

constant

- 83 -

pack15
pack31
int
float
double

projdomai:n
constant

const....Long
const....double
const...string



- 84-

Appendix VI - A Demonstration Session or The Db Programs 0

The following text demonstrates an example session using the Db programs.
Text printed by the computer is shown in roman type: text typed by the user is
shown in bold type.

Firstly. two new relations germ.an and french are created. The former
relates English and German nouns, the latter relates English and French nouns.
In each case the input data is read from the user's terminal and is terminated
by a control-D on the final line.

The program Dbcreate is used to form a new relation from the input data.
In the first example. relation germ.an is formed. Input fields are delimited by
the @ character. The -heap option tells Dbcreate not to sort the input data and
to keep any duplicated tuples. The -p option instructs it to report the number of
tuples placed into the new relation.
% dbcreate germ.an english/S article~/Sgerm.an/S -df@ -heap-p
>garden@das@Garlen@
>shirt@der@Hemd@
>um.brella@der@Regenschirm.@
>cupboard@der@Schrank@
>girl@da.s@:Maedchen@
>horse@das@Pferd@
> bridge@die@Bruecke@
>book@das@Bu.ch@
>coW@die@Kuh@
>"'D
dbcreate - 9 Tuples Inserted, 1 Primary Pages Written
dbcreate - 0 Page Reads, 1 Page Writes

Dbcreate is again invoked to form a relation of English and French nouns. Be
cause there is no -heap option, it sorts the input data into order. Any duplicated
tuples would be removed.
% dbcreate french english/S articleJ /S french/S -df/
>garden/la/jardin/
>umbrella/la/parapluie/
>shirt/Ie / chemise/
>cupboard/le/bo~/

>woman/la/femme/
>bridgelle /pont/
>book/le/livre/
>horse /le/cheval/
>housella/maison/
>girl/la/tille/
>"'D



- 85-

One can now use Db to view both relations. Db is invoked and waits for the user
to type a query on the terminal. The input is terminated by a control-D on the
ftnalline.
% db
german; french
"n
english article....g german
garden das Garten
shirt der Hemd
umbrella der Reg enschirm
cupboard der Schrank
girl das Maedchen
horse das Pferd
bridge die Bruecke
book das Buch
cow die Kuh

english articlej french
book le livre
bridge le pont
cupboard le bord
garden la jardin
girl la fille
horse le cheval
house la maison
shirt le chemise
umbrella la parapluie
woman la femme

Domains
english/S articlej/S french/S
english/S article...,g/S german/S

Pages
1+ 0
1+ 0

Deg
3
3

Dbls supplies information about the data in these relations 
% dbls german french

Mode Tuples
french Sort 9
GerELan Heap 10



- 86-

In order to find all feminine German nouns, one uses the following query. When a
query is given to Db in an argument list, it is generally advisable to enclose the
query within single quotes.
% db 'german :: article...,g == "die'"

english
bridge
cow

article..g
die
die

german
Bruecke
Kuh

To find those French nouns for which there is no stored German equivalent, one
use s this query -
% db 'french - german'

english
house
woman

articleJ
la
la

french
maison
femme

One might wish to form the join of french and german. The output is formed
from tuples in both relations which have the same values in their commonly
named domains. In this example, the common domain is english. Tuples from
either relation that do not match any from the other are not listed.
% db 'german .. french'

english article....p; german articleJ french
book das Buch le livre

-bridge die Bruecke le pont
cupboard der Schrank le bord
garden das Garten la jardin
girl das Maedchen la fille
horse das Pferd le cheval
shirt der Hemd le chemise
umbrella der Regenschirm la parapluie



- 87-

In order to form a full cross-reference listing of both relations, with a '?' substi
tuted for any unknown entries, one uses the following query. The first line of the
query forms a relation of tuples from both input relations that match one anoth
er. The second line forms tuples from germ.an that have no corresponding en
tries in french. The third line forms tuples from french that do not match any
in germ.an. The final line concatenates the three sets of tuples together and
sorts them in order of domain english.
70 db
a =german - french;
b =germ.an - french XX english article~german articleJ ="?" french ="?" ;
c =french - german XX english article~="?" german ="?" articleJ french;
a ++ b ++ c ## english;
~D

english article-i german articleJ french
book das Buch Ie livre
bridge die Bruecke Ie pont
cow die Kuh ? ?
cupboard der Schrank Ie bord
garden das Garten la jardin
girl das Maedchen la role
horse das Pferd Ie cheval
house ? ? la maison
shirt der Hemd Ie chemise
umbrella der Regenschirm la parapluie
woman ? ? la femme

One could ':·'.ld more tuples to german using the program Dbappend. Each input
field is delirnited by the @ character.
70 dbappend german-dJ'@
>house@d.as@Haus@
>woman@die@Frau@
>mouse@d.as@Maus@
~D



- 88-

The updated relation now becomes 
% db german

english
garden
shirt
umbrella
cupboard
girl
horse
bridge
book
cow
house
woman
mouse

das
der
der
der
das
das
die
das
die
das
die
das

german
Garten
Hemd
Regenschirm
Schrank
Maedchen
Pferd
Bruecke
Buch
Kuh
Haus
Frau
Maus

One could make a permanent modification to the order of tuples in german us
ing the program Dbmodify. The following command instructs Dbmodify to sort
german in ascending order of the domain english.
% dbmodify german english
% db german

english
book
bridge
cow
cupboard
garden
girl
horse
house
mouse
shirt
umbrella
woman

article4
das
die
die
der
das
das
das
das
das
cler
der
die

german
Buch
Bruecke
Kuh
Schrank
Garten
Maedchen
Pferd
Haus
Maus
Hemd
Regenschirm
Frau


