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Abstract Methane is a powerful greenhouse gas with a shorter lifetime than carbon dioxide (CO,), making
it an important target for near-term climate action. The Global Methane Pledge (GMP) aims to cut
anthropogenic methane emissions by 30% from 2020 levels by 2030. Using an Earth system model with
interactive CH, sources and sinks, we assess the Pledge's impact through 2050. Results show that current GMP
commitments deliver only a 10% cut by 2030—well below the target. Only the maximum technically feasible
reduction (MTFR) pathway can achieve the 30% goal. By 2050, current GMP commitments lowers methane
concentrations by 3% relative to 2025, while MTFR achieves 8%. Both pathways slow warming slightly,
avoiding about 0.1°C of global temperature rise, with the Arctic seeing the greatest benefits (up to 2°C less
warming). Without wider participation, the GMP with current signatories will fall short of its targets and Paris
Agreement goals.

Plain Language Summary Methane (CH,) is a powerful greenhouse gas that warms the planet more
strongly than carbon dioxide (CO,) but lasts for a shorter time in the atmosphere. Because of this, cutting
methane emissions can deliver fast climate benefits. The Global Methane Pledge (GMP) was launched to cut
human-caused methane emissions by 30% from 2020 levels by 2030. This study used a climate model to test
whether the GMP can reach its target. Results show that today's GMP commitments would only achieve a 10%
cut by 2030-well short of the goal. By 2050, GMP leads to a 3% drop in methane concentrations, avoiding about
0.1°C of global temperature rise, with the Arctic gaining the most benefit. However, without more countries
joining in-especially the largest emitters-the GMP may not meet its goals or align with Paris Agreement climate
limits.

1. Introduction

Methane (CH,) is a powerful greenhouse gas with a global warming potential about 28 times that of carbon
dioxide (CO,) over a 100-year timeframe (IPCC, 2023), and a relatively short atmospheric lifetime of roughly a
decade (IPCC, 2023). CH, currently contributes a disproportionate share of anthropogenic warming (~25%-30%)
(UNEP & CCAC, 2021). IPCC's Sixth Assessment Report finds that strong, rapid and sustained methane miti-
gation would significantly limit near-term global warming and improve air quality by reducing tropospheric
ozone formation (IPCC, 2023), yielding climate benefits much more quickly than CO, reductions, and helping
keep the Paris Agreement's 1.5°C target. UNEP's Global Methane Assessment found that a 45% reduction in
human-caused CH, emissions by 2030 could avert nearly 0.3°C of global warming by the 2040s (UNEP &
CCAGC, 2021). Even the more modest goal of the Global Methane Pledge (GMP)—a 30% cut in CH, emissions by
2030—would avoid at least ~0.2°C of warming by 2050 (UNEP & CCAC, 2021).

The GMP is an international initiative to operationalize these science-based insights into policy action. Launched
at the 26th Conference of the Parties in 2021, the GMP is non-binding and without country-specific quotas, and
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now has over 158 signatory countries collectively aiming to cut global CH, emissions by at least 30% below 2020
levels by 2030 (UNEP & CCAC, 2021). However, some large emitting countries, including China, India, Russia,
and South Africa, responsible for much of the remaining 45% of global CH, emissions are currently not sig-
natories. Participants agreed to develop national Methane Action Plans (MAPs) or roadmaps outlining mitigation
policies across major CH,-emitting sectors (energy, agriculture, and waste). As of April 2024, 12 countries
(Brazil, Canada, China, Finland, Iceland, Netherlands, Norway, Republic of Korea, United Kingdom, USA, and
Vietnam) plus the European Union had submitted detailed MAPs to the Climate and Clean Air Coalition (UNEP
& CCAC, 2024). Analyses suggest that fully implementing the MAPs already identified in Nationally Determined
Contributions to their maximum technical potential could achieve roughly a 30% global reduction, meeting the
GMP goal. Available technologies could eliminate a large fraction of CH, emissions cost-effectively (e.g., up to
75% of methane from oil and gas operations can be abated with existing methods, roughly half at no net cost)
(UNEP & CCAC, 2021). Recent research showed that CH, reductions could reduce climate-related damages in
2050 by more than a trillion dollars a year while costing only one sixth of the damages they would avoid (Stoerk
et al., 2025).

Earth system models (ESM) are principal tools to assess the impacts of climate mitigation on the global and
regional scale. In most cases, ESMs use prescribed atmospheric CH, concentration pathways; however, it is
important to account for sources and sinks of CH, when assessing its impacts and future evolution (D. Shindell
et al., 2024). Of all the ESMs that contributed to the Coupled Model Intercomparison Project Phase 6 (CMIP6:
Eyring et al., 2016), only one—the NASA Goddard Institute for Space Studies (GISS) chemistry—climate model
version E2.1 (GISS-E2-1-G: Kelley et al., 2020; Im, Tsigaridis, et al., 2025)—used interactive CH, emissions and
chemistry. Since CMIP6, more ESMs have developed interactive CH, sources, including UK-ESM1 (Folberth
et al., 2022), and EMAC (Stecher et al., 2025).

To date, very few studies assessed the impacts of the Pledge. Cael and Goodwin (2023) used an emulator to
quantify the difference in global annual mean surface temperature of the GMP versus the equivalent amount of
CO, emission reduction and found that the GMP initially results in greater relative cooling than the avoidance of
the equivalent amount of CO, emissions over the same period. Predybaylo et al. (2025) used the EMAC model
with interactive CH, emissions and found that reducing CH, emissions decelerates global warming through
changes in radiative fluxes and shortening the lifetime of tropospheric CH, and other gases, as well as leading to
air quality improvement from a reduction of surface ozone. These studies assumed a specific percentage of global
reduction in CH, emissions. To our knowledge, our study is the first study that uses an ESM (GISS-E2.1-G) with
interactive CH, sources to evaluate the impacts of the Pledge and the MAPs, using realistic emission projections
based on the current status of the participation in the Pledge and/or MAPs.

2. Materials and Methods

We used the GISS-E2.1-G ESM (Kelley et al., 2020), with a horizontal resolution of 2° latitude by 2.5° longitude
and 40 vertical layers extending from the surface to 0.1 hPa in the lower mesosphere. GISS-E2.1-G includes
inorganic tropospheric chemistry of Ox, NOx, HOx, CO, and organic chemistry of CH, (D. T. Shindell
et al., 2013) and higher hydrocarbons using the CBM-IV scheme (Gery et al., 1989). CH, is only removed by
oxidation via the hydroxyl radical (OH) and the soil sink. Other important chemical CH, sinks such as chlorine
(Basu et al., 2022) are not included in the GISS-E2.1-G as tropospheric halogens are not part of the model (Im,
Tsigaridis, et al., 2025).

CH, emissions from wetlands in GISS-E2.1-G are calculated online using upper layer soil temperature and
precipitation anomalies (D. T. Shindell et al., 2003, 2004), with prescribed wetland locations and is lumped with
CH, emissions from tundra (D. T. Shindell et al., 2013), which are then modified by the emissions model
(D. T. Shindell et al., 2003). In addition, in the present study, the wetland emissions, which are very uncertain and
comprise the largest contribution among the natural emissions (Saunois et al., 2025), have been tuned by a factor
calculated to get a similar burden and lifetime as in the prescribed simulations (Im et al., 2021; Im, Tsigaridis,
et al., 2025) during the historical period (1995-2023) in order to better follow the global observations (Saunois
et al., 2020). This tuning approach does not consider the changes in OH or regional differences in CH, emissions
and concentrations but improves the model performance by getting closer to the observed global CH, concen-
trations. The calculated wetland tuning factor for the 1995-2014 period is then applied also in the future period
2015-2050.
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Table 1
Emission Scenarios Used in the Present Study

Scenarios Period Perturbed emissions

Recent past (CLE) 1990-2014 No perturbation—Historical baseline

CLE 2015-2050 No perturbation—2015-2050 baseline

GMP 2025-2050 Anthropogenic + biomass burning CH,

MAP 2025-2050 Anthropogenic + biomass burning CH,

POL 2025-2050 Anthropogenic + biomass burning CH,

MTEFR 2030-2050 Anthropogenic + biomass burning CH, + other SLCPs

We used anthropogenic emissions from IIASA's GAINS model version 2.1 (Klimont et al., 2025). These are
recent updates of emission scenarios for CH, described in more detail by Hoglund-Isaksson (2012) and Hoglund-
Isaksson et al. (2020, 2023) and for air pollutants (International Institute for Applied Systems Analysis ECLIPSE
scenarios) described in Stohl et al. (2015), and in our Supporting Information S1. Methods and assumptions for
bottom-up estimation of sector-level CH, emissions in GAINS are documented in the Supplementary materials of
Hoglund-Isaksson (2012, 2017), Hoglund-Isaksson et al. (2020, 2023), and Gémez-Sanabria et al. (2022). A
comparison of global anthropogenic CH, emissions in year 2020 across recent studies (Figure S1 in Supporting
Information S1) shows that the GAINS estimate of 350 Tg yr™" falls well within the range of 325-364 Tg yr~" of
other independently produced bottom-up (BU) inventories, that is, EDGAR (Crippa et al., 2024), CEDS (Hoesly
et al., 2024) and USEPA (2019, 2025). The Global Carbon Project (Saunois et al., 2025) presents global
anthropogenic CH,, emissions in year 2020 ranging between 345 and 409 Tg yr~' across referenced BU in-
ventories and between 368 and 409 across top-down (TD) inverse model results. While EDGAR, CEDS, and
USEPA (2025) estimate lower anthropogenic emissions of fossil origin than the TD range of 101-133 Tg yr™",
GAINS and USEPA (2019) fall within the TD range.

The Current Legislation (CLE) scenario (2015-2050) assumes efficient implementation of current CH,, and air
pollution legislation enacted before 2018. The Maximum Technical Feasible Reduction (MTFR) scenario as-
sumes full implementation of best available emission reduction technologies and practices. Further details on
assumptions for the CLE and MTFR scenarios for CH, can be found in Hoglund-Isaksson et al. (2020). In
addition, three intermediate scenarios were developed for this study reflecting different levels of compliance with
adopted CH, policy frameworks. The GMP scenario reflects future emissions when all GMP signatories jointly
follow through on the Pledge, thus reducing their anthropogenic CH, emissions by 30%, and non-signatory
countries continue along the CLE scenario trajectory. The MAP scenario is a model interpretation of the
impact on future CH, emissions from full implementation of the measures mentioned in the MAPs, and assuming
all countries having not submitted a MAP continue along the CLE scenario trajectory. The Full Policy scenario
(POL) combines the GMP and MAP scenarios, that is, GMP signatory countries meet the pledged target and all
measures mentioned in the MAPs are fully implemented.

We carried out five sets of fully-coupled simulations (Table 1), each consisting of three ensemble members, and
initialized from fully coupled recent past simulations to ensure a smooth continuation from recent past to future.
GMP, MAP, and POL scenarios only perturb anthropogenic CH,, while the MTFR scenario also reduces other
short-lived climate pollutants (SLCP) along with CH,. Other greenhouse gases than CH,, that is, CO, and N,O,
are prescribed using global annual mean concentrations used in CMIP6. All simulations have been performed at
the LUMI supercomputer (https://lumi-supercomputer.eu/). One simulation year takes 6.33 hr, giving 6.6 days
simulation time for one ensemble member for the recent past simulation, 9.5 days for one CLE simulation,
6.9 years for GMP, MAP, and POL simulations each, and 5.5 days for an MTFR simulation.

3. Results

Anthropogenic CH, emissions continue to increase in the baseline (CLE) scenario, while the MAP scenario
initially leads to a small emission reduction, but then continues to increase (Figure 1a). The (current status) GMP
scenario leads to a reduction of 10% by 2030 in global anthropogenic CH, emissions, to 314 Tg CH, yr™',
however, does not reach the GMP target level of 30% below the 2020 level (245 Tg CH,, yr~"). The POL scenario,

which is the combination of GMP and MAP leads to a slightly larger reduction (to 307 Tg CH, yr~") than GMP
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Figure 1. Global anthropogenic (a), wetland (b) and total (c) CH, emissions in the 2010-2050 period, and the 2000-2015 mean break down of global CH, emissions in
anthropogenic, biomass burning, natural (wetlands and tundra, termites, ocean), with yellow bars indicating standard deviation (d).

alone but still cannot achieve the GMP target value. Only the MTFR scenario can fulfill the Pledge's emission
reduction objective, leading to a reduction to 242 Tg CH, yr~'. Therefore, the MTFR scenario corresponds,
approximately, to full fulfillment of the Pledge, also in agreement with the 30% reduction scenarios implemented
in Predybaylo et al. (2025).

As wetland CH, emissions continue to increase slightly in all simulations (Figure 1b), the total emissions
(Figure 1c) follow a very similar trend to that of the anthropogenic emissions. The natural annual CH, emissions
(320 + 5 Tg CH, yr™") averaged over the 2000-2015 period, dominated by the wetland CH, emissions
(272 + 5 Tg CH, yr™ ") are comparable to the anthropogenic CH, emissions (323 + 11 Tg CH, yr™") (Figure 1d).
Depending on the level of reduction of the anthropogenic emissions under different scenarios, this balance be-
tween the anthropogenic and natural emissions either shifts toward more anthropogenic emissions under CLE and
MAP, or toward natural sources under GMP, POL, and MTFR, where larger anthropogenic emission reductions
take place (Figure S2 in Supporting Information S1). Our 272 Tg CH, yr~' wetland CH, emissions are higher than
the estimate of 155-217 Tg CH, yr™'! (Saunois et al., 2020). On the other hand, the global anthropogenic CH,
emission in the present study (323 Tg CH, yr~ 1) is slightly lower than a recent estimate of 369 Tg CH, yr!
(Saunois et al., 2025). Other natural methane sources in our study are fixed at values of 20 Tg yr~! for termites,
close to the 25 Tg CH, yr~' by Saunois et al. (2025). The combined geological + ocean + lake sources are fixed to
and 27 Tg CH, yr™' taken from Fung et al. (1991). These are likely on the low side compared to recent literature,
where global oceanic CH,, emissions are estimated to be 6-12 Tg CH, yr~' (Weber et al., 2019) and lake
emissions are estimated to be 24.0 + 8.4 Tg CH, yr~' (Zhuang et al., 2023).

The global CH, concentrations simulated under the different emission scenarios are presented in Figure 2a, along
with the global and annual mean observations during the 2010-2024 period from NOAA (Lan et al., 2025). The
simulated global CH, concentrations agree well with the observations, with a Pearson correlation (7) of 0.99 and a
normalized mean bias (NMB) of —3%. The global CH, concentrations continue to increase in the CLE and MAP
scenarios from 1.88 + 0.01 ppm in 2025 to 2.13 £ 0.001 ppm (13%) under CLE and 2.07 £ 0.001 ppm (10%)
under MAP in 2050. The (current) GMP scenario leads to a decrease in global CH, concentrations from
1.88 + 0.01 ppm in 2025 to 1.82 + 0.003 ppm (—3%) in 2050, while the POL scenario leads to a slightly larger
decrease, to 1.79 £+ 0.01 ppm (—5%). The largest reduction is simulated for the MTFR scenario, which leads to a
decrease from 1.92 + 0.01 ppm in 2030 to 1.77 + 0.01 ppm (8%) in 2050 (a reduction of 6% compared to 2025).
These responses to emission changes are lower than in Predybaylo et al. (2025) and Allen et al. (2021). However
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Figure 2. Annual mean global mean CH, concentrations (a), lifetime (b), top-of-the-atmosphere radiative forcing (c) and surface temperature (d) in the different
simulations. Black dots in (a) and (d) show global and annual mean observations from NOAA and ERAS, respectively.

these studies assumed a full compliance to a global 30% and 40% CH, emission reduction while our study only
considers the current signatories to the Pledge, which is much smaller than a full compliance (Figure 1a).

The global CH, lifetime (Figure 2b) is estimated to be around 8-8.5 years in all scenarios, except for the MTFR,
which increases the lifetime to more than 9 years. Although the lifetime substantially increases in the MTFR
scenario, the decrease in global average concentration is greatest under this scenario, which means that the model
is driven by the large reduction in the emissions (Figures 1a and 1b). The GMP and the POL scenarios lead to a
slight decrease in the lifetime of CH, from 8.4 years in 2025 to 8.1 years by 2050, while the MAP scenario
follows the CLE scenario.

The top-of-the-atmosphere (TOA) CH, radiative forcing (RFcy,) has been calculated based on Etminan
et al. (2016) and is shown in Figure 2c. It should be noted that all scenarios except for MTFR quantify the direct
radiative forcing from CH,-only changes, while for MTFR, the estimated forcing is due to a combination of
changes in CH, and other SLCF emissions. Under CLE, RFy, continues to increase from 0.53 & 0.01 W m~Zin
2010 t0 0.59 + 0.01 W m™2 in 2025, then to 0.69 + 0.01 W m ™~ under CLE and to 0.68 + 0.02 W m™2 under the
MAP scenario in 2050. Under the GMP and POL scenarios RF¢y;, decreases from 0.59 & 0.01 W m™~? in 2025 to
0.56 + 0.02 W m~2 and 0.54 + 0.04 W m ™2 in 2050, respectively. The largest reduction is calculated under the
MTEFR scenario, which reduces the RF¢y, to 0.61 + 0.01 W m™2 in 2030 and to 0.53 + 0.03 W m™? in 2050,
bringing the forcing back to 2010 levels.

The geographical distribution of the concentration response to the different emission scenarios, averaged over the
2046-2050 period, relative to the CLE scenario are shown in Figure S3 in Supporting Information S1. Smallest
concentration reductions take place in remote areas, over the southern hemisphere and over the Southern Ocean.
Largest reductions take place over land, especially where the emission regions are located such as in North
America and Europe. Particularly large reductions are simulated over the Persian Gulf region in the GMP and thus
POL scenarios. Southeast Asia, which is one of the largest emitting regions, lacks signatories to the GMP; some
countries in the region have, however, submitted MAPs. Therefore, the model predicts a large response over
Southeast Asia under the MAP and POL scenarios, as well as under the MTFR scenario.

The surface temperature response to the changes in CH, emissions are shown in Figure 2d. The model results are
in good agreement with the ERAS5 observations (Hersbach et al., 2020) for the 2010-2024 period, with a r of 0.77
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Figure 3. Simulated surface temperature differences between Global Methane Pledge (a), Methane Action Plan (b), POL (c), and maximum technically feasible
reduction (d) versus Current Legislation averaged over 2046-2050. The dotted areas show responses within 95% confidence interval.

and a NMB of +4%. Under all scenarios, surface temperatures continue to increase, in agreement with earlier
studies (e.g., Predybaylo et al., 2025), from 15.1 & 0.19°C in 2010 to 16.2 £ 0.10°C in 2050. In order to evaluate
the extent to which global surface temperatures respond to the different emission scenarios, we compared the
2046-2050 mean global surface temperature from the CLE scenario with that of the GMP, MAP, POL and MTFR
scenarios. The GMP scenario avoids 0.11 + 0.11°C warming compared to the CLE scenario, while the MAP and
POL scenarios avoid 0.07 + 0.16°C and 0.09 £ 0.15°C, respectively. The MTRF scenario avoids 0.13 + 0.12°C
warming compared to the CLE scenario. These estimates are lower and have greater associated uncertainties than
those in a previous study by Cael and Goodwin (2023), which estimated 0.21 £+ 0.06°C lower global warming
under a CH, emissions reduction scenario by 2055, and lower than the objective of 0.2°C avoidance aimed for in
the Pledge.

Above changes in 20462050 mean surface temperatures are, however, not homogeneous over the globe
(Figure 3). GMP (Figure 3a) avoids warming over a large part of the globe, with exceptions over the North
Atlantic, the Northwest Pacific, and the Southern Ocean, as well as over Eastern Europe and the Mediterranean,
which experience more warming compared to the baseline scenario (CLE). Largest relative cooling is simulated
to be over the Arctic and the Northeast Pacific. The avoided warming over the Arctic and the North Atlantic under
the MTFR scenario (Figure 3d) is even greater, but this scenario also leads to more pronounced warming over the
Mediterranean, Western US, South America (Argentina), over southern and Eastern Asia, and over the Antarctic.
The figure also shows the areas where the responses are within the 95% confidence interval based on student ¢ test.
Opverall, the simulated responses in surface temperatures are not significant in many regions, with the exception of
the Arctic region, where the response is consistently significant under all scenarios. This is the case especially in
MAP, where some large emitters like China are signatories, although they have not signed in GMP, and in POL,
which is the combination of GMP and MAP, and MTFR, where all technically feasible reductions are considered.
This response agrees with literature, which shows that Arctic temperatures respond largest to emission changes in
Asia (Sand et al., 2016). This amplified response over the Arctic can be mainly attributed to feedback mechanisms
rather than to concentration differences. As CH, is well-mixed, the concentration changes are rather spatially
uniform (Figure S3 in Supporting Information S1), and CH, amplifies Arctic processes that are already sensitive
to perturbations outside the Arctic (Christensen et al., 2019; Quinn et al., 2008; Taylor et al., 2022).
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4. Discussion and Conclusions

Our results show that the GMP objective of achieving a reduction by 30% in 2030 global CH, emissions below the
2020 levels is not accomplished in the current GMP scenario or the POL (GMP + MAP) scenarios. This is,
however, expected as 158 countries, accounting for roughly 55% of the global anthropogenic emissions, have yet
signed the Pledge.

Results show that the goal of avoiding 0.2°C of warming by 2050 cannot be achieved even under the most
ambitious scenario. MTFR avoids a warming of 0.13 £ 0.12°C; the current commitments reflected in the GMP
scenario only avoid 0.11 £ 0.11°C by 2050. Results suggests that a full participation in the Pledge can have the
potential to achieve the Pledge's objectives as taking the large standard deviation into account. Results also show
that the temperature response in the GMP and MTFR scenarios are not proportional to the methane reductions.
Thus, even given the large uncertainties in the temperature response, it is challenging to conclude whether or not
there is really non-linearity in the response (Im, Tsigaridis, et al., 2025). The GMP aims mitigation applied by
~2020, whereas our study considers emissions cuts starting a few years later (2025), though this should only have
a small impact. In addition, the GMP derived the 0.2°C goal based on the baseline emissions projections available
in the GMA, whereas our CLE scenario includes policies put into place since that time that led to lower “baseline”
emissions.

Results show that surface ozone (O;) concentrations decrease slightly, from 24.5 + 0.10 ppb in 2025 to
24.3 +0.06 ppb (by 1%) under GMP, while under the MTFR scenario global surface O5 concentrations can reduce
by 23% to 18.9 + 0.02 ppb in 2050. It should be noted in all scenarios except for MTFR, the change in O;
concentrations is due to changes in CH, emissions only, while for MTFR, the estimated surface O; response is due
to a combination of changes in CH, and other SLCP emissions.

Our results are based on a single ESM with a small ensemble size. Ideally it should be followed-up in a multi-
model ensemble experiment, such as in the Methane Model Intercomparison Project (MethaneMIP: England
et al., 2025, https://www.methanemip.org). We have used the GISS-E2.1-G interactive CH, simulations with five
ensemble members in CMIP6 (Allen et al., 2021) to estimate the impact of the ensemble size on surface tem-
perature responses. We have compared the standard deviation in the 3 and 5 member ensembles, respectively. In
both subsets, the standard deviation in the 20462050 period under SSP1-2.6 and SSP2-4.5 compared to SSP3-7.0
(~0.21 and ~0.32°C, respectively) remains much larger than the ensemble mean (~—0.07 and ~—0.15°C), which
suggests that the ensemble size may not be the governing factor of the large uncertainty in the temperature
responses.

Previous studies have highlighted that the response of CH, concentrations to changes in emissions is not
necessarily linear as the chemistry is non-linear, and dependent on the oxidative capacity of the atmosphere, also
due to other species that impact OH (Im, Tsigaridis, et al., 2025). For example, without halogens, models often
overestimate methane lifetime, since halogens contribute to an additional CH, sink (Saiz-Lopez & von Gla-
sow, 2012; Sherwen et al., 2016; Schmidt et al., 2016) and underestimate its near-term removal efficiency
following emission reductions (Hossaini et al., 2016) and can overestimate its concentrations and radiative
forcing. These imply that models need to be improved in their representation of chemical composition and
processes that influence chemical sinks of CH,, and CH, emissions from natural sources such as oceans, lakes,
and permafrost should be better quantified.
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