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Abstract

Above-Ground Forest Biomass (AGB) is vital for understanding the carbon cycle, for carbon accounting, and for climate projections.
Single-tree AGB measurements or precise estimates are crucial for calibrating and validating remote sensing based AGB mapping (e.g.
in the area-based approaches), but remain costly and challenging to acquire. The recently introduced open-source RayCloudTools (RCT)
software includes an efficient QSM (Quantitative Structure Model) solution, RCT-QSM that uses Dijkstra’s algorithm to segment and
volumetrically reconstruct trees, providing tree volume, which further requires density to obtain mass. The accuracy and practicability
of RCT-QSM, however, have remained largely unassessed. This study provides a comprehensive evaluation of RCT-QSM, by comparing
its volume estimates against: (i) three publicly available datasets of temporally coinciding TLS (Terrestrial Laser Scanning) scans and
destructive measurements, (ii) four existing QSM methods (AdTree, TreeQSM, AdQSM, and SimpleForest), and (iii) allometric model
outputs from two experimental plots in Austria, where point clouds were obtained with terrestrial and unmanned aerial vehicle (UAV)-
based laser scanning. The comparison with destructively acquired single-tree data (n = 124) from three publicly available datasets shows
an overall high correspondence between RCT-QSM derived volumes and destructively harvested volumes (CCC = 0.95) with a moderate
negative bias (−7.3%) and an NRMSE of 5%. RCT-QSM outperforms other existing QSM solutions, such as AdTree, AdQSM, SimpleForest,
and TreeQSM. TreeQSM metrics, however, show only small differences compared to RCT-QSM. An extensive point density sensitivity
analysis featuring 1860 systematically downsampled point clouds from the same dataset demonstrates RCT-QSM’s high robustness
to variations in point density. Accuracy and completeness of the results remain stable for point densities as low as one point per
10x10x10 cm voxel. Regarding the large-scale applicability, RCT-QSM provides reliable results for two experimental plots in Austria,
which were scanned with TLS and UAV-LS, respectively. RCT-QSM efficiently derives single-tree volume, aligning well with allometric
models, demonstrating its applicability across various data acquisition settings and forest conditions.

Keywords: laser scanning; tree volume; QSM; allometry

Introduction
Above-Ground Biomass (AGB) is the total amount of dry plant
biomass present above the ground. Since around 50% of dry plant
biomass is carbon, AGB is a crucial variable for quantifying and
understanding the global terrestrial carbon cycle (Le Toan et al.
2011) and other ecological functions such as temperature regu-
lation (Arseniou et al. 2023). As such it has also been recognized
as an Essential Climate Variable by various major international
organizations (World Meteorological Organization et al. 2022) and
is a key variable for the implementation of carbon accounting
and climate projections (Stovall et al. 2018). Despite tremendous
efforts in the field to improve AGB quantification approaches, the
accurate and unbiased estimation of AGB, particularly in forests,
continues to pose a substantial challenge at all spatial scales
(Arseniou et al. 2023).

Globally, AGB and its dynamics are commonly estimated using
satellite remote-sensing techniques that measure proxy variables

(Tian et al. 2023) like Leaf Area Index, Canopy Height, and Veg-
etation Water Content in either the optical [e.g. Chopping et al.
(2022), Fremout et al. (2022), Hirata et al. (2014), Hu et al. (2016)]
or in the microwave domain [e.g. Huang et al. (2018), Schmidt
et al. (2023), Teubner et al. (2021), Zotta et al. (2024)]. To obtain
reliable estimates of AGB at a large-scale, satellite-based biomass
products require reference data for calibration and validation.
These data are typically collected in field campaigns during which
tree parameters such as Tree Height (TH), Diameter at Breast
Height (DBH), and tree species are determined. Using allometric
models, single-tree volume can be calculated from these metrics.
The single-tree volume can then be converted to AGB by multi-
plying it with a species-specific wood density, which can either be
estimated experimentally in situ (i.e. through micro-drillings) or
obtained from tabulated values such as the Global Wood Density
Database (GWDD; Chave et al. 2009, Zanne et al. 2009).

In this context, allometric models have been a major research
focus for decades, resulting in a substantial number of species-
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and biome-specific allometries. Many of them are publicly avail-
able in online databases such as GlobAllomeTree (globallometree.
org; Henry et al. 2013) or in the form of scientific publications (e.g.
by Zianis et al. 2005). Despite the great number of available allo-
metric models, they are nevertheless limited by considerable vari-
ability in equations across different biomes and species (Dutcă
2019). Furthermore, large trees and urban trees are generally
not well represented in most allometric equations due to their
underrepresentation in the datasets used for model development
(Stovall et al. 2018, Kükenbrink et al. 2021). This is not surprising
as setting up accurate species and site-specific allometric models,
usually involves destructive sampling of individual trees, which is
not only time-consuming and expensive (Belete et al. 2021) but
sometimes even dangerous and ethically questionable. Due to
the typically limited number of destructively sampled trees and
the natural variability of tree shapes, allometric equations have
a limited transferability and accuracy. This introduces uncertain-
ties that significantly contribute to the overall uncertainty in the
biomass model development (Saarela et al. 2020).

Ground-based Laser Scanning (LS) has been identified as
an independent, non-destructive remote sensing technology to
quantify and derive single-tree volume (Ogle et al. 2019). Using
a collection of 3D points, i.e. Point Clouds (PCs) obtained from
LS, mostly from Terrestrial LS (TLS) or mobile LS (MLS), single-
tree volumes can be derived with good accuracy using, e.g.
quantitative structural models (QSMs; Fan et al. 2020; Hackenberg
et al. 2015a; Raumonen et al. 2013). QSMs capture single tree
structures by fitting cylinders to 3D points representing stem and
branches. Integrating the volumes of fitted cylinders provides a
direct estimate of the above-ground single-tree volume, which can
be converted to AGB by multiplying it with the wood density (i.e.
the ratio of dry mass to green volume; Swenson and Enquist 2007)
of the measured tree. In recent years, the process of PC-based
QSMs has been tested and applied extensively (e.g. Gonzalez
de Tanago et al. 2018, Lau et al. 2018, Malhi et al. 2018, Momo
Takoudjou et al. 2018, Stovall et al. 2018, Calders et al. 2020,
Disney et al. 2020, Fan et al. 2020). Comparison with destructively
harvested datasets collected across various biomes has proven
that QSM-based volume estimates converted to AGB outperform
allometric models derived from destructively harvested trees,
thus making it an important resource especially when data from
destructive harvesting is not available (Demol et al. 2022a).

While PC-based QSMs represent a promising avenue for esti-
mating single-tree and plot-level volume they have also been
shown to be prone to overestimating small branches. This par-
ticularly affects small trees (Demol et al. 2022b, Abegg et al.
2023), whose volume (and therefore AGB) consists largely of such
branches. With increasing scanner-to-tree distance, branch vol-
ume was found to be severely overestimated (Morhart et al. 2024),
indicating that established QSMs require tree-centered scan pat-
terns (which are more time-intensive) to yield reliable results.
While overestimation can be mitigated through careful plan-
ning and maintaining low TLS-to-tree distances, it restricts the
applicability of PC-based QSMs for time-efficient, large-scale TLS
campaigns and for LS data obtained from more efficient aerial
platforms such as UAVs (unmanned aerial vehicles) or airplanes.
Studies analyzing QSM-based volume estimation from UAV-LS
have found very limited performance and significant overestima-
tion of tree volume (Brede et al. 2019, Ye et al. 2019, Dalla Corte
et al. 2022).

Recently a new, open-source PC-based approach for tree
segmentation and volumetric reconstruction has been made
available (Lowe and Stepanas 2021): The RayCloudTools (RCT)

software toolbox. RCT implements various functions including
a PC-based QSM algorithm referred to in this paper as RCT-
QSM. This algorithm is freely available on GitHub (https://github.
com/csiro-robotics/raycloudtools; (Lowe et al. 2021, Lowe and
Stepanas 2021). So far, there are very few studies applying RCT-
QSM for estimating single-tree volume. To the best of the authors’
knowledge, as of October 2025, no published study has compared
its performance against destructively harvested reference data. A
recent study (Bohn Reckziegel et al. 2025) used RCT-QSM to derive
woody volume and other forest characteristics from TLS and UAV-
LS data. Their study showed that RCT-QSM enables volumetric
reconstruction of single trees with a strong correspondence
between volume measurements derived from TLS and UAV-LS.
This highlights RCT-QSM’s potential for efficiently estimating
single-tree volume and consequently AGB on a large scale.
Additionally, this study showed that leaf removal is not strictly
necessary when using RCT-QSM, significantly reducing processing
times compared to state-of-the-art QSMs. However, the authors
also pointed out that more validation data, especially derived
from destructively harvested single-trees, are needed to assess
the applicability of RCT-QSM in operational workflows.

To this end, we investigate the accuracy and reliability of the
RCT-based approach by comparing RCT-QSM single-tree volume
with:

1) volumes from destructive sampling from three publicly
available data sets,

2) volumes from four state-of-the-art QSM methods: AdTree
(Du et al. 2019), TreeQSM (Raumonen et al. 2013), AdQSM
(Fan et al. 2020), and SimpleForest (Hackenberg et al.
2015a), and

3) allometric model predictions for two experimental plots in
Austria where TLS and UAV-LS data where acquired, respec-
tively. This evaluates the reliability and robustness of RCT-
QSM.

The secondary goal of this study is to test whether single-
tree volume estimates obtained with RCT-QSM are sensitive to
variations in point densities and how the algorithm works under
more challenging acquisition conditions.

Data
Public datasets of coinciding destructive and
terrestrial laser scanning measurements
The backbone of our validation of the RCT-QSM algorithm are
three publicly available datasets of TLS scans of 130 trees, which
were later destructively sampled. These trees originate from tem-
perate and tropical forests in Belgium, China, Germany, Guyana,
Indonesia, and Peru (Table 1). For the validation and compar-
ison of RCT-QSM with four state-of-the-art QSM methods. In
total six trees were excluded from the analysis: five from Demol
et al. (2021a) and one from Gonzalez de Tanago et al. (2018).
The trees from Demol et al. (2021a), all belonging to the species
Larix decidua, were excluded due to reconstruction failures across
the state-of-the-art methods, which can be explained with the
species’ characteristic low-branching structure, leading to unreal-
istic results for the state-of-the-art methods. RCT-QSM produced
visually more realistic results. These data were nevertheless omit-
ted from the analysis for better comparability. The tree from
Gonzalez de Tanago et al. (2018) was excluded due to substantial
gaps in the PC data along the trunk, which hindered accurate QSM
reconstruction across all tested approaches.
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Table 1. Overview of destructive datasets used in this study including site characteristics, PC acquisition settings and environmental
conditions during scanning. nt and ns refer to the number of trees and species captured at each site.

Location nt ns Leave/needle
conditions

Wind present Scanner used Number of scans per
tree

Reference

Germany 12 1 Leaf-off Yes Z + F IMAGER 5010 6–8 Hackenberg et al.
(2015b)

China 24 2 Leaf-on,
needle-on

Yes Z + F IMAGER 5010 6–8 Hackenberg et al.
(2015b)

Guyana 10 3 Leaf-on Not specified RIEGL VZ-400 8–13 Gonzalez de Tanago
et al. (2018)

Indonesia 10 8 Leaf-on Not specified RIEGL VZ-400 8–13 Gonzalez de Tanago
et al. (2018)

Peru 9 7 Leaf-on Not specified RIEGL VZ-400 8–13 Gonzalez de Tanago
et al. (2018)

Belgium 65 4 Leaf-off,
needle-on and off

No RIEGL VZ-400;
VZ-1000

Scanned in a grid
pattern with ca. 20 m
grid width

Demol et al. (2021b)

Figure 1. Tree volume distribution in m3 as derived from destructive measurements (left) and scatterplot of DBH (in m, X-axis) and TH (in m, Y-axis) of
the destructively harvested trees used in this study (n = 124, right).

The TLS scans were acquired with varying acquisition param-
eters and under distinct environmental conditions (Table 1). Data
obtained in the Tropics from Gonzalez de Tanago et al. (2018)
exhibit generally more occlusions in the upper canopy than those
obtained from Demol et al. (2021b) or Hackenberg et al. (2015b).
The datasets offer a large variety (Fig. 1) in terms of tree size and
species distribution. DBH values range from 11.5 cm to 127.6 cm
with heights between 12.6 m and 50.5 m. Regarding the volume
distribution, most trees are below 10 m3, with some individual
trees from the tropical dataset substantially exceeding these
values.

The methodologies for estimating single-tree volumes differ
between datasets. Gonzalez de Tanago et al. (2018) determined
volume directly by measuring stem and branch diameters at
1-meter intervals along the stem and branches, focusing on
branches exceeding a 10 cm diameter threshold. In contrast,
the other campaigns first measured the “green” or “fresh”
mass of the trees by weighing them immediately after harvest.
Hackenberg et al. (2015b) and Demol et al. (2021b) included in
their measurement smaller branches within diameter classes
of 2.5–10 cm, while excluding branches below 2.5 cm. From the
derived green mass, the dry mass (i.e. AGB) was calculated using
the dry matter content, defined as the ratio of dry mass to green
mass. The derived AGB was then converted to volume by dividing

it by the species-specific wood density, which is the ratio of oven-
dry mass to green volume. These conversions introduce some
uncertainties, as discussed in Section 5.

Terrestrial laser scanning, unmanned aerial
vehicle-laser scanning, and allometric data
obtained at two experimental plots
In addition to the destructively harvested reference data, the
validity and scalability of RCT-based segmentation and RCT-QSM
were further evaluated using data from two experimental plots
in Austria (Table 2, Figs 3 and 4). Since destructive reference data
were unavailable for these plots, well-calibrated genus-specific
allometric models served as the primary reference. At experimen-
tal plot A, a standard multistation TLS procedure was employed.
At Site B, UAV-LS data were collected to test RCT-QSM under more
challenging, dynamic acquisition conditions. These approaches
provide additional insights into RCT-QSM’s applicability across
varying scenarios. The following sections describe the two exper-
imental plots and associated data acquisition methods in detail.

Experimental plot A
Experimental plot A is located in Prater, a recreational area in
Vienna. The area within Prater that was selected for this study is a
mildly managed forested area of ca. 3000 m2 with little understory
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Table 2. Summary of key characteristics of experimental plot A and B and the corresponding LS campaigns.

Experimental plot A B

Location Prater, Vienna, Austria Rohrach, Vorarlberg, Austria
FAO Biome Temperate continental forest Temperate mountain forest
Sample Area [m2] 3000 1300
Number of trees used for validation 110 19
DBH range of samples [cm] [10.0, 76.7] [16.4, 75.1]
Tree Height range of samples [m] [8.2, 27.7] [8.4, 41.8]
Dominant Genera Maple (Acer) Beech (Fagus), Spruce (Picea)
Laser Scanner RIEGL VZ-600i RIEGL VUX-120
Camera Sony α7R IV PhaseOne iXM100
Platform Tripod, ground-based UAV, airborne
Scanning date 03–2024 04–2022
Leaf/Needle conditions Leaf-off Leaf-off, Needle-on

(Fig. 2C). For the TLS campaign, a RIEGL VZ-600i was used. The
scanner has a beam divergence of 3.5 mrad, which corresponds
to a beam diameter increase of 3.5 cm per 100 m. The 3D point
accuracy is documented as 3 mm at 50 m and 5 mm at 100 m.
A pulse repetition rate of 2200 kHz was used, with an angular
spacing of 0.034◦. The scanning data was acquired just before the
onset of foliage in early spring. During the TLS campaign little
to no wind was present. The scanning conditions can thus be
summarized as favorable for tree volume estimation.

Experimental plot B
Experimental plot B is in the Rohrach forest in Vorarlberg, Austria
(Fig. 3). It is classified as natural forest reserve (German: Naturwal-
dreservat) with minimal human influences (Grabherr et al. 1999).
The entire forest was surveyed in April 2022, prior to the onset
of foliage but with needles present on evergreen trees. Data col-
lection utilized a RIEGL VUX-120 laser scanner (RIEGL Laser Mea-
surement Systems GmbH, Horn, Austria) and a PhaseOne iXM100
camera mounted on an UAV. The flying height over ground was
∼160 m. The RIEGL VUX-120 employs a nadir-forward-backward
scanning pattern and has a nominal ranging precision of 5 mm.

Tree parameter estimation as input for allometric models
Species-specific allometric models require single-tree parameters
such as DBH and TH as input to derive single-tree volume or
AGB. At experimental plot A, where TLS data was acquired, DBH
was automatically derived using two software tools: 3DFIN (Laino
et al. 2024) and OPALS (Pfeifer et al. 2014). Both tools provide
key tree parameters, including DBH, TH, and tree positions. For
this analysis, only trees with a DBH > 10 cm were considered.
Tree positions were used to align and compare outputs from the
two solutions via nearest neighbor matching. If DBH values from
the two solutions differed by <1 cm, the results were considered
reliable. This was verified by randomly checking a subsample of
trees. For cases with significant discrepancies, the affected trees
were manually remeasured in the PC using the measurement tool
in CloudCompare (Girardeau-Montaut 2024). This additional step
ensured high accuracy and preserved data integrity.

Experimental plot A is predominantly composed of trees
from the genus maple (Acer). Individuals from other genera
were present only sporadically and were excluded from the
present analysis, which resulted in 110 trees studied in plot
A. Among the genus Acer, three species were identified on-
site: Sycamore maple (Acer pseudoplatanus), Norway maple (Acer
platanoides), and Sugar maple (Acer saccharum). However, due

to the lack of adequate biome-specific allometric models for
Sycamore maple and Norway maple, all trees were modeled
using allometric equations for Sugar maple. This decision was
based on the availability of several well-constrained models for
Sugar maple (Table 3) under comparable climatic conditions (FAO
biome: “temperate continental forest”) and the assumption that
inter-genus differences are small. This approach was considered
the most robust and reliable means of obtaining independent
reference AGB values for many trees. Moreover, AGB is frequently
estimated using broadly generalized, non-species-specific models
(e.g. Chave et al. 2005). The various allometric (Table 2 and 3) AGB
estimates for “Acer” trees from experimental plot A were averaged
and converted to volume by dividing the results by the species-
specific basic wood density of A. saccharum (560 kg/m3), as listed
in the GWDD (Chave et al. 2009, Zanne et al. 2009).

At experimental plot B, automated parameter extraction was
unsuccessful, presumably due to the low point density especially
along the lower sections of the trunk. Instead, DBH and TH
were manually measured for trees that were sufficiently well
reconstructed in the PC. Manual DBH measurements proved par-
ticularly challenging due to significant PC gaps along the tree
stems. To ensure integrity of the results, trees for which DBH
could not be retrieved unambiguously as well as very small trees
(DBH < 10 cm) were excluded from the analysis. As a result, the
number of trees analyzed was reduced from 40 to 19. On-site
species identification was not possible at experimental plot B.
Instead, tree species were classified using imagery collected by
the UAV (Fig. 3C). A true orthophoto with a Ground Sampling
Distance of ∼2 cm was generated from the imagery and used for
visual species identification. Trees with ambiguous identification
were excluded from further analysis. Of the remaining 19 trees,
14 were identified as European beech (Fagus sylvatica) and five
as Norway spruce (Picea abies). Reference volumes for these trees
were obtained using the species-specific allometric models and
parameters detailed in Tables 3 and 4.

Methods
RayCloudTools
In this study the open-source RCT toolbox (Lowe and Stepanas
2021), developed by Commonwealth Scientific and Industrial
Research Organization, was utilized to process the LS data.
For a detailed explanation of the methodology, readers are
referred to Lowe and Stepanas (2021). The following provides
a summary of the key methodology implemented in RCT, with
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Figure 2. (A) Orthophoto showing the approximate boundaries of experimental plot A. (B) Segmented PC of experimental plot A, generated using RCT.
(C) Panoramic 360-degree image from a scan position within experimental plot A.

Table 3. Species-specific allometric models used for AGB and volume retrieval. The empirically derived coefficients of the respective
model can be found in Table 3.

Species Allometric model Units Reference

Sugar maple AGB = a ∗ DBHb AGB in kg;
DBH in cm

Ter-Mikaelian and
Korzukhin (1997)

European beech Volume = π
4 ∗

(
a ∗ DBH2 ∗ TH − b ∗ DBH2 + c ∗ DBH

)
Volume in dm3

DBH and TH in dm
Schieler (1988)

Norway spruce Volume = π
4 ∗

(
a ∗ DBH2 ∗ TH −

(
b ∗ DBH2 ∗ TH ∗ Log2(DBH)

)

−
(
c ∗ DBH2

)
+ d ∗ DBH

) Volume in dm3

DBH and TH in dm
Schieler (1988)

Table 4. Empirically derived and published coefficients of the allometric models from Table 2.

Species Used for
experimental
plot

a b c d FAO Biome N R2 Reference

Sugar maple A 0.2064 2.33 TCF 5 0.998 Bickelhaupt et al. (1973)
A 0.1252 2.48 TCF 5 0.984 Bickelhaupt et al. (1973)
A 0.1008 2.57 TCF 119 0.980 Brenneman et al. (1978)
A 0.1532 2.39 TCF 36 0.995 Freedman et al. (1982)
A 0.1599 2.34 TCF 45 0.993 Ker (1980)
A 0.1259 2.36 TCF 9 0.99 Pastor and Bockheim (1981)
A 0.1676 2.36 TCF 42 n.a. Perala and Alban (1994)
A 0.1641 2.42 TCF 14 0.998 Whittaker et al. (1974)
A 0.1891 2.33 TCF 42 n.a. Young et al. (1980)

Norway spruce B 0.563443 0.12731 8.55022 7.6331 TMS n.a. 0.81 Schieler (1988)
European beech B 0.5173 13.62144 9.9888 TCF n.a. 0.75 Schieler (1988)

N refers to the number of destructively harvested trees that were used by the respective reference for the parameter retrieval and R2 indicates the goodness of fit
for the respective model. TCF corresponds to FAO Biome “Temperate Continental Forest” and TMS corresponds to “Temperate Mountain System”.
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Figure 3. (A) Orthophoto of the experimental block B showing the trajectory (yellow line) of the UAV-LS. (C) The UAV-LS during operation at the
experimental plot. (B) Segmented PC of experimental plot B generated using RCT. (D) Aerial image of the surveyed forest obtained from the PhaseOne
iXM100 camera mounted on the UAV.

Figure 4. Workflow diagram of the main RCT processing steps and the corresponding type and format of the respective input and output data.

a particular emphasis on RCT-QSM. Readers are encouraged to
consult the GitHub repository (https://github.com/csiro-robotics/
raycloudtools) for the most current information and updates. For

this evaluation, the latest publicly available version of RCT at time
of processing (14 November 2024, with commit hash 9f696d0) was
utilized.
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Deriving a QSM from a PC using RCT involves a multistep
processing workflow (Fig. 4). The process starts by converting the
PC, which may contain multiple trees, into a (synthetic) ray-cloud
file, which includes the vector from each LS point to the sensor’s
position during measurement, enabling the reconstruction of the
individual ray-vectors (from endpoint to source). While RCT, as the
name suggests, is fundamentally based on the ray-cloud concept
(Lowe and Stepanas 2021), its default RCT-QSM does not use
this ray information. Only a recently introduced “use-rays” option
allows incorporating sensor positions to reduce overestimation
of trunk diameters in noisy datasets. However, after personal
communication with one of the developers, this study excluded
the option for two reasons: (i) its impact is minimal for low-
noise PCs, and (ii) it requires TLS scan positions or trajectory
estimates, which are not publicly available for the destructive
datasets used here. To meet RCT’s requirement for ray-cloud
file fields, a synthetic ray-cloud was generated by assigning an
arbitrary, static ray origin (e.g. 0, 0, 0).

This synthetic ray-cloud is then used to derive a digital terrain
model employing a so-called visibility culling technique (Katz and
Tal 2015). This approach involves modifying the vertical compo-
nent of the points by adding a paraboloidal function. A convex hull
is then computed from these modified points using qhull (http://
www.qhull.org/), generating an indexed mesh. The upper surface
of the convex hull is removed, leaving a mesh that approximates
the lower bound of the terrain surface. Finally, the paraboloidal
function is subtracted, yielding a triangle mesh that serves as an
approximation of the ground surface (Lowe et al. 2021).

This mesh, together with the synthetic ray-cloud, serves
as input for RCT-QSM, implemented in the “rayextract trees”
function, which segments and reconstructs trees using Dijkstra’s
shortest path algorithm. This results in a forest of disjoint acyclic
graphs, where each point is linked to a nearby parent. To trace
the branches, the edge lengths in the graph are determined using
squared distances rather than the standard Euclidean distance.
Additionally, these edge lengths are weighed to penalize large
direction changes from root to leaf. The shortest paths with the
longest Euclidean distances are clustered to identify the root
points of each tree stem. From these roots, the tree’s structure is
iteratively computed, segment-by-segment, as cylindrical shapes.
New branches are formed whenever a child point significantly
deviates from the stem (Bohn Reckziegel et al. 2025). It is to be
noted here, that besides the “use-rays” parameters there are other
parameters, such as a maximum distance between neighboring
points in a tree, which can be specified in RCT-QSM. In this study
the sensitivity of these parameters to the results was not assessed
but instead the default values were used.

The derivation of single-tree volumes from the generated
RCT-QSMs was automated using a custom python script which
computes the volume of each generated mesh-file using the
open-source library PyMeshLab (https://github.com/cnr-isti-
vclab/PyMeshLab, last accessed: 12 December 2024; Muntoni and
Cignoni 2021).

State-of-the-art quantitative structural model
algorithms used for comparison
To evaluate and contextualize the performance of RCT-QSM, a
comparative analysis was carried out against volumetric recon-
struction obtained from four state-of-the-art QSM algorithms.
The comparison includes AdTree (Du et al. 2019), TreeQSM (Rau-
monen et al. 2013), AdQSM (Fan et al. 2020), and SimpleForest
(Hackenberg et al. 2015a). The volume reconstructions produced
by these algorithms were initially conducted and published by

Ali et al. (2025). The following summaries are adapted from their
study and provide a concise overview of how each QSM was
derived using the respective methods.

TreeQSM
TreeQSM, introduced by Raumonen et al. (2013), reconstructs
trees by fitting hierarchically organized cylinders to the tree’s
surface derived from TLS PCs. The method starts with noise
filtering and PC segmentation into connected surface patches.
These patches are assembled using a building-brick strategy
and later segmented into nested cylinders representing branches
and stems. In this study, TreeQSM version 2.4.1 was used due
to its more reliable handling of small branches compared to
later versions. The algorithm, implemented in MATLAB, allows
for extensive parameter tuning. The parameters PatchDiam1,
PatchDiam2Min, and PatchDiam2Max were optimized across various
geographical locations to ensure robust modeling. Optimized
parameter values were chosen from three tested combinations
of the parameters for 20% of the destructively harvested trees
as sample trees, balancing accuracy and computational cost. The
eventually determined parameters for PatchDiam1, PatchDiam2Min,
and PatchDiam2Max were 2, 4, and 3.

SimpleForest
SimpleForest is an extension of the SimpleTree framework (Hack-
enberg et al. 2015a, 2015b), offering advanced pre-processing rou-
tines including outlier removal, voxel grid filtering, and curvature
filtering. Tree reconstruction uses a PCA-based stem detection
and the “SphereFollowing method” for cylinder fitting. Imple-
mented as a plugin in CompuTree, SimpleForest allows for consid-
erable customization, including automatic optimization of three
core parameters across 125 combinations. Post-fitting, a median
filter is applied to correct irregularities, and the “SphereFollowing
Advanced” algorithm is used to refine fitting by cluster (e.g. stem
vs. branches). Despite offering additional filtering options, such as
shoot correction, these were omitted here due to their tendency
to introduce inaccuracies in cylinder diameter. This decision was
based on empirical observations from our dataset, where these
filters consistently produced underestimated measurements. As
a result, maintaining geometric fidelity took precedence over
theoretical corrections.

AdTree and AdQSM
AdTree (Du et al. 2019) employs a fully automated pipeline for
generating detailed 3D tree models from PCs. It begins with skele-
ton extraction using Delaunay triangulation and MST analysis,
followed by simplification and cylinder fitting to model the main
trunk and branches. Although AdTree does not perform geometric
analysis (e.g. volume estimation), the model can be converted
into a watertight mesh in CloudCompare, where the volume is
computed using the “Measure Volume” function.

AdQSM (Fan et al. 2020) builds on AdTree by introducing semi-
automated trunk identification and direct volume estimation.
It uses the same MST-based skeleton extraction but requires
manual input to ensure accurate trunk fitting. Two critical param-
eters, Height Segmentation (HS) and Cloud Parameter, govern
model accuracy. Volume estimates are averaged across a range
of parameter settings to enhance reliability. AdQSM offers a more
streamlined workflow with minimal parameter tuning, making it
a practical alternative to more complex QSM frameworks, partic-
ularly for large-scale or time-sensitive applications.
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Figure 5. Diagram displaying the methodological framework including the respective input data for RCT-QSM and the used reference data.

Validation framework
To evaluate the performance and applicability of RCT-QSM,
this study employs the following methodological framework
(Fig. 5):

(1) Comparison with destructive sampling: RCT-QSM results
were qualitatively and quantitatively compared to destruc-
tively determined single-tree volume and AGB measure-
ments from the previously introduced 124 trees. The metrics
used in this comparison are detailed in Section 3.3.2.

(2) Comparison with other state-of-the-art QSM solutions:
The results from RCT-QSM were validated against results
obtained from four state-of-the-art QSM algorithms. These
include AdTree (Du et al. 2019), TreeQSM (Raumonen et al.
2013), AdQSM (Fan et al. 2020) and SimpleForest (Hackenberg
et al. 2015a).

(3) Point density sensitivity analysis: The PCs used in the
destructive sampling evaluation were systematically down-
sampled. The downsampling yielded point densities of 1
point per 0.1 cm voxel to 1 point per 50 cm voxel. RCT-QSM
models were generated for each density level. The obtained
results were compared against the destructive reference
data. This analysis provides insights into how point density
affects reconstruction accuracy and runtime and is detailed
in Section 3.3.1. For comparison, volumes and runtime for
model generation as functions of point density were also
analyzed for TreeQSM, which has proven to be the best of
the state-of-the-art methods.

(4) Scalability and reliability testing: Single-tree volumes
derived from allometric models at experimental plots A
and B were compared to RCT-QSM estimates using the
same metrics as in (1). In contrast to (1), (2) and (3), the
input data for this analysis are not presegmented PCs of
single-trees but one co-registered PC for the experimental
plots A and B, respectively. This evaluation assesses the
method’s scalability in terms of accuracy and computational
requirements.

All computations using RCT-QSM were executed on an Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 512 GB of RAM.

Point density sensitivity analysis
A systematic sensitivity analysis was performed to evaluate how
changes in point density affect RCT-QSM. The ray-cloud for each
of the 124 trees was systematically downsampled using RCT’s
“raydecimate” function, which spatially reduces the density of
points to one point per x cm voxel, by picking one point within
each voxel (Lowe and Stepanas 2021). Fifteen resampling param-
eters were tested: 0.1, 0.5, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 30, and 50 cm
voxel size. This resulted in a total of 1860 PCs (15 parameters × 124
trees), which were processed using the processing chain depicted
in Fig. 4. For consistency, the same ground mesh, derived from the
original PC, was applied across all reconstructions, assuming that
in real-world scenarios, a sufficiently accurate ground mesh can
be obtained. Differences in the resulting volumetric reconstruc-
tions were visually inspected, and a detailed numerical sensitivity
analysis was carried out using the metrics described in Section
3.3.2.

Statistical evaluation
The RCT-QSM-derived volumes from the various scenarios as
well as the volumes reconstructed using state-of-the-art QSMs
were compared with the respective reference volumes, which
were obtained either through destructive sampling, or modeled
using allometric equations. This comparison was performed qual-
itatively by visually inspecting and analyzing the reconstructed
models and quantitatively through linear regression analysis and
the computation of the following performance metrics: relative
bias, concordance correlation coefficient (CCC; Lin 1989), Root
Mean Square Error (RMSE), and Normalized Root Mean Square
Error (NRMSE), which is normalized by dividing the RMSE with
the absolute difference between maximum and minimum of the
reference values.
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Figure 6. Comparison of destructively measured volumes with RCT-QSM-derived volumes across all datasets (upper-left) and for individual datasets.
The upper-left plot uses logarithmic scaling for the axes to accommodate the wide range of single-tree volumes, while the individual dataset plots
feature linear scaling with axis limits tailored to each dataset. Shaded regions around the linear regression lines represent the 95% confidence
intervals of the corresponding regression models. The dashed line corresponds to the 1:1 reference line.

Results and discussion
Comparison with destructive data
In the combined analysis featuring all 124 trees (Fig. 6), the CCC
between RCT-QSM and reference volume is 0.954, with a small
but consistent negative bias, which can be observed across all
datasets investigated. The bias is less pronounced for Hackenberg
et al. (−3.7%) than for Demol et al. (−7.4%) and Gonzales de
Tanago et al. (−7.5%). Overall accuracy, expressed as NRMSE, is
highest for the dataset by Demol et al. (5.3%, n = 60) and slightly
worse for Hackenberg et al. (9.2%, n = 36) and Gonzales de Tanago
et al. (10.8%, n = 28). No clear pattern (species distribution, PC char-
acteristics, etc.) was found to further explain those differences.
The computed linear regressions align closely with the plotted 1:1
reference lines.

Comparison with other state-of-the-art
quantitative structure model solutions
A comparison of RCT-QSM with several state-of-the-art methods,
including AdQSM, TreeQSM, AdTree, and SimpleForest, reveals
that RCT-QSM and TreeQSM deliver the best overall performance
(Figs 7 and 8). For each tool we followed the suggestions of authors
and developers for achieving best results. The performance dif-
ferences between RCT-QSM and TreeQSM are minimal. While
TreeQSM achieves slightly lower RMSE and NRMSE values, RCT-
QSM demonstrates marginally superior performance in terms
of CCC and bias. In contrast, AdQSM and SimpleForest exhibit
substantial systematic biases of −30.3% and 21.9%, respectively.
With respect to (N)RMSE, AdQSM, AdTree, and SimpleForest show
comparable errors around 7%, approximately 2 percentage points
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Figure 7. Comparison of destructively measured tree volumes with volumes obtained from the five tested state-of-the-art QSM algorithms AdQSM,
TreeQSM, AdTree, Simple Forest and RCT-QSM.

higher than those of RCT-QSM and TreeQSM. These results col-
lectively indicate that TreeQSM and RCT-QSM are the most accu-
rate and reliable methods among those evaluated. The RCT-QSM
processing time for a single pre-segmented PC is on the order of
5 s, depending on the size of the input PC.

An exemplary visual analysis of two relatively large tropical
trees from Gonzales de Tanago et al. (IND10 and GUY01; Fig. 9,
Table 5) exhibits differences between the reconstruction results.
RCT-QSM demonstrates the most detailed reconstruction result,
modelling very fine branches in the upper tree crown. For GUY01,
which has point coverage throughout the canopy, these fine-scale
RCT-QSM reconstructions appear largely realistic upon closer
inspection. In contrast, some small branches in IND10 appear
artificially inferred. Here it should be noted that the software
“treetools” (Lowe et al. 2021) offers manipulation of RCT-QSM
derived results offering also a pruning function which allows
pruning branches larger than a certain diameter. For this analysis
no pruning was applied. Despite accurately reconstructing the
tree crown, RCT-QSM, like other QSM methods except AdTree, sig-
nificantly underestimated the volume of GUY01. This is primarily
due to a consistent underestimation of lower stem diameters, and
particularly a severe underestimation of buttresses. Such issues
are known for QSM applications and often result in systematic
underestimation of tropical trees, where buttresses can contain a
substantial proportion of AGB (Ali et al. 2025).

Despite a substantially lower point density beginning in the
upper half of IND10’s trunk, all reconstructions are largely com-
plete, in the sense that no large tree parts are missing in its
reconstruction or in that of any other tree. SimpleForest recon-
structs few higher-order branches and twigs, yet yields the highest

volume, affirming that accurate trunk reconstruction is the pri-
mary driver for high-quality QSM volume estimates. TreeQSM
exhibits partly unrealistic tree volume in the upper canopy for
IND10. Despite the presence of some inaccurate model compo-
nents, the total volume closely aligns with the reference volume.
Given the large sample size used in this comparative analysis,
the results presented in Figs 7 and 8 can be considered robust.
However, Fig. 9 serves as a reminder that, for individual trees,
QSM may occasionally produce accurate tree-level volume esti-
mates for the wrong reasons. Future studies could benefit from
a more detailed assessment of QSM accuracy across distinct tree
compartments.

Point density sensitivity analysis
PCs with decreasing density were generated by thinning out the
original PC. At the levels of voxel sizes 0.1, 0.5, and 1 cm practically
no notable change in the total number of points per tree occurred:
median point number per tree drops from 355 000 to 339 000
points. When changing the voxel size from 2 cm to 10 cm, the
point number is reduced considerably and the median drops from
174 000 to 16 000 points (i.e. one order of magnitude). For the
lowest density of 1 point per 50 cm voxel the median point number
is 780.

The sensitivity analysis reveals a strong relationship between
PC density and the robustness of RCT-QSM reconstructions. The
method maintained high reconstruction success rates down to
a density of 1 point per 10 cm voxel, with 98% of PCs yielding
valid QSMs. However, a sharp decline in success was observed
below this threshold, dropping to ∼52% at 1 point per 20 cm
voxel and just 15% at 1 point per 50 cm voxel (Figs 10a, and 11,
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Figure 8. Bar plots showing the obtained error metrics for the five tested solutions (n = 124).

Table 5. Numerical results for the trees presented in Fig. 9.

Tree ID Reference volume
[m3]

RCT-QSM [m3] AdQSM [m3] AdTree [m3] SimpleForest [m3] TreeQSM [m3]

GUY01 18.32 12.89 9.02 17.06 13.25 12.57
IND10 2.74 3.09 2.76 2.38 3.63 2.58

RCT-QSM curves in green). When considering only successful
reconstructions, error metrics such as bias, CCC, and (N)RMSE did
not exhibit a clear dependence on point density, but substantial
variability of the metrics was observed across different resam-
pling configurations (Figs 11 and 12). This trend is consistent
with visual assessments of reconstructed trees (Fig. 13), which
showed no clear improvement in structural accuracy at higher
point densities. These findings suggest that, when RCT-QSM pro-
duces a reconstruction, it can generally be considered reliable.
However, it is important to note that the analysis was based on
high-quality PCs acquired using advanced scanners and dense
scanning protocols. For PCs with higher noise levels or uneven
sampling, the influence of point density is expected to be more
significant.

There is, however, a notable effect of point density on runtime.
On the processing machine used (see Section 4.4.1 for details),
the median runtime remained stable at 7 s per tree, even when
the PC was thinned up to a density of 1 point per 2 cm voxel.
Decreasing density further to 1 point per 10 cm voxel, there is a
slight drop from 7 to 3 s per tree. This goes along with a median
point reduction to 5% of the original number. For sparser PCs
runtime decreases strongly, but—as shown above—also quality of
volume estimates does. There is, however, a notable variation in
runtime per tree, at full resolution this ranges between 0.7 and

101 s, which is attributed to the variety in the different public data
sets. As can be expected, a larger number of points corresponds
to larger processing times, but the correlation is around 50% only
(R2 value).

This analysis was also performed for TreeQSM, since Section
4.2 showed that its performance was very similar to that of RCT-
QSM and exceeded that of the other QSM algorithms. For each
density, optimization of the parameters was performed based
on the distance RMSE between the PC and the fitted model.
Lowering resolution leads to increasing errors, but up to a density
of 1 point per 3 cm voxel the errors increase in size compa-
rable to the errors of RCT-QSM, albeit with a bigger variation
(see Figs 10b, 11, and 12). For lower density up to 1 point per
5 cm voxel the errors and variation increase, most notable is
the increase in bias. However, the errors metrics are comparable
in magnitude to those of RCT-QSM. For even sparser PCs, the
errors metrics grow strongly, suggesting a nonlinear increase
in error in relation to reference volume. Up to a density of 1
point per 10 cm voxels models are generated for all trees, but
for lower density no models are generated. Runtime behavior of
TreeQSM across different densities is similar to RCT-QSM and
also in the same order of magnitude. Results on runtime are
not directly comparable on an absolute level, as comparable
but not exactly the same hardware was used for the TreeQSM
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Figure 9. Two exemplary PCs of two trees (GUY01 and IND10) and the corresponding reconstruction results for all tested software tools. For better
visibility the results for IND10 were scaled by a factor of 1.5.

Figure 10. Boxplot diagrams showing the residual volumes of trees from the destructive datasets. Panel (A) presents the residuals for RCTQSM, and
panel (B) presents the residuals for TreeQSM. The color of each box indicates the number of PCs that generated a QSM output in RCTQSM and
TreeQSM, respectively.

experiments. However, runtimes are at the same order of mag-
nitude.

Scalability and reliability testing
Experimental plot A
Applying the RCT approach to the TLS data from experimental
plot A produces the reconstruction shown in Fig. 14. The tree

detection and segmentation performance of RCT-QSM was evalu-
ated using a cross-section of both the segmented PC and RCT-QSM
generated mesh at ∼1.3 m above ground. All 110 trees visible in
this cross-section were successfully detected. However, the RCT-
QSM struggled with some understory vegetation, such as shrubs
and small trees (DBH < 10 cm), which contribute comparatively
little to the total biomass and were excluded from analysis. A
tent-like branch structure in the plot center (Fig. 2C, far right) also
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Figure 11. Performance metrics for the various tested resampling parameters. Note that for larger resampling parameters the number of trees
decreases as point density decreases (top plot). Consequently, metrics for voxel sizes of 10–50 cm have limited comparability.

produced spurious results in the mesh and was omitted. While
further validation is needed, results suggest strong performance
in detecting trees and segmenting tree stems. Detailed canopy
segmentation analysis, which is more complex due to overlapping
crowns, is beyond this paper’s scope. However, the close alignment
between allometric estimates and RCT-QSM results (see below),
and a brief visual inspection suggest good segmentation perfor-
mance.

There is a generally close alignment between the allometrically
and RCT-QSM derived single-tree volumes (CCC = 0.883) with a
tendency for overestimation (Bias = 10.2%), which is largely driven
by outliers. Three large outliers exhibiting substantial overes-
timation of volume can be attributed to ivy (Hedera) growing
along the trees’ stems causing a substantial expansion of the 3D
mesh (Fig. 15B1). A visual analysis of three larger trees (>20 m

in height) reveals a close alignment between the actual branch
topology and the RCT-QSM (Fig. 15A1). For these trees, branch
and stem diameters also correspond well with the PC. However,
deviations are observed in the lower stem regions, where the
reconstruction diverges slightly from the PC. This discrepancy is
likely due to the reconstruction not fully capturing this part of
the tree, as the mesh is extended at a certain height to con-
nect with the terrain, presumably to minimize the influence of
spurious ground points caused by potential understory. For the
trees in experimental plots A and B, this is likely to have only
minimal impact on the estimated volume. However, as men-
tioned above, for larger tropical trees, this could partially explain
the negative bias, as substantial portions of biomass and vol-
ume are concentrated in those tree buttresses (Han et al. 2023,
Ali et al. 2025).
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Figure 12. Scatter plots of the RCT-QSM (upper panel) and TreeQSM (lower panel) results from the point sensitivity analysis shown for resampling
parameters 2, 4, and 10 cm.

Figure 13. RCT-QSM results from the point sensitivity analysis shown for four resampling parameters (0.1, 5, 10, and 30 cm) for two randomly selected
example trees from the destructively harvested dataset: “PSYLB8” from Demol et al. 2021b and “MDD08” from Gonzalez de Tanago et al. (2018).
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Figure 14. Left: Reconstruction result for experimental plot A displaying the generated ground mesh and the individual QSMs for each tree. Right:
Comparison of the RCT-QSM-derived volumes and the allometric volume for experimental plot A. Shaded regions around the linear regression lines
represent the 95% confidence intervals of the corresponding regression models.

Figure 15. (A1) Segmented and shaded PC and RCT-generated meshes of three trees which are standing next to each other. (B1) Segmented and shaded
PC and RCT-generated meshes of a tree featuring extensive ivy growth along the stem. (A2) and (B2) The QSMs of the same trees. The insets 1), 2), 3)
and 4) show more detailed depiction of the RCT-generated meshed overlaid with the corresponding PC.

On the machine described in Section 3.3 the two primary
processing steps, terrain generation, and PC segmentation with
QSM generation, for experimental plot A at its native resolution
(8 GB PC with ∼225 million points) required a total of 81 min.
This includes 45 min for terrain model derivation and 36 min
for segmentation and QSM generation. The maximum memory
consumption was 104 GB. However, based on findings from the
point density sensitivity analysis, processing times and memory
consumption can likely be significantly reduced. Terrain genera-
tion was not included in the sensitivity analysis but is expected
to remain largely unaffected by variations in point density. It can
be expected that even with significantly reduced point counts
moderately complex terrains can be reconstructed with reason-
able accuracy without adversely affecting QSM generation. Con-
sidering the ∼50 min required for scanning at experimental plot
A, the entire workflow, excluding travel times but including data
management, for estimating single-tree biomass using TLS and
RCT-QSM over a ∼3000 m2 plot takes less than 2 h. However,
this does not include any manual intervention, or validity checks,

which might be necessary, especially regarding the segmentation
results.

Experimental plot B
The dataset for experimental plot B was more challenging. First,
occlusions during the acquisition led to significant data gaps
along the lower parts of the stem. Second, the reference data
are expected to be of inferior quality despite considerable efforts
during the manual measurements of DBH and TH. Third, there
are strong topographic variations present. Nevertheless, it was
possible to obtain RCT-QSMs for all (19) trees for which allometric
reference data was obtained and to compare the results (Fig. 16).
The results indicate a strong correlation between RCT-QSMs and
the allometries (CCC = 0.85). However, the NRMSE (20.6%) for this
dataset is significantly higher compared to previously analyzed
datasets. Additionally, this plot exhibits a systematic overestima-
tion (26.3%) of RCT-QSM derived volume, likely due to increased
noise and reduced point density in the lower sections of the stems.
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Figure 16. (A1) Segmented and shaded PC and RCT-generated meshes of three trees which are standing next to each other. (B1) Segmented and shaded
PC and RCT-generated meshes of a tree featuring extensive ivy growth along the stem. (A2) and (B2) The QSMs of the same trees. The insets 1), 2), 3)
and 4) show more detailed depiction of the RCT-generated meshed overlaid with the corresponding PC.

Conclusion
This study provides a comprehensive evaluation of the applica-
bility of RCT-QSM for single-tree volume estimates to enhance
AGB estimation in various forest environments, utilizing dynamic
UAV-based LS as well as static TLS. The findings are based on
various datasets featuring altogether reference volumes and TLS
from 124 destructively harvested trees located in seven countries
and reference allometry and LS data acquired at two experimental
plots in Austria. Compared to destructively harvested single-trees
RCT-QSM yields NRMSE of 5% and high CCC of 0.954 with small
performance differences between the four reference datasets. It
remains to be investigated if these differences arise from tree
species, scan protocol, or other sources.

Among the methods evaluated, RCT-QSM and TreeQSM
consistently demonstrated the highest accuracy and reliability,
with minimal differences in performance. While TreeQSM showed
slightly lower (N)RMSE values, RCT-QSM achieved marginally
better CCC and smaller bias, clearly outperforming AdQSM,
AdTree, and SimpleForest, which exhibited greater errors and
substantial biases. Visual and quantitative assessments confirm
robust overall performance, though some structural inaccuracies
highlight the need for compartment-level validation in future
studies.

Reducing point densities up to 1 point per 10 cm voxel only had
a marginal influence on the accuracy of the RCT-QSM results indi-
cating robustness against less dense scanning patterns enabling
faster data acquisition. As the reduction in point number was spa-
tially uniform, this corresponds to moderate resolution of scans,
rather than decreasing the number of scans. The latter could
increase the number of occlusions, which does not correspond to a
uniform thinning. The impact of occlusions and other PC artifacts
on RCT-QSM estimated tree volume remains to be analyzed. Based
on the reconstruction success figures and the volatility in metrics,
QSM analysis from PCs with density of 1 point per 10 cm voxel or
lower is not recommended.

RCT’s currently still relatively sparse documentation poses
challenges in applying the software and fine-tuning its

parameters without examining the source code in detail. Nev-
ertheless, this study demonstrates a very promising performance
of RCT-QSM. It performed very well in deriving single-tree
volume with high correspondence to destructive data and
species-specific allometries. Notably, RCT-QSM allows for a
highly automated processing workflow, performing the tree
segmentation and 3D modelling in one step. The segmentation
results were not explicitly analyzed in this study. However,
exemplary validity checks revealed no substantial deviations
due to mis-segmentation for the experimental plots, which was
also reflected in the generally good agreement with allometries.
For more complex plots, the segmentation step could pose
greater challenges, as also highlighted by Cherlet et al. (2024).
In their segmentation benchmarking (Cherlet et al. 2025), RCT
achieved the best performance among all tested segmentation
approaches for most plots. Visual inspection showed that larger
trees were often split into multiple segments while smaller
trees were frequently merged into single instances, leading to
missed detections and a lower recall. Regarding the volumetric
reconstruction, the results indicate that RCT-QSM outperforms
the tested state-of-the-art methods, with the added benefit
of more efficient processing of large datasets with minimal
parametrization (and no need for single tree segmentation). The
point density sensitivity analysis indicates higher robustness
against the completeness of the input PC for RCT-QSM, increasing
its practicability, e.g. in cases when LS data over larger areas shall
be processed.

While RCT-QSM shows promising results in accurately esti-
mating tree volume, a key challenge remains the conversion of
single-tree volume to AGB. This conversion is challenging due to
the significant variability of wood density among species, across
biomes, and even within individual trees. Accurate AGB esti-
mation requires multiplying single-tree volume by basic wood
density, which is the ratio of oven-dry mass to green volume.
However, these conversions introduce substantial uncertainties.
Wood density can vary significantly between trees of the same
species and even within individual trees, as demonstrated by
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Burt et al. (2021), who observed large gradients in tissue density
within individuals growing on different substrates and across
THs. LS cannot provide information about tree-specific wood
density. In the absence of tree-specific data, databases like the
GWDD (Chave et al. 2009, Zanne et al. 2009) provide tabulated
species-specific wood densities, a practical but imperfect solution,
introducing uncertainties of up to 10% (Demol et al. 2021a). This
variability highlights that even with rigorous efforts to reduce
measurement uncertainty, derived AGB values may still deviate
from actual AGB.

Taken together, these uncertainties underscore the need for
improved, scalable approaches to tree-level volume estimation,
an area in which RCT-QSM shows considerable promise. RCT-QSM
can greatly improve the automation and efficiency of deriving
single-tree volumes, thereby significantly automating the process
of identifying species-specific allometries. This could also bene-
fit communities that lack access to or expertise in utilizing LS
and RCT-QSM. However, given the novelty of RCT-QSM and the
limited number of studies utilizing this tool, more experience
needs to be gathered and shared among potential users of RCT-
QSM. In particular, the processing parameters of RCT-QSM and its
performance across different tree compartments would deserve
further exploration in future studies. Also, its applicability in more
challenging environments and scenarios with less dense and
dynamic scanning patterns needs to be evaluated. Our findings
suggest that RCT-QSM is a highly competitive and efficient tool
for generating high-quality single-tree volume estimates at large
scales with minimal parameterization.

Ground-based LS, whether from static or dynamic platforms
(TLS, MLS), was demonstrated to deliver valuable information for
forest inventories (Liang et al. 2016). Also, national forest inven-
tory (NFI) authorities are investigating these possibilities and
constraints (Holvoet et al. 2025). The high reliability of generating
QSMs with RCT, that we have found in our study, suggests their use
for obtaining very accurate tree volume for entire NFI plots. The
reliability applies to both, single tree volume and performance at
plot level. Together with additional information on tree species
and their corresponding wood density this could establish QSMs
as the source of AGB in any forest inventory, moving from a field-
estimate based on allometric equations to a “measurement”. The
practicability of QSMs might also open an interesting avenue
to obtain merchantable wood volume and advance forest econ-
omy. As with many technical advancements in forestry, a major
challenge will be the practical implementation into practitioners’
workflows. To address this, efforts will be needed to lower the
entry barriers and ensure these tools can be used effectively.
Following the verification of reliability and accuracy, efficiency,
especially with respect to data acquisition for QSMs, will have
to be investigated next. With high density PCs from high-quality
UAV-borne LS, single tree QSMs for entire forest transects or for
larger plots become an option [as investigated in Bohn Reckziegel
et al. (2025) for savanna/open forest]. This will allow increasing the
number of reference and training data and reducing the necessary
extrapolation for assessing wood volume for large forest areas.
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