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Preface

In times marked by global crises, Europe’s resilience—digital, societal, and environmental-has never been more
vital. Being resilient means safeguarding our societies and our future in the digital space race: upholding
our laws, values, and sovereignty in how data are accessed, shared, and protected. With the adoption of
the European Union’s Data Act (September 2025) and the world’s first comprehensive AI Act, Europe has
taken bold steps to ensure that innovation and competitiveness go hand in hand with trust, fairness, and
fundamental rights. Together, these acts set the stage for a distinctly European way of governing the digital
future, ensuring that Big Data and AT serve not just technology, but people, society, and the planet.

Big Data from Space (BiDS) is not just about observing the Earth. It is about enabling smarter, faster,
and fairer decisions to meet the challenges of our time. From climate change and civil security to sustainable
competitiveness and digital innovation, the insights we derive from spaceborne and terrestrial data are
essential for evidence-informed action. In this sense, BiDS’25 was not only about advances in science and
technology, but also about ensuring that data-driven innovation supports Europe’s ability to address societal
and security challenges.

Building on the success of the initiatives introduced in the last edition, BiDS’25 organised 23 satellite
events, 28 demos, lightning talks, and birds-of-a-feather sessions. As in BiDS’23, code sprints were held with
0SGeo and Pangeo to promote collaborative open-source software development. BiDS’25 also introduced
new formats and perspectives, including an award session for the best start-up ideas. It demonstrated how
scientific breakthroughs can evolve into entrepreneurial solutions and strengthen Europe’s competitiveness.

Another novelty for this year’s conference was the panel discussions that aligned with our mission of
connecting deep tech with deep purpose. On Wednesday, October 1, “Society at Risk: Challenges and
Priorities in the Space-Data Age”, explored critical questions at the intersection of technology and societal
well-being. On Friday, October 3, the final day of the conference, "From Raw Data to Real Decisions: Systems
that Work in the Space-Data Age" focused on bridging raw data to actionable decisions through resilient
infrastructure, AI, cybersecurity, and ethical frameworks—setting priorities for future research, policy, and
societal impact. These conversations reflected our commitment to turning planetary-scale data into scalable
solutions for global challenges.

Latvia’s space sector, a partner of ESA with a rich historical heritage and modern technological strengths,
brought unique value to this conference. With the support of the Investment and Development Agency of
Latvia (LIAA), a B2B networking event and industrial exhibition highlighted Latvia’s growing role in the
European space economy.

The figures of BiDS’25 demonstrate both its reach and dynamism: two weeks before the start, 621
participants had registered. With more than 40 participants on average, the satellite events were fully booked,
and 152 developers had registered for the code sprints. A total of 132 submissions were received from 34
different countries, including papers, demos, satellite, and award events. Each submission was reviewed by
at least two experts from the Programme Committee. Of the 75 papers submitted, 42 were accepted as
oral presentations and 21 as posters. While Earth Observation played a central role in this edition, BiDS
covers the full spectrum of space domains—navigation, science and communications—and this breadth remains
essential to its identity. The presentations were organised across seven thematic sessions: Towards Digital
Twins: Integrating Data, Models, and Insight; Data Cubes: Advances and Applications; FAIR Workflows;
Data Infrastructures & Services at Scale; GeoAl & Geospatial Intelligence; Optimising Processing from Edge
to Cloud; Societal Applications: Risk, Resilience, and Resource Monitoring.

This year’s BiDS’25 keynote talks captured the breadth and urgency of the challenges at the intersection
of data, science, and society. Thomas Brunschwiler (IBM Research Europe, Switzerland) explored how
tokens and embeddings are emerging as a new lingua franca for Al-driven Earth Observation, reshaping
environmental science and data workflows through foundation models. Lynn Dudenhéfer (Senior Intelligence
Professional) highlighted how the fusion of open-source intelligence and EO data is becoming indispensable
for addressing rapidly evolving threats, from transnational organised crime to geopolitical instability, in a
security landscape increasingly shaped by GenAl. Rosa M. Badia (Barcelona Supercomputing Center, Spain)
connected the dots from Europe’s world-class supercomputing infrastructure to domain-specific and FAIR
application workflows and digital twins. She showed how HPC, AI, and data analytics can together deliver
actionable solutions for society, with a focus on geohazards and risk mitigation. Together, these keynotes set
the tone for BiDS’25: advancing science and technology while ensuring that innovation is directed towards
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resilience, security, and sustainability.

Altogether, BiDS’25 offered a vibrant mix of science, technology, policy, and entrepreneurship. It stood at
the intersection of climate resilience, societal security, and digital sovereignty, reminding us that responsible
innovation is no longer optional. By bringing together diverse communities, BiDS’25 reaffirmed its role as
the place where Europe and the world set the course for data-driven resilience and sustainability. Several
contributions pointed to applications with direct impact on resilience and decision-making globally, as well
as for EU Member States and institutions, showing a strong bridge between research and operations. This
resonated with the European strategic context, where flagship programmes such as the EU Space Programme—
covering Copernicus, Galileo, and other space infrastructures—together with key policy frameworks like the
EU Strategic Compass and the EU Space Strategy for Security and Defence, supported the Union’s ambition
for leadership and strategic autonomy.

We express our sincere gratitude to the Programme Committee members for ensuring the excellence of
this programme and these proceedings. Our local partner, the Ministry of Education and Science of Latvia,
played a pivotal role in hosting BiDS’25. Thanks to their support, we gathered at the inspiring National
Library of Latvia, and the University of Latvia hosted the satellite events. BiDS’25 again showcased the
strong engagement of its three organising entities—SatCen, ESA, and JRC—which remain at the forefront of
innovation and central to the themes of this edition. Ultimately, the outcomes of BiDS’25 extend beyond the
scientific community to operational actors—including those working in security and decision-making—ensuring
that innovation reaches end-users and has tangible impact.

Pieter Kempeneers, Stefanie Lumnitz,
Sergio Albani

ii
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ABSTRACT

The Digital Twin Earth (DTE) developments are
constantly growing, offering an innovative approach to
understand and manage complex, rapidly evolving
environments. While key DTE initiatives under development
are addressing domains such as climate or extreme weather
events, a dedicated DTE for Defence and Security (DTE4DS)
will answer specific needs in these complex and sensitive
domains. DTE4DS, a Joint Initiative (JI) launched by the
European Defence Agency (EDA) and the European Union
Satellite Centre (SatCen), addresses the management and
exploitation of Earth Observation (EO) Big Data, together
with a very large amount of collateral data sources for
defence or security scenarios. The system is conceived to
exploit synergies with existing relevant initiatives while
offering unique capabilities to defence and security
stakeholders.

Index Terms— Digital Twins, Earth Observation, Big
Data, HPC, Security, Defence

1. INTRODUCTION

Security is an intricate subject in which a diverse number of
scenarios can be triggered by different causes. Today,
identifying causes of conflicts or disasters and understanding
the link between these triggering events in diverse domains
(e.g. climate, health, energy, food) and the impact on security
is becoming more and more important not only for taking
immediate responses, but also for policymaking. The
evolution of security and its growing importance is
highlighted in the most relevant European Union (EU) and
global policies (e.g. EU Strategic Compass [1], EU Space
Strategy for Security and Defence [2], EU Green Deal [3],
UN Sustainable Development Agenda [4]), which are calling
for advanced technological solutions to enhance current
capabilities in the defence and security domains.

Digital twin is a concept widely used for design,
simulation and validation of results; when applied to the
modelling of the Earth and its phenomena, it is identified as
a promising evolution axis to provide end users with a holistic
disruptive solution that will change the access to (and the

! https://destination-earth.eu/

amount of) information to support decision-making processes
in given scenarios. A DTE relies on the coherent exploitation
of EO Big Data, including both satellite and aerial sources,
and its integration of a wide variety of on-ground data sources
tailored to each scenario needs. The combination of advanced
Al analytics and High-Performing Computing (HPC)
capacity makes it possible to generate a dynamic virtual
representation of the real world that enables an interactive
interface towards the user, enabling the human-triggered
simulation of events and its forecasted impact. The most
recent initiatives at EU level (e.g. DestinE’) show the
potentialities of DTs, with a focus on EO data.

In defence and security, such a virtual model will mean
changing the paradigm for decision-making in the field of
Intelligence, Surveillance and Reconnaissance (ISR),
boosting the ability to respond to diverse threats and crises in
operational and strategic situations and, as final goal, also in
tactical ones.

However, when addressing sensitive topics that directly
affect security of citizens and societies, it is very important to
consider which specific additional needs must be considered
and the benefits provided for the relevant stakeholders for
defence and security. The present work aims at presenting the
status of the DTE4DS, an EDA-SatCen JI carried out in
cooperation with industry.

1.1. Overview

The first phase of the EDA-SatCen DTE4DS JI consisted in
a landscape study performed in a structured activity flow
(Fig.1). The study started with a state-of-the-art analysis to
assess the status of relevant technologies and to identify
synergies with initiatives in the civil domain, and with the
definition of a set of reference scenarios that served to
identify high-level user needs. After interaction with potential
users in EDA and SatCen user forums, the reviewed reference
scenarios and preliminary user needs have been used to
sketch a high-level system architecture, to identify the
technology gaps and to define a coherent technology roadmap
and development plan, paving the way for the future
development phases of this DTE4DS.
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2. ADIGITAL TWIN EARTH FOR DEFENCE AND
SECURITY: STATE-OF-THE-ART

2.1. DTE definition

If a Digital Twin is “a realistic digital representation of
something physical” [5], or “a virtual replica of a physical
system whose performance it can help optimize’”, the DTE
should be a virtual representation of the Earth that is
georeferenced and connected to the world’s digital
knowledge archive. Such a system implements a Big Data
lake and associated services that allow users to navigate
through space and time, access historical data, and create
future predictions. It can also be defined as digital replica of
an Earth system component, structure, process, or
phenomenon, obtained by merging digital modelling and
real-world observational continuity — i.e. remote, in-situ, and
synthetic data streams. A DTE must be seen as a living digital
simulation model that updates and changes as its physical
counterparts’ change [6]. A DTE could also be seen as an
entire ecosystem, integrating and orchestrating various DTs
to allow for simulations and predictions of complex Earth
scenarios.

2.2. Identified existing DTE initiatives

An exhaustive analysis of the most relevant DTE initiatives
was performed during the first phases of the study (first
quarter of 2025), identifying the key initiatives (Table 1) to
be considered to advance in the DTE4DS development.
DestinE and EDITO projects are already functioning,
however their development will continue in the next years
(2030 as foreseen) to include new DTEs. In addition, there is
a large and ever-growing number of local DTs initiatives in
Europe (apart from manufacturing industries), forming part
of digital transition strategy. The DTs are being implemented
mostly at the city level, with the focus on urban planning,
climate change adaptation, traffic controlling and emergency.
They may be engaged in a future DTE ecosystem for

2 Mirroring Reality. Digital Twins in Aerospace and Defence, Capgemini
Research Institute (2023)

downscaling simulations, predictions and training (e.g. for
critical infrastructure protection).

So far, the use cases foreseen in these key initiatives do
not consider directly the operational needs of users in the
security/defence domain, which are, in general, more
demanding in terms of reliability, accuracy and protection of
information. Hence, a clear need emerges for the DTE4DS, a
system specifically tailored to defence and security actors,
guaranteeing maximization of synergies and no overlapping
with initiatives in the civil domain. The DTE4DS would take
EU capabilities for decision-making to the next level,
changing the paradigm of usage of information for ISR
activities.

Table 1: main DTE initiatives relevant for the DTE4DS

Initiative Scope Main
stakeholders
DestinE! EU funded initiative to EC, ESA,
develop a digital twin of EUMETSAT,
our planet by 2030. ECMWF
EDITO? | A virtual representation of EC,
marine and coastal CMS,
environments around the EMODnet
globe
EDDI Establish a robust digital EDA,
twin framework tailored EU MoDs
for defence applications,
enabling enhanced
simulation, planning, and
predictive maintenance
capabilities.
3. REFERENCE SCENARIOS

Given the range of defence and security scenarios triggered
by the current geopolitical situation, and the wide span of
modelling specificities for each of them, it is needed to select
a set of reference scenarios that serve as baseline to identify
high-level user needs that drive the preliminary system
design. The reference scenarios selected, based on interaction
with potential users and relevant reports [7], [8], include:

1) Preparation of the battlefield

2) Forced displacement

3) Situational awareness for crises and disasters
4) Maritime surveillance

These scenarios contemplate different decision-making
time spans related to the need for information (i.e. short,
medium and long-term) and have served to identify end-user
needs associated to each of them.

3 https://dive.edito.eu/
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4. DESIGN DRIVERS

The final technical implementation of the DTE4DS and its
sharing rules should be carefully decided among relevant
stakeholders. However, there are a few high-level design
drivers to be considered since the early phases for the
initiative, to ensure that the solution is feasible and disruptive,
while aligned with user needs.

On one hand, the DTE4DS must be designed to: 1)
increase the operational efficiency for decision-makers; 2)
enhance the preparedness with predictive analysis; 3) provide
new geospatial products for informed decision-making in the
short/long term; 4) enhance the user experience 5) integrate
user owned data into complex models to enhance the analysis.

On the other hand, the high-level user needs defined for
each reference scenario and time span were key to understand
the technology to be implemented in the DTE4DS, and the
different data sources to be integrated. Therefore, the
DTE4DS system shall be designed to:

1) Integrate very large amounts of EO data and
collateral sources, considering high refreshment
rates (up to continuous update of some sources) to
ensure the provision of up-to-date and timely
tailored information to different stakeholders
involved in a given scenario in line with time span
needs;

2) Provide forecasting capacity to assess impact of
given events through advanced, yet reliable, Al
models;

3) Implement a robust, secure and coherent integration
of data to generate new information products and to
support realistic simulations;

4) Allow a dynamic interface enabling advanced
visualization (e.g. 2D/3D, AR/VR) and interaction
between actors in scenario;

5) Offer the possibility to inject user-owned data to
improve situational awareness capabilities.

On top of these design drivers, it will be also important
to identify the standards to be implemented to guarantee
usability among the security and defence communities and
monitor continuously any ethics issues related to the usage of
data sources with personal information.

5. DATA

While the core data will consist of Big EO Data, scenarios
related to defence and security will also require data from
additional sources, usually sensitive, to be integrated in the
DTEA4DS. This includes geolocation and positioning, on-
ground imagery (e.g. video), social and environmental data
and user-owned sources. Focusing solely on EO data, the
variety and complexity of the geospatial big data needed to
meet end-user needs across different applications is already
considerable. The harmonization and adaptation of various
data types (e.g. SAR, optical), along with different spatial and

spectral resolutions and time series analysis of long-term
archives, will present significant challenges that could be
addressed by leveraging advanced AI models. Table 2
provides more details about the diversity of the data to be
dealt with, along with the specific need for each time spans:
near-real time, mid-term and long-term usage.

Table 2: Main data sources and usage identified
accordingly to time span

Data Near real- Mid-term Long-term
time usage usage usage
EO data Quasi-real | VHR and HR | Archive MR-
(satellite time VHR | multispectral/ LR
and aerial) | multispectral/ | hyperspectral | multispectral/
hyperspectral, and SAR | hyperspectral
and SAR (Aol | (Aol 100 < and SAR
<100 km?) 1000 km?) | (Aol > 1000
km?)
Video (in- Real-time Periodic Archive
situ) UAV/drone aerial video videos
feeds updates
Demogra- | Basic overlays | Preliminary | Long-term
phic and data fusion |resilience and
socio- trend analysis
economic
data
Meteorologi Realtime Short-term Long-term
cal and weather data forecasts climate
climatologic trends
al data
Geolocation | Real-time Monitoring | Analysis of
data from tracking of activity and long-term
mobile population | displacement trends
devices movements patterns
Land cover | Up-to-date Up-to-date Up-to-date
maps, DEM VHR VHR HR
(satellites,
Lidar, etc.)
Social Real-time data Updated Supportive
media/citize about status on spot | use for long-
ns science | infrastructure locations term
status assessment
Security and| Real-time Organization | Long-term
military | information for | of short-term | analysis and
forces own- | decision and actions preparedness
data actuation
sources

6. HIGH-LEVEL SYSTEM CONCEPT

The proposed high-level system architecture for the DTE4DS
consists of multiple interconnected building blocks to ensure
robust performance, security, scalability, and interoperability
across different operational scenarios (Fig.2). The core
architecture is structured into distinct layers to enable
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modularity and efficient integration of very large and diverse
datasets as well as advanced technologies.

1. DATA ACQUISITION LAYER
[EQ Satellites | UAVs | Ground Sensors | OSINT | User-Owned Datasets]

J

2. DATAINTEGRATION & FUSION LAYER
[Data Lakes | STANAG & OGC Standards | Cloud -native Platforms |
Fusion Engines]

g

3. MODELLING & ANALYTICS LAYER
[AI/ML | Cognitive Signal Processing | Threat Forecasting | Simulations]

4. DIGITAL TWIN ENVIRONMENT LAYER

[Virtual Replicas | Dynamic Visualization | Immersive Interaction
(AR/VR)]

U

5. APPLICATION & USER INTERFACE LAYER
[Dashboards | Planning Tools | Real-Time Monitoring | Training Modules]

. 2. High-Level System Architecture of DTE4DS
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1. Data acquisition layer

This foundational layer gathers diverse data streams from
multiple sources with different refreshment rates including,
at least, the data listed in Table 2.

2. Data integration and fusion layer

Collected data is standardized, harmonized, and integrated
through advanced fusion algorithms. This layer ensures data
quality, interoperability and seamless ingestion into the
digital twin environment. Technologies involved include
cloud-native architectures, data lakes and data hubs
compliant with STANAG and OGC standards.

3. Modelling and analytics layer

Sophisticated Al-driven analytics and simulation models
provide predictive insights and scenario analysis. Techniques
employed include machine learning (ML), deep learning
(DL), cognitive signal processing and adaptive data fusion.
Key capabilities include threat assessment, impact
forecasting and decision-support simulations tailored
specifically for defence and security stakeholders.

4. Digital twin environment layer

This core component hosts virtual replicas of defence and
security operational environments, allowing dynamic
representation, visualization and interaction. It supports
immersive interfaces, enhancing situational awareness and
collaborative scenario exploration.

5. Application and user interface layer

Customized interfaces and decision-support dashboards
facilitate user interaction with the DT. This includes
operational decision-making tools, planning modules, real-

time monitoring and training environments. Advanced user
experience (UX) design principles ensure usability and
operational efficiency.

6. Security and Governance Layer

Given the sensitivity of defence and security applications, a
transversal security layer with a robust cybersecurity
framework is integrated across all layers. It comprises:

e Secure data transmission (encrypted communication
protocols);

e Identity and access management (IAM);

e Data privacy and protection mechanisms;

e  Security incident and event management (SIEM);

e Compliance and governance policies aligned with
national and EU security regulations.

The combined architecture provides a secure, flexible and
highly scalable digital ecosystem designed to consider
continuous integration of new capabilities.

7. CONCLUSIONS

The present paper summarizes the status of the EDA-SatCen
DTEA4DS JI. The landscape study performed paved the way
for the next phases that will focus on the prototyping of key
technology blocks to derisk the full-scale system
implementation.
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ENHANCING LAND DIGITAL TWINS THROUGH THE INCORPORATION OF
LAND-USE DATA IN NUMERICAL WEATHER FORECAST MODELS

Garik Gutman

NASA Headquarters, Washington DC

ABSTRACT

Although classified land-cover maps have been used in
numerical weather forecast models, land-use datasets
have not been incorporated at the same level, especially
at a resolution of 1-10km, required in a Digital Twin
design. Agricultural modifications and urbanization
lead to changes in regional temperatures, roughness,
albedos and flux distribution, affecting cloud and
precipitation patterns, thus contributing to regional
variability in weather. Improving representations of
land-use distribution and dynamics is crucial for
accurate weather forecasts. NASA is investing in the
development of Earth System Digital Twins to better
represent, predict, and investigate complex Earth
system phenomena using advanced technologies,
including machine learning and artificial intelligence.
In particular, the NASA Land-Cover/Land-Use Change
Program (LCLUC) is contributing to the development
of Digital Twins by advancing the incorporation of
available land-use data products based on timely
updated  moderate-to-high  resolution  satellite
observations.

1. INTRODUCTION

Land-cover and land-use changes affect regional
temperatures, roughness, albedos and flux distribution,
leading to changes in cloud and precipitation patterns,
thus contributing to regional variability in weather.
Although classified land-cover maps have been used in
numerical weather forecast models, land-use datasets
have not been incorporated at the same level, especially
at a resolution of 1-10km, required in a Digital Twin
design.

In the contiguous United States, a huge portion
of land surface have been altered by anthropogenic
activities, such as irrigation, crops production and
timber harvesting, urbanization, recreation activities.
Additionally, wildland fires have been significantly
impacting land cover characteristics. All these changes
have direct impact on local and regional meteorology.
A tool for assessing these impacts would be a Digital
Twin based on an improved modeling system.

Digital Twin concept is based on developing
an interactive, integrated multidomain, multiscale,
digital replica of the state and temporal evolution of
Earth systems. For weather forecast models, it would
include dynamically integrated land-surface
infrastructure and continuously assimilated timely
observations of changes at land-atmosphere interface.
Current challenges in numerical weather forecast
modeling include relatively low horizontal resolution
and low interactivity with the users. Higher resolution
enables the incorporation of smaller-scale processes,
described with physics, leading to higher fidelity in
local information relevant for users and easier
comparison with observations. Creation of an interface
between model’s outputs and users’ inquiries is one of
the advantages of DT concept compared to a common
modeling approach.

2. THE LCLUC PROGRAM GOALS AND THE
CURRENT OBJECTIVES

The primary goal of the NASA LCLUC program is to
use satellite observations to improve our understanding
of changes at land surface as an essential component of
Earth System Science. The LCLUC program includes
studies that detect and quantify changes in land cover
and land use; examine their impact on the environment
and interactions with climate and society; and model
future scenarios of LCLUC impacts. The LCLUC
program has been developing interdisciplinary
research combining aspects of physical, social, and
economic sciences, with a high level of societal
relevance, using remote sensing data, methods, and
tools. The LCLUC program aims to develop the
capability for annual satellite-based inventories of land
cover and land use to characterize and monitor
changes at the Earth’s surface. Land use is a human
activity therefore social and economic science research
plays a crucial role within the LCLUC program. It
includes quantifying the impacts of changes in human
behavior at various levels on land use, land-use
impacts on society, and how the physical, social and
economic aspects of land-use systems contribute to,
are impacted by and adapt to environmental changes.
LCLUC, ubiquitous worldwide, is having a significant
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impact on the environment, the provision of ecosystem
services, and human livelihoods at the regional,
national, or global scale, often with economic and
policy implications. The policy implications can, for
example, be in terms of current policies that have
prompted or exacerbated land-use change, or policy
changes that would lead to sustainable land-use
practices.

As extreme weather events become more
frequent and severe, they pose significant threats to
ecosystems, infrastructure, and communities. For
instance, hurricanes can cause coastal erosion,
deforestation, and destruction of urban infrastructure,
while droughts may lead to agricultural failures, water
shortages, and ecosystem degradation. Heatwaves can
affect human health or lead to wildfires that devastate
forests and grasslands. Similarly, floods and storms
disrupt entire regions, damaging crops, displacing
populations, and creating health risks. By combining
advanced satellite data on land use with weather
forecast models and socioeconomic indicators,
LCLUC studies will capture the spatial and temporal
dynamics of these events, providing insights into their
impact on land use, economic stability, and societal
well-being.

The goal of the current work is to contribute to
Digital Twins’ development for improving weather
forecasts by providing near real-time data on human
land uses at the highest spatial and temporal
resolutions, useful in simulations of the ongoing
interactive processes in the Earth’s system.

3. DATA AND MODELS USED

Incorporation of land surface data in numerical models
range from coarser spatial resolution sensors, such as
MODIS on Terra and Aqua and VIIRS on Suomi-NPP
platforms to medium-to-high resolution, such as
Landsat and Sentinel-1 and -2, to very high-resolution
data from commercial vendors, such as Planet Lab.
Researchers also use observations from instruments on
board the International Space Station, such
ECOSTRESS (infrared data) and GEDI (lidar data).
Models also utilize the NLCD & NLUD data (Fig. 1).

(@)
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Fig. 1 Satellite-derived National Land Cover Database
(NLCD) and (b) the National Land Use Dataset (NLUD) [1]

Various models have been applied in
advancing the incorporation of land-use data. They
include Land Surface Models, such as NOAH Multi-
parameterization (MP) Heterogeneous Urban
Environments (HUE) and NOAH-MP-Crop models
[2], [3], [4], Community Land Model (CLM) [5],
NCAR-Community Earth System Model (CESM) [6]
and Weather Research and Forecasting (WRF) models,
including NASA Unified WRF (NU-WRF) model [7]
along with meteorological fields and re-analysis data,
such as MERRA or NCEP/NCAR reanalysis.

4. TOWARDS IMPROVING WRF MODELS

The above models are being used by several NASA-
funded LCLUC Program’s teams to study the effect of
incorporating satellite-derived dynamic boundary
conditions in state-of-the art WRFs to improve the
weather forecasts in urban and agriculture sectors.

4.1. Urban studies

The LCLUC ongoing studies are focused on urban
infrastructure (buildings, greenspace, water features),
which would account for variability at scales finer than
the horizontal grid resolution of operational numerical
weather prediction for US cities. These projects use
WRFs with a multilayer urban canopy model to
generate target surface flux fields as well as urban heat
island and precipitation fields. Once validated, these
fields form the targets to train a model to identify
effective land-use parameters for the coarse
operational models and for machine learning and deep
learning algorithms component to a land surface model
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to capture the sub-grid scale effects. In particular, the
role of green infrastructure in coupled land-atmosphere
prediction is assessed.

The remote sensing component include
mapping efforts of highly detailed urban elements such
as trees, paved areas, buildings, turf and natural
grasses. Those are used to develop biophysical
variables such as leaf area index, albedo, emissivity,
building heights, and roughness lengths as input to the
surface models used, such Noah-MP HUE, currently
coupled with WRF models, integrates surface
hydrological processes, including impervious area-to-
vegetation water transfers and pavement shading and
canopy interception. This, in turn, allows for a more
representative urban environments and urban energy
partitioning, which leads to a more realistic coupling
between surface and atmosphere.

One research project focuses on appropriate
spatial aggregations of remote-sensing data into the
lower boundary conditions and determine model
sensitivity to the various parameters. To compare
simulations with in-situ field reference data values the
team uses observations captured by a set of
meteorological stations and then use the results to
study urban heat island mitigation efforts in the
downtown urban areas. The research teams construct
multi-resolution datasets from a variety of platforms,
suitable for estimating fractional, subpixel
coverage estimates for multiple aggregations of land
use. The datasets are further used by machine learning
algorithms for classification and modeling. The data
are then entered into boundary layer components of
numerical weather forecast models. The hindcast
weather simulations are constructed and compared
with past and current data collected from a variety of
ground-based sources, including updated stations with
radiation shields and cellular data transmission, which
provide the accurate representation and real-time
collection of air temperature.

Another study is developing a new, high-
resolution urban albedo dataset based on Landsat and
Sentinel-2, separating roofs from impervious ground in
the NLCD impervious surface dataset. The research
team conducts and analyzes WRF simulations with the
new urban albedo dataset and implement this dataset
into publicly released WRF versions. The improved
characterization of the albedo parameters in WRF will
improve the simulation of urban meteorological
variables and thus empower stakeholders and
researchers to better navigate urban planning and
policies.

4.2. Agricultural studies

To determine the impact of land use on vegetation-
atmosphere feedback and drought development in the
U.S. agricultural lands, land cover type and irrigation
data are being used in numerical experiments. The
NU-WRF coupled regional model is used to conduct
sensitivity experiments to determine the impact of land
cover type, irrigation fraction, irrigation strategy, and
initial conditions on the onset and amplification of the
rapid emergence and onset of land drying and
vegetation stress. A prototype of Land Digital Twin is
being designed to examine a range of scenarios for
exploring land use impacts on short range weather
conditions (atmospheric temperature, aridity, boundary
layer growth, cloud development, and precipitation)
and drought development. The goal is to better inform
decision-making under forecasted drought by
improving society drought preparedness through
changes in land management strategies. The NU-WRF
short-range and sub-seasonal weather forecast uses
MODIS-derived land cover data and irrigation data
from the U.N. Food and Agriculture Organization.

To improve weather prediction and better
understand agriculture-weather interactions, NASA
LCLUC researchers combine remote sensing data and
machine learning techniques. They develop a suite of
dynamic high-resolution annual crop and irrigation
data over the continental US during the past 25 years
to incorporate them into WRF/Noah MP-Crop model.
The current static, outdated crop and irrigation input
maps in WRF are being replaced by the suite of annual
maps at 30- m field-scale historical and in-season crop
types with rotation patterns, state-level crop planting
and harvesting dates, the 4-km crop growing degree
days, and 5-yearly field-scale 30-m irrigation area
maps. Model sensitivity is being tested to quantify key
factors affecting weather prediction, associated
mechanisms, and uncertainty, in non-extreme and
extreme conditions, including extreme precipitation,
heat waves, and droughts. In developing a prototype
Land Digital Twin, some researchers use Google Earth
Engine, which facilitates the identification, processing,
and transfer of land-use data that are further utilized in
the NU-WRF model. Machine learning and Artificial
Intelligence are employed to assess the impact of land
surface changes on regional weather.

NASA researchers strive to integrate
heterogeneous datasets to assess the implications on
regional sustainability, focusing on extreme weather
risks and crop production. With an interactive
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interface, a Digital Twin prototype will allow
stakeholders to engage in an analysis of agricultural
scenarios to support sustainable land management.

5. CONCLUSIONS

The NASA LCLUC program is in a good position to
contribute towards developing Earth System Digital
Twins. The current paper is focused on LCLUC efforts
in advancing improvements to Numerical Weather
Regional Forecast Models by incorporating available
land-use data on a weekly scale. The projects just have
started, so it is too early to provide results of the extent
the weather forecasts would improve after land-use
data have been incorporated. Incorporation of dynamic
spatial distribution of land use is specifically focused
on providing better boundary conditions on such
processes as urban structural changes and agricultural
practices, such as crop rotation and irrigation.

LCLUC studies will provide indication which
land-use variables are critical in models and the scale
at which their impact becomes important for
improving forecasts. The next step will include
assessment of socio-economic impacts, which will
imply the use of social science and econometric
models and data. Additional efforts within the
program, not described here, will be made to advance
Earth System models using land-use data globally and
regionally on a longer-term, decadal scale. Ultimately,
Land Digital Twins based on these studies will be
beneficial to stakeholders and economy.
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BRINGING EARTH’S DIGITAL TWIN TOLIFE: ADVANCING THE DESTINE PLATFORM
FOR BIG DATA EXPLORATION
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ABSTRACT

This paper presents an updated overview of the DestinE
Platform, developed by the European Space Agency (ESA)
within the European Commission’s Destination Earth
(DestinE) initiative—an ambitious programme to build a
high-precision digital twin of the Earth [1] [2] [3]. While
serving as a unified access point to a wide range of Earth
observation (EO) services and datasets, the platform also
integrates advanced cloud-native processing tools, federated
data access, and scalable infrastructure on EuroHPC [4].

The paper introduces key architectural and operational
innovations in big data handling, including the use of
Polytope [S] for multidimensional data extraction, real-time
event-based workflows with Aviso, and distributed
processing via JupyterLab and DASK [6]. It also explores
user engagement through platform analytics, user profiles,
and early case studies focused on climate resilience,
environmental monitoring, and tourism applications.

Finally, the paper outlines the long-term sustainability
roadmap, including eco-design, carbon impact assessment,
and strategies for platform governance and maintenance.
These contributions aim to position DestinE as an evolving,
user-centric ecosystem for next-generation EQO data
exploitation and scientific collaboration.

Index Terms— Destination Earth, DestinE Platform,
Big Data, Federated Access, Earth Observation, Digital
Twin, Sustainability, User Engagement.

1. INTRODUCTION

The DestinE Platform, developed under the leadership of the
European Space Agency (ESA), plays a central role in the
European Commission’s Destination FEarth (DestinE)
initiative. This large-scale digital infrastructure aims to build
a high-precision digital twin of the Earth to support evidence-
based policy making, environmental monitoring, and
sustainable development.

Beyond serving as a central hub for accessing Earth
observation (EO) data, models, and services, the DestinE
Platform hasbeen designed with a focuson innovation in big
data processing, cloud-native architecture, and user-driven
analytics [4]. It leverages distributed computing through
EuroHPC, federated access layers across institutional data
providers, and modular services that enable real-time or
large-scale EO applications.

This paper expands on previous presentations of the

platform by:

e Introducing novel technical components not covered in
standard documentation;

e Highlighting how users are engaging with the platfomm,
with early case studies;

e C(Clarifying the long-term sustainability and governance
roadmap.

The structure of this paperis as follows:

e Section 2 describes the user journey from registration to
advanced access;

e Section 3 presents the service registry and data
exploitation tools;

e Section 4 introduces the platform architecture and big
data handling innovations;

e Section 5 covers user engagement and community
building;

e  Section 6 outlines the sustainability roadmap;

e Section 7 concludes with a discussion of ongoing and
future developments.

v i Gesa @ amersar

Fig. 1. DestinE Platform Homepage.

2. DESTINE PLATFORM USER JOURNEY

The DestinE Platform has been designed to offer a user-
friendly and scalable pathway foraccessing and leveraging
high-precision EO data and services. The user journey is
structured around four key steps:

1. Registration

2. Access Upgrade

3. Service Discovery via Registry

4. Support and Engagement
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2.1. Registration

Users start by visiting https:/platform.destine.eu and
selecting the “Register” button. The registration process
collects personal details, the wuser’s institutional or
organizational affiliation, and their profile category (e.g.,
research, public authority, NGO, citizen). Upon submission,
a verification email is sent to activate the account.

Registration grants access to the basic features of the
platform and allows users to explore a selection of available
services and datasets.

2.2. Access Upgrade

Two access tiers are available:
e Basic Access (default after registration)
e DPAD Access (DestinE Primary and Altered Data

Access), which requires approval.
DPAD Access enables users to download and utilise:

e DestinE Primary Data: Geospatial datasets from
ECMWF-operated Digital Twins, made available via
Polytope on EuroHPC infrastructure.

o DestinE Altered Data: Data derived from Primary Data
thatretain enough metadata to allow traceability, without
containing  significant  intellectual or creative
contributions from the user.

Users can request an access upgrade via the “Access Policy

Upgrade” page after login. This process includes:

e Selecting the user category (e.g, academia, public
authorities, SMEs)

e Reviewing and accepting the Terms & Conditions for
DestinE Priority Users

e  Submitting the form for manual review

2.3. Service Registry Access

The Service Registry provides a curated catalogue of
operational services, publicly accessible for browsing and
filtering, whereas access to the services requires an account.
The services are organised into four main categories:

e Data Access management

e Data Analysis and Modelling
e Data Visualisation

e  User Workflow

Services can be searched and filtered by category, data
source, or tags. This modularstructure supports a wide range
of users — from data scientists to policy analysts —enabling
discovery and integration of EO services tailored to specific
needs. See Section 3 for detailed service descriptions.

2.4. Support

To ensure a responsive and inclusive user experience, several
support mechanisms are in place:

e FAQ Section on the platform

e Service Documentation for each registered service

e Dedicated Service Desk, accessible via the “Contact
Us” form

e DestinE Platform Learning Hub (launched in June
2025, available at https://learninghub.destine.cu
designed to support user upskilling and knowledge
sharing

e  Community Forum (currently in development)

3. SERVICE REGISTRY

As of August 2025, the DestinE Platform hosts 25

operational services, covering a diverse range of capabilities

from data visualisation to advanced modelling and

processing. Each service has passed a structured onboarding

and evaluation process.

Below is a summary of currently available services:

e Aviso: Event-based data notification service for
workflow automation.

e CityNexus: Urban digital twin modelling impacts of
road and urban design changes.

e Data Cache Management: Supports efficient storage,
handling, and user-driven requests for EO data.

e DEA: Ano-codeplatform forinteractive storytelling and
visualisation using DestinE data.

e DeltaTwin: Collaborative toolbox for building and
managing Digital Twin components.

e DestinEStreamer: Streamlines climate data access and
processing.

e DT-HEAT+: Provides real-time intelligence on heat-
related mortality.

e Earth Data Hub: Fast browsing,
computing on pre-processed EO datasets.

e EDEN: Central interface to explore and access Digital
Twin data and anticipate climate-related impacts.

e GeoAl: Geospatial Al platform for designing and
deploying Al-based EO solutions.

e HDA: Discovery and access to the DestinE Data
Portfolio.

e HIGHWAY: Integrates ESA Earth Explorer datasets
into DestinE with visualization and processing tools.

e HOOK: Serverless workflow orchestration via DestinE
Data Lake.

e Insula Code & Processing: Visual storytelling and
scalable EO data processing services.

e Islet Compute & Storage: Infrastructure/Platform as a
Service near DestinE Data Lake.

e miniDEA: Lightweight visual component powered by
DEA.

e Polytope: Efficient, federated access to EO hypercubes
via API and Python client.

e SesamEO: Thematic discovery and download of
Copernicus and other EO products.

e STACK: Cloud-native JupyterLab and DASK-based
processing environment.

e Tourism Square: Analyses climate and environmental
impact on tourism activity.

analysis, and
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e Urban Square: Provides tools to analyse and anticipate
environmental threats in urban areas.

e Vision & VizLab: Immersive 3D storytelling and
visualization for Digital Twin data across desktop and
VR/AR platforms.

Each service is accessible via the Service Registry and

integrated into a common platform environment, ensuring

interoperability and standardisation across user workflows.

) AVISO

DATA
Acciss

Fig. 2. DestinE Platform Service Registry.

4. BIG DATA ARCHITECTURE AND PROCESSING
INNOVATIONS

One of the central technical challenges addressed by the
DestinE Platform is the handlingof massive EO datasets from
multiple sources, generated at high temporal and spatial
resolutions by Digital Twin engines. To support scalable,

federated, and real-time data exploitation, several
architectural innovations have been introduced:

4.1. Federated Data Access with Polytope

Polytope provides efficient, federated access to

multidimensional data "hypercubes" produced by DestinE
Digital Twins. It allows users to extract targeted spatial-
temporal subsets via an APl or a Python client, enabling
selective access without the need to download full datasets.
This capability is crucial for reducing data movement and
supporting low-latency applications [5].

4.2. Event-Driven Processing with Aviso

The Aviso service implements an event-based architecture
that allows users to subscribe to specific data events (e.g.,
new forecast availability ordata ingestion) [7]. These triggers
can launch downstream workflows, notifications, or custom
analytics — enabling automation and real-time response.

4.3. Cloud-Native Analytics with STACK and DASK

The platform offers near-data processing capabilities through
STACK, which integrates JupyterLab with DASK,
allowing scalable computation directly in the cloud [6]. This
minimises latency and supports complex operations such as
time series extraction, spatial transformations, and data
fusion — particularly useful for heavy geospatial workloads.

4.4. Data Processing and Modelling Services

Services like Insula Processing, DeltaTwin and GeoAl
provide modelling, orchestration, and Al integration
capabilities. These support both no-code users (via UI) and
expert users (via CLI or APIs), makingthe platform adaptable
to different skill levels.

4.5. Interoperability and API Standards

All services conform to shared platform policies and
interoperability standards (e.g., STAC, OGC APIs), ensuring
integration with external systems and reproducibility of
results.

Collectively, these components position the DestinE
Platform not only as a data access point but also as a
computational environment for big data exploitation,
enabling rapid prototyping and operational services in EO.

5. USER ENGAGEMENT AND COMMUNITY
BUILDING

The DestinE Platform has demonstrated strong early user
engagement across Europe and internationally. A Public
Dashboard (available at https://platform.destine.eu/public-
dashboard) provides real-time insights into platform usage,
access levels, and geographic reach. As of August 2025:
e Registered Users: 3,783

Visitors (since launch): 58,847

Operational Services: 25
e Service Onboarding Requests: 54

5.1. User Profile Breakdown

Analysis of user profiles shows broad participation across
domains highlighted in Figure 3 below:

TOTAL REGISTERED USERS TREND BY USER PF g 000 c

Education: 331

@ ESA/ECMWF / EUMETSAT contractors: 350

@ ESA/ECMWF / EUMETSAT staff: 161
Media and Public Relations: 29

NGOs and other nor-profit entities: 63

Fig. 3. Total Registered users trend by user profile.

This diversity reflects the platform’s dual mission: enabling
cutting-edge research and supportingoperationalapplications
such as policy-making and emergency response.
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5.2. Use Case Highlights

Although still early in deployment, several compelling use

cases have emerged:

e Flood Mapping and Impact Forecasting: Using real-
time Digital Twin outputs with DeltaTwin and
DestinEStreamer to model regional flood risk in
Central Europe.

e Urban Heat Island Monitoring: Leveraging GeoAl
and Earth Data Hub to study urban microclimates
during extreme heat events in Southern Europe.

e Tourism Climate Services: Through Tourism Square,
local governments are assessing the impact of weather
variability on tourism infrastructure and services.

e Cross-border Environmental Cooperation:
Transnational projects are using shared Digital Twin
outputs to align climate adaptation strategies.

6. DESTINE PLATFORM SUSTAINABILITY
ROADMAP

A strategic priority for the DestinE Platform is ensuring long-
term sustainability. To this end, and following a roadmap
defined in Q4 2024 and updated in 2025, the platform team
has initiated a range of activities to guarantee operational
continuity, environmental responsibility, and institutional
governance [9][10].

6.1. Environmental Responsibility and Eco-Design

The roadmap also integrates a clear environmental agenda,
aligned with the European Green Deal and EU climate
objectives:

e Carbon Footprint Assessment: Initial measurement
frameworks are being piloted, focusing on compute-and
data-intensive services.

e Reduction Action Plan: Early results will inform a
reduction strategy for energy-intensive workflows and
infrastructure.

e Green-by-Design Principles: Service providers are
required to consider energy impact during onboarding
(e.g., efficient algorithms, minimisation of data
replication).

e KPI Tracking and Reporting: Sustainability Key
Performance Indicators (KPIs) will be monitored via the
platform dashboard.

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has presented a revised and enriched view of the
DestinE Platform — moving beyond a descriptive overview
toward a more technicaland strategic narrative that highlights
the platform’sinnovationsin data handling, userengagement,
and sustainability [11].

7.1. Key Achievements to Date

o 3783 registered users and 25 operationalservices (as of
August 2025)

e Robust, modular user journey with tiered access and
integrated support

e Technical services for big data federation, event-driven
processing, and scalable analytics

e Clear roadmap forsustainability, eco-design, and cross-
provider governance

7.2. Outlook and Next Steps

e Forum Launch: Targeting end of 2025 to boost
community knowledge sharing and technical literacy.

e Expansion of Onboarded Services: A total of 54
onboarding requests were received, many of which
address climate impact, agriculture, marine monitoring,
and infrastructure resilience.

e Operationalisation of Sustainability = Metrics:
Including public reporting on energy consumption and
carbon footprint.

With these next steps, the DestinE Platform aims to
become not only a technical enabler of Digital Twin Earth
initiatives, but also a sustainable, user-driven ecosystem
capable of transforming how we observe, understand, and
respond to planetary challenges.
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ABSTRACT

We present a new-generation, Al-agent-powered digital assis-
tant featuring four specialized engines for satellite imagery:
search by image, search by caption, visual question answer-
ing, and knowledge graph question answering. At the core
of the system is a Task Interpreter, designed as a multi-agent
system, which coordinates these engines to address complex
user requests for Earth observation data. The Task Interpreter
comprises four agents: an Engine Routing Agent that selects
the appropriate engine or rejects unmanageable requests; a
Conversational Agent that handles general or out-of-scope
queries; an Argument Extraction Agent that identifies image
type parameters for retrieval tasks; and a Tool Feasibility
Agent that assesses the applicability of tools for domain-
specific queries. This multi-agent system enables seamless
interaction with Digital Twins of Earth, with an emphasis on
modularity and extensibility to adapt to the rapid evolution of
remote sensing technologies.

Index Terms— Multi-agent systems, digital assistant,
digital twins, search by image, search by caption, visual
question answering, knowledge graph question answering

1. INTRODUCTION

In Artificial Intelligence (Al), an agent is an autonomous en-
tity capable of perceiving its environment, making decisions,
and acting upon it to achieve specific goals. Multi-agent sys-
tems (MAS) is a subarea of Al studying societies of agents
in cooperative or competitive settings and has a long tradition
of outstanding research results. With the recent revolution of
large language models (LLMs) and foundation models (FMs),
the area of MAS is receiving again a lot of attention with the
proposal of LLM-powered agent frameworks such as Auto-
Gen [13], LangChain and CrewAl.

As part of these recent developments, we have seen the
proposal of agent and multi-agent system architectures pow-

This work was supported by ESA project DA4DTE.

ered by LLMs in the Remote Sensing (RS) area [4, 9, 10,
11, 14]. Remote Sensing ChatGPT [4] introduces a system
where ChatGPT interprets user requests and sequentially
invokes specialized RS models for tasks such as object de-
tection and land use classification. RescueADI [11] focuses
on disaster interpretation, employing a LLM-driven agent to
dynamically plan and execute multiple specialized tasks like
damage assessment and rescue pathfinding. RS-Agent [14]
extends this paradigm by integrating high-performance tools
and a retrieval-augmented knowledge base to support pro-
fessional geospatial analysis. GlobeFlowGPT [9] applies a
multimodal LLM orchestrator to facilitate complex geospa-
tial workflows, including flood forecasting and vegetation
monitoring, with containerized tool integration. Similarly,
GeoLLM-Squad [10] adopts a MAS, using an orchestra-
tor to coordinate specialized agents for a broad range of
remote sensing tasks, such as urban monitoring, climate anal-
ysis, forestry protection, and agricultural studies. Like our
approach, it emphasizes modularity, extensibility, and the
separation of orchestration from task-solving components.

Parallel to these developments, the emergence of Digital
Twins of Earth (DTEs) —high-fidelity, dynamic digital repre-
sentations of the Earth’s systems—has created new demands
for intelligent, continuous interaction with massive Earth ob-
servation (EO) datasets. DTEs require the ability to access,
interpret, and integrate diverse data streams in a flexible, scal-
able, and context-aware manner. MAS are particularly well
suited to meet these needs, enabling specialized tools to work
together dynamically to support the complex data require-
ments of DTEs.

However, despite recent advances, there is currently no
EO data provider that offers a digital assistant capable of guid-
ing users in finding the EO data they seek. This is a crit-
ical functionality gap, especially as the volume of EO data
made available through initiatives like Copernicus and Land-
sat continue to expand. Without intelligent assistance, this
wealth of data remains difficult to access for both expert and
non-expert users, such as journalists searching for timely EO
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imagery of environmental disasters or policymakers monitor-
ing climate events.

To address this challenge, we introduce the Digital As-
sistant for Digital Twins of Earth (DA4DTE), an Al-powered
multi-agent digital assistant designed to facilitate seamless
interaction with EO datasets. In DA4DTE, a Task Inter-
preter operates as a multi-agent system comprising special-
ized agents that collaboratively interpret user requests and
orchestrate the activation of appropriate search engines or
tools. We distinguish between the specialised engines serving
EO tasks, the multi-agent Task Interpreter with its agents—
autonomous functional components responsible for specific
subtasks—and the assistant, the overall user-facing system
deployed to fulfill complex information retrieval workflows.
We make the source code of our system publicly available'.

2. MULTI-AGENT SYSTEM FOR ORCHESTRATION

DAA4DTE enables a user to pose multi-modal requests, that —
in addition to text— can include RS images, either uploaded
or selected on the User Interface map. The assistant’s toolset
allows for a variety of requests including geospatial or visual
queries, requests for images by describing their visual context
or metadata, image search requests, and queries for explana-
tion on image similarity results. Between the user and the
DAA4DTE engines lies the Task Interpreter: a MAS respon-
sible for engine orchestration and the mediation between the
user and individual engines. The architecture is illustrated
in Figure 1, which highlights the collaborative roles of each
agent module and their interactions with the user interface and
underlying engine components.

To ensure future extensibility, we categorize orchestration
responsibilities into two types: core and assistant tasks. Core
tasks are permanent and fundamental to any version of the as-
sistant, regardless of the tools or data sources integrated. In
contrast, assistant tasks are tailored to the current implemen-
tation state and may evolve as functionalities and resources
expand. Each task is assigned to a dedicated agent, forming
a MAS, implemented using the AutoGen [13] framework and
currently comprising the following four agents.

The first agent is the Engine Routing Agent (Core). This
agent is a zero-shot prompted LLM that selects the most ap-
propriate engine to activate based on the user request. It also
has the capability to reject requests that fall outside the scope
of all available engines.

The second agent is the Conversational Agent (Core).
This is a fallback conversational agent designed to handle
general, ambiguous, or out-of-domain queries. Although it
is a capable LLM, it is specifically prompted not to respond
to irrelevant requests so the assistant remains task-focused.

The third agent is the Argument Extraction Agent (As-
sistant). This is an agent dedicated to extracting key param-

Ihttps://github.com/rsim-tu-berlin/DA4DTE

eters required by specific tools. In the current implementa-
tion, it identifies the requested image type (e.g., Sentinel-1 or
Sentinel-2) when the Search-by-Image engine is activated.

Finally, the fourth agent is the Tool Feasibility Agent
(Assistant). This is a utility agent responsible for validat-
ing whether a requested operation is feasible under current
system capabilities. For example, the Search-by-Text engine
presently supports only vessel-related queries. If a user re-
quest falls outside this domain, the agent triggers a relevant
explanatory message to the user.

3. ENGINES AND THEIR FUNCTIONALITIES

DAA4DTE integrates four specialized engines, tailored to spe-
cific Question Answering (QA) or retrieval tasks.

The first engine is the Knowledge Graph QA Engine
TerraQ [8]. TerraQ? is a QA system that is designed to pro-
cess natural language requests that include spatiotemporal or
metadata related criteria and satisfy the request by retrieving
data from a Knowledge Graph (KG). User requests can in-
clude references to image metadata (e.g., snow percentage in
an image), geoentities (e.g., the country France), administra-
tive divisions (e.g., municipalities, regions), as well as spa-
tiotemporal constraints.

For example, users can make requests like “Give me a
hundred images of rivers near ports in France, with less than
20% snow coverage and more than 10% cloud coverage,
taken in 2021”. The engine then takes this request as input,
translates it into a semantically equivalent SPARQL query
as follows: First, relevant entities and classes are extracted
from the KG. Then, relations between the retrieved entities
and classes are identified, including spatial and temporal
relations. At this stage, the core of the query is complete,
and the expected return values are identified by a finetuned
Llama 2 model. The query generator then produces the com-
plete, executable SPARQL query. This query is subsequently
enhanced by a finetuned on SPARQL Mistral-7b-v2 model,
and rewritten to optimize execution efficiency by replacing
GeoSPARQL functions with equivalent materialized topo-
logical predicates. In the end, the query is executed over a
GraphDB endpoint, and the QA process is complete.

The second egine is the Search-by-Image Engine. This
engine takes a query image and computes the similarity func-
tion between the query image and all archive images to find
the most similar images to the query in a scalable way. This
is achieved based on two main steps: i) the image description
step, which characterizes the spatial and spectral information
content of RS images; and ii) the image retrieval step, which
evaluates the similarity among the considered hash codes and
then retrieves images similar to a query image in the order
of similarity. Our Search-by-Image Engine is defined based
on two self-supervised methods: 1) deep unsupervised cross-

https://terrag.di.uoca.gr/
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Fig. 1. High-level architecture of the digital assistant (DA4DTE), showing the user interface, multi-agent Task Interpreter, and

the specialized engines (figure inspired by Figure 1 of [14]).

modal contrastive hashing (DUCH) [12]; and 2) cross-modal
masked autoencoder (CM-MAE) [6]. For both methods, the
image description step is composed of two modules: 1) a fea-
ture extraction module, which learns deep feature represen-
tations of RS images by exploiting visual transformers (ViT);
and 2) a deep hashing module, which learns to map image rep-
resentations into hash codes. The first module of the DUCH
method is based on contrastive self-supervised image rep-
resentation learning, while that of the CM-MAE method is
based on unsupervised masked image modelling. The second
module of each method employs a hashing subnetwork with
binarization loss functions. Our engine has both the single-
modal (also known as uni-modal) and cross-modal content-
based image retrieval capability due to the consideration of
the modality-specific encoders.

A key feature of the search-by-image engine is the inte-
gration of the Explainability tools to understand and explain
the decision of the engine in retrieving a particular image
given a query image. To this end, we incorporate two ex-
plainability tools: Layer-wise Relevance Propagation (LRP)
[1] and BiLRP [3]. The LRP highlights areas in the in-
put image supporting a specific class decision by generating
heatmaps. Since CM-MAE is self-supervised and lacks class
predictions, we train an auxiliary classification head to esti-
mate class probabilities for each image pair. These predic-
tions enable the generation and interpolation of class-specific

LRP heatmaps, which emphasize semantically similar regions
across image pairs. BiLRP, while more computationally in-
tensive, identifies in the image pairs shared regions without
needing a classification head.

The third engine is the Search-by-Text Engine. This
engine takes a text sentence as a query and efficiently re-
trieves the most similar images to the query text, achieving
scalable cross-modal text-image retrieval. The Search-by-
Text Engine is developed by adapting the above-mentioned
self-supervised DUCH [12] to be operational on text based
queries. To this end, the feature extraction module is adapted
to extract feature representations of image-text pairs by ex-
ploiting bidirectional transformers (e.g., BERT [2]) as text-
specific encoders together with ResNet-152 [7] as image-
specific encoders. The second module of each method is
adapted to learn cross-modal binary hash codes for image and
text modalities by simultaneously preserving semantic dis-
crimination and modality-invariance in an end-to-end manner.

To evaluate DUCH, we constructed a vessel captioning
dataset, consisting of vessel text-image pairs generated via
a template-based image captioning approach. This approach
consists of creating predefined sentence templates with empty
slots. The slots are then filled using semantic cues from vessel
bounding boxes (e.g., count, size) and contextual data from
OpenStreetMap, particularly coastline proximity (i.e., vessel
locations relative to harbors or coastlines). Vessel sizes, de-
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rived from bounding box dimensions, were categorized into
five classes (very small to very big) and mapped to two vessel
types: boats (very small to medium) and ships (big and very
big), reflecting typical usage and navigational context.
Finally, the fourth engine is the Visual QA Engine. This
engine enables users to ask questions about the content of
RS images in a free-form manner, extracting valuable in-
formation. It employs the LiT-4-RSVQA [5] model, which
has been trained and evaluated on RSVQAXBEN?. The LiT-
4-RSVQA architecture focuses on achieving state-of-the-art
performance, while also providing rapid response times. To
do so, it employs the following modules: i) a lightweight text
encoder module; ii) a lightweight image encoder module; iii)
a fusion module; and iv) a classification module. A RS image
I and a question Q about this image are considered as input.
The encoder modules produce vector representations which
are subsequently passed to the fusion module. The feature fu-
sion module consists of two linear projections and a modality
combination. The projections map the two modalities with
dimensions dt and dv into a common dimension df, where
dt and dv denote the dimensions of the flattened output of
the text and image encoder modules, respectively. The value
of dv differs depending on the used lightweight transformer.
The projected features are then elementwise multiplied. The
classification module is defined as an MLP projection head.

4. DA4DTE IN ACTION

We now consider a use case scenario for the digital assistant.
The assistant welcomes the user and asks them to pose a re-
quest. The user asks for a Sentinel-1 image from France dur-
ing 2020, with snow coverage of more than 50%. Then, the
Engine Routing Agent of the Task Interpreter decides that this
is a request that should be fulfilled by the Knowledge Graph
QA Engine which returns the appropriate image. The inter-
action goes on with the user asking for a similar Sentinel-2
image and then the Search-by-Image Engine is selected by
the Engine Routing Agent. The term “Sentinel-2” is extracted
by the Argument Extraction Agent as the modality argument,
so the engine is activated and returns the appropriate image.
Having selected that Sentinel-2 image, the user asks whether
it presents a rural area and the answer by the Visual QA En-
gine is presented. Finally, the user closes the interaction with
the assistant and the Engine Routing Agent of the Task Inter-
preter calls the Conversational Agent to answer appropriately.

5. FUTURE WORK

We plan to explore several research directions to further im-
prove the capabilities of the system. First of all, we aim to im-
plement an alternative Engine Routing Agent using the Func-
tion Calling paradigm in LLMs, to improve control over en-

3https://zenodo.orq/records/5084904

gine invocation compared to the current zero-shot prompting
setup. We also plan to extend the assistant’s capabilities to
multi-step requests where multiple engines can be activated
in a sequence. As the complexity of the system increases, we
intend to integrate a Manager Agent to oversee and coordinate
the behavior of all other agents within the Task Interpreter.
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ABSTRACT

The exponential growth of Earth Observation (EO) data
presents significant challenges for efficient data access, pro-
cessing, and analysis. Current approaches often involve dis-
parate data formats, coordinate systems, and access patterns,
limiting interoperability and scalability. Recently, the Zarr
data storage format has been adopted as a unifying cloud-
native foundation for various domains, including climate,
EO, bio-imaging, and genomics. Secondly, Discrete Global
Grid Systems (DGGS) such as HEALPIX, or ISEA-based
hexagonal DGGS are being increasingly used to provide
indexing beyond traditional grids, by providing equal-area
pixels and location- and resolution encoding indices. Lastly,
the recently published OGC API DGGS standard specifies a
lightweight web service API for clients accessing data organ-
ised according to Discrete Global Grid Reference Systems
(DGGRYS).

We implemented a Python FastAPI service (pydggsapi)
that exposes the OGC DGGS API standard with a back-
end utilizing Zarr archives indexed by DGGS cells. This
work demonstrates a novel architecture that combines DGGS
with cloud-native Zarr storage to create universal building
blocks for EO data management, enabling seamless tran-
sitions between high-performance computing environments
and lightweight client applications.

Index Terms— DGGS, OGC API, ZARR, indexing, web
service

1. INTRODUCTION

Earth Observation (EO) data volumes continue to increase ex-
ponentially, driven by new satellite missions, higher sensor
resolutions, and increased temporal coverage. The Coper-
nicus program alone generates TB of data every day. Cur-
rent approaches often involve disparate data formats, coor-

dinate systems, and access patterns, limiting interoperability
and scalability across different processing environments [1].

Conventional web service standards such as Web Cov-
erage Service (WCS), Web Coverage Processing Service
(WCPS), and Web Map Service (WMS) have provided stan-
dardized access to geospatial data [11]. However, these
services typically rely on traditional coordinate reference
systems and raster-based approaches that present challenges
when working with global datasets at multiple resolutions or
when combining heterogeneous data sources.

The Discrete Global Grid System (DGGS) paradigm of-
fers a solution to these challenges by providing a unified spa-
tial reference framework based on hierarchical tessellation of
the Earth’s surface [13]. The Open Geospatial Consortium
(OGC) has developed standards and best practices for DGGS
implementation, including the DGGS Abstract Specification
and the DGGS APIL The OGC Testbed-16 Engineering Re-
port (ER-16) and the ESA technical study on Sentinel-2 ARD
handling with DGGS further elaborate on implementation ap-
proaches and use cases [12, 14].

Equal-area DGGS implementations, such as HEALPix
[5], rtHEALPix [4] and ISEA [15], have gained particular at-
tention for Earth Observation applications due to their ability
to maintain consistent area measurements across the globe
[9], and their usability for large-scale EO analysis, including
improved statistical analysis and multi-resolution data fusion.

In parallel, the scientific Python ecosystem has seen sig-
nificant developments in data handling capabilities with tools
like Xarray [6], which provides labelled multi-dimensional
array operations. The XDGGS extension for Xarray enables
direct manipulation of DGGS-indexed data within this frame-
work [7]. Additionally, the XPublish concept provides a
mechanism for exposing Xarray datasets through web service
interfaces, bridging the gap between analytical environments
and web-based access patterns.

In this paper, we describe universal building blocks
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Fig. 1. Architecture

that combine DGGS with cloud-native Zarr storage to cre-
ate a comprehensive framework for EO data management.
This approach enables seamless transitions between high-
performance computing environments and lightweight client
applications while maintaining spatial alignment through
DGGS indexing. By integrating these technologies, we ad-
dress key challenges in the EO data processing chain, from
initial data organization to final delivery and visualization.

2. METHODOLOGY

We implemented a Python FastAPI service that exposes the
OGC DGGS API standard (pydggsapi [8]) with a backend
utilizing Zarr arrays indexed by DGGS cells. The concept
is inspired by the TiTiler and XPublish packages, which can
employ a “serverless” FastAPI web service routing interface
on top of cloud-native and Xarray datasets. This architecture
leverages complementary technologies as shown in Fig. 1.

The Discrete Global Grid System (DGGS) serves as a uni-
versal spatial index, providing a hierarchical, multi-resolution
grid system that consistently indexes geospatial data across
the entire globe. This eliminates the need for reprojection
when combining datasets from disparate sources and enabling
immediate analysis without preprocessing steps, and extends
and improves upon the grid notion, that is established in the
met/ocean and climate communities.

Zarr technology functions as the cloud-optimized storage
foundation, with its chunked, compressed array format en-
abling efficient parallel access to massive datasets stored in
object storage systems while maintaining critical dimensional
information and supporting selective data extraction at multi-
ple resolutions.

As a novel composite aspect, the architecture leverages
already available software, such Xarray-XDGGS, which is
a package, that implements 1-D DGGS indexed arrays to
work with various open-source DGGS libraries and systems.

Through the Xarray DataTree model and the representation in
Zarr data groups, we can aggregate data towards higher-level
DGGS refinement levels. The concept corresponds to image
pyramids and overviews in other cloud-native formats like
COG GeoTiffs or PMTILES. Exemplary, we show use of
vector tiles (MVT) to enable a visual and data access. MVT
can be very efficient in-browser rendering by using webgl
with MapLibre GL JS as shown in Fig. 2 a.

Ultimately, the system employs a Python FastAPI-based
OGC DGGS API interface that serves as the primary access
point for web clients, providing both visualization services
and precise data access through standardized formats includ-
ing DGGS JSON, GeoJSON, or as hybrid Zarr “packages”
that maintain the original data structure while enabling effi-
cient transfer. The web service API is meant for light-weight
query and visualisation access for web- or mobile (or IoT)-
based client applications.

3. IMPLEMENTATION

Our concept bridges two distinct operational scales - cloud-
native big data processing, and a more refined web service-
based access for lightweight clients. Zarr arrays stored in
object storage serve as the unified data foundation, enabling
direct access for high-performance computing and cloud-
based modeling workflows. The OGC DGGS API implemen-
tation, akin to XPublish for Xarray, provides standardized,
RESTful access to the same underlying data for a diverse
range of web, mobile, and IoT clients and applications. This
dual-scale approach ensures data consistency across use cases
while optimizing for different computational and bandwidth
constraints.

The data collection provider components enable access
to DGGS-indexed datasets through middleware that man-
ages connections to cloud-storage Zarr archives. Based on
the OGC ER-16 report, the application also showcases an
experimental connector for the Clickhouse database to pro-
vide fast on-demand aggregation and analytical queries on
DGGS-indexed database tables.

The main archticture relies on pre-aggregated pyramids,
where the data access middleware reads metadata from Zarr
archives. During initialization, it extracts DGGS parameters
from the Zarr archive’s attributes, including the DGGS type
(such as HEALPix or H3) and the indexing scheme used or
additional index parameters (e.g., HEALPIX’ nested or ring
scheme), available refinement levels, and the available data
variables.

The architecture aims to abstract the underlying storage
system through the Zarr application library interface, provid-
ing consistent data retrieval whether data is stored in AWS
S3, Azure Blob Storage, Google Cloud Storage, or local file
systems. For each API request, the middleware identifies the
target collection from the URL path, loads the Zarr meta-
data, attaches DGGS configuration to the request context, and
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queries the Zarr store instance purely on zone identifiers. To
improve performance, the system maintains an in-memory
cache of collection metadata, reducing storage access opera-
tions and speeding up repeated queries for common metadata.

This approach enables the FastAPI application to seam-
lessly serve OGC DGGS API requests while maintaining the
performance benefits of cloud-native Zarr storage for Earth
Observation data indexed by DGGS cells.

DGGS indexing automatically aligns diverse data prod-
ucts spatially and temporally, facilitating immediate analy-
sis without further preprocessing. Via the OGC DGGS API,
it is possible to provide convenient access to clients to cell-
based summary queries, for examples as shown in Fig. 2 b,,
at a specific refinement level (i.e. higher resolution). The
OGC DDGS API layer enables targeted data extraction for
non-DGGS-capable clients, reducing data transfer volumes
and simplifying implementation for client applications. Di-
rect HPC access to cloud-stored Zarr archives is facilitated
by high-throughput network connections and cloud-aware li-
braries like fsspec and xarray. These tools enable HPC ap-
plications, e.g. built on libraries like Dask to stream Zarr
chunks directly from object storage APIs (e.g., S3), enabling
efficient, highly parallelised batch processing over large areas
and timescales without pre-staging the entire dataset.

4. DISCUSSION

4.1. Universal Building Blocks for Earth Observation
Data

Why universal building blocks? The combination of DGGS
and Zarr creates building blocks for Earth Observation data
management that address key challenges in the geospatial
data pipeline. Maintaining a unified base of DGGS-indexed
Zarr archives enables consistent data organization across mul-
tiple use cases. This approach supports both large-scale and
local applications through a dual-access pattern: direct access
to cloud-stored Zarr archives for high-performance comput-
ing and API-mediated access for web clients with bandwidth
constraints.

Pydggsapi also includes the well-known OpenAPI3/
Swagger documentation and client, which provides a low-
barrier entry into experimenting with the APIL. In the near
future we will also provide training materials based on
Python/Jupyter notebooks.

4.2. Standardization Requirements

The OGC DGGS working group is advancing standards
for DGGS implementations, but additional components are
still needed. A registry for DGGS Reference Systems sim-
ilar to the EPSG codes and Proj/WKT CRS definitions is
needed. Clear conventions for storing DGGS parameters in
Zarr metadata fields must be established. For HEALPIX,

(a) (b)

Fig. 2. Examples of DGGS web clients, a) MVT allows
for lightweight browser visualisation; b) Cell-based summary
queries

essential parameters include the desired resolution and the in-
dexing scheme (nested or ring), while more flexible systems
like rtHEALPix or ISEA-based DGGS may use additional
parameters such as indexing/numbering scheme, origin, and
rotation. The CF Metadata Conventions community has also
picked up a discussion on grid parameter specification for
NetCDF and Zarr archives [2].

The OGC DGGS API implementation requires an in-
dexing scheme that encodes the refinement level in the zone
identifier. Systems like H3 and S2 have popularized this
approach, and newer DGGS references systems like IGEO7
(DGGRID/Z7 [10]) and rHEALPix can also provide this
functionality. However a more accessible implementation is
needed for HEALPIX (namely nunig or zunig). A notable
requirement in the OGC DGGS API standard is subzone
ordering, which currently only ISEA3H/9R appears to fully
support [3]. Most DGGS implementations have a space-
filling curve index and rely on associating data values with
zone identifiers during data transport.

4.3. Technical Limitations and Future Work

The current implementation faces certain limitations that re-
quire further research and software engineering expertise. For
example, Xarray’s eager indexing of dimensions may limit its
utility for very large DGGS archives, as all dimension indexes
are loaded into memory. More efficient handling of multi-
resolution DGGS data may require extensions to the Xarray
data model or more direct Zarr-native access approaches.
The use of Zarr groups/Xarray data trees to represent
refinement level aggregations requires additional experi-
mentation to ensure interoperability and efficient chunk-
ing/sharding, which takes DGGS cell topologies and parent-
child-cell boundaries into account. The OGC ER-16 report
outlines the methodology for providing descriptive statistics
per cell, including standard deviation, ranges, min/max val-
ues, and variance. Implementing this efficiently within the
Zarr data model across refinement levels would be useful to
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better convey the uncertainty of aggregated data.

Initial performance benchmarks do not indicate disadvan-
tages compared to traditional approaches regarding data ac-
cess performance. Combined with the inherent advantages
of DGGS for global data analysis, these results suggest en-
couraging progress. There remains substantial potential for
improvements in both usability and performance as the tech-
nology matures.

S. CONCLUSION

The integration of OGC DGGS API with Zarr storage repre-
sents a significant step toward universal building blocks for
Earth Observation data. This approach enables a seamless
continuum from big data processing to lightweight client
applications while maintaining spatial alignment through
DGGS indexing. We hope for the near future that this
might develop towards a new paradigm for value added Al-
integrated and ARD integration-ready data market APIs.
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ABSTRACT

The steadily increasing amount of available Earth
observation and other geospatial data provides unprecedented
opportunities to measure, monitor, and understand natural,
environmental, anthropogenic and social processes.
However, to maximise the impact of space-based and other
data on society, effective ways to extract, integrate,
summarise and communicate the information contained in
these sheer data volumes are needed. Herein, we focus on the
latter of these components: communication of trends derived
from Earth observation data by means of data visualisation.
Specifically, we highlight how settlement and population
dynamics, urbanisation patterns and land development
processes can be visually represented to effectively
communicate relevant information to a wide range of
audiences, ranging from scientists to planners, policymakers
and to the general public. The underlying data has been
generated by the Global Human Settlement Layer (GHSL)
project of the European Commission’s Joint Research Centre
(JRC) by leveraging and integrating vast amounts of global
remote sensing data from the Landsat and Copernicus
Sentinel-2 missions to derive spatio-temporal gridded data
measuring the distribution and dynamics of the built
environment, settlements and human population from 1975
onwards.

Index Terms— Data visualisation, data animation,
GHSL, Degree of Urbanisation, visual analytics

1. INTRODUCTION

The famous cholera map of John Snow, identifying the source
of a 1854 cholera outbreak in London by mapping the
location of infected cases [1] is a timeless example for the
importance of data visualisation to reveal spatio-temporal
patterns and its impact on society. The significance of data
visualisation remains unchanged, and the advances in data
availability, processing capabilities, data visualisation tools
and in particular digital media- and web-based dissemination
channels facilitate static, dynamic and interactive data
visualisation in unprecedented ways.

Visualisation is key to enable data-based insights, support
evidence-based policy through data-driven decisions by

stakeholders and policymakers, and an important tool for data
and knowledge democratisation [2].

Earth observation data and other geospatial data are critical
to monitor and understand pressing issues related to
urbanisation, such as sustainable development, land take,
biodiversity loss and social inequality. Detailed knowledge of
the spatial characteristics and the evolution of the built
environment and of human population is critical for informed
urban and regional planning and policy-making, ensuring
effective disaster risk management and crisis response, as
also highlighted in the Agenda for Sustainable Development
Indeed, accurate human settlement data aligns with the
second principle of the Sustainable Development Goals
(SDGs), “Leave no one behind”, acknowledging gridded
population data as an important resource for delivering
actionable data to monitor health and infectious diseases.
The Global Human Settlement Layer (GHSL) is a project of
the European Commission’s Joint Research Centre (JRC),
producing and providing free and open geospatial data,
mapping population distributions and characterising human
settlements at a global scale, at high spatial resolution of up
to 10 m, and over extended time periods from 1975 to 2030
[3]. The GHSL data products integrate multi-source data,
including planetary-scale Earth observation data from the
Landsat and Sentinel sensors and population data from census
figures in a spatio-temporal modelling framework, to produce
fine-grained estimates of built-up surface, settlement age and
function, building height and volume, taxonomies of the built
environment, and human population, all consistently
enumerated in global geospatial grids [3]. These data
products have been used widely by the scientific community
and beyond, since the first data release in 2016 [4].

With increasing complexity of the GHSL data ecosystem, we
are currently developing effective visual-analytical methods
to integrate and summarise relevant trends measured by the
multivariate spatio-temporal GHSL data, fostering data usage
and facilitating the access to information inherent in the data.
Herein, we present selected static and animated data
visualisation techniques based on GHSL data. These
visualisations are automatically generated, for global,
country-level, regional, and local (i.e., city-level) scope,
using a combination of spatial and non-spatial visualisation
techniques. They aim to represent complex datasets in
comprehensive ways, making information accessible to wider
audiences. These visualisations intend to facilitate faster
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communication, fostering a deeper understanding of
urbanisation trends and settlement dynamics to be used for
outreach purposes, infographics, dashboards or other
interactive data visualisation platforms.

2. DATA AND METHODS

2.1. Data sources

We use data from the Global Human Settlement Layer release
R2023 A [4], at spatial resolutions of 100m and 1km. For local
(city and region level) we rely on the 100m data, whereas for
country-level and global analyses, the aggregated 1-km
GHSL datasets are used, to speed up computational
processing. These datasets include: built-up surface area
estimates from GHS-BUILT-S, GHS-POP (gridded estimates
of residential population, derived from disaggregating
census-based population counts into fine grid cells using
dasymetric modelling [5], Degree or Urbanisation, a model
of the rural-urban continuum (partitioning land areas into 3-7
rural-urban classes) available at 1-km resolution [6].
Moreover, we use the Copernicus GLO-30 Digital Elevation
Model (CopDEM) [7], available at 30-m resolution, and
global administrative boundaries from the GADM [8] dataset.
Finally, the GHSL Urban Centre Database (UCDB) is used,
an integrated, vector-based dataset delineating over 10,000
urban centres globally [9], according to their definition in the
degree of urbanisation framework, with rich attributes on
socio-demographic, environmental, and risk-related urban
characteristics from various data sources.

2.2. Data processing

All GHSL raster data layers are enumerated in a global grid
at 100m and I-km resolution, respectively, in World
Mollweide Equal Area projection (ESRI:54009). Urban
centre boundaries from the UCDB nest within this grid. This
facilitates joint processing of multiple variables. We
distinguish four geographic levels for data visualisations:
urban centre level, region-level, country-level, or global.

Data processing is fully automated, implemented in Python
3.9, using gdal, rasterio, geopandas, pandas, numpy,
matplotlib, and seaborn python packages. Based on the user-
specified geographic object of interest (e.g., an urban centre
or country, specified by its name, or a region defined by a
user-provided bounding box), the raster data covering the
respective region are cropped and extracted to memory. In
case of urban centre- or country-level visualisations, the area
of interest is rasterised to the GHSL grid, and non-relevant
areas are masked out. If input datasets have different spatial
resolutions (e.g., CopDEM, or GHS-SMOD, which is
available at 1-km resolution only), the cropped input data are
resampled in memory to the highest resolution among input
datasets. For spatial visualisations at country-level or at
smaller extents, cropped datasets can optionally be warped
into local UTM projection for mapping purposes. All

relevant, gridded data are then loaded into spatio-temporal
3-d arrays, and for non-spatial visualisations, 3-d arrays are
restructured to a 2-d array, and stored in tabular data frame,
with columns representing the different input raster datasets,
and rows representing an individual grid cell. Finally,
relevant summary statistics are extracted, e.g., total built-up
surface and population by degree of urbanisation class and
year.

2.3. Data visualisation

Based on the spatio-temporal data cubes covering the area of
interest, and/or the extracted summary statistics, different
static and animated data visualisations can be produced.
Herein, we discuss a selection of them, including (1)
automatically produced animated GIFs of urban change per
urban centre, and (2) Built-up area - population (BUPOP)
plots.

2.3.1. Animated GIF's depicting urban change

Based on the spatio-temporal 3-d arrays loaded in memory,
matplotlib Python library is used to render temporal slices of
the data as individual maps, depicting the distributions of
built-up surface, building volume, resident population, or
rural-urban classes, including automatically added map
elements such as scale bar, north arrow, title, and legend.
Rendered images are again stored in memory and exported to
an animated GIF (graphics interchange format) or MP4
movie file. Figure 1 shows examples of individual frames

(i.e., epochs) of these animated maps for selected variables.

2.3.2. Built-up area — population plots (BUPOPs)

As an example of non-spatial data visualisation, we
developed “BUPOPs” — built-up area — population plots.
BUPOPs are bidirectional, horizontal, stacked bar charts,
conveying information of four variables measured and
mapped in the GHSL data collection: 1) built-up surface, 2)
resident population, 3) their variation over time, 4) within
classes of the rural-urban continuum, according to the Degree
of Urbanisation framework. The input data is based on cross-
tabulation of the gridded data and extracted summary
statistics, e.g., total built-up surface area in a given year,
within a given class of the Degree of Urbanisation. See Figure
2 for some examples.

3. RESULTS

We generated animated GIFs of built-up surface, building
volume, resident population, and Degree of Urbanisation for
each of the >10,000 urban centres of the UCDB, and
produced the BUPOPs for each urban centre, and for each
country globally. Such animated maps illustrate effectively
the patterns of urban configuration and urban change,
immediately understandable to expert and non-expert
audiences, and the differences between individual cities, such
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Built-up surface in Ibadan (Nigeria)
1975

Data source: Global Human Settlement Layer (GHSL) R2023A & COP-DEM, JRC, European Commission
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Fig. 1. Examples of stills of fully automatically produced animated maps of spatio-temporal GHSL variables at the
urban-centre level. Left: Built-up surface distributions shown for the city of Ibadan (Nigeria) in 1975 and 2030, based
on GHS-BUILT-S R2023A; Right: Residential population distributions shown for the city of Riga (Latvia) in 1975

and 2030, based on GHS-POP R2023A.

as the fast, concentric growth of built-up areas in Ibadan
(Figure 1 left) as compared to the subtle change of the urban
footprint in Riga, with declining population densities, most
pronounced in the central parts of Riga, from 1975 to 2030
(Figure 1 right).

The BUPOPs shown in Figure 2 require the readers to
“orient” themselves: population extends to the right, built-up
surface to the left, time from bottom to top, red color indicates

urban, yellow peri-urban, and green rural areas. Once the
reader is familiar with this concept, the multivariate urban
dynamics, including their interactions (e.g., change in built-
up area in relation to change in population, which is an
important metric for measuring land use efficiency using
SDG indicator 11.3.1) become obvious, and the “signature”
of multiple cities or regions can be compared effectively. For
example, in Ibadan, population has increased much more than

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

23 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Towards Digital Twins: Integrating Data, Models, and Insight

Settlement dynamics in Ibadan (Nigeria)
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Settlement dynamics in Las Vegas (United States)
(1975-2030)
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Fig. 2. BUPOPs (built-up area — population plots)
effectively illustrate the settlement dynamics of a given
place, region, or country, in terms of the change in built-
up area and population over time and their shares across
rural, peri-urban, and urban classes.

built-up area. In Riga, built-up area has experienced a very
moderate growth rate, while population has been declining
since 1990. In the case of Las Vegas (USA), built-up area and
population have grown approximately with the same relative
change rates. Moreover, the skewness of the triangular shape
indicates the relationship between built-up area and
population: a skew to the right indicates low built-up area per
capita (e.g., Ibadan) suggesting high population density,

while the slight skew to the left as observed for Las Vegas
indicates the opposite, high rates of built-up area per capita,
suggesting lower population densities. In all cases, growth
occurs within the urban centre, while the relative shares of
population and built-up area in peri-urban areas have been
stable (Riga) or declining (Las Vegas) over time.

4. CONCLUSIONS AND OUTLOOK

Herein, we described selected, effective visual tools to
convey information on urbanisation and settlement dynamics
to expert and non-expert audiences, fostering insights from
integrated, large amounts of open Earth observation and other
data sources. In future work, we will develop and test further
visualisation techniques and make them available to the
public via a web-based tool. Importantly, the prototypes
presented herein are based on locally stored data. For
efficient, customised, user-centric web visualisation, we are
currently exploring the use of pre-computed summary
statistics and modern web-based infrastructure (e.g., Voila
dashboards [10], Google Earth Engine, cloud-optimised
GeoTIFFs (COGs), cloud storage infrastructure), facilitating
the real-time visualisation of large datasets such as the GHSL
data. Such tools will foster data democratisation, the
accessibility to space-based knowledge, and contributing to
data-driven decision making.
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ABSTRACT

Satellite image time series methods have proven to be a valu-
able approach for analysing large datasets in Earth observation.
Time series offer a systematic means of capturing change,
leveraging the enhanced temporal resolution of satellites such
as Sentinel-1 and Sentinel-2. This paper presents insights and
lessons learned when applying time series analysis to big EO
data, especially in the context of land use in tropical forests
and statistics of tropical agriculture. We discuss the need for
flexible definitions of data cubes, the benefits of the time-first,
space-later approach, the importance of modelling events in
time series, and the key differences between model validation
and map accuracy. The authors also present some perspectives
on possible trends in big EO data analysis.

Index Terms— Big EO analytics, satellite image time
series, EO data cubes, foundational models.

1. INTRODUCTION

With free access to Earth observation (EQ) massive data sets,
we need new methods to measure change on our planet. One
particular research area that big EO data have enabled is the
analysis of time series of satellite images. Combined with
EO data cubes, time series are a powerful tool for monitoring
change. Using time series, experts improve their understanding
of ecological patterns and processes. Instead of selecting
individual images from specific dates and comparing them,
researchers track change continuously.

To support research and operational work using time series,
the authors have been developing the sits package, an end-
to-end environment for land use and land cover classification
[1]. Since 2020, the package has been utilised for large-scale
operational land use monitoring, including the measurement
of tropical deforestation and agricultural statistics. Such ex-
perience enabled package authors and users to learn several
lessons related to big EO analytics, particularly in the context
of time series. This paper presents some of these lessons to
share experience in big EO analytics.

Thanks to IKI (Germany International Climate Initiative) for funding.

2. BRIEF DESCRIPTION OF SITS

The sits programming interface (API) provides a set of func-
tions to create a workflow for land classification. The package
is written in R and offers an API for both R and Python. The
package leverages analysis-ready data (ARD) collections to
extract and classify time series. Supported collections include
AWS, Microsoft Planetary Computer, Copernicus Data Space
Ecosystem (CDSE), Digital Earth Africa, Digital Earth Aus-
tralia, and Brazil Data Cube. Since machine learning algo-
rithms for time series require consistent data, sits creates
regular data cubes from parts of ARD collections. The package
also provides methods for merging data cubes from different
satellites (e.g., Sentinel-1 and Sentinel-2) and ancillary data
such as DEMs. Users can also apply arithmetic operations
to derive new attributes from data cubes, such as vegetation
indices.

Given a regular data cube and a set of ground truth data,
sits obtains training samples containing time series for se-
lected locations in the training area. Users can perform quality
control on training samples using self-organised maps [2] and
also reduce sample imbalance.

Supported machine learning algorithms include Random
Forests, XGBoost, Temporal Convolution Neural Networks
[3], Temporal Attention Encoders [4], and Residual Networks
[5]. Data cube classification uses GPUs when available, pro-
ducing probability matrices that are post-processed to remove
outliers using Bayesian smoothing [6]. The package also esti-
mates classification uncertainty to support active learning.

3. LESSONS LEARNED IN BIG EO ANALYTICS

3.1. Flexible Definition of Data Cubes

Machine learning and deep learning (ML/DL) algorithms for
spatiotemporal data require conversion of ARD image collec-
tions from EO cloud services to regular data cubes. Appel
and Pebesma [7] propose a definition of data cubes as an
n-dimensional matrix of cells combining a 2D geographical
location, a 1D set of temporal intervals, and a k-dimensional
set of attributes. For each position in space, a data cube gen-
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erates a multidimensional time series. For each time interval,
users obtain a valid 2D image. In this definition, all pixels of a
data cube follow the same coordinate system.

In sits, we have extended that data cube definition to
include a further dimension related to the spatial organisation
used by the ARD image collection. For example, Sentinel-2
images are organised in the MGRS tiling system, which fol-
lows the UTM grid. Thus, to process data spanning multiple
UTM grid zones, EO data cubes require an additional dimen-
sion provided by the ARD tiles. This extension enables sits
to process large-scale data, unlike systems that adopt a more
restricted data cube definition.

3.2. Time-first, space-later

The time-first, space-later concept in satellite image classifi-
cation prioritises time series analysis as the initial processing
step. Then it uses spatial information after classifying all
time series. The time-first part allows a better understanding
of changes in landscapes. Time series classification is pixel-
based, producing a set of class probability matrices for each
pixel. This result is the input for the space-later part of the
method. In this phase, a smoothing algorithm improves the
results of the time-first classification by considering the spatial
neighbourhood of each pixel. The resulting map thus combines
both spatial and temporal information.

Spatial smoothing methods improve the accuracy of land
classification by incorporating spatial and contextual infor-
mation. The smoothing method available in sits uses an
Empirical Bayes approach, adjusted to the specific properties
of land classification. The assumption is that class probabili-
ties at the local level should be similar. Thus, probabilities in a
spatial neighbourhood of a pixel provide the baseline for com-
parison with those produced by the classifier for each pixel.
Based on these two elements, Bayesian smoothing adjusts the
probabilities of the pixels, taking into account spatial depen-
dence [6]. Our experience is that the space-later part of the
time series analysis significantly improves the results.

3.3. Modelling Events in Time Series

To represent change in geographical space, authors distinguish
between objects and events [8]. Objects refer to entities that
endure through time even while undergoing different sorts
of changes. The Amazon Forest and the city of Brasilia are
objects. Events occur within a well-defined period and may
have distinct stages during this time. Cutting down a forest
area, cultivating a crop in a season, and building a road are
events. Time series analysis methods are particularly well-
suited for detecting events in data cubes, as they can capture
seasonal variations and abrupt changes.

Souza et al. [9] built a set of event-based training samples
for measuring deforestation in the Amazon using Sentinel-2
time series. The authors considered three types of classes:

(a) deforestation classes defined based on events measured
by breaks in the time series, (b) natural classes with events
linked to seasonal variation, and (c) stable natural classes. An
example of the first case is a time series that begins with the
response of a stable forest cover and is interrupted by a signal
related to a forest fire. In the second case, we have seasonally
flooded wetlands; their signals follow seasonal patterns. Sea-
sonally variable classes are often confused with deforestation
areas when working with single-date images. Kinnebrew et al.
[10] report that Global Forest Change maps confuse wetlands
with agriculture based on a single-date comparison. Using
time series minimises such confusion. The authors achieved
a 95% agreement with expert visual interpretation, which is
much better than other automated methods [11].

3.4. Model Validation and Map Accuracy

Most works on ML models for EO use cross-validation for
assessing the generalisation performance of machine learning
models. Its primary purpose is to provide an unbiased estimate
of a model’s ability to perform on independent, unseen data,
thereby helping to prevent overfitting. However, performance
estimates obtained via cross-validation may not fully reflect the
conditions encountered in real data. In most situations, training
samples do not capture the full variation present in the entire
dataset. Thus, measures of cross-validation are not reliable
predictors of map accuracy. To achieve proper map accuracy,
one should employ a statistically based sampling approach to
compare predicted and actual pixel classes on the resulting
map [12]. In real-world cases, map accuracy results differ
substantially from those obtained through cross-validation.

Due to this focus on cross-validation, few works in the
literature provide a statistically sound comparison of ML al-
gorithms for EO. In Souza et al. [13], we evaluate how the
temporal convolutional neural network (TCNN) [3] and the
lightweight temporal self-attention (LTAE) [4] differ in their
cross-validation and map accuracy. We selected a study area
in Petrolina, located in the Caatinga biome, a semi-arid region
characterised by land changes driven by agricultural expan-
sion and livestock farming. These areas are complex land-
scapes with distinctive land use practices and climate regimes.
We achieved high F1 scores for both methods during cross-
validation, with values greater than 0.90.

Map accuracy measures differ significantly from cross-
validation in our case study. For natural vegetation, we ob-
tained an F1-score of 0.81 using TCNN, whereas LTAE pro-
duced an F1-score of 0.90. LTAE enabled better identification
of smaller areas covered by xeric shrubland and thorny trees.
Given the well-defined seasonal patterns of permanent crops
and water bodies, LTAE and TCNN achieve high accuracy
when classifying them. TCNN had a much lower F1-score
(0.41) than LTAE (0.81) for temporary crops that do not have
well-defined seasonal variations. Overall, LTAE is signifi-
cantly better than TCNN for Petrolina.
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The results indicate important differences between these
algorithms. Convolution-based approaches, such as TCNN,
are effective in areas with well-defined temporal signatures
and for detecting abrupt events. In cases where the same
class is associated with different temporal signatures (as in
semi-arid regions), attention-based methods such as LTAE are
more effective. We conclude that users need to understand
how each ML algorithm works in practice to choose the best
method for their problems. The work also demonstrates that
cross-validation is not a reliable predictor of map accuracy.

3.5. Quality Control of Training Samples

Selecting high-quality training samples for machine learning
classification of satellite images is crucial for achieving accu-
rate results. Thus, it is beneficial to use pre-processing methods
to improve the quality of samples and eliminate those that may
have been incorrectly labelled or possess low discriminatory
power.

When working in a large geographic region, the limitation
of terms to describe nature and the variability of vegetation
phenology lead to the assignment of the same label to differ-
ent spectral and temporal responses. A related issue is the
limitation of crisp boundaries to describe the natural world.
Class definitions use idealised descriptions (e.g., ’a savanna
woodland has tree cover of 50% to 90%, ranging from 8 to 15
m in height”). Class boundaries are fuzzy and sometimes over-
lap, making it hard to distinguish between them. To improve
sample quality, sits supports training data evaluation using a
SOM-based algorithm [2]. The SOM-based method identifies
potential mislabelled samples and outliers that require further
investigation. Unlike methods based on confusion matrices,
algorithms such as SOM allow quality estimators for individ-
ual samples. The resulting improvements show the need for
further research on methods for sample quality control [14].

4. PERSPECTIVES

Research on big EO data analytics has been heavily influenced
by techniques derived from Computer Vision, such as U-Net,
masked autoencoders and Vision Transformers. These meth-
ods underpin most current research focused on foundational
models for Earth observations [15, 16]. However, there are im-
portant shortcomings in the current generation of ML models
for EO, especially those whose input consists of fixed-sized
labelled patches [17]. In many cases, these patches are RGB
images. Satellite images, such as Sentinel-2, have 10 spectral
bands; reducing them to RGB patches leads to a significant
loss of information content. As pointed out by Xiao et al. [18],
foundational models for EO face several challenges, which
include the differences between satellite and natural images, a
shortage of large training sets, and their reliance on Computer
Vision techniques.

Most current algorithms for object classification rely on
the distinction between foreground ( “things”) and background
(“stuff”’). While this design is suitable for high spatial resolu-
tion images with pixels of 3 meters or smaller, it is unsuitable
for mid- to low-resolution images (pixels of 10 meters or
larger). Mid and low-resolution images are continuous distri-
butions of radiance values and are better described as fields
than as collections of objects [19]. Human-sized, everyday
objects depicted in natural photos differ from continuous land-
scapes captured in satellite images. All pixels matter when
working with Sentinel-like data for land mapping and similar
broad-area applications; the distinction between foreground
and background is not universally applicable.

Arguably, no proper “objects” exist in mid to low-
resolution images; image classification identifies compact
regions of similar values in multidimensional spaces. While
domain scientists may believe they recognise objects in a
remotely sensed image, they are actually measuring fields.

A further challenge to ML models derived from Computer
Vision is dealing with satellite image time series. Time series
capture the evolution of geospatial fields and objects, enabling
the detection of events such as deforestation, desertification,
mudslides, and surface water loss. Event definitions are not
covered in fixed hierarchies such as ImageNet because they
require continuous change monitoring.

Current research on foundational models for EO focuses
on combining diverse datasets, many with different resolutions
and sensors, in the expectation of extracting embeddings that
can be applied to various problems [15, 16]. These models
make the strong assumption that spectral and temporal signa-
tures of classes in remote sensing images are separable and
mappable to a hierarchical structure such as that of ImageNet,
where each term is unique and precisely defined. However,
ontologies that describe the geographical world are inherently
polysemic. Consider the concept of ‘forest’. What counts
as a forest depends on who defines a certain piece of land as
one [20]. Countries use different conceptualisations of forest,
based on the physical parameters of tree height and crown
canopy cover [21]. The UN Food and Agriculture Administra-
tion (FAO) considers that a forest may be temporarily devoid
of trees. Thus, it is unlikely that foundational models will be
able to support variable definitions of ‘forest’ without massive
improvements in data collection.

Remote sensing classification will always be task- and
context-dependent. Many foundational models combine differ-
ent sources, including SAR and optical images, DEMs, land
use maps, and text, without considering their inherent differ-
ences. However, in the absence of suitable training data to
validate the model, reported performance accuracies [22] fail
to match what is currently achieved with application-centred
training data sets.

Arguably, there are alternative paths to make progress in
big EO analytics. One recommended approach is to place an
increased emphasis on improving the collection of training
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data. As stated by Roscher et al. [14]: “A shift from a model-
centric view to a complementary data-centric perspective is
necessary for further improvements in accuracy, generalisation
ability, and real impact on end-user applications”. The lack of
methods for improving the extraction and evaluation of train-
ing samples remains a significant barrier to innovation in big
EO analytics across various approaches. Without significant
progress in this area, ML algorithms for EO will continue to
require substantial effort from users when selecting datasets to
achieve high-quality results.
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ABSTRACT

Addressing  environmental  challenges  demands
accessible and well-structured Earth observation data. This
paper presents the development of a national-scale data cube
for Estonia, integrating diverse remote sensing (Sentinel-1/2,
Light Detection and Ranging (LiDAR)) and geospatial
datasets. The aim is to provide analysis-ready data,
particularly for biodiversity and carbon dynamics research,
by overcoming common technical hurdles associated with
Earth Observation big data. The framework emphasizes user-
friendliness, offering intuitive access and visualization tools.
By leveraging cloud computing and open-source standards,
this work facilitates efficient data retrieval and analysis,
empowering researchers and policymakers with timely
environmental information for informed decision-making
and sustainable development.

Index Terms— data cube, Earth Observation,
biodiversity, carbon
1. INTRODUCTION
Addressing pressing global environmental challenges,

including land use change and climate change, requires the
availability of timely and accurate information regarding
their drivers and impacts. Earth Observation (EO) data,
encompassing satellite and in-situ data from diverse sources
[1], has emerged as a crucial resource for monitoring these
dynamics. Facilitated by free and open data policies [2] and
advancements in open-source software and cloud computing
[3], EO data enables more effective environmental
management, informed policy assessment, and ultimately
contributes to sustainable development. The capacity to
process and analyse the burgeoning volumes of EO data holds
immense potential for understanding complex environmental
processes and informing decision-making across various
scales, particularly when fusing diverse geodata and remote
sensing data from disparate sources. This integration of
multi-modal data, such as combining optical imagery with

active sensor data like LiDAR and radar, allows for a more
holistic and detailed understanding of environmental
conditions and changes.

However, the effective utilization of EO big data presents
significant technical hurdles [4]. Prior research has
highlighted key obstacles, such as limitations in data storage,
transmission, and analysis, alongside the need for developing
suitable computational architectures capable of handling such
immense datasets [5]. Furthermore, classical data cube
implementations often fall short of providing analysis-ready
data optimized for advanced analytical techniques,
particularly artificial intelligence (Al) and machine learning
(ML) algorithms. These methods thrive on structured,
consistently formatted, and feature-rich datasets, which
traditional data cubes may not inherently offer. Moreover,
data cube platforms should be user-oriented, providing
intuitive access, analysis tools, and customizable
functionalities to cater to a diverse community of researchers,
policymakers, and practitioners.

The aim of this work was to construct a comprehensive
data cube at the national level for Estonia, leveraging remote
sensing and geospatial data to mainly advance biodiversity
and carbon dynamics research. The full potential of fusing
active (LiDAR, radar) and passive remote sensing has not
been fully developed and utilized yet in biodiversity and
carbon modelling studies. To efficiently relate the ground
measurements with remote sensing data and create spatial
models, unified easily accessible data is needed. Moreover,
multi-temporal (seasonal) data sets, consisting of numerous
combinations of spectral bands, can hold significant potential
to predict compositional vegetation classes and other
environmental variables.

2. DATA AND METHODS

We used remote sensing data, including Sentinel-1, Sentinel-
2 (ESA Copernicus), and high-resolution airborne LiDAR
data as raw point cloud data and digital elevation model
(Estonian Land and Spatial Development Board),
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Fig. 1. The spatial sub-division of Estonia into 100x100 km
processing zones.

Estonian soil map EstSoil-EH [6] for the data cube layer
preparation.

We created a spatial grid to divide the area into equally
sized manageable tiles for processing and export (Fig. 1).
These tiles were used to create spatially aligned 10m
resolution tiles in Estonian National CRS (L-Est-97, EPSG
3301). Based on the tiles, we created Cloud Optimized
GeoTIFFs (COGs) (https://cogeo.org/), which ensure fast
read and download operations [7].

We used the following workflow for processing Sentinel-
1 and Sentinel-2 images with the Python GEE API:

1) For Sentinel-1 (ascending) and Sentinel-2 L2A images,
we created seasonal (April-May, June—August, September—
October) median composites for every year. For Sentinel-1,
we implemented the speckle filter developed by Mullissa et
al. [8]. For Sentinel-2, cloud masking using the CloudScore+
algorithm [9] was used.

2) Based on the seasonal composite images, various
vegetation indices were calculated: Normalised Difference
Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Fractional Vegetation Cover (FVC), Normalised
Difference Water Index (NDWI), Bare Soil Index (BSI),
Normalised Difference Moisture Index (NDMI), Green
Normalised Difference Vegetation Index (GNDVI), Radar
Vegetation Index (RVI).

3) For biodiversity assessment, spectral species concepts
and k-means clustering are commonly used to analyse
gridded remote sensing data, producing 2D a- and B-diversity
heterogeneity maps. We calculated a- and B-diversity
heterogeneity using the biodivMapR library [10].

4) Due to infrequent cloud-related no-data pixels in
seasonal composites over the past few years, we applied gap-
filling using a yearly mean composite. We also generated a
corresponding binary no-data mask, allowing for the

identification of gap-filled areas in subsequent analyses if
necessary.

In addition to the Senintel-1 and Sentinel-2 data, we
added climate data from ERAS Land monthly reanalysis data:
Mean Air Temperature (2m), Total Precipitation, Minimum
Air Temperature (2m), Maximum Air Temperature (2m). We
also calculated different topographic indices based on the 10
m Estonian digital elevation model [11]: slope, Terrain
Wetness Index, Terrain Ruggedness Index, LS-factor.

From LiDAR point cloud data [11], we calculated various
indices relevant for biodiversity: ecosystem height
(maximum, mean, median vegetation height), ecosystem
cover (density of vegetation points within defined height
layers, canopy openness), ecosystem structural complexity
(coefficient of variation of vegetation height, standard
deviation of vegetation height, variance of vegetation height).
We used PDAL [12] for LiDAR point cloud reclassification
and filtering and laspy [13] for low-level bit corrections.
PDAL pipelines were used to calculate the indices.

3. IMPLEMENTATION

We utilized the high-performance cloud computing platform
provided by the University of Tartu [14] to execute our data
cube operations. For data storage, we employed S3-
compatible object storage (buckets) to manage the Cloud
Optimized GeoTIFFs (COGs). Using libraries such as
rasterio, we scanned these files to extract metadata for our
SpatioTemporal Asset Catalog (STAC), including asset
names, extent boundaries, spectral bands, resolution,
coordinate reference systems (CRS), data types, and nodata
values. This information was instrumental in generating
STAC JSON metadata collections, which we made accessible
through a STAC-compatible web service based on pygeoapi.
To enhance our service, we extended pygeoapi to enable
search functionalities via the STAC-APIL. In QGIS, we
employed the QGIS STAC API Browser plugin to connect to
and query our STAC API endpoint. For high-performance
computing (HPC) and scripted batch processing workflows,
we utilized the Python pystac library to query the STAC
metadata and select GeoTIFFs for processing. For the
creation of CSW/ISO-compatible metadata, we adhered to
the ISO 19115/117 and ISO 19137 XML standards for
geographic metadata, which were implemented in the
GeoNetwork  OpenSource metadata catalog  server
(https://geonetwork-opensource.org/).

The core of our Data Cube Viewer (https://geokuup.ee/) is
implemented in the Elixir language, using the Phoenix
(https://www.phoenixframework.org/) framework. The data
cube viewer component is building on the MapLibre
JavaScript library to link in the WMS and WMST/Tiles
layers. The COGs are visualised as WMS through GeoServer,
which are directly registered from their object storage bucket
locations. The Data Cube Viewer enables quick visualisations
of all the layers and also timeseries queries.
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In the Data Cube Viewer, datasets are also organised into
collections - here datasets are referred to via the linkag

,1; Estonian Environmental Datacube

Fig. 2. The data cube viewer that enables quickly visualize
all layers and make quick queries, including timeseries.

viewing services, such as the GeoServer
(https://geoserver.org) WMS. This allows users to view,
compare, and query these layers. Several collections are
already provided by us, including seasonal views of Sentinel-
1 and Sentinel-2 indicators, terrain and topographic indices.

Several choices of the general architecture are oriented on
common best practices for working with big geospatial data,
such as using object storage and STAC collections to index
data files, building upon the easy-to-use standards-based
open-source tools like GeoServer, pygeoapi, and
GeoNetwork, and relying on the Pangeo (https://pangeo.io/)
ecosystem of well-integrated geospatial Python libraries for
processing and workflows. However, for the user-facing Data
Cube Viewer portal we adopted the Phoenix framework (built
on Elixir and the BEAM virtual machine) as a pragmatic
technology choice to balance performance, maintainability,
with developer experience and efficiency.

We considered the Elixir, Phoenix, and LiveView
combination being advantageous over separate JavaScript or
Python-based alternatives, particularly in handling
concurrent user connections and maintaining system stability
under varying load conditions. At the same time, the
developer experience with Phoenix and its LiveView
capabilities allows our small team to rapidly implement
responsive Ul components without the complexity of
maintaining separate frontend and backend codebases. In
addition, we opted for the MapLibre over Leaflet or
OpenLayers for its out-of-the-box rendering performance
with mixed data sources, including tiles and vector data
sources. Another advantage is its recent 3D globe view
implementation, that interacts well with otherwise standard
geospatial data sources, but does not exhibit the
implementation complexities of libraries, like CesiumlJS.

and extraction of spatial and temporal extents from input and
project-generated datasets. The data cube is very user
oriented and aims to provide easy access to the high-
resolution spatial data for academic and governmental
agencies. The data cube includes variables mainly relevant
for biodiversity and carbon studies, but this can be also easily
extended to other studies with additional data. The future
work includes further processing data into multi-resolution
and adding complementary datasets and processing
workflows for data retrieval and analysis.
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BIOCUBE: A MULTIMODAL DATASET FOR BIODIVERSITY RESEARCH

Stylianos Stasinos*

Amazon
EU INTech
16 Rue Edward Steichen, 2540,
Luxembourg, Luxembourg

ABSTRACT

Biodiversity research requires complete and detailed in-
formation to study ecosystem dynamics at different scales.
Employing data-driven methods like Machine Learning is
getting traction in ecology and more specific biodiversity,
offering alternative modelling pathways. For these methods
to deliver accurate results there is the need for large, cu-
rated and multimodal datasets that offer granular spatial and
temporal resolutions. In this work, we introduce BioCube,
a multimodal, fine-grained global dataset for ecology and
biodiversity research. BioCube incorporates species obser-
vations through images, audio recordings and descriptions,
environmental DNA, vegetation indices, agricultural, for-
est, land indicators, and high-resolution climate variables.
All observations are geospatially aligned under the WGS84
geodetic system, spanning from 2000 to 2020. The dataset is
available at https://huggingface.co/datasets/
BioDT/BioCube, the acquisition and processing code base
athttps://github.com/BioDT/bfm-data.

Index Terms— Dataset, Multimodal, Engineering, Ma-
chine Learning, Biodiversity

1. INTRODUCTION

Biodiversity is undergoing rapid transformation due to human-
induced environmental change, land-use shifts, and climate
variability. Monitoring these changes at scale requires com-
prehensive datasets that not only capture singular modalities
like species presence, but also contextual environmental in-
formation. However, most available biodiversity datasets are
limited either to observational records or specific modalities
such as imagery or genetic sequences, often lacking the nec-
essary integration across environmental, spatial and temporal
dimensions.

Recent advances in Digital Twins (DTs), Machine Learn-
ing (ML) and Earth Observation (EO) technologies have
opened new avenues for ecological forecasting and biodiver-
sity assessment. Yet, the full potential of these approaches
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Dutch Organization for Applied Scientific Research

TNO - ICT, Strategy & Policy

Anna van Buerenplein 1, 2595 DA, Den Haag,
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is often hindered by challenges like fragmented data land-
scapes, inconsistent resolutions or modality gaps [1]. In
response to these challenges we have engineered a multi-
modal dataset that provides a foundation for building scalable
models that can be used for biodiversity monitoring, conser-
vation planning and ecological forecasting at both global and
local scales.

A series of ecology and biodiversity specialized datasets
have recently emerged like BIOSCAN-5M [11] that con-
tains over 5 million specimens of insects along with images,
DNA barcode sequences, taxonomy, geographic information.
Species distribution modeling is the focus of GeoLifeClef [4]
dataset by merging 1.9 million plant and animal observations
with high resolution remote sensing imagery, land cover and
climate variables. In a similar direction, GeoPlant [7] pro-
vides over 5 million plant occurrence records across Europe,
positivity enriched with Sentinel-2 satellite imagery and 20
years of climate time-series to support high-resolution spatial
biodiversity observations. However, these datasets are far
from containing enough diversified parameters to cover cur-
rent needs in ecology. More specific, none of these datasets
jointly integrates images, audio, eDNA, land, agriculture,
conservation status, and climate variables. This gap moti-
vated the construction of BioCube as a more diversified and
holistic dataset.

The rest of the paper is organized as follows. Section 2 in-
volves the methodology used, including data acquisition, pre-
processing, and integration. In Section 3 the resulting data, its
coverage, composition of modalities, and quality of the data
are described. In Section 4, strengths, limitations, and open
challenges regarding construction of large-scale biodiversity
datasets that can be applied in ML are addressed. Finally,
the prospect of the importance of BioCube to biodiversity re-
search and ecological forecasting is discussed in Section 5.

2. METHOD

Latest ML methods like Foundation Models require large,
well-curated, modality-rich datasets [2]. Accordingly, we as-
sembled data from diverse sources, combining climate vari-
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ables, species observations, land indicators, and conserva-
tion records, as listed in Table 1. Acquisition used both API
and file-based ingests to ensure scalability and spatiotemporal
coverage.

2.1. Data Sources

BioCube dataset integrates data from several sources:

e Climate Variables: ERAS5 hourly global reanalysis
data, such as temperature, wind, pressure, and humid-
ity, both in surface and atmospheric layers, obtained
from the Copernicus Climate Data Store (CDS) [6].

* Species Observations: Images and metadata, such as
taxonomy, geolocation, and timestamps collected from
iNaturalist ' and iNat2021 [5]. These datasets provide
direct presence evidence.

e Acoustic Data: Bird vocalizations and metadata re-
trieved from Xeno-Canto > and from Xeno-Canto in
GBIF [10], crucial for species monitoring where visual
observation is difficult.

* Species Descriptions and Conservation Status: Tex-
tual records describing habitats, traits from Map of
Life [9] and TUCN Red List °, including red list index
values and threat categories. The Red List is a global
reference for extinction risk, with categories ranging
from Extinct (EX) to Least Concern (LC).

* Species Distribution: Data is derived from the Living
Planet Index #, which aggregates population trends of
species globally.

¢ Environmental DNA (eDNA): Genetic barcode se-
quences obtained from the Barcode of Life Data Sys-
tem (BOLD) [8].

¢ Land and Vegetation Indicators: NDVI sourced from
Copernicus Land Services 5. and forest cover, land and
agricultural indicators from The World Bank °.

2.2. Acquisition Methods

API-based acquisition had a focus on the dynamic and real-
time data retrieval. ERAS climate variables were obtained
through CDS using bounding boxes and temporal filters, with
batch processing. Species data, including images, taxonomy,
and geolocation, were collected via the iNaturalist API, while
bird vocalizations were retrieved from the Xeno-Canto API,
based on quality and location filters. Environmental DNA
(eDNA) was sourced from the BOLD Systems API, and
species descriptions together with the threat categories (e.g.,

Mttps://www.inaturalist.org

Zhttps://xeno-canto.org

3https://www.iucnredlist.org

4https://www.livinqplanetindex.orq/

Shttps://land.copernicus.eu/en/products/vegetat
ion/normalised-difference-vegetation-index-v3-0-
lkm

6https://data.worldbank.org/indicator

TUCN Red List status) were accessed using the Map of Life
APIL. To ensure efficiency and data integrity, we have imple-
mented independent API modules to promote scalability and
flexibility.

File-based acquisition provided an access to static and his-
torical datasets, adding essential temporal depth and spatial
coverage. The Living Planet Index (LPI) has contributed an-
nual species distribution data from 1950 to 2020. NDVI prod-
ucts from Copernicus Land Services supplied vegetation in-
dices recorded every 10 days at 1 km resolution, resampled
to 0.25° grids for consistency. Land-use indicators, includ-
ing arable land, irrigated areas, cropland extent, and forest
cover, were sourced from the World Bank for the years 1961
to 2021. Offline datasets such as iNat2021 (2.7 million la-
beled images) and archived Xeno-Canto audio recordings ac-
cessed via GBIF further enriched the dataset. The complete
file sizes and metadata can be found in Table 2.

2.3. Preprocessing

The obtained data could not be used in its raw format. Spe-
cific preprocessing steps detailed below needed to ensure con-
sistency, quality and compatibility across modalities, while
serving as a foundational component in the construction of
structured data batches or cubes used for downstream mod-
elling tasks. The preprocessing methods were performed dur-
ing the dataset preparation phase and are crucial for generat-
ing uniform and high-quality inputs, harmonised to a 0.25°
WGS84 geodesic coordinate grid, and temporally aligned to
daily or monthly intervals.

* Audio: Silence removal, noise reduction (spectral gat-
ing), resampling, MFCC extraction.

* Image: Denoising, resizing, cropping.

» Text: Stopword and punctuation removal, stemming,
lemmatisation, BERT embeddings and bag-of-words
transformation.

* eDNA: Sequence filtering, k-mer vectorization and
normalization.

* Climate and Land Data: Missing data interpolation,
normalisation and temporal aggregation of variables
such as temperature, wind, and pressure.

While end-to-end neural networks now dominate mod-
ern image, audio, and text analysis, we deliberately included
traditional feature extraction methods (e.g., MFCC, TF-IDF)
to ensure reproducibility and to provide baselines for re-
searchers employing classical ML methods.

3. RESULTS

To construct unified dataset for biodiversity, we have acquired
and curated multimodal data from multiple sources as a first
step. Then the collected data available at Table 3 has been
integrated into a structured species dataset with the following
fields:
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Table 1. Overview of data modalities and variables included in the dataset.

Modality Source

Variables

Surface Climate Copernicus (ERAS)

Atmospheric Variables Copernicus (ERAS)

Single-Level Variables  Copernicus (ERAS)

Species Observations iNaturalist, GBIF, Xeno-Canto

Descriptions Map of Life

eDNA BOLD Systems

Distribution Trends Living Planet Index

Red List Index (RLI) IUCN / Map of Life

NDVI Copernicus Land (SPOT,
PROBA-V)

Agri/Forest Indicators  World Bank

2m temperature, 10m wind (u/v), mean sea-level pressure

Geopotential, temperature, humidity, wind (13 pressure levels:
50-1000 hPa)

Land-sea mask, surface geopotential, soil type

Images, audio, coordinates, timestamp, taxonomy

Text descriptions (behavior, habitat)

DNA sequences (ATCG), taxonomic identifiers

Annual species occurrence and population trends (1950-2020)
Extinction risk index (0-1), categories: EX, EW, CR, EN, VU,
NT, LC

Vegetation index values (-1 to 1), 10-day temporal resolution, 1
km spatial resolution

Arable land, irrigated land, cropland area, forest cover, total land
area

Table 2. Data Sources by File Count and Total Size

Data Source Name Total Files Total Size (GB)
Climate Variables 24,510 160
Species Observations 51,918 52
Acoustic Data 43,511 104.4
Species Descriptions 20,593 0.005
Environmental DNA 16,257 0.1
Species Destribution 4,922 0.03

Land Indicators 7 0.0001
Species Conversion Status 1 0.011
Vegetation Indicators 258 88

» Species Identification: Species, Phylum, Class, Order,
Family, Genus

* Location and Time: Latitude, Longitude, Timestamp

* Multimodal Inputs: Image, Audio, eDNA, Description,
Redlist, Distribution

Table 3. Statistics of the Species Folder Contents

Category Count
Total number of Species 40,282
Species with eDNA, no images, no audios 15,064
Species with images, no audio, no eDNA 16,630
Species with images and audio, no eDNA 1,849
Species with audio, no images, no eDNA 2,772
Species with images and eDNA, no audio 738
Species with audio and eDNA, no images 182
Species with all modalities 273

These records are extracted from over 40,000 species
folders, each containing varying combinations of modalities.

To efficiently extract relevant data, we implemented a folder
filtering mechanism based on a hash-table-inspired approach.
Each folder is being treated as a unique bucket, and its in-
ternal CSV files (image, audio, eDNA, etc.) are scanned
for timestamps. Only folders containing at least one times-
tamp within the target date range (2000-2020) are selected
for further processing. This has minimised memory usage
and accelerated BioCube’s construction time by avoiding
unnecessary I/O on irrelevant folders.

Image-Audio Matching: When both images and audio
were available, we matched them by averaging their meta-
data; latitude, longitude, timestamp, and paired them to max-
imise spatiotemporal alignment. Additionally, species-level
data such as taxonomy and distribution are matched using the
closest year and location for each sample.

Efficient Storage: All data is stored in Apache Parquet
format to optimize I/O operations. Tensors are serialised
(as base64-encoded arrays), and each sample is assigned a
unique_id to avoid duplication. Latitude and longitude val-
ues are rounded to a 0.25-degree resolution to align with other
datasets such as climate and land-use data. If different coor-
dinates systems were found, we transformed them to WGS84
format. The data are saved incrementally after processing
each folder, enabling scalable and resilient processing.

Land indicators (agriculture, forest cover, NDVI) required
additional preprocessing. Because several sources report only
country-level values, we extracted country bounding boxes
and interpolated these to a spatial grid to align with species-
level data. NDVI at 1 km monthly resolution was harmonised
separately from annual forest and agriculture statistics ob-
tained from the World Bank and Copernicus services. Table 4
summarises the total values only for Europe.
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Table 4. Summary of Environmental Indicators (Europe)

Indicator Type Total Values Countries
Agricultural (Arable) 2,311,390 42
Agricultural (Irrigated) 411,482 33
Cropland Area 2,276,021 38
Forest Cover 1,285,834 44
Land Area 852,248 44
NDVI (Vegetation Index)” 15,929,016 44

* NDVI values are recorded monthly, while all other indicators are
reported annually.

4. CONCLUSION AND DISCUSSION

BioCube marks a big step towards progressing biodiversity
research through its complete multimodal analysis of fine-
grained environmental and ecological data across the globe.
BioCube connects species observations including imagery,
audio recordings, environmental DNA data as well as de-
scriptive information with precise climate, land-use data,
vegetation measurements and conservation metrics to fill a
significant research gap between singular modality datasets.
Its main strengths lie in the breadth of data types, global
geospatial alignment, and open availability. These enable
research in species monitoring, conservation planning, and
ecological forecasting. Still, some limitations remain, like
NaN and missing values, taxonomic and geographic biases,
reliance on legacy feature extraction, and as well as incom-
plete modal or spatial representation. Overall, BioCube is
a scalable step toward developing biodiversity foundation
models [2], supporting hybrid experiments now, while future
work should expand modalities, improve coverage, and add
real-time data streams.
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CONSTELLR HIVE SATELLITE MISSION: LEVERAGING BIG DATA AND DATA CUBE
TECHNOLOGIES FOR THERMAL REMOTE SENSING AND ENHANCED DATA ACCESS

Daniel Spengler’, Tobias Leismann’,

constellr GmbH, Germany

ABSTRACT

The constellr HiVE satellite mission significantly enhances
environmental monitoring through innovative thermal remote
sensing capabilities. By providing global daily data at high
spatial resolutions (5 to 30m), the mission effectively
addresses limitations in existing satellite technologies. This
paper discusses the mission specifications and the advanced
data handling methodologies employed, focusing specifically
on the implementation of big data architectures and data cube
technology. Data cubes streamline complex spatial-temporal

queries and enhance data accessibility for diverse
stakeholders, including wurban planners, agricultural
managers, and  policymakers, enabling targeted

environmental interventions.

Index Terms — Big Data, Data Cube Technology,
Thermal Remote Sensing, Land Surface Temperature,
Environmental Monitoring

1. INTRODUCTION

The increasing frequency and intensity of climate-induced
phenomena such as urban heat islands, drought, and
agricultural stress highlight the necessity for timely and
detailed thermal data. Current satellite technologies often
compromise between spatial detail and temporal frequency,
limiting their practical effectiveness. The constellr HiVE
satellite constellation addresses these gaps through high-
resolution thermal imaging and frequent revisits, supported
by advanced big data and data cube technologies,
dramatically improving environmental data handling and
access.

2. CONSTELLR HIVE MISSION OVERVIEW

2.1. Satellite and Sensor Specifications

The HiVE constellation employs sophisticated thermal
infrared (TIR) and visible near-infrared (VNIR) sensors. The
payload for the constellation includes two primary imaging
instruments: a Thermal Infrared (TIR) sensor and a Visible

the spectral range of 8-12 um, capturing data in four discrete
spectral bands (8.6 pm, 9.2 um, 10.6 um, and 11.75 um). It
features a Mercury Cadmium Telluride (MCT) detector array
of 640 x 512 pixels, which is cryogenically cooled to enhance
its sensitivity. The optical system of the TIR telescope
comprises six refractive lenses, enabling high-precision Earth
imaging from a sun-synchronous orbit at approximately 540
km altitude. For detailed technical specifications, refer to
Table 1.

Accompanying the TIR sensor, the VNIR camera utilizes a
commercially sourced Simerasense Multiscapel00 system.
This camera captures images across 10 spectral bands ranging
from 400 nm to 1000 nm, corresponding closely to Sentinel-
2 spectral bands to ensure interoperability. The ground
sampling distance (GSD) varies between 10 m and 60 m
depending on the spectral band and binning configuration,
allowing comprehensive surface characterization.

The HiVE SkyBee 1 satellite was developed with ESA
support under the InCubed program and was successfully
launched in January 2025. Operated by constellr, SkyBee 1
enables targeted Earth surface imaging, featuring an 18.5 km
swath width and nadir pointing capability of up to £30°. Its
local time of descending node (LTDN) is 10:30 AM. Figure
1 illustrates a data acquisition by SkyBee 1 conducted on May
19" 2025, demonstrating uncalibrated relative radiance
differences highlighting cooler (blue) and warmer (red) areas.
It shows a coastal areca in Queensland, Australia,
demonstrating the high resolution potential of the
constellation. SkyBee 2 is scheduled for launch in June 2025,
with additional satellites planned for yearly launches
thereafter.

The accuracy of the Level 2 (L2) Land Surface Temperature
(LST) product depends significantly on atmospheric
conditions during image capture. Given a TIR instrument
radiometric error of <2%, the absolute temperature accuracy
typically ranges from 1.2K in dry arctic conditions to 2.2K in
humid tropical conditions. The constellr LST algorithm
generates high-resolution, surface-optimized temperature
data by leveraging prior emissivity estimation, advanced

and Near-Infrared (VNIR) sensor. The TIR sensor,  atmospheric correction via real-time MODTRAN
specifically designed by OHB for constellr, operates within
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simulations, and a flexible multi-band Equivalent
Temperature approach. Constellr employs a sophisticated U-
Net deep convolutional neural network for cloud masking,
trained extensively on the Cloudsen12 dataset (Aybar et al.,
2022) and enhanced with additional samples from
challenging regions. The operational temperature range for
the instruments is from -20°C to +80°C (253K to 353K). [1]

Table 1. Technical Specification of HiVE SkyBeel.

Mission VNIR SWIR
parameter
Spectral Bands | 0.44]0.49|0.56| | 8.6]9.2|10.6|
(um) 0.670.71 0.74 | 11.8
0.7810.84 | 0.87 |
0.95
LST uncertainty <2K for mid
latitudes
LST sensitivity 0.03K
Geolocation <10m 1.5 pixels (42m)
accuracy (m) (CE90), for
wrt to Sentinel- <10° off nadir
2 reference angle
image
Band to band 0.2 pixels 0.2 pixels
registration (1sigma) (1sigma)
accuracy
Ground 10 x 10 (Band 30x 30
instantaneous 2/3/4/8)
field-of-view (m | 20 x 20 (Band
X m) 5/6/7/9)
60 x60 (Band
1/10)
Signal-to-noise | 10m: >1:200 | BO1: 1:530 |
ratio (SNR) 20m: >1:170 B02: 1:450
60m: >1:500 B03: 1:540 |
B04: 1:150
Swath width / 20 /1000 18.5/1000
length / day
(km)
Product Level L2A L2A
for users
Metadata and Cloud Optimized Cloud
Data Format GeoTiff | STAC Optimized
GeoTiff | STAC
Data Access API or GUI Web API or GUI
Platform Web Platform

2.2. Operations

Operating in a sun-synchronous orbit at approximately 550
km altitude, the HiVE constellation achieves daily global
coverage. Skybee-1 launched on January 14" 2025 and
Skybee-2 launches in June 2025., with the full constellation
daily revisit operational by 2026, ensuring unprecedented
temporal and spatial resolution in thermal remote sensing.

Fig. 1: show one the first images acquired by SkyBee 1 and
showing the sharpness and extreme high level of detail and
sensitivity of the satellite system.

Fig. 1. HiVE SkyBee 1, LWIR thermal image,
Queensland, Australia, 19.05.2025

Fig. 2. Comparison of Landsat ST (20.05.2025) vs
uncalibrated constellr HiVE (19.05.2025) data

Proc. of the 2025 conference on 38
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Data cubes: Advances and applications

3. ADVANCED DATA HANDLING
INFRASTRUCTURE

3.1. Big Data Architectures

Given the massive volume and velocity of data generated by
the HiVE satellites, a robust big data architecture is essential.
This infrastructure uses cloud-optimized GeoTIFF and
SpatioTemporal Asset Catalogs (STAC) to facilitate efficient
data storage, retrieval, and integration, significantly
streamlining workflows for researchers and policymakers.
The use of Pangeo Stack provides a powerful and scalable
environment for efficiently handling and analyzing HiVE
satellite data, which often involves massive datasets with
high spatial, spectral, and temporal resolution. Leveraging
cloud-optimized tools within the Pangeo ecosystem, such as
Xarray for multidimensional data handling, Dask for parallel
and distributed computation, and Zarr for scalable storage.
Users can significantly enhance their ability to perform
complex analyses on HiVE datasets. The stack supports
streamlined workflows for data ingestion, exploration,
processing, and visualization, enabling users to rapidly
interact with large volumes of satellite data without
downloading entire datasets locally. By facilitating on-
demand access and processing directly in the cloud, Pangeo
reduces computational overhead and accelerates scientific
insights derived from HiVE satellite missions.

3.2. Utilization of Data Cube Technologies

We are currently developing a multidimensional data cube by
leveraging the robust capabilities of the Pangeo Stack,
thereby creating an advanced data management and
analytical environment tailored specifically for HiVE satellite
datasets. Unlike working solely with Cloud Optimized
GeoTIFFs (COGs), which are typically two-dimensional
raster files, integrating a data cube framework allows us to
seamlessly organize, query, and analyze satellite data across
multiple dimensions, such as spatial coordinates, spectral
bands, and temporal intervals simultaneously. The primary
advantage of this approach is the ability to efficiently perform
complex queries, rapidly extract insights from time-series
analyses, and conduct large-scale parallel processing,
significantly enhancing accessibility, scalability, and
computational performance compared to handling individual
COG files separately.

4. SPECIFIC USE CASES OF DATA CUBES WITH
CONSTELLR DATA

4.1. Urban Heat Island Analysis

Most cities world-wide are affected by urban heat and are
setting up strategies for climate adaptation and mitigations
measures. At the same time, urban digital twins are becoming
more and more common. This allows urban planners, real

estate developers and decision makers to use thermal
intelligence data cubes to analyze historical and real-time
thermal data, identifying patterns and anomalies at
neighborhood scales. The ability to query and visualize
thermal data across different time frames assists in
proactively implementing heat mitigation strategies,
optimizing the placement of green, blue and grey cooling
infrastructures, and enhancing urban resilience. Preliminary
data from constellr’s SkyBee-1 satellite reveals distinct
thermal signatures associated with various urban structures
and materials. For example, industrial areas and solar
installations exhibit specific thermal characteristics, whereas
water bodies function as natural moderating elements.
Utilizing a data cube approach provides comprehensive,
multi-temporal analyses of urban heat dynamics, essential for
informed urban planning. This method enables city
authorities to strategically position cooling infrastructures,
green spaces, and reflective surfaces, effectively mitigating
urban heat islands [2]. Furthermore, with the availability of
constantly updated time series of thermal data, development
projects can be monitored in near real time as they progress.
This enables a comparable benchmarking of the thermal
impact of any development as well as a clear measurement of
the positive effect on heat resilience of any mitigation project.
As urban energy demands for cooling are projected to rise
substantially by 2050 [3], constellr’s data supports proactive
and sustainable urban designs.

4.2. Precision Agriculture and Water Efficiency

The high-resolution thermal data provided by constellr
significantly enhances the capability to detect crop water
stress by analyzing variations in land surface temperature
(LST). Thermal imagery helps farmers precisely locate fields
requiring targeted irrigation, optimizing water usage
efficiency. Integrating these datasets into a data cube
framework facilitates the systematic management and
analysis of temporal and spatial trends, allowing agricultural
practitioners to transition seamlessly from traditional
resource-intensive methods to precision agriculture. This
technique greatly mitigates drought risks, improves crop
yield stability, and strengthens food security [4].

4.3. Public Health Monitoring

In the context of public health, data cubes facilitate
monitoring of thermal comfort and health risks related to
urban heat. Public health authorities can rapidly access
relevant thermal data, identify vulnerable communities and
effectively deploy targeted interventions such as cooling
centers and green spaces. The escalating intensity of urban
heat islands poses significant risks to public health,
particularly during severe heatwaves. Constellr’s thermal
imaging capabilities offer crucial insights for assessing heat-
related health risks. Ballester(2023)[5] indicate that
heightened urban temperatures can substantially increase
mortality rates, potentially causing millions of heat-related
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fatalities by the end of the century. Incorporating thermal data
into a data cube structure enables efficient tracking and
predictive modeling of heat stress, facilitating targeted
interventions such as establishing cooling centers, shaded
public spaces, and urban greening initiatives. This level of
detailed thermal monitoring enhances community resilience
and preparedness against heat-induced health crises.

4.4. Civil Security and Defense Applications

Constellr’s TIR data plays a vital role in defense and security,
enabling real-time, global monitoring of critical military and
civilian infrastructure. Delivered in data cube format, TIR
data allow for integrated analysis across temporal and spatial
dimensions. This facilitates early detection of anomalies such
as overheating in industrial assets, border incursions via
unusual heat signatures, or hidden underground activity
through surface thermal patterns. TIR sensing also supports
resilient mission planning by identifying climatic stressors
like drought, flooding, or water scarcity, which is essential
for training and operations. Compared to optical data, thermal
observations provide earlier insight into environmental
stability, aiding logistics in foreign deployments. In conflict
zones, TIR enables rapid damage assessment, tracks
functional changes over time, and uncovers covert or
asymmetric activities not visible to optical sensors.
Additionally, it serves as a discreet tool for early warning of
crises—such as persistent droughts or migration
movements—and for monitoring sensitive regions where
camouflage or darkness limit conventional imaging.

TIR is also a key enabler for civil protection and disaster
resilience, providing critical insights for early warning,
response, and recovery. Thermal data cubes enable
continuous spatial and temporal analysis of extreme weather
events, droughts, and supply shortages, forming the backbone
of national and cross-border early warning systems. TIR
sensing supports disaster response by identifying heatwave-
and flood-prone zones, assessing post-disaster impacts on
critical infrastructure, and mapping the availability of food
and energy for humanitarian aid. It also offers potential for
geophysical event forecasting—such as volcanic or seismic
activity—through the detection of surface thermal anomalies.
On a broader scale, TIR enables economic and environmental
monitoring by revealing the activity status of key industrial
facilities (e.g., refineries, steel plants) and tracking climate-
induced risks like wildfires and persistent droughts.

5. FUTURE PERSPECTIVES AND INTEGRATION

WITH OTHER MISSIONS
The constellr HiVE mission, through its robust big data
architecture and innovative data cube technologies,

represents a significant advancement in thermal remote
sensing. By enhancing data accessibility and usability across
multiple sectors, it directly contributes to addressing critical

environmental challenges and promoting informed, resilient
urban and agricultural practices. In future we will combine

6. CONCLUSIONS

The constellr HiVE mission, through its robust big data
architecture and innovative data cube technologies,
represents a significant advancement in thermal remote
sensing. By enhancing data accessibility and usability across
multiple sectors, it directly contributes to addressing critical
environmental challenges and promoting informed, resilient
urban and agricultural practices.
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ABSTRACT

Big Earth Observation (EO) data, such as provided by the
European Copernicus programme, are a great opportunity for
highly frequent global monitoring of the environment.
Challenges exist not only in processing big multitemporal
data but also in communicating results in a meaningful and
useful manner, especially for non-EO experts. Our approach
uses big EO data analyses in a semantic EO data cube and
communicates results using a single-layer multi-temporal
representation, where colour represents different user-defined
time periods and changes. The visualisation in colour-codes
reduces terabytes of multi-temporal information into a single,
comprehensive layer. While this approach is backed by
established geovisualisation techniques, we extend it to
unveil temporal processes and dynamics hidden in big EO
data. The resulting layer can be used in a very simple way: It
functions as an interpretable basemap, either integrated
within GTIF-AT or accessed externally via WMS/STAC, to
complement user or domain-specific data with a temporal
perspective.

Index Terms— change detection, semantic querying, big
EO data, multitemporal change indication

1. INTRODUCTION

Big Earth observation (EO) data, such as provided by the
European Copernicus program, are a great opportunity for
highly frequent global monitoring of the environment.
Challenges exist not only in processing big multitemporal
data /1] but also in communicating results in a meaningful
and useful manner, especially for non-EO experts /[2].
Related to establishing a Digital Twin for Austria, these
publicly funded, open, and free Copernicus satellite data sets
are invaluable for monitoring the environment. They also
serve as valuable input to modelling approaches necessary for
current global challenges, like climate change adaptation and
the green transition towards an urgently needed sustainable
society and its local impacts and mitigations in Austria.

ESA Green Transition Information Factories (GTIF)
initiative, especially the GTIF-Austria demonstrator (GTIF-
AT), wants to showcase domains and tools that support the
green  transition. Within the current GTIF-AT
implementation many important topics for supporting and
monitoring the green transition are made available to

different users in an easy to grasp manner, but are often
focused only on very specific domains, data sets and dates.

A key asset of the open and free Copernicus Sentinel-2
data is their temporal frequency, and GTIF-AT lacks a
temporal component to a dynamic integrated view on the
green transition. Generic temporal vegetation change
information derived from Sentinel-2 data could enrich
existing, application-specific static information layers. There
is Sentinel-2 coverage at least 5 days (higher for overlapping
orbits) for Austria, offering considerable change information
over time, which is missing and underused in GTIF-AT as a
cross-domain layer because such an approach cannot be
easily integrated in a classical non-dynamic web-GIS
interface.

In this study, we incorporate a temporal basemap layer
into GTIF-AT, which offers general information about
vegetation changes. This layer is designed for seamless
combination with most thematic datasets currently available
within the demonstrator. Our methodology uses all Sentinel-
2 observations from 2018 onward - the first year with full
dual-satellite coverage - into a reproducible and interpretable
format. The result is a comprehensive multitemporal
representation for Austria, which is fully automated and has
the potential for global application. By providing this change
detection layer, we introduce an additional temporal
component to existing GTIF-AT datasets, enabling the
integration of temporal dynamics across a broad range of
thematic applications.

The primary challenges were twofold: first, the
development and implementation of innovative, scalable, and
reproducible methodologies for managing and analysing
large volumes of EO data; and second, the effective
communication of the resulting multitemporal insights to
support spatial decision-making processes, particularly for
users in Austria and beyond.

2. METHODS

2.1. Big EO Data processing

The big EO data analyses behind the multi-temporal thematic
layer are conducted in a semantic EO data cube [3], where for
each observation at least one nominal (i.e. categorical)
interpretation is available and can be queried in the same
instance. Our implementation - Sen2Cube.at, see detailed
description of the implementation in [4] - is a worldwide
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unique semantic EO data cube implementation available for
all of Austria, where every Sentinel-2 satellite image taken
since 2015 and their derived categorical information layers
can be analysed in the cloud. Data cubes have the advantage
that the spatial and temporal extent to be analysed can be
dynamically selected using meaningful coordinates, while the
images are indexed in multiple dimensions. Semantic data
cubes extend this flexibility with a semantic query option that
allows analyses integrating categorical information with raw
data directly in the selected spatial and temporal extent.

This approach uses semantic enrichment to calculate the
pixel-based percentage of vegetation versus non-vegetation
observations using all Sentinel-2 images in a user defined
analysis period (e.g. years or seasons). Different to index-
based approaches, e.g. using NDVI only, no thresholds need
to be defined since the semantic classes (here: spectral
categories, see [5]) also reflect cloud-like / bare-soil-like /
vegetation- and water-like categories. In contrast to machine
learning / deep learning approaches, such a knowledge-based
semantic enrichment approach does not rely on localized
training samples and is, therefore, worldwide applicable.
Scaling the approach to larger areas needs less energy
consumption, which facilitates its proven transferability to all
Sentinel-2 data worldwide within the ESA inCubed project
SIAMaaS [6] (see also https://app.color33.i0). All available
imagery can be used without additional pre-processing to
filter cloud-affected data. This approach allows the use of
smaller cloud-free areas even in highly cloudy images,
increasing the number of valid, clear observations and
thereby enhancing statistical reliability. The approach can be
scaled up to any region worldwide since the semantic
enrichment approach does not require re-training or
adaptations for other regions.

2.2. Visualisation approach

The visualisation of analytical results derived from remote
sensing data plays a significant role in the communication of
this information. Although effective geovisualisation is not a
new area of research [7], it takes on added significance within
the Copernicus Programme. This is due to the high volume
and temporal resolution of data - such as that from Sentinel-
2 - which makes the purposeful visualization and
communication of the temporal dimension especially
important alongside large-scale Earth observation data
analysis workflows. The initial single-layer representation of
different time steps is based on the RGB colour model and
was developed together with users from different domains.
It’s a simple additive colour model, used to visualise the 3
different grayscale layers for each time period, each
indicating the proportion of vegetation observed. The
approach allows changes from three periods to be displayed
on a map in a single image using different colour
combinations.

Such multitemporal colour compositing is not new in
remote sensing especially for visual interpretation of changes
[8] [9], but we further developed this approach into a
transferable technique on semantic vegetation counts for
fixed time frames which can be combined individually and
are afterwards still interpretable. The interpretation of the
colours can be drawn from the proposed colour cube (see Fig.
2), which applies a fixed layer sequence - from oldest to
newest (see Fig. 1) - to ensure consistent meaning across
combinations. Since the yearly vegetation percentages are
counts of cloud/snow free vegetation observations, the RGB
composite is still interpretable on a yearly basis and slight
colour changes can be still linked to percentage changes in
vegetation. The RGB colour palette and colour cube for the
interpretation does therefore not only communicate
vegetation change but also changes in intensity and/or partly
changed vegetation to non-vegetation and vice versa using
main RGB colours and mixed colours plus their intensity.

RGB Composite (T1-T2-T3)

Fig. 1. An RGB colour composite created from vegetation
data collected over different years. To enhance
interpretation, we follow a fixed band assignment: the
oldest timestamp to the red channel, the middle
timestamp to the green, and the most recent timestamp to
the blue channel.

IMPLEMENTATION

For the implementation a semantic query model has been
developed within the semantic EO data cube and be applied
to all Sentinel-2 data within Austria from 2018-2024 on a
yearly basis. The first implemented layer in GTIF-AT is a
long-term change combination 2018-2021-2024 (https://gtif-
austria.info/narratives/vegetation-change-dynamics).

The period matches between the updating cycles of the
European Copernicus Land Cover products, such as the
CORINE land cover layers 2018 to 2024 (the latter is
expected to be published early 2026). Eventually the single
years can be combined as needed from a user perspective, e.g.
Fig. 3 shows a combination of 2019-2020-2021 for
evaluating specific events in a narrower time frame in the
federal state of Salzburg. Fig. 4 shows a result for parts of the
city of Salzburg overlaid with Urban Atlas 2018 data to
stratify the result by different land use / land cover for
different purposes.
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Vegetation per
time stamp
Interpretation
T1 | 72 | T3
+ - - | Vegetation decrease afer T1
+ + - | Vegetationdecrease afterT2
+ Vegetationincrease afterT1
and decrease after T3
- + + | Vegetationincrease after T1
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no vegetationin T1and T2
+ " Vegetation decrease after T1,
but increase after T2
Highly vegetated in all time
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A No vegetation for the whole-
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Fig. 2. Proposed RGB dynamic visualisation cube for the interpretation of our RGB timely composite of different
vegetation layers to directly derive and interpret change occurrence, time and duration of change, and severeness
(intensity). Intense colours represent strong change, while subtle changes will be indicated by pastel colours.
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Fig. 3. Example for a one-layer representation of the changes of observed vegetation counted from every Sentinel-2
image in the years 2019, 2020 and 2021 (can be adapted to any time period (e.g. different years or seasons)). Upper left:
RGB layer representing changes in road construction based on vegetation change derived from all Sentinel-2 images,
the colours represent the years when the changes occurred (removal of vegetation during construction, but also
vegetation regrowth of parts of the area when the roads were finished). Upper right: VHR image of the same area taken
after the changes happened (>2022). Lower left: RGB representation for a mudflow taken place in Bad Hofgastein,
Austria, early July 2020. Since the vegetation was removed by the mudflow the colour changes to red (not vegetated
parts of 2020 and 2021), for some parts to magenta, which indicates a regrowth of vegetation already in 2021. Lower
right: VHR image of the same area taken after the changes happened (>2022)
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4 Kilometers
)

FIG. 4. Change layer combined with different land use /
land cover masks taken from the Urban Atlas data (EEA,
2018) to stratify changes for different analysis purposes.
Top: RGB change layer (2018-2021-2024) for a part of
the city of Salzburg. Changes stratified to forest areas
(middle) showing only small impact spots, combined
urban fabric classes (bottom) highlighting urban
densification / loss of urban vegetation.

RESULTS AND DISCUSSION

The single-layer representation of multitemporal
vegetation changes is designed to improve the
communication of multi-temporal analyses to a broad range
of users - such as planning authorities, decision-makers, and
non-EO experts. It is particularly effective for integrating
change or monitoring layers with specific application topics
within GTIF-AT, or for use as a WMS basemap that can be
directly combined with users’ sensitive internal data. This
approach clearly highlights areas of change and provides
insights into the intensity of those changes. Unlike
conventional basemaps commonly used in GIS-based
decision support systems, which typically rely on mono-
temporal data like static maps or image mosaics with unclear

observation dates, our method delivers time-sensitive and
actionable information.

Potential application areas include, but are not limited to:
comprehensive monitoring of green spaces and their
dynamics across Austria, tracking land use changes related to
energy production (e.g., construction of solar or wind power
facilities), forest monitoring (e.g., identifying landslides, new
roads, or changes in protection forests), environmental and
soil protection (e.g., detecting soil sealing or agricultural
deposits), and nature conservation efforts (e.g., observing
vegetation shifts driven by climate change).
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FROM CLOUD TO CLIENT: WEB-NATIVE, IN-BROWSER EO DATACUBE EXPLORATION
AND ANALYTICS USING ZARR
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ABSTRACT

Earth Observation (EO) analytics is experiencing a paradigm
shift from cloud-centric processing toward hybrid archi-
tectures that leverage client-side computation. This re-
search investigates the technical feasibility of fully web-
native EO DataCube exploration and analytics using Zarr
format, eliminating server-side dependencies for interac-
tive analysis. Through an experimental prototype integrat-
ing Zarrita.js, OpenLayers DataTile extensions, and Web
Worker-based analytics, we demonstrate sophisticated EO
analysis—including Urban Heat Island mapping, spectral
categorization, and zonal statistics—entirely within web
browsers. Real-world validation through the SpongeCity
Toolbox serving 120 municipalities shows 5.9-19 second
analysis times for municipality-scale operations when cached
(initial loading: 27-252 seconds), with browser cache achiev-
ing up to 43 speedup. The approach handles diverse data
types (Float32/Uint8) and resolutions (10m/70m) while main-
taining operational performance on both desktop and mobile
devices. We developed and published the ol-zarr package
for OpenLayers-based Zarr visualization [6], available as
open-source software on GitHub and Zenodo. While ana-
lytical algorithms (UHI, zonal statistics) remain integrated
within the SpongeCity dashboard, these implement standard
algorithms demonstrating Zarr’s browser-based feasibility
rather than novel methods requiring separate distribution.
This work advances FAIR principles in EO data access while
addressing critical democratization barriers for educational
institutions and resource-constrained environments where
traditional cloud infrastructure is unavailable.

Index Terms— Earth Observation, Zarr, Cloud-native,
Web-native analytics, Data democratization, SpongeCity

1. INTRODUCTION

The proliferation of Earth Observation data has transformed
geospatial analytics, with cloud-native platforms enabling
planetary-scale analysis [4, 1]. However, traditional ap-
proaches create persistent barriers through platform depen-
dencies and infrastructure requirements that restrict access

This work was supported by the SpongeCity project within the Interreg
Danube Transnational Programme.

to specialized communities [3]. Recent advances in web
technologies—particularly Zarrita.js for browser-based Zarr
processing [13] and OpenLayers DataTile for dynamic raster
rendering [10]—enable unprecedented browser-native scien-
tific computing capabilities, with research confirming accept-
able performance when properly optimized [11].

The Zarr format provides critical enabling technology
through chunked access patterns aligned with browser con-
straints [9, 7], with NASA’s adoption [8] and GeoZarr’s OGC
Community Standard approval demonstrating operational
maturity. This research validates whether cloud-native stor-
age formats can support fully autonomous, browser-based
EO analytics without server-side computation through im-
plementation in an operational web toolbox serving 120
municipalities.

2. METHODS

2.1. System Architecture Overview

We developed a general-purpose browser-based Earth Obser-
vation datacube system that enables direct client-side access
and processing of Zarr-formatted EO data without server-
side computational dependencies. The system architecture
comprises two core components: (1) Interactive Exploration
enabling direct visualization of datacube contents through
spatial and temporal queries, and (2) In-browser Analytics
providing client-side computational capabilities for EO data
analysis. The technology stack integrates Zarrita.js (v0.5.0)
for Zarr format handling, custom OpenLayers extensions for
direct chunk visualization, Web Workers for parallel pro-
cessing, and vanilla JavaScript optimization for numerical
computations. This architecture eliminates traditional de-
pendencies on tile servers, processing servers, or specialized
software installations, requiring only a modern web browser
for full functionality.

2.2. Zarr DataCube Architecture

2.2.1. DataCube Structure and Organization

Raster datasets are compiled into Zarr datacubes using a
Python-based preprocessing pipeline leveraging Xarray for
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multi-dimensional array handling, zarr-python for Zarr for-
mat writing, and Rasterio for geospatial raster processing.
This pipeline is dataset-agnostic, capable of ingesting any
georeferenced raster data regardless of source sensor or data
type. The preprocessing generates multi-resolution pyra-
mids and computes per-timestamp statistics, preparing data
for efficient browser-based access. Our system operates on
a hierarchical Zarr datacube structure designed for efficient
multi-resolution access:

Dataset (zgroup)

+-- Zoom Levels (zgroup: O, 1, 2, ..., n)
|-— times (zarray)
|-— statistics (zarray)
|-— values (zarray: [time, band, y, x])
|-— vy (zarray)
+-— x (zarray)

Each zoom level represents a pre-generated pyramid with
2x spatial resampling, enabling efficient multi-scale visu-
alization. The datacube optimizes for interactive browser
queries through specialized arrays: times (1D timestamps
for temporal queries), x/y (coordinates for spatial indexing),
statistics ([min, max, mean, 2nd/98th percentiles] per
timestamp for dynamic visualization), and values ([time,
band, y, x] with [1, 1, 256, 256] chunking). This chunking
prioritizes spatial slice performance for tile-based rendering
over pixel time series extraction—while full time series re-
quire multiple chunk fetches, point-based temporal analysis
remains feasible as demonstrated in our occurrence analysis.
Zarr datacubes are hosted on MinlO Object Storage with S3-
compatible APIs, providing direct HTTP range requests with
CORS configuration for browser access.

2.3. Interactive Exploration of EO DataCube

The interactive exploration component implements a direct
Zarr-to-visualization pipeline through our custom ZarrTile
class extending OpenLayers’ DataTile functionality [6]. The
tile loading process operates as follows: OpenLayers de-
termines required tiles based on viewport extent and zoom
level, ZarrTile computes spatial indices by intersecting tile
extent with datacube’s coordinate arrays, constructs multi-
dimensional queries combining spatial, temporal, and band
indices, and retrieves the corresponding Zarr chunks. Re-
trieved data undergoes processing in Web Workers for nor-
malization and format conversion before returning to Open-
Layers for rendering. We encapsulate the ZarrTile/DataTile
combination within OpenLayers’ WebGLTile layer, provid-
ing GPU-accelerated rendering and interactive visualization
adjustments.  OpenLayers’ dual-layer caching—rendered
tiles in memory and Zarr chunks in browser cache—persists
across all zoom operations, eliminating re-fetching during
navigation.

2.4. In-browser Analytics of EO DataCube

The analytics component implements comprehensive EO
analysis capabilities entirely within the browser environ-
ment, processing data retrieved directly from Zarr datacubes
without server-side computation. Each analysis operation re-
quires four core inputs: analysis area(s) as polygons, dataset
reference to specific Zarr datacube, spectral bands, and tem-
poral range. Input polygon coordinates are reprojected to the
dataset’s CRS using Proj4.js, with geomask.js implementing
the Dufour-Peyton intersection algorithm to convert polygons
to gridded masks. The analysis engine constructs optimized
queries by converting temporal ranges to array indices and
mapping polygon extents to array indices using coordinate
arrays. For multiple analysis areas, data retrieval occurs in
parallel with Web Workers managing concurrent requests.
Analysis computations utilize optimized vanilla JavaScript
implementations with direct manipulation of typed arrays
(Float32Array, Uint8Array) for memory efficiency. All ana-
lytical operations execute in dedicated Web Workers to main-
tain UI responsiveness through separated concerns allowing
different stages to execute concurrently.

2.5. SpongeCity Toolbox Implementation

To validate our technical approach, we integrated the browser-
based EO datacube system into the SpongeCity Toolbox
(spongecity.zgis.at), serving 120 settlements across 12 Danube
region countries. This implementation provides an ideal
validation environment as primary users are non-technical
stakeholders including municipal decision-makers and ur-
ban planners. We prepared three complementary datasets as
Zarr datacubes: (1) ECOSTRESS Land Surface Tempera-
ture: NASA’s thermal data at 70m resolution [5], (2) SIAM™
Land Surface Appearance Categories: 34-class categorical
data at 10m resolution using the Satellite Image Automatic
Mapper [2], and (3) SIAM™ Greenness Index: vegetation
vigor indicator at 10m resolution [2]. Four analysis functions
demonstrate diverse computational patterns: Urban Heat
Island Analysis (temperature differentials between urban ar-
eas and rural buffers), Multi-temporal Occurrence Analysis
(pixel counts meeting specified thresholds across time se-
ries), Multi-temporal Zonal Statistics (statistical summaries
within user-defined polygons), and Multi-temporal Distribu-
tion Analysis (frequency distributions of categorical classes).

2.6. Performance Evaluation

We evaluated all four analysis functions across three datasets
using Pécs, Hungary as our test case. Our instrumentation
captures network metrics (HTTP timing, data transfer, cache
hits) and processing metrics (execution time, memory usage),
differentiating between data retrieval (network-bound) and
processing (compute-bound) phases. Tests were conducted
on iPad 8th Generation (Safari, 3GB RAM) and HP EliteBook
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Q

Fig. 1. SpongeCity Toolbox showing SIAM™ Land Surface
Appearance Categories rendered directly from Zarr datacube
storage without server-side tile generation.

Fig. 2. Urban Heat Island analysis results rendered in the
SpongeCity Toolbox, showing temperature differentials be-
tween urban areas and rural surroundings computed entirely
within the browser from ECOSTRESS Zarr datacube.

840 G9 (Chrome, 32GB RAM) with 40/10 Mbps connectiv-
ity. The evaluation covered Pécs municipality (163 km?)
for standard analyses and extended area (378 km?) for UHI
analysis with 3km rural buffer, processing 21 ECOSTRESS
thermal acquisitions (70m, Float32) and 27 SIAM™ acquisi-
tions (10m, Uint8/Float32) from January-June 2024.

2.7. Quantitative Performance Results

Table 1 presents comprehensive performance metrics from
the SpongeCity Toolbox implementation:

The evaluation reveals critical insights about browser-
based EO analytics performance. Browser caching provides
transformative performance improvements, achieving 2.3x
to 43x speedup with the most dramatic benefits for high-
frequency data access patterns. Data retrieval constitutes
87-99% of total execution time for uncached operations but
drops significantly when cached, while processing times re-
main consistent (0.2-13.9 seconds) regardless of cache state.
The 70m ECOSTRESS analysis achieves sub-3.5 second

Q

Fig. 3. Multi-temporal occurrence analysis results for
SIAM™ Greenness Index displayed in the SpongeCity Tool-
box, demonstrating client-side time series analysis and visu-
alization capabilities.

performance even without caching, while 10m analyses re-
quire 27-252 seconds initially. Mobile devices demonstrate
unexpected processing advantages in some cases, with both
platforms maintaining stable performance requiring only
0.27-1.11 MB/s average bandwidth.

3. DISCUSSION AND CONCLUSIONS

This research demonstrates the technical feasibility of browser-
native Earth Observation DataCube analytics using Zarr for-
mat, successfully implementing Urban Heat Island mapping,
spectral categorization, and zonal statistics entirely within
web browsers. Our work provides empirical evidence that
Zarr’s chunked architecture enables efficient client-side EO
analytics across multiple data types and resolutions, directly
addressing traditional barriers that limited EO data access
to specialized communities. The browser-native approach
enhances FAIR principles [12] through standardized web
protocols and URL-shareable analytical configurations.

3.1. Performance and Limitations

Browser caching provides transformative performance im-
provements up to 43x speedup, enabling interactive expe-
riences suitable for real-time stakeholder engagement. The
system processes 3.3 million pixels with modest bandwidth
requirements (0.27-1.11 MB/s average) and cross-platform
compatibility. Initial loading requires 125-252 seconds for
municipality-scale datasets (Pécs, Hungary: 163 km? at 10m
resolution, 27 temporal acquisitions, 84.6 MB compressed),
while browser memory limits restrict analysis to datasets
under 400-500 MB uncompressed. Rather than competing
with server-side computational throughput, our approach
optimizes for zero-infrastructure deployment and immedi-
ate accessibility—enabling EO analysis where server access
is unavailable or cost-prohibitive. Performance evaluation
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Table 1. Performance metrics for browser-based EO analytics in SpongeCity Toolbox (Pécs, Hungary test case)

Analysis Dataset DType/Res  Time Steps  Area Time (seconds) Data (MB) Bandwidth (MB/s)

(km?) Total Retrieval Process Compressed  Uncompressed Avg Peak
iPad Performance - No Cache / Cached

Urban Heat Island ECOSTRESS LST F32/70m 21 378 34721 18704 1.6/1.6 5.8 9.5 0.41/2.99 6.82/20.45

Distribution SIAM™ Categories U8/10m 27 163 252.0/59 249.0/1.9 4.0/4.0 439 84.6 0.48/2.90 2.40/9.76

Zonal Statistics SIAM™ Greenness ~ F32/10m 27 163 1252/120.8 1232/1189 2.0/19 513.0 3385 1.11/091 123.97/134.34

Occurrence SIAM™ Mixed Mixed/10m 27 163 175.0/170.1 173.6/168.6 1.0/1.0 439 84.6 0.50/2.90 3.42/9.76
Desktop Performance - No Cache / Cached

Urban Heat Island ECOSTRESS LST F32/70m 21 378 23/1.0 2.1/0.9 02/0.2 5.8 9.5 0.55/1.22 4.65/14.31

Distribution SIAM™ Categories U8/10m 27 163 27.7/19.0 13.8/5.7 13.9/13.2 439 84.6 0.30/1.61 2.72/13.95

Zonal Statistics SIAM™ Greenness ~ F32/10m 27 163 141.6/16.3 138.6/14.7 29/1.6 513.0 3385 1.03/2.24 19.32/2.63

Occurrence SIAM™ Mixed Mixed/10m 27 163 1425/182  139.1/15.4 32/27 439 84.6 0277147 3.01/11.85

thus prioritizes user-centric metrics (time-to-insight, cache
efficiency) over raw computational benchmarks, reflecting
the system’s focus on exploratory analysis and stakeholder

engagement.

3.2. Conclusions and Future Work

The convergence of cloud-native storage formats with browser-
based processing represents a significant advancement in
Earth Observation accessibility. Our empirical validation
confirms operational viability for urban planning workflows,
with municipality-scale analyses completing in seconds when
cached. The published ol-zarr package [6] provides reusable
OpenLayers extensions for Zarr visualization, while our im-
plementation demonstrates feasibility of complex analytics
entirely within browsers. By eliminating infrastructure de-
pendencies, browser-native EO analytics opens new possibili-
ties for stakeholder engagement in environmental monitoring

and decision-making.

As web technologies evolve and Zarr adoption expands,
browser-native analytics will increasingly democratize Earth
Observation data access. Future research directions include
WebGPU technologies for performance improvements, tem-
poral chunk optimization, WebAssembly kernels, and Pro-
gressive Web Application architecture for offline capabilities.
The ol-zarr package will be extended to support additional
Zarr v3 features and multi-dataset fusion, further advancing

browser-native EO capabilities.
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ABSTRACT

The increasing volume of datasets generated by new
satellite missions necessitates efficient access within cloud
environments to fully harness their potential. To achieve
this, algorithms must be relocated to the data, and workflows
should be reproducibly offered as cloud services. In this
paper, we present the development of an end-to-end FAIR
(Findable, Accessible, Interoperable, and Reusable) work-
flow for Sentinel-1-based deforestation detection, deployed
as a cloud service. This approach democratizes access to
complex algorithms, ensuring that scientific results are both
reproducible and applicable to new areas of interest. We
discuss the challenges and benefits associated with this tran-
sition. Additionally, during the migration to the cloud we
enhanced the algorithm’s runtime, achieving a 27% reduction
in processing time through algorithmic and implementation
improvements.

Index Terms— FAIR, time series analysis, Common
Workflow Language (CWL), Sentinel-1,

1. INTRODUCTION

Contemporary Earth System Science increasingly depends on
comprehensive data analysis workflows. As these analyses
grow in complexity, understanding and reproducing a work-
flow based solely on the materials and methods section of a
research article becomes more challenging. Publishing the
source code of the data analysis is a crucial first step toward
establishing a FAIR workflow. However, merely providing
the workflow’s code is insufficient for enabling seamless end-
to-end processing by future users. To achieve this, the neces-
sary data must be accessible, and computing resources should
be co-located with the data.

In this paper we describe how we made a reproducible
workflow out of a scientific analysis code. Section 2 intro-
duces the algorithm and its data requirements. Section 3 de-
tails how we improved the code to reduce the runtime. Section
4 describes the implementation of the end-to-end FAIR work-
flow. The end-to-end FAIR workfow is containerized in the
Common Workflow Language (CWL) adhering to the OGC
Best practices for Earth Observation Application Package.

Stephan Sahm
Jolin.io

Munich, Germany

2. ALGORITHM AND DATA

In this section we describe the workflow and the necessary
data for the improved and deployed Sentinel-1 based forest
change detection algorithm [2]. Figure 1 illustrates the work-
flow of the forest change algorithm. The algorithm utilizes
Sentinel-1 time series data. The Sentinel-1 data needs to be
stacked as a time series so that we can apply the Recurrence
Quantification Analysis (RQA) algorithm to each pixel’s time
series. Therefore, the algorithm currently relies on analysis
ready Sentinel-1 data, where every scene of the same relative
orbit is aligned to the same grid. To minimize geometric ef-
fects arising from varying relative looking angles, we conduct
the time series analysis on each relative orbit independently.
Currently, the analysis is performed on preprocessed Sentinel-
1 data [4]. The data is organized into 15,000 x 15,000 pixel
tiles within the EQUI-7 Grid [1], with each scene stored sep-
arately. This approach can result in time series with numer-
ous missing values if all scenes of the same area are simply
stacked. In Section 3 we describe how we improved the load-
ing of the data to get time series with less missing values.

After applying the RQA algorithm on every pixel of the
Sentinel-1 time series we mask forest areas with a forest/non-
forest map [3] and we cluster the detected change pixel into
areas of at least 30 pixels to eliminate spurious single pixel
change detections. Figure 2 shows an example of the forest
change algorithm for the Harz mountains in central Germany.
The different coloured datasets represent the forest change for
the different years between 2018 and 2022.

3. CODE ENHANCEMENT

We further improved the algorithm to make the inner loop
fully allocation free, reducing the runtime of the time se-
ries analysis for a single pixel by 91% for a 100 step time
series. Figure 3 compares the runtime, memory usage and
allocations between the original and the improved version of
the implementation. The original version exhibited a near-
exponential increase in memory usage, whereas the improved
version eliminates memory allocation, significantly enhanc-
ing runtime and reducing pressure on the garbage collector.
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Fig. 1. Schematic workflow of the analysis. Orange ellipses
specify input data and blue ellipses show the computational
steps

Fig. 2. Result of the forest change algorithm for the Harz
mountain in Central Germany.

However, this reduction in runtime and memory footprint
does not directly translate to a reduction for an entire data
tile, as detailed in Table 1. The algorithmic changes for indi-
vidual time series altered the input data requirements. While
the previous version could handle regularly occurring miss-
ing values, the optimized version produced incorrect results
under the same conditions. Consequently, we modified the
data loading and preprocessing steps. Sentinel-1 data for
each tile was grouped by acquisition time, allowing scenes
acquired on the same date to be mosaicked together. This
mosaicking process eliminated regularly occurring missing
values but increased the runtime for preparing the data for an
entire tile. During the recurrence analysis, we examine every
time point pair, resulting in the algorithm scaling quadrati-
cally with the length of the time series. Additionally, since
we do not incorporate information from neighboring pix-
els, the algorithm is embarrassingly parallelizable for larger
areas of analysis. This characteristic provides flexibility in
the workflow execution plan, allowing adaptation to the file
structure and chunking schemes of the dataset at individual
processing nodes. Finally, CWL workflows can be executed
and orchestrated on any Kubernetes cluster using Calrissian.

Fig. 3. Comparison of the old and the improved version of
the algorithm. The old version had a near exponential increase
of the memory usage while the improved version does not
allocate memory.

Table 1. Improvements of the runtime and memory footprint
due to the code improvements.

Indicator v0.1 v0.2 Improved
by

Duration (tile) [s] 884.03 | 649.04 | 27%

Duration (point) [s] 12.774 | 1.137 91%

Mem usage (tile) | 606.03 | 223.29 | 63%

[GiB]

Mem usage (point) | 3.75 0 100%

[KiB]

Mem alloc. (tile) 1.49¢10| 887461 | 99.94%

Mem alloc. (point) 8 0 100%

4. CLOUD DEPLOYMENT

A Julia library, as described in Section 3, is not sufficient
on its own to ensure efficient and reproducible execution.
We adhere to the principle of data locality by bringing the
code to the data, rather than downloading the data for lo-
cal execution. This necessitates running the code in cloud
environments without direct server access, as detailed in Fig-
ure 4. We followed two different approaches to deploy the
code to the cloud. For the first approach we encapsulated the
analysis code in a containerized workflow following OGC
Best Practice for Earth Observation Application Package
(https://docs.ogc.org/bp/20-089r1.html). Hereby we utilize
the Common Workflow Language (CWL) to describe the in-
dividual steps: stage in, process and stage out. The “’Stage
in” process ensures uniform data access for the workflow and
the user. Then we initiate the OGC API process to start the
workflow via a REST API from pygeoapi. Then we use a
python function to call the CWL Workflow. This nested ar-
chitecture allows cloud providers to seamlessly integrate the
workflow into their execution environments. The CWL em-
ploys a Docker container to host the Julia library, and we use
STAC and Zarr as output formats to deliver the final results to
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the user.

For the second approach we compiled the function for the
RQA Trend computation for a single time series into a stan-
dalone binary. This standalone binary can then be called via a
C-API without having a julia runtime. This approach allows
to run the RQA Trend function as an inner user defined func-
tion in an openEO backend. In this setup, the openEO back-
end manages data loading and postprocessing, while the Julia
function is utilized solely in the core data processing stage.

The development of a FAIR workflow is influenced by
the licenses and popularity of the tools and input datasets.
Achieving accessibility requires permissive licenses, which
is generally not a significant issue due to the widespread use
of open-source software in the scientific community. While
Level 2 satellite datasets are typically freely available, further
processed products are often proprietary or only available at
certain cloud providers, though the data can often be repro-
duced using open-source software.

Reproducibility is relatively straightforward to achieve
through containerization, provided the algorithm is deter-
ministic and its input data is FAIR, as is the case with our
workflow. One common challenge to achieving FAIRness is
availability of datasets or tools. Specific datasets may not be
available on relevant cloud platforms, hindering workflow ex-
ecution at scale. Similarly, some software may not be widely
provided.Enhancing support for containers and CWL work-
flows in openEO would significantly ease the deployment of
future workflows.

5. DISCUSSION AND OUTLOOK

This work demonstrates how we enhanced the algorithm and
effectively brought it to the data. It highlights the necessity of
evaluating algorithm improvements within the context of the
entire workflow, as individual steps cannot be entirely iso-
lated. The effort to reduce allocations in single-pixel analysis
necessitated changes in data loading and preprocessing. This
preprocessing step diminished the expected runtime improve-
ments that might have been anticipated from simply extrapo-

lating single-pixel runtime enhancements to the entire tile.

As future steps, we aim to explore deploying the algo-
rithm across other cloud providers. Currently, this is chal-
lenged by the algorithm’s reliance on stacked time series of
Sentinel-1 data, which is less readily available compared to
SLC or GRD data. We plan to investigate enabling the direct
use of SLC data and stacking SLC data from the same burst
ID to derive Sentinel-1 time series directly in radar geometry.
Such a time series would be feasible since the algorithm is
spatially independent.

6. CODE AVAILABILITY

The code is published free and open source under an MIT
licence. The Julia package for the RQA based time series
analysis is available at:
https://github.com/EarthyScience/RQADeforestation.jl
And the code for the cloud deployment is available here:
https://github.com/EarthyScience/FAIRSenDD/

7. ACKNOWLEDGEMENTS

This project was funded by the European Space Agency in
the Science Result Long-Term Availability & Reusability
Demonstrator Initiative. In addition, this project was sup-
ported by the ESA Network of Resources. This work uses
Copernicus Sentinel data 2017-2019.

REFERENCES

[1] Bernhard Bauer-Marschallinger, Daniel Sabel, and Wolf-
gang Wagner. Optimisation of global grids for high-
resolution remote sensing data. Computers & Geo-
sciences, 72:84-93, November 2014. ISSN 0098-3004.
doi: 10.1016/7.cageo.2014.07.005.

[2] Felix Cremer, Mikhail Urbazaev, Jose Cortes, John
Truckenbrodt, Christiane Schmullius, and Christian
Thiel. Potential of Recurrence Metrics from Sentinel-1
Time Series for Deforestation Mapping. IEEE Journal of
Selected Topics in Applied Earth Observations and Re-
mote Sensing, 13:5233-5240, 2020. ISSN 1939-1404,
2151-1535. doi: 10.1109/JSTARS.2020.3019333.

[3] Alena Dostalova, Wolfgang Wagner, Milutin Milenkovic,
and Markus Hollaus. Annual seasonality in Sentinel-1
signal for forest mapping and forest type classification.
International Journal of Remote Sensing, 39(21):7738—
7760, November 2018. ISSN 0143-1161, 1366-5901.
doi: 10.1080/01431161.2018.1479788.

[4] Wolfgang Wagner, Bernhard Bauer-Marschallinger,
Claudio Navacchi, Felix Reufl, Senmao Cao, Christoph
Reimer, Matthias Schramm, and Christian Briese. A

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

51 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

FAIR workflows

Sentinel-1 Backscatter Datacube for Global Land Mon-
itoring Applications. Remote Sensing, 13(22):4622, Jan-
uary 2021. ISSN 2072-4292. doi: 10.3390/rs13224622.

Proc. of the 2025 conference on 52 Sep. 29 — Oct. 10 2025
Big Data from Space (BiDS’25) doi:10.2760/2119408


https://doi.org/10.2760/2119408

FAIR workflows

PREPARING FOR A THREE-DIMENSIONAL SENTINEL-1: TOWARDS HIGH-ACCURACY
FOREST MONITORING VIA BI-STATIC SAR METHODS

Anton Kostiukhin', Martin Jiissi', Tauri T ampuu] . Alexander Kmoch’

'KappaZeta Ltd., Kastani 42, 50410 Tartu, Estonia
’Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46,
51003 Tartu, Estonia

ABSTRACT

Forest height and volume estimation using spaceborne SAR
remains challenging in regions with uneven terrain and
variability in forest structure and tree species. In this work,
we investigate the potential of TanDEM-X bi-static
interferometric data for hemiboreal forest height estimation
in Estonia. The novelty of our study is a systematic
assessment of how interferometric parameters, forest
properties, and environment conditions affect forest height
estimation accuracy. Combining multi-temporal TanDEM-X
acquisitions with auxiliary LiDAR-derived and forest
inventory data, this study is the first step towards a scalable,
robust, and accurate forest height monitoring method for
future multi-static SAR missions.

Preliminary results highlight the strengths and
limitations of existing forest height estimation methods and
provide an overlook into how forest height retrieval behaves
under different conditions.

Index Terms— forest height, tandem-x, bi-static SAR,
time-series analysis

1. INTRODUCTION

Sentinel-1 is a powerful data factory. No other current SAR
mission produces data with systematic global coverage in
such a large quantity. However, its information content is
relatively limited — dual-polarization backscatter and repeat-
pass interferometry data. Across-track interferometry is not
feasible with Sentinel-1 due to temporal decorrelation (6 or
12 days) and short interferometric baselines (<100 m) [1].
The limited information content of Sentinel-1 sets an
inherent limit to forestry applications built on Sentinel-1
reducing its scalability [2].

One of the efficient methods for forest height
estimation is across-track interferometry from a bi-static
SAR system, for example — TanDEM-X. Existing studies
have sufficiently shown the usefulness of the TanDEM-X
for forest height estimation across different forest types —
boreal, temperate, and tropical forests. However,
publications often omit critical details about data acquisition
parameters, processing methods, or even the study areas
themselves. This represents a significant research gap,

especially given that numerous studies have emphasized the
influence of data characteristics and processing choices on
the accuracy and reliability of results.

Consequently, this work aims to fill this research gap
and develop a transparent and reliable methodology for
hemiboreal forest height estimation. For that the goal is to
systematically quantify the effects of interferometric
variables (e.g., polarization, baseline) and forest properties
(e.g., height, density, tree composition) on forest height
estimation using TanDEM-X data as a proxy. KappaZeta
Ltd. from Estonia is developing a receive-only three-satellite
constellation (“3D-SAR”) to fly in formation with Sentinel-
1 to enable the multi-static dimension, and therefore enrich
the information provided by Sentinel-1, Fig. 1. 3D-SAR
Mission Concept. The mission is expected to produce three
times the amount of raw data that Sentinel-1 does for the
same area. The focus of 3D-SAR is on producing a global
forest height layer through single-pass across-track SAR
interferometry, a proven method for high accuracy forest
height monitoring.

3D-SAR1/2/3

",

F 3 .

Fig. 1. 3D-SAR Mission Concept

2. TANDEM-X FOR FOREST HEIGHT ESTIMATION

TerraSAR-X and TanDEM-X are a pair of nearly identical
satellites launched in 2007 and 2010 respectively. The
satellites fly together in a close helix formation and acquire
unique single-pass polarimetric interferometric data
unaffected by temporal decorrelation [3], [4]. The data
acquired by the mission was originally intended to be used
for a global digital elevation model generation. However,
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multiple studies have found that the X-band is also suitable
for forest height estimation [4]. Since then, many
researchers have attempted to perform forest height
estimation with TanDEM-X data using various approaches,
which are generalized here into three groups: inversion
models, machine learning methods, and digital surface and
terrain models (DSM-DTM) differencing techniques.

The inversion models include the Random Volume
Over Ground (RVoG) model and its modifications, SINC,
and C-SINC models. These models are widely used for tree
height inversion in boreal (e.g. [5]), temperate (e.g. [6]), and
tropical (e.g. [7]) forests. The models proved to be robust,
accurate, and easy to use. In the case of the RVoG, the
model also has high interpretability since it utilizes the
extinction coefficient, interferometric phase, and ground-to-
volume ratio [8]. However, numerous drawbacks inhibit the
application of the models. For example, the RVoG requires
fully polarimetric data, which is not routinely available from
the TanDEM-X platform [8]. Additionally, the above-
mentioned models are insensitive to terrain variations,
which cause under- or over-estimation in high slope areas
[6].

Among the machine learning models, Random Forest
(RF) is one of the most used methods for forest height
estimation [9]. Compared to the inversion models, machine
learning methods are not strictly limited by the data
requirements. That makes it possible to easily integrate data
from multiple additional sources [10]. Moreover, RF is an
interpretable method. This trait is widely used by
researchers to explain the results of the modelling and
define the most important features in the datasets [11], [12].
Apart from the RF, more advanced methods were used in
recent studies. They include, but are not limited to,
Classification and Regression Tree (CART), Gradient-
Boosting Decision Tree (GBDT), Support Vector Machine
(SVM), and more [13]. While these methods tend to
perform slightly better, they lack the explainability of the
RF method.

The DSM-DTM differencing techniques require
additional high-quality DTM data for the study area. The
exact approach varies from study to study. In some cases, it
can be expressed as a simple DSM-DTM subtraction [13].
However, due to certain penetration capabilities of the X-
band into the canopy, the results of such methods are of a
lower quality [4]. Alternatively, if InSAR height is corrected
to a penetration depth, the results show comparable or better
accuracy to other methods [14].

In addition to the methods described, various pre-
processing and data fusion techniques have positive effects
on accuracy. For example, in coherence estimation, the
window size cannot be set deliberately, as it might cause
loss of information [8]. Given that TanDEM-X acquisitions
are with high temporal resolution, temporal averaging of
interferometric features can improve the results of the height
estimation [11]. In case the area of interest is well covered

by other data sources — terrain, climate, and optical data can
be used as well [12], [13].

3. PROJECT OVERVIEW AND CURRENT STATUS

3.1. Study area

The area of interest is approximately 800 square kilometers
in size, and it is split between two locations, Fig. 2. Study
area. The first site is situated in the former Pikknurme forest
district within JGgeva County, Estonia. This region is well-
known for extensive forest research, and it is one of the first
permanent forest observational plots [15]. The second site is
in the Western part of Saaremaa Island, Estonia. The areas
are dominated by European Spruce (Picea abis) and Silver
Birch (Betula pendula) species.

u Estonia

B Study sites

Saaremaa

Fig. 2. Study area

3.2. Data

The primary data source used in this study is TanDEM-X.
Particularly for this activity, 33 datatakes were scheduled:
18 of which cover Saaremaa and the remaining 15 cover
Pikknurme area of interest. The data was acquired in
VV/VH polarization, StripMap mode, from August and
October 2024. There is confirmation from DLR that most of
the datatakes were successful, but as of April 2025, the data
has not been delivered yet. Therefore, for test purposes and
pipeline development, data from the TanDEM-X Science
Archive was used.

We use Sm DTM as a primary source of terrain
information, which was obtained from the airborne LiDAR
collected by the Estonian Land Board [16]. For comparison
purposes, we also use Copernicus 30m and SRTM elevation
models.

Additionally, we wuse tree species and forest
compartments from Forest Registry [17], a canopy height
map derived from airborne LiDAR data collected by
Estonian Land Board. The data is available on Estonian
Land Board portal [16].

3.3. Methods

So far, a major part of the work has been spent on getting
familiar with the specifics of the bistatic TanDEM-X data,
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data processing steps, and quality control. SNAP 8.0 is used
as primary tool for interferometric processing. The
processing steps are divided into three groups, depending on
what data is required: backscatter, coherence, or InSAR
height, Fig. 3. TanDEM-X Processing Pipeline.
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Fig. 3. TanDEM-X Processing Pipeline
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Preliminary processing parameters were outlined based on
the existing studies. There are different options and
combinations due to the software, study area, and data
differences. Thus, the final processing configuration and
parameters are not stated. See Fig. 4. InSAR Height Raster
for an example of the InNSAR Height raster.
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Fig. 4. InSAR Height Raster

In addition to the interferometric features, SNAP is
configured to output ancillary raster data which includes no-
data mask, Local Incidence Angle, Elevation, and Height of
Ambiguity. Miscellaneous topographic and LiDAR data
have not been thoroughly investigated and validated yet.

4. FUTURE WORK

4.1. Project outlook and 4-year plan

Forest height estimation using TanDEM-X is the first part of
a 4-year doctoral project which is done by KappaZeta Ltd.
in cooperation with the University of Tartu. The name of the
project is “Estimation of forest height and forest volume in
hemiboreal forests from multi-static synthetic aperture
radar”. The project is intended to provide a better
understanding of how various interferometric variables
influence forest height and volume estimation. This
information will be used to develop a reliable and
transparent methodology to estimate forest properties.

The work is divided into three parts, which contribute
to the overall goal of the project. The first two parts focus
on forest height and volume estimation using Estonian
hemiboreal forests as a case study. In these studies, we aim
to understand the importance of various interferometric
features and how to get the most information from them.
Using additional data from other satellites is not our priority.
Once we understand the data well enough and can provide
reliable results on a local scale, we start to focus on the
extended area of interest. That includes forests in Finland,
Norway, and other neighboring countries. The goal of the
third part is then to develop a large-scale model for forest
height and volume estimation. Research progress and the
results of each part will be disseminated in peer-reviewed
scientific journals. The project is expected to be concluded
at the end of 2028.

4.2. Near future and 1-year plan

In the near future, we are focusing exclusively on forest
height estimation. We continue with the literature overview,
focusing on data processing methods, forest properties, and
data parameters. We start to look at the quality of the
validation data and undertake additional processing steps if
needed. We expect DLR to provide access to the requested
data by June 2025 so that we can start data processing and
methodology validation.

In addition to the requested TanDEM-X dataset, we are
considering writing a proposal for extra bistatic acquisitions
in the year of 2025 and 2026. We plan to have new data to
be timewise as close as possible to the airborne LiDAR
scanning performed by Estonian Land Board. Moreover, we
are looking at the options to perform in situ data collection
together with research groups from the University of Tartu.
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5. CONCLUSION

In conclusion, existing forest height estimation methods
from bi-static SAR data, though not without drawbacks, are
powerful tools for forest monitoring. Initial findings
demonstrate a variety of existing and promising new
developments in the domain. Further work will focus on
achieving high accuracy in forest height estimation over test
areas in hemiboreal forests. The presentation will showcase
the latest findings, highlighting achieved results and
possible limitations.
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ABSTRACT

Anomaly detection is a problem faced daily by space
mission operations control centers. These tasks involve
identifying unexpected values in telemetry (TM) data
originating from various onboard systems. Operators
generally rely on classical systems such as the definition
of nominal ranges, so the inclusion of more advanced
techniques such as artificial intelligence can speed up
and reduce the cost of these processes. PitlA was devel-
oped to address this challenge by optimizing operations
and improving equipment utilization. It uses an unsu-
pervised process to identify periods of anomalies in the
data, enabling anomaly detection and a better anomaly
management. We have evaluated PitIA using the ESA
anomalies dataset published in June 2024, and in this
letter we propose a realistic unattended operational de-
ployment .

Index Terms— Anomaly detection, PitIA, Teleme-
try, Machine Learning.

1. INTRODUCTION

Anomaly detection is a critical challenge in spacecraft
missions, where the reliable operation of onboard sys-
tems is essential for mission success. These missions
generate large volume of TM data from various systems
and subsystems, such as thermal control. The identifi-
cation of anomaly behavior in this data is key to ensure
operational continuity, however this data is composed of
several (hundred) of individual sensors coupled in some-
how between them, making manual inspection or rule-
based monitoring insufficient and inefficient.

From a data perspective, TM data can be represented
as multiple time series. Anomaly detection in time se-
ries is an active field of research, and the literature of-
fers a wide range of techniques, from those based on sta-
tistical models to more complex approaches leveraging
artificial intelligence. We invite to the reader to go to
reference [1], where the authors stablish a taxonomy of
outlier techniques based on outlier type which is used in
this research.

In this context, GMV has developed PitIA [2], a
solution capable of detecting anomalies in multivari-
ate time series, while also identifying which variables
(channels) contribute most to each anomaly. This greatly
assists spacecraft operators in diagnosing the root cause
of anomalous behavior. PitIA is based on Multivariate
Statistical Process Control (MSPC), a discipline exten-
sively studied in industrial applications [3], which we
apply here to spacecraft telemetry data—specifically, the
satellite anomaly database released by ESA [4]. In this
work, we compare the performance of the PitlIA solution
against the algorithms proposed in the same dataset, and
we further extend the study by introducing a continu-
ous training approach tailored for real-world mission
scenarios.

The paper is organized as depicted in Fig. 1, describ-
ing the main steps of the pipeline, and we finish with the
result of apply this procedure to anomaly database.

Data Preprocessing Training Postprocessing Evaluation

Evaluate with

ESA metrics

Compare using
F0.5 score

Refinement
Group same
anomalies

Resampling

Interpolation Train PitlA

ESA dataset

Fig. 1. Execution pipeline of the anomaly detection
framework from data preprocessing to final evaluation.

2. DATASET

Due to the lack of publicly available datasets and stan-
dardized benchmarks for advanced automatic anomaly
detection in space mission telemetry, the European Space
Agency (ESA) has released a curated dataset of real satel-
lite telemetry. This dataset is accompanied by a hierar-
chical evaluation pipeline and benchmarking results for
various anomaly detection algorithms. The dataset com-
prises telemetry data from three different ESA missions,
two of which are included in the benchmarking frame-
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work. Each dataset is annotated by domain experts and
cross-validated using state-of-the-art techniques.

The evaluation pipeline is tailored to the practical
requirements of Satellite Operations Engineers (SOEs),
featuring novel evaluation metrics and simulation of real-
world operational scenarios. The benchmarking process
assesses common anomaly detection algorithms to high-
light areas where further improvements are needed.

3. DATA PREPROCESSING

The preprocessing pipeline begins with a resampling
step that reduces the number of data points and enforces
uniform sampling across TM channels—an essential re-
quirement for time-series models. Each mission uses
a specific resampling interval based on its native res-
olution (30 sec for Mission 1 and 18 sec for Mission
2). Following resampling, missing values are imputed
using a modified zero-order hold interpolation method
that preserves causality by propagating the last known
value without referencing future data. This process
includes timestamp alignment, value propagation, and
an anomaly-preservation step that ensures annotated
events are retained in the resampled dataset. Together,
these steps produce a temporally consistent and complete
dataset suitable for unsupervised anomaly detection [4]

4. TRAINING PITIA MODEL

PitIA performs anomaly detection through a dimension-
ality reduction approach based on Principal Component
Analysis (PCA). Once the model is trained on nomi-
nal telemetry data, each new observation is projected
onto the principal component space. Two statistical met-
rics are then computed to evaluate the deviation from
normal behavior Squared Prediction Error (SPE), and
Hotelling’s T2, being the first the main metric used to
determinate anomalies. SPE measures how much of
an observation is not explained by the principal com-
ponents. A high SPE value suggests that the sample
deviates significantly from the learned structure and may
indicate a novel event or unmodeled behavior. SPE is
given by:

k
SPE = Z (ajnewj - i‘new,i)2 ) (1)
i=1

where k is the total number of observation, Zyew,; is the
it" observation and Znew,i 1s the prediction of the obser-
vation vector from the PCA model. The number of prin-
cipal components is automatically established, reaching
the 90% of accumulative variance in the latent space [5].
In MSPC, an observation is considered anomalous if it
exceeds the upper control limit (UCL)

v 2b2
UCLspr = —x2 | — |, 2
2b v

where v and b are the sample variance and the sam-
ple mean of the SPE values respectively. x2(:) is the
Chi-squared distribution at significance level o (95%).
Whereas this UCL is statistically well defined, it did not
give us as good results as those obtained after a post-
processing. We noticed that when two or more different
anomalies coincide in a given range of time, the contribu-
tion to SPE from one of them is usually greater than then
rest, hidden the rest of anomalies. Figure 2 illustrates an
example of SPE.

Fig. 2. SPE for Mission 2 and full set of channels. Train
period: 01/01/2020 - 01/07/2020.

5. POSTPROCESSING

To enhance the reliability of the detected anomalies and
reduce noise in the results, a postprocessing stage is ap-
plied.

On one hand, to refine the detection signal, the gradi-
ent of the prediction error values SPE is computed, that
is, SPE to measure the rate of change over time. By
using the absolute value of the gradient |SPE|, both
upward and downward changes in the error are captured.
This approach highlights the magnitude of deviation be-
tween consecutive data points, offering a more sensitive
anomaly indicator. In general, SPE is almost constant,
s0 SPE ~ 0 and the thresholds for anomaly detection
is just simply an inter-percentile formula, thatis, /PR =
Pys — P5 and the lower and upper limits are Ps — 1.5/ PR
and Pys + 1.51 PR respectively. With this configuration
we obtained the best results.

On the other hand, detected anomalies that occur
within short time intervals are likely to be manifestations
of the same underlying issue. To account for this, tem-
porally adjacent anomalies are grouped together if the
time difference between them is below a configurable
threshold. In our implementation, anomalies occurring
less than 6 hours apart are considered the same one.
This threshold is not a fixed or arbitrary value, but was
selected based on GMV’s expert input from satellite op-
erations centers, ensuring its relevance for real-world
use cases. The technique consolidates multiple small,
potentially redundant anomaly events into a single larger
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anomaly, thus avoiding an excessive number of consec-
utive alarms and facilitating clearer interpretation of the
results.

6. EVALUATION

The performance of the proposed anomaly detection sys-
tem was evaluated using the event-wise F0.5 score, the
primary metric recommended by the ESA for bench-
marking anomaly detectors. This score combines pre-
cision and recall, with a higher weight on precision,
which is critical in operational settings to minimize false
alarms.

An anomaly is considered successfully detected if its
timestamp overlaps with a labeled anomaly event, and
the system avoids raising multiple redundant alarms for
the same event. The F0.5 score provides a robust balance
between detection accuracy and alert relevance. In ad-
dition, two complementary metrics were used to assess
the interpretability of the results: i) Subsystem-aware:
Measures whether the predicted anomalies were assigned
to the correct subsystem; ii) Channel aware: Evaluates
whether the channels most responsible for the anomaly
were correctly identified. These secondary metrics help
verify the model’s ability not only to detect anomalies
but also to attribute them correctly, supporting actionable
insights in telemetry monitoring. For brevity reasons, we
restrict ourselves to F0.5 score.

7. RESULTS: FROM BENCHMARK TO
OPERATIONS

Now we describe the main results, this section is divided
in two: first subsection adds a new column (technique) to
Table 2 and Table 3 from ESA reference [4]. This helps
to measure the performance of our approach compared
to other techniques. The second subsection describes a
methodology to use anomaly detection models in a unat-
tended way, ready to operations.

7.1. Benchmark

We evaluated PitIA on the ESA anomaly benchmark us-
ing datasets from two satellite missions, under multiple
training and test configurations. Experiments were as-
sessed using the event-wise F0.5 score, which prioritizes
precision. The train/test dataset periods are the same
from ESA paper: Each mission is divided into halves of
which the first half is taken as a training set and the sec-
ond half as a test set. This gives 84 months of training
data for Missionl and 21 months for 16 Mission2. In
both cases, the last 3 months of the training set are taken
as the validation set. A summary of quantitative results
is presented in Table 1.

Configuration PitIA Best ESA Model Second Best ESA Model
Mission 1 — Full channels 0.424 | 0.061 (Teleman-ESA P.) 0.008 (Teleman-ESA)
Mission 1 — Subset (ch. 41-46) | 0.323 | 0.786 (Teleman-ESA P.) 0.253 (Global STD5)
Mission 2 — Full channels 0.760 0.241 (STDS) 0.100 (PCC)
Mission 2 — Subset (ch. 18-28) | 0.794 | 0.949 (Window iForest) | 0.842 (Teleman-ESA P.)

Table 1. Summary of F0.5 scores across ESA benchmark
experiments

PitIA consistently achieved high F0.5 score in full-
channel settings. Its performance across temporal shifts
in Mission 2 demonstrates robustness, and its general-
ization across reduced channel subsets highlights adapt-
ability. Analysis of undetected anomalies revealed some
false positives corresponded to likely unlabelled events.

In Mission 2, PitIA achieved top-tier performance
when using the full channel set (F0.5 = 0.760) and strong
results on a reduced subsystem (F0.5 = 0.794), with
excellent precision (up to 0.910). While Teleman-ESA
Pruned outperformed in some cases, Pit/A’s performance
remained robust across data dimensionalities and time
splits. Here we remark that Teleman-ESA Pruned is an
ad-hoc version of Teleman-ESA algorithm [6] difficult to
train due to hyperparameter settings and required com-
putational resources (8.5h for trainning for full set of
channels of Mission 1)

In Mission 1, a more challenging dataset due to
less structured anomalies, Pit/A still outperformed most
ESA baselines and showed notable generalization in
reduced input settings. Despite some missed anoma-
lies—often attributed to weak signal changes or label
inconsistencies—PitIA also detected events not included
in the ground truth but with clear error spikes, suggesting
possible unlabelled anomalies.

These findings validate PitIA as a practical anomaly
detection tool that balances operational precision and
computational efficiency, and performs well under con-
strained telemetry conditions.

7.2. Operations

The previous subsection shows PitIA performance com-
pared to other techniques. However, this approach is
still far from being ready for an operational environment,
leaving several open questions: Should the model be re-
trained? When should retraining occur? Is it necessary to
wait 84 months (i.e., 7 years of data for Mission 1) to col-
lect sufficient training data? As we can see, these unan-
swered questions highlight the challenges of deploying
an anomaly detection solution in real-world operations.
Unlike traditional systems that require extensive re-
training or full reconfigurations, Pit[A supports a contin-
uous model updating approach. In our deployment sce-
nario, the system is trained using only one month of his-
torical data and evaluated on the immediately following
month (see Fig. 3). After each cycle, the training win-
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[TRAIN [ TEST |

1 Training window 1 Testing window
Fig. 3. Continuous model updating using monthly slid-
ing windows.

dow slides forward by one month, allowing the model
to adapt to recent patterns and preserve contextual rel-
evance. This sliding window approach ensures that the
anomaly detection model remains up-to-date without re-
quiring full retraining from scratch.

This incremental strategy offers several operational
advantages: i) no need for labeled anomalies: since Pit/A
relies on unsupervised learning, the approach is fully au-
tonomous and does not depend on manual annotations;
ii) fast model update: each training iteration takes <2
minutes, even when using up to 12 months of telemetry
data, ensuring minimal computational burden; iii) scal-
ability: this setup supports daily or incremental prepro-
cessing, allowing integration with real-time data inges-
tion pipelines; and iv) robustness in operation: by always
training with recent data, the system is resilient to long-
term drift and evolving system behavior.

Table 2 shows the results under this configuration.
Note that there is no direct comparison with other tech-
niques, as this specific setup is not evaluated in the ESA
reference. The results are consistent with those in Ta-
ble 1, but in this case the evaluation is performed con-
tinuously, and only one month of data is required, so the
solution can be deployed after just one month of obser-
vations.

| Configuration [ PitIA ‘
Mission 1 — Full channels 0.424
Mission 1 — Subset (ch. 41-46) | 0.332
Mission 2 — Full channels 0.882
Mission 2 — Subset (ch. 18-28) | 0.880

Table 2. Summary of FO0.5 scores across ESA benchmark
experiments using a continuous training approach.

8. CONCLUSIONS

In this work, we presented PitIA, a robust and fully
autonomous tool for unsupervised anomaly detection
in satellite telemetry. Validated against ESA’s open
anomaly benchmark dataset, PitIA demonstrated strong
performance across different missions and configura-
tions. The system is generic, lightweight, and scalable,

making it suitable for diverse operational scenarios and
capable of handling large volumes of telemetry data with
minimal computational overhead. Its ability to operate
without human intervention, combined with mechanisms
for automatic training and threshold tuning, ensures
adaptability and long-term reliability.

PitIA achieved outstanding results on Mission 2 (Full
channels) and performed competitively on the challeng-
ing Mission 1, showing its robustness even in noisy or
weakly labeled environments. Furthermore, its design
aligns with key requirements for space operations: ac-
curate detection with low false alarm rates, ease of de-
ployment, and autonomous retraining capabilities. As the
only method evaluated that meets all operational criteria,
PitIA is a strong candidate for integration into real-time
satellite monitoring workflows.
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ABSTRACT

Many web-based platforms provide access to satellite Earth
Observation (EO) data, now often combined with cloud
computing resources and applications. Users benefit from the
ability to process data remotely, bypassing traditional
download and storage limitations. Our vision is to enhance
interoperability between these platforms to create an open
network for seamless data access. To achieve this, we are
establishing best practices for EO exploitation platforms
based on open standards and developing a reference
implementation of building blocks as free open source
software. This project is sponsored by the European Space
Agency (ESA), with its first iteration, EOEPCA, starting in
2018, and it's second iteration, EOEPCA+, starting in 2023,
and aims to demonstrate the architecture and software in
operational platforms.

Our presentation will highlight the generalized
architecture, standards, best practice and open-source
software components available.

Index Terms - EO, Exploitation Platform, Open Source,
Interoperability

1. INTRODUCTION

The ‘Exploitation Platform’ concept derives from the need to
access and process an ever-growing volume of data. Many
web-based platforms have emerged - offering access to a
wealth of satellite earth observation (EO) data. Increasingly,
these are collocated with cloud computing resources and
applications for exploiting the data. Rather than downloading
the data, the exploitation platform offers a cloud environment
with access to EO data and associated compute and tools that
facilitate the analysis and processing of large data volumes.

Users are beginning to appreciate the advantages of
exploitation platforms. However, the market now offers a
plethora of platforms with various added value services and
data access capabilities. This ever-increasing offer is rather
intimidating and confusing for most users. In order to fully
exploit the potential of these complementary platform
resources we anticipate the need to encourage interoperation
amongst the platforms, such that users of one platform may
consume the services of another directly platform-to-
platform.

EOEPCA+ continues the progress of the original
EOEPCA initiative — but with a greater focus on the real-
world use cases of platform providers. As an OSGeo
Community project, EOEPCA+ has established a steering

committee of Stakeholders that are committed to adopt the
building blocks in their operational platforms. This ensures
that EOEPCA+ efforts are focused towards needed
capabilities, and that the solutions are production ready.
Stakeholder engagement ranges from feature/use-case
definition and adoption, through to co-design and co-
development of building-blocks and features. This has led to
the inclusion of several new building blocks, covering
capabilities including: Datacubes, workflow federation , ML
model development, automation, best practices for open
science and operational resilience.

The primary users of EOEPCA+ are Platform Providers
- helping them to build their platforms that provide the
services needed by their users - reusing the EOEPCA+
building blocks as required. The needs of their users informs
the features required of the building blocks — this includes
data providers, scientists (data analysis, algorithm
refinement), application developers — and ultimately policy
makers that consume the value-adding information that has
been derived from the platform data.

2. COMMON ARCHITECTURE

EOEPCA+, also known as EO Exploitation Platform
Common Architecture, [1] is an ESA funded project with the
goal to define and agree a re-usable exploitation platform
architecture using standard interfaces to encourage
interoperation and federation between operational
exploitation platforms - facilitating easier access and more
efficient exploitation of the rapidly growing body of EO and
other data.

- 5
eeeeeeeeeeee .
@ H Clients ]

Actionable Information

ML Cleaned Data §

Resources

Analysis Ready Data

Processing

Discavery and Access |

Value-adding Transformation

[ Infrastructure: storage, data and compute ]

Fig. 1. Data Transformation

Interoperability through open standards is a key guiding
force for the Common Architecture: platform developers are
more likely to invest their efforts in standard implementations
that have wide usage; off-the-shelf clients and software are
more likely to be found for standards-based solutions. Whilst
standardization at the service layer is a key step towards
interoperability, we recognize that there are additional factors
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that apply friction to full interoperability — including
metadata vocabularies and data formats — in particular across
different communities and domains.

The presentation of actionable information to decision
makers is at the end of a potentially complex chain of data
transformation, processing, interpretation and presentation.
Exploitation platforms must provide the tooling and services
to support these needs — Fig. 1 illustrates the end-to-end
capabilities of an information factory that transforms original
data to Actionable Information. This is a multi-step workflow
in which data may be pre-processed into Analysis Ready Data
/2] designed for access as a Data Cube [3]; or prepared for
input to Machine Learning model development and
execution.

3. ARCHITECTURE

The System Architecture [4] is defined by a set of Building
Blocks with open standard interfaces, each of which
contributes to the overall capabilities of an integrated
platform. A building block (BB) is defined as an open source
software component that implements a specific platform
capability and typically provides a service interface (REST
API) — deployed to Kubernetes with its associated helm chart.
Building blocks are designed to either be used on their own,
or in combination as a system.
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Fig. 2. Architecture of EOEPCA+

The architecture presents the building-blocks within a set
of layers that attempt to reflect their notional role with a
multi-platform distributed ecosystem. This layering should
be regarded as illustrative as, in practice, the building-blocks
and the architecture are flexible for adaption to many
deployment scenarios.

The Platform Layer comprises capabilities for discovery
of data and other resources, execution of processing
workflows, and management/exploitation of added-value
assets.

The Federation Layer comprises capabilities that
operate across a set of distributed platforms, and attempt to
consolidate their combined offerings towards a more
homogenous consumable experience.

The Application Layer provides capabilities for
development and publishing of applications for exploitation
of platform services, and for showcasing research outcomes
through  information dashboards and web-enabled
applications - applicable for both Platform and Federation use
cases.

Fig. 3 shows the team responsible for the EOEPCA+
building block development.
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Fig 3: EOEPCA+ Building Block Development Team

3.1. Reproducible Science

To support reproducible open science, the architecture must
support the capability to record the details of process and
workflow execution, in order to reproduce the conditions of
the original. This impacts on the following building blocks:

e Resource Discovery. Maintain records of workflow
job execution details.

e  Processing Engines. Report details of (sub-)
workflow job executions — possibly to be
consolidated by the Federated Orchestrator.

e  Orchestration. Report details of orchestrated
workflow job executions — by consolidation of sub-
workflow jobs in Processing Engines.

To achieve all reproducibility scenarios (rerun, repeat,
replicate, reproduce, reuse) the job details must be recorded
regarding workflow execution at all levels. Thus, the
Processing Engines must output jobs details that can be
recorded as resources in the Resource Discovery. The
Federated Orchestrator must similarly output aggregated job
details pertaining to the overall workflow execution,
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comprising the details of individual steps executed in the
Processing Engines.
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Fig. 3. Reproducible Science

3.2. User-defined Processing

The Processing Building Block is designed to provide
capabilities for the hosted execution of processing
workflows.
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Fig. 4. Processing

As illustrated by Fig. 4, these workflows are defined as:
1. OGC API Processes Part 1 [5] Part 2[6] — EOEPCA+
has supported the development of the OGC Best

Practice for EO Application Package [7] that
formalizes how processing algorithms are packaged
and described for platform integration. Particularly
suited to large scale batch processing.

2. openEO API—with client-oriented semantics (Python,
R and JavaScript) that abstract the API. openEO offers
close Datacube integration.

Both approaches provide a portable means to submit user-
defined processing for execution close to the data. To achieve
this, a generic data curation approach is favored, allowing the
needs of various processing workflows to be met across
multiple platforms. This approach eliminates the necessity for
each individual platform to develop its own unique data
integration solutions.

The processing architecture is designed for an extensible
set of execution engines, including Kubernetes, HPC, dask,
Argo Workflows — each of which can be integrated behind
the standard OGC API with support for Application
Packages.

3.3. Platform Resources

The Resource Discovery building block maintains a metadata
catalogue for the resources held within a platform — with
OGC API Records and STAC APIs. It supports platform
federation by maintaining records to resources in other
platforms.

In supporting the Find capability as one of the FAIR
principles, the Resource Discovery Building Block provides
discovery for not only data (e.g., datasets, data cube, virtual
data cube), but also workflows, job details, Jupyter
Notebooks, Executable Services, Platform Services, Web
Applications, Documentation, etc.

The Data Access building block, provides feature-rich
and reliable interfaces to access, retrieve and visualize
geospatial data assets stored in the platform, addressing
human and machine users alike. Capabilities are delivered
through standard service interfaces, including OGC APIs
Features/Tiles/Maps - supporting data assets (incl.
multidimensional data formats) persisted via common storage
technologies including S3-comptabile object storage, HTTP,
file system. Access to Analysis Ready Data is enabled
through the Datacube Access Building Block.

In supporting the Reuse capability as one of the FAIR
principles, the Resource Registration Building Block
provides support for ingesting resources into the platform so
that they can be discovered, accessed and used
collaboratively.

The Workspace building block provides
users/projects/teams with the capability to maintain their own
resources within the platform - including data for processing,
processing workflow packages ready for execution, and
results output from workflow executions. The Workspace
provides object storage bucket management to persist these
assets — with facilities for sharing assets outside the
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Workspace. Each Workspace also provides a vCluster to its
members through which bespoke services can be hosted and
published.

3.4. User Analysis and Exploitation

This area of the EOEPCA+ environment focuses on machine
learning, interactive analysis, application best practice, event-
driven behaviors and operational outcomes. The MLOps
building block provides support services for training of
machine learning models within the cloud platform. It also
integrates within the EOEPCA+ Building Block ecosystem,
with the other Building Blocks such as Processing,
Workspace, and Resource Discovery.

The Application Hub building block is a comprehensive
and modular platform delivering SaaS products, designed to
cater to the diverse and multifaceted needs of the EO
community. It is crafted to support a wide array of
stakeholders, from developers and service providers
integrating cutting-edge algorithms to researchers harnessing
computational power, and analysts requiring clear and
concise visualizations.

The Application Quality building block’s aim is to support
the evolution of a scientific algorithm (processing workflow)
from a research project to one that can be utilised in a
production environment, with tools for verifying non-
functional requirements (code quality, best practice for open
reproducible science, performance optimisation).

The Notification & Automation BB is designed to
facilitate intra-Building-Block asynchronous
communications. This means it allows different parts of the
system to communicate with each other without needing to
wait for responses, thereby improving efficiency and
responsiveness. It supports triggers that can initiate
automated behaviour. These triggers can be based on external
events (e.g. events from object storage, etc) or can be
scheduled to occur at certain times.

Finally, the Resource Health BB offers a generalized
capability that allows all types of users to specify and
schedule checks relating to their resources of interest, to
visualize the outcome of the checks, and to receive
notifications according to the outcome.

3.5. Platform Federation

The final area of the EOEPCA+ environment concerns
platform federation, through federated workflows, abstract
data access and federated user identity. The Federated
Orchestrator building block allows for cross-platform
workflow execution, and hybrid workflows, combining OGC
API Processes, Application Packages and openEO Process
Graphs.

The Data Gateway building block enables data source
abstraction, with data access protocol, with the use of Python
library and extensible data providers.

Finally, the IAM building blocks is key for single sign-on
and external provider integration.

4. NEXT GENERATION SDI

Gomes et al [8] identifies some key attributes of next

generation SDI. EOEPCA+ responds to these challenges:

e Scalability and resilience. Use of Kubernetes, which
also provides platform-agnostic reusable building-
blocks

e Moving Code paradigm. Use of OGC Application
Packages and openEO for user-defined code

e Job Parallelisation. Common Workflow Language
(CWL) scatter patterns combined with Kubernetes
workload orchestration

e Interoperability. Open standard interfaces delivered
through REST APIs - including OGC, STAC and
openEO

e Array Data. Datacube services for efficient access to
multi-dimensional data

e Simplified Usage. Programmatic clients (e.g.
openEO) to abstract APIs and facilitate user update -
noting that EOEPCA+ requires additional client
support to cover its breadth of capabilities

5. NEXT STEPS

The EOEPCA+ architecture and reference implementation
have made good progress to mature a set of building blocks
for interoperable exploitation platforms. Through its
Stakeholders, the project will continue to engage with
operators of existing platforms to understand and respond to
their real-world use-cases - and to support the integration of
the EOEPCA+ building blocks into their platform offering —
to enhance their platform capabilities and to provide feedback
on the utility of the building blocks.
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METHODOLOGICAL AND COMPUTATIONAL CHALLENGES OF EVALUATING SOIL
PROPERTIES MAPS DERIVED FROM HIGH RESOLUTION EARTH OBSERVATION DATA

Laura Poggio, David Rossiter, Niels Batjes, Bas Kempen

ISRIC - Worls Soil Information - Wageningen (NL)

ABSTRACT

Remote sensing data are useful covariates to aid with the
production of soil properties maps. The increasingly-iner
resolutions of remote sensing products aids the production
increasingly-finer resolution soil maps. However, the result-
ing products must be evaluated for pointwise accuracy as
well as how realistically they represent the soil landscape.
This study presents a dedicated reproducible computational
framework for integrating remote sensing into digital soil
mapping workflows, and methods for the evaluation of the
derived products.

Copernicus, Data integration, digital soil mapping, high
performance computing, reproducibility

1. INTRODUCTION

Digital Soil mapping (DSM) at continental and global scale
provides standardised global information layers based on
predictive models. It is also an important tool to create soil
information layers for areas for which local soil survey in-
formation is lacking. The recent availability of global and
continental remote sensing-derived products, coupled with
the ease of access to computational resources, has made the
production of such layers easier across the globe. There-
fore, it is ever more important to assess the quality of DSM-
derived products.

This paper presents a computational framework to pro-
duce and evaluate soil properties maps for Europe at 20m
resolution, with a key aspect being the integration of ad-
vanced remote sensing datasets.

2. DATA

2.1. Soil observations

The observations used for mapping were queried from the
WoSIS database [2]. Soil observations from approximately

Funding: CUP4SOIL (Framework Partnership Agreement on Coper-
nicus User Uptake); HoliSoils (European Union’s Horizon 2020 research
and innovation programme grant agreement No. 101000289)

94k locations were available. Most of the observations be-
long to the LUCAS sampling [13]. The primary soil prop-
erties in table 2.1 were modelled for top soil (0-30cm).

Property | Description Units

soc Soil organic carbon content g/kg

phh2o0 pH in water pH

nitrogen | Total nitrogen g/kg

bdod Bulk density, oven dry kg/dm3

cfvo Coarse fragments, volumetric | cm3/100cm3
sic Soil inorganic carbon content | g/kg

sand Sand g/100g

silt Silt g/100g

clay Clay g/100g

2.2. Environmental Covariates
Sentinel 2

SCMaP [11, 20] is a specialised processing chain for detect-
ing and analysing bare soils/surfaces on a large (continental)
scale. Bare surface and soil pixels are selected using a com-
bined NDVI and NBR index (PVIR2) calculated and ap-
plied for each individual pixel. Sentinel-2 scenes recorded
between January 2018 and December 2022 in Europe were
used with a cloud cover of < 80 % and a sun elevation of >
20 degrees. The data products are available at a pixel size
of 20 m for 10 Sentinel-2 bands (B02 to B08, B08a, B11,
B12).

The products used in this work are: 1. "Bare Surface
Frequency Product” provides the number of bare soil occur-
rences over the total number of valid observations. 2. "Re-
flectance Composite - Mean” represents the mean reflectance
of all valid observations including vegetation, bare and other
surfaces 3. "Reflectance Composite - Standard deviation”,
which contains the standard deviation per band for all valid
observations.

Sentinel 1

The Sentinel-1 (S1) mission data were pre-processed, pre-
pared, mosaicked and downloaded from Google Earth En-
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gine [10]. S1 provides SAR (Synthetic Aperture Radar)
backscatter signal for VH (vertically transmitted and hor-
izontally received) and VV (vertically transmitted and re-
ceived). The polarization ratio was calculated: (VH —
VV)/(VV + VV) as it was proven useful for discriminat-
ing land covers with different canopy densities and it is an
important parameter for soil moisture detection [9]. The
overall median (2018 to 2020) was calculated and used as
covariates.

Morphology

The Copernicus Digital Elevation Model [6] was used to
derive the following morphological features: 1. Elevation
from sea level (m) 2. Slope as the steepest slope angle, 3. To-
pographic wetness index [22] defined as the In(a/tan(b))

Climate data

ERAS is the fifth generation ECMWF atmospheric reanal-
ysis of the global climate [7] combining model data with
global observations. ERAS provides aggregated values for
each month for the following ERAS climate reanalysis pa-
rameters: temperature (2m), total precipitation, and total
evaporation. Monthly total precipitation values are given as
monthly sums. All other parameters are provided as monthly
averages.

Downscaling of climate data

The input rasters were resampled by filtering the input with
an analytic kernel [4]. Each output cell is typically calcu-
lated based upon a small subset of the input cells perform-
ing convolution (i.e. a weighted sum is calculated for every
raster cell). The input range is mapped to the width of the
window function, so wider windows will be ”sharper” (have
a higher cut-off frequency). The implements FIR (finite im-
pulse response) filtering. All of the functions are low-pass
filters. The filter used were gauss, box with the radii
equal to 1.5 x inputresolution and 3 * inputresolution
respectively. The gauss filter is a gaussian kernel filter,
while the box filter is a finite window filter.

Land cover

The Dynamic Land Cover map at 100 m resolution (CGLS-
LC100) product includes continuous field layers for all ba-
sic land cover classes that provide proportional estimates for
vegetation/ground cover for the land cover types.

The 2019 products [3] with the proportional estimates
for vegetation/ground cover for the land cover types are pro-
vided as environmental layers in this project.

Parent material

Information from parent material was derived from the Eu-
ropean Soil Database v2.0 [18]. Both primary (Code for
dominant parent material of the STU) and secondary (Code
for secondary parent material of the STU) units where ras-
terized in binary (presence/absence) format.

Vegetation phenology

Products to describe the phenology of the vegetative sea-
son were used [5] 1. Season amplitude, 2. productivity and
3. length.

3. METHODS

3.1. Digital Soil Mapping

The DSM approach builds on the methods described in [19].
Random Forests was used as the modelling method, us-
ing the ranger package [23], with the option quantreg
to build Quantile Random Forests (QRF) [15]. With QRF,
predictions generate a cumulative probability distribution of
the soil property at each location, rather than a single aver-
age value from the ensemble of decision trees.

Recursive feature elimination [14] was used for covari-
ates selection. Model tuning was conducted using a 10-fold
cross-validation procedure applied to multiple combinations
of hyper-parameters: number of decision trees (nt ree pa-
rameter) and numbers of covariates (mt ry parameter). Pre-
dictions accuracy was assessed using root mean squared er-
ror (RMSE) and model efficiency coefficient (MEC)[12].
The model evaluation was based on the performance met-
rics of the selected hyper-parameters combination. The final
model was fitted with all available observations, the covari-
ates and the hyper-parameters selected in the previous steps.

With this approach both the mean predictions and the
quantiles can be obtained. The 5" and 95" quantiles were
used according to the GlobalSoilMap specifications [1].

3.1.1. Maps evaluation

Maps were evaluated using the following approaches:

* model uncertainty ((Q95—Q05)/Q50) per pixel [19]

e comparison of spatial patterns [21]

» area of applicability (AOA) of (spatial) prediction mod-
els [16]. In particular a dissimilarity index (DI) is cal-
culated based on distances to the training data in the
multidimensional predictor variable space.

e Quadmap: Variable resolution maps to better repre-
sent spatial uncertainty [17] based on quadtree algo-
rithm recursively partitioning the map into quadrants
until the uncertainty criteria are fulfilled
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Fig. 1. Predictions and their uncertainty index

4. COMPUTATIONAL FRAMEWORK

The soil properties maps were produced at 20m resolution
for of Europe. This required adaption of the approach de-
scribed in [8]. The methods to evaluate maps also needed
to be adapted to work for continental scale products, both
from a methodological and computational points of view.
New approaches were implemented to tile covariates be-
fore the modelling, for the parallelisation of computation
for the Area of Applicability and to compute meaningful
variograms for continental extents.

All computations were performed using apptainer im-
ages containing the relevant software and packages, in par-
ticular R, python and GRASS-GIS.

5. PRELIMINARY RESULTS

The preliminary results show examples of the products for
Europe (figure 1). Figures 2 and 3 show the results of the
evaluation of the maps. The preliminary outputs indicate
that the computational framework was able to create fine
resolution soil properties maps integrating advanced earth
observation data. The framework allows also the analysis of
the spatial pattern of the products both in space and in the
covariates space. These preliminary results indicate both
the needs for in depth maps evaluation and the feasibility of
adapting existing workflow to dataset with orders of magni-
tude more pixels and covering large geographical extents.

6. CONCLUDING REMARKS

Remote sensing provides invaluable information for soil map-
ping. The availability of remote sensing product at finer res-
olution allows to produce soil properties maps at fine resolu-
tion. This requires adapting existing workflow and methods
both from a computational and conceptual point of view.
What works at field or catchment level will not necessarily
work for a continental or global product. Furthermore, ex-
pert knowledge (domain, users, stakeholders) is fundamen-

(a) Dissimilarity index (b) DI by percentiles

Fig. 2. Example of AOA analysis

(a) Low uncertainty threshold (b) High uncertainty threshold
Fig. 3. Example of analysis with quadmap

tal to evaluate the generated DSM products. Soil products
must be created for the specific purpose and at the required
scale and resolution. We need to use more options than ac-
curacy metrics to evaluate DSM products, in particular their
relationship with the landscape, model applicability and un-
certainty.
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ABSTRACT

Current satellite LIDAR missions, such as GEDI and ICESat-
2, provide billions of points annually that are typically not
cloud-optimized and require additional quality filtering be-
fore any further analysis. In this study, we present Open-
LandMap GEDI (OLM-GEDI), a new open, cloud-optimized,
and global GEDI point dataset, for which we establish a
spatio-temporal structure to facilitate efficient access. We
show random access to OLM-GEDI achieves 20 seconds and
a minute for areas around 50-thousand and 3-million km?,
respectively. The OLM-GEDI STAC catalog is further es-
tablished, which can be readily loaded into a local or cloud
computing environment, such as openEO. This open GEDI
dataset can be beneficial to future studies to enhance their
reproducibility and mitigate the complexity of handling large
GEDI data volumes (~ 120 TiB) and quality filters.

Index Terms— Global satellite LiDAR, GEDI, canopy,
terrain, cloud-native format, Geoparquet, STAC, openEO

1. INTRODUCTION

Recent satellite LIDAR (Light Detection and Ranging) mis-
sions, such as Global Ecosystem Dynamics Investigation
(GEDI) and Ice, Cloud, and Land Elevation Satellite 2
(ICESat-2), have been collecting near-global and global 3-
dimensional (3D) information about the Earth’s surface since
early 2019 and late 2018, respectively. They utilize sensors
that generate, transmit, and deflect laser pulses in several
directions, which enables the sampling of 3D information,
i.e., recording the backscattered laser energy distribution
along the range at each sampling location, along eight and six
ground tracks per every GEDI and ICESat-2 orbit [1, 2]. With
pulse repetition frequencies of 242 Hz and 10 kHz, GEDI and
ICESat-2 currently provide billions of points annually, which,
due to their sparse, irregular, and 3D nature, are often more
complex for analysis than classical satellite images.

This work has received funding from the European Union’s Horizon Eu-
rope research and innovation programme (grant agreement No. 101059548)

Satellite LiDAR data have already been used for large-
scale land and water surface applications. Several stud-
ies, e.g., contributed with global high-resolution (30-10 m)
canopy height mapping, where sparse satellite LIDAR points
were combined with multispectral images from Landsat or
Sentinel-2 to achieve wall-to-wall machine-learning-based
height predictions [3, 4]. In topography, satellite LiDAR
data have recently been used to map a global 30 m digital
terrain model again within a machine learning framework [5].
Furthermore, recent studies have also shown the potential of
satellite LIDAR for monitoring the surface levels of inland
and wetland waters [6, 7].

The above studies are computationally and data-intensive,
requiring appropriate indexing and other optimizations for ef-
ficient data access and utilization at large scales. Furthermore,
although satellite LIDAR data are openly accessible, consid-
erable data quality filtering is still required before they can be
used for specific use cases [8, 9, 10, 11]. To increase repro-
ducibility and lower the aforementioned barriers for a broad
range of users, this paper presents a global cloud-optimized,
quality-filtered satellite LIDAR dataset for efficient queries,
exemplified by GEDI and potentially applicable to other
datasets.

2. MATERIAL AND METHODS

2.1. GEDI data

GEDI is a full-waveform satellite LIDAR that records backscat-
tered laser energy levels (waveforms) along the laser beam’s
line of sight (range), near-globally, between 51.6°N and S,
within a laser footprint diameter of 25 m [1]. The GEDI Level
2A product includes waveform (point-level) metrics such as
ground elevation, relative height (rh) calculated between the
waveform’s lowest mode and different waveform energy lev-
els (e.g., rh98 is the relative height at the 98 percentile of
the waveform energy), waveform processing algorithm in-
formation, different quality flags, and auxiliary information
such as beam identifier, etc.[11]. The GEDI Level 2B product
includes point-level canopy cover and vertical profile bio-
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physical metrics, such as plant area index profiles, foliage
height diversity, etc. [12].

2.2. Quality Filtering and Waveform Metrics Selection

Our dataset was created by combining the Level 2A and 2B
GEDI datasets, then selecting only high-quality GEDI obser-
vations and finally, the most relevant metrics that can readily
contribute to different land surface applications. We consid-
ered the first four years of data, i.e., acquired between March
25th, 2019 and March 15th, 2023.

We used the unique GEDI shot (point) identifier to join
the Level 2A and Level 2B metrics. Then, we excluded
GEDI points with a quality flag of 0 and a degradation flag
greater than 0, or points with a sensitivity (the maximum
canopy cover that can be penetrated) of less than 0.95. The
typical sensitivity threshold values used to filter out low-
quality GEDI observations in vegetation and terrain studies
range from 0.90 to 0.99 [8, 9, 10, 11]. Our threshold is
positioned in the middle of that range, providing not only
high-quality points but making them more readily accessi-
ble to users via the cloud. To further constrain the dataset
size, we made a selection of the relevant waveform metrics
for land surface applications, such as RH percentile values
for different processing algorithms, plant area index, differ-
ent waveform energy components, etc. These metrics allow
users to perform both further data filtering and modeling.
A detailed list of all selected metrics and their description
can be found in our GitHub repository (github.com/
Open—-Earth-Monitor/GlobalEarthPoint).

2.3. Spatio-temporal structuring

Originally GEDI data are structured in an orbit-oriented or-
der, with each file representing a sequential time period and
covering a wide spatial extent. In land surface applications,
spatial blocking, global-local calibration, and local validation
are commonly used for mapping and assessment. For these
purposes, accessing raw GEDI data typically requires read-
ing large volumes of data and applying subsequent filters to
extract information for a specific area and time period. To
enable easier access and reduce data transmission overhead,
we constructed a spatio-temporally partitioned GEDI dataset
optimized for efficient point queries.

Spatio-temporal structuring is carried out in two main
steps: (1) streaming data from orbit-oriented raw HDF files
into a spatio-temporal block structure, and (2) aggregating
each partition into a single GeoParquet file (Fig 2.3). We
processed each raw HDF file by filtering and selecting (men-
tioned in Section 2.2), using a predefined spatio-temporal
block (5°x5°xyear). The remaining points were then parti-
tioned into small subsets, each stored locally according to
its corresponding spatio-temporal block. Finally, these sub-
set files—originating from multiple sources but belonging to

the same block—were aggregated and converted into a single
GeoParquet file.

partition-3
- gedi-o4b.parguet

partition-1

- gedi-ola.parguet
- gedi-oZa.parquet
- gedi-o3a.parquet

-gedi_|2ab.parquet

partition-2
gedi-o2b.parquet

- gedi-o3b.parquet

- gedi-o4b.parquet

partition-2
- gedi_|2ab.parquet

partition-3

- gedi_|2ab.parquet

Fig. 1. llustration of GEDI structuring achieved by partition-
ing and parallelization.

2.4. Data access and visualization

In order to increase interoperability, we integrated Spatio-
Temporal Asset Catalogs (STAC). At the collection level, we
provide collection-level metadata, including licensing infor-
mation, available attributes, DOI, and a reference to STAC
items for spatial querying. At the item level — representing
individual partitions — we include S3 links to the correspond-
ing GeoParquet files, along with overviews and metadata such
as file size, point count, temporal coverage, and more. The
STAC catalog is used to organize the partitioned data and
serves as a single entry point for the dataset. Additionally,
we provide an example of accessing through OpenEO [13],
enabling fully cloud-based processing of the dataset.

3. RESULT

3.1. Structuring: data streaming and aggregation

Table 1 summarizes the comparison between the LC DAAC
GEDIO2 dataset and OLM-GEDI. The raw GEDI Level 2
dataset is composed of 2A (101.8 TB) and 2B (22.0 TB). We
streamed the entire dataset using 960 CPUs across 10 servers,
each equipped with 1 TB of RAM and connected to local stor-
age servers with InfiniBand. The computing of data streaming
and aggregation took 40 hours and 6 hours respectively, under
full parallelization. The filtered GEDI dataset in GeoParquet
format has an approximate size of 759 GB and contains 5.4
billions points.
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Table 1. Summary of raw GEDI and OpenLandMap GEDI.

Product |} b\ AC GEDI0O2 | OLM-GEDI
Name

Time 03.25.2019 ~ 03.15.2023
Coverage

Data - Level 2A: 101.8 TB | Level 2 A&B:
Size ~Level 2B:22.0 TB | 759 GB

Data Hierarchical Data GeoParduet
Format | Format (HDF) qu

3.2. Benchmark for data access

The result (Fig 2) shows the relationship between the query
area and query time for our dataset. We simulated queries
of varying area sizes and locations, repeating each configu-
ration 100 times. Each query consists of two components:
(1) spatio-temporal filtering at the partition level using STAC,
and (2) lazy loading at the file level using DUCKDB. For ar-
eas smaller than 50,000 km?, query times fluctuate below 20
seconds. As the query area increases, the time grows accord-
ingly. For areas larger than 3 millions km?, query time ranges
from 60 to 100 seconds, approximately the size of India.

Query Time vs. Area in OLN-GEDI

100

80

60

Query Time (s)

20

0.0 0.5 1.0 15 20 25 3.0 3.5
Query Area Size (km?) 1e6

Fig. 2. Benchmark for OLM-GEDI query time versus query
area size.

3.3. Use case: Streaming OLM-GEDI into an openEO
Cloud-Processing Workflow

The OLM-GEDI collection can be accessed through openEO
via the 1oad_url process. The STAC collection (Fig 3.3)
provides the metadata and easy access to the partitioned data
set.

We created a notebook that demonstrates how to access
and manipulate OLM-GEDI [14] in a cloud environment.
Figure 3.3 illustrates the workflow of loading and overlaying
OLM-GEDI and a global DEM in a given bounding box,
established in openEO.

& 0penLand

High quality GEDI level2
=]

in OpenLandMap STAC [Tu M

Items e

lon=-100_lat=50_year=2020_gedi 12a
b

lon=-10_lat=0_year=2020_gedi_l2ab

lon=-100_lat=50_year=2021_gedi 122
b

lon=-10_lat=0_year=2021_gedi_[2ab

1=50_year=2022_geci_I2a

lon=-100_lat=50_year=2023_ged [2a
h

Fig. 3. STAC collection of the OLM-GEDI dataset at Open-
LandMap STAC.

COPERNICUS_30 3

ur: htps://s3.0pengeohub.org/globagl

Fig. 4. openEO process graph for loading data sources and
extracting raster values.

4. CONCLUSION

This study presented OpenLandMap GEDI (OLM-GEDI), a
cloud-optimized, quality-filtered global GEDI point dataset.
The proposed filtering methods, metric selection, and spatio-
temporal structuring reduce complexity and provide an effi-
cient means of accessing large volumes of GEDI data. The
results show that this form of GEDI data partitioning—when
exposed through a STAC catalog and stored in GeoParquet
format—enables rapid cloud-based access and straightforward
loading in a local computing environment, requiring less than
2 minutes for an area of 3 millions km?. We also demon-
strated that accessing the data through STAC on a cloud plat-
form such as openEO is equally straightforward. OLM-GEDI
can be readily applied to various land surface applications and
improve research reproducibility.

5. DATA AND CODE AVAILABILITY

Data is openly available through STAC (stac.openlandmap.

org/GEDIO2/collection. json) under the Creative
Commons Attribution CC-BY 4.0 license. All code to
process raw data, establish STAC, benchmark is openly
available in Open-Earth-Monitor GitHub (github.com/
Open—-Earth-Monitor/GlobalEarthPoint) under
Apache-2.0 license.
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ABSTRACT

Open satellite imagery from the Copernicus Program has
the potential to address societal and environmental crises.
However, data access and processing limitations, along with
a lack of standards, have hindered the development of
operational solutions. Copernicus Data Space Ecosystem
(CDSE) marks a shift in Earth Observation (EO) by providing
API  (Application  Programming Interface) access,
overcoming the limitations of downloading and local
processing. By moving data processing to the cloud, user
demands for bandwidth, storage, and processing are reduced.
Users can focus on data processing, since management and
visualization are handled by the system. The API approach
supports FAIR (Findable, Accessible, Interoperable,
Reuseable) principles, enhancing the transferability of EO
processing pipelines and simplifying learning. Additionally,
Level 3 analysis ready data (ARD) and pre-trained models in
CDSE facilitate the use of deep learning workflows. Cloud
computing, integrating optimized data storage, server-side
processing, and virtual machine capacity, is transforming
Earth Observation.

Index Terms— Cloud Computing, Big Data, API access,
code sharing, data infrastructures

1. INTRODUCTION

Free, public, global scale earth observation data has been
available since the release of the Landsat archive in 2008.
However, although more than 15 years have passed and the
ambitions Copernicus Program has also been launched,
global challenges such as deforestation monitoring and urban
planning are still information starved. The European Union
Common Agricultural Policy (CAP) monitoring (1) has
proven that satellite data can support continental scale crop
monitoring and classification, but operational applications at
similar scales are rare. The reason for this is complex, but as
stated in the Earth Observation for Sustainable Development
Goals Compendium from 2020, “The main limitation now is
not if EO data exists but where it can be stored, accessed and
in a format ready to be used” (2).

The Copernicus Open Science Hub (predecessor of
CDSE) has been instrumental in providing access to vast
amounts of EO data, but required considerable skills to

handle, did not provide instant access to most of the archive,
and mainly focused on being a source for downloading data.
As a result, users without access to high performance
computing facilities or with limited knowledge of EO
analytics coding were left behind.

Many of these limitations are solved by the cloud
processing paradigm (3). If the data is stored on an accessible
cloud, and API requests support data processing, the user
does not need to download data or process it on their own
infrastructure. The Copernicus Data Space Ecosystem, the
data gateway and cloud platform of the Copernicus Program
was designed according to this concept. However, CDSE
goes further by offering immediate access to all Sentinel
datasets, in-code access with APIs, an open codebase, an
integrated processing infrastructure, and free quota to support
the uptake (Fig.1) This evolution has been fostered by
advancements in cloud computing, which have broken down
barriers in processing capacity, data storage, and algorithm
sharing. The result is substantially faster computing — eg. a
benchmark test by Ray (4) showed that using API processing
the download and processing time for an agricultural use case
of can be reduced by a factor of more than 100.

CDSE Ecosystem

Traceability |
services

Additional
EO Data

Online
Code Labs

Copernicus
Browser and
Interfaces

Onboard Code
Repositories

FIGURE 1: OVERVIEW OF CDSE FUNCTIONALITY
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FIGURE 2: EXAMPLE OF THE OPENEO WEB EDITOR, A GRAPHICAL INTERFACE TO CDSE DATA
COLLECTIONS AND PROCESSING ALGORITHMS

Here two spectral indices were calculated and a threshold
applied within a Sentinel Hub Statistical API request, and
compared to image tile downloading and local processing
with Odata and processed with Rasterio. The full code for the
benchmark is available here: https:/github.com/eu-
cdse/notebook-

samples/blob/main/sentinelhub/EGU_notebook.ipynb

2. CLOUD COMPUTING AS A TRANSFORMATIVE
SOLUTION

Cloud computing has revolutionized EO by enabling on-
demand data processing through streaming-compatible data
formats and optimized API requests. Transferring Terabytes
of data over the web is still a cumbersome task. The legacy
approach is to break the data into pre-defined chunks (tiles)
and send them as a compressed archive. The new approach is
to query only the data within the user’s area of interest
without loading the full file into the memory, do the
processing on the cloud server, and transfer only the result to
the user. This eliminates the need for powerful local
computers, as the processing power resides in the cloud
platform. DIAS (Data Information Access Services)
infrastructures have already adopted this paradigm several
years ago but providing it as a public service with free quota
in CDSE has created the necessary critical mass for it to
become an industry standard. Meanwhile, CDSE is not a
commercial platform and does not compete with commercial
providers. Public institutions are provided with large
individual quotas, but large-scale commercial processing
should still be done with commercial platforms. However,
CDSE supports prototyping and learning Copernicus data and

tools, and provides regional-scale processing capacity as a
resource for starting.

3. SIMPLIFYING EO CODING

Nearly 80% of EARSC member companies have reported
that they have difficulties in finding suitable candidates for
filling positions (4). One of the main reasons behind this lack
of specialists is the challenge of learning programming of the
EO data processing workflows. Mastering the processing and
analysis of satellite imagery requires a wide range of skills
that take a long time to acquire. This is also difficult to
achieve in a sequential manner: in order to carry out the
simple task of requesting an image from a repository,
applying a spectral index and visualising it online, a
developer already has to understand big data management,
data formats and projections, optical analysis, and web GIS.
If we add to this the need for understanding the application
domain, the requirements are nearly impossible to fulfil for
someone at the early stage of their career. What is needed is
a system for data access and visualisation that is easy enough
to handle for domain specialists (ecologists, social scientists,
agriculture experts etc.) but powerful enough to work on
global scale, - and a standard-ready codebase that can be
learned incrementally.

The CDSE backend, frontend, and codebase are providing
exactly this, redefining the learning curve for EO coding. By
handling data management in the repository and visualization
in the Browser, the CDSE allows users to focus on the actual
task of data processing. The integration of coding and
visualization within the Copernicus Browser or openEO Web
Editor (Fig.2), along with a comprehensive tutorial base
(including user-contributed examples), makes EO coding
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accessible to the masses. Hackathons for high school students
have shown that EO data analysis is now within reach of non-
specialists using these tools (5). For advanced users, CDSE
offers onboarding of the custom algorithms via the openEO
Algorithm Plaza, Sentinel Hub eval scripts, and JupyterLab
environment (Python, R, Julia, ESA-Snap kernels supported
- access date 17.06.2025 ). Moreover, JupyterLab offers
Linux command line where users can uploand and execute
their own binaries. Currently, the support for onboarding
custom Docker containers is not supported.

4. DATA INTEGRATION AND INTEROPERABILITY

We will never have one data repository to rule them all:
different datasets require different infrastructure, and the
dataset owners will always have the preference to keep data
where they can control it (6). Therefore, it is necessary to
operate cloud processing solutions that can integrate data
from different backends while still running the processing in
the cloud and not on the user’s machine. OpenEO API
processing and STAC (7) facilitate data integration across
multiple backends, enabling seamless access and integrated
processing of data from various cloud provider backends
without the need for local downloads. These tools are
designed specifically as a standard that can connect many
data sources, and since they are open and community owned,
using them does not create a competitive disadvantage for
industry players. As large global datasets become
interoperable, the stage is set for new, innovative applications
for sustainability.

5. ADVANCING DEEP LEARNING AND Al

Deep learning for image analysis has also been available for
10 years now. Still, operational applications for earth
observation are not widely seen. The main difficulty for
machine learning is often the cost of data wrangling -
preparing noisy, inconsistent datasets to a format compatible
with the learning models.

CDSE hosts machine learning-ready data, including
Sentinel-1, Sentinel-2 Level 3 mosaics and Sentinel-3 Level-
2 data, significantly reducing the data preparation phase for
machine learning applications. Additionally, most global
datasets of the Copernicus Land Monitoring Service (CLMS)
are now also served in CDSE, providing an additional layer
of analysis-ready datasets, representing land cover and bio-
physical quantities such as soil moisture, vegetation status,
lake water quality and surface temperature (Fig. 3). These
datasets are also served in a unified common structure,
enabling their direct analysis with Al tools Furthermore, tools
like Major Tom embeddings (8) and the compatibility of
openEO with deep learning models from ONNX (9) are
accelerating Al processing of Sentinel data. By providing a
standard for sharing deep learning models that are compatible
with API access to massive datasets, significant obstacles
towards the application of Al in satellite data analysis have
been removed.

6. STANDARDIZATION AND KNOWLEDGE
SHARING

Transferability is always an essential issue in EO: most
applications are for managing large areas, so algorithms have
to work for different conditions. Standards are a key tool for
transferability, but are difficult to establish in the first place.
For a standard to work efficiently, it has to be compatible with
a wide range of tools and datasets, well documented, actively
maintained and most importantly it has to be used by a large
community. The tools created in CDSE are rapidly becoming
the standard for both open and commercial data and solution
providers. CDSE is generating a strong mainstream with a
community of more than 400 000 users, providing incentive
for the adoption of the cloud computing approach, and
specifically the STAC standard and the openEO and Sentinel
Hub API-s by industry players and large international
agencies.

In fact, according to the EARSC Survey (4), CDSE has
emerged as the leading EO data platform for businesses in
Europe, despite its public and free-quota nature. Its
compatibility with commercial data and solution providers
has fostered a thriving ecosystem where data, algorithms, and
downstream products converge. Currently, Copernicus
Browser has more than 500 000 visitors monthly, and more
than 350 million API access requests are processed each
month. A real-time interactive public dashboard enables users
or prospective partners to follow the evolution of the user
base and system performance here
https://dashboard.dataspace.copernicus.eu/ . The next step is
to grow a federated ecosystem of public and commercial
actors based on this common, shared platform.

7. CONCLUSIONS

The transformative shift in Earth Observation is driven by
concurrent advancements in data storage (COG/Zarr
formats), API development (e.g., openEO), and virtual
machine computing (e.g., Jupyter Labs). These technologies
combined are providing much stronger impact than they
would individually. Coupled with the open data policy of the
Copernicus Program and the public virtual machine resources
it offers, the new developments in cloud computing and API
access have democratized access to location-based insights.
The scene is set to overcome the limitations posed by the lack
of expertise, computer capacity and data storage. With an
internet connection and some very basic knowledge, users
can start directly exploring the application of Sentinel data to
their field while developing a skillset that leads towards
advanced operational applications. As a result, EO data and
insights are now within reach of a wider range of users,
including environmental NGOs, farmers, and mainstream
news sites. Above all, this leads to stronger trust and
transparency (10): now, satellite data does not only enable
companies and governments to monitor citizen activities but
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FIGURE 3: AI-READY DATA LAYERS IN CDSE: FROM LEFT TO RIGHT: AGRICULTURAL GROWTH STAGE
ON SENTINEL-2 QUARTERLY MOSAICS, SENTINEL-1 MONTHLY MOSAIC, CLMS VEGETATION
PRODUCTIVITY

also the other way round, as individual agents have the tools
to monitor large industry and public actors and hold them
accountable. The CDSE exemplifies the power of open data
and collaborative innovation in shaping the future of Earth
Observation. It shows how technology-aware public
investment can break new ground in the application of earth
observation for sustainability, supporting growth in the
industry, government and non-profit sectors.
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ABSTRACT

Openly available Earth Observation (EO) data has
significantly advanced climate and Earth System science;
however, collaboration around the resulting downstream
research datasets remains a challenge. Despite the growing
focus on creating open science data catalogues across
various institutions, the implementation of FAIR (Findable,
Accessible, Interoperable, Reusable) practices remains
fragmented. EarthCODE aims to overcome these challenges
by providing researchers in Earth system science with the
tools and means to practice FAIR and Open Science.
Promoting interoperability and coordination among
integrated European EO platforms, EarthCODE enables
scientists to discover, develop, execute, and publish data and
workflows aiming to maximise reusability. This paper
illustrates the strategy adopted in the federated ecosystem of
EarthCODE to go beyond openness, striving to make
research open, FAIR, and reproducible.

Index Terms— FAIR, Open Science, Earth
Observation, Earth System Science, Cloud Computing,
Reproducibility.

1. INTRODUCTION

Earth Observations are essential to advancing Earth System
science and enabling innovation. Missions such as ESA’s
Earth Explorers and the EU’s Copernicus Programme
generate vast, openly accessible datasets—crucial for
scientific progress. Yet these data alone are not sufficient to
drive science-based action. Gaps remain in our ability to
quantify global cycles, identify tipping points, and assess
system resilience, all of which require large-scale
coordination and knowledge exchange between researchers.

Open Science has emerged as a key enabler of sustained
collaboration, supported by global programmes [1],[2] and
reinforced through international policy guidance [3],[4].
This momentum comes at the time of the cloud revolution
that now allows researchers to access and analyze data at
scale—on demand and directly in cloud-native EO
platforms.

Together, Open Science and EO platforms create the
opportunity for the infrastructure required to fill the
scientific knowledge gaps and address the pressing societal
challenges of today — a process referred to as “Earth
Action”. This infrastructure for open science empowers

scientists to 1. Access and process satellite and in-situ data
in collaborative cloud environments, 2. Develop and publish
reusable code and workflows, 3. Validate outputs and share
reproducible results, and 4. Collaborate across institutional,
disciplinary, and national boundaries.

ESA’s vision for EO Open Science and Innovation [5]
captures this opportunity, providing a structured framework
to embed FAIR and Open Science practices across its Earth
Observation activities. EarthCODE is part of this larger
panorama of strategic initiatives. Through its ecosystem of
tools and platforms, it aims to transform FAIR and Open
principles from an aspiration to routine practice for Earth
Science activities funded through its programme and beyond
(e.g., including collaborations with EU funded research).

The EO landscape includes several major initiatives
addressing open data and computational challenges. The
European Open Science Cloud (EOSC) offers cross-domain
infrastructure, NASA Earthdata and Copernicus Data Space
provide data access, and Pangeo delivers computational
environments. Yet none fully address the need for
automated, portable FAIR workflows across federated EO
platforms.

At a high-level, EarthCODE enables scientists to find
and reuse research data, use integrated EO platforms to
develop scientific workflows, and publish them by
automating the “FAIRification” process. In a first stage, the
key EarthCODE stakeholder groups include the activities
contributing to the various ESA Science Clusters, and the
Earth System Science Hub.

2. CHALLENGES

Still, on the path to implementing the vision there are
numerous interlinked, complex challenges that need to be
overcome. The measure—understand—predict—decide—act
cycle in EO critically depends on digital research objects—
data, software, workflows, models, and services—being
FAIR. Despite the growing focus on creating open science
data  catalogues from various institutions, FAIR
implementation remains fragmented.

EO datasets are often cataloged but isolated in system-
specific silos with inconsistent metadata and weak links to
tools and workflows. Tools like PySTAC and stactools help
improve metadata generation, but require platform-specific
adaptations, limiting automation and discoverability.
Although open APIs and cloud services have improved data
accessibility, challenges persist due to inconsistent
authentication, documentation gaps, and unclear licensing.
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Interoperability remains a barrier due to heterogeneous
formats, metadata, and execution environments; even FAIR
components remain incompatible without shared APIs,
containers, or workflow engines. Reusability is limited by
missing provenance, weak documentation, and absent best
practices (semantic versioning, persistent identifiers),
undermining reproducibility.

Despite progress on data accessibility, workflow
metadata still lags; FAIR community standards only
recently converged on machine-readable metadata [10] with
standards for explicit provenance, standard packaging, and
linking code, inputs, and configurations into discoverable,
citable, executable objects.

Implementing Open Science principles in the cloud era
introduces additional technical complexities. Traditional
paradigms assume “one-click” retrieval, but high-resolution
global datasets from cloud-optimized EO platforms are too
large for cost-effective download and separating them from
native infrastructure undermines reproducibility and
reusability.

Moving compute next to data solves this, but requires
orchestration across diverse data infrastructures, each with
unique storage layouts, metadata schemas, access protocols,
and authorization. Additionally, EO workflows are often
tightly coupled to specific data, infrastructure, and execution
environments, limiting reuse and reproducibility. Although
most EO cloud platforms support STAC for data discovery,
their compute interfaces remain highly heterogeneous. This
fragmentation leads to a lock-in effect: code and pipelines
built for one platform often require substantial modification
to function on another’s infrastructure or to be reused,
forcing scientists to repeatedly reengineer workflows rather
than advancing science.

Existing efforts only partially address the problem, for
example, the EOSC provides general FAIR guidance but
lacks EO-specific automation, DestinE delivers powerful
compute yet prioritizes predefined operational models over
open research workflows. The lack of unified FAIR
automation, platform federation, and workflow portability
hinders reproducible Earth System Science.

3. THE EARTHCODE ECOSYSTEM FOR FAIR AND
OPEN SCIENCE

EarthCODE overcomes these challenges by providing
scientists with accessible tools and guidelines to practice
FAIR & Open Science. It promotes coordination among
various EO cloud providers to enable portable and
reproducible science across a federation of platforms by
using open standards. The federated ecosystem of
EarthCODE goes far beyond openness, it strives to be open,
FAIR, and reproducible.

Unlike existing initiatives, EarthCODE targets
automated, cross-platform FAIR workflows via: (1) true
federation across EO platforms with SSO and cross-
execution of workflows; (2) FAIRification automation

during research  (not post-hoc); (3) end-to-end
reproducibility linking data, experiments, and workflows;
and (4) sponsored compute to lower barriers—bridging open
data and reproducible research.

EarthCODE provides a central portal which serves as the
single-entry point for accessing all services. Through the
portal, users engage with a federation of EO cloud platforms
(Fig. 1) which provide standardized capabilities, access to
EO data on the platforms, tools for developing and
executing workflows, automated publication mechanisms to
the EarthCODE catalog, and the ability to run published
experiments, across platforms. ESA provides sponsorship to
computing and storage resources on these platforms via the
Network of Resources (NoR) for eligible projects. Users can
also use their own local environments to access, reuse and
publish to EarthCODE.

The Open Science Catalog (OSC) is EarthCODE's
central platform for publishing, discovering, and accessing
EO data, workflows and documentation. The OSC leverages
open-source geospatial technologies like stac-browser,
pycsw, PySTAC, and OpenLayers and tries to contribute
back to these projects in terms of software and
standardization [6].

Finally, the EarthCODE Discourse forum is a space for
users to openly engage in dialog about Earth Sciences, with
the ability to contact the authors of published results.

4. BUILDING EARTHCODE WITH OPEN-SOURCE

EarthCODE relies on the services provided by already
mature EO Platforms and cloud computing infrastructures
currently on offer on the global EO market. the initial batch
of integrated platforms, EarthCODE has selected the CDSE
openEO federation, Euro Data Cube and DeepESDL
platforms, alongside others selected in 2025 which are not
publicly announced at the time of writing this paper.

Platform providers play a key role in the
EarthCODE ecosystem (Fig. 1) by either providing the
FAIR Open Science environments to create scientific
workflows, discover and reuse data, and publish to the
catalog or by providing integrated infrastructure to run or
reproduce these workflows at scale close to hosted EO data
using the open, standardized metadata describing the
workflows on the OSC.

EarthCODE
Integrated
Platforms

Data Products ~ “That produces— Workflows
A A
FAIR Development
Tools that consist of

are used to create-»

FAIR Infrastructure - Experiments

e -
Data and Processing That can be ran on

Fig. 1. FAIR Tools Platforms for development and
Infrastructure Platforms as execution environments.
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Fig. 3. EarthCODE FAIR Principles

EarthCODE significantly advances FAIRness and
federation across platforms by leveraging open standards
and protocols to improve cross-platform workflow
execution and data reusability. This is a major step
forward—particularly in addressing interoperability, a key
challenge for researchers who are typically familiar with
only one environment and struggle to reuse their work
across others. However, further progress is still needed to
ensure metadata itself meets FAIR standards consistently
across platforms.

In EarthCODE, scientific output data are referred to as
Products and are described in rich STAC medatada. The
STAC metadata is hosted on the OSC, while the data are
hosted either in the ESA Project Results Repository [9]
(PRR) or in external persistent repositories. Each product
includes a link to the dataset representing measured or
derived variables, links to supporting documentation, and
metadata capturing mission provenance, project affiliation,
and thematic classification (Fig. 2). Shared taxonomies and
metadata standards ensure products are findable and
interoperable across platforms and domains.

Crucially, a product in EarthCODE is not an isolated
artifact but is explicitly linked to an Experiment—the
structured execution context that produced it. Experiments
capture human-readable descriptions, machine-executable
workflows, input datasets (referenced with persistent
identifiers), and runtime configurations described as OGC
API - Records. This complete metadata chain enables
reproducibility and transparency, supporting both manual
re-execution and machine-driven automation.

Workflows within EarthCODE are formalized as
executable objects compatible with integrated platforms,
leveraging open standards such as openEO Process Graphs,
OGC API Processes (e.g., CWL, Application Packages).
Platforms are then responsible for ensuring the means of

execution of workflows based on the metadata defined in
the experiment or workflow. Source code may be
referenced, but workflows themselves must be described in
an executable, platform-independent manner to guarantee
cross-platform compatibility.

" Link to Link to Data (on

Config Metadata < \ Documentation PRR or other)
Rich Metadata Described in

OGC API - Records A A

> Themes

Product

< —~

Metadata

Experiment

N
Input Metadata Metadata

> Variables

Rich Metadata Described in T
STAC Collections

Workflow

Metadata » Source Code Projects

> EO Missions

Fig. 2. EarthCODE Metadata Standards

EarthCODE implements FAIR principles for both
workflows [10] and research data [11] by following
community guidelines. In this context, EarthCODE adopts
the broad definition of “research data” inspired by the
Beijing Declaration on Research Data [12], encompassing
not only datasets, but also metadata, software, methods,
algorithms, and related documentation.

4.1. A FAIR Example

To demonstrate how EarthCODE implements FAIR we
walk through an example experiment published in the OSC
and the principles it covers [10], [11] as shown on Fig. 3.
Note that EarthCODE is under development during the
time of writing of this paper. The example below generates
cropland and crop type maps from input Sentinel-1 and
Sentinel-2 data [13]. The experiment metadata of this
example [14] is described as an OGC API Record (F2, I1),
with rich metadata describing its input parameters (F2, 14),
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configuration options (F2, 14, R1.3), and the infrastructures
where it can be executed (F2, I1, 14), in this case, the CDSE
openEO federation. It is further enriched with the
EarthCODE vocabulary (12), e.g., research themes for land.

The experiment links to the corresponding WorldCereal
Workflow [16]. It is an OGC API Record (F2, F3), which
represents versioned OpenEO Process Definition (I1) that
reads specific inputs and configurations (I3). The workflow
also links to the code which is stored on Github (F1.2).
Metadata describes the infrastructure endpoints where it can
be executed and thematic details (R1, I1, 12), in this case,
the CDSE OpenEO Federation. Workflow components,
options for execution environment infrastructure, license
and provenance details are fully recorded (R1.3).

The results from the execution of the experiment are a
data product ([15]) - a STAC Collection (F2, I1) enriched
with EarthCODE taxonomy elements (Themes, Variables,
EO Missions) (I2). It explicitly includes standardized
references to the dataset and its components (F3). Qualified
references to related datasets and workflows are included
(I3), and standardized EO formats (COG/TIFF) ensure
scalable access (Al.l). Licensing and provenance are
recorded using open, standardized practices (R1.1, R1.2),
linking to Sentinel data used for the analysis. All metadata
aligns with community standards widely adopted in Earth
Observation (R1.3) such as STAC.

All metadata including input, configuration, workflows,
experiments and products on the catalog are assigned
persistent, globally unique identifiers (F1, F1.1) and are
indexed and searchable through the Open Science Catalog
(F4), held separately from the data (A2). The catalog
exposes data via open, standardized protocols such as
HTTPS or STAC API (1.1, Al, Al.1, A1.2).

Together, the WorldCereal resources form a fully
FAIR research object chain, where data, infrastructure,
methods, and outputs remain findable (F1-F4), accessible
(A1-A2), interoperable (I1-14), and reusable (R1-R3)
across platforms, infrastructures, and research communities.
This metadata is automatically generated and published via
integrated platforms.

5. CONCLUSION

EarthCODE is developed by implementing three
workstreams, as follows: Infrastructure (WS1), FAIR Open
Science (WS2), and Community Engagement (WS3),
through an open competition under Best Practice
procurement, renewed annually. To ensure long-term
sustainability, EarthCODE is embedded in ESA’s multi-year
FutureEO Programme. In EarthCODE’s operating model
ESA provides governance, reference architecture and
decision making, while platform partners commit to
maintaining open-source platforms and building blocks
under a shared-services agreement. The current phase
focuses on initial platform integration, publication of
experiments and outputs to the Open Science Catalog, and

dissemination of scientific results. Phase 2 will focus on
deeper interoperability using ESA’s EOEPCA+ building
blocks. Science stakeholders directly shape the evolution of
the ecosystem as a FAIR Collaborative and Open
Development Environment for Earth System Science.
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ABSTRACT

To maximize the potential of big geospatial data streams, they
shall be processed on high-performance computing (HPC) in-
frastructure, whereas local code shall be adopted to use this
infrastructure efficiently. This paper presents a non-profit ini-
tiative, GEO-OPEN-HACK, that aims at lowering the tech-
nical barrier for environmental scientists through one-week
hackathons on open-source HPC processing approaches, such
as openEQO, Pangeo, and OEMC. We present the above solu-
tions, hackathon setup, and analysis based on the pre-event
questionnaire about the participants’ big data projects.

Index Terms— Geocomputation, Education, HTC

1. INTRODUCTION

A full exploration of big geospatial data, originating mainly
from open satellite image archives such as those of the Euro-
pean Commission’s Copernicus and the NASA-USGS Land-
sat programmes, requires both high storage and high com-
puting capacity that no longer fit in a local workstation used
for Earth Observation (EO) studies. Thus, studies typically
rely on high-performance computing (HPC), which enables
parallel processing across multiple processors and nodes, to
dramatically accelerate their data processing [6, 5].

HPC also comes with technical complexity in its storage
and computing systems. To address this, several higher-level
open-source engines for geospatial workflows have been in-
troduced recently. For example, openEO masks out code par-
allelization, unifies the interaction with different backends,
and also supports processing user-defined functions [7]. Pan-
geo provides server-side computation via lazy evaluation, re-
lying on Python tools (xarray) to handle multidimensional

This work has received funding from the European Union’s Horizon Eu-
rope research and innovation programme (grant agreement No. 101059548).
We thank also SURF (www.surf.nl) for the support in using the Spider clus-
ter.

datasets and Dask for parallelization [1]. The Open Earth
Monitor Cyberinfrastructure (OEMC) project is another open
initiative that supports existing solutions with additional open
tools and data.

Several hackathons, workshops, and summer schools
feature Geospatial data processing with open tools. Spatial
Ecology is organizing an annual event on geocomputation
and machine learning (ML) for environmental applications.
OpenGeoHub Foundation is also organizing yearly summer
schools on data science for EO. Those events are either on
the introductory or intermediate level, with a primary focus
on building open geospatial workflows. At the last BiDS2023
conference, an openEO and Pangeo tutorial was given, but
rather as a half-day sprint. Thus, there is a need for an event
where intermediate- and advanced-level participants can learn
about different HPC approaches and look at them through the
prism of their use cases.

This paper presents the GEO-OPEN-HACK, a non-profit
initiative focused on transferring knowledge about the ad-
vanced processing of big spatial data using open tools in an
HPC environment. We outline the objectives and setup of
GEO-OPEN-HACK-2024, and provide an overview of HPC
processing with openEO, Pangeo, and OEMC.

2. GEO-OPEN-HACK OBJECTIVES AND SETUP

GEO-OPEN-HACK-2024 was a give-and-take, non-profit
initiative introduced under the OEMC project to: (a) lower
the barrier and transfer knowledge to users dealing with big
geospatial data analytics, i.e., the give part, and (b) foster the
co-creation of open OEMC geospatial data and tools through
user feedback, i.e., the take part. The event took place from
June 24 to 28, 2024, at the International Institute of Applied
Systems Analysis (IIASA) in Laxenburg, Austria. The focus
was on presenting HPC approaches with different levels of
technical complexity so that the participants were enabled
to: (a) judge whether their big data problem is suitable for
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HPC, (b) determine what would be the most appropriate HPC
approach for their big data problem, and (c) process their
data on HPC. This was an advanced-level hackathon, ideal
for early-career researchers, scientists, and professionals who
already had intermediate skills in Linux, bash, Python, and
R. A basic familiarity with geoinformation processing and
EO was also required. This was a one-week event featuring
a keynote speech, a tutorial by teachers, a big-data story by
a teacher, and a hands-on session led by participants on their
own data. Here is the detailed agenda and links material.

The participants worked on three backends. They mostly
worked on the Spider cluster, which is a part of the Dutch na-
tional research infrastructure, SURF. The cluster comprises
42 nodes, providing over 3,000 cores with 8 GB RAM and
80 GB local SSD scratch disk space per core. Furthermore,
Spider offers PB-scale internal storage with CephFS filesys-
tem and network uplink of 1200 Gbit/s. With openEO and
Pangeo, participants also worked with the Copernicus Data
Space Ecosystem (CDSE) and the European Open Science
Cloud (EOSC) backends.

¢ OPEN EARTH
¥ MONITOR

7 T
=

openEQ
\unity platform for Big Data geoscienc Platform

Copernicus

B - Sricce cLoun

Backends

Fig. 1. The GEO-OPEN-HACK-2024 setup with three dif-
ferent HPC processing approaches and three backbends.

3. GEODATA PROCESSING APPROACHES

3.1. Direct Processing on HPC

During the direct processing on HPC, the participants had to
set up an HPC environment for efficient geo-data processing.
This involves organizing a logical folder structure, preparing
outputs, and utilizing submission scripts, such as sbatch, to
efficiently manage tasks . Proper directory and alias setup al-
lows users to monitor jobs, handle errors, and reprocess failed
tasks easily. Bash scripting automates these processes, ensur-
ing repeatability and minimising human error. Raster pro-
cessing, resampling, modelling, and landscape analysis be-
come feasible even for continental-scale studies. Techniques
such as splitting datasets, parallel resampling, and running
GIS commands in batch are essential. Ultimately, such an

HPC setup transforms geospatial analysis from a bottleneck
into a streamlined, robust operation.

3.1.1. GDAL, pktools and GRASS GIS on HPC

In the hands-on session, multiple scripting techniques were
introduced using GDAL, pktools, and GRASS. These tools
provided fast, flexible, and scalable features and functions
for raster-based analysis with a Bash command environment.
Moreover, parallelization is accomplished by dividing a large
geospatial dataset into regular tiles, conducting the operation
on each tile with a dedicated CPU, and finally mosaicing them
back to the original extent. A concise overview and descrip-
tion of the script used in the hackathon for the above steps are
given on the BASH tutorial and the GRASS tutorial pages.

3.1.2. pyjeo and HPC

pyjeo is an open source library for geospatial image pro-
cessing in Python [4]. It has been implemented in the Joint
Research Centre of the European Commission and is dis-
tributed under the GPLv3 license. The design of pyjeo is
based on a C/C++ implementation with Python bindings that
are made available through the Simplified Wrapper and Inter-
face Generator (SWIG [2]). Parallel processing is supported
via multithreading using the OpenMP API in C/C++. Addi-
tionally, high-throughput computing can be achieved through
a tiling mechanism when combined with a job scheduler. Un-
like other libraries such as Dask, the tile-based orchestration,
including the merging step, is not automated and is not part
of the pyjeo library. It also relies on a job scheduler such
as HTCondor to launch the individual jobs that process the
different tiles. In [3], the authors show different strategies
using pyjeo for the parallel processing of geospatial data in a
cloud computing infrastructure.

3.2. Pangeo Approach

The Pangeo ecosystem provides an open-source, cloud-,
and HPC-ready platform for scalable geoscientific and cli-
mate data analysis. Built on modern Python tools such as
xarray, Dask, and Zarr, Pangeo facilitates the analysis of
multi-dimensional datasets that exceed in-memory capacity.
Within the GEO-OPEN-HACK event, Pangeo was introduced
as a framework that supports interactive, scalable work-
flows, embodying FAIR (Findable, Accessible, Interoperable,
Reusable) and reproducible science principles.

Pangeo involves lazy evaluation and parallel execution us-
ing Dask. This allows users to work efficiently with large
volumes of data stored in cloud-optimized formats (COG and
Zarr). Participants engaged in hands-on workflows imple-
mented in Jupyter notebooks deployed on Dask clusters, ex-
ploring essential EO data processing tasks including subset-
ting, aggregation, statistical analysis, and visualization.
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Two Pangeo deployment setups were demonstrated:
one on EOSC and another on the Spider cluster. The lat-
ter leveraged Apptainer containers and the hpc-container-
wrapper framework to execute Pangeo environments effi-
ciently on SLURM. Developed in collaboration with SURF
and the Netherlands eScience Center, the Spider deployment
built upon open scripts and documentation contributed by
Francesco Nattino, Meiert W. Grootes, and Ou Ku. Partic-
ipants were instructed on launching JupyterLab with Dask
via SLURM job scripts and accessing remote sessions using
SSH tunneling. For users lacking container access, alter-
native solutions using micromamba, jupyter-forward, and
dask-jobqueue were also demonstrated.

Both deployments emphasized the paradigm shift from
downloading data locally to executing code where the data
resides—Ileveraging public S3 buckets and open SpatioTem-
poral Asset Catalogs (STAC) for direct data access. This ap-
proach was particularly beneficial for participants constrained
by limited local computational resources. The event further
highlighted containerized reproducibility through the use of
Docker and Binder, enabling the creation and sharing of fully
executable environments.

3.3. openEO Approach

openEO is an open-source framework that standardizes and
streamlines the access, processing, and analysis of EO data
across heterogeneous backends. Traditional EO workflows
often involve time-consuming steps, including data discovery,
download, and platform-specific pre-processing. This poses
challenges in scalability and interoperability, especially when
integrating multiple data sources. openEO addresses these
limitations by defining a unified API that abstracts the un-
derlying data infrastructures and exposes consistent function-
ality through client libraries in various languages, including
Python, R, and JavaScript.

During the hackathon, we showcased the capabilities and
usability of the openEO framework. Our demonstration used
the openEO Python client within Jupyter notebooks to con-
nect to the CDSE backend. Participants were guided through
essential steps, including library import, authentication, and
backend connection. Limited memory on the CDSE Hub
caused occasional kernel crashes, which were mitigated by
reducing data size. Additionally, we introduced the concept
of datacubes, a central feature of openEO that structures EO
data in a spatiotemporal grid. This model enables server-side
declarative processing, significantly streamlining complex
analyses and enhancing reproducibility and cross-platform
integration in EO applications.

3.4. OEMC Approach

OEMC software and data products were also presented at the
hackathon to gather user feedback and foster co-development.

3.4.1. GlobalPointTools

GlobalEarthPoint is an open-source software library for ac-
cessing large geospatial point datasets stored in cloud envi-
ronments such as S3. Python and R bindings enable efficient
(interactive) queries and downloads of data stored in cloud-
optimized formats (e.g., partitioned GeoParquet). The soft-
ware supports lazy evaluation for high-performance data re-
trieval through technologies like Apache Arrow and Polars.

3.4.2. OEMC ML Deployment and Central app

Besides organizing and enhancing the accessibility of ex-
isting EO and in-situ data, the OEMC project is producing
European-wide [5] and global datasets [6] at a 30-m spatial
resolution, tailored to meet the needs of the use cases. The
production of these datasets is running via an ML pipeline
deployed in an in-house HPC/HTC infrastructure hosted
by OpenGeoHub Foundation. With more than 1,000 CPU
threads across 14 high-density nodes and 3 Petabytes of stor-
age space, the infrastructure runs a suite of open source so-
lutions, including SeaweedF'S as object storage, SLURM as
workload manager, and Docker as containers manager. The
ML algorithms/methods rely on scikit—learn and utilize
spatiotemporal overlay and predictions via scikit-map.
Feature selection, hyperparameter tuning and the training of
the final ML models run in a single node (96 CPU threads
and 1 TB of RAM), while the prediction/inference of billions
of 30-m pixels run in SLURM, where each chunk of input data
(ex. 4000x4000 pixels) is assigned to an processing node by
an embarrassing parallel strategy. Predictions of tree-based
models were sped up by compiled models based on t 12cgen
and 1leaves libraries. The OEMC ML Deployment proved
to be reliable in a production environment once all layers,
produced in the context of the project, are publicly available
as open data (CC-BY) at OEMC Central App, OpenLandMap
STAC, EcoDataCube STAC, and Zenodo.

4. RESULTS

4.1. Hackathon Participants

The hackathon had 20 on-site and 21 online participants from
17 countries, with the majority coming from Europe. Most
of them were PhD students (46%), followed by early-career
researchers (25%), and postdoctoral researchers (18%); the
rest comprised master’s students, professors, and employees
from the private sector. Most of them consider themselves
ecologists or environmentalists, but there were also remote
sensing scientists, geographers, hydrologists, and economists
(Fig. 2).

The questionnaire also revealed that every fourth partic-
ipant had prior experience with HPC processing. Neverthe-
less, most of them have also been using open-source tools and
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Fig. 2. The expertise of the hackathon participants.

Python modules, such as GDAL, Rasterio, NumPy, Geopan-
das, QGIS, GRASS, PyTorch, PKTools, Pandas, and Scikit-
learn.

4.2. Perception of Big Data

Almost half of the participants (46%) work with geospatial
datasets that are stored both online and locally, whereas the
rest of the participants work only with data stored online
(28%) or only with data stored locally (26%). Their locally
stored data are primarily in the 10-100 GB range, whereas
only about 15% work with locally stored data on a TB scale
(Fig. 3). Furthermore, the data were mainly related to the
following topics: land monitoring (20%), hydrology (16%),
agriculture (14%), vegetation (11%), although topics such as
hazards, economics, climate, soil, urban, health, and biodi-
versity were also covered.

3TB
1GB
50 GB
20 GB
100 GB
10 GB
NA
2TB
10TB
8TB
200 GB
300 GB
1TB

Fig. 3. What is the size of your local geospatial dataset that
you work with?

S. DISCUSSION AND CONCLUSIONS

Despite the capabilities of the HPC approaches, participants
encountered challenges related to environment configuration,
Dask performance tuning, and conceptual adaptation from se-
rial to parallel processing. These insights underscore the im-
portance of streamlined deployment practices and enhanced
training resources in lowering entry barriers and fostering the
broader adoption of scalable open science workflows.

The pre-hackathon questionnaire, completed by partici-
pants, revealed several interesting insights. The participant
structure showed that the hackathon primarily attracted re-
searchers and PhD students, with a notably small number of
participants from the private sector. However, the geospatial
industry and academia should collaborate more, as open-
source projects can benefit more from such partnerships.
Thus, the next hackathons should focus more on engaging
with industry.

The local data volumes typically processed by the par-
ticipants were 10 TB or smaller. Such data can be readily
handled with HPC, suggesting that the barrier is rather in ad-
justing code for efficient HPC processing. Therefore, present-
ing and interacting with different HPC processing approaches
and backends is fully justified and shall remain the focus for
future hackathons.

Finally, it is worth noting that, in addition to a one-time
budget allocated by ITASA and the OEMC project for orga-
nizing GEO-OPEN-HACK-2024, the event received signifi-
cant support from the community, including teachers and or-
ganizations such as SURF, Spatial Ecology, and OGH. Nev-
ertheless, it is essential to secure future funding sources to
ensure its long-term sustainability.

REFERENCES

[1] Abernathey, R. P., Augspurger, T., and et al. (2021).
Cloud-native repositories for big scientific data. Comput-
ing in Science Engineering, 23(2):26-35.

[2] Beazley, D. (2003). Automated scientific software script-
ing with swig. Future Generation Computer Systems,
19(5):599-6009.

[3] Kempeneers, P., Kliment, T., and et al. (2022). Parallel
processing strategies for geospatial data in a cloud com-
puting infrastructure. Remote Sensing, 14(2).

[4] Kempeneers, P, Pesek, O., and et al. (2019). pyjeo:
A python package for the analysis of geospatial data.
ISPRS International Journal of Geo-Information, 8(10).
10.3390/ijgi8100461.

[5] Minarik, R., Hengl, T., and et al. (2024). Soil type (world
reference base) map of europe based on ensemble machine
learning and multiscale eo data. researchsquare. Submited
to PeerJ. 10.21203/rs.3.1s-5244083/v1.

[6] Parente, L., Sloat, L., and et al. (2024). Annual 30-m
maps of global grassland class and extent (2000-2022)
based on spatiotemporal machine learning. Scientific data,
11(1):1-22.

[7] Schramm, M., Pebesma, E., and et al. (2021). The ope-
neo api-harmonising the use of earth observation cloud
services using virtual data cube functionalities. Remote
Sensing, 13(6).

Proc. of the 2025 conference on 84
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Data Infrastructures & Services at Scale

RETRIEVE, TRANSFORM, DELIVER: INTEGRATING PRESERVATION AND
PERFORMANCE IN THE EUMETSAT DATA LAKE
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ABSTRACT

This paper presents the EUMETSAT Data Lake’s (EDL)
ongoing evolution and planned integration with the Long-
Term Archive (LTA) to establish a sustainable, user-centric
data access model. From the perspective of the EDL and its
user-facing components—the Data Store and Data Tailor—
we describe how this integration will enable a fluid retrieve-
transform-deliver paradigm designed to optimise access,
customisation, and delivery of Earth observation data. The
system is being designed to address diverse user scenarios
while reducing operational overhead by supporting dynamic
workflows, such as on-demand generation of virtual Zarr
datasets tailored to different performance or analysis needs.
This evolution aims to provide a more efficient and scalable
infrastructure for data access, reuse, and long-term
preservation, while also strengthening business continuity
through improved resilience and recovery capabilities.

Index Terms— Data Preservation, Data Lake, Cloud
Integration, Multi-tier Storage, Data Repatriation, Data
Customisation, Unified Data Access, Earth Observation

Data

1. INTRODUCTION

Earth observation plays a central role in supporting the
European Green Deal, UN Sustainable Development Goals,
and climate resilience strategies. The transformation of the
EUMETSAT Data Lake contributes to these societal
priorities by enabling faster, more reliable, and energy-
efficient access to data essential for environmental
monitoring and decision-making.

EUMETSAT provides essential Earth observation data
for weather forecasting, climate monitoring, and
environmental studies. The EUMETSAT Data Lake serves
as the ingestion, indexing, and access hub for this data. It is
complemented by the Data Store [1][2], which acts as the
user interface and API access point, and by the Data Tailor
[3][10], which enables product transformation and
customisation. Together, these services support a rapidly
growing and increasingly cloud-native user base.

EUMETSAT

& | &

Data Providers

Data Store EDL

Data Tailor

FIGURE 1 - components

Historically, data access and preservation have been
handled by separate systems. The legacy UMARF (Unified
EUMETSAT Meteorological Archive and Retrieval
Facility) [4][5] system relies on tape-based storage, which is
optimised for long-term preservation but cannot meet the
performance demands of modern usage. Through the Long-
Term Data Preservation & Access Management Evolution
(LTDPA) initiative, the EDL will integrate with the new
Long-Term Archive (LTA), leveraging it as a cost-efficient
deep storage tier while enabling seamless data repatriation.

The LTDPA vision is

Efficient and affordable management of and access to
large volume of satellite data with an appropriate Quality of
Service (QoS)

and is driven by increasing data volumes, rising storage
costs, and the need to support on-demand, customised data
access workflows. The EDL will evolve to tackle these
challenges by adopting a modular and incremental design,
accommodating real-world workflows, and facilitating faster
iteration cycles.

This vision reinforces the need to integrate the
transformation layer more closely within the Data Lake
architecture, not merely as a supporting tool but as a core
capability. By doing so, EUMETSAT will be able to serve a
broader range of use cases while maintaining sustainability,
reliability, efficiency, and user flexibility.
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2. OBJECTIVES AND MOTIVATION

As part of the LTDPA project, the EDL is undergoing a
transformation to become a more intelligent, sustainable,
and user-centric data access infrastructure, driven by several
interrelated factors:

e Exponential Growth in Data Volumes:
EUMETSAT currently manages over ten Petabytes
of data, supporting many different formats. With
upcoming missions such as Meteosat Third
Generation, Metop Second Generation or
Copernicus (Sentinels, CO2M, etc.), data volumes
are expected to grow exponentially. This growth
challenges current storage and access paradigms.

e Diversifying User Expectations: Users
increasingly require cloud-native solutions, on-
demand access, and integration with modern
analysis tools. Emerging formats like Zarr [6][7]
are designed for scalable, partial access but require
flexible chunking strategies that depend on the
user’s intended analysis workflow.

e Limitations of Legacy Approaches: Maintaining
multiple pre-processed versions of the same dataset
to support different use cases is no longer feasible.
It leads to high storage costs and conflicts with
long-term preservation strategies.

e Strong Need for Enhanced Business Continuity:
Ensuring that critical business functions relying on
data access systems can continue without
interruption in the face of unexpected events—such
as system failures, cyberattacks, or data
corruption—is essential to maintaining customer
trust and operational resilience.

EUMETSAT is developing a new approach to optimise
data access and meet these challenges. This approach will
retrieve products from the most appropriate source (online
or archival tiers), apply transformations as needed (e.g.,
subsetting, reformatting, reprojection), and deliver the
results through a secure and manageable interface.

Integrating the Data Tailor as a native transformation
layer within EDL, along with technologies like VirtualZarr
and Kerchunk, will enable the on-the-fly generation of
virtual data representations tailored to diverse access
patterns. This approach will support performance,
flexibility, and sustainability without increasing physical
storage demands.

Ultimately, the LTDPA project will support:
e Innovation in data access workflows by replacing

pre-generated products with dynamic, on-demand
virtual datasets.

e Arreduction in infrastructure duplication, leading to
a more scalable and sustainable model compared to
conventional satellite data distribution strategies.

e Unified access across all EUMETSAT datasets
(online and archived)

e  Sustainable cost models through tiered storage

e Improved usability through customisable outputs
and cloud integration

e A more adaptable architecture that evolves with
user needs and technology trends

e A more flexible approach to data management for
business continuity.

3. METHODOLOGY

The cornerstone of the new paradigm for big dataset
retrieval is a

retrieve — [transform] — deliver
workflow:

e Retrieve: Data will be sourced from the optimal
tier, including online EDL storage or repatriated
from LTA.

e Transform: If requested, data can be processed via
the integrated Data  Tailor, enabling
transformations such as reprojection, reformatting,
and subsetting. By using a plugin architecture, we
will be able to integrate other transformation
frameworks that will be available in the future.

e Deliver: The final product will be placed in a target
location, with smart retention and quota control.
Initially, the Data Store will manage this location
and implement it as a standard S3-compatible
bucket. However, the concept will be expanded to
support delivery to alternative endpoints—such as
user-provided storage in the European Weather
Cloud, Destination Earth Data Bridges, or other
controlled environments—allowing users to access
data close to their computational resources.
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This model will support advanced use cases such as the
on-demand generation of virtual Zarr datasets. Since there is
no one-size-fits-all strategy for chunking in Zarr, the ability
to create tailored virtual cubes per request will be a powerful
capability. Different chunking strategies will be applied
dynamically, based on the user’s intended access patterns
(e.g. time-series analysis vs. spatial browsing), improving
performance and usability in AI/ML and cloud-native
workflows [6][7][8].

Additional strategic enhancements will include:

e A multi-tier storage model, with flexible movement
between caching, online, and glacier tiers.

e Predictive queuing to evaluate job impacts and auto-
approve low-impact user requests.

e Fast delivery to external cloud environments,
supporting efficient data offloading and processing.
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4. RESULTS AND EXPECTED BENEFITS

This  architecture  also  reinforces = EUMETSAT’s
commitment to FAIR data principles, ensuring that satellite

data is Findable, Accessible, Interoperable, and Reusable.
The use of open protocols and standards—such as Zarr,
Kerchunk, and fsspec—facilitates integration with existing
scientific tools and promotes open science.

A reliable data access service must go beyond simply
making data available—it must ensure operational integrity
and reliability, equitable access, and adaptability to diverse
user needs. Several key principles guide our architectural
and operational decisions:

e Sustainability: EUMETSAT must continuously
balance data access performance with the cost of
storage. This requires selecting between fast but
costly tiers and more economical archival layers
based on actual usage patterns.

e Reliability: Users rely on consistent service
delivery. The system must be resilient to failures
and designed for business continuity, particularly
for critical operational and scientific use cases.

e Quality of Service (QoS): To prevent resource
exhaustion, we enforce quotas and implement
scheduling to ensure fair usage. This prevents a
small subset of users from monopolising shared
infrastructure.

e Authentication: Identifying the user allows for
tiered service options. Without authentication,
providing differentiated service levels or usage
controls is impossible.

e Authorisation: Some data (e.g., Level 0 or
restricted mission datasets) is not publicly
available. Authorisation policies ensure that only
eligible users can access these products following
licensing or policy constraints.

e Data Analytics: Collecting usage patterns helps
identify popular datasets and access methods. This
data-driven approach informs resource planning,
caching strategies, and the development of new
features.

e Virtualisation of the Data Endpoint: Abstracting
the physical location of the data allows us to move,
replicate, or transform data behind the scenes
without impacting the user. This decoupling is
fundamental to supporting architectural evolution.

e Integration with Standard Libraries: Scientific
and operational communities use established tools
and workflows. Supporting libraries like fsspec [9]
—a Python abstraction layer for filesystem-like
access to remote data—enables users to access our
services as if the data were local, without
modifying their applications.

For these reasons, simply placing data in an S3 bucket
with anonymous access is not sufficient. While this
approach may suit simple file distribution, it falls short in
delivering critical capabilities such as service monitoring,
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access controls, transformation, observability, and long-term
sustainability. EUMETSAT’s approach, in contrast,
provides a managed, intelligent, and user-aware access
platform that aligns with the principles of FAIR data and
ensures service continuity across missions and decades.

The EDL-centric approach will deliver:

o Unified access through a single interface for all
data types, with streamlined workflows.

e Rapid delivery of customized datasets, reducing
overhead and time-to-access.

e Efficient repatriation from LTA to support
reprocessing campaigns, gap-filling, and user-
driven data exploration.

e Cost savings through smarter tiering and
reduced duplication.

o Flexibility to generate optimised data structures
(e.g. Zarr cubes) tailored to each use case.

5. CONCLUSIONS AND FUTURE WORK

EDL enables a more scalable and sustainable data
ecosystem by shifting from siloed services to an integrated,
workflow-centric approach. The retrieve-transform-deliver
paradigm supports current user needs while laying the
foundation for future innovations in cloud-native data
access, including dynamic data structuring and Al-ready
workflows.

The project is planned to last three years. We are
currently in 'phase 0', which focuses on careful requirements
gathering and high-level system design. The implementation
will be structured around three major iterations, each
concluding with a Minimum Viable Product (MVP) that
provides incremental functionality, allowing early feedback
and progressive system refinement.

Future directions include:

e Extending transformation capabilities to cover
more advanced use cases.

e Refining Zarr optimisation logic based on user
behaviour and analytics.

e Enhancing observability and automation in the
queuing and delivery pipeline.

e Delivering an FS-spec library for direct access to
online data

e Preparing a clear data management approach to
ensure the system meets operational and user
requirements
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ABSTRACT

The GNSS Science Support Centre (GSSC) is the European
Space Agency’s (ESA) platform dedicated to Global
Navigation Satellite Systems (GNSS) data exploitation. As
part of it, GSSC Now provides centralized, cloud-native
access to a rich repository of GNSS datasets, including
observations from ESA missions, ground networks and third-
party sources to form the ESA International GNSS Service
(IGS) Global Data Centre. This platform also integrates data
discovery, visualization and analysis capabilities, enabling
scientists to work directly with GNSS data without the need
to download or configure local tools. Through a suite of
browser-based Datalabs, users can launch scientific
applications on demand and perform advanced analysis in
environments such as JupyterLab or Octave. This paper
introduces the GSSC Now platform, highlights its
architecture and data lake design, and presents practical
examples of how users are engaging in GNSS science with
unprecedented efficiency.

Index Terms— GNSS, open science, big data, cloud
computing, scientific exploitation

1. INTRODUCTION

Global Navigation Satellite Systems (GNSS) form a
cornerstone of modern geospatial science. Their ability to
provide precise positioning, timing, and velocity (PVT)
services has enabled a wide array of scientific and operational
applications across domains such as geodesy, space weather,
seismology, atmospheric science, and environmental
monitoring. Researchers use GNSS data to track crustal
deformation, estimate tropospheric water vapour, study
ionospheric irregularities, and support real-time responses to
natural hazards.

Over the past decade, the volume, diversity, and scientific
relevance of GNSS data have grown significantly. This
expansion has been driven not only by the increasing number
of satellites and ground stations, but also by the integration of
GNSS sensors into spaceborne platforms and mass-market
devices. However, this growth has also introduced technical
and organizational challenges. Data has historically been

spread across a fragmented landscape of archives, often using
non-standardized formats and metadata, limited in
discoverability, and lacking tools for efficient analysis.

In response to these limitations, the European Space Agency
(ESA) established the GNSS Science Support Centre
(GSSC), through its Navigation Directorate and the European
GNSS Evolution Programme. The GSSC aims to enhance
and streamline the scientific use of GNSS data by providing
a platform that supports data centralization, access,
processing, visualization and analysis under a unified
framework. Located at ESA’s European Space Astronomy
Centre (ESAC), the GSSC is a key component of ESA’s
digital transformation strategy, bringing together data, tools,
and users in a modern, scalable environment designed to
foster open science and innovation in the GNSS domain.

2. GSSC NOW: ENABLING OPEN GNSS SCIENCE

The GSSC constitutes ESA’s strategic initiative to enable and
enhance scientific research through the exploitation of GNSS
data. Conceived as a thematic exploitation platform, the
GSSC is designed to bridge the gap between vast GNSS data
archives and the research community’s ability to derive
actionable insights from them. Its mission extends beyond
simple data access, focusing instead on creating an open,
integrated environment that supports the entire research
lifecycle — from data discovery and pre-processing to
advanced analysis, modelling, and visualization.

The GSSC provides access to a wide spectrum of GNSS-
related data products. These range from Level-0 raw
observables captured by ground and space-based receivers to
higher-level data such as zenith tropospheric delay (ZTD),
total electron content (TEC) maps, orbit and clock products,
and differential code biases (DCB). These datasets are made
accessible through an infrastructure that ensures
responsiveness, scalability, and long-term data preservation.

At the heart of this ecosystem is GSSC Now, the interface of
the platform that operates ESA’s vision of open and
reproducible science. GSSC Now combines a powerful
metadata-driven search engine, RESTful APIs for automated
data interaction, and a suite of user-facing services including
graphical explorers, programmatic interfaces, and browser-
executed scientific tools. This allows users to interact with
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massive data archives without the need to download files or
set up local processing environments.

GSSC Now also embraces the FAIR principles (Findable,
Accessible, Interoperable, and Reusable), ensuring that
GNSS data is not only available but also structured and
documented in a way that facilitates discovery and reuse
across scientific domains. Through standardized formats,
persistent identifiers, and harmonized metadata schemas
aligned with ISO and INSPIRE standards, GSSC Now
provides a robust foundation for multi-disciplinary research.

Crucially, the platform supports not only traditional GNSS
science such as geodesy or navigation, but also emerging
domains including space weather, environmental monitoring,
urban mobility, and even space science and fundamental
physics. By enabling cross-correlation of GNSS signals with
atmospheric, seismic, and geomagnetic phenomena, GSSC
Now transforms GNSS data into a powerful sensor network
for Earth and space system science.

In summary, GSSC Now stands as a catalyst for data-driven
innovation, lowering the barriers to entry for scientific users,
enabling collaboration across domains and institutions, and
accelerating the translation and combination of raw GNSS
data into meaningful scientific outcomes.

3. THE GSSC ARCHIVE AND DATA LAKE

At the core of the GNSS Science Support Centre lies its
federated data archive and integrated data lake infrastructure
— a foundational component that enables reliable, high-
throughput access to diverse GNSS datasets. Designed for
long-term preservation, rapid indexing, and on-demand
availability, the GSSC archive adopts a multi-tiered
architecture that blends scalability with scientific rigor.

The GSSC archive ingests and harmonizes data from both
spaceborne and terrestrial sources, providing access to over
300 million individual data assets. These resources include:

e Observation Data: Daily and hourly RINEX-
formatted observations from globally distributed
ground-based GNSS receivers. These data form the
backbone of positioning and geodetic studies,
enabling the reconstruction of precise orbits and
atmospheric states.

e Navigation Data: Key satellite broadcast products
such as ephemerides, precise orbit and clock
solutions, DCB files, and ionospheric corrections.
These elements are indispensable for high-accuracy
applications like real-time kinematic (RTK)
positioning and PPP (Precise Point Positioning).

e Atmospheric Products: Derived datasets that
provide critical insight into atmospheric variability,
including ZTD, Slant Total Delay (STD), Integrated
Water Vapor (IWV), and global/regional TEC maps.

e Space Segment Data: Onboard telemetry from
GNSS receivers aboard ESA’s Earth Observation

and scientific satellites — such as Galileo, Sentinel,
MetOp, SWARM, GOCE, and ICESAT —
offering unique opportunities for space-based
geodetic and ionospheric science.

To ensure discoverability and standardization, all resources
are enriched with semantic metadata aligned to INSPIRE and
ISO 19115 specifications. Each entry includes provenance,
spatial and temporal granularity, processing level,
sensor/platform information, and licensing constraints. These
metadata elements allow for high-performance faceted search
and data federation across research infrastructures.

The ingestion process itself is automated and modular.
Pipelines constantly monitor and pull updates from trusted
sources such as the IGS, BKG, CDDIS, IGN, ILRS, and ESA
internal systems. Upon ingestion, each dataset is validated for
integrity, assigned to a Resource Class (e.g., Observation,
Product, Document), and catalogued within GSSC's indexing
engine based on defined Science Domains — Positioning and
Navigation, Geodesy, lonosphere and Magnetosphere, and
Troposphere.

GSSC also enforces use of community-standard formats,
including:
o INEX 2/3/4 for raw GNSS observables,
e SP3 for satellite ephemerides,
e  SINEX-BIAS for inter-frequency bias estimation,
e IONEX for ionospheric TEC maps.

This ensures interoperability with external GNSS
processing frameworks like RTKLIB, Bernese, GIPSY, and
ESA’s own gLAB. The adherence to these standards also
facilitates integration with federated infrastructures and
European initiatives promoting FAIR and open-access data.
A significant innovation introduced by GSSC Now is its
interactive, map-based search interface. Unlike
conventional FTP or static directory structures, the GSSC
Explorer allows users to query datasets based on multiple
attributes, including:

e geographic bounding boxes or station locations,

e time ranges (e.g., storm periods, mission phases),

e GNSS constellations (GPS, Galileo, BeiDou,
GLONASS),

e observation parameters (sampling rate, signal type,
frequency),

e data quality indicators and completeness.

This interface not only accelerates data discovery but also
enhances user experience, especially for multi-disciplinary
researchers unfamiliar with the intricacies of GNSS data
hierarchies.

In essence, the GSSC archive and data lake serve as the
digital substrate upon which advanced GNSS scientific
analysis is built. By consolidating heterogeneous data
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sources, embedding metadata intelligence, and supporting
scalable access models, ESA has laid the groundwork for a
next-generation GNSS research environment that is as
powerful as it is accessible

4. ARCHITECTURE AND DESIGN

GSSC Now is architected as a modular, cloud-native platform
built on containerized microservices and orchestrated through
Kubernetes. This design enables independent deployment,
maintenance, and scaling of core services, ensuring
operational resilience and flexibility in accommodating
diverse scientific workflows.

The system is structured around three primary functional
layers:

e Data Lake Services, responsible for the ingestion,
storage, and classification of GNSS data. Ingested
resources are validated and enriched with metadata,
which is indexed for efficient discovery using
Elasticsearch. The storage architecture combines
high-performance local caching with scalable object
storage to support both frequent access and long-
term preservation.

e Core Engine, which coordinates processing and
workflow execution. It enables users to launch
analysis environments, = manage  personal
workspaces, and run data-driven applications
through GSSC Now’s processing framework. This
includes integration with ESA Datalabs, providing
browser-based access to environments like
JupyterLab and Octave.

e User Services, encompassing both graphical and
programmatic interfaces. The GSSC Now Explorer
offers faceted search and map-based navigation for
dataset discovery. RESTful APIs and command-line
tools provide automation options for advanced
users, while session and identity management are
handled via ESA's Single Sign-On (SSO) and secure
JWT-based access control.

Together, these components deliver a flexible and secure
platform that supports real-time interaction with GNSS data,
facilitates the development of custom applications, and
ensures that both new and experienced users can work
seamlessly across visual and scripted interfaces.

5. BROWSER-BASED SCIENTIFIC COMPUTING

One of the most transformative features of GSSC Now is the
integration of browser-based scientific computing through its
Datalabs system. This capability fundamentally changes
how researchers interact with GNSS data by eliminating the
need for local software installations or high-performance
computing resources. Instead, scientists can launch analytical

environments directly from their web browser, bringing
computation closer to the data.

GSSC Now Datalabs are based on containerized execution
environments, managed within ESA’s secure cloud
infrastructure. These containers are deployed on demand and
pre-configured with widely used scientific tools. Among the
default options available are:

e JupyterLab, a  powerful notebook-based
environment for interactive computing in Python,
widely adopted for data science, machine learning,
and visualization.

e Octave, a numerical computation tool
compatibility for MATLAB scripts.

o gL AB, ESA’s GNSS-Lab tool capable of full GNSS
processing, from raw RINEX files to precise
positioning results.

with

These environments are tailored to GNSS applications, and
the catalogue is constantly evolving. In addition to generic
tools, users have access to mission-specific and thematic
notebooks, custom scripts, and pre-integrated libraries for
tasks such as signal quality assessment, ionospheric analysis,
or satellite orbit reconstruction.

Once a Datalab is launched, it has access to:
e the full GSSC data lake via mounted volumes,
e persistent user storage to retain intermediate
results and notebooks across sessions,
e and optionally, GPU resources for acceleration of
machine learning workloads or large-scale
simulations.

The workflow is designed to be seamless and efficient. After
logging in through ESA’s SSO system, users can:
1. Search and filter data through the Explorer interface.
2. Select a dataset of interest.
3. Launch a Datalab with a single click.
4. Begin analysis immediately — no need to download
data, set environment variables, or manage
dependencies.

This model, in which computation is brought to the data,
aligns with ESA’s broader ESA Datalabs strategy and
supports the FAIR and Open Science principles by enabling
fast prototyping, reproducibility, and sharing of research
workflows. Notebooks can be exported or shared via
persistent URLs, supporting collaboration within the
scientific community.

GSSC Datalabs represent more than just tools — they are
scientific workspaces designed to accelerate research, lower
the technological barrier to entry, and empower users to
explore complex GNSS datasets without friction.
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6. USE CASES: ADVANCED ANALYTICS AND
MACHINE LEARNING

GSSC Now supports advanced analytics through Datalabs
designed for Machine Learning (ML), citizen science, and
Internet of Things (IoT)-based applications. In the ML-Lab,
users can develop models directly in-browser using libraries
like TensorFlow and scikit-learn. Typical use cases include
anomaly detection in GNSS signals and prediction of
atmospheric parameters such as ZTD, using GNSS and
meteorological data as input.

The platform also supports large-scale participatory science.
The CAMALIOT initiative, for example, enabled collection
of over 50 million GNSS observations from smartphones
during a six-month campaign. These data were processed
within GSSC for ML-based forecasting of tropospheric and
ionospheric conditions and are accessible through dedicated
Datalabs.

In parallel, projects like UbiSAP illustrate the integration of
low-cost IoT GNSS sensors with GSSC workflows. Using
RTK  techniques, researchers  monitor  structural
displacements and landslides near critical infrastructure, with
analysis and visualization performed entirely within the
platform.

These examples highlight how GSSC not only enables
scientific research but also extends GNSS data exploitation to
public engagement and operational monitoring contexts. In
this sense, the modular design and usability of GSSC Now —
particularly through the Datalabs environment — provide an
effective framework that can accommodate both domain
experts and newcomers. The integration of scalable
infrastructure and open data sources further aligns the
platform with broader strategic objectives. While the cases of
CAMALIOT and UbiSAP already illustrate community
participation and operational relevance, documenting
additional evidence of real-world adoption and uptake would
further strengthen the demonstration of impact and the long-
term sustainability of the approach.

7. CONCLUSIONS, LESSONS LEARNED AND
FUTURE WORK

GSSC Now has established itself as a key enabler of open,
data-driven science in the field of GNSS. By integrating high-
quality datasets, scalable cloud infrastructure, and accessible
tools into a unified platform, it addresses long-standing
challenges around data accessibility, reproducibility, and
usability. Researchers from diverse domains — including
geodesy, ionospheric physics, meteorology, and education —
can now explore, process, and share GNSS data efficiently
and collaboratively.

Its open and modular architecture supports both expert users
developing advanced processing pipelines, and newcomers

engaging in exploratory analysis through user-friendly
Datalabs. The platform exemplifies ESA’s broader strategy
for digital transformation and scientific innovation.

Throughout the development and deployment of GSSC Now,
several lessons have been learned that can be of value to the
broader Earth Observation (EO) community. Firstly, the
adoption of community standards (RINEX 2/3/4, SP3,
SINEX-BIAS, IONEX, ISO 19115, INSPIRE metadata) has
proven essential to ensure interoperability with external
infrastructures and tools (e.g. RTKLIB, Bernese, GIPSY,
ESA gL AB). This approach has significantly reduced barriers
for integration and collaboration across different research
groups.

Another key lesson is the importance of bringing
computation to the data through browser-based
environments (JupyterLab, Octave, gLAB). This paradigm
has  accelerated  scientific ~ workflows,  promoted
reproducibility, and simplified onboarding of new users.

Looking ahead, GSSC Now will continue to evolve through
several key developments:

e Performance improvements and stability of the
GSSC Now platform

e Interoperability with other space geodetic
techniques data platforms (e.g. Very Long Baseband
Interference)

e Expanded APIs for integration with institutional
workflows (e.g. in the context of the ESA Genesis
mission)

e Educational Content to support universities and
training programmes in GNSS science.

By adhering to the FAIR principles and contributing to
ESA’s Digital Twin Earth and Open Science Cloud
initiatives, GSSC is building the foundation for a new
generation of scientific discovery — one in which GNSS data
plays a central role in understanding and monitoring the
Earth.
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ABSTRACT

Web Map Tile Service (WMTS) is a fundamental compo-
nent of a digital infrastructure for visualizing geospatial big
data, supporting many applications across various domains.
Despite their ubiquity and long-standing use, systematic and
dedicated benchmarks are currently lacking. Practitioners
will highly benefit from such a framework since it provides
clear guidance on assessing the performance, scalability, and
advantages of WMTS implementations under varying con-
ditions, especially in data-intensive contexts such as those
demanded by modern Al applications. This work proposes
a framework to study which aspects a WMTS benchmark
should consider. By empirically evaluating custom and open-
source WMTS solutions, this work identifies specific factors
that significantly impact test outcomes, emphasizing the need
for well-defined and representative test cases.

Index Terms— WMTS, benchmark, big data, data visu-
alization, digital infrastructure

1. INTRODUCTION

In recent years, the large availability of high-resolution spa-
tial imagery from diverse sources and formats has created a
growing need for efficient systems capable of rendering and
delivering such data to scientific users and the general public.
Web Map Tile Services (WMTS) is a key technology that can
address these challenges. Numerous applications have since
been developed using various architectures and technologies
to meet the rising demands of big data and Al-ready geospa-
tial services [1] to be integrated into agentic Al systems.

As geospatial data’s volume, heterogeneity, use cases,
and autonomous Al agents rapidly evolve and continue to
expand, pre-generating static tiles for every need and lever-
aging a caching mechanism is a tricky solution. Tiles must be
generated dynamically in many scenarios based on specific
dataset requests and styling parameters. Consequently, the
performance of the WMTS itself becomes a critical factor.
While previous studies have compared the performance of
raster versus vector rendering [2, 3] and evaluated specific
software implementations, a standardized benchmark for
assessing the performance of WMTS applications remains
lacking [1]. This gap can create uncertainty when selecting
the best solution in a given setting. Building on prior research

1_ooo]
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Fig. 1: A simplified client-server architecture for a Web Map
Tile Service.

on benchmark development [4], this study aims to identify
some characteristics that influence tile delivery performance
in WMTS solutions. The findings represent an initial step
toward defining a standardized benchmarking framework that
practitioners can use to evaluate and select the most appropri-
ate WMTS for their specific requirements.

2. METHODOLOGY & EXPERIMENTS

The purpose of a benchmark is to provide a synthetic but in-
formative overview of how a system performs under specific
conditions. On the one hand, this can be highly valuable for
practitioners, as it allows them to avoid the time-consuming
process of evaluating multiple WMTS solutions every time.
On the other hand, benchmarks can drive misleading or in-
complete conclusions if they fail to account for critical aspects
of real-world applications. This work aims to identify and
analyze aspects particularly relevant to dynamic WMTS. For
example, a given WMTS may exhibit excellent performance
with vector data but perform significantly worse with raster
inputs or even vary considerably between different types of
raster formats and styles.

A first step for conducting such experiments is the defini-
tion of a generalizable digital architecture that reflects typical
deployment scenarios while remaining flexible enough to ac-
commodate a range of contexts. This ensures that the findings
are broadly applicable and reflect realistic use cases.

Subsequently, isolating and evaluating individual system
components is essential to understand their performance lim-
itations under fixed hardware resource constraints. Our focus
is not to identify the peak performance metrics or the satu-
ration point of system resources of a given WMTS. Instead,
we are particularly interested in how its performance varies
in relation to specific variables, such as data formats, styling
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Users | 25™" | 50T" | 75T | 95T
10 7 10 16 27
25 8 14 23 45
50 11 20 33 59
75 13 26 47 89
100 | 38 77 94 | 118

Table 1: Response Time (RT) percentiles on a minimal con-
figuration (1 Core, 1 GB RAM) in milliseconds.

complexity, or rendering strategies.

Finally, we propose a hypothesis-driven experimental
approach, formulating and empirically testing assumptions
about which aspects most influence performance across dif-
ferent WMTS implementations. This structured method-
ology enables a deeper understanding of system behavior
and informs the development of meaningful, context-aware
benchmarks.

2.1. Overal Digital Architecture

The experimental setup and the overall architecture (see Fig-
ure 1) include three main components: the client, which sends
tile requests to the WMTS; a reverse proxy, which manages
the incoming and outgoing traffic; and the WMTS server,
responsible for rendering and serving the tiles according to
some specification detailed by the client requests. More com-
plex and simpler data infrastructures are possible, but the ar-
chitecture for this work contains the typical elements of a web
service architecture.

The communication protocol is HTTP(S). We define the
timing components of the request-response cycle as follows:
t, as the client-side rendering time, to as the network la-
tency over the internet, ¢3 as the time needed by the reverse
proxy to handle the request and forwarding it, ¢4 is the intra-
network latency, and ¢5 is the WMTS processing time. There-
fore, the total response time observed by the client is RT =
t1 + to +t3 + t4 + t5, and it is our primary performance in-
dicator [5]. Lower values of RT mean better performance of
the WMTS and the overall digital infrastructure. Preliminary
tests showed that o, 3, and ¢4 are negligible compared to ¢,
although this assumption may not hold in more complex or
distributed environments. Therefore, RT is close to t5 in a
testing environment.

A prerogative of a benchmark is isolation and repro-
ducibility; thus, all the components we use in this work are
containerized applications. In our case, the client machine
is a high-performance system with 70 cores at 2.40 GHz and
1 TB of RAM, while the server machine, which in our exper-
imental setting hosts both the reverse proxy and the WMTS,
is equipped with 40 cores and 515GB of RAM.

Wor. | Rep. | Core | RAM | 50™ | 75T" | 95Th

1 20 1 10 7 14 31
2 10 2 20 9 15 31
20 1 20 200 7 14 33

Table 2: Response Time (RT) percentiles on different config-
urations in milliseconds. Work. stands for workers, Rep. for
replicas. RAM values are in GB.

2.1.1. WMTS Server

In this work, we considered GeoServer !

and TileGeo
2 as a pool of dynamic WMTS. GeoServer is written in
Java, and its project has been running for many years; in-
stead, TileGeo is an “in-house” development of the Joint Re-
search Centre written in Python, combining the capabilities
of FastAPI for the web service, while GDAL and Mapnik
are used for handling geospatial datasets and rendering tiles.
Both WMTSs support raster and vector source datasets. No
particular production optimization is set for both WMTS.
TileGeo is run with the prod starlette flag, while GeoServer,
according to the documentation, comes with many optimiza-
tions by default *.

To improve observability, the TileGeo server includes
additional HTTP headers containing the WMTS processing
time t5, the CPU and RAM usage. The asynchronous ar-
chitecture of FastAPI, built on Starlette, allows TileGeo to
handle concurrent requests efficiently. The number of Star-
lette workers can be tuned to scale horizontally, with each
worker capable of managing multiple simultaneous requests.
GeoServer leverages a JAI thread pool executor. TileGeo,
through the Antigrain Geometry renderer, is able to serve
tiles in many different formats (JPEG, PNG, and WebP) with
different setting parameters of compressions, color quantiza-
tion, and quality levels. GeoServer’s WMTS service primarly
supports PNG, PNGS8, and JPEG without the possibility of
tuning specific settings. GeoServer does not natively support
JPEG2000 as an input file type.

2.1.2. Client

To evaluate WMTS performance, it is essential to simulate
the behavior of multiple users making simultaneous tile re-
quests. To generate concurrent load, we use Locust?, an
open-source performance testing tool that supports HTTP and
other protocols. Locust enables the definition of user behav-
ior in plain Python, providing the flexibility to simulate re-
alistic interaction patterns without being limited by a GUI

'https://github.com/geoserver/geoserver

2 Available soon as OSS. The source code can already be shared based on
a reasonable request.

3https://docs.geoserver.org/latest/en/user/
production/index.html

4https://github.com/locustio/locust
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or domain-specific language. Our Locust test suites include
the modeling of user behaviour in requesting the tiles as sug-
gested in the literature [6, 7, 8].

Locust has command-line and web-based interfaces, al-
lowing for real-time monitoring of throughput, response
times, and error rates. Thanks to its event-driven architecture
(built on gevent), a single process can simulate thousands
of concurrent users, making it highly suitable for testing sys-
tems like WMTS under high concurrency conditions. All
Locust workers are deployed on the same client machine,
leveraging its high-performance hardware to ensure that the
generated load is not limited by client-side constraints.

Each virtual user in our test scenario initiates a single
HTTP session and requests 10 tiles. This approach mimics
a map browsing behavior, such as a user panning or zooming,
which leads to multiple tile requests within a short time frame.
This configuration is deliberate: distributing the same total
number of tile requests per second across more users—each
making fewer requests—would not produce equivalent con-
ditions. Doing so would introduce additional overhead due
to repeated HTTP session initialization, rather than reusing
persistent connections. Consequently, such a scenario would
artificially inflate network and protocol-related delays, devi-
ating from the real-world usage pattern we aim to reproduce.

2.2. Preliniminary Experiments

Preliminary experiments indicate that client-side rendering
time is negligible, as it only accounts for the completion of
tile transfers—not their actual rendering in a map interface.

Following recommendations for the definition of a bench-
mark [4], we first tested the server’s basic response capacity
using a minimal HTTP service. This allowed us to validate
the use of Locust for load generation and tune the number
of workers appropriately. We also benchmarked the reverse
proxy, an Nginx instance configured to accept up to 8K con-
current connections. The results confirm it does not represent
a bottleneck in the tested configuration. To assess the capacity
of the TileGeo WMTS server, we tested a single worker con-
figured with 1 CPU core and 1 GB of RAM. As shown in Ta-
ble 1, it can handle approximately 10 concurrent requests effi-
ciently. Finally, we explored the effects of horizontal (adding
more server instances, balancing the load between them) ver-
sus vertical scaling (upgrading the capabilities of the exist-
ing server). Results presented in Table 2 show no significant
performance improvement. A similar investigation is also ap-
plied to GeoServer.

2.3. Data

The input datasets for our benchmark consist of Sentinel-2
Level-2A rasters over a heterogeneous test site in north-
ern Italy, each containing only the three spectral bands
(B02-Blue, B03-Green, and BO4-Red) at 10 m resolution. To

assess the impact of input payload volume, we prepared three
input file-size categories where the covered area is different:
“extra-small” counts a few megabytes, “small” hundreds of
megabytes, and “large” totaling several gigabytes.

2.4. Hypotheses for Benchmark Definition

As a first step towards defining a robust and meaningful
benchmark for WMTS performance, we formulated a set of
hypotheses intended to identify potential factors that may
introduce bias or variability in benchmark results. These
factors, if unaccounted for, can lead to inconsistent or non-
reproducible outcomes.

Our set of hypotheses investigates whether performance is
affected by variations in the input data format, output image
format, input file size, and requested zoom level. To evaluate
this, we employed a range of commonly used geospatial raster
formats for input, including GeoTIFF, JPEG2000 (JP2), and
PNG. Each of these formats presents different characteristics
in terms of file size, compression algorithms, and decoding
complexity. For output formats, we tested PNG, JPEG, and
WebP, as well as format variations involving different com-
pression levels, color quantization strategies, and image qual-
ity settings. Additionally, we tested tile requests at multiple
zoom levels to assess whether the scale and corresponding tile
resolution influence performance, for example due to differ-
ing data volume per tile or variations in rendering complexity.

These combinations allow us to assess whether the encod-
ing/decoding overhead, image optimization processes, or tile
scale have a measurable influence on server-side performance
or response time. Identifying such dependencies is crucial for
defining benchmark conditions that are both fair and repre-
sentative of real-world usage scenarios.

3. RESULTS

Validating the robustness of the WMTS performance mea-
surements under different load scenarios is a key aspect of
the evaluation process. For TileGeo, we conducted each ex-
periment with both 100 and 200 concurrent simulated users,
each issuing either a single-tile request or a batch of ten tiles
at a time. Across all configurations, the latency distributions
remained virtually unchanged between the 100 and 200 user
loads and between one and ten tile batches, confirming that
the results presented below are stable and reproducible re-
gardless of moderate variations in request concurrency or tile
batch size. GeoServer is more hardware resources demand-
ing; we were able to simulate a maximum of 10 concurrent
users in order not to degrade the application’s performance.
Results are presented in Figure 2a for TileGeo and in
Figure 2b for GeoServer. The aggregated performance mea-
surements across our experimental conditions are summa-
rized as follows. For input file size, “large”, “small”, and
“extra small” tiles exhibited very similar latency distributions
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Fig. 2: 507" (Dark green) and 757" (Green) percentiles of the re-
sponse time (RT) per feature on Tilegeo (Figure 2a) and GeoServer
(Figure 2b).

in the case of TileGeo. Instead, in the case of GeoServer,
the input file size has a rather high impact with median (50th
percentile) times ranging from 100 ms to 1700 ms. When
varying output image format and encoding parameters, al-
most all the JPEG and PNG variations yield similar results
for TileGeo, but in the case of WebP, the median value of 16
ms and the 95th percentile of 25 ms is significantly higher.
Across zoom levels (7, 12, 15, 17), performance was again
consistent for TileGeo, while this aspect has a quite relevant
impact on GeoServer, degrading response time significantly
as zoom levels increase. Finally, the input format (GeoTIFF,
JP2, PNG) for TileGeo showed negligible differences, with
all medians around 7 ms and 95th-percentiles around 19 ms.

4. CONCLUSIONS

WMTS(s) are a foundational component of digital infras-
tructure for visualizing geospatial big data, supporting many
decision-making processes in various applications. While
widely adopted, WMTS implementations vary significantly
in performance, scalability, and resource efficiency, which
are central aspects to be considered in cloud-native and big
data applications. However, there is currently a lack of sys-
tematic and dedicated benchmarks that allow practitioners
and decision-makers to evaluate and compare fairly different

WMTS solutions. This is likely due to the fact that it is dif-
ficult to find WMTS with similar characteristics and scope.
This contribution proposes an initial framework for identify-
ing the elements a replicable benchmark for a WMTS should
consider, thus promoting open science and interoperable so-
lutions. We empirically evaluate open-source WMTS(s). The
different behaviours of the considered WMTS presented in
the results highlight that input file size, output encodings,
and zoom levels are discriminatory aspects that have to be
included in the benchmark definition of a WMTS. The num-
ber of WMTS servers tested can be a limit for this research.
In future works, we will consider more WMTS and different
system setups. Investigating other elements that may impact
performance will also help better understand the additional
aspects to be included in the benchmark of a WMTS.
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ABSTRACT

Geospatial Intelligence requires the exploitation and link of
huge amounts of heterogenecous data. New developments in
Knowledge Graph technologies enable to tackle real-life
requirements and build large-scale applications, which is
crucial for facing Geospatial Intelligence scenarios. In this
paper, two different applications based on Knowledge
Graphs technologies are presented to demonstrate the added
value of Knowledge Graph for Geospatial Intelligence
stakeholders. The first application integrates multiple and
heterogeneous sources for the analysis of natural hazards
and impact assessment, while the second application focuses
on the relevant change detection for the monitoring of
illegal activities. Within these use cases, Knowledge Graph
demonstrates to be a useful technology for a flexible
integration of knowledge, facilitating the analysis of
complex relationships in the data, and an enhancement on
Machine Learning algorithms and their explainability.

Index Terms— GEOINT, Knowledge Graph, Natural
Hazards, Change Detection

1. INTRODUCTION

Geospatial Intelligence (GEOINT) is the collection,
analysis, and visualization of geographically referenced data
for the purpose of providing an understanding of a specific
area or region. As the amount of geospatial data grows, the
ability to effectively analyze and interpret them becomes
increasingly important. The fusion of different data sources
is key to GEOINT, as it allows for the consolidation,
correlation, and analysis of data from disparate sources.

Knowledge graphs (KGs) are a flexible knowledge
representation paradigm intended to facilitate the processing
of knowledge for both humans and machines. They are
widely recognized as a key enabler for a number of
increasingly popular technologies including Web search,
question answering, personal assistants, and (explainable)
Artificial Intelligence (AI) across many sectors. However,
KGs (including machine learning approaches like class
expression learning) are not very popular in GEOINT
domain because they present some limitations:

1. fail to scale to large graphs with billions of edges;

2. are bound to consistency in particular formalisms;

3. fail to exploit the semantics modelled into the KGs;
4. rely on a one-shot explanation paradigm if they are at
all explainable.

In this paper, the results of different GEOINT use cases
(developed as part of ENEXA! project) are presented to
demonstrate the added value of KG technologies in this
domain.

2. KG TECHNOLOGIES EXPLOITED

The core objective of ENEXA is to address the challenge of
developing explainable Machine Learning (ML) approaches
for real-world KGs with a focus on human-centred
explanations. ENEXA has developed novel hybrid ML
approaches that can exploit multiple representations of
knowledge graphs concurrently taking advantage of
different technologies presented here below. With these
technologies it is possible to tackle real-life runtime
requirements and build large-scale applications, which is
crucial for facing GEOINT scenarios. Some of the
developed technologies are introduced below.

g | - |

I I

. Class
Extraction KG . Triple Expression
Module Embeddings Storage Learning

~ o7 €

I

Fig. 1. Simple workflow of KG technologies considered.

2.1. Extraction modules

Extraction modules are in charge of getting information of
the different sources and translate it into triples to be
ingested in a KG, enabling the integration of multiple and
heterogeneous data sources. For the GEOINT use cases
addressed (detailed in following sections), both structured
and unstructured datasets were considered. While structured
data sources can be processed easily with “mappings”,
unstructured datasets require a more complex processing
considering Large Language Models (LLMs).

! https://enexa.eu/ - Project funded by the European Union
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The two main challenges of the developed extraction
modules are entity linking and the efficient management of
geospatial data.

2.1.1. Entity linking

Entity linking is a key part of the information extraction
pipeline connecting knowledge graphs to text. The methods
developed in ENEXA [1] have been exploited. The entity
linking enables the connection with other KG and source of
information (e.g. wikidata), facilitating the exploitation of
complex relationships and semantic meaning, which is one
of the reasons for using KG instead of relational DB.

2.1.2. Management of spatial data

In GEOINT, the spatial relations of the features/events are
critical. They can be exploited in a KG with the use of
GeoSPARQL, that provides a topological ontology in
RDFS/OWL for representation as well as a SPARQL query
interface with a set of spatial SPARQL extension functions
[2]. In order to be able to exploit the geospatial relations in
triple storage not supporting GeoSPARQL, an alternative
approach has been implemented. When using systems
without GeoSPARQL support, the extraction module is able
to generate additional triples that enable spatial queries.
Within this approach, the H3 grid (Uber’s Hexagonal
Hierarchical Spatial Index) [3] is used. This reference grid is
integrated in the KG (at a configurable level of precision
(see Fig. 2)), and it is indicated with explicit triples for
every spatial element in the KG, which are the H3 cells
where the feature is. This way, it is later possible to make
spatial queries without the GeoSPARQL functions.

2

1
2 13
3 92
4 640
5 4468
6
7
8
9

31248
218726
1531107
10717913

Fig. 2. Example of H3 cells in Niger at different levels.

2.2. Triple storage

Efficient storage solutions for the KGs are indispensable for
their use in real applications. In this work two different
triples store have been used: Tentris [4] and GraphDB.

Tentris represents RDF knowledge graphs as sparse
order-3 tensors using a novel data structure called hypertrie.
It then uses tensor algebra to carry out SPARQL queries by
mapping SPARQL operations to Einstein summation. By
being able to compute Einstein = summations
efficiently, Tentris outperforms the commercial and open-
source RDF storage solutions in terms of the average
number of queries it can serve per second on datasets of up
to 1 billion triples.

Tentris, although offer big advantages in terms of
efficiency, has some limitations (work in progress) like the
support for GeoSPARQL, but this issue has been solved by
the use of a reference grid.

2.3. Embeddings generator

A Knowledge graph embedding (KGE) is a representation
of a KG element as a vector with the objective of entity
classification, link prediction or recommender systems.

DICE embeddings [5] has been used in this work to
obtain the embeddings for both applications.

2.4. Class expression learning

Class expression learning aims to learn complex class
expressions from the knowledge graphs. Users can harness
machine learning techniques to derive meaningful insights
and patterns from their data. Typically, the user can provide
positive and negative examples (e.g. legal mining sites vs
illegal mining sites) and the module extract “rules” to be
able to classify new entities. This approach enables also the
explainability of the results of a classification.

3. GEOINT USE CASE

3.1. GEOINT current challenges

The three main GEOINT challenges that can be faced using

the KG technologies are:

e Data heterogeneity - In the GEOINT domain, huge
amounts of data (Earth Observation (EO) and not-EO,
in different formats like raster/vector or text), must be
exploited together. For EO data, the collocation and
transformation of raster/vector data is typically enough,
but when managing the ancillary data different
processing are needed, including LLM-based extraction
pipelines.

e Limited use of contextual information - Some
approaches in GEOINT processes just take into account
the changes that are detected from EO imagery and
classify them according to the changes in the
reflectance (optical imagery) or back-scatter/coherence
(in Synthetic-aperture radar (SAR) imagery) but,
usually, to use more contextual information in order to
properly classify the changes is very useful (e.g. land
cover in the surroundings, distance to certain features).
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This is usually made by analysts, but the automation of
these processes would facilitate their job.

e Lack of Explainability - The explainability of the
Machine Learning (ML) results would allow analysts to
understand them and decide about their reliability.

3.2. GEOINT User stories

Different user stories have been collected from GEOINT
stakeholders to assure the relevance of developed
applications to real users.

1. As a GEOINT analyst, I want to find relevant events
from different sources (e.g. floods) in a specific
area/time, so that I can assess their impact for relevant
decision-makers (e.g. impact of events in refugee
camps, impacts on critical infrastructures). For this, 1
want to generate queries linking OpenStreetMap data
(or other geospatial databases) and event data, so that I
can quickly find relevant details. Also, 1 want to
generate queries to find infrastructure affected by
specific events (e.g., floods) in a defined period / area,
to support decision-making processes in relevant
domains.

2. As a GEOINT developer, I want to find satellite images
that I can use to train my models so that the labelling
time is reduced.

3. As a GEOINT analyst, I have to monitor an area of
interest during a period of several months. I want to be
automatically notified when a relevant change takes
place. Additionally, I want the platform to extract
explanations supporting a change detected in satellite
imagery, so that I can confirm most quickly their
relevance.

3.3. GEOINT applications

To address the user stories and demonstrate the added value
of KG technologies, two different applications have been
developed.

3.3.1. Integration of multiple and heterogeneous sources:
Analysis of natural hazards and impact assessment

This application (addressing user stories 1 and 2)
consists of the integration of multiple sources addressing
natural hazards as well as ancillary/contextual information.
The use of KG in this application aims to a) homogenize
and complete the information by integrating information
from different sources including data generated from EO
algorithms developed by SatCen, b) detect inconsistencies
(e.g. identification of duplications or contradictory data) and
¢) improve queries for analysts and developers, facilitating
the discovery of correlations and complex links between the
data.

The data integrated includes:

e Natural hazards data sources [6] containing information
of past events (including affected people, severity and
other event characteristics)

o Desinventar — Sendai Framework
o Colorado Flood Observatory
o Copernicus Emergency Management Service
o Wikipedia
e Ancillary data
o OpenStreetMap for affected infrastructure

Socio-economic data (e.g. World Bank)

Land Cover

Satellite imagery metadata

ACLED (Armed Conflict Location and Event

Data) [7] and migration/displacement data

e Results from EO pipelines (e.g. identification of
flooding and impact assessment)

O O O O

3.3.2. Relevant change detection

This application focuses on the detection of relevant
changes (user story 3). The methodology has been applied,
in particular, to the detection of possible illegal activities
like illegal mining. It provides: a) the identification and
classification of relevant changes (changes can be detected
with EO, but it is needed to develop a methodology able to
classify them as relevant or not) and b) the explanation of
changes (the classification of the changes has to be
explained in order to allow analysts a quick confirmation).

4. IMPLEMENTATION AND RESULTS

4.1. Integration of multiple and heterogeneous sources

For this application a new ontology was built based on the

KnowWhereGraph ontology [8]. The entities were linked

when possible with wikidata entities and other thematic

dictionaries like sendai-hip for the hazard classification [9].
The extraction of the information and the ingestion in

the triple store solutions of more than 1 billion triples was

made in around one day, using python scripts and Tentris
and GraphDB deployments in a k8s cluster.

The resulting KG has been exploited through Jupyter
notebooks (see Fig. 3) with ready-to-use templates that
enable final non-experts users to run SPARQL queries in a
friendly way using widgets to define their requests. Some
thematic examples are:

»  Statistics/Evolution of past floodings in specific
country/region - e.g. represent the number of floodings
in Niger during the last decade;

* Identification of training datasets for new EO models -
e.g. provide a list of Sentinel-1/2 images over an area
affected by flooding;

* Estimation of severity of a new flooding based on
historical data of previous flooding (similarity);

* Analysis of possible impact of hazards in conflicts and
migration
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Fig. 3. Example of templates for the exploitation of KG
developed.

4.2. Relevant change detection

The application consists of the integration of a monitoring

pipeline in SatCen Geospatial platform (GEO-DAMP) (see

Fig. 4) that is able to detect illegal mining activities based in

three main models executed sequentially:

*  Deforestation monitoring with HR imagery (Sentinel
data)

*  Contextualization of Aol: when a deforested area is
detected, contextual information is extracted (an
integrated in a KG) including land cover and new man-
made structures (e.g. new airstrips, buildings) identified
using Enhanced ML algorithms taking advantage of
class expression learning

* Classification of changes as relevant or not using a
trained model generated using class expressions
learning obtained from positive and negative examples
from known mining sites databases.

A
PARAGUAYL
SASUNGION pARA
8!

Fig. 4. Example of relevant change detection integration
in SatCen Geospatial Platform (GEO-DAMP).

5. CONCLUSIONS AND WAY FORWARD

The use of KG technologies is supporting GEOINT analysts
by allowing a flexible integration of huge amounts of data
that facilitates the research of complex links between events
by harmonizing data and combining siloed data sources.
Moreover, it also enhances some ML algorithms while
enabling the explainability.

The solutions developed can be optimized for specific
applications. For example, the current KG for the analysis of

natural hazards contains global data in order to demonstrate
the scalability of the systems, but it could be adapted or
even the application could create on-demand KGs with only
data of specific countries or date ranges for specific tasks,
allowing also to the users to decide which sources of
information could be relevant to include.

Finally, although the creation of ready-to-use templates
for the exploitation of the KG enables the use of the system
by non-expert users, they cannot exploit its capability to its
maximum extent without a minimum knowledge of
SPARQL. For this reason, a future evolution will consist of
supporting natural language queries. Also, an assessment of
the use of other ontologies will be considered as
YAGO2geo [10].

REFERENCES

[1] Fina Polat, Ilaria Tiddi, Paul Groth, and Pick Vossen.
2023. Improving Graph-to-Text Generation Using Cycle Training.
In Proceedings of the 4th Conference on Language, Data and
Knowledge, pages 256261, Vienna, Austria. NOVA CLUNL,
Portugal.

[2] Car, N.J.; Homburg, T.; Perry, M.; Herring, J.; Knibbe, F.; Cox,
S.J.D.; Abhayaratna, J.; Bonduel, M. OGC GeoSPARQL—A
Geographic Query Language for RDF Data. 2021. Available online
(accessed on 30 October 2021).

[3] Uber Technologies, Inc., “H3: Hexagonal Hierarchical Spatial
Indexing,” Uber Technologies, Inc., 2019.

[4] Alexander Bigerl, Felix Conrads, Charlotte Behning, Mohamed
Ahmed Sherif, Muhammad Saleem and Axel-Cyrille Ngonga
Ngomo (2020) **Tentris — A Tensor-Based Triple Store. ** In:
The Semantic Web — ISWC 2020

[5] Demir, Caglar and Ngomo, Axel-Cyrille Ngonga, “Hardware-
agnostic computation for large-scale knowledge graph
embeddings”, Software Impacts, Elsevier 2022.

[6] SA Mazhin, M Farrokhi, M. Noroozi et al. “Worldwide disaster
loss and damage databases: a systematic review”. Journal of
education and health promotion, 2021

[7] Raleigh, C., Kishi, R. & Linke, A. Political instability patterns
are obscured by conflict dataset scope conditions, sources, and
coding choices. Humanit Soc Sci Commun 10, 74 (2023).
https://doi.org/10.1057/s41599-023-01559-4

[8] Cogan Shimizu, Shirly Stephen, Adrita Barua, e. al. The
KnowWhereGraph ontology. Web Semant. 84, C (Jan 2025).
https://doi.org/10.1016/j.websem.2024.100842

[9] Murray, V. et al. (2020) Hazard Definition & Classification
Review: Technical Report: Geneva, Switzerland, United Nations
Office for Disaster Risk Reduction; Paris, France International
Science Council, https://council.science/ wp-
content/uploads/2020/06/UNDRR Hazard-Report DIGITAL.pdf;
or https://council.science/publications/hazards

[10] Karalis, Nikolaos & Mandilaras, Georgios & Koubarakis,
Manolis. (2019). Extending the YAGO2 Knowledge Graph with
Precise Geospatial Knowledge. 10.1007/978-3-030-30796-7_12.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon Europe research and innovation programme within
the project ENEXA under the grant No 101070305.

Proc. of the 2025 conference on 100
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

GeoAl & Geospatial Intelligence

GRUNBLICK - Al POWERED FOREST BIOMASS ESTIMATION SERVICE

Vytautas Jancauskas, Kalifou René Traoré, Juan Pablo Espejo Belmonte, Daniela Espinoza-Molina

Deutsches Zentrum fiir Luft- und Raumfahrt (DLR)
Data Science for Earth Observation Department
Miinchener Str. 20, 82234 Welling
Germany

1. ABSTRACT

Accurate forest biomass estimation is essential for climate
change mitigation, biodiversity monitoring, and sustainable
forest management. Recent advances in remote sensing and
machine learning have opened new avenues for large-scale,
high-resolution biomass mapping. In this work, we intro-
duce Griinblick, an Al-powered service designed for scalable
forest biomass estimation, leveraging multi-sensor Earth Ob-
servation (EO) data, including Sentinel-1 and Sentinel-2 im-
agery. The Griinblick pipeline integrates modular deep learn-
ing models, notably U-Net architectures with interchangeable
feature extraction backbones, to perform pixel-wise above-
ground biomass (AGB) regression. We validate our system
using the public Biomassters benchmark, demonstrating sig-
nificant performance gains through multi-modal sensor fusion
and self-supervised pretraining strategies. Future extensions
will include uncertainty quantification and global deployment
capabilities.

2. INTRODUCTION

Forest biomass estimation has been a research focus for many
years [1]. It is essential for various applications, including cli-
mate change mitigation, biodiversity assessment, forest man-
agement, and sustainable supply chain monitoring.

With the advent of Aurtificial Intelligence (AI) and Big
Data from space, new methodologies have emerged, mak-
ing the field of forest biomass estimation highly dynamic
and interdisciplinary. This area combines remote sensing
technologies, machine learning, and ecological modeling ad-
vances. Recent studies demonstrate improved AGB estima-
tion through multi-source satellite fusion and the application
of deep learning models [2, 3, 4].

Existing efforts like ESA’s Climate Change Initiative
(CCI) [5], FAO’s Open Foris [6], and the BioMassters bench-
mark [7] support biomass estimation using remote sensing
data, though often at lower resolutions or with less flexibility
than Al-powered systems.

In this work, we introduce Griinblick, an Al-driven ser-
vice designed for comprehensive forest monitoring. It targets

forestry management, environmental conservation, and land-
use monitoring industries. Griinblick integrates state-of-the-
art deep learning architectures with software tools to facilitate
global end-to-end forest biomass querying. Our system will
enhance the value of Copernicus products by utilizing mul-
tispectral Sentinel-2 and Sentinel-1 Earth Observation (EO)
data to generate precise forest biomass estimates.

3. GRUNBLICK PIPELINE

Griinblick is a biomass estimation service currently under de-
velopment at the German Aerospace Center (DLR). Its pri-
mary objective is to enable continuous, large-scale monitor-
ing of biomass using a combination of multi-source satel-
lite data, particularly multi-spectral imagery (MSI) and syn-
thetic aperture radar (SAR). The service is being designed
with adaptability and scalability in mind—capable of ingest-
ing new data streams as they become available and integrating
emerging data modalities and sources over time.

The overarching goal of Griinblick is to provide regularly
updated, high-resolution biomass estimates that can support
decision-making in forestry and related sectors. To achieve
this, we are developing a modular processing pipeline com-
posed of two main components: (1) a Machine Learning (ML)
Model Training and Inference Service, and (2) a front-end
system responsible for data caching, visualization, and deliv-
ery to end users. A high-level overview of this processing
pipeline is illustrated in Figure 1.

One of the key features of Griinblick is its interactive user
service, which will allow users to submit a request via a JSON
file specifying an area of interest. In response, the system will
generate and return a raster file containing biomass estimates
for the specified region.

The ML Model Training and Inference Service underpins
the core estimation functionality. This component includes
the development of biomass prediction models and associated
data acquisition workflows, all implemented in Python. The
software is hosted on GitHub (private at the time of writing)
and follows CI/CD-based development practices.

We use Google Earth Engine to obtain co-registered
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Sentinel-1 and Sentinel-2 patches aligned with ground-truth
AGB data, which support supervised model training. Once
trained, models are deployed in an operational pipeline that
includes a geographic cache for efficient access and a data
delivery service enabling users to download biomass maps on
demand.

Griinblick Website Sentinel Data

] — T =

Sentinel images

ML Model Training
and Inference Service

JSON description
of an area

Biomass estimation
image download link

Pre-calculated
biomass estimates

Griinblick
Service

I

Fig. 1. Griinblick Schematic Diagram

4. DATASETS

This section outlines the dataset used for estimating above-
ground biomass (AGB) in forested landscapes. The data
pipeline ingests multi-source satellite imagery and aligns it
with ground-truth biomass observations to train and validate
machine learning models. Two primary sources are utilized:
the BioMassters benchmark, and a regional dataset focused
on British Columbia, Canada. These were chosen to support
the Griinblick pipeline (see Fig. 1), which requires high-
resolution imagery, spatial consistency, and reliable biomass
reference data for supervised learning.

4.1. BioMassters

The BioMassters dataset [7] serves as a principal test bed for
the experiments in this paper. it is a publicly available bench-
mark for above-ground biomass (AGB) estimation, derived
from extensive LiDAR-based forest inventory plots across
multiple regions in Finland. Collected across multiple years,
between September 2016 and August 2021, the dataset offers
pixel-level annotations of biomass components, including
whole stem, branch, foliage, and bark, expressed in tons per
hectare. Given that the AGB ground truth is not collected
in one pass, the authors use a stratified sampling strategy in
order to avoid any temporal bias in the geographic coverage
of the territory. In practice, they identify reference areas
that evenly cover the territory, for the AGB measurement

campaign of each year. Then, the obtained ground-truth val-
ues are rasterized to align with the spatial resolution of the
accompanying monthly satellite imagery of the past year.

Each of the 13000 data samples consists of a 25602560
meter satellite image patch at a 10x10 meter resolution co-
registered with a 16x16 meter resolution biomass grid derived
from LiDAR. The dataset encompasses approximately 8.5
million hectares of forested area and includes over 310,000
paired satellite—ground truth samples. This precise spatial
alignment enables accurate pixel-level supervision and sup-
ports high-resolution model training. According to the au-
thors, the test set is generated using 20 to 30 percent of the
references areas for most of the temporal strata (2018, 2019,
2020, 2021), which are already evenly spread over the terri-
tory and without overlapping images. The remaining samples
constitute the training set, which we separate into our final
training and validation sets, using a 80 versus 20 percent
random splitting rule.

A key strength of the BioMassters dataset lies in its rich
biomass component labels, which facilitate detailed analysis
of ecological structure and allow for the evaluation of model
performance across a variety of biomass-related attributes.
Furthermore, its standardized format and public availability
make it a valuable resource for benchmarking and model
comparison within the research community.

This dataset plays a crucial role in evaluating the transfer-
ability and robustness of the Griinblick system, serving as a
complementary reference to our regional dataset and provid-
ing a foundational step toward the system’s global scalability.

4.2. British Columbia

British Columbia (BC) is a region of interest for future experi-
ments, due to its ecological heterogeneity and the availability
of detailed forest inventory data. The province possesses a
wide range of forest types and climatic zones, making it an
ideal setting to assess model generalizability.

Satellite data are obtained from the Sentinel-1 and Sentinel-
2 missions of the Copernicus program. Sentinel-2 provides
multispectral imagery across bands including B2 (blue), B3
(green), B4 (red), B8 (near-infrared), and B11/B12 (short-
wave infrared)—spectral regions frequently used in vegeta-
tion analysis. Sentinel-1 supplies synthetic aperture radar
(SAR) data, offering complementary structural information
and ensuring data availability under all weather conditions.

Ground-truth biomass estimates are derived from the
British Columbia Vegetation Resources Inventory (VRI),
maintained by the provincial government [8]. As of 2023,
the dataset includes over 5.9 million delineated forest stands,
covering roughly 5.5 GB in spatial data.

5. BIOMASS ESTIMATION METHODOLOGIES

The Griinblick system delivers above-ground biomass (AGB)
analytics as a service for forested regions in the Northern
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Hemisphere. Its analytical back-end consists of pixel-wise
AGB regressors based on a modular U-Net architecture [9],
adapted from semantic segmentation to perform continuous
biomass regression using satellite imagery.

We employ a fixed U-Net structure while varying the
encoder (feature extractor) to balance performance and ef-
ficiency. The toolbox supports backbones such as VGG,
ResNet (18-50 layers), and EfficientNet-BO [10], allowing
flexible trade-offs in model complexity and accuracy. As
shown in Figure 2, the choice of backbone significantly af-
fects the quality of the predictions.

Each model currently operates in a mono-temporal set-
ting, predicting peak AGB for a specific timestamp. Be-
sides, the system also supports multi-sensor input fusion via
channel-wise stacking of co-registered SAR and MSI data,
enabling richer feature representation. Because of the current
temporal restriction, our system does not perform any har-
monization for the time series of the available of modalities.
For the case of sensor fusion, we only consider reference
areas and timestamps where both sensors are simultaneously
available.

Additionally, we incorporate transfer learning using self-
supervised weights pretrained on large EO datasets such as
SSL4EO-S12 [11], boosting performance with limited la-
beled data.

Future work will integrate uncertainty quantification [12]
to provide confidence intervals alongside predictions, sup-
porting risk-aware decision-making in environmental moni-
toring. Additional extensions may include multi-temporal es-
timation, though this would increase computational demands
and require some harmonization, potentially achieved by con-
sidering as target temporal consistency, the temporal avail-
ability of the most irregular sensor (Sentinel-2).

6. RESULTS

We evaluate the Griinblick system on the BioMassters dataset
(Section 4.1) using two benchmarks: (1) multi-modal sen-
sor fusion and (2) self-supervised pre-training. Model perfor-
mance is reported using the coefficient of determination (R2),
a standard metric for regression.

6.1. Multi-Modal Estimation

To assess the benefit of combining EO data sources, we
trained U-Net regressors with inputs from Sentinel-1 (SAR),
Sentinel-2 (MSI), and their channel-wise fusion. Each con-
figuration was evaluated using multiple encoder backbones:
ResNet-18, ResNet-34, and EfficientNet-BO. As shown in
Figure 2, fused inputs consistently outperformed single-
sensor setups. For instance, with EfficientNet-BO, R? scores
improved from 0.541 (S1) and 0.583 (S2) to 0.688 (fusion).

Backbone selection also affected performance. EfficientNet-

BO (5M parameters) outperformed the deeper ResNet-34

(22M, R?> = 0.651) and ResNet-18 (12M, R? = 0.659),
highlighting that smaller, efficient architectures can match or
exceed heavier models.

These results confirm that Griinblick’s modular archi-
tecture and multi-modal capability significantly enhance
biomass estimation. For reference, the benchmark-leading U-
TAE model [7], which uses multi-temporal imagery, achieves
an R? of 0.765—a target future versions of Griinblick could
approach by integrating temporal dynamics.

0.75
E Sentinel-1 Sentinel-2 m Input-level fusion
070 0.688
0659
0651

0.65
[
[=]
v}
uw
&

0.60

0.583
0568
0556
055 0535 0542 0541

ResMet-18

Reshet-34 EfficientNet-E0

Fig. 2. Performance of U-Net regressors using different sen-
sor inputs and backbones. Models trained for 50 epochs on
the BioMassters dataset.

6.2. Effect of Self-Supervised Pre-Training

We also evaluated the impact of self-supervised pre-training
(SSL) using U-Net models with ResNet-50 backbones. Initial
weights came from random initialization or SSL on Sentinel-
1 or Sentinel-2 data. As shown in Figure 3, sensor-consistent
pre-training improved accuracy. For example, using SSL
weights trained on Sentinel-1 for Sentinel-1 fine-tuning
yielded R? = 0.544, compared to 0.535 from random initial-
ization. Cross-modal pre-training (e.g., S2-to-S1) decreased
performance to R? = 0.524.

In fusion scenarios, both SSL variants improved per-
formance over baseline: Sentinel-2 pre-training resulted in
R? = 0.666, Sentinel-1 yielded 0.658, and random initializa-
tion gave 0.653. These findings indicate that SSL improves
transferability when the pre-training modality aligns with the
downstream task.

In summary, Griinblick benefits from both input fusion
and SSL-based initialization, enabling higher accuracy with-
out added model complexity or data requirements.

7. CONCLUSION

In this work, we introduced Griinblick, an Al-driven ser-
vice designed for scalable and accurate forest above-ground
biomass (AGB) estimation. As a testbed, we focused on two
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Fig. 3. R? for U-Net regressors (ResNet-50) trained with ran-
dom or SSL-initialized weights.

regions in the Northern Hemisphere: Finland (using the pub-
lic Biomassters benchmark), and British Columbia, Canada
(using an in-house dataset). Both regions offered diverse
conditions for evaluating AGB estimation models based on
multi-sensor Earth Observation data, specifically SAR and
multispectral imagery.

To address this task, we developed a modular deep learn-
ing toolbox based on U-Net architectures, enabling flexible
integration of various feature extractors and sensor modali-
ties.

Benchmark experiments demonstrate that Griinblick suc-
cessfully leverages sensor fusion and self-supervised learning
techniques to improve model accuracy. Specifically, fusing
Sentinel-1 and Sentinel-2 data significantly enhances predic-
tion performance compared to using individual sensors. Fur-
thermore, fine-tuning models with pre-trained weights on EO
datasets further boosts estimation accuracy, highlighting the
value of transfer learning for biomass mapping.

Looking ahead, Griinblick will be extended to include un-
certainty quantification in biomass predictions, offering users
additional insight into the reliability of the estimates. We also
plan to scale the system toward global deployment, enabling
continuous, high-resolution biomass monitoring as a service
for forestry, conservation, and climate research communities.

REFERENCES

[1] Taiyong Ma, Chao Zhang, Liping Ji, Zheng Zuo,
Mukete Beckline, Yang Hu, Xiaojuan Li, and Xi-
angming Xiao. Development of forest aboveground
biomass estimation, its problems and future solutions:
A review. Ecological Indicators, 159:111653, 2024.

[2] Yaxuan Xing, Feng Wang, and Feng Xu. Above ground
biomass estimation by multi-source data based on in-
terpretable dnn model. In IGARSS 2023 - 2023 IEEE

International Geoscience and Remote Sensing Sympo-
sium, pages 1894-1897, 2023.

[3] Tuomas Hame, Y1jo Rauste, Oleg Antropov, Heikki A.
Ahola, and Jorma Kilpi. Improved mapping of tropi-
cal forests with optical and sar imagery, part ii: Above
ground biomass estimation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sens-
ing, 6(1):92-101, 2013.

[4] Autumn Nguyen and Sulagna Saha. Machine learning
and multi-source remote sensing in forest carbon stock
estimation: A review, 2024.

[5] European Space Agency. Climate change initiative:
Biomass, n.d. Accessed: 2025-04-23.

[6] Food and Agriculture Organization of the United Na-
tions. Open foris: Tools for forest monitoring, n.d. Ac-
cessed: 2025-04-23.

[7] Andrea Nascetti, Ritu Yadav, Kirill Brodt, Qixun Qu,
Hongwei Fan, Yuri Shendryk, Isha Shah, and Chris-
tine Chung. Biomassters: A benchmark dataset for for-
est biomass estimation using multi-modal satellite time-
series. In Advances in Neural Information Processing
Systems, volume 36, pages 20409-20420. Curran Asso-
ciates, Inc., 2023.

[8] Government of British Columbia. VRI - 2023 - Forest
Vegetation Composite Rank 1 Layer (R1), 2023. Ac-
cessed: 2025-04-30.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2015, pages
234-241, Cham, 2015. Springer International Publish-
ing.

[10] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In
Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6105-6114. PMLR,
09-15 Jun 2019.

[11] Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong,
Chenying Liu, Conrad M. Albrecht, and Xiao Xiang
Zhu. Ssldeo-s12: A large-scale multimodal, multitem-
poral dataset for self-supervised learning in earth obser-

vation. IEEE Geoscience and Remote Sensing Maga-
zine, 11(3):98-106, September 2023.

[12] Nils Lehmann, Nina Maria Gottschling, Jakob Gaw-
likowski, Adam J. Stewart, Stefan Depeweg, and Eric
Nalisnick. Lightning uq box: Uncertainty quantification
for neural networks. Journal of Machine Learning Re-
search, 26(54):1-7, 2025.

Proc. of the 2025 conference on 104
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

GeoAl & Geospatial Intelligence

AUTOMATING EARTH OBSERVATION ANALYTICS PIPELINES WITH AGENT RAVEN

Gereon Dusella”, Haralampos Gavriilidis™, Binger Chen’,
Begiim Demir”, Volker Markl*, Eleni Tzirita Zacharatou®

“BIFOLD & Technische Universitit Berlin, ¥DFKI, SHPI & Universitit Potsdam

ABSTRACT

Efficient integration of vector databases, such as those con-
taining administrative boundaries and land parcels, with re-
mote sensing images is essential for various Earth Observa-
tion (EO) applications. Zonal statistics (ZS) offer a powerful
tool for this purpose, but their computation remains chal-
lenging due to fragmented system interfaces, diverse prepro-
cessing needs, and inconsistent performance across systems.
Current methods optimize execution within single systems
but lack support for dynamic, cross-system workflows. To
address this, we present Agent Raven, the first Al-driven
multi-agent system designed to autonomously manage the
full lifecycle of ZS computation and deployment. Building
on the Raven framework, Agent Raven dynamically selects
execution backends, optimizes query pipelines, and adap-
tively manages workflows based on previous experiments.
Our work represents a step forward in intelligent orchestra-
tion across heterogeneous systems in EO data analytics.

1. INTRODUCTION

The availability of remote sensing imagery has significantly
increased [1, 2, 3] due to advancements in satellite technol-
ogy. Programs like Copernicus [13] provide vast amounts
of freely available raster data, while the volume of vector
datasets (e.g., OpenStreetMap, governmental geospatial data)
is also expanding. To effectively utilize these data for Earth
Observation applications (e.g., climate monitoring, wildfire
prediction, urban planning) [18, 17, 14, 16], efficient process-
ing techniques are essential. A key step in these applications
is the computation of Zonal Statistics (ZS), where pixel-based
raster data are aggregated within defined vector-based geome-
tries, such as city boundaries or farmland parcels. For exam-
ple, to identify deforested areas, one can apply ZS on satellite
images and polygons that define forest boundaries [15].
Computing ZS requires combining raster (gridded cells)
and vector (geometric features) data. Geospatial systems such
as PostGIS' and Beast [5] handle these data types, but their
APIs and performance vary widely. This variability forces
data scientists to navigate multiple systems, adding complex-
ity and inefficiency. The architecture of each system also

Imttps://postgis.net/

Prrep[ Ja2[]as [ as[[Jas[[ato
Mot [Jes[Jasar[ ]ae

€ 100 /

Beast PostGIS Beast PostGIS
(Data Flow Engine) (DBMS) (Data Flow Engine) (DBMS)

System under Test

Fig. 1: Performance in different development phases

impacts its suitability for different stages of a data science
project. For example, PostGIS is well-suited for development
involving multiple queries on smaller datasets, while Beast
is better for large-scale experiments with single-shot queries.
Figure 1 illustrates this distinction.

While optimizing individual queries is well-studied in
data systems engineering, optimizing the iterative process of
refining an analytics pipeline is significantly more challeng-
ing. This challenge is even greater for ZS queries, as not all
geospatial systems support raster-vector joins equally, forcing
users to adjust queries for each system’s unique API. In addi-
tion, pre-processing steps, such as rasterization, vectorization,
format conversion, and coordinate reference system (CRS)
alignment, are often necessary, depending on the data model
of each system. As queries evolve, the optimal combination
of parameters can change significantly. These challenges
make it difficult for users to efficiently manage evolving ZS
workflows across heterogeneous geospatial systems.

Given these challenges, emerging Al agent technologies
offer promising solutions for automating complex geospatial
workflows. Al agents are bridging the gap between computer
scientists and other users, enabling almost anyone to accom-
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plish tasks that once required years of expertise. They are now
used across various fields for tasks like visual reasoning [9],
code generation [11], scientific experimentation [8], and
model interpretation [10]. In geospatial applications, there
has been a shift from manually created processing scripts to
intelligent agents that autonomously manage remote sensing
data, select tools, and refine outputs for tasks like land cover
mapping, change detection, or geospatial question answer-
ing [7, 12, 6]. These advancements lay the groundwork for
dynamic, multi-system geospatial workflows.

We propose Agent Raven, our vision for an Al-powered
assistant that supports data scientists at all stages of ZS ex-
perimentation - from initial development to continuous de-
ployment. Agent Raven interfaces with the Raven core com-
ponent [4], our framework for executing ZS queries seam-
lessly across multiple geospatial systems. By selecting the
optimal backend and applying query optimizations based on
a database of past experiments, Agent Raven learns and en-
hances performance over time. To the best of our knowledge,
Agent Raven is the first system to offer deep, end-to-end in-
tegration of geospatial data science tasks, aiming to signifi-
cantly reduce development time and operational complexity.

Our contributions are twofold. First, in Section 2, we
describe how Raven integrates heterogeneous geospatial
systems, providing uniform access and enabling seamless
switching between them. This integration simplifies interop-
erability and lessens the workload for data scientists. Second,
in Section 3, we propose Agent Raven, our vision for an
Al-driven assistant that supports data scientists across the
full lifecycle of ZS experimentation. By leveraging past ex-
periment data, Agent Raven accelerates the transition from
early-stage development to robust production pipelines.

2. PLAIN RAVEN FRAMEWORK

Today’s data scientists face multiple challenges when
implementing zonal statistics, due to the varying interfaces
and configuration parameters exposed by existing geospatial
systems, the varying pre-processing steps that these systems
require, and their divergent runtime performance capabili-
ties. In response to these challenges, Raven’ aims to: 1)
offer an easy-to-use zonal statistics interface; and 2) highlight
performance differences in geospatial systems. To achieve
this, Raven exposes a declarative zonal statistics interface
based on a DSL that we developed. Using this DSL, Raven
can transparently optimize and execute a given zonal statis-
tics task on multiple geospatial systems. As a result, Raven
provides system independence, thereby helping users avoid
vendor lock-ins. Furthermore, by automating execution and
providing detailed performance results, Raven simplifies se-
lecting the most efficient system for a given workload. In the
following, we give a brief overview of Raven’s components.

2https://github.com/polydbms/RaveN

2.1. Architecture Overview

Figure 2 presents Raven’s architecture. Raven accepts a
ZS task expressed in its DSL (the query) and relies on its
Pipeline Planner for optimization. Combined with a
Capabilities file specifying any system limitations, the
planner identifies any necessary pre-processing steps, such as
format or CRS conversions, and builds a Pipeline represen-
tation that it passes to the Execution Interface. This
system-developer-provided interface includes a IR (Internal
Representation) Converter and a GSS (Geospatial System)
Connector. The IR Converter translates Raven’s abstract
syntax tree (AST) into system-specific code using parame-
terized templates, and the GSS-Connector enables execution
on the underlying systems and result retrieval. Additionally,
Raven stores execution metrics, e.g., runtime and resource
consumption for each step, in its experiment database, which
is accessible to other systems. The current systems supported
by Raven are PostGIS, Beast, Apache Sedona®, HeavyDB*,
and RasDaMan®.

2.2. Zonal Statistics Parameters

To simplify Zonal Statistics (ZS) queries across different
geospatial systems, Raven provides a domain-specific lan-
guage (DSL, Listing 1) that abstracts system-specific syntax
and allows users to define and tune ZS queries in a struc-
tured way. We have identified four key operator classes that
a tunable ZS query consists of: Dataset operators (L. 2-4)
specify the raster and vector datasets used for analysis. Ag-
gregation operators (L. 6-7) define how pixel values within
vector-defined zones are processed, including grouping, fil-
tering, and computing summary statistics. System operators
(L. 9) determine which geospatial system executes the query.
Execution Parameter operators (L. 11-12) allow fine-tuning
of execution, such as raster tile size adjustment, vector sim-
plification, and CRS alignment.

2.3. Zonal Statistics Pipelines and Optimizations

The AST generated by Raven’s Pipeline Planner (cf.
Figure 2) encapsulates the end-to-end processing of a ZS
task. This includes pre-processing operations, such as chang-
ing format to support loading into the given system, aligning
CRSs, filtering the datasets, as well as the join and aggrega-
tion operations. Raven then allows a data scientist or Al agent
to configure each of these parameters individually, enabling
fine-grained control over the pipeline execution.

We can categorize these parameters into three groups.
First, they can reduce the number of processed pixels and
vector features as early as possible. Second, they can tune the

3https://sedona.apache.org/
“https://heavy.ai
Shttps://rasdaman.org/
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Fig. 2: Agent Raven Architecture

partitioning of raster and vector data to improve query exe-
cution. Third, they can minimize computational overhead by
avoiding expensive operations when possible. These tuning
techniques leverage the available ZS parameter operators and
incorporate methods from existing research. Together, they
can speed up ZS queries significantly [4].

2.4. Benchmarking Mode

The performance of ZS tasks in different geospatial systems
can vary significantly depending on the data and workload.
To uncover this, Raven features a dedicated benchmarking
mode. This mode allows users to execute multiple pipelines
and produce detailed performance plots, e.g., breakdown per-
formance of different pipeline stages, facilitating easy com-
parison of different systems and parameter combinations. As
aresult, users can gain insights into potential bottlenecks and
enhance system performance by fine-tuning available param-
eters. Overall, Raven’s integrated benchmarking component
provides valuable tools for optimizing zonal statistics tasks
across diverse geospatial systems.

3. AGENT RAVEN: AUTONOMOUS ZONAL
STATISTICS BEYOND RAVEN

Calculating the results of a ZS task is only one part of broader
multi-stage geospatial data science pipelines. To cover other
parts of the pipelines, we propose Agent Raven, a multi-agent
extension of the plain Raven framework. Agent Raven al-
lows users to describe analytical goals in natural language,
while internal agents automatically discover datasets, con-
struct pipelines, invoke tools like plain Raven, and manage
execution from development to deployment. It can also re-
trieve external resources, such as data catalogs or tool manu-
als, to assist its reasoning during task planning and execution.

3.1. Background on AI Agents for Geospatial Workflows

An Al agent is a system that perceives its environment, rea-
sons about goals, and acts autonomously to fulfill user re-
quests. These agents typically leverage large language models
and tools to interpret user intent, plan tasks, access external

Listing 1: ZS Query in Raven’s DSL

systems, and manage workflows adaptively. While traditional
single-agent systems struggle with scalability, specialization,
and responsiveness when workflows become complex, multi-
agent systems organize multiple specialized agents under an
orchestrator that coordinates their collaboration [6]. Each
agent focuses on a smaller set of capabilities, such as dataset
discovery, ZS, or deployment, while the orchestrator handles
planning, task assignment, and execution monitoring. Multi-
agent frameworks can more easily scale across domains, in-
tegrate heterogeneous tools, recover from errors, and provide
faster intermediate feedback.

Agent Raven uses a multi-agent framework consisting of
three agents: the Discovery Agent, which identifies and
retrieves relevant input datasets; the Zonal Statistics
Agent, which constructs ZS pipelines and selects appropri-
ate geospatial systems by invoking the core Raven system as a
tool; and the Deployment Agent, which manages down-
stream tasks such as continuous monitoring and scheduled
deployment. A centralized memory allows the system to im-
prove decision-making across tasks. This shared memory will
replace the database used in the plain version of Raven.

3.2. Workflow Example of Agent Raven

We envision Agent Raven as a deeply integrated multi-agent
system, where specialized Al agents collaborate to automate
the end-to-end ZS workflow. Instead of requiring users to
manually script queries, Agent Raven allows users to sim-
ply express their goals in natural language. The agents then
automatically handle dataset retrieval, pipeline construction,
execution, and continuous pipeline deployment.

Consider a data scientist interested in monitoring a spe-
cific geospatial area over an extended period, such as tracking
the percentage of trees in a given region to observe deforesta-
tion. They would interact with Agent Raven by specifying the
task and suggesting relevant criteria for suitable datasets. In
response, the orchestrator in Agent Raven schedules dataset
retrieval to its Dataset Discovery Agent, which searches for
and returns a selection of candidate datasets, complete with
metadata. To minimize perceived latency and improve user
experience, Agent Raven proactively initiates multiple par-
allel actions. While the Dataset Discovery Agent retrieves
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datasets, the ZS Agent begins preparing preliminary pipeline
templates based on the user’s task description. When candi-
date datasets are identified, the ZS Agent automatically gen-
erates the pipeline representation and invokes the underlying
plain Raven engine as a tool to execute the ZS operations.
This process includes selecting an efficient geospatial system
capable of handling the candidate datasets. To provide early
feedback and save resources, Agent Raven initially executes
the pipeline on a small geospatial subset, quickly producing
preliminary results. In cases where datasets are particularly
large, Agent Raven may suggest applying approximate query
processing to reduce the dataset size and speed up the query,
while trading accuracy. Additionally, Agent Raven leverages
its shared memory, which records all past task steps, param-
eters, and outcomes, to predict optimal configurations based
on prior experience, further reducing the need for user inter-
vention. If a dataset appears highly promising, Agent Raven
can even pre-run partial queries while awaiting final user con-
firmation, further improving the perceived latency.

Once the user is satisfied with the preliminary results,
Agent Raven will switch over to full-scale experiment mode.
It again analyzes all parameters, considering available re-
sources and time, selecting the best system and execution
strategy. The final results will be passed to the continuous
Deployment Agent, which manages ongoing deployments
and regularly updates Agent Raven on its operations. This
allows Agent Raven to adapt any parameters if necessary.

4. OUTLOOK

This paper presents Agent Raven, an Al-powered multi-agent
system that automates ZS-based EO analytics pipelines across
diverse geospatial systems. By adaptively selecting execution
systems, optimizing queries, and managing workflows based
on historical performance, Agent Raven enhances both the
efficiency and accessibility of EO applications.

Looking ahead, we plan to extend Agent Raven with real-
time data streaming support and integrate additional geospa-
tial backends. Moreover, we plan to incorporate fault-tolerant
execution strategies within the multi-agent framework to en-
sure robust execution in dynamic environments.
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ABSTRACT

This abstract introduces a unifying spatial framework based
on Discrete Global Grid Systems (DGGS) to facilitate an
interoperable data economy and scalable GeoAl workflows.
It proposes a spatial tokenizer, a DGGS-based abstraction
layer that partitions the Earth’s surface into hierarchical,
equal-area zones, providing a shared reference for spatial
data fusion, indexing, and AI modeling. This approach
supports FAIR principles, Data Spaces, and addresses
challenges of data harmonization, explainability, and
reusability. The DGGS acts as an analog-to-digital converter
for geospatial data, transforming the continuous Earth
surface into discrete, computable units. By adopting DGGS,
data producers and consumers can decouple analytics from
native formats, enabling applications like climate resilience
assessment and risk modeling. The concept is demonstrated
through a DGGS API and storage layer.

Index Terms— DGGS, GeoAl, Spatial Tokenizer, Data
Economy, Interoperability

1. INTRODUCTION

The exponential growth of spatial data has opened new
possibilities for analytics, forecasting, and decision-making
[1]. However, technical fragmentation - across coordinate
systems, data models, and storage architectures - still limits
effective integration of Earth Observation (EO) with
Al-driven analytics [2]. This abstract proposes a unifying
spatial framework based on Discrete Global Grid Systems
(DGGS)[3] to underpin an interoperable data economy and
enable scalable GeoAl workflows.

We introduce the concept of a spatial tokenizer: a
DGGS-based abstraction layer that systematically partitions
the Earth’s surface into hierarchical, equal-area zones,
providing a shared reference for spatial data fusion,
indexing, and Al modeling [Figure 1]. This approach aligns
with FAIR principles[4], supports Data Spaces [5], and
addresses core challenges of data harmonization. Here, the
term  ‘tokenizer’ is borrowed from the broader Al
community, where ‘tokenization’ refers to the process of
breaking raw data into smaller, discrete units.

Just as digital systems require discrete units to process and
represent information, Al requires data to be digitized into
consistent, structured tokens. In contrast, geographic space
is inherently continuous and heterogeneous. A DGGS acts
as the analog-to-digital converter (ADC) for geospatial data,

transforming the continuous Earth surface into discrete,
computable units [6]. It digitizes geography in the same way
a microphone digitizes sound - enabling Al to understand,
index, and model spatial phenomena.

By adopting a DGGS as an underlying indexing and storage
mechanism, data producers and consumers can decouple
analytics from native formats and projections, enabling
policy-relevant applications such as climate resilience
assessment, dynamic risk modeling, and near-real-time
monitoring. The tokenizer concept is demonstrated through
a DGGS API and storage layer within the context of the
Open Geospatial Consortium (OGC) [7].

This work aligns with the European Commission's
Interoperable ~ Europe  initiative, =~ which  promotes
cross-border and cross-sector interoperability as a
foundation for public sector innovation and digital
sovereignty [8]. It also supports objectives of the EC’s
SIMPL (Smart middleware platform) framework, which
aims to establish trusted mechanisms for data sharing and
reuse in accordance with the European Data Strategy [9].

2. BACKGROUND AND RELATED WORK

Recent efforts such as the Copernicus Data Space
Ecosystem, Destination Earth (DestinE), and ESA’s Digital
Twin Earth highlight the need for wunified spatial
infrastructures that can accommodate diverse data streams
and analytical workloads [cf. 10]. However, these initiatives
still rely heavily on conventional GIS paradigms, where
spatial  joins, reprojections, and data fusion are
computationally expensive and semantically inconsistent.

DGGSs offer a promising alternative, standardizing spatial
representation into discrete, indexable units [3]. This
inherently supports hierarchical aggregation, consistent
downscaling, and Al-ready feature extraction. Prior
implementations (e.g., ISEA3H, H3, rHEALPix) have
demonstrated technical feasibility, yet lack unified APIs,
integration with modern cloud-native architectures, or
adoption as analytical primitives for Al [cf. 11].

Our work builds on ongoing standardization efforts in the
OGC and extends them with a programmable interface for
data ingestion, transformation, and retrieval. The
DGGS-based tokenizer enables alignment of datasets by
spatial keys rather than geometry, offering substantial
performance and interoperability benefits.
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Fig. 1. Hexagonal grid over Europe, a common spatial data space for GeoAl

3. GEOPLEGMA: A UNIFIED INTERFACE FOR DGGS

While the DGGS concept is powerful, its practical use
remains limited by fragmented implementations and
complex, often theoretical, tooling. To address this, we
introduce GeoPlegma: a lightweight and user-friendly
software interface designed to aggregate and unify access to
diverse grid systems, including DGGRID, DGGAL,
HEALPix, H3, S2, and others.

GeoPlegma abstracts the complexity of each underlying
DGGS implementation and exposes a common interface for
spatial indexing, data ingestion, and retrieval. It lowers the
entry barrier for developers, analysts, and institutions
looking to adopt DGGS for scalable spatial analysis. Rather
than promoting a single grid, GeoPlegma emphasizes
interoperability and composability, making it possible to
discretize and quantize, i.e. tokenize, space and give the
ability to analyze across different grids for specific
use-cases.

This approach enables experimentation, comparison, and
co-existence of multiple DGGS types within a single
processing framework, which is providing practical
interoperability for Al and EO workflows. It also supports
the emergence of a modular ecosystem of spatial tools,
aligned with the broader goals of the Interoperable Europe
initiative and the upcoming Digital Europe Programme [12].

4. ToWARD A UNIFIED SPATIAL DATA SPACE

The vision of a federated, interoperable data space is gaining
traction across domains, from EO to civil security to digital
governance. However, the technical realization of such a
space still faces substantial challenges. A key example is the
International Hydrographic Organization (IHO), where
national hydrographic offices manage independent data
lakes, yet seek a common spatial framework for seamless
integration and analysis. A DGGS can serve as this
harmonizing layer, enabling consistent representation and
cross-border interoperability.

Importantly, a unified spatial data space must go beyond
conventional GIS. EO and geospatial datasets are often
siloed and incompatible with structured data workflows.
DGGS zones act as keys that allow data to be reshaped,
indexed, and queried like database records. This process
enables users to view and access their data lake through the
lens of a chosen grid geometry that best suits their use case.

Through spatial tokenization, data becomes accessible not
only by location or geometry, but as rows in a scalable,
schema based on Zone IDs. This supports the design of
modular, queryable data systems that conform to Data Space
principles and enable composable spatial analytics at scale.
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Fig. 2. Example data of canopy height in Belgium at https://demo.geoinsight.ai

5. IMPLEMENTATION AND DEMONSTRATION

We are actively developing components to operationalize the
DGGS tokenizer concept. The DGGS API hosted at
https://dggs.geoinsight.ai/ is part of the OGC pilot initiative
and provides endpoints for spatial queries, zone inspection,
and hierarchical operations. It enables real-time
DGGS-based interactions through a standard interface.
GeoPlegma (https:/github.com/GeoPlegma), written in
Rust, implements multiple DGGS variations from scratch
while also leveraging existing open libraries. The codebase
is modular and designed for performance, with an emphasis
on type safety and extensibility. It has been released under
the MIT or Apache 2.0 license. A visualization tool is in
progress, expected to be deployed at https:/dggs.io,
enabling users to explore DGGS coverage and interact with
geographic information and insights through an intuitive
web interface. Additionally, integration with the STAC
(Spatio Temporal Asset Catalogs) ecosystem is planned to
enhance access and metadata exchange. Previews and
system  diagrams will be made available via
https://demo.geoinsight.ai, where users can evaluate the
proposed system architecture and workflows in action

(Figure 2).
6. UsE CASES AND APPLICATIONS

The primary use case of a DGGS is to enable data
interoperability across heterogeneous sources, unlocking
advanced analytical capabilities. By assigning spatial units
to each data point - regardless of origin, projection, or

resolution - DGGS provides a universal reference frame for
integration. A typical use case involves combining EO data
with ancillary sources such as demographic statistics, [oT
sensor streams, climate variables, and social media signals
[ef 13, 14, 15]. Once harmonized through DGGS, this fused
data can support real-time monitoring, automated index
generation, advanced spatial statistics, and machine learning
workflows, providing a foundation for operational GeoAl.
In the maritime domain, the International Hydrographic
Organization (IHO) illustrates the potential of DGGS to
create a pan-European spatial data space. Here, national
hydrographic datasets can be consistently partitioned and
queried through shared grid zones, promoting cross-border
interoperability and unified maritime analytics. DGGS zones
also offer strong policy relevance. Because the zones are
discrete, stable, and reproducible, users can query the same
data slice across systems and over time. This consistency
ensures transparency, reproducibility, and comparability,
which are key enablers for regulation, reporting, and
evidence-based policy.

One forward-looking GeoAl scenario envisions exploratory
queries: users could select zones of interest and let the
system automatically search for similar spatial patterns
elsewhere in the dataset. This supports unsupervised
discovery, anomaly detection, and feature-based spatial
search at scale. In the long term, we envision GeoAl
architectures that directly leverage the structure of DGGS.
The fixed topology and relations between zones across the
hierarchy make DGGS a natural substrate for Graph Neural
Networks (GNNs) [16], where each zone acts as a node and
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adjacency relations define the graph. Such models can learn
from neighborhood context, perform hierarchical reasoning,
and generalize spatial knowledge across scales. To ensure
broad participation and respect organizational boundaries,
federated learning approaches are planned, where
institutions contribute local models trained using a DGGS
without sharing the data itself. This enables collaborative Al
training across jurisdictions, preserves data sovereignty, and
supports scalable GeoAl development across Europe and
beyond.

7. PERSPECTIVES AND BROADER ADOPTION

By solving the Al readiness of the geospatial data thanks to
DGGS, the next frontier of Geo related Al , in particular
with Large Models, will then be the data access per se. Not
only providing a smooth and powerful access, the challenge
will be to go beyond the bottleneck of sourcing input
material, i.e. geospatial data. In other words, tearing down
the Al Geodata wall so that Al can actually deliver its
potential at the full scale. With respect to that concern,
strategies like federated data access and mutualization of
resources are being explored and should be examined to
scale up and feed Al applications accordingly.

8. CONCLUSIONS

The proposed spatial tokenizer based on Discrete Global
Grid Systems (DGGS) offers a unifying framework to
address technical fragmentation in geospatial data
integration, enabling scalable GeoAl workflows. By
transforming the continuous Earth surface into discrete,
computable units, DGGS acts as an analog-to-digital
converter for geographic data, facilitating consistent data
harmonization, indexing, and Al modeling. This approach
supports FAIR principles and Data Spaces. GeoPlegma, a
user-friendly software interface, simplifies access to diverse
grid systems, promoting interoperability and lowering the
entry barrier for DGGS adoption. The implementation of the
DGGS API and associated tools, aims to create a unified
spatial data space based on zones. This creates a basis for
operational GeoAl. Our long-term visions include GeoAl
architectures that leverage the structure of DGGS for Graph
Neural Networks and federated learning approaches to
ensure data sovereignty and collaborative Al training. The
DGGS approach promises transparency, reproducibility, and
comparability, essential for evidence-based policy and
regulation.

REFERENCES

[1] Pei, T., Song, C., Guo, S., Shu, H., Liu, Y., Du, Y, ... & Zhou,
C. (2020). Big geodata mining: Objective, connotations and
research issues. Journal of Geographical Sciences, 30, 251-266.
[2] Zou, L., Song, Y., & Cervone, G. (2024). Geospatial big data:
theory, methods, and applications. Annals of GIS, 30(4), 411-415.

[3] Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic
Discrete Global Grid Systems. Cartography and Geographic
Information Science, 30(2), 121-134.
https://doi.org/10.1559/152304003100011090

[4] Jacobsen, A., de Miranda Azevedo, R., Juty, N., Batista, D.,
Coles, S., Cornet, R., ... & Schultes, E. (2020). FAIR principles:
interpretations and implementation considerations. Data
intelligence, 2(1-2), 10-29.

[5] Bacco, M., Kocian, A., Chessa, S., Crivello, A., & Barsocchi, P.
(2024). What are data spaces? Systematic survey and future
outlook. Data in Brief, 57, 110969.

[6] Mechenich, M. F., & Zliobaité, . (2023). Eco-ISEA3H, a
machine learning ready spatial database for ecometric and species
distribution modeling. Scientific data, 10(1), 77.

[7] Purss, M. B. J., Gibb, R., Samavati, F., Peterson, P., & Ben, J.
(2016). The OGC® Discrete Global Grid System core standard: A
framework for rapid geospatial integration. In 2016 IEEE
International Geoscience and Remote Sensing Symposium
(IGARSS) (pp. 3610-3613). IGARSS 2016 - 2016 IEEE
International Geoscience and Remote Sensing Symposium. IEEE.
https://doi.org/10.1109/igarss.2016.7729935

[8] European Commission, “Interoperable Europe Portal,”,
Publications Office of the European Union, 2025. Available:
https://interoperable-europe.ec.europa.cu/

[9]European Commission, “Simpl: Cloud-to-edge federations
empowering EU data spaces,”, Publications Office of the European
Union, 2025. Available:
https:/digital-strategy.ec.europa.eu/en/policies/simpl

[10] Destination Earth, Destination Earth (DestinE), a European
Commission flagship initiative to support the green transformation,
Pubhcatlons Ofﬁce of the European Umon 2025 Avallable

[11] Bowater, D., & Stefanakis, E. (2018). The rHEALPix Discrete
Global Grid System considerations for Canada. Geomatica, 72(1),

27-37. https://doi.org/10.1139/geomat-2018-0008

[12] The Digital Europe Programme, Publications Office of the
European Union, 2025. Available:

httos:/digital- ivities/digital-

[13] Jendryke, M., Balz, T., McClure, S. C., & Liao, M. (2017).
Putting people in the picture: Combining big location-based social
media data and remote sensing imagery for enhanced contextual
urban information in Shanghai. Computers, Environment and
Urban Systems, 62, 99—112.
https://doi.org/10.1016/j.compenvurbsys.2016.10.004

[14] Jendryke, M., & McClure, S. C. (2021). Spatial prediction of
sparse events using a discrete global grid system; a case study of
hate crimes in the USA. International Journal of Digital Earth,
14(6), 789-805. https://doi.org/10.1080/17538947.2021.1886356
[15] Caspari, G., dos Santos Manuel, J., Gago-Silva, A., &
Jendryke, M. (2024). Employing discrete global grid systems for

reproducible data obfuscation. Scientific Data, 11(1).
https://doi.org/10.1038/s41597-024-03354-5

[16] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S.
(2020). A comprehensive survey on graph neural networks. /[EEE
transactions on neural networks and learning systems, 32(1), 4-24.

Proc. of the 2025 conference on 112

Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

GeoAl & Geospatial Intelligence

LLM-READY SPATIO-TEMPORAL DATA: ENABLING AGENTIC GEOAI WITH STAC
C. Chiarelli*, I. Trandafir$, P. Kempeneers”

“European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy, SUnisystems

ABSTRACT

Al-ready data is an evolving concept, with its definition
depending on the specific Al application. The adoption of
structured metadata and standardized APIs can significantly
improve data findability and accessibility for Large Language
Models (LLMSs). This paper concentrates on the Spatio-
Temporal Asset Catalog (STAC) standard, examining its
strengths in supporting LLM spatio-temporal data retrieval.
For this purpose, a prototype was developed to demonstrate
how an LLM agent can retrieve, and process geospatial data
exposed by a STAC catalog. The study reveals some key
challenges such as excessive token use, imprecise spatial
queries, and redundant endpoints, and shows possible
targeted mitigations. The results demonstrate STAC’s
foundational strengths and the Model Context Protocol
(MCP)’s enabling role for agentic geospatial artificial
intelligence (GeoAl) workflows.

Index Terms— STAC, LLM agent, GeoAl, MCP, LLM-
ready spatio-temporal data

1. INTRODUCTION

The concept of Al-ready data is still evolving, and there is
currently no universal method that can preemptively prepare
all data for every Al application. Gartner has noted that Al
readiness highly depends on the specific Al use case [1].
Consequently, rather than addressing Al-ready data in
general—which spans disparate domains from structured
time-series datasets to unstructured multimedia—this paper
narrows its scope to LLM-ready spatio-temporal data,
described through the STAC standard.

Retrieving the data is the first fundamental step in any
data processing and analysis workflow, whether traditional or
Al-based. It is therefore essential for geospatial artificial
intelligence (GeoAl), where geospatial studies and artificial
intelligence intersect [2]. A typical application is rapid
conversational access to spatio-temporal assets that can
improve environmental monitoring and crisis management.
This can foster better situational awareness, faster anomaly
detection, and more effective resource coordination.

This paper focuses on spatio-temporal datasets and
demonstrates how the Spatio Temporal Asset Catalog
(STAC) standard [3] with its rich metadata and formalized
API specifications establishes a strong foundation for agentic
geospatial intelligence. To this end, a working prototype was

implemented, and it allowed to highlight challenges and
mitigation strategies.

2. FROM STAC TO LLM-READY SPATIO-
TEMPORAL DATA

STAC has become a key standard for organizing and sharing
geospatial data, especially for Earth Observation and remote
sensing. It provides metadata with extensive descriptive
fields that enable Al models to parse and contextualize
imagery and sensor data. Domain-specific extensions [4]
further enhance this metadata, supporting specialized Al
tasks with improved accuracy. In addition, STAC metadata
and API specification [5] defined via the JSON schema [6]
and the OpenAPl [7] standard respectively, provide a
machine-readable interface that can be used as a basis for
automated geospatial intelligence.

STAC’s extensibility is another major strength.
Community-driven extensions can add new metadata fields
without breaking core specifications, ensuring backward
compatibility while adapting to evolving needs. Its alignment
with Open Geospatial Consortium (OGC) standards [8] and
support for cloud-native formats like Cloud Optimized
GeoTIFF (COG) [9] and Zarr [10] also streamline integration
with machine learning and geospatial analytics pipelines.

However, despite these native strengths, achieving full
LLM-readiness requires additional capabilities that STAC
alone does not provide. This requires additional components
which include conversational tool descriptors that define
human-readable functions, dynamic controls like pagination
and rate-limiting to support interactive, dialog-based usage,
and contextual metadata summaries providing aggregated
information [11].

3. LLMS, AGENTS, AND TOOL CHAINING

LLMs are neural networks trained on massive text corpora to
generate human-like text. They can summarize information,
answer questions, translate text, or carry on a conversation by
predicting the next word in a sequence. However, these
models inherently lack the capacity to interact with external
tools or retain memory across interactions and their
knowledge is frozen at training time. Moreover, every LLM
has a finite “context window” meaning it can only consider a
limited amount of text at once. These constraints — static
knowledge, no stateful memory, and limited context — restrict
an LLM’s ability to operate autonomously or reliably over
extended tasks.
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Agentic systems build on LLMs by adding autonomy,
planning, and external interaction. In technical terms, an Al
agent uses a language model as its reasoning core but can
formulate plans and take actions beyond the original training
data. Key to agentic systems is access to tools and external
resources. Tools are executable components—such as
operations, algorithms, or services—that perform specific
tasks when invoked. Resources refer to structured datasets or
content repositories that provide information upon request.
Unlike a stand-alone LLM, an agent can break a complex task
into subtasks and can orchestrate multiple tools in sequence
(a process sometimes called tool chaining) where the output
of one tool serves as the input for the next, creating complex
processing pipelines that can adapt to diverse tasks and data
scenarios [12].

Central to this new paradigm is Model Context Protocol
(MCP), an open standard recently introduced by Anthropic
[13]. MCP enables secure and standardized communication
between LLM agents and external systems, eliminating the
need for custom integrations with each new tool or resource.
By providing a unified interface for tool and data discovery,
MCP empowers agents to dynamically expand their
capabilities and operate in increasingly complex and
interconnected environments.

The evolution from traditional LLMs to intelligent agentic
systems marks a significant step toward enabling autonomous
task execution. These advancements lay the groundwork for
agentic geospatial intelligence, where Al-driven agents
autonomously manage geospatial data retrieval, processing,
and analysis with contextual awareness.

4. GEOAI PROTOTYPE

A prototype was developed to demonstrate how geospatial
data, structured with the STAC standard, can be made LLM-
ready and integrated into an agentic intelligent system (see

Fig. 1).
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Fig. 1. Agentic architecture accessing three MCP servers
(on the right)
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It consists of an LLM agent that interacts with three MCP
servers. The servers were implemented using Anthropic MCP
Python SDK [14]. A first MCP server (Nominatim) is
responsible for geocoding and is used to convert names of

locations on earth to GeoJSON polygons. It relies on
OpenStreetMap’s Nominatim service [15]. Central for this
study is the STAC MCP server that links the Al agent to the
STAC APIs provided by the Copernicus Data Space
Ecosystem (CDSE) [16]. This STAC endpoint was chosen
because of its openness and matureness. This server allows
the agent to discover and search the available geospatial data
in the CDSE catalog. The third MCP server is responsible for
image processing, also based on a CDSE implementation
(Sentinel Hub) [17]. In this study, it is used as an example to
complete the agentic processing chain.

Standard APl endpoints are exposed as MCP servers,
creating the corresponding tools and resources. In Fig. 2 a
simple example is shown of how to construct an MCP tool by
wrapping an API function call.

The Al agent itself was built with the mcp-agent
framework [18]. It orchestrates tool invocation and response
handling hereby interacting with the three MCP servers and
the LLM based on LLM Claude 3.5 Sonnet [19]. Finally, a
simple user interface was built with Streamlit [20] to directly
interact with the user and visualize the results.
pmcp . tool()
async def list_collections(ctx: Context) -» Dict:

stac_client = ctx.request_context.lifespan_context.stac_client

return await stac_client.get_collections()
Fig. 2. Example of MCP tool wrapping getCollections
method of STAC APIs.

An end-to-end pipeline from the text query to the final
geospatial insight is demonstrated using the following query:
“Analyze vegetation over the Ispra (Italy) area in the most
suitable day of spring 2024”. This query was intentionally
phrased ambiguous, to test the interpretation capability of the
LLM in the context of GeoAl. Vegetation can be analyzed
with remote sensing imagery, typically by calculating the
normalized difference vegetation index (NDVI) [21]. This
requires the LLM to select an optical sensor with the
appropriate spectral bands, for instance the multi-spectral
instrument (MSI) onboard on the Copernicus Sentinel-2
satellites. In this case, cloud cover is an important factor when
selecting the optimal acquisition date of optical Earth
Observation imagery. This request enchained three steps
shown in Fig. 3.

Proc. of the 2025 conference on 114
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

GeoAl & Geospatial Intelligence

I'll help you analyze vegetation in Ispra, Italy. Let me break this

down into steps:

1. First, I'll geocode Ispra to get its coordinates
2. Then, I'll search for Sentinel-2 L2A imagery (best for vegetation
analysis) during Spring 2024 (March 20 - June 20)

3. Finally, I'll process the imagery for vegetation analysis

Fig. 3. Agentic workflow explained by the LLM to the
user.

Information recorded in a log file provided insight into how
the LLM agent reaches its final answer. It was shown how the
request was translated into a chain of subsequent calls to tools
and resources.

1. Geocoding: convert the input location (in this case Ispra)
to a polygon by calling the Nominatim MCP server.

2. Search data:

a. Query the list of existing Earth Observation
collections available in the CDSE STAC catalog by
calling the getCollections method of the STAC
APIs. This retrieves information on the available
collections and identifies those that include spectral
bands suitable for calculating the Normalized
Difference Vegetation Index (NDVI). Among them,
the Sentinel-2 L2A collection is identified,
providing the red (B04) and near-infrared (B08)
bands.

b. Query the catalog by calling the search method of
the CDSE STAC APIs. This selects the images in the
retrieved collection (Sentinel-2 L2A) with the lowest
cloud coverage. The LLM agent formulates the
query parameters (coordinates, date range and
others) according to the STAC specifications and
passes them to the STAC MCP server.

3. Image processing: call CDSE Sentinel Hub processing
APIs to compute NDVI on the extracted items. The LLM
agent formulates the query parameters according to the
Sentinel Hub specifications and passes them to the
Sentinel Hub MCP server, which returns the image with
the calculated index.

This workflow shows how an LLM agent can autonomously
decide and chain steps leveraging MCP-compatible services,
with the LLM providing the logic and natural language
instructions. The prototype demonstrated that the LLM agent
successfully completed its workflow like a human
programmer: retrieved the location geometry, then queried
the STAC catalog for relevant data, and finally generated a
meaningful image along with an explanation of how to
interpret it, as shown in Fig.4. No modifications or fine-
tuning were applied to the LLM. The selection of criteria,
such as identifying the lowest cloud coverage or choosing the
appropriate spectral bands, was based solely on the input
prompt and the provided context.

Further analysis and interpretation of the resulting NDVI
image are essential to fully address the user's query.
However, these steps would require additional specialized
tools or cooperating Al agents and are therefore left for future
research. The primary aim of the prototype in this study was
to assess the STAC readiness for integration with LLMs, with
the data processing components included mainly to complete
the end-to-end workflow.

NDVI image color interpretation using bands B04 (red) and B08
(NIR):

- Dark areas indicate dense vegetation (because healthy
vegetation strongly absorbs red light (B04) which is shown in the
red channel)

- Brighter/lighter areas indicate less vegetation or non-vegetated
surfaces

- The darkest areas in the image represent the densest
vegetation cover, as these areas have the highest red light
absorption

- Water bodies appear bright due to their higher reflectance in
the red band compared to vegetated areas

- Urban areas and bare soil typically appear in brighter tones

This image from May 28, 2024 (14

oud cover) shows the
vegetation patterns around Ispra during peak spring growth,
where the darkest areas in the image indicate the healthiest and

densest vegetation cover.

Fig. 4. Result image of NDVI calculation over Ispra area
in Spring 2024 and related LLM description.

5. DISCUSSION

The geospatial Al prototype that was implemented in this
study has revealed some key challenges for making LLM
ready data leveraging on STAC. Initial experiments
highlighted several obstacles. One major issue was excessive
token usage, with conversations exceeding 70,000 tokens and
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frequently reaching the LLM’s token limit. Another
challenge was that the LLM struggled to handle structured
geospatial queries directly. When given a place name (e.g.,
"Ispra’), it would attempt to estimate the location by retrieving
its coordinates and then constructing a bounding box around
it. This approach led to imprecise spatial representations and
introduced unnecessary steps into the workflow.
Additionally, the use of one-to-one endpoint mappings,
resulted in inefficient and redundant API calls, emphasizing
the need for optimized endpoints.

To overcome these challenges, several targeted
optimizations were implemented. The use of the STAC API
extension, Sort and Fields, significantly reduced token usage
by limiting metadata requests to essential fields and ordering
results by relevance. This reduced the conversation size from
approximately 70,000 tokens to just 4,000. Local caching of
geometries and images helped avoid redundant data transfers
by storing geometry definitions and image payloads locally,
thus eliminating the need to transmit large JSON or binary
streams to the LLM. Furthermore, the integration of
authoritative polygon geocoding through the Nominatim tool
simplified preprocessing and reduced query complexity by
directly retrieving accurate GeoJSON polygons.

These optimizations substantially improved both the
efficiency and reliability of the agentic workflow. Future
enhancements may include the implementation of adaptive
pagination strategies and the use of embedding-based pre-
filtering of assets to further streamline and refine query
handling.

6. CONCLUSION

This paper articulates an agentic approach to LLM-driven
spatio-temporal data retrieval and analysis leveraging on
STAC. A prototype was implemented to demonstrate how an
LLM agent can retrieve, and process geospatial data exposed
by a STAC catalog, using MCP-enabled tools. The study
reveals some key challenges for making LLM ready spatio-
temporal data, suggesting mitigation strategies and
highlighting STAC’s strengths.

In this prototype, relatively simple queries were used to
validate the feasibility of the approach. Further investigation
is required to evaluate performance with more complex and
diverse queries, which will provide deeper insights into
robustness and scalability. Future work should explore
adaptive interaction strategies, multi-agent orchestration, and
enhanced tooling for image analysis, visualization and batch
processing. These advancements aim to extend agentic
geospatial workflows to broader and more complex
application scenarios.
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ABSTRACT

Earth observation (EO) data plays a key role in the analysis and
monitoring of land cover dynamics. With increased availability of
long time series of EO data, it is essential to develop effective
workflows across studies to evaluate the land cover changes. In
contrast to approaches relying on analysing the reflectance values
directly, we developed a workflow for long EO time series analysis
based on semantic categories and evaluated its effectiveness in
monitoring and quantifying long-term land cover dynamics in semi-
arid regions. The analysis aimed to answer the question, “How
effective are a semantic EO workflows in monitoring and
quantifying long-term land cover dynamics, while ensuring
automation, reproducibility and scalability?” A semantic EO
workflow was used to analyze the data, relying on the Satellite
Image Automatic Mapper (SIAM™) to semantically process the
datasets and the Semantique python library for semantic querying.
The semantic EO workflow is complementary to existing
approaches but provides additional insights into spatio-temporal
land cover dynamics and confirms the reproducibility of results,
automation and scalability of the approach.

Index Terms— Earth Observation, Land Use Land Cover,
Semantic Enrichment, Semantic Querying.

1. INTRODUCTION

Land use land cover change (LULCC) is a global phenomenon
that has significant environmental impacts including vegetation
changes and biodiversity loss [1]. Over the past four decades,
LULCC has intensified and is closely linked to accelerating global
environmental crises [2]. Arid and semi-arid regions - covering
about 41% of the Earth’s land surface and supporting roughly 2.5
billion people - are particularly vulnerable, with vegetation highly
sensitive to climate change and water scarcity [3].

Meanwhile, the increasing availability of long-term remotely
sensed Earth Observation (EO) data offers both opportunities and
challenges for innovative data retrieval, processing, and analysis. As
the volume of EO data grows, traditional methods of managing it
have become inefficient and unable to meet the demand for timely
insights [4]. In turn, automated workflows have emerged as
solutions. While many of them rely on analysis of reflectance values
or spectral indices such as the normalized difference vegetation
index (NDVI), a semantic approach based on semantic enrichment
(SE) of spectral categories can provide additional insights, because
categorical analysis can express queries such as “how many”, “how
often” etc. SE refers to the process of assigning concepts from global
ontologies to semantic types in local ontologies to create a

terminology knowledge base (TKB) [5]. One of the approaches used
to produce a semi-symbolic layer from EO data is using the Satellite
Image Automatic Mapper (SIAM™) software [6]. It implements a
fully automated physical-model-based decision tree that assigns a
multi-spectral color name (category) to EO data without training
samples. Those categories can be semantically queried in EO data
cube instances using semantic EO data cubes.

Effectiveness in a semantic EO workflow is measured by
analyzing attributes of 1) automation — reducing manual
interpretation by mapping data to semantic concepts, 2)
reproducibility — ensuring transparent and shareable workflows
through explicit ontologies and mappings, and 3) scalability —
enabling efficient large-scale, multi-temporal analyses via EO data
cubes and standardized interfaces. Given there has been limited
research on the effectiveness of semantic EO workflows in
analyzing long-term land cover dynamics, this study aimed to apply
a semantic EO workflow using a semantic querying and analysis
approach for categorical time-series applied to Landsat 8 and
Sentinel-2 data.

2. METHODS

2.1. Trend in EO Data Generation and Management

The Landsat and Copernicus Sentinel programs have been
central to EO satellite technology development and have realized a
rich repository of satellite imagery. Currently, satellite observations
provide wide area coverage and long-term sources for EO data and
are crucial for monitoring and identifying insights on earth changes
and anthropogenic influence [7]. Improvements in the storage and
processing of large EO data do help with the monitoring and
analysis.

2.2. Semantic EO Data Cube

A data cube is a multi-dimensional array that arranges data in a way
that makes data storage, access, and analysis easier than file-based
storage and access [8]. EO data cubes contain raster data that is
organized along multiple dimensions that can be directly accessed.
The structure improves data accessibility, allowing users to retrieve
specific subsets through spatial or temporal queries [9]. Semantic
EO data cubes move beyond data storage and provision and offer
basic, interoperable spectral categories as building blocks of image-
derived information within the cube. Users can create more
expressive, thorough rulesets and queries as a result, and semantic
analyses can be integrated into basic rule-sets in domain language
[8]. Certain semantic content-based queries covering a user-defined
area of interest (AOI) in each temporal extent are possible given
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semantic enrichment that includes clouds, vegetation, water, and
"other" categories.

2.3. Semantic Enrichment with SIAM

SE of EO images refers to “interpreted content of EO imagery (i.e.,
mapping data to symbols that represent stable concepts)” [10].
SIAM™ is a fully automated program that works without training
data or human input [11]. It is designed for:

1. Converting multi-sensor, multi-spectral (MS) reflectance
data into a structured set of color names at different levels
of detail, forming a hierarchy of color vocabularies.

2. Identifying connected regions (super pixels or segments)
within the color-mapped image.

3. Assessing the accuracy of image compression using
vector quantization (VQ) by measuring the root-mean-
square error (RMSE).

SIAM™  emulates a pre-attentive phase of human vision,
performing the first classification of satellite data autonomously
without the need for user guidance or training [6]. It is the first,
necessary step towards semantic analysis, which requires semantic
querying on user-side to generate meaningful results.

2.4. Semantic Querying with Semantique Library

The Semantique Python package allows implementation of a
structured framework for semantic querying in EO data cubes. There
are three main components of the framework and include the real-
world, image, and mapping domains. Semantique makes a clear
separation between the image domain and the real-world domain. In
this study, it is used for the analysis of the long categorical time
series.

2.5. Study Area

The research focuses on Kanthuni area, Makueni County, Kenya.
The area was selected for this study as it lies in the arid and semi-
arid zone of the Eastern region of the country which is characterized
by frequent draught and minimal rainfall. Due to the rainfall
shortage in the region, sand dams have been significantly
constructed between 2011 and 2014 as a solution for water
harvesting and management. In this context, our method supports
the research on the impact of these sand dams on their environment
[12].

2.6. Data

The primary datasets for this study were Landsat 8, and Sentinel-2,
which provide multi-temporal coverage of the study area over a 10-
year period for the former and 8 years for the latter. ERAS data were
also used as complimentary to the categorical time series analysis.
ERAS is the 5" generation of European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis of the global
climate from 1940 to the present [13].

2.7. Data Processing and Analysis

Semantique was utilized for data preparation and entity
mapping for vegetation cover. Next, the framework’s filtering
capabilities were used to filter cloud cover. Query recipes were then
employed for analysis to compute metrics such as the percentage of
vegetation cover and seasonal changes. The reduce function was
also crucial in the analysis as it allowed reduction by time and space
before query recipes were executed in the defined data cube for the

area of interest (AOI). When reducing by time, the reduce verb
aggregates data across different timestamps for each spatial location.
This means getting a single value for each spatial coordinate,
summarizing the number of observations across all timestamps.
Conversely, reducing by space aggregates data across all spatial
locations for each timestamp. It results in a single value for each
timestamp, summarizing how many locations reported the presence
of the concept (vegetation).

The analysis for this study included vegetation analysis,
seasonality analysis, greenness index (GI), vegetation intensity
analysis. A total of 1,137 scenes were processed for the area of
interest: sentinel-2 (519) and Landsat 8 (608). To examine spatial
distribution of vegetation class observations, reduction by time
approach was applied which checks the frequency at which
vegetation class and subclasses were recorded at a particular pixel
on the AOI expressed as a percentage. Seasonality analysis was done
using monthly mean vegetation percentages where an additive
model was adopted, since it assumes that the observed data is the
sum of three elements: residuals, trend, and seasonality. GI - a
numerical value calculated using satellite imagery to measure the
amount of vegetation present in an area, was derived from SIAM™,
Further, a semantic querying approach was used to evaluate
vegetation intensity over time, indicating potential vegetation
changes and classifying outputs in three vegetation categories
(strong, average, and weak).

Sentinel-2 / Landsat 8
Execution context +

—>
mapping Query Recipe
Semantic Enrichment
with SIAM™ STAC Query
Spatial and Temporal Vegetation and seasonal
Categorical Raster Data pats Pa,msm‘m 9 ]amlym W le—

Management - STAC Setup

Data cube setup
Spatial and temporal
oxtonss, resoluton

Fig 1. Data processing and querying workflow

3. RESULTS

As indicated in fig 2 and 3, the highest vegetation observation
frequency was 42.6% and 36.3% for Sentinel-2 and Landsat 8
SIAM™ outputs.

Fig 2. Landsat frequency of vegetation observation as a
percentage (2013-2023)
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Fig 3. Sentinel frequency of vegetation observation as a
percentage (2016-2023)

The analysis of intensity subclasses—weak, average, and
strong—focuses on the frequency of observation of each subclass as
a percentage over the dataset temporal range, as highlighted in fig 4.
The average vegetation subclass had the highest frequency of
observation compared to the other subclasses.
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Fig 4. Maximum percentage of vegetation frequency

observation

The seasonal decomposition of vegetation class observation
frequency in fig 5 reveals distinct patterns across the original raw
data, trend, seasonal, and residual components. Both Sentinel-2 and
Landsat 8 datasets exhibit periodic peaks in the raw data, with
notable increases in 2018, 2020, 2022 and 2023. In this case, the
vegetation entity consisting of several vegetation spectral categories
was reduced over space and the result is the relative area and not the
vegetation intensity. The relative area covered by vegetation can be
sensitive to precipitation or irrigation.
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Fig 5. Seasonal decomposition of vegetation percentage over
space (2016-2023)

The seasonal vegetation observation frequency data, grouped
into wet and dry seasons and overlaid with seasonal precipitation
trends highlight the interplay between vegetation dynamics and
rainfall patterns. Sentinel-2 (fig 6) and Landsat 8 (fig 7) outputs
consistently show that wet season vegetation observation
frequencies peak during periods of increased precipitation.
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Fig 6. Overlay of vegetation observation frequency and
precipitation data (Sentinel 2016-2023)
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Fig 7. Overlay of vegetation observation frequency and
precipitation data (Landsat 2013-2023)

Fig 8 and 9 show that in contrast to vegetation percentage
indicating the covered area, the greenness index is more sensitive to
vegetation health, biomass, and water content which are important
considerations as the area of interest is a semi-arid area [14]. The
index captures this seasonal variability peaking during the wet
season (March to May and October to December) and dropping
during the dry season (January to February and June to September)
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Fig 8. Mean monthly greenness and precipitation data (Sentinel
2016-2023)
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Fig 9. Mean monthly greenness and precipitation data (Landsat
2013-2023)
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4. DISCUSSION AND CONCLUSIONS

The study evaluated the effectiveness of a semantic EO
workflow in monitoring and quantifying long-term land cover
dynamics. Vegetation frequency observations recorded in both
Sentinel-2 and Landsat 8 had a maximum record of 42.6% and 36%
respectively, providing an overview of the entire dataset. The spatial
distributions of the frequency of vegetation class observations had
higher percentages recorded in areas around sand dams, indicating
the water resilience has an impact on vegetation cover. The
distribution was also more pronounced in Sentinel-2 than Landsat §;
this could be attributed to the spatial resolution of Landsat 8 (30m)
compared to Sentinel-2 (10m). The consistency between the outputs
from Sentinel-2 and Landsat 8 SIAM-derived data confirms the
reliability and transferability of the approach across different data
products. This not only underlines the confidence of the results but
also highlights the flexibility of semantically enriched data cubes for
multi-sensor analyses, which is crucial for achieving comprehensive
temporal coverage in studies requiring long-term environmental
monitoring. In this study, the semantic EO workflow was effective
as it autonomously transformed the raw spectral values into valuable
land cover classes without human interpretation, by means of
ontology-mappings. The reproducibility was also met because the
query recipes can be reapplied for different temporal datasets and
retain the same results without rewriting scripts for analysis. Lastly,
scalability is also feasible for potential future applications since the
workflow, underpinned by EO data cubes and standardized
interfaces, is built for handling progressively more enormous and
complex datasets more effectively. Future studies should focus on
Semantique’s library query expressiveness in supporting complex
spatiotemporal patterns and uncertainty quantification for more
nuanced detection of land cover changes.

5. OUTLOOK

This work showed semantic-based EO workflows provide nuanced
insights into landscape evolution at different temporal scales. This
is particularly relevant in areas of high seasonal variation and strong
phenological dynamics, where traditional and static methods of
LULC classification fall short. Once these dynamics have been
assessed at both annual and long-term scales, their association with
water retention and conservation efforts like use of sand dams can
be examined in detail to attribute landscape changes to the date and
location of sand dam construction. This can be achieved using
geostatistical methods and space-for-time substitution, but also
requires a multidisciplinary perspective including groundwater
changes, topography, climate trends and land surface temperature
changes. Earth observation methods can provide data on all of these
aspects and help to assess the actual impact of sand dams on their
environments.
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ABSTRACT

This work addresses mechanical defocus in Earth observation im-
ages from the IMAGIN-e mission aboard the International Space
Station (ISS), proposing a blind deblurring approach adapted to
space-based edge computing constraints. Leveraging Sentinel-2
data, our method estimates the defocus kernel and trains a restoration
model within a Generative Adversarial Network (GAN) framework,
effectively operating without reference images.

On Sentinel-2 images with synthetic degradation, SSIM im-
proved by 72.47% and PSNR by 25.00%, confirming the model’s
ability to recover lost details when the original clean image is known.
On IMAGIN-e, where no reference images exist, perceptual quality
metrics indicate a substantial enhancement, with NIQE improv-
ing by 60.66% and BRISQUE by 48.38%, validating real-world
onboard restoration. The approach is currently deployed aboard
the IMAGIN-e mission, demonstrating its practical application in an
operational space environment.

By efficiently handling high-resolution images under edge com-
puting constraints, the method enables applications such as water
body segmentation and contour detection while maintaining process-
ing viability despite resource limitations.

Index Terms— GenAl, defocus noise, remote sensing, edge
computing

1. INTRODUCTION AND STATE-OF-THE-ART

The IMAGIN-e mission (ISS Mounted Accessible Global Imaging
Nod-e) is a space edge computing initiative hosted aboard the ISS.
IMAGIN-e operates as a functional demonstration payload with real-
world applications for Earth observation. Its primary objective is to
evaluate the capabilities and operating modes of onboard edge com-
puting by processing Earth observation data directly within the pay-
load. An optical sensor was integrated to capture images that fuel
onboard applications. However, the captured images exhibit sig-
nificant mechanical defocus characterized by wide dispersion and
smoothing (see Fig. 1), complicating precise interpretation and hin-
dering the extraction of meaningful insights.

In this context, missions like Sentinel-2 from the Copernicus
program -which provide multispectral images with higher spatial
resolution (GSD) and additional spectral bands— could serve as
a reference to estimate the defocus kernel when contrasted with
IMAGIN-e RGB images. Nonetheless, IMAGIN-e images are not
georeferenced at origin and include uncertainties (e.g., the sensor’s
final orientation due to its uncharacterized mechanical and thermoe-
lastic misalignments), posing a significant challenge for restoration
in the absence of sharp reference images.

Recent studies, such as Popika and Lelechenko [1], have used
synthetic distortions to train models for satellite image restoration in
post-processing. Our approach builds on this idea, adapting it for

Fig. 1: Captured image from the IMAGIN-e payload without further
processing, showing significant mechanical blur.

onboard edge computing to enable real-time correction within the
IMAGIN-e payload (see Section 3).

Traditional deblurring approaches, such as the Wiener filter [2]
or Richardson-Lucy deconvolution [3], rely on known blur kernel
characteristics, which limits their performance for complex, non-
uniform blurs observed in space-based imagery. The advent of deep
learning has enabled robust alternative strategies. Early methods
employed Convolutional Neural Networks (CNN5) to learn the map-
ping between blurred and sharp images [4, 5], while GAN-based
approaches like DeblurGAN [6, 7] addressed blind deblurring when
the blur kernel is unknown. More recently, transformer-based
architectures have emerged as promising candidates for image
restoration tasks. For instance, DeblurDiNAT[8] presents a compact
model that leverages dilated neighborhood attention mechanisms
to achieve robust generalization and high perceptual fidelity, even
in out-of-domain settings . In parallel, MIMO-Uformer [9] inte-
grates a U-shaped structure with window-based attention (W-MSA),
enabling efficient capture of both local and global dependencies
with a computational footprint suitable for resource-constrained
environments.

Despite these advances, most state-of-the-art approaches assume
access to paired blurred-sharp images or mandate substantial com-
putational resources, rendering them incompatible with the onboard
processing constraints of the IMAGIN-e mission.

1.1. Contribution of This Work

Our research contributes a blind deblurring methodology for satel-
lite imagery without reference images that leverages Sentinel-2 data
to characterize the defocus kernel. We adapt MIMO-Unet++[10] for
space-based edge computing, optimizing computational efficiency
while preserving restoration quality. Quantitative and qualitative
analysis validates our approach, showing significant improvements
in structural similarity and edge preservation. Additionally, we pro-
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Fig. 2: Illustration of the payload orientation on the Bartolomeo
platform, showing its backward tilt relative to the ISS trajectory.

vide insights into deep learning-based image enhancement for space-
based observation systems with limited resources.

This study introduces a generative Al framework for defocus
correction within the constraints of the IMAGIN-e mission, enhanc-
ing onboard edge computing for Earth observation and enabling the
effective utilization of otherwise compromised instruments. The
ability to perform defocus correction onboard enables the utilization
of restored images in time-sensitive applications including disaster
response, where immediate image analysis can save lives, precision
agriculture requiring real-time crop monitoring, and environmental
hazard detection where processing delays could compromise critical
decision-making.

2. PROBLEM CHARACTERIZATION

2.1. Platform and Payload Orientation

The payload is hosted on an external platform for payload hosting,
mounted on the Columbus module of the ISS. Although its nomi-
nal alignment is Earth-facing, the imaging system is not perfectly
oriented in the nadir direction; rather, it is directed a few degrees
backward relative to the ISS trajectory (see Fig. 2). This orienta-
tion results in a non-perpendicular incidence angle compared to a
purely nadir-pointing configuration, potentially affecting the obser-
vation geometry and data acquisition characteristics. Moreover, the
payload was installed using a robotic arm, so the exact sensor orien-
tation relative to nadir was not known a priori.

2.2. Sensor Data Characteristics

The sensor acquires RGB images compressed in JPEG format at
a resolution of 2048x1536 pixels. The Ground Sample Distance
(GSD) ranges from 37.5m to 41m, depending on altitude variations,
ISS pitch fluctuations, and terrain elevation changes. The captured
images exhibit significant optical defocus noise, likely due to me-
chanical miscalibration, while some images also display minor shot
noise, though its intensity is considerably lower than that of the de-
focus blur. Figure 3 provides a spectral comparison between an
IMAGIN-e capture and its corresponding Sentinel-2 scene, high-
lighting the frequency-domain effects of these noise sources.

2.3. Onboard Deblurring Process

The deblurring process is designed to be executed onboard without
dedicated acceleration hardware as a critical step in the postprocess-
ing stage of the capture pipeline. It takes place immediately after
image acquisition, ensuring that restoration is completed before the
images are passed on for further analysis. Third-party applications,
which request image captures and process them upon availability,

RGB Scene

FFT Spectrum

(a) Sentinel-2: Scene and FFT spectrum

RGB Scene FFT Spectrum

(b) IMAGIN-e: Scene and FFT spectrum

Fig. 3: Comparison of Sentinel-2 and IMAGIN-e images along with
their frequency spectra. The Sentinel-2 scene, composed of RGB
bands downscaled to a 40m GSD, and its corresponding frequency
spectrum are presented in (a). The IMAGIN-e scene and its respec-
tive frequency spectrum are shown in (b), illustrating the effects of
defocus and alterations in the frequency domain.

rely on this preprocessing step to enhance data quality and optimize
downstream computational tasks.

Given the constraints of onboard execution without specialized
hardware, the deblurring model must operate efficiently within the
platform’s limited computational resources. To meet this challenge,
the MIMO-Unet++ model was selected for its high efficiency in
generative processing, enabling real-time deblurring with minimal
hardware requirements. By integrating this model into the capture
pipeline, image restoration is performed onboard without compro-
mising system performance, ensuring that the processed images
maintain the necessary fidelity for further analysis.

3. METHODOLOGY: DEBLURRING WITHOUT
REFERENCE IMAGES

3.1. Model Architecture and Training Strategy

To enhance structural features critical for georeferencing, we ex-
tracted 1024x1024 pixel patches from Sentinel-2 imagery and down-
scaled them to 256x256 pixels. This size reduction simplified the
learning process by focusing the model on sharpening primary edge
structures rather than on subtle textures. A batch size of 4 patches
was chosen to balance computational efficiency with training stabil-
ity. We used a MultiStepLR schedule with an initial learning rate of
le-4, reducing it every 500 iterations by a factor of 0.5 over 3000
iterations to progressively refine the model’s ability to produce spa-
tially coherent reconstructions.

Initially, only defocused images—accompanied by tentative ge-
olocation from the ISS’s position and attitude data were available,
making it extremely difficult to align these images with established
ground references due to severe defocus and unknown noise char-
acteristics. To tackle this, we first trained an early version of the
MIMO-Unet++ model using RGB images generated from Sentinel2
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Fig. 4: The diagram illustrates the position of the deblurring process
within the image processing chain. An application requests an im-
age from the camera API, which then communicates with the sensor
for acquisition. The raw image undergoes a post-processing stage,
including deblurring, before being stored for later consumption by
the application.

products and augmented with various noise types (Gaussian, defo-
cus, shot, motion, and spin blur). The outputs of this model allowed
us to correlate the images relative to their Sentinel-2 counterparts,
leading to improved noise characterization and the creation of more
realistic synthetic training data.

Subsequently, we used these synthetic images to train a re-
fined MIMO-Unet++ model within a GAN framework, with the
model serving as the generator, i.e., the component responsible
for producing deblurred images from blurred inputs. A multi-
scale discriminator—designed to evaluate the generator’s outputs
at multiple image resolutions simultaneously, capturing both global
structures and fine-grained details—was employed, inspired by
Pix2pixHD[11], enhanced with self-attention mechanisms[12] and
spectral normalization, ensuring effective extraction of features
across all resolutions and promoting superior image reconstruction.

The overall loss function combined the standard adversarial loss
with an L1 loss and an FFT-domain loss—as proposed in the orig-
inal MIMO-Unet++ framework—as well as a perceptual loss com-
puted using a VGG16 [13] model pre-trained on Sentinel-2 images.
This comprehensive training strategy yielded a robust generator ca-
pable of delivering deblurred images with enhanced visual fidelity
and structural accuracy, which is crucial for Earth observation tasks
in edge computing environments.

3.2. Edge Implementation

For deployment in the IMAGIN-e mission, the model must oper-
ate onboard a hosted payload on the ISS, sharing computational
resources with other processes and without dedicated acceleration
hardware. Therefore, it is imperative to maintain low latency to
ensure seamless integration into the image post-processing pipeline
(see Fig. 4). The system constraints summarized in Table 1 require
that processing speed and resource usage be carefully managed to
meet the rigorous demands of edge computing environments.

4. RESULTS AND DISCUSSION

The proposed deblurring approach significantly enhances image
clarity and structural reconstruction. Initial models trained on

Table 1: Problem conditions

Parameter Value
Acceleration HW Not present
Available RAM memory 300 MB
Virtual memory 2GB
Available CPU 3 cores (shared)

(b) Deblurred image

(a) Raw image

Fig. 5: Initial deblurring effectively sharpened main borders but pro-
duced low quality images and ringing effect on some captures. Left
image (Fig.5a) shows the output of the sensor, while right image
(Fig.5b) shows the deblurred scene with the initial model.

Sentinel-2 imagery were able to improve the sharpness of IMAGIN-
e data (see Fig. 5), enabling subsequent georeferencing and a more
comprehensive characterization of noise type, effective resolution,
and spectral sensitivity. In addition, the application of a Sobel edge
detection filter confirmed that, despite some undetected boundaries,
the edges of critical objects and terrains were more clearly delineated
(See Fig. 6). These improvements are paramount for subsequent
object detection and segmentation tasks in onboard applications.

Quantitative evaluation demonstrates a substantial enhancement
in image quality across multiple metrics (see Table 2). On Sentinel-2
images, SSIM improved by 72.47% and PSNR increased by 25.00%,
calculated by comparing noisy synthetic images with reference im-
ages in the initial state and processed images with the same refer-
ences in the final state. In contrast, for IMAGIN-e, image percep-
tual quality improved significantly, with NIQE showing a 60.66%
enhancement and BRISQUE improving by 48.38%. Since these
metrics evaluate image quality without requiring clean reference im-
ages, they are particularly valuable for real-world applications where
reference-free assessment is necessary, as is the case for IMAGIN-e.

From a computational standpoint, the deblurring process op-
erates within the edge computing constraints outlined in Table
1. Under these conditions, the model successfully processes a
2048x1536 pixel image in approximately 5 minutes, demonstrating
its ability to handle high-resolution inputs despite resource limita-
tions. Peak memory consumption reaches 600 MB, exceeding the
available RAM and requiring the use of virtual memory. While this
contributes to an extended processing time, the results highlight the
model’s adaptability in constrained environments and underscore the
role of efficient memory management in optimizing performance.

Occasional ringing artifacts were observed, probably due to
scaling operations during patch processing (see Fig. 7). Moreover,
the effective Ground Sample Distance (GSD) varied between 37.4
m and 41 m, reflecting the dynamic imaging conditions of the ISS
and underscoring the need for adaptive processing workflows.
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(a) Border extraction from raw image

(b) Border extraction from deblurred image

Fig. 6: Edge detection using a Sobel filter from both the raw image
(6a) and the deblurred version of it (6b)

Fig. 7: Ringing effect on the images

5. CONCLUSIONS AND FUTURE WORK

Despite the inherent complexity of blind deblurring, our results
demonstrate that incorporating Sentinel-2 imagery enables effec-
tive iterative processing. This strategy refined image synthesis
techniques and achieved acceptable outcomes without sharp refer-
ence images. The final model executes efficiently onboard during
post-processing, ensuring IMAGIN-e compatibility and maximizing
instrument utilization.

Moreover, the restored images prove valuable for specific appli-
cations, such as water body segmentation and coarse contour detec-
tion for map generation. However, it is important to note that while
these results are promising for certain contexts, the current resolu-
tion is insufficient for detecting small objects or for the fine segmen-
tation of closely related classes. This limitation reflects the trade-off
between processing speed and image quality inherent in edge com-
puting scenarios.

Further research could focus on leveraging enhanced onboard
computational resources to deploy more powerful models that pro-
cess image patches at their original resolution. By eliminating the
need for downscaling and subsequent upscaling, this approach would
likely yield images with increased realism and detail. Such improve-
ments could enhance the deblurring performance while expanding
the applicability of processed imagery, especially in tasks that re-

Table 2: Image quality metrics for Sentinel-2 synthetic validation
images and IMAGIN-e real ones

Dataset Metric Original Deblurred A%
Sentinel-2 SSIM 0.4442 0.7662 +72.47 %
(Synthetic) | PSNR 24.0127dB | 30.0159dB | +25.00%
IMAGIN-e | NIQE 21.9257 8.6263 +60.66 %
(Real) BRISQUE 110.8351 57.2149 +48.38 %

quire the detection of small objects or fine-grained segmentation.
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ABSTRACT

The data processing orchestration used in the Sentinel-1C
Copernicus Production Service has been developed from a
science-mission data processing framework in the ESA Earth
Explorer programme. The methodology of the framework
including specific implementations for the Sentinel-1C
mission and the application setup as deployed in the public
cloud is presented. Results from the commissioning phase
show the performance and scalability of the system. Stability
and flexibility of the data processing framework, as inherited
from the operational science-mission context proves to serve
well for its application for a larger-scale operational Sentinel
mission.

Index Terms— Copernicus, Earth Explorer, systematic
production, cloud computing

1. INTRODUCTION

The Copernicus Programme of the European Commission is
the largest Earth Observation programme on Earth and
consists of a variety of missions and operational initiatives to
collect environmental data and exploit valuable information
gathered in the different subservices. The Sentinel-1 mission
is the first in the series of Sentinel satellites developed by the
European Space Agency (ESA) for the Copernicus
Programme. It consists of a constellation of synthetic aperture
radar (SAR) imaging satellites designed to provide
continuous, all-weather, day-and-night imagery of the Earth's
surface. Its constellation consists of two satellite units, the
older Sentinel-1A satellite launched already in 2014 and the
newer Sentinel-1C, which has been launched on 5 December
2024 and replaced the retired 1B unit. Sentinel-1's SAR
imagery supports a wide range of applications, including land
and sea monitoring, natural disaster mapping, sea ice
observations, and ship detection. This data is widely used for

environmental monitoring, emergency response, and
maritime safety.
The ground segment of the Copernicus Space

Components are procured as industrial subservices, which are
interlinked closely and coordinated centrally with common
procedures. The payload data processing is delegated to the
Production Services, which are renewed periodically to
enable competitive service evolution. The computational
environment for the software elements of the Production

Services are operated in European cloud infrastructures with
their inherent benefits of optimized performance, scalability,
portability, political resilience and compliance.

With the launch of Sentinel-1C, a new production system
was put into operation and its setup and features are presented
in this paper. The software system is based on a processing
framework “Olib”, which has been developed and used
successfully for scientific missions in ESA’s Earth Explorer
programme such as Swarm, EarthCARE, Biomass ([1], [2],
[31, [4], [5]) as well as the new Generic Processing
Orchestration System for Earth Explorer missions [8]. The
framework matured and additional components have been
added in the past years, such as a data management setup with
Al-supported operations for a Copernicus Long-Term
Archive [7].

2. METHODS AND TECHNOLOGIES

The Sentinel-1C data processing builds on a setup of software
facilities implemented using the Olib processing framework.
The Production Service delivers Sentinel-1C data processing
by a dedicated DevSecOps team, along with comprehensive
service management, reporting, and security oversight. For
the methodology presented in the following, the focus is on
the data processing facilities.

The major use cases of the Olib have been the payload
data processing facilities, i.e. the Core Processing Facilities
(CPF) as part of the Earth Explorers” PDGS and later the
Copernicus Production Service (CPS), for which the OL.ib-
software has been qualified since 2024. The Olib is the central
element of the systematic processing function implementing
all or most of a mission’s production model. Processing starts
with the availability of raw data from the acquisition facility
and usually covers Level-0 (raw time ordered data), followed
by Level-1 (engineering), Level-2 (geophysical) product
generation. The actual processing algorithms are
implemented in processor software elements, which are
integrated into the CPS production workflows as external
components. The Olib provides the processing management
layer in charge of the processing orchestration, which allows
to properly execute the various processors in line with the
Sentinel-1-specific production model.

The processing orchestration is fully configurable and is
able to handle re-use of existing baseline workflows from the
Copernicus and Earth Explorer context. To do this, the Olib
is able to handle production rules and timers for making
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decisions on processing steps to be performed according to
the availability of data or time events, as well as processors
in charge of executing the elementary processing steps of the
production model. The mission specific configuration has
been adopted in the orchestration workflows for the
systematic processing of the Sentinel-1C products.

2.1. CPS processing facility

The CPS uses a software system consisting of multiple
components as depicted in Figure 1. It is a distributed system
with management entities containing the high-level business
logic and so-called agents, which carry out the low-level
business logic (e.g. individual production or dissemination
steps) using a typical micro-service approach. The micro-
services are deployed in a dedicated Kubernetes cluster
platform, where agents are running on Kubernetes pods.
Deployment of the Cluster and on-demand scaling is easy and
helps to manage different load situations and system
recovery. Although orchestration frameworks such as
Apache Airflow, Spring Cloud Data Flow, Pegasus, and
Prefect support a range of workflows, this PDGS-oriented
framework leverages a combination of cloud native concepts
with efficient local caching, reliable long-term request queue
handling, and effective priority handling for all mission's
specific workflows based on different timeliness
requirements e.g. NRT, NRT-PT and FAST-24 - computed
dynamically on runtime. A generic workflow language, such
as CWL, is not used here, since the processing steps are
defined based on ESA’s Task Table ICD. The Olib software
is based on widely used and well supported COTS and
standard protocols and the framework is published under an
open source license. The system is implemented in Java Open
JDK 11, the database system used is PostgreSQL with
PostGIS extension and Linux is used for the operating system
for the involved machines.
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Fig 1: Processing facility as part of the Copernicus
Production Service of the Sentinel-1C mission

The Sentinel-1C Production Service is grouped into three
functional elements (see Figure 1): the Processing Facility,
the Production Interface Point (PRIP) Facility and the
Monitoring Facility. These facilities constitute the automatic
software system as part of the service elements of the
Production Service. External Clients can access the

Monitoring facility through the monitoring dashboard and the
PRIP service via the respective interfaces such as
subscription to new publications, data queries and data
downloads.

2.1.1. Processing Orchestrator and Nodes

The Processing Orchestrator is the core component of CPS
software where the business logic is located. The orchestrator
provides requests, workflows, resource control and general
service functionality. The data harvesting and processing
tasks as part of the production system workflows are
distributed to a configurable number of processing nodes and
harvesting nodes. Processing Messages are handled by a
message queue within the Processing Facility which are
consumed by the PRIP facility. Measurements and log
messages are provided to the Monitoring Facility to keep
track of the status of the processing jobs.

The software provides horizontal and vertical scaling
possibilities leading to flexible sizing in order to support any
kind of (ad-hoc) scaling needs. The scalability is also used to
fine-tune the performance of the system when bottlenecks are
identified, usually by adding components, however,
automatic scaling based on system metric, as supported by
the framework, is not applied in the CPS, because resources
were provisioned to anticipate predictable, consistent, and
systematic production workload. The orchestrator makes use
of multiple production nodes to perform the CPU and 1/0
intensive work like higher level data production, transfer of
data from/to external entities, and trace calculations as well
as routine quality control. Each node contains a single
instance of the CPS Processing Node Handler, which is
connected to the CPS Orchestrator. It delegates processing
tasks, data transfers, and traceability calculations to its
associated agents. Intermediate products are cached locally
for efficient access as soon as jobs can be merged in case of
the same node resources selection (e.g. between Level-1 and
Level-2 steps).

2.2. CPS Monitoring

The monitoring facility in Fig. 1 is supplied with operational
information from all service elements, and it builds the
monitoring subsystem in the technical setup of the Production
Service. It is responsible for metrics gathering and
consolidation as well as logging.

The monitoring information data is visualized in specific
dashboards using Grafana, which provides all means to
navigate through historical and current time windows. The
raw values used for the visualization and key performance
indicator calculation, i.e. communication status with external
interfaces, components availability, production status, and
resource usage, are collected automatically by the Monitoring
and Logging component. Two example screenshots are
provided in Fig. 3. Additionally, alarms are configured on
critical thresholds to inform the operators proactively with
push notifications.
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Fig 3:
Sentinel-1C
information (upper panel) and the resource usage (lower
panel)

Informative Monitoring Dashboards for the
operators, visualizing the downlink

3. SENTINEL-1C PRODUCTION CHAIN

The Sentinel-1C payload data production is implemented for
all instrument acquisition modes: the StripMap (SM),
Interferometric Wide swath (IW), Extra Wide swath (EW),
and Wave (WV) mode, while a generic data processor is used
for the generation of Level-1 and Level-2 data.

The Level-0 production process starts with collecting the raw
input data known as Channel Access Data Unit (CADU). The
CADU data is either downloaded from the ground stations
utilizing CADU interface Point (CADIP) or via the European
Data Relay System (EDRS). Subsequently, the raw data then
undergoes different collective and consolidative steps
depending on downlink chunking, gaps and polarization to
ensure that the data is complete and properly consolidated.
Once aggregated, the LO raw data is assembled and
segmented into overlapping LO slices along the azimuth
direction - these LO sliced products serve as the foundation
for the higher level processing steps.

For subsequent L1 processing, the Level-1 Instrument
Processing Facility (IPF) is utilized. Several processing steps
such as calibration, Doppler Centroid (DC) estimation, and
terrain height correction are performed by the L1 IPF. Level-
1 Single Look Complex (SLC) and Level-1 Ground Range
Detected (GRD) products are systematically produced based
on the Level-0 products. The EW Mode constitutes an

exception to SLC workflow because it is triggered over
specific geographical areas only.

CADIP/
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Fig 4: Simplified Sentinel-1C production model focusing
on processors without refinement for the different
acquisition modes

For Level-1 Extended Timing Annotation Dataset
(ETAD), Sentinel-1 Extended Timing Annotation Processor
(SETAP) is utilized. The SETAP processor uses Sentinel-1
Level-1 SLC Annotation products and additional Auxiliary
data to generate ETAD products. These ETAD products
provide improved geometric accuracy for Sentinel-1 Level-1
SLC products.

Level-2 OCN processing is systematically triggered for
WV mode, while for other modes (IW, EW, SM), it is only
triggered when the products footprints are located over the
sea.

As a part of SAR Post Processing (SPP) chain, Orbit
Baseline and TOPSAR Synchronization (OBS), products are
generated systematically by a dedicated IPF. The ERRMAT
processing chain systematically generates Error Matrices
files. These files contain detailed error characterization which
is essential for accurate calibration of Sentinel-1 SAR data.

The orchestration framework supports both event-driven
and scheduled workflows, while CPS relies on events from
the messaging system (RabbitMQ). Once an event occurs,
the corresponding workflow is initiated. However, some
workflow-steps may wait until all required dependencies are
met before proceeding. For example, a Datatake that is split
across different downlink stations needs to be consolidated.
The CPS creates a request and waits until all segments
corresponding to a Datatake become available, then it
proceeds with execution of the request.

3.1. New AIS Processor

The integration of an Automatic Identification System (AIS)
for vessels with Sentinel-1's radar capabilities improves
maritime safety by helping ships avoid collisions, supporting
efforts to detect illegal activities, and mitigating pollution
risks.

The Sentinel-1C mission includes the use of the AIS
processor for ship tracking, enhancing their capabilities for
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maritime monitoring. The satellite carries an antenna that
captures AIS signals transmitted by ships, which include
details such as the vessel's identity, location, and direction.
The AIS processor on the Sentinel-1C satellite allows for
precise tracking of ships and is intended to be used for the
upcoming Sentinel-1D unit as well. AIS imagery is made
available to European Maritime Safety Agency (EMSA),
enabling EMSA to utilize this satellite AIS data in
conjunction with terrestrial data to enhance the safety of
various maritime operations.

3.2. Resource usage during Commissioning

The initial stages of the Sentinel-1C commissioning were
designed to test the nominal functioning of the Satellite’s
instruments under minimal load. As the payload increased
during later stages, the production capacities were scaled up
to anticipate the increased load accordingly. During the final
phase of Sentinel-1C commissioning, the system load was
ramped up to nominal operational capacity - approximately
800 GB of raw data was processed to produce ~5 TB across
Level-0, Level-1, and Level-2 products on daily-basis. The
production was carried out on a Kubernetes based cluster
consisting of over 625 CPU cores and 3 TB of RAM,
distributed across different machine types tailored to meet
varying processing demands. Fig. 5 depicts the number of
products produced by Sentinel-1C during a single week of the
commissioning phase.

Fig 5: Production counts for 7 days during commissioning
accumulated by processing level (left), product type
(middle), and instrument mode (right)

4. SUMMARY AND CONCLUSIONS

A generic processing framework for scientific Earth
observation missions’ processing in the ground segments is
used in the Copernicus Programme for the operational
payload data processing of the Sentinel-1C mission. The
system concept and software implementation has been
matured with the different use cases and similar setups will
build the data processing backbone of some of the near-future
science missions in the Earth Explorer programme.
A modified instance of this processing facility is used by the
Authors’ company to operate one of the Copernicus Long-
Term Archive Services in a public-cloud environment since
year 2020 [7]. These multi-purpose use cases of the
framework enhance the stability and variety of the system’s
modules.

The software framework is published as Generic
Processing Orchestration System in a Space CODEV

repository [9]. Although the software had a science focus
originally, the Sentinel-1C application as well as the
Copernicus Long-Term Archive Service demonstrate the
successful knowledge transfer from explorational science
activities to large scale, operational programmes of the
society.
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ABSTRACT

Operationalizing algorithms in the Earth Observation (EO)
domain requires scalable and maintainable workflows to
manage the variety and large data volume of satellite
missions. This paper presents the processing system for
DLR’s Sentinel-1 Normalized Radar Backscatter (NRB)
product, designed for operational deployment and data
production. High-Performance Computing (HPC) resources
are utilized to efficiently process the large data volumes of
Sentinel-1 on DLR’s high performance data analytics
platform terrabyte. The workflow is modeled using Business
Process Model and Notation (BPMN), chosen for its clarity,
standardization, and suitability for managing complex
processing chains. The combination of BPMN and HPC
enables automation, robustness, and traceability in the
product generation process. This approach supports
consistent and high-quality production of the NRB product,
demonstrating the importance of structured workflows in
transitioning EO algorithms from research to operational
environments. It is based on open source software developed
in the framework of ESA’s Exploitation Platform Common
Architecture (EOEPCA).

Index Terms—Workflow, BPMN, HPC, Analysis-
Ready-Data, Sentinel-1, EOEPCA

1. NTRODUCTION

In the field of Earth Observation (EO), the transition of
algorithms from research to operational use presents
significant challenges. These include not only algorithmic
robustness and data quality but also the development of
scalable, maintainable, and automated workflows capable of
supporting continuous production. The Copernicus Sentinel-
1 mission provides Synthetic Aperture Radar (SAR) data on
a global scale. To maximize the scientific value of this data,
derived products such as the Normalized Radar Backscatter
(NRB) [1] must be generated routinely and reliably.

The NRB product represents a radiometrically calibrated,
terrain-corrected SAR backscatter dataset, suitable for long-
term monitoring and geophysical analysis. Ensuring the
operational availability of sucha productinvolves more than
implementing the core algorithm, it requires a comprehensive
processing systemthat addresses data ingestion, scheduling,
execution, error handling, and data publication.

To meet these demands, workflows play a central role. In
this context, workflows are not merely sequences oftasks but
structured representations of the entire processing pipeline,
enabling transparency, reproducibility, and scalability.
Business Process Model and Notation (BPMN) was selected
as the workflow language due to its standardized notation and
suitability for modeling complex, conditional logic in a
readable format. BPMN supports collaboration between
domain experts, software engineers, and operators,
improving communication and maintainability throughout
the systemlifecycle.

The implementation on DLR’s high performance data
analytics platform terrabyte [2] leverages High-Performance
Computing (HPC) infrastructure to address the computational
load imposed by the large data volumes of Sentinel-1. The
use of HPC resources ensures timely product generation,
while  BPMN enables clear orchestration of parallel
processing steps and quality control procedures.

This paperdescribes the design and implementation of the
operational processing system for the Sentinel-l NRB
product, with a focus on the integration of hybrid processing
environments (Cloud and HPC) within BPMN-based
workflows. The goal is to demonstrate how modern workflow
technologies support the operationalization of EO algorithms,
enabling reliable and scalable production systems aligned
with the growing demands of satellite-based Earth
monitoring and considering the different perspectives of
algorithm developers, processing environments, workflow
orchestration, and operations.

2. THE SENTINEL-1 NRB PRODUCT

The Sentinel-1 NRB product was originally defined by
University of Jena for ESA. Together with the product
definition, a prototype processor was implemented to
generate test datasets for product demonstration. This work
has been continued at DLR by operationalizing the prototype
processor and refining the product definition. The main
measurement is radiometrically terrain corrected (RTC)
gamma naught backscatter (y2) per acquired polarization.
Additionally, several ancillary layers support the backscatter
interpretation: a multi-layer datamask containing layover and
shadow masks as well as water body mask, the ellipsoidal and
local incident angles, the local contributing area, a ratio for
converting to sigma naught backscatter, and a layer
delineating the extent of the source products.

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

129 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Optimizing processing from Edge to Cloud

01 -90 -89 -88 -g7
[ | I T 1
— == ! :
| R \ﬁ
00| % < \ = |\
A% .
L XE V
o Fa
A ’(\ ﬁ 65
29 29
o1 90 -89 88 -87

Fig. 1. Sentinel-1 NRB product in MRGS tiling scheme.
Blue: MGRS tiles; White: Sentinel-1 GRD footprints.

2.1. Software

The open-source Analysis Ready Data (ARD) processor
slard [3] orchestrates the ARD generation. It queries source
scenes from a database, invokes a core SAR processor for
generating geocoded SARbackscatterand ancillary products,
and converts the output into the final NRB structure including
file format conversion, re-gridding and metadata generation.
As core SAR processor ESA SNAP [4] is currently used
because of its open-source availability and comprehensive
functionality. However, the modular design facilitates easy
replacement of the core processor by other software
solutions. pyroSAR [5] is used for reading SAR product
metadata, configuring and running SNAP workflows, as well
as downloading needed ancillary for processing like digital
elevation models and orbit data.

2.2. Processing steps

The key processing steps are as follows:

e Configuration Setup: Generates a configuration file
specifying parameters such as scene selection, output
paths,and metadata.

e Job Order Creation: Defines the area of interest and
acquisition parameters (e.g. time range, mode) and
creates a vectorgeometry file.

e Job List Generation: Queries the database to identify
MGRS tiles and matching Sentinel-1 scenes, storing
scene-to-tile associations in job lists.

e SAR Processing: Executes SAR core processing for
each scene using the defined configuration.

e ARD Conwersion: Converts processed scenes into NRB
tiles through mosaicking, cropping, and metadata
generation.

e STAC Registration: Ingests the final product metadata
into a STAC-compliant database for API-based access.

2.3. Data input and output

Sentinel-1 GRD products serve as input. The whole archive
is stored on terrabyte for immediate availability. Careful
curation of this product ensures that always the latest
processed GRD products are available to avoid duplication.

The ARD dataoutputis gridded — identical to Sentinel-2 data
— in tiles of 110x110 km size aligned to the Military Grid
Reference System (MGRS) with a pixel spacing of 10 m (see
Fig. 1). The binary data of the product is stored in cloud-
optimized GeoTIFFs (COGs). In addition, comprehensive
metadata has been defined in JSON files compliant to the
SpatioTemporal Asset Catalog (STAC) specification.

The data volume of the final NRB product is about 2.3
times that of the input GRD product resulting in 9 PB. Data
volume is increased by adding several ancillary layers and
COG overviews as well as through the MGRS grid overlap.
A decrease in volume is achieved by applying compression.
The full archive is currently being processed and gradually
made available to users. An example of data cube analysis
capabilities was presented at the last BiDS [6].

3. PROCESSING ENVIRONMENT

The terrabyte EO exploitation platform is used to produce the
Sentinel-1 NRB product. Terrabyte is a hybrid high
performance data analytics platform based on on-premise
High-Performance Computing (HPC) and on-premise cloud-
like infrastructures. Both, HPC and cloud, are connected
internally with high-speed network to the Data Science
Storage (DSS), where all data — EO data, intermediate data,
and the final product — is stored. DSS Management Servers
are available for high-speed data access.

3.1. Algorithm packaging

Packaging is an important activity to have a trusted source of
dependencies necessary for the algorithms used in a
processing campaign. Today, Docker containers are used
often to package an algorithm with a defined set of software
necessary to execute the algorithm. However, containers
cannotbe used in all environments or need to be converted to
other container formats (e.g., HPC systems do not allow for
Docker containers, but they can be converted to Charliecloud
or Singularity containers). To be interoperable with different
infrastructures, Micromamba [7] has been selected to conduct
the algorithm packaging with all software dependencies,
which can be used in both, HPC- and cloud-based
infrastructures. Micromamba environments can be either
used individually (e.g., as base environment for an HPC job)
or installed within containers (e.g., Docker container for
cloud-based processing).

3.2. terrabyte HPC

The terrabyte HPC system, with 44,000 virtual CPU cores
and 287 TB RAM, supports high-throughput processing of
compute-intensive jobs. For the Sentinel-1 NRB processing,
two HPC job types are executed: (1) SAR scene processing
using ESA SNAP software (16 cores, 45 GB RAM, 60-90
min runtime) and (2) ARD conversion using the Python-
based slard (4 cores, 40 GB RAM, 5-10 min runtime per
tile). At full capacity, up to 2,750 SAR jobs can run in
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parallel. Jobs are submitted via SLURM CLI or REST API,
accessible only within secure networks. Accordingly,
workflow steps involving job submission must run within
these environments (e.g., HPC login-nodes).

3.3. terrabyte Cloud

While HPC is used for CPU and RAM-intensive processing
tasks, the cloud environment can be best used for low-level
tasks, such as input data discovery, creation and registration
of metadata as well as data validation. terrabyte Cloud has a
maximum of 3,000 CPU cores and is used for all terrabyte
web services (e.g., metadata catalogue, visualization services,
support forum, workflow orchestration). For the Sentinel-1
NRB processing itis mainly used forworkflow orchestration.

3.4. terrabyte Data Science Storage Management Nodes

The terrabyte Data Science Storage Management Nodes
provide the best performant access to the large Data Science
Storage system. These nodes can be used forinput and output
data validation and integrity checks (e.g., checksums) as well
as data transfers from the temporary processing folder to the
central location for data publishing.

4. PROCESS ORCHESTRATION

Operational product generations require the coordination of a
sequence of processing steps (see Chapter 2.2). This set of
tasks must be designed and integrated into structured and
repeatable processes to ensure the reliability, maintainability
and scalability of the whole processing system. In this
context, workflow definitions based on the Business Process
Model and Notation (BPMN) specification provide a
structured and transparent approach to process definition and
orchestration. By providing a clear and visual framework,
BPMN models enhance the visibility of the process during
the development as well as the operational phase, bridging
the gap between stakeholder requirements, technical
implementation and operational tasks. They serve as the
backbone of operational production, enabling the automated
execution of workflows in a controlled and traceable manner.

4.1. BPMN models

A BPMN model is a static representation of the workflow as
a BPMN 2.0 process definition. It defines the sequence of
activities (service tasks), events and (conditional) sequence
flows to be executed during the workflow and is usually
stored as an XML file. An overview and the specification of
all possible BPMN modelling elements can be found in [8].
The workflow for Sentinel-1 NRB has been separated into
four models to achieve a better overview, organization and
error handling for the operator:

o Data discovery and job preparations for a user-defined

area and time of interest

e Grouping of the processing for each Sentinel-1 data
take found in datadiscovery step

e Ceocoding of each Sentinel-1 GRD scene

e ARD conversion and data publishing for each MRGS
tile of datatake

4.2. Automated product validation

An important step in the workflow is the automated product
validation for both SAR processing and ARD conversion to
the final output format. Diverse errors can happen during the
processing, e.g. issues with access to the data storage,
execution in SNAP, creation of metadata, failed downloads
of auxiliary data, processing timeout.

After the HPC job is finished either in a failed or
completed state, the generated output is validated and the log
files are scanned for typical errors. If there is a “well known
error” (e.g., failed downloads or access to storage is not
available), the processing job will be automatically cleaned
and retried, which is modelled in the BPMN diagram. Only
for specific or unknown errors or too many retries, the
processing job will be directed with a conditional sequence
flow to a human user task in the BPMN model. An operator
or expert of the algorithm needs to manually check the error
and restart or finish the execution of the job.

4.3. System architecture

As a central BPMN-workflow orchestration tool, the Open
Source BPMN engines Camunda 7 and Flowable 7 can be
used on terrabyte. Currently, the NRB processing workflow
is operated with Camunda but with the upcoming release 2.0
of ESA’s Exploitation Platform Common Architecture
(EOEPCA) components, the workflow will be migrated to
EOEPCA’s Resource Registration building block, which uses
Flowable as workflow engine.

A BPMN workflow engine supports the execution of
service tasks as internal, synchronous invocation of code
deployed in the workflow engine itself or as external,
asynchronous tasks provided to an external worker. This
external worker process is an entity that is independent of the
workflow engine. It does not need to run in the same process,
on the same machine or even in the same cluster. When the
workflow engine encounters a service task that is configured
to be externally handled, it provides this unit of work as a job,
which can be polled and acquired by the external worker. The
worker then executes the job and sends the result back to the
engine. The benefit of this pattern is that the entities
performing the actual work are independent of the workflow
engine which allows the worker to be deployed, scaled out or
maintained independently.

In the NRB processing systemthe workers are distributed
between the terrabyte HPC, Cloud, and DSS Management
Node environments. CPU intensive workflow tasks like SAR
processing and ARD conversion are handled by workers
deployed on the Login-Node which submit corresponding
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HPC jobs to the cluster and manage their states. In contrast,
the more data and access related tasks like data validation,
data transfer and metadata registration are deployed on both,
Cloud and DSS Management Nodes, to benefit from fast
access to the platform storage.

4.4. Operations

For the operations of the product generation, dashboards have
been developed to show different aspects of the processing
campaign: (1) the HPC resources available and used (see Fig.
2), (2) the amount of scenes processed, (3) the amount of
errors, (4) the HPC jobs and their current state (queued,
running, finished), (5) the storage capacity for the
intermediate processing location as well as the final output
location, and (6) the amount of ARD tiles generated. In case
of errors, the operator can use the Camunda web interface to
analyze the error and inspect the log files.

Utilized CPUs per user

Fig. 2. Monitoring of HPC resources used.

5. CHALLENGES AND OUTLOOK

Producing Sentinel-1 NRB products operationally involves
key challenges in data handling, resource management, and
data format limitations. Large data volumes, especially
during parallel processing, require stringent cleanup
procedures to avoid storage overload. Temporary files must
be removed immediately after each processing to maintain
systemstability. Job scheduling also poses difficulties: Fast
ARD jobs (5-15 minutes) must be prioritized over longer
geocoding tasks (60—90 minutes) to optimize HPC utilization.
This demands adaptive orchestration strategies that respond
to workload fluctuations. Furthermore, the reliance on GRD
input data simplifies access—since the full archive is online
via DLR's terrabyte platform—but introduces border
inconsistencies between scenes. SLC data avoids this issue,
yet its larger size and limited online availability present
significant processing and access challenges. These issues
underline the need for flexible, automated systems capable of
balancing efficiency, quality, and operational readiness.
Future improvements to the NRB production systemfocus
on enhancing data quality and ensuring operational
sustainability. A shift from GRD to SLC inputis planned to
increase data quality, but this requires handling significantly
larger datasets and addressing the limited availability of SLC
data, which needs to be retrieved from DLR’s long-term

archive. Additionally, with the end of open-source support for
Camunda 7 by late 2025, workflow orchestration will migrate
to the Harvester component of ESA’s EOEPCA+ framework.
Harvester supports workflow modeling and execution while
maintaining compliance with open-source and European data
standards. These transitions aimto boost the system's quality,
scalability, and interoperability, ensuring the S1-NRB
production remains reliable and adaptable in evolving
computing environments.

6. CONCLUSIONS

The Sentinel-1 NRB product enables consistent, analysis-
ready backscatter data for scientific and monitoring
applications. Its operational production relies on a robust
system that combines HPC capabilities with BPMN-based
workflow orchestration. This paper detailed the system’s
architecture and addressed challenges related to data volume,
job prioritization, and input data limitations. Planned
transitions to SLC input and open-source orchestration took
like EOEPCA’s Harvester will further enhance product
consistency and long-term maintainability. The S1-NRB
system demonstrates how research-grade EO algorithms can
be successfully operationalized for large-scale, high-
throughput production, supporting long-term environmental
monitoring ona continentalscale.
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ABSTRACT

Global mapping of burned areas (BA) at high spatial
resolution is critical for understanding fire impacts on
ecosystems and emissions. This paper analyzes the technical
obstacles in processing global Sentinel-2 20m imagery for
BA detection and introduces an optimized, incremental time
series algorithm designed to minimize computational costs.
The new approach, implemented within the Calvalus
processing system on the Copernicus Data Space
Ecosystem, eliminates redundant input/output operations by
avoiding the storage of intermediate products and leveraging
a sliding window strategy. This results in substantial
reductions in memory usage and processing time, enabling
scalable and cost-effective production of global high-
resolution BA datasets.

Index Terms— Burned Area mapping, Sentinel-2,

High-resolution remote sensing, High volume data
throughput, Algorithm optimization
1. INTRODUCTION

Fire has a profound impact on ecosystems, atmospheric
chemistry, CO2 emissions as well as human settlements and
air quality. Burned area (BA) estimation from satellite data
has been performed since the 70s [1]. Large scale BA
products from medium resolution optical satellites are
available but have been shown to be unable to reliably
detect small fires (< 100 ha). In [2], [3] an approach for
large scale BA mapping using Sentinel-2 images with 20m
resolution has been developed and applied to create a data
base covering all of sub-Saharan Africa.

However, when applied globally, the processing of high
resolution imagery on very large scales poses significant
computational challenges, due to the very large data sets
involved. The processing chain must be extremely efficient
and well adapted to the underlying computer infrastructure
to make global scale processing possible and cost effective.
This paper analyses the computational challenges involved
in global processing of high resolution burned area, using

Sentinel-2 20m data with the algorithm proposed in [2], [3]
and presents a new formulation of the algorithm as an
incremental time series algorithm.

Processing is done using the Calvalus processing system,
developed by Brockmann Consult GmbH, Germany
(https://www.brockmann-consult.de/calvalus/) which
provides a framework for big data earth observation
processing based on Apache Hadoop [4]. For the global
computation of burned area, Calvalus is deployed on the
Copernicus Data Space Ecosystem (CDSE) [5].

2. ALGORITHM

The algorithm is presented here in an abbreviated manner,
focusing on aspects that are relevant to the technical
challenges associated with very large-scale processing. For a
more in-depth discussion of the algorithm, see [2], [3].

Fundamentally, burned area is determined in two phases. In
the first phase, a per-pixel confidence level of burned area is
computed for all (unordered) pairs of distinct Sentinel-2
MSI L2A products from the same platform with an
observation date no longer than 40 days apart. Pairs consist
of one later observation, termed reference and one earlier
observation, termed predecessor. The second phase
encompasses all remaining steps in which the confidence
levels are filtered and aggregated into monthly products.

The determination of burned area between a pair of
Sentinel-2 observations in phase one takes into account the
differences between the Mid-Infrared Burned Index
(MIRBI) and Normalized Burned Ratio 2 (NBR2) spectral
indices and the NIR band B8A of the reference and
predecessor images. Pixels classified as burned are only
considered if they form a patch larger than 30 ha and are
close to an active fire, sourced from the VIIRS sensor. The
scene-classification (SCL) mask provided by the Sen2Cor
algorithm is used to exclude clouds, no data and water
pixels from the analysis. This first step is called pre.
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The second phase comprises a sequence of filters and
aggregations. The steps of the second phase are termed post,
fuse and tile. In the first phase, the same observation serves
as a reference for multiple pairs of observations, visualized
in Fig. 1. The post step classifies for each reference and
each pixel if the pixel has been observed, if it was burned
and selects the confidence level from the pre step with the
least temporal distance to the reference where the pixel has
been observed in both elements of the pair. Both pre and
post steps operate only on observations from the same
platform, either Sentinel-2A or Sentinel-2B. In the second
step of the second phase, fuse, pixels classified as burned by
one platform that have been classified as observed but not
burned by the other platform are discarded. The final step of
the second phase, tile, temporally aggregates the filtered
burned area confidence levels and classifications into a
monthly product.

Further steps, not discussed here, spatially aggregate and
resample the results into 5-by-5-degree tiles and a global
product with reduced resolution. Each of the steps described
in this paper operates on input products (Sentinel-2 MSI
L2A) or on intermediate products produced by a prior step
which have the same extent and UTM projection as the
inputs.

2.1. Original Implementation
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Fig. 1. Processing flow of the original implementation for
a single platform. Each box represents an intermediate
or output product that is written to disk and can be
inspected. Products depend on inputs to their left.
Additionally, fuse and tile steps depend on inputs from
the other platform.

The baseline implementation, which has been used to
generate products for south-Saharan Africa for the years
2016 [2] and 2019 [3] computes each step atomically,
reading all necessary inputs and writing a single output. This
approach allows for maximum parallelization on the
algorithm step level, as each computation is only dependent
on its required inputs to be present on the distributed file

system. The local state in the main memory on any specific
node is only relevant to a single step and held only for a
short time. Fig. 1 shows the structure of the algorithm for a
single platform.

2.2. Performance considerations for global processing

While the baseline implementation allows for extremely
parallel execution, the number of parallelizable steps far
exceeds the number of available computing notes. There are
two main contributions to redundant input and output (I/O)
operations. First, intermediate results are created on disk
which are not part of the delivered product. This is
particularly relevant in the case of the pre step, which
creates an output for each pair of inputs. Second, each step
must read all input products required for its computation.
However, the required inputs for many steps overlap
significantly. For the pre step, each input product acts as a
reference product for four to eight predecessors and as a
predecessor for four to eight other reference products.
Therefore, the same product may be read up to 16 times,
significantly driving up resource costs. The fuse step reads a
time series of all post step intermediate products in a time
window of 80 days. The fuse step for the next observation
date of the same platform reads the same time series shifted
by a few days, which changes the required inputs only at the
edges of the time window. Significant time is spent on
writing to disk and reading inputs.

To make the global production cost effective, a new
computational approach has been developed to more
efficiently compute the same burned area product for very
large-scale processing. The new implementation is designed
to avoid the most significant computational inefficiencies
described above. The new approach seeks to minimize I/O
operations, keep memory usage low to accommodate
multiple instances on one machine and optimize CPU usage.

2.3. Incremental time series approach

The new implementation is based on an incremental time
series analysis approach. Fig. 3 shows the set of
intermediate products held in main memory at a single
instant in time. The algorithm maintains two cursors into the
time series of Sentinel-2 observation dates of the current
granules, which are the inputs to the algorithm, to define
the processing window. The two cursors can be interpreted
in relation to the input products as well as the intermediate
products produced by the post step, as described in section
2.1.

In the new implementation, these intermediate products are
never written to disk. We name the cursor indicating the
start of the processing window the time frame cursor and the
cursor at the end the product cursor.
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observation are aggregated separately. Dark pixels represent a high confidence burned area, light pixels low
confidence burned area. White pixels are not observed. A thick red border marks pixels that are overwritten in the

aggregation process.

In addition to the intermediate products in between the
cursors, the algorithm maintains accumulated state products
for the fuse (one per platform) and tile steps. These state
products have a similar memory footprint to a single
intermediate product of their respective step and serve to
reduce the number of intermediate products in memory.

Accumulated State

Tile Fuse
State State
‘ ‘ ‘”/‘WA

40 Days

Time frame cursor Product cursor

Fig. 3. Processing flow of the new implementation

In relation to the input products, any product older than the
time frame cursor as well as its derivative products from the
post and fuse steps is completely processed. The data from
these inputs only affect future results though the
accumulated states described below. With regard to the post
step intermediate products, the cursors define the range of
post step intermediate products that are required to compute
the future fuse step intermediate products. The product
following the time frame cursor is the next product to be
filtered in the fuse step. The time frame cursor advances,
after a fuse step has been performed and the result is
integrated into the algorithm state. The product cursor
advances when a new product must be opened to generate a
new post step intermediate product. The products with time
stamps in between the two cursors are, by definition, the
minimal set of products needed to advance the algorithm.
This sliding window approach minimizes product reads and
writes to the achievable minimum, as every input product is
read exactly once, and no intermediate products are written

or read. Only the final products required for delivery are
written to disk.

In the following, the dependencies between the various
algorithm steps are analyzed, to find the minimal set of
products required at any point in the algorithm. These
dependencies are expressed as the (intermediate) input
products read by each step in the original implementation of
the burned are algorithm. Trivially, each pre step requires
two input products, predecessor and reference, when it is
performed. The post step requires the results of all pre steps
with the same reference product, as it selects the most recent
classification and confidence levels for one reference. The
fuse step, visualized in Fig. 2, requires all products from the
other platform, e.g. Sentinel-2B for a main input computed
from Sentinel-2A observations, in a time window of +40
days. The tile step requires all results computed by the fuse
step belonging to observations in its target month, plus all
fuse result products from 40 days before the beginning of
the month, to make sure the same burned area is not counted
twice, in two separate months.

It could be concluded that the maximum number of products
that the algorithm must keep in memory encompasses 40
days of fuse result products before the beginning of the
month and 40 days of post result products after the end of
the month in addition to fuse and post result intermediate
products inside the month. This maximum occurs at the end
of the month, when the earliest intermediate product
required by the tile step has a time stamp 40 days before the
beginning of the month, and the latest intermediate product
required by the fuse step, 40 days after the most recent
observation, are furthest apart. Fortunately, we can reduce
the number of open products significantly, by taking
advantage of the fact that most intermediate products can be
aggregated in time immediately, as only the aggregated
products are required to compute the later algorithm steps.
This strategy can be applied to the post, fuse and tile steps.

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

135 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Optimizing processing from Edge to Cloud

This process yields an advantage, as the algorithm can
discard those intermediate products that affect further
computation only in the form of the aggregated product.

The post step selects the confidence level of that pre step
computation which has the smallest temporal distance
between reference and predecessor. This means, it is enough
to keep track of the most recent confidence level for each
pixel, when computing the pre steps for a single reference in
order of largest temporal distance to smallest. In this case,
only two intermediate results need to be saved, the most
recently computed one and the aggregation for the current
reference.

The fuse step filters the intermediate product for a single
reference observation produced by the post step, by
aggregating future and past time series of post step products
of the other platform, to confirm or reject burned area
observations. The post step intermediate product to be
filtered is referred to as the target. Fig. 2 shows the
aggregation step for a short time series. The fuse step
prioritizes information of the post step results from
observation dates closest to the target reference date.
Information from the latest observation before the target has
the highest priority in the past aggregation and information
from the observation immediately following the target has
the highest priority in the future aggregation. For the fuse
step, this process is subject to two caveats: Once a post step
result has been integrated into the aggregated state, the fuse
step cannot be computed for any observation time stamp
before the newly integrated post step result because of the
overwritten information. Secondly, the algorithm cannot use
the same strategy to keep an accumulated state into the
future. The future aggregation must be computed backwards
in time, starting from the latest observation and finishing
with the observation immediately following the target. Fig.
2 shows information that is overwritten in the aggregation
process with a thick, red border. The pixel overwritten in the
future aggregation is relevant for the next fuse step
computation. However, it is lost in the aggregation for the
current fuse step. This means that the algorithm needs to
keep access to the product at t,. Conversely, the product at
t_, can be safely discarded, because the product overwriting
its information has higher priority for all future fuse step
computations.

The tile step proceeds in a similar way to the past
comparison of the fuse step and keeps an accumulated state
of the most up to date information for the currently
unfinished month. Taking advantage of aggregated state
products for the post, fuse and tile steps, the algorithm needs
to keep track of post result intermediate products for 40 days
to compute the future aggregation of the fuse step. The
aggregated products eliminate the need to access
intermediate products behind the time frame cursor. The
past aggregation of the fuse step is replaced by an

aggregated product. Besides accumulated states for tile and
fuse with a memory requirement similar to a single
intermediate product of their kind, no products outside of
the 40-day time frame need to be kept in memory.

2.4. Reduction in 10 operations for sub-Saharan Africa

The global SFD dataset is based on 3,060,962 Sentinel-2
L2A input products. The 2019 sub-Saharan Africa product
has 882,642 inputs of the same type. In the 2019 production,
using the original implementation, the pre step was executed
2,426,459 times, reading two products each. The number of
input product reads is reduced by a factor of approximately
5.5, from reading two products per observation pair to
reading each input only once. Further, all reads and writes of
intermediate products from the pre, post, fuse and tile steps
have been eliminated, including the 2.4 million pre step
intermediates (sub-Saharan Africa), read once, and 327,741
post intermediates, read multiple times each in the fuse step.

3. CONCLUSIONS

In this paper, we discuss the challenges posed by global
production of a high resolution burned area dataset as well
as an optimized implementation scheme for the existing
burned area algorithm. The new implementation minimizes
input and output operations by eliminating all intermediate
products that were created by the original implementation
and drastically reducing the number of reads of the input
products. At the cost of losing the intermediate information
for later inspection, the new implementation considerably
reduces the computational requirements.
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CLOUD-NATIVE DATA SERVICES AT EUMETSAT: A PORTFOLIO APPROACH FOR
SCALABLE USER ACCESS FOR A DIVERSE USER COMMUNITY

Daniel Lee, Michael Schick
EUMETSAT

ABSTRACT

EUMETSAT, Europe's organisation for the
exploitation of meteorological satellites, has
transformed its approach to data access from
predominantly real-time satellite broadcasts to a
versatile, cloud-native data access portfolio. This
shift allows for the service portfolio to be managed
according to cost and service level targets. The
services are available using a combination of
public clouds, private clouds, and on-premises
environments, including the European Weather
Cloud (EWC). Leveraging an extendable, service-
based architecture has allowed EUMETSAT to
rapidly adopt and support interfaces such as the
WMO Information System 2 (WIS2), backed by
the robustness of the cloud-native approach.
Additionally, EUMETSAT actively enhances its
data readiness for Artificial Intelligence (AI) and
Machine Learning (ML) workflows guided by
adherence to FAIR principles, especially in data
accessibility and reusability.

Index Terms — cloud-native, FAIR, data
access, services portfolio, AI/ML readiness

1. INTRODUCTION

Historically, EUMETSAT provided satellite data
primarily through real-time dissemination systems,
requiring users to independently manage local
archives if they needed fast access to time series.
Historical products could be retrieved from a tape
archive service, but this was not an online service
and response times were high. Increasingly diverse
user needs and growing satellite data volumes
brought this model to its limits, prompting the
development of a modern, centralized, cloud-
native data service portfolio. This portfolio is more

flexible and is compatible with a multitude of
workflows and use cases. This paper describes
EUMETSAT's transformation, emphasizing its
alignment with the BiDS 2025 theme of scalable
digital infrastructures optimized for diverse
applications. The new architecture has served
EUMETSAT well as user needs have evolved and
technology  opportunities  have  presented
themselves.

2. CENTRALIZED PROCESSING,
DECENTRALIZED USER CONTROL
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Fig. 1. EUMETSAT’s data access services
portfolio.

EUMETSAT’s legacy is as a real-time data
provider for nowcasting and numerical weather
prediction. Additionally, its data products were
used for monitoring the climate. This led to a
bifurcation of data access early in the
organisation’s history; data was made available to
users with the lowest timeliness possible in order to
maximise its use in making weather-related
decisions, often to preserve life and property, in
real-time, and additionally, data was available from
a long-term, tape-based archive.
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This setup was cost-effective and fulfilled the
needs of EUMETSAT’s users very well. However,
the addition of new missions, the continuous
increase of data volumes, user demands, and the
need for online data access changed the
environment, exposing gaps in EUMETSAT’s data
access strategy. As more missions were added to
EUMETSAT’s portfolio and the use of satellite
data products became more feasible for a wider
range of users, our potential community expanded
greatly. In order to allow more users to reap the
benefits of our data products it was necessary to
provide data to users in such a way that didn’t
require them to maintain antennae for real-time
data reception, operate their own archives to access
time series on short notice, or write their own
software in order to visualize our products or use
them in their own processing chains.

EUMETSAT's data access strategy was therefore
reworked to leverage a portfolio that takes the
burden associated with data management and
processing off users’ shoulders by centralizing a
variety of data services:

« EUMETCast: A  real-time, high-
availability multicast service delivering
time-critical satellite data globally, suitable
for wusers who require immediate,
operationally relevant data.

+ Data Store: Provides online access to
extensive historical and near-real-time
datasets, enabling access and integration of
data products into user workflows.

« EUMETView: Offers interactive
visualization of satellite products directly

using standardized web interfaces,
removing the need for custom visualization
software.

* Data Tailor: Allows users to transform
datasets into custom formats tailored
specifically to their unique processing
toolchains and  specific use case
requirements.

All these data services can be used in the cloud of
users’ choice, be it a public cloud, on-premises, or
a hybrid. Furthermore, EUMETSAT further

enhances this portfolio by offering hosted
processing in the form of managed, data-proximate
processing environment, significantly reducing
infrastructure demands previously placed on
individual wusers. Several environments offer
computing services tailored specifically to the
needs of different user communities, sometimes as
part of a federative offering with other
organisations.  This lets users maintain
decentralized control by freely deploying and
interacting with these services across various
environments, including public clouds and local
on-premises setups.

3. THE ADVANTAGES OF SERVICE
ORIENTATION: WMO INFORMATION
SYSTEM 2

EUMETSAT's adoption of a service-based
architecture benefits not only our users directly, but
also our internal development and maintenance
teams, by providing flexibility. This flexibility is
evidenced by the rapid implementation of
EUMETSAT’s interface to WMO Information
System 2 (WIS2). The existing architecture
required only minimal, targeted extensions to
support WIS2, avoiding major rewrites or
additional service deployments.

Previous architectures would likely have required
significant development work or the development
of a new bespoke service to fulfil the required
interfaces. However, the portfolio approach
allowed us to extend services surgically. In this
case, all that was required was the addition of a
pub/sub service to the Data Store announcing the
availability of new data products. Users — including
WIS2 infrastructure — can then access the products
of their interest from the Data Store directly. No
changes to our access management technology
stack were necessary.

This  extendibility  significantly  enhances
EUMETSAT’s ability to serve the WMO user
community, increasing data visibility and
accessibility while incurring low costs and minimal
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operational disruption, and validates the flexibility
and future-readiness of the chosen architecture.

4. MULTI-MISSION ARCHITECTURE AND
SCALABLE ACCESS

Previously, each satellite mission required
bespoke adjustments to infrastructure and data
services, increasing both complexity and user-side
costs. Data formats varied significantly, and users
often developed unique tools to handle data
visualization and processing. In contrast, the new
portfolio allows users to tailor data directly to their
workflows with minimal effort, significantly
reducing  barriers to  adoption.  These
customisations can be executed on EUMETSAT
computing assets using the Data Tailor Web
Service, which interfaces with products stored in
the Data Store, or after downloading from the Data
Store using a local Data Tailor installation.

The Data Store itself is engineered to be data-
agnostic, and its functionality is limited to data
discovery and download. Under the previous
architecture, data products accessed from the tape
archive could be customized before download via
a monolithic service. This rich functionality proved
cumbersome because the provision of data
collections to users was tightly coupled with any
customisations that we wanted to offer on those
data. Decoupling the Store and Tailor functionality
has made the portfolio more flexible; new data
collections can be added asynchronously with
customisations, and the Tailor service can be
upgraded independently of the storage and
provisioning services. Further details on the Data
Store can be found in “Retrieve, transform, deliver:
Integrating preservation and performance in the
EUMETSAT Data Lake” by Colapicchioni et al.,
which is also presented at BiDS 2025.

EUMETView also represents a significant step
forward in the user experience. The service profits
significantly from the use of standard data formats
in EUMETSAT’s newer generations of satellites.
Previously, mission data was provided in bespoke
formats; users had to understand the bespoke

formats that were used and develop their own
software if they wanted to visualize our data.
EUMETView has made this situation much
simpler; for heritage missions, users can simply use
OGC services to consume our data in the form of a
Web Map Service. Certain products are also
available as Features or Coverages.

The use of netCDF as the native format for new-
generation satellites not only simplifies the
development of visualization and processing
software, but also allows EUMETSAT to more
rapidly develop and deploy visualisations that are
available to users as a service on EUMET View.
EUMETView also allows users to more easily
share views of our data with colleagues.

All of these services are available both via a
graphical user interface as well as via REST APIs,
which makes it easy to interface them with
downstream automated processing. This allows us
to offer a high-quality user experience, whether our
users are humans or machines.

Furthermore, as mentioned previously, real-time
data provision used to be available only to users
who operated satellite antennae to receive products
downlinked  from  space. This  service,
EUMETCast, has been expanded to offer reception
not only via satellite but also via terrestrial
networks. On a per-user basis this allows the
EUMETCast services (both Satellite and
Terrestrial) to disseminate more than a petabyte of
data to users per day, located worldwide.

5. FAIR PRINCIPLES AND FUTURE
DIRECTIONS

EUMETSAT’s commitment to FAIR (Findable,
Accessible, Interoperable, and Reusable data)
principles drives continuous enhancements in data
discoverability, accessibility, and reusability.
Expanding the availability of comprehensive time-
series datasets improves their utility for climate
research, training, and various operational
purposes. Future initiatives include allowing data
discovery using SpatioTemporal Asset Catalog
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(STAC), which we anticipate will significantly
enhancing catalog navigation and interoperability.
Such developments ensure that EUMETSAT's
satellite data holdings become increasingly user-
friendly and widely usable.

6. AI/ML READINESS AND INNOVATIVE
DATA PROVISION

EUMETSAT is also exploring innovative
approaches to data provision such as data cubes and
formats such as zarr to facilitate AI/ML workflows.
This should allow data to not only be discovered
and utilized, but also allow our data to be used at
massive scale. Concurrently, first experiments with
generative Al chatbots are being trialed, aimed at
simplifying interactions with our data services by
enhancing data discoverability, streamlining API
usage, and making it easier to navigate our
comprehensive documentation. Although these
technologies remain exploratory, they demonstrate
our forward-looking perspective to preparing our
data services for our users’ evolving requirements
and the needs of our diverse and growing user
community.

7. OUTCOMES

The data services have produced an excellent
performance track record in operations. On a daily
basis, more than 500 TB are delivered to in real-
time to users on in 150 countries using
EUMETCast. EUMET View serves up more than
2 million images per day, and over 400 TB per
month are delivered to users by the Data Store and
Data Tailor. These services are reachable in the
cloud of users’ choice, using APIs, CLIs, and
GUIs. And the technology stack has proven
reliable and adaptable as new needs arise.

8. CONCLUSIONS

The portfolio approach adopted by EUMETSAT is
a significant step forward in the way users can
access and exploit our data. The new portfolio
offers a richer set of capabilities, improving the
user experience while saving costs on all sides
simultaneously.

Because EUMETSAT remains dedicated to
serving national meteorological and hydrological
services, an important consideration in the
portfolio’s design was not only ease of use, but also
flexibility. For this reason, we have worked hard to
achieve a situation where our services can be used
with equal ease in on-premises computing
environments, as well as public and hybrid clouds.
This includes hosted processing cloud offerings
that EUMETSAT offers for specific user
communities. Thus the portfolio allows us to
harness the advantages of centralized processing
and storage, whilst allowing users to be flexible in
where they work and consume these services and
data products.

Furthermore, by building a cloud-native
architecture, the services are highly scalable and
interoperable. This lets us respond rapidly to
technological advancements and new user needs.
An example of this is the speed and ease with
which it was possible to extend the data services to
fulfil the needs of WIS2. It is also demonstrated in
our ability to experiment with emerging
technologies and use cases. Currently known
examples are catalogue services such as STAC, as
well as new data interfaces such as data cubes and
zarr. Our focus is not only on human, but also on
machine consumption, which means that our data
needs to be available at scale, and these efforts have
already proved worthwhile through the ease with
which experimental generative Al applications can
work with our data services.

EUMETSAT remains committed to providing life-
and property-saving data services to our users, and
the use of a cloud-native architecture has helped us
pursue this goal with flexibility, low costs, and fast
learning cycles. Similar organisations might do
well to use this template also, by adopting cloud
technologies and architecting their solutions to be
focused on limited functionality and achieve rich
functionality through a portfolio approach.
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ABSTRACT

The Earth Observation (EO) sector increasingly demands
actionable insights rather than raw data. Al-eXpress (AIX),
developed within ESA’s InCubed initiative by Planetek
Italia, D-Orbit, and AIKO, revolutionizes the satellite-as-a-
service paradigm by integrating deep-learning models
directly onboard satellites. AIX introduces an open “App
Store” ecosystem, facilitating rapid in-orbit demonstrations
(IOD) and validations (IOV) of advanced Al applications,
such as real-time object detection and anomaly
identification. By efficiently managing onboard resources,
irrelevant data is automatically discarded, optimizing
memory usage and bandwidth.

AIX’s low-latency services are crucial for security and
disaster responsiveness. Actionable intelligence can trigger
autonomous onboard decisions or be transmitted back to
Earth as real-time notifications and alerts, ensuring swift
responses to critical situations. This capability accelerates
the transition from technology “makers” to “enablers.”

The AIX mission envelope exemplifies this potential.
AIX-1p (“The Pathfinder”), launched on 14" January
2025 onboard SpaceX F9 Transporter-12 (T-12), carries a
COTS RGB payload (~15 m GSD) assembled in-house by
D-Orbit, enabling early demonstrations of onboard Al
processing. AIX-1 (“The Innovator”), launched on 23%
June 2025 (T-14), follows with an upgraded architecture and
expanded service offering. AIX-1+ (“The Visionary”),
scheduled for the October 2025 Transporter, upgrades the
imaging capacity with a dual-head imaging payload: a nadir-

gianluca.Furano@esa.int

looking multispectral camera with ~10 m GSD across
Sentinel-2 equivalent bands (from B2 to BS8a) plus a
panchromatic channel, complemented by a forward-looking
wide-swath RGB camera (~150 m GSD). This combination
supports both fine-scale tasking and broad-area situational
awareness, demonstrating powerful onboard computing,
blockchain-enabled  services, and near real-time
responsiveness.

Index Terms- satellite-as-a-service, ai-augmented
onboard processing, low-latency insights delivery, Earth
Observation, autonomy, software-defined missions

1. INTRODUCTION

The Earth Observation (EO) sector increasingly demands
actionable insights rather than mere raw data. Traditional
EO missions face challenges such as limited onboard
resources (power and bandwidth), inefficient data downlink
(irrelevant or low-quality imagery), and delayed decision-
making due to ground-based processing ([1]-[2]-[3]). Al-
eXpress (AIX), developed by Planetek Italia, D-Orbit, and
AIKO within ESA's InCubed initiative, introduces a
paradigm shift towards Satellite-as-a-service. Leveraging
powerful onboard computing, artificial intelligence (Al),
and blockchain technologies, AIX enables real-time onboard
processing, discarding irrelevant data, thus optimizing
satellite memory and bandwidth usage. This workflow is
referred to as “SpaceStream”. In this approach, data is
processed where it is most effective, seamlessly bridging
space and ground resources. In this context, AIX defines
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“Spacedge” services, a novel approach for interfacing EO
users with both the satellite and ground segments.

The SP AC=DC= Ecosytem

.SOME OF THE POSSIBLE AIX GENERATED ECOSYSTEMS

We Sell in orbit connectivity
Trough SPACEDGE devices

They attracts New User we
share Revenues on in APP
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‘

SPACEDGE Delivered Value
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We generate Traffic. And

Share Revenues

FIGURE 1. THE PLANETEK’S SPACEDGE
ECOSYSTEM, POWERED BY AIX
CREDITS: HTTPS:/WWW.AIEXPRESS.EU [4]

AIX provides an open 'App Store' ecosystem where users
can access pre-built applications (e.g., wildfire detection,
vegetation monitoring, maritime anomaly detection) or
deploy custom Al algorithms for rapid in-orbit
demonstration (IOD) and validation (IOV).

In January 2025, the first AIX satellite (AIX-1p, “The

Pathfinder”) was successfully launched, demonstrating on-
board processing and paving the way for subsequent
missions within 2025.
The second successfully launched satellite, AIX-1 (“The
Innovator”), incorporates enhanced scalability and near real-
time data services, while the final mission, AIX-1+ (“The
Visionary”), is scheduled for October 2025, featuring dual-
head multi-spectral imaging capabilities and seamless
integration with the AIX App Store. All three missions
(supported by ESA’s InCubed program) are designed to
lower barriers for SMEs, accelerate EO innovation, and
confirm AIX as a fully flexible, information-driven satellite
service platform.

2. BUILDING BLOCKS

The AIX/SpacEdge framework, as shown in Figure 1

consists in several core principles: onboard intelligence,

modular software design, and a user-focused ecosystem.

Below is a brief overview of how these elements come

together:

1. Space Segment: Leverages D-Orbit's ION Carrier [5],
which comprises two main components: a modular
platform and hosted payloads. The ION carrier provides
standard spacecraft functions (attitude control,
command and telemetry processing, maneuvers) and
hosts custom payloads. A dedicated on-board software
framework supports the execution of user-defined
algorithms, in particular Al-based applications,
enabling real-time data filtering, compression and

information extraction using on-board accelerators
(GPUs, VPUs).

2. Ground/User Segment: Provides an app store-like web
interface where users can configure satellite resources
and tasks, deploy their custom Al applications, and
manage data acquisition and processing workflows on-
demand. Users interact by selecting sensors,
configuring acquisitions, algorithms and pre-processing
steps, and then directly retrieve processed results.

Application Support Monitoring & Control

I/F Ir

SysConf Abstraction
(Operational FrameW)

Configuration Manager

SysConf I/F

RTOS or Linux 0S

HW (Application Cores)
FIGURE 2. AIX FRAMEWORK: HIGH-LEVEL
ARCHITECTURAL SCHEME

3. Software Framework: As shown in Figure 2, the
Spacedge-enabled system comprises layered
architecture:

o System Controller Abstraction Layer: Manages
secure and abstracted communication between
system controllers and applications through remote
interfaces, handling authorization and remote
procedure calls (RPC).

e  Monitoring & Control Layer: Provides basic
housekeeping, network, storage and fault
detection/recovery services to ensure observability
and control reliability.

e Application Support Layer: Hosts runtime services
for deterministic image processing and Al tasks,
facilitating the deployment of Al algorithms through
acceleration devices and parallel processing.

e Data Processing Layer: Utilizes Planetek's
proprietary SDK (PkSpacekit), which offers a
comprehensive ecosystem for data handling, image
processing, multi-platform support, and hardware
acceleration through parallelization (e.g., OpenCL,
GPUs), augmented by AIKO’s services for
applications and autonomous operations ([9]);

o Al Augmentation Layer: Enables integration and
execution of neural network models using widely-
adopted formats (ONNX [6], Apache TVM [7],
CNNs), allowing efficient inference and
quantization for onboard processing. Figure 3
depicts such a mechanism, sketching the basic
behavioral model supported, and extensible, via the
framework.
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FIGURE 3. AIX SUPPORT FOR NEURAL
NETWORKS: THE INFERENCE ENGINE
PERSPECTIVE

4. Blueprint Editor: As highlighted in Error! Reference
source not found., this tool provides a graphical
interface for designing custom data-processing and Al
workflows. It automatically generates the underlying
code, allowing non-expert users to rapidly compose and
deploy onboard applications without extensive

rogramming effort.

FIGURE 4. PROTOTYPAL DEMO IMPLEMENTED
WITH THE IMGUI-NODE-EDITOR OPEN-SOURCE
PROJECT [8]

5. Imaging systems: The first two AIX missions (AIX-1p
and AIX-1) are equipped with a commercial-off-the-
shelf (COTS) RGB camera, assembled in-house by D-
Orbit, delivering a ground sampling distance (GSD) of
~15 m. These payloads provide rapid prototyping
capability for in-orbit Al demonstration and service
validation. The third mission, AIX-1+ (‘The
Visionary’), introduces a dual-head multispectral
payload: a nadir-looking imager with ~10 m GSD
across Sentinel-2 equivalent bands (B2-B8a) plus a
panchromatic channel, complemented by a forward-
looking wide-swath camera (~150 m GSD). This dual-
head mosaic snapshot camera system (supplied by TSD
Space) supports both high-resolution tasking and broad-
context monitoring, expanding the range of applications
from local asset monitoring to regional-scale anomaly
detection.

6. Operational Workflow: Users configure services via a
web portal, defining sensors, acquisitions time,
processing chains, and actionable outputs. Configured
tasks are scheduled, uploaded via ground infrastructure,

executed onboard, and results returned to users.
Resources are automatically released after execution,
enabling continuous and optimized resource utilization.
Figure 5 shows the entire workflow from the user
request to the insights’ delivery.

3. CONOPS

By processing data in orbit, AIX fundamentally changes the
speed and efficiency of Earth Observation. Instead of
collecting raw images and sending them to ground for
analysis, the satellite itself evaluates and filters out what's
irrelevant - such as cloudy scenes or areas of no interest -
and then quickly downlinks only the important results. This
eliminates wasted bandwidth, reduces delays and allows
faster response to events on the ground. For instance, a
wildfire detection app can highlight hot spots and generate
an alert almost instantly, rather than waiting for a full image
to be downlinked and reviewed later.

The "app store" approach gives researchers and companies a
straightforward way to test and deploy their own algorithms
in space. It eliminates the long lead times typically required
to integrate new software into a mission, making it possible
to run quick experiments or deploy updated versions of
existing applications whenever needed. This creates an
ecosystem where new ideas can reach orbit faster and
promising algorithms can be demonstrated under real-world
conditions.

Sensor in-the-loop »

Low-latency edge &,
processing -

Narrow FOV
Nadir logking
o 8,5m GSD Optical‘Multi-Spectral

Wide FOV'Eorward looking
Low-res (120-250m)
Sensor

FIRE 5. AIX OPERATIONAL SERVICES FLOW

Al-eXpress also paves the way for new business models
based on on-demand satellite services. Customers pay only
for what they need — like a specific type of data product, a
short test campaign, or a continuous monitoring service.
This makes satellite resources more accessible to smaller
companies and research groups, who can now affordably
access advanced in-orbit computing capabilities.

In the long term, such flexibility and shared resources could
accelerate innovation across the EO sector, shifting the
focus from raw data to immediate, actionable insights. By
lowering the entry barriers, AIX democratizes access to
space technology, enabling a broader range of stakeholders
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to participate in and benefit from EO advancements. This
democratization fosters a more competitive and dynamic
market, where even small-scale enterprises and academic
institutions can contribute to and drive technological
progress.

Moreover, the on-demand model supports a more
sustainable approach to satellite operations. By optimizing
the use of satellite resources and reducing unnecessary data
transmission, AIX helps minimize the environmental impact
of satellite missions. This efficiency not only conserves
bandwidth and energy but also aligns with global efforts to
promote sustainable practices in space exploration and
technology.

AIX 's innovative approach also encourages the
development of specialized applications tailored to specific
industry needs. For instance, agriculture companies can
leverage real-time crop monitoring and predictive analytics
to enhance yield and resource management. Disaster
response teams can benefit from rapid damage assessment
and situational awareness, enabling quicker and more
effective interventions. Urban planners and environmental
agencies can utilize up-to-date land use and environmental
data to make informed decisions and policies.

Furthermore, the integration of blockchain technology
within AIX ensures data integrity and security, providing an
additional layer of trust and transparency for users. This
feature is particularly valuable for applications requiring
high levels of data accuracy and reliability, such as financial
services, insurance, and regulatory compliance.

Overall, AIX not only transforms the EO sector by
providing low-latency, actionable insights but also fosters a
collaborative and innovative ecosystem. By making
advanced satellite services more accessible and sustainable,
AIX is poised to drive significant advancements in various
industries, ultimately contributing to a smarter and more
connected world.

4. RELEVANCE

AIX is a versatile platform that benefits various industries
by providing advanced Al capabilities and low-latency
information processing and delivery directly onboard
satellites. Few some examples of industries that benefit from
such a platform/service, with a special focus on defence,
security and sustainability is:

Defence and Security: AIX significantly enhances defence
and security operations by providing real-time, actionable
intelligence. The platform's ability to process data onboard
and deliver low-latency alerts is crucial for timely decision-
making in critical situations. For instance, AIX can be used
for:
e Real-time object detection: Identifying potential
threats such as unauthorized vessels in restricted
areas.

e Anomaly detection: Monitoring and detecting
unusual activities or changes in strategic locations,
which can be vital for national security.

e Autonomous decision-making: Enabling
autonomous decision-making based on predefined
criteria, such as initiating countermeasures or
alerting ground control about potential threats.

Civil protection and emergency response: AIX supports
civil protection and emergency response by providing rapid
assessments and situational awareness during disasters. This
includes:
e Fire detection: Identifying and monitoring
wildfires in real-time to assist firefighting efforts.
e Qil spill detection: Detecting and tracking oil
spills to mitigate environmental damage.
e Disaster management: Providing real-time data
on natural disasters like floods and earthquakes to
coordinate rescue and relief operations

Environmental monitoring: AIX aids in environmental
monitoring by providing detailed and timely data on various
environmental parameters. This includes:

e Forest health management: Monitoring forest
conditions to detect diseases, pests, and illegal
logging activities.

e Urban planning: Providing data on land use and
environmental changes to support sustainable urban
development.
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ABSTRACT

Earth Observation (EO) satellite data are increasingly
recognized for their role in addressing global challenges,
including climate change and urban resilience. Despite their
potential to enhance monitoring and planning, adoption by
Local and Regional Authorities (LRAs) remains limited and
underexploited. This paper investigates the perceived drivers
and obstacles shaping EO adoption among LRAs, using an
integrated framework based on the Technology Affordances
and Constraints Theory (TACT) and the Technology-
Organization-Environment (TOE) model. A survey was
conducted among LRAs engaged in EU-funded EO-related
projects. Results from 17 EU countries show a moderate
adoption rate (56%), mainly for specific projects. EO data are
valued for decision-making support and cost-effectiveness.
Still, barriers persist, including technological limitations, lack
of skilled personnel, and weak regulatory incentives.
Participation in projects and internal organisational needs
emerge as key drivers. Despite the limited sample size, these
findings offer insights into the end-users’ perspectives and
enabling conditions for expanding EO data use within LRAs.

Index Terms— Copernicus’end-users’ perspectives;
Urban Climate adaptation; Space economy.

1. INTRODUCTION

Earth Observation (EO) satellite data are increasingly
recognised as strategic assets for monitoring environmental
change, contributing to the Sustainable Development Goals
(UNOOSA, 2019)[1]). According to the European
Commission’s Knowledge Centre on Earth Observation
(KCEO), EO products and services can contribute to over 28
EU policy areas, including climate adaptation, agriculture,
and urban development. The value of EO data is particularly
relevant at the local and regional levels, where climate-related
risks are most concentrated, and the capacity for monitoring,
planning, and resilience-building needs to be supported. EO
and other geospatial technologies offer powerful tools for
enhancing local decision-making in domains such as climate
adaptation, land use, and urban heat mitigation (Dowell M. et
al., JRC, 2025) [2]. With nearly 70% of Europe’s population
residing in urban areas, mainstreaming the use of EO by
Local and Regional Authorities (LRAs) is critical for
delivering space-enabled policy impact. Nevertheless,

despite the growing availability of EO data and platforms,
adoption by LRAs across Europe remains limited (EARSC,
2023).[3] In addition, the perspectives of local users—who
must translate EO data into policy, planning, or service
delivery—are still underexplored in both academic literature
and institutional strategies (OECD, 2023 [4] [2]). Building on
earlier author’s studies in Italy (Filippi et al. 2025) [5], this
paper extends the analysis on a European scale, applying an
integrated theoretical framework, Technology—
Organization—Environment (TOE) [6] and Technology
Affordances and Constraints Theory (TACT) [7], to assess
factors influencing EO adoption and use. The paper addresses
the following research questions: RQ1: What are the main
technological, organisational, and environmental factors
influencing EO adoption by LRAs? RQ2: What affordances
and constraints are perceived in the use of EO satellite data
and services?

2. METHODOLOGY

This study adopts aqualitative, theory-informed
approach based on multiple case studies (Yin, 2017) [8] to
explore the adoption and use of Earth Observation (EO)
satellite data by Local and Regional Authorities (LRAs)
across Europe. This design enables both comparative
analysis across organisational and territorial contexts
and theoretical generalization from prior research conducted
in Italy. Given the specialized nature of the target population
and limited sample size, the study follows the logic
of analytical generalization, aiming to identify transferable
patterns and theory-informed insights. Survey Design and
Theoretical Framework. To address the research questions,
a structured survey was designed and administered to a
purposive sample of European LRAs. The survey builds on a
framework developed in two prior author’s studies. It is
grounded in two complementary theories: Technology
Affordances and Constraints Theory (TACT) (Majchrzak &
Markus, 2013) [7], used to assess the perceived benefits and
limitations of EO technologies. Technology—Organization—
Environment (TOE) (Tornatzky & Fleischer, 1990) [6] was
used to identify organisational and environmental conditions
influencing adoption. In addition, three more sections have
been introduced in the survey: organisation’s background,
EO usage patterns, Barriers/enablers and peer advice. The 26-
question survey employed Likert scales, single/multiple-
choice, ranked responses, and one optional open-ended item.
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Sampling Strategy and Data Collection. The target
population included subnational public authorities (cities,
regions, agencies) (potentially) interested in EO satellite data.
A purpose-driven sampling strategy was adopted, identifying
LRAs engaged in EU-funded projects (i.e. through Horizon
Europe, Life+, Interreg, EUI, URBACT) related to EO,
climate adaptation/mitigation, or smart cities. A total of 30
LRAs were identified, and the survey was distributed
via LimeSurvey (v6.4) in English. Responses from those not
using EO were routed to a shorter version (approx. 1 minute);
full participation took 10-12 minutes. Data Analysis
Approach. Given the limited sized of the sample (N=25), the
analysis focused on descriptive statistics (frequencies, means,
SD) for EO use, affordances, barriers.

3. RESULTS

3.1 Sample overview. Thirty-three individuals representing
55 individuals from 50 LRAs across EU were contacted. A
total of 50 responses to the survey have been received, of
which 25 are fully complete (completion rate: 50%).
Notably, Italian LRAs were deliberately excluded to avoid
overlap with the author’s prior national-level study and to
ensure the European focus of the present analysis.
Respondents came from 17 EU countries, with a balanced
mix of cities, metropolitan cities, and regional/municipal
agencies, while regions are underrepresented. Most were
from medium-sized organisations, with over half employing
up to 3,000 people.

3.2 EO data usage and adoption patterns. Out of the 25
respondents, N=1 reported not knowing whether their
organisation uses Earth Observation (EO) satellite data, and
N=1 reported they are not using this technology. N=7
respondents indicated that EO data is used only indirectly,
primarily via tools such as Google Earth, without structured
access to EO datasets or services. The remaining eight, N=14
respondents, reported direct use of EO satellite data. This
group of direct users includes representatives from all
organizational types in the sample (cities, metropolitan cities,
and regional/municipal agencies), suggesting no clear
association between the type of organization and the
likelihood of direct EO adoption. As shown in Table 1, the
level of EO data adoption is mostly (86%) concentrated at the
lowest level (Level 1-2), with residual respondents (14%)
reporting a more structured use (Level 3-4).

Table 1. Degree of EO satellite data adoption and use
among surveyed LRAs (N=14)

In terms of thematic domains of application, EO satellite data
was most frequently used for addressing urban heat islands
(N=8), followed by urban planning and urban greening (each
N=6). And land use and land cover (N=5). Less frequent
domains include air quality (N=3), emergency and Ground
motion (N=2) and single mentions for biodiversity, hydro-
meteorological monitoring. The primary source of EO
satellite data used is the Copernicus programme, cited by
71% of users, 21% reported to use primarily national satellite
constellations and only 1 (a Dutch org.) a commercial satellite
data. In terms of purposes, monitoring (N=8) and planning
activities (N=6) are almost equally represented among the
respondents, while no respondents reported using EO data for
law-making or forecasting systems.

3.3 Technology Affordances and Constraints. This section
was completed only by the 14 respondents who
reported direct use of Earth Observation (EO) satellite
data within their organisations. Participants were asked to
indicate their level of agreement with the following five
statements using a 5-point Likert scale.

Figure n.1 Respondents' agreement (5-point Likert scale)
on five statements reflecting EO satellite data affordances
and constraints. Values represent average values across
eight EU LRA respondents directly using EO
technologies.
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As can be seen in Figure mn.l, respondents
expressed moderate to moderately high levels of
agreement, suggesting a generally favourable perception of
EO technologies, albeit with some reservations. EO satellite
data was seen as moderately useful to improve decision-
making (mean = 3.8), and they are recongnized as cost-
effectives compared to other sources of data (3.5). Also, their
integration into an existing platform is perceived as quite
manageable (mean = 3,.6). However, concerns about cost and
ownership of commercial data are common issues. The
resolution adequacy of the EO satellite in meeting the
organisations’ operational and knowledge needs scored
lowest (mean= 3.2), indicating perceived limitations. This
finding is consistent with the high frequency of "EO satellite
data does not fully meet our operational and knowledge
needs" being cited as a major barrier in the subsequent
section.

Level of Description Respondents
EO Usage (N)
Level 1 Tested experimentally 5
Level 2 Used occasionally for specific 7
projects or reports
Level 3 Regular use in workflows 1
Level 4 Institutionalised use 1
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3.4 Influential factors. All the respondents, including those
using EO only indirectly (total N=21), except for those not
using EO satellite data or not aware of it (N=2), participated
in the survey.

Figure n.2 Respondents' agreement (5-point Likert scale)
on four statements reflecting organisational factors.
Values represent average scores across respondents N=21
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As shown in Figure 2, the responses indicate a widely
perceived lack of awareness among high-level management
regarding EO technologies (mean = 3.8), highlighting a
potential leadership-level barrier to adoption. More critically,
there is strong evidence of a weak organisational capacity,
particularly in terms of training provision (mean =
1.6) and internal technical expertise (mean = 2). These
results suggest that most organisations lack the skills and
knowledge required to autonomously process and exploit EO
data. On a more positive note, respondents
reported moderate agreement regarding the existence of
a general data culture and trust in data (mean = 3.3),
which could serve as a partial enabling factor.

3.5 Environmental influential factors. Regarding
regulatory pressures, among the 21 respondents, only one
reported a clear legal or regulatory mandate/encouragement
for the adoption of EO satellite data. At the same time, N=13
answered "No" and N=7 selected "Only indirectly". These
findings indicate that external institutional pressure is
currently minimal. However, the presence of indirect
references to support EO in broader policy frameworks
suggests alatent or "hidden" potential for regulatory
incentives to play a more prominent role in the future.

Regarding inter-organisational cooperation at the regional
scale, such as collaboration with other cities, provinces, or
regions, 10 respondents confirmed active cooperation,
while 4 indicated they are not experimenting it.

A particularly strong consensus emerged on the value
of structured exchange and learning opportunities among
public authorities. 21 out of 25 respondents agreed that such
opportunities would support EO adoption in their

organisation, with only 4 respondents expressing
disagreement. This result underscores the importance of peer-
to-peer learning, knowledge transfer, and capacity-building
networks as enabling conditions for wider and more effective
EO integration in public sector contexts. Also, respondents
were asked to evaluate if and to what extent the access to EU
funds has been key to start EO data adoption. The mean
value =3.6 indicates a moderately high value of EU funding’s
perception as an opportunity to support the adoption of EO
satellite data.

3.6 Perceived Barriers, Drivers perceived, Peer to Peer
advice. All the survey respondents, including those not using
EO satellite data (N=25), were asked to identify the main
barriers to adopting and using EO data in their
organization. They have been invited to choose the three most
relevant barriers from 6 different options.

As shown in Table 2, respondents highlighted skill shortages
(N = 17), budget costraints (N=12) and EO satellite data
suitability (N =11), as top barriers.

Table 2. Main perceived barriers to EO data adoption
among surveyed LRAs (N = 25)

Barrier (N)
Lack of properly trained staff 17
Limited budget 12
EO data does not fully meet 11
operational/knowledge needs

Complexity of the procurement 6
Complexity of the technology 5
Lack of top-management/ legal inputs 5

3.7 Key drivers perceived. Respondents who declared to use
directly EO satellite data (N=14) were asked to identify,
based on their experience, the key factors enabling EO
satellite data adoption, by choosing three among 9 pre-
defined options.

Table 3 Main perceived drivers fostering the adoption of
EO satellite data among LRAs surveyed using EO data.
(N=14)

Driver o)
Participation in a specific project or 10
initiative

Organisation’s internal need 9
Collaboration with a university or 6
research institution

My own individual awareness or 5
motivation

Effective collaboration with an 5
industrial service provider

Availability of funding from an EU 4
programme

Engagement with ESA 1
Strong commitment from leadership 0
Legal or regulatory requirements 0

As shown in Table 3, the most frequent factor (N=10) is the
participation in a specific project or initiative, followed by
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the organisation’s need for the improvement of monitoring
and planning (N=9).

Among secondary factors, collaboration with universities
(N=5) or individual awareness or motivation and
collaboration with a company (N = 5 each) were identified
as moderately influential.

3.5 Peer-to-peer recommendations. Drawing on their
experience, the eight respondents who directly use EO
satellite data were asked what advice they would give to a
public authority planning to initiate EO data use by selecting
the three most relevant recommendations from a pre-defined
list.

Table n.4 Peer-to-peer recommendations among LRAs
surveyed (N=14)

Recommendations N)
Establish partnerships with research centers/univ. 10
Invest in internal training for staff 7
Collaborate with an industrial service provider to 6
develop tailored solutions

Raise awareness and commitment from 5

political/institutional leadership
Build direct cooperation with ESA or the National 4
Copernicus Users Forum
Allocate funding within ordinary budget 4

As shown in Table 4, the most recommended peer-to-peer
advice is building academic partnerships (N=10) and (N =7),
followed by service provider collaboration, increased
leadership awareness, and engagement with ESA (N=4).

4. CONCLUSIONS

Although preliminary, the results reveal consistent patterns.
Despite being distributed among LRAs already involved in
potentially EO-relevant projects, the small but institutionally
diverse sample (N = 14), comprising cities, metropolitan
cities, and regional agencies, highlights that only 57% of
respondents directly use EO satellite data, and even then,
mainly in experimental or project-based forms rather than
through institutionalized adoption.

Organizational barriers are significant. A shortage of skilled
personnel, limited training opportunities, and low leadership
awareness consistently hinder adoption. Externally,
regulatory drivers are weak, with little formal pressure to
adopt EO technologies. However, peer-to-peer exchanges are
seen as highly valuable, and EU funding plays a moderately
supportive role. The potential for regional cooperation
remains partially underexploited.

Perceived affordances of EO data are moderately positive.
Users value EO’s contribution to decision-making and cost-
effectiveness despite ongoing concerns about data resolution
and cost and ownership issues for commercial data. Not
unexpectedly, among key barriers, we find inadequate
internal expertise, limited data adequacy for operational

needs, and budget constraints, aligning with findings from
previous studies (Filippi E. et al., 2025 [8]; JRC 2025 [2]).
Adoption seems to be driven by a combination of internal
organisational needs and external opportunities, notably
participation in EU-funded projects. This suggests a hybrid
model, where bottom-up organisational needs appear to
trigger interest in EO technologies, and actual adoption is
often activated and supported by externally driven
opportunities.

Peer-to-peer recommendations confirm these insights:
experienced users emphasise investments in human capital,
strategic collaboration with research, industry partners and
ESA, and a stronger leadership engagement.

The study presents relevant limitations due to the size of the
sample and its composition derived from a purposing sample
strategy. However, the survey, grounded in two theoretical
models and already tested, could serve as a reference for
future research. New investigation is needed with a larger
sample to allow for cross-countries and cross-organisation in
depth analysis and correlation. Still, the findings highlight
that EO satellite data have substantial potential to improve
local policy and service delivery but remain only partially
underutilized. A comprehensive approach, combining
technological upgrades, organizational capacity-building,
and targeted policy interventions, is needed to foster broader
and more systematic EO integration.

REFERENCES

[1] United Nations Office for Outer Space Affairs. European Global
Navigation Satellite System and Copernicus: Supporting the
Sustainable Development Goals—Building Blocks Towards the
2030 Agenda; United Nations: New York, NY, USA, 2019

[2] EC, Joint Research Centre, Dowell, M., Bernard, S., Kilsedar,
C., Gianinetto, M., Speyer, O., Kuffer, M., Grecchi, R., Gliottone,
1., Melchiorri, M., Earth Observation in support of EU policies for
urban climate adaptation, Publications Office of the European
Union, Luxembourg, 2025.

[3] EARSC. EARSC Industry Survey 2024. Available online:
https://earsc.org/2024/11/18/earsc-industry-survey-2024/ Last
access: July 2025

[4] OECD, The Space Economy in Figures: Responding to Global
Challenges, OECD Publishing, Paris,
2023 https://doi.org/10.1787/fa5494aa-en.

[5] Filippi, E.; Aiello, A. Barriers, Benefits, and Influential Factors
of Adopting Earth Observation Satellite Data at Local and Regional
Levels: The Case of the Italian LRAs. Sustainability 2025, 17, 145.
https://doi.org/10.3390/su17010145

[6] Tornatzky, L. G., & Fleischer, M., The processes of
technological innovation. Lexington, 1, 1990

[7] A. Majchrzak, M.L. Markus, “Technology Affordances and
Constraints Theory (of MIS),” in E. Kessler (Ed.), Encyclopedia of
Management Theory, SAGE Publications, Thousand Oaks, CA,
USA, 2013, pp. 832-836.

[8] Yin, R.K. Case Study Research and Applications: Design and
Methods, 6th ed.; SAGE Publications: Thousand Oaks, CA, USA,
2017

Proc. of the 2025 conference on 148
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Societal Applications: Risk, Resilience and Resource Monitoring
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ABSTRACT

Precise and regularly updated maps of burned area extents are
essential for effective wildfire management. Ground surveys
for this purpose are costly and time-intensive, making
satellite remote sensing a fundamental and efficient
alternative. This study presents a deep learning-based
framework for burned area detection in Greece, leveraging
Sentinel-2 satellite data. A U-Net model was trained using
data from the past two years of fire events cataloged by the
Copernicus Emergency Management Service (CEMS). The
methodology included preprocessing Sentinel-2 imagery,
generating training samples, training the model, and
implementing pixel-wise classification with U-Net. To assess
performance, the U-Net model was compared to baseline
models such as DeepLabV3 and MMSegmentation. The U-
Net outperformed the baselines, achieving an accuracy of up
to 96% and high Fl-scores, while demonstrating
computational efficiency. Validation was conducted on two
wildfire events (EMSR747 and EMSR767), with overlap
analyses showing high agreement (94.5% and 95.7%,
respectively) between the U-Net predictions and EMS
reference products, indicating that, the U-Net model reliably
delineated burned areas across diverse landscapes. This study
highlights the potential of deep learning in advancing wildfire
monitoring and management, offering scalable, accurate, and
efficient solutions for post-fire assessment.

Index Terms— Wildfire, deep learning, classification,
remote sensing, U-Net

1. INTRODUCTION

Wildfires are among the most devastating natural hazards,
resulting in significant ecological, economic, and social
impacts globally. Greece, a country characterized by its
Mediterranean climate and diverse ecosystems, has faced
increasingly severe fire events over recent years due to a
combination of climatic changes and human activities. These
events not only cause extensive damage to flora and fauna but
also contribute to soil erosion, long-term land degradation
and even lead to severe flooding. The importance of effective
post-fire management and rapid response strategies
necessitates the availability of precise and up-to-date burned
area maps [1].

Remote sensing has emerged as a critical tool for wildfire
monitoring and assessment, providing a cost-effective and
efficient means to gather information across vast and often
inaccessible landscapes. Satellite-based remote sensing has
long been a cornerstone in the study of wildfires, offering
critical insights into pre-fire conditions, active fire detection,
and post-fire impacts. For post-fire analysis, it provides
essential data for quantifying burn severity and delineating
the spatial extent of fire-damaged areas [2], [3]. Sentinel-2, a
key mission within the European Copernicus Program, is
particularly well-suited for this purpose. With a spatial
resolution of 10 meters and frequent revisit cycle (5 days),
offers opportunities for detailed and timely burned area
mapping [4]. Its multispectral imaging capabilities, combined
with its global coverage, enable the detection of subtle
spectral changes associated with burned vegetation [5]. These
capabilities are particularly relevant in the context of the
Greek territory, where fire events are both frequent and
spatially extensive.

This study builds upon the existing research and
contributes to the growing field of remote sensing and
artificial intelligence by developing a deep learning-based
framework for burned area detection across the entire Greek
territory using Sentinel-2 data. It incorporates the following
innovative aspects:

e Two-Year Dataset: Leveraging data from two years
events adds temporal depth.

e Model Generalization: Training the U-Net model on a
diverse dataset of fire events ensures robustness across
varying conditions and regions within Greece. It
provides a scale of application (nationwide
application) that is less common in existing literature.

e Operational Scalability: The framework is designed to
infer burned areas efficiently across the entire Greek
territory, enabling rapid deployment in operational
settings.

2. MATERIALS AND METHODS

2.1. Study area

Greece, located in Southeastern Europe, is characterized by a
diverse topography. This geographical diversity is
accompanied by a Mediterranean climate, marked by hot, dry
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summers and mild, wet winters. These climatic conditions,
combined with human activities, make Greece particularly
susceptible to wildfires, especially during the summer
months. Over the past decade, the country has experienced
numerous devastating fire events (Figure 1), with significant
impacts on its ecosystems, economy, and local communities.
The study area encompasses the entirety of Greece, including
both mainland and island regions. The selection of the study
area is critical, given its ecological significance and the
increasing frequency of wildfire events.

2.2. Satellite data

This study leverages Sentinel-2 satellite data, which provides
multispectral imagery crucial for capturing the spectral
changes caused by wildfires. The dataset includes records
from fire events across Greece over the past two years, as
catalogued by CEMS. This extensive dataset ensures that the
U-Net model can be trained to recognize and classify burned
areas with high accuracy across the country’s diverse
landscapes.

In this approach, twenty (20) Sentinel-2 level-2A
(Bottom-Of-Atmosphere) images during 2023-2024 were
obtained. The criteria for the selection of scenes were the high
quality of data and the limited cloud coverage (absence of
clouds over the burned areas of interest). A few examples are
presented in false color composites (Figure 2).

2.3. Methodological procedure

2.3.1. Tools

For this study, ArcGIS Pro was used as the primary tool for
the implementation of the workflow. ArcGIS Pro’s Image
Analyst extension supports advanced deep learning
capabilities, including tools for data preparation, training, and
deployment of DL models. Its integration with deep learning
frameworks like TensorFlow and PyTorch enables seamless
workflows for pixel classification, object detection, and
semantic segmentation. All computations were performed on
a Windows 10 workstation equipped with an Intel Core i5-
8300H CPU, 32 GB of RAM, and an NVIDIA GeForce GTX
1050 GPU.

2.3.2. Initial processing of Sentinel-2 data

Sentinel-2 imagery was preprocessed to ensure consistency
and readiness for classification. This included resampling the
SWIR-2, NIR, and Red bands [4] using the nearest neighbor
algorithm to match a uniform spatial resolution. The bands
were then stacked to create a single composite image. This
preprocessing step is critical to align spectral data and
facilitate efficient training and classification of imagery.
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Figure 1. Spatial distribution of the wildfire events in
Greece (2023-2024) used as training data for the
algorithm, shown as points with their corresponding
CEMS codes overlaid on a Sentinel-2 cloudless mosaic.

Figure 2. Examples of wildfire events displayed in a false
color composite (R: SWIR-2; G: NIR; B: Red).

2.3.3. Classification of imagery

A binary classification scheme was employed to categorize
areas into two thematic classes as either burned or not burned.
Manual classification was conducted for all images to ensure
the accuracy of labels. It has to be mentioned that several
representative samples of confirmed land cover were selected
from across the scene and not a particular area to capture the
spectral variability. This process involved visually inspecting
each image and assigning classes based on the observed
spectral changes caused by fire events.
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2.3.4. Raster to vector

The classified images were converted into vector format,
retaining only the polygons representing burned areas. Each
polygon was manually reviewed to eliminate false positives,
ensuring that the dataset reflected accurate burned area
delineation.

2.3.5. Export training data

Once samples have been collected and processed, they were
exported to training data in order to be used in the DL model.
The training data, consisting of classified tiles in TIFF format
(one classified image chip per input image chip), was
prepared for pixel classification. ArcGIS Pro’s deep learning
labeling tools were used to export data in 64*64 tile size (the
size of the image chips) and 32*32 stride (the distance in the
x direction when creating the next image chips). When stride
is equal to tile size, there will be no overlap. When stride is
equal to half the tile size, there will be 50 percent overlap,
which was the case in this study.

2.3.6. Train deep learning model

The U-Net architecture was selected for training due to its
demonstrated efficacy in semantic segmentation tasks,
particularly for remote sensing applications. U-Net is a
specialized type of fully convolutional neural network (FCN),
designed to assign class labels to individual pixels [6].

U-Net builds upon the Fully Convolutional Network
(FCN) [7], which replaces the fully connected layers in CNNs
with up-convolutional layers, allowing the network to output
dense pixel-wise classifications. U-Net comprises a
symmetrical U-shaped architecture, consisting of a
contracting path and an expansive path [8], [9].

The training process leveraged GPU acceleration for
computational efficiency. To enhance feature extraction,
several backbone models (e.g., ResNet, VGG) were tested as
encoders in the U-Net architecture. These backbone models
provide pre-trained convolutional layers, which help to
improve training efficiency and accuracy, particularly for
datasets with limited labeled samples.

3. RESULTS
3.1. Model performance evaluation

To assess the effectiveness of the proposed methodology, a
total of 8,534 training samples were utilized to train and
validate the U-Net architecture alongside several baseline
models for comparison. The models were evaluated using
common performance metrics, including accuracy, precision,
recall, and Fl-score. Training time was also recorded to
assess computational efficiency.

The results indicate that the U-Net model consistently
outperformed the baseline models across all metrics. Notably,
U-Net paired with ResNet encoders demonstrated
exceptional performance, achieving the highest overall

accuracy (96%) and balanced scores across precision, recall,
and F1 metrics. Additionally, U-Net model exhibited
significantly faster training times compared to other
architectures, making them not only accurate but also
computationally efficient.

A few common error metrics regarding the validation of
the models are presented in Table 1.

Table 1. Baseline models.

Model Encoder F1 Trz'lining
time
U-Net ResNet18 0.95 24’ 36>
U-Net ResNet34 0.95 24’ 50>
DeepLabV3 ResNet18 0.90 39’ 49>
DeepLabV3 ResNet34 0.89 52° 577
DeepLabV3 DenseNet-121  0.84 49’ 14>
MMSegmentation HRNet 0.92 1h 5826~

3.2. Inference on new data

To validate the trained U-Net model, an inference was
performed on two selected regions affected by wildfires,
corresponding to CEMS activations EMSR747 and
EMSR767. The results were compared with the delineation
products that are presented in Figure 3.

Copernicus EMS supports emergency response efforts for
various disasters, including wildfires. Upon activation, the
EMS provides high-resolution wildfire maps generated from
satellite imagery to assess burned areas and severity levels.
The delineation product, outlines the extent of burned areas
and served as the reference layer for an overlap analysis. This
involved comparing the EMS reference layer with the burned
area maps generated by the U-Net model (overlay layer). The
analysis measured the overlap percentage and the total area
of burned regions as detected by each approach. The overlap
analysis results are summarized in Table 2.

Table 2. Comparison of burned area delineation and
overlap percentages between the U-Net model and the
Copernicus EMS reference products for EMSR747 and
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EMSR747 EMSR767
Approach

Area (ha) Overlap Area (ha) Overlap

U-Net 1088.8 5619.2
94.5 % 95.7%

EMS 1138.4 5829.9
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Figure 3. Burned area delineation for EMSR747:
Comparison between the Copernicus EMS reference
product and the burned area map generated by the U-Net
model, including zoom-in views.

4. DISCUSSION

The results of this study underscore the efficacy of the U-Net
model for burned area detection. Achieving high overlap
percentages with Copernicus EMS delineation products
(94.5% for EMSR747 and 95.7% for EMSR767), the U-Net
model demonstrates its ability to produce reliable burned area
maps that align closely with authoritative reference data.

Comparisons with baseline models further emphasize U-
Net's advantages. While alternatives like DeepLabV3 and
MMSegmentation provided reasonable performance, they
required longer training times and delivered lower accuracies,
especially when using encoders like DenseNet-121. U-Net,
paired with ResNet encoders, achieved superior precision and
computational efficiency, making it a highly suitable tool for
operational applications.

Despite these promising results, some discrepancies
between the U-Net model and EMS reference data were
observed, indicating opportunities for improvement. These
minor differences may stem from variations in acquisition
times and implemented methodology.

5. CONCLUSION

Monitoring catastrophic events in near real-time is crucial for
effective disaster response. The timely detection and accurate
delineation of affected regions are essential for providing
critical information to public authorities and stakeholders.
Such efforts play a pivotal role in minimizing the impact of
disasters and supporting recovery initiatives.

The insights gained from this work are not limited to
Greece but are also applicable to other Mediterranean regions
with similar climatic and topographical challenges that face

Societal Applications: Risk, Resilience and Resource Monitoring

analogous wildfire risks, thereby demonstrating the broader
value of the proposed methodology.

Future research will focus on integrating more diverse
datasets, enabling the model to generalize better across
varying conditions and regions.
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ABSTRACT

This study addresses the critical gap in harmonized
geospatial data on fixed asset values (FAV) across European
human settlements by integrating the EU-wide HANZE grid
with 100m-resolution built-up surface data from the Global
Human Settlement Layer (2020). The methodology enables
reliable FAV estimation at grid level, adaptable to diverse
spatial scales (e.g., cities, regions) using input data routinely
produced by EUROSTAT and Copernicus. Results include
Pan-European human settlements FAV metrics (total €, €
per capita, € per km?) disaggregated by territorial typology
and hazard type for 2000 — 2020 at 5 years interval.
Summary statistics are aggregated into NUTS3 units for
policy applications. A use case is presented by analysing the
exposure of built-up area to river flood hazard using
Copernicus Emergency Management Service data. By
embedding this dataset into the JRC Risk Data Hub, the
research enhances disaster risk management tools and
information  systems, supporting climate adaptation
planning.

Index Terms— Risk Data Hub, Copernicus Exposure
Mapping

1. INTRODUCTION

1.1. Addressing the Exposure Information Gap for
Human Settlements

Accurate information on human settlements to sustain next
generation adaptation and resilience policies must go
beyond baseline information. Past efforts have significantly
contributed to establishing global information systems like
the Global Human Settlement Layer that maps built-up,
population and settlements at global level [1]. Yet,
information on the characteristics of such settlements is still
scarce. The estimation of the monetary value of human
settlements exposed to natural hazards is key, but a gap
exists for harmonized, high-resolution geospatial data on

fixed asset values (FAV) across Europe. This gap limits
the ability of policymakers and stakeholders to quantify
infrastructure  exposed, potential  losses, prioritize
investments, and design targeted adaptation measures [2].
The need for robust and multi-exposure information is
underscored by the increasing frequency and severity of
climate-related hazards, and by the requirements of the EU’s
disaster risk management frameworks, the climate
adaptation strategies, the Cities Mission, and the Sendai
Framework for Disaster Risk Reduction.

1.2. Data Integration: HANZE Grid and High-
Resolution Human Settlement Exposure Baseline Data

To bridge this information gap, our approach integrates the
HANZE v2.0 exposure dataset [3] with the Global Human
Settlement Layer (GHSL) built-up surface data at 100 m
resolution. The resulting asset value grids are embedded
within the JRC’s Risk Data Hub (RDH), a key platform for
disaster risk data and analytics in Europe. Within the RDH,
these datasets are combined with hazard layers (e.g., floods,
earthquakes,  wildfires, subsidence) and territorial
typologies, enabling multi-hazard exposure assessments at
various spatial scales (from local administrative units to
NUTS3 regions). The RDH’s analytical tools facilitate the
aggregation of FAV metrics (total €, € per capita, € per km?)
and their disaggregation by settlement type and hazard,
supporting evidence-based policy development and resource
allocation. The integration of the FAV dataset in the RDH is
planned for 2025. By addressing the exposure information
gap through the integration of HANZE and GHSL data
within the Risk Data Hub, this work provides a harmonized,
scalable, and policy-relevant foundation for pan-European
fixed asset valuation.
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2. MATERIALS AND METHODS

The core of the implemented methodology is the
integration of the HANZE v2.0 exposure grid with the
100m-resolution built-up surface data from the Global
Human Settlement Layer (GHSL) via geospatial processing.

2.1. HANZE Grid

The HANZE grid [3] provides a peer-reviewed high-
resolution (100m) estimates of fixed asset value (FAV), in
various sectors (residential dwellings, services, residential
contents, infrastructures, industry, agriculture and forestry)
for 42 Pan-European countries over time —from 1870 to
2020 (for this study a shorter time window 2000 — 2020 at 5
years interval is used). The disaggregation from regional
socioeconomic statistics (EUROSTAT input data) to grid
cells employs a two-step dasymetric approach, combining
population density (60%) and land use/soil sealing (40%) as
predictors (Copernicus Land data). Fixed assets, expressed
in absolute terms at the regional level, are calculated by
Paprotny et al. by multiplying the regional GDP by the
corresponding wealth-to-GDP ratio for each sector [4].

For the Total Fixed Asset Value in Human Settlements
the following sectors were considered: Residential and
services, industry, residential contents and infrastructures.

2.2. Global Human Settlement Layer

The Global Human Settlement Layer, produced as
Exposure Mapping Component by the Copernicus
Emergency  Management  Service  delivers  global
information on human settlements as open geospatial hig-
resolution grids. The GHS-BUILT-V and GHS-SMOD
products are used in this study to obtain the "settlement
mask" to extract HANZE FAYV data.

The GHS-BUILT-V [5] product consists in Built-up volume
grids (100m), derived from multi-sensor satellite imagery
(Landsat, Sentinel-2), available for 1975-2030 at 5-year
intervals and provides total and non-residential built-up
volume estimates (in m3).

The GHS-SMOD product [6] classifies each 1km grid cell
in a harmonised urban, intermediate and rural classification
from the Degree of Urbanisation (urban centre, urban
cluster, rural areas), based on population density,
implementing EUROSTAT’s DEGURBA framework. GHS-
SMOD is used to disaggregate zonal statistics to obtain total
FAV in urban centres, urban clusters and rural areas.

2.3. Exposure Data:

The exposure from HANZE and GHSL is also combined
with the river flood hazard maps for Europe and the
Mediterranean Basin region using the 100 years return

period [7]. The river flow data used for the maps are
generated by JRC using the open-source hydrological model
LISFLOOD, while flood inundation simulations are
conducted with the hydrodynamic model LISFLOOD-FP.
The coverage area includes most of geographical Europe
and flood hazard maps are produced for river basins larger
than 150 kmz, with each cell value representing water depth
in meters. For this study the hazard map has been obtained
by thresholding the water depth >20cm.

2.4. Geospatial Processing: Zonal Statistics

The methodology to obtain the Total FAV in Pan-European
Human Settlements delineated with the GHSL is based on
geospatial overlay and zonal statistics. This technique
returns a sum in the intersection between HANZE and
GHSL grids. The target sum is the FAV by sector for all
HANZE grid cells with settlement information (i.e. BUILT-
V > 0). The sum is then aggregated to rasterised NUTS3
polygons, and disaggregated by GHS-SMOD grid cell types.
The procedure is repeated for all the years (2000-2020:5).
The grid-based approach provides significant spatial
flexibility and allows to further integrate this new dataset
with other information like hazard data (similarly, the
overlay between the Total FAV in Pan-European Human
Settlements grid and the hazard map is used to quantify the
total amount of FAV in exposed areas).

Fig. 1 shows a schematic workflow, input and output data.
With the above method the following indicators are
calculated per each year: Total FAV — Monetary Value
(EUR): Sum of the monetary value of the assets in each grid
cell or aggregated zone (i.e. NUTS3); Per-capita FAV: Ratio
of assets to population in each spatial unit (i.e. NUTS3)
(EUR per person); FAV per km2: asset values normalized by
the area of the spatial unit (i.e. NUTS3) (EUR per per km?2
of the NUTS3).
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Fig. 1. schematic view of input data, processing chains
and outputs.
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3. RESULTS

The geospatial data integration returns a Pan-European

dataset that quantifies fixed asset values (FAV) in human

settlements at multiple geographical scales in grid format

(100m and 1000m) and in tabular format from zonal

statistics (summary for NUTS3 and country totals) for the

year 2000, 2005, 2010, 2015, 2020. The analysis of the
obtained dataset reveals significant disparities in FAV:

e The total FAV in Pan-European human settlements in
2020 is in the range of 92 trillion Euro, of which 44%
in urban centres, 33% in urban clusters, and 23% in
rural areas. Five NUTS3 (Paris, Madrid, Milano,
Roma, and Berlin) concentrate more than 1,000 billion
in fixed asset values (in 2020 — Fig. 2);

Residential Built-up
(Million €)

[ 5-20,000
[ 20,001 - 45,000
[ 45,001 - 75,000
[ 75,001 - 125,000
B 125,001 - 200,000
> 200,000

1,000 S
Km )

0 500.

Fig. 2. Absolute Fixed Asset Value in Pan-European

NUTS3.

e By territorial typology, 10 NUTS3 exceed 500 billions
of residential built-up fixed asset values in urban
centres (2020) these include Paris, Berlin, Madrid,
Milano, Minchen, Kreisfreie Stadt, Hamburg, Wien,
Roma, and Barcelona.

e Between 2000 and 2020 FAV increases by 43% in
urban centres and 44% in urban clusters, compared to
35% in rural areas (Fig. 2);

e A typical West/East regional divide clearly emerges
(Fig. 3). East Europe Member States have a relatively
lower residential built-up absolute FAV;

e The overlay with flood hazard reveals that about 7% of
the Pan-European FAV in human settlements is
exposed to potential floods with 100 years return
period;

e Figure 4 displays the share of FAV exposed to floods
across the study area revealing that 16 NUTS3 have

more than 35% of their built-up exposed, with an
estimated FAV of about 507 billion Euro.
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Fig. 3. Absolute Fixed Asset Value in Pan-European
NUTS3.
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Fig. 4. Relative Fixed Asset Value exposed to 100 years
return period riverine flood in Pan-European NUTS3.

0 500.

4. DISCUSSION

4.1. Improving Exposure Information and Enhancing
the JRC Risk Data Hub for Pan-European Risk
Assessment

Despite preliminary, the results of this application of remote
sensing and other data sources, indicates the feasibility of
estimating fixed asset value in Pan-European human
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settlements. The integration of high-resolution fixed asset
value data for human settlements directly addresses the need
for risk-informed urban planning, a cornerstone of modern
disaster risk management and climate adaptation strategies.
By providing spatially explicit information on the
distribution and value of assets exposed to hazards, this
dataset empowers planners and policymakers to identify
vulnerability hotspots, prioritize risk reduction investments,
and implement zoning policies that minimize future
exposure. The production of such exposure data is the first
step towards improving disaster risk information systems.
Embedding the harmonized FAV dataset into the JRC Risk
Data Hub (RDH) significantly upgrades the platform’s
analytical capabilities. With the inclusion of detailed, grid-
level asset valuation, the RDH can now support more
nuanced, multi-hazard exposure analyses at various spatial
scales-from local municipalities to NUTS3 regions. By
adding the monetary dimension to human settlement
exposure (i.e. built-up as provided by the Copernicus
Emergency Management Service Exposure Mapping
Component) this study prototypes a new dimension of
exposure information. This research contributes to the
objectives of the EU Strategy on Adaptation to Climate
Change, which outlines a vision for a climate-resilient
Europe fully adapted to the impacts of climate change by
2050 aligning with the Strategy’s goal of “smarter
adaptation” improving climate loss data.

4.2. Limitations and next steps

The choice of the dataset by Paprotny et al. was determined
by scalability. In fact, the geospatial covariates used for the
HANZE grid are regularly produced by Copernicus (Land
Monitoring Service), and the economic data are produced by
EUROSTAT with periodic updates.

Despite the availability of FAV by sector in the HANZE
grid, we did not include further sectoral disaggregation by
sector (besides the built-up residential, the main component
of built stock) as the infrastructure assets represented an
implausible 4.8% of the total value in the input HANZE
data, with this share reducing to 3.2% in the human
settlement mask. We therefore computed an overall/gross
FAV in human settlements.

Further research might be needed to refine and harmonise
proxies for disaggregation (i.e. fully align to GHSL) and to
improve the disaggregation by economic sectors. The usage
notes and limitations in the HANZE supporting publications
are valid for the zonal statistics presented in this article as
well [3-4]. Given the continuous availability of input data
for later points in time, a routine production of the FAV
indicators could be considered.

5. CONCLUSION

This study presented a prototype for a novel, harmonized
methodology for estimating fixed asset values (FAV) across

European human settlements by integrating the HANZE
grid with high-resolution data from the Global Human
Settlement Layer. The resulting dataset fills a crucial
exposure information gap, enabling spatially explicit and
temporally dynamic analyses of asset distribution and
hazard exposure at Pan-European scale. A full-scale
deployment of the method to Copernicus hazard data,
combined with the integration of the resulting exposure
metrics into the JRC Risk Data Hub, is expected to
substantially enhance the analytical capabilities available for
disaster risk management, climate adaptation planning, and
policy evaluation at multiple spatial scales.
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ABSTRACT

Artisanal and small-scale gold mining (ASGM) is a major
driver of land cover change in the Amazon, often challeng-
ing to detect due to its spectral similarity with other surface
features. This study investigates whether incorporating con-
textual geospatial data from OpenStreetMap (OSM) along-
side Sentinel-2 imagery can improve ASGM detection in
Venezuela’s Bolivar state. Rasterized OSM-derived seman-
tic masks are appended as additional input channels to the
satellite imagery and processed through a CNN. This setup
enables joint learning of spectral and contextual features, al-
lowing for a more accurate and reliable distinction between
ASGM sites and spectrally similar land uses.

1. INTRODUCTION

Artisanal and small-scale gold mining (ASGM) is a largely
informal mining practice where individuals or small groups
extract gold using rudimentary techniques. It is the pri-
mary driver of illegal mining in the Amazon rainforest [1].
Remote sensing has emerged as a key tool for monitoring
ASGM [2]. However, current mining detection models rely
solely on spectral information, which presents challenges
in distinguishing ASGM sites from other land-use changes,
such as dried riverbeds or bare soil patches that exhibit simi-
lar spectral characteristics [3]. This limitation highlights the
importance of integrating complementary data sources that
can provide additional contextual information.

One promising way to address these limitations is the in-
tegration of contextual geospatial data. A prominent example
is OpenStreetMap (OSM) [4], which contains detailed, freely
accessible information on infrastructure, transportation net-
works, and settlements. This study explores whether incor-
porating such contextual data alongside satellite imagery can
improve the detection of ASGM activity by providing addi-
tional cues to distinguish it from spectrally similar land-use
changes. To explore this issue in detail, this study focuses on
the southeastern Venezuelan state of Bolivar, one of the most
ecologically significant and mining-affected regions within
the Amazon basin. We investigate whether integrating con-
textual geospatial data from OSM improves the performance

of ASGM detection using satellite imagery. Sentinel-2 pro-
vides spectral signals related to land disturbance. At the same
time, OSM contributes spatial context, such as the presence of
rivers, roads, or buildings, which can help distinguish ASGM
sites from visually similar land uses. To test this, rasterized
OSM-derived semantic masks are appended as additional in-
put channels to the Sentinel-2 imagery and processed together
through a convolutional neural network (CNN). This setup
enables the model to jointly learn spectral and contextual pat-
terns, allowing for an evaluation of the added value of OSM
data for ASGM classification.

2. RELATED WORK

Satellite Imagery for Remote Sensing. Researchers have
utilized various geospatial data sources, notably optical satel-
lite imagery, to detect land disturbances associated with
ASGM [5]. These approaches build on established remote
sensing techniques for LULC change detection, widely ap-
plied to monitor deforestation, urban growth, agriculture, and
natural disasters [6-9]. Sentinel-2 imagery is particularly
effective for identifying ASGM impacts such as vegetation
loss, exposed soil, and sediment-laden water, observable via
changes in surface reflectance and water clarity [10-12].
However, optical imagery alone has limitations: ASGM sites
often resemble agricultural or natural disturbances spectrally,
leading to frequent misclassifications [3].

Image Classification with Contextual Data. Incorporat-
ing contextual information into image classification improves
model performance by enabling reasoning. Applications in
product recognition and medical imaging benefit from spa-
tial and semantic context, which enhances the detection of
small objects and anomalies [13, 14]. Fusing remote sens-
ing with spatial features such as land types and surroundings
provides semantic cues that enhance accuracy [12, 15]. For
instance, Gomez et al. [16] used proximity to transport and
water networks to detect ASGM activity using SAR imagery
and manually derived features. In contrast, our study employs
a framework that integrates multispectral Sentinel-2 imagery
with geographic OSM data. OSM, a crowd-sourced dataset,
offers layers such as roads, rivers, land-use, and buildings.
For example, [17] used OSM building footprints to classify
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informal settlements via spatial clustering and machine learn-
ing. Similarly, [18] aligned OSM features with remote sens-
ing data for LULC classification and infrastructure detection.
Despite its utility, OSM poses challenges due to variable qual-
ity and coverage, particularly in remote regions such as the
Amazon Basin.

3. METHODOLOGY

This study builds on an open-source pipeline for ASGM de-
tection using Sentinel-2 satellite imagery provided by Earth
Genome [19]. While the baseline system includes labeled
sampling points, a patch extraction process using Google
Earth Engine (GEE), and a CNN for binary classification,
this work extends it by incorporating contextual geospatial
information from OSM, particularly features such as high-
ways, waterways, buildings, land-use, and aeroways. The
proposed method processes Sentinel-2 patches with added
channels of rasterized OSM-derived semantic masks in the
CNN architecture. This setup enables the model to learn spec-
tral and spatial-contextual patterns, with the aim of improving
performance.

Sampling Points and Patch Extraction. The study fo-
cuses on the Bolivar region of southeastern Venezuela. This
region was selected due to its high density of mining opera-
tions and the availability of labeled ASGM data.

The baseline process handles Sentinel-2 patch extraction
[19], which converts each sampling point into a standardized
satellite image patch. Using consistent projection and spa-
tial resolution, a square tile is generated and aligned with
Sentinel-2 imagery for each sampling point. Sentinel-2 im-
age data is retrieved from GEE for 2021, corresponding to the
period when the sampling points were published on GitHub.
The extracted bands include B1-B4, B5-B7, BS, B8A, B9,
B11, and B12, covering the visible, red-edge, near-infrared,
and shortwave-infrared regions. Band 10 is excluded as it
is primarily used for cloud detection and is not relevant for
land cover analysis. To reduce the impact of clouds, cloud
shadows, and other atmospheric effects, a median compos-
ite is generated by averaging all observations across the year.
This approach enhances image quality and consistency, par-
ticularly in cloud-prone regions such as the Amazon Basin.

The resulting image patches are uniformly sized with
the 12 spectral channels. Each patch covers an area, cen-
tered around a sampling point labeled as either mining or
non-mining. This patch captures the mining activity and
the surrounding area, which can provide additional context
through OSM data. The dataset includes 156 mining patches
and 323 non-mining patches.

OSM Data. Vector-based geospatial features were ex-
tracted from OSM. These features were selected based
on their relevance to ASGM operations. They comprise:
(1) highway, including roads, tracks, and footpaths indicat-
ing access to mining areas; (2) waterway, such as rivers and

Feature Type
— waterway
highway
. aeroway
= landuse
= building

Fig. 1. Spatial Distribution of OSM Features in Bolivar.

Posiive

Fig. 2. Visualizations of random patches with OSM overlays.

streams, often used in alluvial mining; (3) building, repre-
senting nearby informal or residential structures; (4) land-
use, comprising tagged areas potentially overlapping with
ASGM zones; and (5) aeroway, which may denote airstrips
supporting remote mining operations. See Figure 1 for the
spatial distribution of the OSM features in the Bolivar region.

Rasterization of OSM data. For each image patch, a cor-
responding subset of OSM features is extracted by clipping
the vector data to the same extent. Each feature has its own
channel, where a pixel with values for that feature receives a
value of 1, and a pixel without that feature receives a value
of 0. This ensures that both inputs have identical footprints,
allowing the OSM data to be rasterized and stacked with the
Sentinel-2 bands before model training. Of the 156 mining
patches, 95 contain one OSM feature, representing 60.9%
coverage. Among the 323 non-mining patches, 245 include
OSM annotations, resulting in 75.85% coverage. This varia-
tion reflects the inconsistent availability of OSM data in re-
mote regions, such as Bolivar, where mapping is often sparse.

Model. The baseline model is adapted from Earth
Genome’s open-source ASGM detection pipeline [19], which
employs a lightweight CNN. The architecture consists of nine
convolutional layers, each with 32 filters and 3x3 kernels,
using ‘same’ padding and ReLU activation functions. These
layers are grouped into three convolutional blocks, each fol-
lowed by max-pooling layers (2x2 or 3x3) to progressively
reduce the spatial resolution. The convolutional feature ex-
traction stage is followed by three dense layers with 64, 64,
and 32 neurons. Dropout layers with a rate of 0.3 are included
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after each dense layer to prevent overfitting. The final output
layer is a sigmoid-activated neuron for binary classification.

4. EVALUATION

4.1. Experimental Setup.

To prevent spatial leakage, the dataset is split using DBSCAN
clustering on patch center coordinates, with clusters randomly
assigned to train (70%), validation (15%), and test (15%) sets.
Patches with excessive masking are filtered out, and Sentinel-
2 reflectance values are normalized to the range of [0, 1]. All
models use the same CNN architecture trained for up to 160
epochs using the Adam optimizer (3 x 10~%), binary cross-
entropy loss, and a batch size of 16. Data augmentation (ran-
dom rotations, shearing, zooming, flips) is applied via Keras’
ImageDataGenerator. Experiments vary by patch size
(48px vs. 256px), class imbalance weighting, negative sam-
pling strategy (156 points curated from Earth Genome vs. 780
points randomly sampled), and inclusion of OSM features.

4.2. Results and Discussion.

Ten ASGM detection experiments were conducted under
varying patch sizes, negative sampling strategies, class im-
balance handling, and the inclusion of OSM features. Perfor-
mance was evaluated using F1 (with bootstrap confidence in-
tervals), precision, recall, and PR-AUC to capture threshold-
dependent and threshold-independent model performance.
Table | summarizes performance across these settings.

Patch Size. In curated settings, both 256px (Exp 1, F1 =
0.867) and 48px (Exp 3, F1 = 0.711) models achieved strong
performance without OSM. Adding OSM improved perfor-
mance at 256px (Exp 2, F1 = 0.923; -2 FN, -5 FP), but only
slightly at 48px (Exp 4, F1 = 0.788; -2 FP). This indicates
that OSM features are more effective with larger patches that
capture broader spatial context.

Class Weighting. With curated negatives, class weight-
ing (Exp 5) increased FP (+7) and lowered precision (0.594),
dropping F1 to 0.728. OSM (Exp 6) further raised FP (+10)
and reduced F1 to 0.611, well below the unweighted OSM
model (Exp 2). In random-negative settings, class weighting
destabilized training: Exp 9 performed poorly (F1 = 0.129;
FP = 62), while Exp 10 achieved F1 = 0.898 with perfect re-
call but lower precision.

Negative Sampling. With random negatives and no class
weighting, performance remained strong: Exp 7 (F1 = 0.948)
and Exp 8 (F1 = 0.792) both achieved high recall with few
FP. Class weighting caused instability, leading one model to
collapse (Exp 9) and another to trade precision for recall (Exp
10). Overall, curated negatives yielded more stable results,
while random negatives better reflected real-world variability
but increased uncertainty.

Confidence intervals highlight variability across experi-
mental setups. Models trained with curated negatives and

Impact of Removing Individual OSM Features on Model Performance
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Fig. 3. Impact of removing OSM feature layers on model per-
formance, reported as mean F1, precision, and recall. Results
are shown relative to the full OSM model (Exp2).

larger patches showed narrower confidence intervals, while
random-negative sampling produced wider intervals, reflect-
ing greater variability and task difficulty.

Ablation Study. Figure 3 shows how the exclusion of
different OSM feature layers influences performance. While
most features contribute positively, certain layers have a more
pronounced effect on the F1 score and precision than others.

Removing highway features resulted in the largest perfor-
mance decline (F1 = 0.587), underscoring their importance in
distinguishing ASGM sites. Land-use removal also reduced
performance, while aeroway, waterway, and building layers
had moderate effects. Overall, the study shows that multiple
OSM layers contribute to detection, with highways providing
the most critical contextual cues.

Limitations. This study focused exclusively on the
Bolivar region in Venezuela, which limits the generalizability
of the findings to other Amazonian settings. Model perfor-
mance is strongly dependent on OSM coverage, which is
uneven in remote areas and may bias results toward data-rich
regions. A temporal mismatch between Sentinel-2 imagery
from 2021 and OSM features from 2025 could also distort
observed associations. In addition, the use of all 12 Sentinel-
2 bands, including less informative ones such as B1 and B9,
indicates the need for a more critical assessment of feature
selection and modeling choices.

5. CONCLUSION

This study demonstrates that integrating contextual geospatial
data from OSM with Sentinel-2 imagery can improve ASGM
detection, particularly when larger patches and curated neg-
atives are used. The most consistent benefit of OSM was a
reduction in false positives, which helped distinguish mining
from spectrally similar areas, although this sometimes came
at the cost of recall. Notably, in the most challenging setting
with random negatives and class weighting, OSM features en-
abled strong performance, whereas the spectral-only model
failed to generalize. Overall, these results show that con-
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Exp | OSM | Patch | Neg Type | Class Weight F1[95% CI] PR-AUC | FP | FN | Precision | Recall
1 No 256 Curated No 0.867 [0.739, 0.960] 0.865 6 0 0.769 1.000
2 Yes 256 Curated No 0.923 [0.827, 1.000] 0.972 1 2 0.947 0.900
3 No 48 Curated No 0.711 [0.529, 0.851] 0.850 7 5 0.682 0.750
4 Yes 48 Curated No 0.788 [0.625, 0.913] 0.782 3 5 0.833 0.750
5 No 256 Curated Yes 0.728 [0.565, 0.849] 0.866 13 1 0.594 0.950
6 Yes 256 Curated Yes 0.611 [0.444, 0.744] 0.677 23 1 0.452 0.950
7 No 256 Random No 0.948 [0.800, 1.000] 0.900 1 0 0.900 1.000
8 Yes 256 Random No 0.792 [0.533, 0.957] 0.909 3 1 0.727 0.889
9 No 256 Random Yes 0.129 [0.028, 0.237] 0.069 62 | 4 0.075 0.556
10 Yes 256 Random Yes 0.898 [0.727, 1.000] 0.928 2 0 0.818 1.000

Table 1. Performance metrics across ASGM detection experiments with varying use of OSM data, patch sizes, negative sample
types, and class weighting settings. Bootstrap confidence intervals are shown for F1-scores.

textual information can substantially enhance detection accu-
racy, but its effectiveness depends on data quality, temporal
alignment, and the training setup. Future work should extend
evaluation across regions, develop a tailored model, incorpo-
rate historical OSM data to address temporal mismatches, and
explore advanced fusion strategies that more effectively align
spectral and contextual features.
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ABSTRACT

Wildfires pose a significant threat to the Latin America and
Caribbean (LAC) region, with widespread impacts on
ecosystems, public health, and economic stability. The
CopernicusLAC Platform delivers Earth Observation (EO)
services for comprehensive wildfire management, including
fire danger estimation, burned area mapping, and post-fire
vegetation recovery. Integrating data from Sentinel-2,
Sentinel-3, and VIIRS satellites, the platform offers
near-real-time monitoring and analysis tools, supporting
preparedness, impact assessment, monitoring and recovery.
Demonstrated during the 2023 Chile wildfires, these
services are providing timely, high-resolution insights for
decision-makers in the LAC region. With growing user
engagement, the platform is enhancing regional resilience
and aims to scale EO-driven solutions across the region to
improve wildfire preparedness and response.

Index Terms— Disaster management, Wildfire, Earth
Observation service, NRT monitoring, Copernicus, LAC.

1. INTRODUCTION

Wildfires do not impact only forests but have many impacts
on human and environmental health, altering the
composition of atmosphere, vegetation dynamics, soil
erosion, water quality, with many disrupting consequences
on socio-economic assets. Wildfires present a serious
challenge to the Latin America and Caribbean (LAC)
region, as shown in the 2023 fire events that occurred in
Argentina, Bolivia, and Chile. Each year, wildfires impact
over 3 million square kilometers of total land area burned
only in South America (Global Wildfire Information
System, 2025) [L]. Monitoring systems based on Earth
Observation (EO) data are widely employed to provide
timely information across the three key stages of wildfire
management: prevention, response, and post-fire recovery.
The Copernicus Centre for Latin America and the Caribbean
(CopernicusLAC), based in Panama, serves as a regional
hub for promoting the use of free and open EO data from the
Copernicus missions across the LAC region, building
regional capacity in EO applications, and fostering
collaboration among local stakeholders and the global EO
community, and for strengthening resilience to natural
disasters, including wildfires. In this framework, the
CopernicusLAC ~ Platform, an exploitation platform
developed by Terradue for the CopernicusLAC Centre,

provides tailored EO services to address various natural
hazards, including floods, wildfires, and landslides.
Concerning wildfires, the CopernicusLAC Platform offers
customized geospatial services for end-to-end tools for fire
danger estimation, early detection, burned area mapping,
severity assessment, and post-fire recovery.

2. MATERIAL

The EO services of the CopernicusLAC Platform take
advantage of a robust ensemble of EO datasets and models,
selected for their relevance to fire dynamics, spatiotemporal
resolution and environmental context of the LAC region.

2.1. Satellite observations

Radiance Brightness Temperature from daytime and
nighttime acquisitions of Sentinel-3 SLSTR data, are used
primarily for thermal anomaly detection and hotspot
identification over the LAC region. Time series of TOA
reflectance from Sentinel-2 MSI data are used for pre- and
post-event change detection analysis, focusing on areas
surrounding SLSTR-detected hotspot clusters to map burned
areas and assess post-fire vegetation recovery.

2.2, Detected fires and meteorological indicator

In addition to Sentinel-3 SLSTR thermal anomalies, VIIRS
Suomi-NPP Near Real-Time (NRT) hotspots are also
gathered from the NASA FIRMS service [2] to further
complement the mapping of wildfire events. The Fire
Weather Index (FWI) [3], from the Global Wildfire
Information System (GWIS), is also employed in the
CopernicusLAC Platform to get both historical (from 2017)
and forecast (up to 10 days lead time) fire danger indicator
at ~8 km resolution. The FWI is employed because it
integrates weather variables including temperature,
humidity, wind, and fuel moisture to classify fire danger into
five levels, from low to extreme. Also, a Fire Occurrence
Probability dataset derived from historical fire occurrence
data, using complete time series from MODIS and VIIRS
sensors (2000-2024). These dataset help identify areas with
higher fire frequency in the past, which is crucial for
assessing current and future fire risks.
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2.3. Land cover and surface elevation

To support the vegetation-type mapping and fuel modeling,
EO services rely on the Copernicus Global Land Cover
(GLC) [4], which provides annual land cover maps
(2015-2019) at 100 m spatial resolution, categorizing
terrestrial surfaces into 23 classes based on the FAO Land
Cover Classification System. To have an estimation of
vegetation structure, the ETH Global Canopy Height Model
(2020) [5] at 10 m resolution, is employed for biomass
estimation and fire behavior modeling in forested
ecosystems. Elevation data is derived from the FABDEM
(Forest and Buildings removed Copernicus DEM) [6],
which is a 30 m resolution global digital elevation model
that excludes above-ground features, providing an accurate
terrain surface for fire spread simulation.

3. METHOD

The CopernicusLAC platform offers to users a thematic
workspace named Wildfire Results Explorer, which is a
specialized web application designed for the visualization
and analysis of geospatial outputs generated by three
wildfire service modules: Fire Danger Mapping, Burned
Area Mapping, and Post Fire Vegetation Recovery.

3.1. Fire Danger

The Fire Danger Mapping (FDM) service employs a
combination of static variables (e.g., land cover, vegetation
height, fire history) and dynamic inputs like the FWI from
GWIS to assess localized fire danger. To generate regionally
accurate fire danger indices, the service allows users to
customize weights and define areas of interest.

Fire
Weather

Fire
Probability

Land Cover

Fig. 1. High level schema describing input data and
workflow for the Fire Danger Mapping service.

3.2. Wildfire Events

The Burned Area Mapping (BAM) service operates in two
stages: real-time hotspot detection using Sentinel-3 thermal
imagery, followed by detailed burned area and severity
mapping using the Normalized Burned Ratio 2 (NBR2)
(Storey et al. 2016) [7] and the Mid-Infrared Burn Index
(MIRBI) (Trigg and Flasse 2001) [8] spectral indexes from
Sentinel-2 MSI data and hotspots from VIIRS Suomi-NPP.
When a significant density of hotspots is detected by
Sentinel-3 SLSTR , the system automatically activates the
ingestion of Sentinel-2 MSI L2A data acquired before and
after on-going active fires. After the pre-processing of all the
needed Sentinel-2 and VIIRS data, the system applies a
modified version of the FireCCISFD20 algorithm (Roteta et
al, 2021) [9] to map burned areas, in which the pre-fire
image is replaced with a multitemporal composite to
mitigate the effects of persistent cloud cover.

[—]
Sentinel-2
L2A catalog

Aggregated S3
SLSTR hotspots

Ingestion of
L2A

Trigger for
eventatt

Second Stage
Probabilty of
Bum

Area

nnnnnnnnnnn

Fig. 2. Workflow of the Burned Area Mapping service.
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At each overpass of the Sentinel-2 satellite the BAM
algorithm delineates burnt areas using the MIRBI and the
NBR2 indexes and the Scene Classification layer derived
from Sen2Cor. After that, the service uses VIIRS S-NPP
hotspots as ancillary information to confirm the burned areas
from the spectral indexes. From this stage a statistical
approach based on initially burned statistics is then applied
to extract the burned area probability. Later, burned area
extent maps are then derived from a thresholding and
binarization of this probability. Finally for all the areas
mapped as burned the burned area severity is computed,
using the Relativized Burn Ratio (RBR) from Parks et al.,
2014 [10]. A fully automated chain has been designed to
adapt the original algorithm to a near real time execution of
the service via a dedicated configuration of the servers. The
chain efficiently allocates computing resources only to
high-priority zones identified by clusters of aggregated
hotspots. The platform offers multiple geospatial products to
assess wildfire impacts and guide decision-making. This
early detection capability provides a near-instantaneous
view of fire activity, allowing for rapid situational awareness
and initial response.

3.3. Post-fire Vegetation Recovery

Once fire activity ceases, the Fire Recovery Mapping (FRM)
service automatically activates to monitor vegetation
recovery. It provides a monthly Normalized Difference
Vegetation Index (NDVI) composite and a recovery layer.
The percentage of recovery process is derived using NDVI
composites and cumulative recovery rasters generated at
regular time intervals.

T5 - Aug 2024

PostFire

T0 - Jun 2022 \
PreFire 3
-

T1-Aug 2022
PostFire

Fig. 3. Schema describing the progression from pre-fire
conditions to post-fire recovery with the FRM service.

4. RESuLTS

In the CopernicusLAC platform, the FDM, BAM and FRM
services are triggered over a region of interest in the LAC
and by defining a date from which the wildfire monitoring
shall start. Hereinafter are shown examples of results from
these services derived for a large wildfire event that took
place in central Chile in February 2023. EO services are
pre-executed to simulate the whole event in all its stages as
if it had been a near-real-time monitoring. The FDM service
provides a daily estimation of fire danger from Low to
Extreme, providing comprehensive hazard assessments
highlighting areas at risk of fire. Fire danger categories are:
Low (Minimal fire risk), Moderate (Fire conditions may
ignite under certain circumstances), High (Increased
likelihood of fire ignition and spread), Very High (Fires can
start and spread rapidly), and Extreme (Exceptional fire
danger; rapid and intense fire propagation is expected). In
figure 4 is shown an example of a Fire Danger Map
computed for the day after the beginning of the large
wildfire event in the area of Concepcion and Los Angeles,
Chile. Areas in orange indicate High fire danger meaning
that fires can start and spread rapidly as the area near Los
Angeles.

Fire Danger

I:I Water
D Low
[] Moderate
[ High
B veryHion f
. Extreme |3

| R
oo
L.

Fig. 4. Visualization of fire danger map over AOI near
Los Angeles, Chile for date 01/02/2023.

Starting from the 3rd of February 2023, the BAS service
identified hotspots from Sentinel-3 SLSTS thermal
anomalies in the area near Los Angeles with a peak of active
fires registered for the 7th of February 2023 which
correspond to the date of the first Sentinel-2 pass over the
area after the beginning of the event (see figure 5). Burned
area extent and severity products are then derived by the
BAM service over all the Sentinel-2 tiles intersecting
hotspots, using the acquisitions of the 7th of February as
post-event SWIR/NIR reflectances and multi temporal
mosaics from previous Sentinel-2 acquisitions as pre-event
reference ones. An example of a burned area extent product
is shown in Figure 5. In red are shown burned areas, in
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green burnable areas, and in grey regions where no valid
observations were available for analysis. The mapping of
burned areas and its severity is then updated automatically
by the system at each following pass of Sentinel-2 over the
same tile. The systematic monitoring with the BAM service
is maintained up to 30 days after the last hotspots registered.

Santa Juana

N

aio 8192
B suned

W Unbumed

B Unobserved

Fig. 5. 3D view of the Burned Area Map derived from
Sentinel-2 L2A imagery acquired on 07 Feb 2023 near
Santa Juana, Region del Biobio, Chile.

Once the monitoring of on-going wildfires with the BAM
service ends, the CopernicusLAC Platform keeps ingesting
Sentinel-2 L2A data and automatically triggers the FRM
service to assess post-fire vegetation recovery. The FRM
service takes as input Sentinel-2 imagery and the last burned
areas detected from the BAM service (temporal aggregation
of all burned area extents product across the event) and
provides post-fire NDVI composite and vegetation recovery
rates in percentage at a 15-days frequency. In figure 6 is
shown an example of the FRM output map showing the
recovery of vegetation in (high values in green) over burned
areas after 7 months since the beginning of the event.

Fig. 6. Visualization of vegetation recovery map over the
AOI near Los Angeles, Chile for 31 Aug 2023.

Vegetation recovery maps measure cumulative regeneration
in the area, useful to identify areas needing ecological
restoration and guide long-term recovery strategies.

5. CONCLUSION

CopernicusLAC’s integrated approach showcases the
potential of EO tools in advancing wildfire management
from preparedness to response and recovery. After the
engagement with multiple institutions across the LAC
region, the wildfire EO services have been tested by users
from February to June 2025 in the CopernicusLAC platform
for a NRT monitoring of Central America and Colombia. In
this demonstration users had the opportunity to engage with
the tools, provide feedback, and contribute to the evolution
of the service. Registered users are currently 140 from
national agencies and ministries of Belize, Colombia,
Ecuador, Guatemala, Honduras, Panama, Peru, Republica
Dominicana, and the Caribeean and from UN organizations.
Future work will focus on further tailoring EO services to
the needs of users from the LAC, strengthening regional
resilience with the offering of a scalable model for wildfire
management.
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ABSTRACT

Slope instability and forest fires are growing threats to com-
munities, infrastructure and ecosystems, exacerbated by cli-
mate change and human activity . Effective management
of these phenomena requires integrated monitoring and risk
analysis solutions based on up-to-date, interoperable data
that can support timely decision-making. In this framework,
Rheticus® Safeland 2.0, developed by Planetek Italia as
part of the PNRR and AI-LAND projects,integrates high-
performance computing, big data analysis and 3D digital
models to process multi-thematic information on landslides
and fires. The system identifies critical areas and levels of
attention by combining evolutionary scenarios and interfer-
ometric data, providing a dynamic framework for defining
mitigation and intervention strategies. Thus, Safeland 2.0
is configured as an operational tool for proactive land man-
agement, in line with the Sustainable Development Goals of
Agenda 2030 .

Index Terms— Landslides, fires, multi-risk, monitor-
ing,digital twin

1. INTRODUCTION

Rheticus® Safeland, developed by Planetek Italia, is a land
stability monitoring and warning service that, automatically
assigns an attention level to each segment of the territory.
This classification is based on the analysis of trends and
anomalies in ground surface displacements detected via satel-
lite remote sensing. The service offers a synoptic view of
the territory, providing constantly updated information on the
attention level, distinguishing between stable areas and areas
exhibiting signs of landslides or slow subsidence, and thus
complements in situ monitoring activities.

Over the years, the Rheticus® Safeland has involved into
a multi-risk analysis platform. While in a first version the
service provided the user with a classification of the territory
based only on interferometric data, the service now allows
the user to obtain a more complete picture of the territory
by integrating the aforementioned interferometric data with

additional information layers considered essential for the
identification of areas at greater hydrogeomorphological and
fire risk. In particular, new parameters have been defined to
improve the performance of multi-temporal interferometric
analyses (MTInSAR). The results of the MTInSAR analyses
were integrated with auxiliary data necessary for hydro-
geomorphological and fire risk characterization, including
fire risk, hydraulic hazard and landslide hazard maps. This
integration was performed using the Ordered Weighted Av-
eraging (OWA) methodology. This procedure provides an
Inspection Priority Score (IPS) for each hexagonal cell: a
continuous value between 0 and 1 that quantifies the level of
attention required. The IPS enables the territory to be cate-
gorized into one of three risk classes: low, medium, or high.
The final result is integrated into an interactive, 3D digital
twin environment where users can explore the data inputs
used to define the IPS, as well as data relating to changes in
land cover derived from a machine learning algorithm applied
to Sentinel-2 optical satellite data, thematic maps, geological
and infrastructure data, climate information and historical
movement data. This supports timely diagnoses and tar-
geted interventions. This evolution of the service represents
a quantum leap towards a truly operational, multi-risk system
capable of providing a holistic, dynamic view of the territory.
Compared to the initial version, the new tool enhances the
accuracy, predictive capacity and automation of the process,
thereby improving territorial resilience and the effectiveness
of mitigation strategies.

2. RHETICUS® SAFELAND 2.0: SERVICE
DESCRIPTION

The platform interface, as shown in the figure, provides for
territorial segmentation based on a grid of hexagonal cells,
each covering approximately 5 hectares. These cells are clas-
sified by automatic procedures based on analysis that eval-
uates movement trends and anomaly patterns. The level of
attention is determined by combining surface displacement
measurements with other parameters that take into account ar-
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eas affected by fires, areas at risk of flooding and landslides,
and slopes calculated by the DTM. The status of the cells is
represented by traffic light colors: green (stable), yellow (re-
quires monitoring), and red (requires immediate inspection)
and summarized in a pie chart at the top right of the platform
that shows the number and percentage of cells for each color.
This color is derived from an inspection priority score asso-
ciated with each cell of the AOI, which can vary between 0
and 1, also shown in a curve that evaluates the IPS trend of
the cells within the platform and is used to classify the ur-
gency of the inspection (Fig. 1). Each cell can be queried and
provides information such as:

* Unique cell identifier

* Geographical coordinates (latitude, longitude)
* Municipality and Province

¢ Presence of transport infrastructure

¢ Prevailing land cover

* Any changes in land cover

* Area of spatial anomaly cluster

» Area of spatio-temporal anomaly cluster

* Area of burned area

 Elevation and class of slope

* Attention level class

¢ Inspection Priority Score

* Mean velocity ascending and descending

» Highest hydraulic and landslide hazard values
¢ Predominant geological cover

 Climate data

» Types of landslide

The service enables end users to explore an area of inter-
est in detail by integrating various customization informa-
tion layers that can be activated or deactivated directly on the
map. These include cell thematisation based on the Inspec-
tion Priority Score (IPS), visualization of spatial and spatio-
temporal anomaly clusters, ground movement data (PS/DS),
and information derived from OpenStreetMap, such as build-
ings, roads, and railways. Other available features include
geological mapping, burned areas, land cover and land use
change maps, ERAS climate data, hydraulic and landslide
hazard maps (PAI) and the IFFI inventory.

Displaying 3,194 of 3,194 Cells

Fig. 1. Rheticus® Safeland Interface

3. CELL RANKING METHODOLOGY TO
ESTIMATE THE LEVEL OF ATTENTION
(INSPECTION PRIORITY SCORE)

The new version of the Rheticus® Safeland service, which
was developed as part of the AI-LAND project, allows users
to access a comprehensive and current overview of the state
of the territory, classified by level of risk. Unlike the pre-
vious version, the system now integrates additional layers of
information, as well as interferometric data, to identify areas
exposed to greater hydrogeological and fire risk. The territory
is divided into hexagonal cells and classified according to the
IPS calculation, which assigns each cell a level of attention
according to the hazards detected in the area of interest. IPS
is determined through a combined analysis of weights derived
from different geospatial data sources and amplification fac-
tors, enabling areas at higher risk of instability to be identi-
fied. The IPS calculation takes into account three main types
of data and their respective weights.

* Spatial anomalies: The identification of unstable ar-
eas is based on the analysis of mean displacement
velocity values of Persistent Scatterers (PS) and Dis-
tributed Scatterers (DS), measured along the Line of
Sight (LOS) and extracted from the EGMS geoportal.
For each acquisition geometry, PS and DS exhibit-
ing homogeneous kinematic behavior are grouped into
clusters. Each cluster is assigned a unique identifier
and is spatially represented by an enclosing polygon;
The weight assigned to clusters of spatial anomalies
in the Inspection Priority Score (IPS) calculation al-
gorithm is determined based on two main parameters:
consistency, defined as the ratio between the number
of PS/DS points within the cluster (excluding outliers)
and the total number of PS/DS in the cluster, and the
average speed of movement calculated along the LOS.
The weight of the spatial anomalies of each hexagon
is calculated as the sum of the weights of the individ-
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ual clusters corrected for the fraction of area that each
cluster occupies within the hexagon itself.

Spatio-temporal anomalies: Identified by the analysis
of displacement time series of PS and DS along the
LOS, extracted from the EGMS geoportal. For each
acquisition geometry, the first step involves detecting
temporal anomalies by identifying breakpoints that
appear in the most recent segment of the time series.
These breakpoints represent either changes in displace-
ment velocity or abrupt shifts (also referred to as steps),
which are temporally well-defined and easily identifi-
able. Following this, a clustering process is carried out,
grouping together PS and DS points that exhibit similar
kinematic behavior. Each resulting cluster, character-
ized by shared motion patterns, is assigned a unique
identifier and is spatially represented by an enclosing
polygon;

The contribution of space-time anomaly clusters in the
Inspection Priority Score (IPS) calculation algorithm
is determined by combining three main parameters:
consistency, calculated as the ratio between the num-
ber of valid PS/DS points within the cluster, excluding
outliers, and the total number of PS/DS points in the
cluster, the difference in average speed of movement
before and after a trend change, and the displacement
step, which represents the significant discontinuity of
movement between two consecutive dates. The total
weight assigned to spatio-temporal anomalies in each
hexagon is calculated as the sum of the weights of
the individual clusters, each corrected according to the
portion of area actually covered by the cluster within
the hexagon itself.

Isolated PS/DS, i.e., measurement points that do not
fall within the clusters of anomalies: PS/DS that do
not generate spatial/spatio-temporal anomalies. It is
planned to use the displacement time series obtained
along the LOS and extracted from the EGMS geopor-
tal [1]. The weight of the PS/DS within the algorithm
is calculated by taking into account both the average
speed of movement and the density of points within
the hexagon. This means that areas affected by sig-
nificant point movements, even if they are not char-
acterised by aggregate anomalies, are adequately con-
sidered in the classification process.The weight of the
PS/DS within the algorithm is calculated by taking into
account both the average speed of movement and the
density of points within the hexagon. This means that
areas affected by significant point movements, even if
they are not characterised by aggregate anomalies, are
adequately considered in the classification process.

Spatial
Anomalies |

e ——
( Spatio-TemporaI\

Anomalies

P i

| Isolated Points ‘\

B W Attention

\
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@ Moderate
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Factors

Fig. 2. 3D visualization system

* Landslide Hazard: The landslide hazard layer pro-
duced by the Istituto Superiore per la Protezione e
Ricerca Ambientale (ISPRA) represents a mapping of
the areas of the Italian territory exposed to different
landslide hazard classes. The classification is based
on geomorphological, hydrogeological and historical
criteria, which take into account both already occurred
landslide events and the susceptibility of the territory
to instability phenomena [2].

* Hydraulic Hazard: The hydraulic hazard layer pro-
duced by the Istituto Superiore per la Protezione e
Ricerca Ambientale (ISPRA) represents a mapping of
the areas of the Italian territory exposed to different
landslide hazard classes [2].

In the Inspection Priority Score calculation algorithm,
each landslide e hydraulic hazard class is assigned an
increasing weight based on the level of risk attributed
to it. This weight is proportionate to the percentage of
the specific class’s surface area that falls within each
analysis hexagon. If there are multiple hazard classes
within a single hexagon, the contributions are added
together to obtain the overall value of the amplification
factor associated with the landslide and hydraulic risk.

* Burned Areas: The burned area layer, produced as
part of the European Forest Fire Information System
(EFFIS), is a Europe-wide mapping of areas affected
by forest fires. This system monitors and records areas
affected by fires using high-resolution satellite imagery
and automated detection algorithms [3]; Several pa-
rameters are considered when calculating the weight
associated with forest fires in each hexagon: the per-
centage of burned area relative to the hexagon area,
the average slope of the hexagon, and the time interval
since the fire event. The latter parameter is used to

modulate the influence of fires based on their date of
occurrence. If there are multiple events in the same
hexagon, the contributions are combined, taking into

In addition to ground motion data, the system considers a se-
ries of amplification factors that contribute to the prioritiza-
tion of cell attention levels:
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account any spatial overlaps.

The final weight of each cell is calculated by aggregating the
normalised contributions of movement data and amplification
factors, with a combination of predefined weights applied.
This process uses the Ordered Weighted Averaging (OWA)
methodology [4], which is a technique that allows multiple
factors to be aggregated while taking into account a flexible
weighting criterion. OWA assigns weights to different levels
of information based on their relevance in determining a cell’s
attention level. The customer can customise this methodology
based on their knowledge of the territory , and an expert user
can monitor it. It enables the influence of each contribution
to be modulated via a weighting function, thereby ensuring a
balanced approach between different data sources. The IPS
is therefore an optimal combination of the different contribu-
tions. The resulting IPS value is then used to classify cells
into one of three attention levels: i)Low (green): stable,no
intervention needed; ii)Moderate (yellow): Potential instabil-
ity, monitoring advised; iii)High (red): High-risk, inspection
required.

The final output of the algorithm, the Inspection Priority
Score (IPS), was validated by comparing it with available
ground truth data, including official landslide inventories,
fire records and other documented evidence of instability.
Validation was also conducted in collaboration with local
authorities, such as the Civil Protection Agency, the Forestry
Police and relevant regional structures, to verify consistency
between areas classified as highest priority and actual sit-
uations on the ground. This iterative calibration process
strengthened the model’s operational reliability and useful-
ness for decision support.

In this context, geo-analytical indicators generated by the
Rheticus® Safeland 2.0 service, are integrated into an interac-
tive 3D environment.The 3D Digital Twin model, which has
been developed, integrates geospatial data, three-dimensional
models and high-density point clouds in order to reconstruct
accurate and interactive virtual environments. Its architecture
enables complex scenarios to be visualised by combining
satellite surveys, digital terrain models (DTMs), Light De-
tection and Ranging (LIDAR) and photogrammetry, and
supports dynamic data to simulate evolutionary phenomena.
Optimised rendering algorithms, level of detail (LOD) man-
agement and progressive streaming techniques ensure high
performance, even with large datasets. The platform sup-
ports immersive navigation, contextual information overlay
and real-time, multi-user interaction, making it an advanced
tool for environmental analysis, planning and risk scenario
management.(Fig. 2).

4. CONCLUSION

Rheticus® Safeland 2.0 is a significant methodological ad-
vance in integrated hydrogeological risk and forest fire anal-

ysis. This enhanced system combines multi-temporal inter-
ferometric observations with auxiliary data layers, including
topographic, climatic and thematic mapping information, to
provide a thorough classification of instability conditions. Its
hexagonal cell structure enables consistent and scalable spa-
tial analysis, and the Inspection Priority Score (IPS) algo-
rithm facilitates the early identification of critical areas and
the transparent and reproducible establishment of intervention
priorities. The interconnected nature of these risks means that
forest management directly affects erosion control and slope
stability, linking fires and landslides in multi-hazard scenar-
ios. The system’s output, integrated into a three-dimensional
digital twin model, enables current conditions and evolution-
ary scenarios to be visualised. Continuous monitoring enables
previously undetected areas of instability to be identified and
tracked over time, thereby strengthening the effectiveness of
mitigation strategies and risk reduction planning in line with
resilience and sustainable land management objectives.
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ABSTRACT

The AXIS 3 Safety & Security Service, part of the Greek
National Satellite Space Project, is a modular and scalable
Earth Observation based solution designed to support near
real-time environmental risk monitoring and security
operations. This paper presents the system architecture,
service components, and integration with the Governmental
Hub and EOEPCA processing ecosystem. Through
dedicated services for flood risk, wildfire surveillance, and
target identification, the AXIS 3 platform delivers timely
geospatial insights using SAR, Optical, and Thermal
satellite data.

Index Terms— Safety, Security, Earth Observation,
Satellite Remote Sensing, Geospatial Products, STAC,
EOEPCA

1. INTRODUCTION

The aim of the project is to enhance Greek capabilities in
satellite technologies and applications and empower the
country to exchange satellite data. AXIS 3 addresses the
need for a national Earth Observation (EO)-based
infrastructure delivering timely, reliable, and operational
geospatial products. It leverages national (AXIS 1.1, 1.2,
2.0) and international assets (e.g., Copernicus, Landsat) to
support disaster response, security, and environmental
protection. AXIS 1.1 provides thermal infrared imagery for
environmental monitoring, AXIS 1.2 offers all-weather SAR
imaging for maritime and land surveillance, and AXIS 2.0
delivers high-resolution multispectral and hyperspectral
data. The Service designs, develops, validates, integrates,
and delivers the Safety and Security Service of AXIS 3,
including external data integration. It establishes an end-to-
end service chain—from data collection to geospatial
product delivery—along with user tools. The goal is to meet
national needs for spatial, temporal, and thematic resolution
using AXIS satellite data. These needs shape software
requirements, resulting in value-added products like
thematic maps, insights, and user-friendly services with

timely and systematic delivery. Big EO data is handled via
batch processing and parallel computing to manage volumes
efficiently and accurately.
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Figure. 1. AXIS 3 Safety & Security Service High-level schematic
representation

2. ARCHITECTURE & DESIGN PRINCIPLES

The AXIS 3 Safety & Security Service is built on a modular,
scalable architecture, supporting the full EO data lifecycle—
from acquisition to analysis and delivery. Each function is
encapsulated in a dedicated module, allowing independent
development, testing, and scaling without disrupting the rest
of the system. The architecture offers key benefits:
scalability (modules like ingestion or training can grow as
needed); maintainability (updates in one area don’t impact
others); and reusability (core components adapt across
services). It also ensures interoperability for easy integration
with national and international EO infrastructures (e.g.
AXIS 3 Governmental Hub, HSC Data Hub).
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Figure . 2. Service Architecture for Governmental Hub Integration

The Server Services Module forms the processing core and
includes: Data Ingestion Module - Collects EO data from
AXIS satellites and sources like Copernicus, supporting
standard geospatial formats and APIs for compatibility and
efficient flow; Data Preprocessing Module - Cleans, filters,
and normalizes data, ensuring sensor consistency and filling
gaps by aligning third-party datasets to the national mission;
Feature Extraction Module - Converts cleaned data into
structured features using statistical and geospatial
algorithms, preparing outputs for modeling or decision
tools. Model Training Module: Trains Al models with EO
features, supporting hyperparameter tuning, validation, and
transfer learning to optimize models for tasks like flood risk
or wildfire forecasting. Prediction and Inference Module:
Applies models to new data for batch or real-time insights,
supporting services like target tracking and disaster alerts
with robust scalability. Each thematic service -Flood Risk
Assessment, Wildfire Monitoring, Target Identification-
operates as an independent pipeline while sharing a unified
backend, following a common flow: ingest — preprocess —
extract — train — predict. The use of containers and
metadata standards ensure smooth operation with platforms
like the Governmental Hub and Earth Observation
Exploitation Platform Common Architecture (EOEPCA)[1].

3. THEMATIC EO SAFETY & SECURITY SERVICE
IMPLEMENTATIONS

The AXIS 3 Safety & Security Service implements a suite
of EO services, built on a modular architecture. These
services deliver actionable insights for risk mitigation and
security operations across Greece. Each pipeline integrates
data ingestion, preprocessing, model-based processing, and
product delivery, tailored to its thematic objective.

3.1. Flood Risk Assessment and Mapping

3.1.1. Rapid and Accurate Flood Delineation

Flood extents and water depth are detected using SAR
(Sentinel-1, AXIS 1.2) and optical (Sentinel-2, AXIS 2.0)
imagery. A Multi-Otsu’s thresholding method [2,3]
classifies flooded areas, and the FLEXTH tool [4] estimates
water depth. Optical data preprocessing includes NDWI and
cloud masking [5]. For SAR data, calibration, speckle
filtering (Lee filter), terrain correction, and dB scaling [6]
are applied.

FloodRisk Assessment and Mapping
i 3.1.2. Flood Risk Prediction

Flood risk is predicted using the

LISFLOOD model [7],
simulating runoff and
hydrological processes across
Greece. Inputs include
meteorological data
(precipitation, temperature,
evapotranspiration) and static
maps (land  use, soil,

Wildfire Analysis and Surveillance

: E 3.2. Wildfire Analysis and
Surveillance

topography). The model
generates daily or weekly risk
maps for flood response and
mitigation planning.

3.2.1. Wildfire Danger
Forecasting and Fire Risk

This service predicts fire risk
up to three days in advance by
integrating satellite data with

environmental and  human
variables. Machine learning
models  [8] trained on

meteorological, fuel, and terrain
data produce fire danger maps,
anomaly reports, and
explainable Al visualizations to

support early warnings.

Figure 3 Preliminary
results of Safety & .
Security Serv;?:les 3.2.2. Burn Scar Mapping
Deep Learning models using the FLOGA dataset [9] map
burn scars from multispectral and SAR imagery. The system
provides accurate post-fire damage assessments, even in
inaccessible or cloud-covered areas, aiding recovery, land

use, and fire mitigation strategies.
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3.2.3. Fire Severity Mapping

This service estimates fire damage intensity, supporting
ecological assessments and recovery efforts. The GeoCBI
algorithm [10] classifies fire severity using multispectral
satellite data, informing reforestation, soil stabilization, and
ecosystem resilience planning.

3.2.4. Restoration and Regeneration Monitoring

This service monitors vegetation regrowth across biomes in
Greece, using Copernicus and AXIS multispectral data, fire
severity, and forest type maps. A remote sensing index [11]
classifies recovery status, supporting restoration planning.

3.2.5. Active Fire Monitoring

This module detects active fires in near real-time using
thermal-infrared satellite data and EO analytics. It tracks fire
fronts and hotspots, helping emergency services optimize
suppression strategies and protect critical infrastructure.

3.2.6. Fire Spread and Intensity Forecasting

This service uses the WRF-SFIRE model [12] to predict
wildfire spread and intensity, simulating fire-atmosphere
interactions. It integrates inputs like fuel moisture, weather
forecasts, and terrain to guide suppression tactics and
communication.

3.3. Target Identification and Tracking

3.3.1. Target Identification

Machine learning models, primarily Detectron2 [13], detect
and classify vessels, aircraft, vehicles, and infrastructure
using SAR and optical imagery. Each object category uses
dedicated models, with land and sea masks reducing false
positives. Infrastructure detection uses only optical data due
to SAR complexity.

3.3.2. Tracking Target Identification

Object tracking uses multi-frame spatial correlation and
optical flow-based tracking [14]. Multi-SAR (e.g., AXIS 1.2
dwell mode) and multi-optical (e.g., AXIS 2) inputs derive
object trajectories. Outputs include LineString paths and
velocity metrics for dynamic monitoring.

4. DATA REQUIREMENTS AND INGESTION
STRATEGY

The Axis 3 Safety & Security Services ingest a
comprehensive and diverse range of satellite and auxiliary

datasets to support advanced Earth observation applications
across flood risk, wildfire monitoring, and target
identification domains. Inputs include multispectral and
SAR imagery from Sentinel-1, Sentinel-2, Axis 1.2, Axis
2.0, ICEYE, WorldView, and PlanetScope satellites, as well
as terrain models like Copernicus DEM, land cover maps,
meteorological time series, and thematic data such as fire
hotspots or hydrological parameters.

The Axis 3 Governmental Hub leverages a standardized and
scalable data ingestion strategy based on the
SpatioTemporal Asset Catalog (STAC) API [15], ensuring
that all core datasets ingested into the Hub’s internal catalog
are STAC-compliant. Conversely, external datasets not
registered in the catalogue (e.g., real-time weather feeds,
environmental models, hydrological boundaries, and
auxiliary Governmental Hub Catalog
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5. SERVICES OPERATIONAL PROCESS

The operational processes of Axis
3 Safety & Security Services
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6. SERVICES CURATION FOR GREEK
GOVERNMENTAL HUB PROCESSING BUILDING
BLOCK

Each service—flood mapping, wildfire monitoring, and
target identification—is packaged in Docker containers for
scalability across Kubernetes clusters. Common Workflow
Language (CWL) is used for workflow orchestration,
enabling integration and traceability. The application
includes a container and a .cwl file defining inputs and
execution, ensuring reproducibility across cloud or
distributed infrastructures [16].

7. CONCLUSION

The AXIS 3 Safety & Security Service demonstrates the
effectiveness of a modular Earth Observation system in
meeting national needs for disaster management,
environmental monitoring and security. Its architecture
enables systematic geospatial service delivery while
adapting to time-sensitive and event-driven demands.
Integrating national and international satellite data—such as
the national space assets, Copernicus, and other sensors—
ensures broad spatial and temporal coverage. The service,
based on standardized interfaces and harmonized processing
chains, facilitates interoperability across data and system
components.

The successful deployment of thematic pipelines for flood,
wildfire, and target identification confirms that a well-
structured EO system can support these applications.
Implemented with containerized modules and orchestrated
via CWL, these workflows offer a scalable framework for
deployment within the EOEPCA ecosystem.

The service also addresses Big Earth Observation Data
challenges by using parallel processing, batch execution,
and scalable cloud-native architectures, ensuring efficiency
and performance under high-frequency data loads—critical
for both systematic and real-time responses.

Overall, the Safety & Security Service demonstrates how a
structured EO system supports decision-making and
enhances national readiness.
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AN INTEGRATED APPROACH FOR ASTEROID IMPACT PREDICTION AND
TRAJECTORY VISUALIZATION

Emine Betul Erdogan, Gokhan Bakal
Abdullah Gul University, Tiirkiye

ABSTRACT

Asteroid collision prediction plays a pivotal role in planetary
defence by enabling proactive risk mitigation and informed
strategic planning. To address this challenge, we developed a
comprehensive framework that integrates historical fireball
data and contemporary orbital parameters from NASA’s
datasets. By deriving shared physical features and applying
unsupervised clustering, our system identifies patterns in
potential impact scenarios. We further incorporate supervised
learning to categorize asteroids based on their threat level. To
enhance accessibility and interpretation, the framework
includes multi-dimensional visualizations of orbital dynamics
and an interactive web application that represents asteroid
trajectories in both two and three dimensions. This simulation
platform serves both scientific and educational purposes,
offering a rich interface for exploring asteroid behaviour. This
study demonstrates the potential of combining machine
learning, astrophysical modelling, and data visualization to
support planetary safety initiatives.

Index Terms— Asteroid prediction, planetary defence,
K-means clustering, Random Forest classification, orbit
visualization

1. INTRODUCTION

Asteroid monitoring plays a critical role in understanding and
mitigating the risks posed by near-Earth objects. As interest
in planetary defence continues to grow globally, space
agencies and researchers face increasing demands for
accurate forecasting systems that can assess potential
collision threats in a timely manner. Similarly, Malakouti et
al. (2023) highlighted the value of machine learning
classification for hazardous asteroid identification [2]. The
combination of expanding public datasets and the growing
accessibility of computational tools provides new
opportunities to model and predict celestial behaviour with
greater precision.

In recent years, As Chomette et al. (2024) demonstrated,
machine learning significantly improved local asteroid
damage prediction and as advancements in data-driven
methodologies have enabled researchers to move beyond
traditional orbit tracking by incorporating machine learning
and simulation techniques into asteroid impact assessment

frameworks [1]. Such approaches are essential not only for
identifying potentially hazardous asteroids (PHAs) but also
for supporting strategic decision-making processes in defence
and space governance contexts.

To respond to these emerging requirements, we developed a
comprehensive framework that leverages both historical
fireball data and real-time orbital records from NASA’s
databases. The system integrates clustering, classification,
and simulation methods to create a unified tool for detecting
and visualizing asteroid threats. Section 2 outlines the input
data sources, methodology, and machine-learning models
employed. Section 3 introduces the simulation platform and
technical implementation. Results, insights, and potential
applications are presented in the concluding sections.

2. DATA & METHODS

This section presents the data sources, preprocessing
strategies, and modelling architecture developed to detect
potentially hazardous asteroids and simulate their future
trajectories. The workflow combines historical impact
records with real-time orbital datasets and integrates
unsupervised and supervised machine learning methods for
collision risk classification and spatial-temporal modelling.

2.1. Input data

The framework uses two complementary data sources.
NASA’s CNEOS Fireball and Bolide Data provides an
essential dataset for historical impact records [3], capturing
prior atmospheric entries with parameters such as velocity,
altitude, and total radiated energy. The second source includes
orbital elements of currently tracked asteroids in low-Earth
and near-Earth space, including semi-major axis, inclination,
eccentricity, and close approach data.

Due to limited overlap between these datasets, shared features
were derived through transformation techniques. This
includes estimated kinetic energy, projected impact
probability, and derived velocity vectors. All entries were
filtered and standardized to ensure compatibility and
relevance to potential Earth-crossing objects. The resulting

1

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

173 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

Risk, Disaster, and Hazard Management

[Poster Session]

unified dataset supports both exploratory clustering and
model training.

2.2. Feature engineering and clustering

To reduce data dimensionality and improve model
interpretability, a curated feature set was extracted and
transformed. Notable variables include vectorized speed
components, altitude normalization, miss-distance

thresholds, and inferred orbital behaviour based on similarity
to past impactors. Recent multimodal anomaly detection
methods such as those proposed by Mondal et al. (2025)
inspire more advanced asteroid hazard prediction strategies

[4].

Initial unsupervised analysis was performed using K-means
clustering, segmenting the dataset into distinct risk categories.
This step enables a probabilistic view of impact likelihood
based on shared physical characteristics. The clusters were
later evaluated via visual and statistical methods, including
scatter and box plots to validate separability between high and
low-risk objects. Figures 1, 2, 3, 4 and 5 shows the results of
the clustering mentioned above.

K:Means Clustering of Asteroids

()

Fig. 1. K-means clustering of historical fireball dataset. Cluster
assignments are coloured by velocity and total energy.
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Fig. 2. K-means clustering results on current orbital dataset,
visualizing energy vs. velocity with cluster separation.
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Fig. 3. Boxplot of velocity (km/s) by cluster.
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Fig. 4. Boxplot of altitude (km) by cluster.
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Fig. S. Boxplot of total radiated energy (J) by cluster.

2.3. Supervised classification

The clustered dataset served as the basis for training a
Random Forest classifier to generalize risk prediction to new,
unlabelled asteroid entries. Sharma et al. (2024) successfully
applied Al-based approaches for detecting hazardous
asteroids, showing promise for real-time -classification
systems [6]. The model leveraged decision-tree ensembles
with  feature importance tracking, supporting the
identification of dominant predictors such as vx, vy, and
altitude.

Model training followed a stratified data split and employed
standard metrics (precision, recall, F1-score) for evaluation.
This classification component was essential for real-time
integration, allowing continuous assessment of updated
asteroid catalogues.
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3. SYSTEM ARCHITECTURE AND DEPLOYEMENT

In addition to the core modelling pipeline, the proposed
framework includes a modular, end-to-end architecture for
data ingestion, simulation, visualization, and deployment.
The system combines machine learning, astrophysics-based
simulation, and web technologies to offer a fully integrated
platform for asteroid collision risk assessment.

The architecture is composed of three primary layers: a
backend data processing layer, a simulation and modelling
layer, and a frontend visualization and interaction layer. Each
component communicates through lightweight serialized
formats (e.g., JSON), ensuring scalability and modular
deployment.

3.1.Backend Processing and Modelling

The backend layer, implemented in Python, handles data
acquisition from the real-time integration leverages open
NASA services such as the Fireball Data API and orbital
datasets [5]. It also performs preprocessing steps such as
feature extraction, normalization, clustering, and supervised
classification. The feature engineering phase is crucial for
ensuring consistent scale across heterogeneous datasets.

The simulation engine uses libraries such as Matplotlib,
Astropy, and NumPy to render 2D and 3D orbital plots. These
plots depict Earth-centric orbits of both historical and
predicted high-risk asteroids, enabling static analysis of their
trajectories and proximity to Earth as shown in the Figure 6
and 7.

Asteroid Orbits (Cluster 0)

\

Fig. 7. Example 2D orbital paths of clustered asteroids around
Earth.

3.2.Interactive Simulation Frontend

To enhance accessibility and real-time interactivity, a
browser-based application was developed using Babylon.js.
The simulation recreates a simplified solar system with
dynamic asteroid motion, leveraging WebGL for high
performance rendering. Each asteroid is plotted in motion
based on its orbital parameters, and risk clusters are color-
coded for interpretability.

Hover effects reveal detailed metadata (e.g., diameter,
velocity, estimated miss distance), enabling users to interact
with individual objects as in the Figure 7 and explore their
behaviour. The interface is optimized for educational and
scientific  audiences, promoting transparency and

engagement.

Fig. 6. 3D orbital visualization of near-Earth objects

Fig. 7. Interactive web-based asteroid simulation built with
Babylon.js. The Earth-cantered view highlights asteroid motion
in real-time, with orbital paths and planetary positions rendered
in 3D for spatial awareness and educational exploration.
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4. RESULTS

This section presents several illustrative outcomes derived
from the developed asteroid monitoring framework to
showcase its applicability in real-world near-Earth object
(NEO) risk analysis. Milani et al. (2005) introduced non-
linear impact monitoring techniques, which align with our
clustering-based anomaly detection approach [7]. The
framework was employed to cluster and analyse close-
approaching asteroids based on key physical and orbital
parameters such as velocity, total radiated energy, and
altitude.

Figures 1 and 2 display the results of K-Means clustering
performed on the dataset using velocity and energy as
distinguishing features. This clustering helped identify
objects with anomalously high energy levels and distinguish
them from the bulk population. A second clustering result
with a zoomed-in scale is presented in Figure 3,4 & 5 to better
highlight distribution variations among more typical asteroid
groups.

To further interpret the characteristics of each cluster,
boxplots were generated for velocity (Figure 3), altitude
(Figure 4), and total radiated energy (Figure 5). These
visualizations provide insights into outlier detection and intra-
cluster variability across parameters.

The framework was also applied to a case study involving
asteroids with predicted close approaches to Earth between
January 1-15, 2024. JSON-formatted data allowed extraction
of key features such as object diameter, miss distance, and
relative velocity. Among the results, an object named (2024
AR2) was identified with an unusually close predicted miss
distance of ~1.26 million kilometres, prompting further risk
simulation. The predictions suggest that this methodology can
help prioritize observational resources for potentially
hazardous objects.

These experiments demonstrate the utility of combining
unsupervised clustering, statistical profiling, and feature
driven analysis to derive interpretable insights from
largescale asteroid datasets, ultimately supporting early
warning and planetary defence initiatives.

5. SUMMARY AND CONCLUSION

Farnocchia et al. (2015) and Chodas (2002) emphasized the
importance of systematic ranging for impact warning and
probability calculation [6], [8]. Considering the significance
of the issue we have presented a data-driven approach for
assessing and visualizing asteroid collision risk to support
planetary defence research and public scientific outreach. By
integrating historical impact data with current orbital
parameters, the methodology enables intelligent clustering

and classification of potentially hazardous asteroids using
well-established machine learning models.

Combining statistical feature engineering with visual orbit
simulations and interactive web technologies, the system
offers an accessible and modular platform for both
researchers and the public. The proposed approach supports
multi-format visualization, ranging from static plots to fully
immersive 3D simulations rendered in web browsers.

The workflow is currently deployed in a simulated
environment, enabling consistent monitoring and
presentation of close-approaching objects. It is well positioned
for integration with real-time data pipelines from

external services such as NASA’s API, offering a robust,
open-source foundation for future planetary defence systems
and educational platforms targeting space hazard awareness.
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PROCESSING AND DATA ACCESS OF THE GLOBAL FLOOD MONITORING SERVICE

Tobias Stachl, Christoph Reimer, Christian Briese

EODC Earth Observation Data Centre for Water Resource Monitoring GmbH

ABSTRACT

The Global Flood Monitoring (GFM) service, launched in
2021 as an independent component of the Copernicus Emer-
gency Management Service (CEMS), exemplifies the trans-
formative potential of space-based big data in addressing ur-
gent societal challenges, particularly in the context of climate
change. Operating continuously, GFM processes all incoming
Synthetic Aperture Radar (SAR) imagery from the Coperni-
cus Sentinel-1 satellites using a three-algorithm ensemble ap-
proach to generate binary flood masks and flood likelihood
layers, along with contextual data such as reference water
maps and flood impact indicators. Hosted on cloud infras-
tructure at the Earth Observation Data Centre (EODC), GFM
achieves end-to-end processing times of under 5 hours, with
best-case scenarios below 90 minutes. Data access is pro-
vided via integration with the Global Flood Awareness Sys-
tem (GIoFAS) and the European Flood Awareness System
(EFAS), as well as through RESTful APIs, a dedicated web
portal, and a STAC-compliant, cloud-optimized catalog. This
contribution presents the operational framework, data dissem-
ination infrastructure, and outlines future directions to en-
hance data access and scalability for climate resilience ap-
plications.

Index Terms— Global Flood Monitoring, Sentinel-1, Big
Data, Earth Observation, SAR, Datacube, Cloud-optimized

1. INTRODUCTION

Flooding is a pervasive natural hazard that affects millions
of people worldwide, necessitating timely and accurate mon-
itoring to mitigate its impacts. Traditional flood mapping
methods often rely on manual interpretation of satellite im-
agery, which can be time-consuming and subject to delays.
To overcome these limitations, the Copernicus Emergency
Management Service (CEMS), one of the six services of
Copernicus, the Earth Observation component of the Euro-
pean Union’s space programme, launched the Global Flood
Monitoring (GFM) service in 2021. Leveraging Sentinel-1
Synthetic Aperture Radar (SAR) data, GFM operates as a
fully automated, 24/7 processing chain. It functions as an
independent component of CEMS, supporting both immedi-
ate emergency response and long-term disaster risk reduction
efforts [11].

All worldwide GFM flood data are freely available in
near-real-time (NRT), as well as the historic data from an
offline processed archive covering the complete Sentinel-1
observation period (from 2015 to present). As of the time
of writing, approximately 1,950,000 Sentinel-1 IW GRDH
scenes have been processed, highlighting the extensive cov-
erage and operational scale of the Global Flood Monitoring
service.

To support integration into automated workflows and im-
prove accessibility, the growing archive and near-real-time
(NRT) outputs of the GFM service have been published as an
open-access collection using the SpatioTemporal Asset Cata-
log (STAC) standard. This enables efficient, programmatic
search and filtering by region, time, and metadata such as
flood extent. The data is stored in cloud-optimized GeoTIFF
(COG) format to support scalable and efficient processing.

2. METHODOLOGY

The GFM service automatically processes all incoming
Sentinel-1 SAR images acquired over land in Interferometric
Wide (IW) swath mode, Ground Range Detected (GRD) and
VV polarization, leveraging a global backscatter datacube
that covers approximately 379 billion land surface pixels.
After the successful download of the Sentinel-1 IW GRD
images, geometrically and radiometrically corrected images
of the backscattering coefficient o° are produced, which are
then ingested into a global Sentinel-1 datacube.

The subsequent flood detection is based on three comple-
mentary flood mapping algorithms, which outputs are com-
bined using ensemble approaches to produce the main output
of the GFM service: a binary flood map and a flood like-
lihood layer. To enhance interpretation and usability, addi-
tional contextual layers are also provided, including a refer-
ence water mask (identifying permanent and seasonal water
bodies), an exclusion mask, advisory flags, and flood impact
layers. The three flood mapping algorithms have been devel-
oped by the German Aerospace Centre (DLR), the Luxem-
bourg Institute of Science and Technology (LIST), and the
Vienna University of Technology (TU Wien). Further tech-
nical details on the flood mapping algorithms, the ensemble
methodology, and the contextual layers can be found in Wag-
ner et al. [13] as well as on the Wiki pages of the GFM service
(https://extwiki.eodc.eu/en/GFM).
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Fig. 1. Overview of the step-by-step GFM NRT production
workflow [13].

2.1. Near-real-time workflow

The NRT workflow depicted in figure 1 consists of the acqui-
sition of the latest Sentinel-1 SAR images, its preprocessing
to o° images, production of the flood mapping algorithms in-
cluding advisory flagging and ensemble approaches and the
final preparation and ingestion of the output products to be
picked up by the various dissemination systems. Additional
inputs that were derived offline by analysing the historic data
within the Sentinel-1 datacube along with high-resolution an-
cillary datasets, are picked up and prepared by the NRT work-
flow for each incoming Sentinel-1 image.

The entire data production workflow is deployed within
a fully independent resource tenant on EODC’s cloud in-
frastructure. This environment is powered by OpenStack,
a widely used open-source cloud computing platform that
enables flexible, scalable, and automated management of
compute, storage, and networking resources. By leveraging
OpenStack, we ensure high availability, resource isolation,
and efficient orchestration of our processing services, making
it ideally suited to the needs of GFM.

To streamline infrastructure management, we use Ansible
and Terraform to automate the provisioning, configuration,
and maintenance of our environment, ensuring consistency
and scalability across all deployments. The current setup in-
cludes 480 virtual CPUs (vCPUs) and 1.2 TB of memory of
latest processing hardware, distributed across multiple worker
units to maintain a service availability of greater than 99%.

Apache Airflow is used for task orchestration, enabling
the reliable scheduling, monitoring, and execution of all
processing chains including data acquisition, Sentinel-1
backscatter o° pre-processing and flood mapping workflows
within the GFM data production pipeline. Finally, a mon-
itoring and alerting system powered by Grafana provides
real-time notifications to operations engineers, ensuring 24/7
service availability and rapid response to any system anoma-
lies.

2.2. Integration with Forecasting Systems

GFM’s outputs are integrated in the Global Flood Awareness
System (GloFAS) [8] and the European Flood Awareness

System (EFAS) [9], enhancing the predictive capabilities of
these systems. By combining real-time flood observations
with medium- and seasonal-range forecasts, GFM supports
proactive flood risk management, enabling authorities to is-
sue timely warnings and implement mitigation measures. The
map viewers of GloFAS and EFAS allow users to visualize
all GFM product layers.

2.3. Data Access

Alongside the aforementioned integration into GloFAS and
EFAS, GFM output products are accessible through a various
set of interfaces, following the assumptions of Mostafiz et al.
[10], to provide easy access of flood information to maximise
its usefulness for both the public and professionals.

A dedicated webportal [4] - which is also integrated in
the map viewer of GloFAS and EFAS - allows users to define
areas of interests (AOIs), display and download GFM data
for the AOIs and configure a notification service for any new
available data. Additionally, a set of application programming
interfaces (APIs) has been implemented to provide a more
flexible way of downloading data. The integration into Glo-
FAS and EFAS as well as the here described webportal and
APIs have been developed by GeoVille GmbH [3], member
of the GFM consortium.

2.3.1. Cloud-optimized Data Access

Given the continuously expanding volume of GFM output
data - including both the complete archive and NRT products
- ensuring easy discoverability and programmatic access is
essential for integrating GFM data into automated processing
workflows and applications [7]. To support this, in addition to
the previously mentioned access methods, the GFM data has
been published as an open-access collection using the Spa-
tioTemporal Asset Catalog (STAC) specification [5].

STAC is a standardized way to expose and interact with
collections of spatial temporal data, which enables users to ef-
ficiently search the entire GFM dataset by specifying regions
and time periods of interest. It also allows filtering based on
metadata attributes specific to the outputs, such as the number
of detected flooded pixels. The data is stored in the Cloud-
Optimized GeoTIFF (COG) format, which enhances read ef-
ficiency and supports scalable processing pipelines.

The GFM STAC catalogue currently comprises approxi-
mately 4,8 million STAC items. Each STAC item contains
links to all associated output files - specifically, COGs repre-
senting the results of the three individual flood mapping algo-
rithms as well as the ensemble product.

Numerous tutorials and example Jupyter notebooks show-
casing the benefits of using STAC in simple to complex use
cases can be found on EODC’s public GitHub repository [2].
The examples range from a simple visualisation of a single
GFM output to processing of the maximum flood extent for a
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specified AOI and time range using data proximate process-
ing on EODC cloud infrastructure utilizing the Python based
parallel computing library Dask [1].

2.4. Timeliness

A core requirement of the GFM service is to deliver its out-
put data as quickly as possible, with a maximum latency of
8 hours following each Sentinel-1 SAR acquisition. The per-
formance of the GFM production workflow is measured and
monitored using Key Performance Indicators (KPIs), which
are used for quarterly and annual reporting [12]. Figure 2 de-
picts an overview of the maximum processing durations un-
der regular conditions. In optimal conditions, the GFM sys-
tem can achieve end-to-end processing times - from sensing
to data dissemination - of under 90 minutes. On days when
the Sentinel-1 ground segment operates nominally, the total
latency typically remains below 5 hours, which can be seen in
figure 3.

max 3 h (NRT-3h)
max 24 h (FAST-24h)

Sentinel-1
Observation

Copernicus Data

max 10 min Space Ecosystem

Downloading

& Queueing max 10 min

max 35 min Pre-processing

Flood Mapping max 60 min

max 10 min Post-processing

User Uptake

Data Dissemination

Fig. 2. Timeliness of the GFM service, with maximum du-
rations under regular conditions between acquisition from
Copernicus, GFM main processing modules, and product
dissemination. NRT-3h and FAST-24h refer to Copernicus’
Sentinel-1 timeliness categories [13].

MIN flood ¢

Fig. 3. Grafana dashboard showing the average, minimum
and maximum timeliness of a usual day (18. May 2025).

3. OUTLOOK

The Copernicus Sentinel-1 mission was developed as a con-
stellation of two satellites to ensure a repeat cycle of six days.
Sentinel-1A and Sentinel-1B were launched in April 2014
and April 2016, respectively. Following the premature loss
of Sentinel-1B in December 2021, the third satellite, Sentinel-
1C, was successfully launched in December 2024. At the time
of writing, integration of Sentinel-1C into the Global Flood
Monitoring (GFM) near-real-time (NRT) workflow is ongo-
ing. To maintain the performance and continuity of GFM, the
expansion of the Sentinel-1 constellation with the upcoming
Sentinel-1D is essential.

Additionally, enhancing and evolving data access meth-
ods is critical for enabling seamless integration of the exten-
sive GFM dataset into existing processing workflows. In line
with the principles of data-proximate processing, our objec-
tive is to improve data access and analytical capabilities, par-
ticularly for time series applications, by adopting Zarr [6], a
community-driven specification for chunked, compressed, N-
dimensional arrays that enables efficient I/O in parallel com-
puting environments. This approach will better support users
seeking to exploit the full potential of the nearly decade-long
dataset, whether for trend analysis, historical comparison, or
large-scale processing.

4. CONCLUSION

The Global Flood Monitoring (GFM) service represents a sig-
nificant leap forward in operational, near-real-time satellite-
based flood detection and monitoring. Leveraging Sentinel-1
SAR data, GFM delivers high-resolution flood maps globally
within hours of data acquisition in a fully-automated manner,
fulfilling a critical need for rapid and reliable flood informa-
tion. The service ensures accessibility and performant access
to its output data through a robust cloud-based infrastructure
and advanced data processing pipeline - featuring indepen-
dent flood detection algorithms, which outputs are combined
using ensemble approaches, integration in the forecasting sys-
tems of EFAS and GIoFAS, and dissemination via multiple
access points including APIs, web portals, and STAC.

As flooding events become more frequent and severe due
to climate change, services like GFM are indispensable tools
in enhancing global preparedness and resilience. Future de-
velopments will focus on further improving algorithm perfor-
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mance, expanding data integrations, and refining accessibility
to maximize the service’s impact across scientific, humanitar-
ian, and operational domains.

(1]

(2]

[7]
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ABSTRACT

Urban flash floods are becoming increasingly frequent due to
climate change and land artificialization, posing serious risks
to human safety and infrastructure. To address this challenge,
the HORIZON-Europe ExtremeXP project [1] provides a
user-centric platform integrating explainable Al, visual ana-
Iytics, and experimentation workflows. This paper presents
a use case focusing on flash flood prediction in the city of
Nimes, France. A deep learning surrogate model, based on
a UNet architecture enhanced with temporal attention, is
trained using data generated by a hydrodynamic model. In-
put data include topographical information from LiDAR and
aerial imagery, as well as high-resolution rainfall data. The
ExtremeXP framework enables iterative experimentation,
model optimization, and interactive visualization, placing
the user at the center of the process. Results show promis-
ing predictive performance and highlight the relevance of
combining physical simulations and Al within a transparent
decision-support system for climate risk mitigation.

Index Terms— machine learning, surrogate model, flash
floods, hydrodynamical model

1. INTRODUCTION

In today’s data-driven world, machine learning models are in-
creasingly used to solve a wide range of problems. These new
methods face new challenges: the “black-box effect” of ma-
chine learning models leading to the lack of involvement of
user and visualization in the development of their models.

Developing accurate and trustworthy machine learning
models is a challenge well known to the scientific community.
The ExtremeXP framework (Fig. 1) provides accurate, fit-for-
purpose data-driven insights by evaluating different complex
analytic variants considering user intents, constraints and
feedback. Experimentation is the core concept for generating
accurate analytics. Al training pipelines are considered as
well as other types of workflows (data analytics, simulation
and visualization), including hybrid ones. The user is consid-
ered at the center of the process. Its participation takes place
at different phases of the experimentation in order to:

* specify intents, constraints and access control policies.

* manage the workflows during the execution of an ex-
periment.
* review the results and provide feedback.

ExtremeXP addresses key societal and industrial chal-
lenges through five application-driven use cases (UC): Al-
based flash flood forecasting, cybersecurity awareness, pre-
dictive maintenance, transport analysis, and disaster response.
This article focuses on the first UC: improving flash flood
forecasting with artificial intelligence.

Climate change is increasing the occurrence of urban flash
flood. Developing prediction models is an interesting tool to
reduce human and material damage caused by such events.
The data used to drive the models are of two types: topograph-
ical and meteorological, including data collected via satellite.

2. EXTREMEXP FRAMEWORK

Fig. 1| presents an overview of the ExtremeXP framework’s
modular architecture, which orchestrates different subsys-
tems/services. At the core lies the Experimentation Engine
responsible for designing, scheduling, executing and moni-
toring an experiment, i.e., the workflow of an Al pipeline that
the user wishes to evaluate. The surrounding five subsystems
offer additional modular features to the data scientist:

1. The Analysis-aware Data Integration module deals
with data-processing related challenges and provides
novel solutions to automatically select among datasets,
and deal with data quality issues such as missing,
incomplete, wrong, multilingual and duplicate data
points in user-driven reconfigurable workflows.

2. The User-driven AutoML offers functionalities for
simulation-based data augmentation for ML, constraint-
aware ML algorithms, algorithms for model selection
based on user preferences and constraints, continual
learning of model selection strategies and optimal de-
ployment of ML pipelines in heterogeneous environ-
ments.

3. The Transparent & Interactive Decision Making of-
fers explanations on the choice and configuration of a
ML/data analytics method and interactive visualization
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Fig. 1. ExtremeXP framework

and AR technologies to enhance monitoring and deci-
sion making.

4. The User-driven Optimization of Complex Analyt-
ics captures user intents, requirements and constraints
as well as user feedback for the optimization of experi-
ments.

5. The Extreme Data & Knowledge Management pro-
vides capabilities for secure and distributed manage-
ment of datasets and experimentation-based knowledge
assets and learning outcomes.

The framework has been used throughout the entire life-
cycle of the flash flooding prediction experiment setup de-
scribed in this paper, i.e., defining the Al workflow stages,
scheduling and evaluating models and hyperparameters that
fit the accuracy requirements, inspecting and refining the re-
sults through the interactive visualization dashboard. In this
UC the user interacts with the frameworks by giving some
feedbacks on the results produced by the experiment. This
data is then processed by the plateform to automatically im-
proved the experiment setup. With this UC a focus was made
on the visualization tools to improve the user experience and
to help actor for decision-making.

3. EXTREMEXP UC: FLASH FLOOD PREDICTION

Floodings are recurrent events due to global warming and ex-
cessive land artificialization. The damage caused by these
phenomena is both human and material, hence the urgent need
to develop models because they can be used to immediately
evacuate and secure the population, and over time to enable
us to better organize the territory.

3.1. Area of study

In this UC, the study focuses on Nimes, a French city with
a special geographical situation, lying between the Mediter-
ranean Sea and the Cévennes mountains. The artificial nature
of the soil makes it impermeable, and as water is not absorbed,
water runoff is increased. As a result, this area experienced
some very serious flooding events in recent years (1988, 2002,
2005, 2014) caused by heavy rainfalls. The last three events
are studied here with a focus on the Camplanier catchment
(see Fig. 2).

Fig. 2. Camplanier catchment within Nimes city

3.2. Methodology

The UC is responsible for modeling urban flooding phenom-
ena with machine learning tools. A physical model is devel-
oped to generate the data needed to train the deep-learning
model. Physical models are generally slow to infer and com-
plex to configure, hence the interest in developing surrogate
models based on deep-learning methods. The global approach
is based on two main steps:
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1. The physical model is configured and run once the in-
put data is set up.

2. The data generated by the HD model is recovered to
train the deep-learning model.

3. The surrogate model is validated against the physical
one.

3.3. Dataset and data processing

Various types of data are necessary to predict hazard events.
In the context of flood prediction, two classes of data are in-
teresting: topographical data providing information about the
terrain and its layout, and meteorological data.

3.3.1. Topographical data

The topographical data are open-source data from IGN: the
Digital Elevation Model (DEM) RGE ALTI [2] and a build-
ings mask [3]. In coastal areas, LiDAR is deployed, and, in
the mountains, radar is mostly used to acquire the data. For
the rest of the territory, aerial images correlation is used. In
the model data, the areas with buildings or outside the catch-
ment are marked with a No Data value.

3.3.2. Meteorological data

The city of Nimes, one of our collaborators, provided rainfall
data used as meteorological inputs to characterize the flood-
ing event. They are obtained with the software CALAMAR
(CAlcul de LAMes d’eau radAR) [4], a service precipitation
at high resolution (0.25 km?) by a hydrometeorological radar.
Recovered data has two different types: radar images and plu-
viometry measurements intended to calibrate radar data.

3.3.3. Data processing

The input data (DEM, rainfall, buildings and catchment ge-
ometries), and the water-depth maps calculated by the phys-
ical model, are georeferenced in a single tile. In addition to
this data the water level situation is added as a 2D map, to
inform the model if area is already flooded before the predic-
tion or not. Normalization transformation is applied on the
DEM. During training the unique tile is split into small ones
and an overlapping can be applied according to the configura-
tion. Sub-tiles with more than 90% of No Data are removed
from the training.

3.4. Hydrodynamic model

The physical model, using a hydrodynamical (HD) model,
producing water depth maps for the 3 flash flood events in
Nimes works in 3 steps. No benchmark has been done and
the in-situ water depth measurements are not used to validate
the physical model, yet.

3.4.1. Meshgrid generation

First, we prepare the input data needed by the HD model in a
specific format and we produce the calculation meshgrid. It is
a Delaunay grid obtained using the software Triangle [5][6].
We also need to process and simplify the buildings geometry
to avoid, in the meshgrid, cells with a very small angle which
would slow down the HD model tremendously or would pre-
vent the convergence of the results.

3.4.2. HD model

The second step consists of running the HD model, Dassflow-
2d [7], producing the water depth images in the form of VTK
files. Outflow boundaries are also manually defined, in the
south of the catchment, to simulate water escape route and
avoid unrealistic accumulation, though no accurate compar-
isons were performed with in-situ data yet.

3.4.3. Data post processing

Finally, we process those files and the input data, restructuring
the Delaunay grid into a cartesian grid, to provide a single
netCDF file for the AI model.

3.5. Surrogate Model
3.5.1. Model Architecture

The model’s prediction time is a parameter that is generally
specific to the city and can vary according to its characteris-
tics. In Nimes, it is estimated that an event can have a strong
impact within 30 minutes. In that way, we are considering 6
rainfall data temporally spaced 5 minutes apparts. The model
architecture needs to deal with both spatial and temporal di-
mension.

The chosen architecture is a UNet associated with a tem-
poral attention layer [8]. It is composed of 3 steps: a spatial
encoder, a temporal encoder and a spatial decoder. The cho-
sen model outperforms the original UNet and several RNNs
by taking advantage of the attention layer [9]. In the case of
flood prediction with spatio-temporal information, attention
layer is efficient to recover the important spatio-temporal fea-
tures from the scene.

3.5.2. Model Training

The model is trained on the ExtremeXP platform through ex-
perimentation. The parameter space is browsed during train-
ing to find the optimum configuration. L2 loss is used during
training.

3.5.3. Results

During training, several metrics are used, as described in the
following table (see T. 1). Two types are used classification
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and regression metrics. To calculate some of them, such as
recall and precision, it is necessary to return to a classifica-
tion problem. To do this, we determine a height at which the
area is considered flooded. Then, the water depth map is con-
verted into a classification map with two classes : no flood
and flood. Here, the threshold is determined at 20 cm. Error
maps are generated to analyze the difference between the HD
model and Al model predictions. The evaluation of the met-
rics was made on the the 2005 events. Finally the accuracy is
the percentage of well predicted pixels with a certain margin
of error, defined at 5 cm.

Table 1. Metrics

Name | Recall | Precision | MSE | Accuracy
N256 | 0.86 0.91 0.03 0.94
N512 | 0.91 0.90 0.01 0.97

As the data is georeferenced, it can be projected onto a
map (see Fig. 3 (a)). This visualization enables users to iden-
tify the possible flooded areas. The water depth representation
indicates to the users the level of the flood over the catchment.

joa—s
o

(a) Prediction (b) Ground Truth

I 0,862954 I 55

0 0

(c) Error map

Fig. 3. (a) Water depth (in meter) prediction from Al model;
(b) Ground truth water depth (in meter) (HD model results);
(c) Error maps: the absolute difference between (a) and (b) in
meter.

4. CONCLUSION AND PERSPECTIVES

This work presented a flash flood prediction UC developed
within the HORIZON-Europe ExtremeXP platform, focusing
on the city of Nimes. By combining hydrodynamic simula-
tions with a deep learning surrogate model, the system pre-
dicts water depth 30 minutes ahead, showing encouraging
performance in terms of MSE and accuracy.

The ExtremeXP platform has supported the full lifecycle
of the experimentation, from data integration to visualization,
emphasizing user involvement and explainability.

Future work includes the generalization to other cities
with diverse conditions, the addition of incertitude measure-
ment in the model to facilitate decision-making for the user
as well as enhanced explainability for better user trust and
understanding. ExtremeXP aims to elaborate a proof of con-
cept to demonstrate that a surrogate model is able to replace
a physical method once trained. For a better solution in an
operational context, it will be important to validate the model
against in-situ data. Those axes concerned the Al part of the
project, on the hydrological one, it will be interesting to add
other infrastructures (pavements, hydrological facilities, etc)
in the meshgrid for more realistic simulations.

These results demonstrate the potential of combining Al
and physical modeling for effective urban flood forecasting.
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ABSTRACT

The Geohazards Exploitation Platform (GEP), developed by
Terradue, is a cloud-native Earth Observation (EO) platform
designed to support the geohazard community. With a user
base exceeding 3,500, GEP provides a comprehensive suite
of EO processing services that assist researchers and
practitioners in monitoring geohazards and responding to
disasters. These services include tools for change detection,
terrain deformation analysis, and long-term ground motion
monitoring. To address increasing demands for automation
and scalability, GEP has integrated an end-to-end Machine
Learning  Operations (MLOps) framework.  This
enhancement enables users to develop, deploy, and monitor
Al models for geospatial applications efficiently. By
supporting data ingestion, training, deployment and
performance monitoring, GEP facilitates the
operationalisation of Al models in areas such as landslide
detection, earthquake response, and environmental
monitoring. The framework incorporates FAIR principles
through the Machine Learning Model (MLM)
SpatioTemporal ~ Asset Catalog (STAC) Extension,
promoting reproducibility and discoverability. This positions
GEP as a robust, scalable solution for advancing geospatial
intelligence in science, public safety, and infrastructure
resilience.

Index Terms— Geohazards, Thematic Exploitation
Platform, GEP, Machine Learning, MLOps

1. INTRODUCTION

The Geohazards Exploitation Platform (GEP) is a
cloud-based Earth Observation (EO) data processing
platform developed and operated by Terradue to support
geohazard monitoring, terrain motion analysis, and critical
infrastructure assessment.

It serves a diverse user base of over 3,500 researchers,
public authorities, and industry professionals, providing
access to EO data archives, advanced processing services,
and analytical tools.

These services range from systematic data processing
workflows, such as generating interferometric deformation
maps, to event-triggered processing for rapid response
scenarios like earthquake damage assessments. They support
a variety of data-driven applications, from data screening

and area monitoring to the integration of multi-temporal data
for long-term risk assessment.

Fig. 1. GEP’s community portal.

1.1. A platform purpose-built for geohazards

GEP offers more than 25 specialised EO services, including
visualisation services for full-resolution imagery, processing
services for event response and change detection as well as
advanced SAR and optical data processing dedicated to the
analysis of long time series of optical imagery for long-term
area monitoring.

The range of processing services dedicated to change
detection and event response comprises services for the
generation of Digital Surface Models (DSM) and
orthoimages from sterco- and tri-stereo very high-resolution
satellite imagery [l], as well as services for automatic
landslide detection and inventory mapping [2][3]. The
portfolio also includes services for the assessment of
landslide source volumes and for the flow path assessment
of gravitational hazards at the regional scale —including
debris flows, rockfalls, rock and snow avalanches and
shallow landslides [4]. The change detection service
portfolio is further complemented by SAR-based services
for generating coherence and intensity composites, and
services for detecting changes in SAR amplitude.

Processing services devoted to area monitoring include
classic and advanced InSAR for persistent scatterers (PS)
and small baseline (SBAS), such as —respectively— the
SNAPPING (Surface motioN mAPPING) [5] and the
CNR-IREA P-SBAS [6] Sentinel-1 on-demand processing
services. Others focus on horizontal ground motion
detection from optical time series, such as the Ground
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Deformation Monitoring with OPtical image Time series
(GDP-OPT) [Z] processing services, tailored to landslide
monitoring, ice and glacier analysis and earthquake analysis.

The processing services integrated in GEP result from a
collaborative effort between service providers, such as
research institutions or private companies that develop the
algorithm, and Terradue, who provide support for the
development, deployment and maintenance of services on a
cloud infrastructure. This reflects the collaborative nature of
this scientific endeavour, supporting a broad community of
practitioners involved in geohazards.

All services operate on cloud infrastructure and have
access to over 400 TB of EO data, including from
Sentinel-1, Sentinel-2, Sentinel-3, ERS, Envisat, Landsat-8,
Spot and Pléiades. Figure 1 illustrates GEP’s community
portal showcasing the results of a P-SBAS processing job.

1.2 Uptake in the scientific community and typical case
studies

GEP caters to a variety of user needs. Service developers
can deploy their own algorithms using the EO Application
Package [8] model.

Researchers and scientists use GEP for pilot studies,
validation campaigns and long-term monitoring. Processing
services hosted on GEP have already supported a wide range
of use cases and scientific publications, including volcanic
activity tracking [9], subsidence analysis [10], earthquake
response [11] and landslide detection [12].

The adoption of GEP in scientific research is underpinned
by adherence to the FAIR (Findable, Accessible,
Interoperable, Reusable) principles. The use of Persistent
Identifiers (PIDs) for experiments, data and software ensures
the reproducibility of scientific experiments. Each
application is encapsulated with its execution environment
and dependencies, thus promoting consistent outcomes.
Adherence to these principles is further facilitated by
providing structured documentation and standardised
metadata.

Public authorities and civil protection agencies rely on
GEP for hazard mapping and disaster response. Rapid
response during disasters is supported in a multifold way,
specifically through providing access to pre-processed EO
datasets, automated services for event-triggered surface
deformation mapping and visualisation tools for sharing
results with stakeholders in real time. By allowing for
systematic data screening and long-term ground motion
monitoring, GEP contributes to the operational resilience of
critical infrastructure planning.

GEP is in use across multiple continents, including
Europe, Southeast Asia, Africa, and the Americas. Some
examples of past use cases are summarised in Table 1.

Table 1. Selection of GEP use cases

Title Region Use Case Description
Sulawesi Indonesia [ GEP supported rapid mapping of
Earthquake ground deformation and
(2018) landslides triggered by the
earthquake and tsunami. [13]
Central Chile Chile GEP provided InSAR analysis
Earthquake to detect surface deformation
(2022) and assess the earthquake’s
impact on infrastructure. [14]
Santorini Greece GEP services were used to
Volcano monitor another phase of
Unrest Phase volcanic unrest at Santorini,
(2023) one of the most iconic
volcanoes in the Aegean Sea.
[15]
Turkiye—Syri | Turkey - | GEP facilitated the generation
a Syria of interferograms and surface
Earthquakes rupture mapping for the M7.8
(2023) and M7.7 earthquakes,
supporting disaster response.
[10]
Morocco Morocco | Radar interferogram generated
Earthquake using Sentinel-1 acquisitions to
(2023) analyze the impact of the M6.8
earthquake. [17]

1.3 Expanding the portfolio of GEP with Artificial
Intelligence (AI)

To meet the growing demands of its users, GEP's key
objective is to expand the portfolio of services that leverage
artificial intelligence (AI) and machine learning (ML). The
complexity of training, deploying and maintaining ML
models at scale, however, poses significant challenges.

These include managing large and diverse EO datasets,
ensuring  reproducibility, and  maintaining model
performance over time in dynamic operational
environments. Overcoming these obstacles is essential to
unlocking the full potential of Al in geospatial applications
and opening up GEP to a wider range of data processing
services, users, and stakeholders.

The expansion of Al support within GEP was undertaken
as part of the AI/ML Enhancement Project. The project's
main goal was to integrate an AI/ML processing framework
into GEP seamlessly, thereby enhancing its services and
enabling service providers to develop and deploy AI/ML
models to improve geohazard applications.
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Fig. 2. Schematic representation of the MLOps workflow in GEP.

2. THE NEW MLOPS FRAMEWORK IN GEP

A comprehensive AI/ML processing framework has been
integrated in GEP, encompassing the entire machine learning
lifecycle. This includes data discovery, training data, model
development, deployment, hosting, monitoring and
visualisation. A critical aspect has been integrating Machine
Learning Operations (MLOps) practices into the platforms'
service offerings to ensure the smooth operation of
Al-driven applications.

By integrating MLOps directly into its cloud-native
architecture, GEP now offers scalable and flexible Al
capabilities. This will enable users to deploy advanced
geospatial Al applications specifically designed for terrain
motion analysis, disaster risk reduction and environmental
monitoring.

2.1. The Machine Learning Model (MLM) STAC
Extension

The GEP MLOps framework builds upon the work carried

out in the context of the Machine Learning Model (MLM)
extension [18] —a specification that extends the
SpatioTemporal Asset Catalog (STAC) framework in order
to catalogue machine learning models, thereby improving
their searchability and reproducibility. Originally driven by
the need to incorporate FAIR principles, the MLM extension
has proven crucial in supporting the identification and
documentation of ML models driven by the specific
requirements of geospatial applications. The framework
supports the development and deployment of ML solutions
tailored to applications addressing pressing challenges such
as environmental monitoring, agriculture, disaster response
and urban planning by supporting effective search and
discovery.

2.2. End-to-end ML support

Figure 2 illustrates GEP’s integrated MLOps workflow,
showcasing data ingestion, model training, feature inference,
and scalable deployment on cloud infrastructures.

The newly integrated MLOps framework within GEP
provides users with advanced, cloud-native infrastructure,
enabling them to manage the complexities of developing,
deploying and maintaining Al models for geospatial analysis
seamlessly.

Data preparation and management is streamlined through
the efficient handling of large EO datasets, with automated
splitting for training, testing and validation.

Model development and training are supported by tools and
environments that not only facilitate the creation of new ML
models but also provide tracking and management
functionalities through frameworks such as MLflow.
MLflow plays a key role in experiment management by
recording key information such as code versions, datasets,
and model hyperparameters, ensuring reproducibility and
traceability. The MLflow dashboard offers a clear,
interactive view of multiple runs side-by-side, enabling
straightforward comparison and helping users identify the
best-performing model with greater confidence.

GEP supports scalable deployment by enabling trained
models to be deployed into operational environments as
cloud-native microservices that are compatible with standard
geospatial service interfaces, such as Open Geospatial
Consortium (OGC) APIs.

Finally, automated pipelines enable continuous monitoring
and adaptation: deployed models are monitored for issues
such as data drift or performance degradation, triggering
re-training processes to maintain optimal performance.

This enables GEP to provide comprehensive support for
the creation and operationalisation of Al models. Users can
ingest and curate datasets directly within the platform to
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facilitate streamlined model development and training
workflows. Once trained, Al models can be seamlessly
deployed into operational scenarios using automated
deployment pipelines. Continuous monitoring ensures that
models maintain their performance, accuracy and reliability
by detecting issues such as data drift or decreased accuracy
and triggering automatic retraining when necessary.

3. CONCLUSION AND PERSPECTIVES

The field of EO research has advanced rapidly, driven by
increasing demands for reproducibility, scalability, and
adherence to FAIR principles. Yet, significant challenges
remain in managing and disseminating EO data, especially
within scalable, open science infrastructures.

The integration of ML into EO and geospatial analysis
introduces further complexity. It requires effective handling
of big data, processing near data sources, and rigorous
reproducibility to ensure the reliability and scientific validity
of results. Addressing these intertwined challenges, the GEP
has expanded its capabilities through a comprehensive
MLOps framework.

This framework supports the full ML lifecycle—from
data ingestion to deployment and monitoring—tailored to
the unique needs of users working in geohazard analysis.
GEP’s MLOps infrastructure is designed to simplify access
to ML models, provide scalable computing resources, and
enable the development and operationalisation of advanced,
Al-driven processing services. By doing so, GEP empowers
researchers, practitioners, and public authorities to develop
robust, scalable, and reproducible solutions for terrain
motion monitoring, disaster response, and long-term
environmental analysis.
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ABSTRACT

Hellenic Operational Integrated Service for Aquatic systems
(HELOISA) is one of the projects of the Greek National SmallSat
Programme which implements the Water Monitoring Service. The
project builds upon three pillars; Water Quantity, Water Quality and
Maritime Surveillance. This paper focuses on the Water Quality
module and specifically on the core products and technical approach
that encompasses. It utilizes Copernicus data, as well as sensors of
the Greek SmallSat constellation that provide optical and thermal
data. The module covers various water body types, offering maps of
water quality proxy variables such as water temperature,
chlorophyll-a and water pollutants. Validation and evaluation
activities include exploitation of existing historical and newly
acquired data ensuring generated product quality. Overall, the
HELOISA system is scheduled to be operational in mid to end of
2026, consistently providing water quality products in the Greek
territory supporting authorities in informed decision-making and
policy implementation.

Index Terms— Earth Observation, Small Satellite, Artificial
Intelligence, Water Quality, Copernicus, Environmental Monitoring

1. INTRODUCTION

Water resources are of vital importance to ecosystems, human
health, and economic prosperity. In Greece, a country characterized
by a complex network of inland, coastal and marine water bodies,
effective water monitoring systems are essential for sustainable
resource management and environmental protection. Inland waters
are especially significant as they provide drinking water to large
populations including Athens and Thessaloniki, Greece's largest
cities, home to over half of the country's population, as well as they
support irrigation in agriculture, hydropower generation, flood
regulation and biodiversity conservation. In addition, coastal and
marine waters in Greece are vital to the country's economy,
environment and security, supporting tourism activity, sustaining
rich marine biodiversity, and enabling key sectors like fisheries,
aquaculture and maritime, among others. Recognizing those needs
and also understanding that space is a key enabler for digital
transformation, the Hellenic Ministry of Digital Governance and the
Hellenic Space Center (HSC), with the assistance of the European
Space Agency (ESA), have initiated the Greek National Satellite
Space Project. This project is an important step for the
materialisation of the strategy of Greece for the utilisation of space
technologies and applications and their uptake in the National
economy. It includes the development and launch of a small satellite

constellation that will cater applications for inland, coastal and
marine water monitoring, precision agriculture, land and forest
monitoring, as well as border security. The project consists of three
Axes. Axis 1 (1.1, 1.2) and Axis 2 comprise the space components
responsible for the development and launch of the smallsats. Axis
1.1 will provide thermal data with two spectral bands in about 200m
spatial resolution. Axis 1.2 will provide SLC and GRD Synthetic
Aperture Radar (SAR) data in various imaging modes (e.g., Scan,
Strip, Spot etc.) and spatial resolutions ranging from 0.25m to 15m.
Axis 2 is dedicated to multispectral and hyperspectral data in high
and very high resolutions reaching about 0.9m (panchromatic band),
18m (VNIR hyperspectral bands), and 3.3m and 19.3m for VNIR
and SWIR bands for the multispectral sensor, respectively. On the
other hand, Axis 3 is dedicated to the ground components that
include the hardware and software facilities, as well as the end-user
thematic applications of the different Earth Observation (EO)
services that are expected to be delivered alongside the satellite
constellations by mid 2026. The thematic applications are
categorized in Land, Water, Forest, Agriculture and Security.

2. APPROACH

HELOISA is the project responsible for the delivery of the Water
Monitoring Service which aims to develop an advanced monitoring
system tailored to the specific needs and requirements of the Greek
territory. The Water Monitoring Service builds upon the foundation
laid by previous Earth observation initiatives such as the Copernicus
program and leverages cutting-edge technology to enhance spatial,
temporal, and thematic resolution. By integrating satellite imagery,
advanced sensors, well-established established existing traditional
and artificial intelligence algorithms, the system aims to provide
comprehensive monitoring of water quantity, quality, and maritime
surveillance. In this paper, we focus on the Water Quality module of
the HELOISA project. The water quality module will be delivering
Level-3 satellite products utilizing both Copernicus and the Greek
SmallSat data. The areas of interest that will be covered include the
majority of the Greek lakes and some lagoons (around 50), as well
as all coastal and marine waters, that go beyond the 12 nautical
miles. Some of the products that are associated with sudden natural
or human-induced environmental changes will be delivered on a
daily basis which is equivalent to about 250GB, while the rest will
be delivered with higher latency on a weekly basis which is
equivalent to about 220GB, covering a large part of the Greek
territory depending on the satellite constellation swath.
Technologies such as Docker, Xarray, Dask, GDAL multi-
threading, scatter/gather workflow pattern implemented in the
Common Workflow Language, and Cloud-Optimized GeoTIFFs are
utilized. The expected processing time of the applications is less
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than 3 hours. Aligned with the objectives outlined by the Hellenic
Ministry of Digital Governance and the HSC, HELOISA
encompasses a multi-phase approach, encompassing system
definition, technical specifications, component design, platform
integration, testing, and operational implementation. Through close
collaboration with stakeholders and adherence to stringent quality
standards, the project seeks to address critical water management
challenges while ensuring the sustainability and resilience of water
resources in Greece both long- and short-term.

3. APPLICATIONS

3.1. Ocean Color and Temperature

The first water quality application of HELOISA is the Ocean Colour
and Temperature delivering products at 10-60m and about 200m
nominal spatial resolution, respectively. In particular, chlorophyll-a
and Sea Surface Temperature (SST) are retrieved for the coastal and
marine waters of the Greek territory (Fig. 1). Chlorophyll-a retrieval
is realized utilizing the Copernicus Sentinel-2 multispectral data
corresponding to about 26 to 42 scenes per day (or 180 per week).
They undergo an atmospheric correction that specifically treats the
ubiquitous sunglint effects such as Polymer [1] that is adapted to
Sentinel-2. Since Sentinel-2 is not specifically designed for marine
water applications, several types of noise and various effects exist,
such as striping/fixed-pattern effect, high frequency noise due to
waves, and sporadic artifacts due to ships/ship wakes, among others.
The cleaning of all these effects/artifacts is a non-trivial task,
therefore special treatment is needed for those that can be cleaned,
which is developed on a data-driven basis utilizing detector
footprints, image statistics, and other chl-a data when possible (e.g.,
in situ and Copernicus). The products are foreseen to be delivered
daily/weekly depending on the spatial resolution, including all open
waters. On the other hand, the retrieval of the SST is realized
utilizing the thermal sensor of the Greek SmallSat data from the
Axis 1.1. The constellation is originally aimed for forest fire
applications, however HELOISA takes advantage of the provided
thermal channels (3.8um, 11.45um) to different extent each, and
develops single and dual-channel [2] SST retrieval methods for day
and nighttime. The top-of-atmosphere observations are translated
from spectral radiances to brightness temperatures and, as a
consequence, to SST. This is made possible by generating
multilinear regression coefficients through atmospheric correction
using the Libradtran Radiative Transfer Model (RTM) library [3]
and atmospheric profiles and SSTs from CAMS and CMEMS,
respectively. In addition, a dedicated algorithm will be offering
cloud masks of different certainty levels.

Fig. 1. Marine water quality preliminary products for the Greek
territory with chlorophyll-a from Sentinel-2 (left) and
preliminary SST from Forest-2 mission (right).

3.2 Muddy Water and Industrial Waste

The second water quality application of HELOISA is the Muddy
water and Industrial waste mapping delivering products at a 10m
and less than 5m nominal spatial resolution, for Sentinel-2 and Axis
2 data, respectively. The covered territory is foreseen to be almost
all of the Greek lakes, as well as coastal waters less than 12 nautical
miles. Concerning muddy waters, there are a number of studies
attempting to monitor turbid and sediment-laden waters based on
satellite remote sensing. Traditionally, the focus has been put on
parameter retrieval of turbidity and total suspended matter, but they
are not associated with the potential source origin of the polluting
sediment. The source could be natural or human-induced, such as
industrial waste. The Muddy water and Industrial waste application
of HELOISA aims to give semantic information to the sediment-
laden waters. The application builds upon Sentinel-2 data that are
annotated based on an ensemble methodology as presented in the
MUDDAT dataset [4]. An extension of it is implemented, which
adds a list of regions presenting coloured waste waters due to
industrial activities around the globe (Fig. 2). A custom deep
learning framework based on U-Net is trained after performing data
preparation such as augmentation and other techniques to adjust for
the inherent class imbalance. During inference at least 10496 GPU
CUDA cores are utilized. The products undergo post-processing
steps such as land-sea masking using the Copernicus 10m Digital
Elevation Model (DEM), and filtering to account for systematic and
occasional noise effects. Finally, transfer learning is applied so as to
generate products using Axis 2 as input data. This is made possible
by exploiting the satellite specification similarities but also adjusting
for the differences such as different number of spectral bands and
pixel size.

Fig. 2. Industrial waste mapping with a custom U-Net model
with the True Color Composite (left) and binary mask (right).

3.3. Oil spills and Surface formations

The third water quality application of HELOISA is the Oil spills and
Surface formations mapping, delivering products at a 10m nominal
spatial resolution utilizing the Copernicus Sentinel-2 data. The
covered territory consists of a list of the Greek lakes. In particular,
oil spills are largely identified through radar data, which however
present limitations when it comes to inland waters, since the latter
demonstrate significant look-alikes due to lake morphology and
topography, and low surface roughness due to inconsistent wind
conditions. The application fills this gap by offering mapping of oil
spill and other suspicious formations at the surface of inland water
bodies utilizing multispectral data (Fig. 3). The technological
foundation of the approach builds upon the only public multispectral
dataset, i.e. Marine Debris and Oil Spill (MADOS) [5] that includes
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oil spills, as well as an in-house oil spill Sentinel-2 dataset. A state-
of-the-art model (i.e., MariNeXt) which shows high performance is
combined with a unique Hydro Foundation Model, which gives
higher generalizing power. To make this happen, special
modifications of the two models are necessary to adjust for the
different number of bands and preprocessing specifications [6].
During inference at least 10496 GPU CUDA cores are utilized.
Finally, the product comes with relevant quality flags and masks
including sensor viewing and sun geometries to assist the user
interpretation.

Fig. 3. Oil spill mapping utilizing a custom hybrid deep learning
framework with the True Color Composite (left) and the
respective binary mask (right).

34. Water Quality Features

The fourth, and last, water quality application of HELOISA is the
Water Quality Features delivering products at 10m nominal spatial
resolution. In particular, the application generates essential water
quality variables for inland waters comprising the majority of Greek
lakes. This not only includes artificial and natural reservoirs, but also
some lagoons. The focus has been put on variables that offer
complementary information to the Muddy water and Industrial
waste application, which are chlorophyll-a and turbidity (Fig. 4).
The estimation of chlorophyll-a and turbidity concentrations in
water bodies serves as a major indicator of algal blooms, agricultural
practices and pollution. Their retrieval is realized utilizing the
Copernicus Sentinel-2 multispectral data after employing water-
specific atmospheric correction such as the C2RCC [7] that has been
proved to perform well in inland water applications, considering
complex Case 2 waters, and also treats adjacency effects, among
others. This is possible by using auxiliary information, such as land
elevation (e.g., SRTM 30m DEM), water temperature and air
pressure (e.g., ERAS), total ozone column, and water salinity. The
chl-a retrieval is based on the incorporation of red-edge and near-
infrared spectral regions, as well as for turbidity [8]. In addition,
auxiliary data will be delivered such as Trophic State Index [9],
which indicates the eutrophic state of the waters. Finally, products
undergo necessary post-processing and offer relevant quality flag
layers.

4. VALIDATION AND EVALUATION

In order to ensure the high quality of the generated Level-3 products,
HELOISA and the Water Quality module, in particular, at its core,
adopts relevant validation and evaluation practices. To this end, the
algorithms of the output products are first verified utilizing
proxy/simulated data that are provided in the context of the Greek
SmallSat Program, before the advent of the actual Axes data. For

instance, in the case of SST, existing Forest-2 mission data ensure
the validity of the proposed retrieval algorithm, while in the case of
muddy waters, existing Very High Resolution multispectral data are
utilized for transfer learning. Furthermore, concerning the marine
and inland water quality variables such as chl-a, turbidity and SST,
existing in situ historical data are being exploited (e.g., from ARGO
[10], project’s partner EYATH S.A. and other available data), and
new fieldwork campaigns are being conducted for inland, coastal
and open waters. Additionally, a match-up analysis protocol has
been determined and followed that ensures transparency and quality
of outcomes. Finally, manual photointerpretation and quality control
of products is conducted by remote sensing experts, and comparison
witqh established existing open datasets from Copernicus and others.

; i | }',; ‘*:'\*

Fig. 4. Inland water quality products for the Greek territory
with chlorophyll-a (left) and turbidity (right).

S. IMPACT

The use of EO technology for monitoring water quality brings a
wave of positive change across societal, scientific-technical, and
economic dimensions. HELOISA leverages national infrastructure
and provides satellite-driven insights into inland, coastal and open
waters thus addressing pressing environmental challenges while
unlocking new opportunities for innovation and growth.

5.1. Societal Impact

Protecting public health stands at the forefront of societal benefits of
this EO-driven approach on water quality, as early detection of
harmful algal blooms, bacterial contamination, or chemical
pollutants allows authorities to issue timely warnings and mitigate
risks to drinking water supplies and recreational users. Beyond
health, by leveraging national satellite infrastructure, it strengthens
the country’s autonomy in environmental monitoring, ensuring that
critical data for decision-making is generated domestically, thus
enhancing national capacity and resilience. Moreover, access to
high-quality EO data empowers water authorities to enforce
regulations more effectively, supporting compliance with major
frameworks such as the Water Framework Directive and the Marine
Strategy Framework Directive and shifting governance from
reactive crisis management toward proactive and evidence-based
management. Furthermore, by integrating EO-derived insights into
existing monitoring systems, the project improves the transparency
and accountability of water management practices.

5.2. Technical and Scientific Impact

The integration of EO data into water quality monitoring offers
critical technical and scientific advantages for both Regional Water
Utility operators and National governance bodies. By providing
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continuous, wide-scale, and standardized observations, the project
enhances the ability of water utilities - who are directly responsible
for distributing safe drinking water - to monitor the quality of their
source waters more efficiently and with greater spatial and temporal
coverage than traditional sampling alone. For Regional Water
Utility operators, early identification of emerging threats such as
algal blooms, turbidity spikes, or chemical pollutants enables faster,
targeted responses that safeguard drinking water treatment processes
and distribution networks. Instead of relying solely on periodic field
sampling, Water utility operators gain access to near-real-time
products, allowing for more proactive management of risks and
better protection of public health. At the national level, the project
strengthens the technical capacity of Regional Environmental
Departments, the Ministry of Environment, and other governmental
agencies. With systematic EO data streams, authorities can
implement broader surveillance of inland and coastal waters,
ensuring regulatory compliance, detecting environmental trends,
and evaluating the effectiveness of water protection measures. It
provides the scientific backbone for more strategic policymaking,
supporting long-term planning for water security, climate
adaptation, and biodiversity conservation. The use of national
satellite infrastructure also ensures that data sovereignty is
maintained, with critical environmental information produced and
controlled within the country. This promotes scientific
independence and builds national expertise in remote sensing and
environmental monitoring technologies. Importantly, the project
fosters an integrated approach where EO data is not a replacement
for in-situ monitoring but a powerful complement, bridging gaps and
optimizing resource allocation. This hybrid monitoring model raises
the scientific standard of water quality assessments and offers a
replicable framework for future environmental applications,
ensuring that both operational needs and strategic priorities are met
in a coordinated, technologically advanced manner.

5.3. Economic Impact

By utilizing EO data, the cost of continuous water monitoring is
drastically reduced compared to traditional field-based methods,
which are resource-demanding and geographically limited. For
regional water utilities, this means that broader and more frequent
assessments of source water bodies can be achieved without
proportional increases in operational expenses. Early detection of
potential risks - such as contamination events or seasonal
degradation in water quality - allows them to plan interventions
more efficiently, mitigating costly and disruptive emergency
responses activities. This contributes to a more stable and
predictable  operational  environment, protecting  critical
infrastructure and minimizing financial risks associated with
treatment failures or public health incidents. On the national level,
the availability of standardized, large-scale water quality data
supports smarter investment planning. Environmental agencies and
ministries can prioritize actions based on evidence-based
assessments, ensuring that resources are allocated to the most critical
areas. Moreover, the integration of national satellite capabilities into
operational services can stimulate the growth of value-added
industries such as geospatial analytics, environmental consulting,
and digital platform development and strengthens the country’s
positioning in the rapidly growing global market for EO
applications. By enhancing water resource governance, the project
supports sectors such as tourism, fisheries, and agriculture, ensuring
their long-term economic viability, acting as a catalyst for economic
modernization, resilience, and sustainable growth.
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ABSTRACT

The dependency on large labeled datasets significantly limits
the practical applicability of supervised learning (SL) in
remote sensing (RS) applications, particularly in agriculture,
where obtaining labeled data is costly. Self-supervised
learning (SSL) approaches, which require fewer labeled data,
have emerged as viable alternatives. This study evaluates the
performance of the VICReg SSL framework against
traditional SL models using the Land Use/Cover Area Frame
Survey (LUCAS) dataset for crop classification tasks. Our
experiments reveal that SSL, particularly using a ResNeXt-
50 backbone, achieves superior classification accuracy and
robustness, especially under limited data scenarios (5%
labeled data), outperforming standard SL methods. We
discuss the implications for RS and suggest directions for
further research.

Index Terms— Self-supervised learning, VICReg, crop
classification, limited data, LUCAS dataset

1. INTRODUCTION

Artificial Intelligence (AI) methods, particularly
Supervised Learning (SL), have advanced remote sensing
(RS) tasks such as image classification, object detection, and
segmentation, enabling precise satellite and aerial imagery
analysis for applications like crop monitoring and forest
inventory management. Convolutional Neural Networks
(CNNs) are extensively employed due to their effectiveness
in recognizing spatial patterns [1], [2], [3]. However, SL
heavily depends on large labeled datasets, which are costly
and difficult to obtain in agriculture, especially in regions
facing data scarcity and high annotation costs. Models trained
on extensive but region-specific datasets also struggle to
generalize to new environments. Developing models that
perform well with limited labeled data is crucial for enabling
scalable and cost-effective agricultural monitoring, especially
in regions where data collection is challenging. Such
approaches support timely decision-making for sustainable
crop management and food security. Consequently,
alternative methods such as Self-Supervised Learning (SSL),
Transfer Learning (TL), and semi-supervised learning have

gained attention, aiming to leverage unlabeled data or transfer
knowledge from related domains [4]. SSL, in particular,
reduces labeling dependence by pre-training models on
unlabeled data, making it highly suitable for scenarios with
limited annotated samples, common in agricultural
applications. Despite its potential, SSL remains under-
explored in crop classification tasks under small-sample
conditions.

This study compares SL and SSL performance for
agricultural crop classification under limited data availability.
We utilize the Land Use/Cover Area Frame Survey (LUCAS)
dataset, consisting of 1,000 images per crop for 10 crop types
(common wheat, barley, oats, maize, potatoes, sugar beet,
sunflower, rape, soya, and grassland) [5]. Selected SL models
(e.g., VGGI16 [1], Inception [6], ResNet-18/50 [2],
SqueezeNet [7], ResNeXt-50 [8], MobileNet-V2 [9],
ShuffleNet [10], EfficientNet-V2 [3], ConvNeXt Tiny [11])
were trained using standard supervised training with cross-
entropy loss. For SSL, the same architectures were pretrained
using  Variance-Invariance-Covariance ~ Regularization
(VICReg) [12] and subsequently fine-tuned. Cross-validation
(CV), TL, fine-tuning (FT), data augmentation (DA), and
varying training ratios (TR) were employed to ensure robust
comparisons.

2. LUCAS DATASET

The LUCAS dataset harmonizes land use and land cover
information across all 28 EU countries [5]. It comprises
approximately 1.35 million observations from 651,780
locations and includes 5.4 million photos collected from 2006
to 2022 (Fig. 1) [13], [14]. Each observation includes
photographs taken from four cardinal directions (north, south,
west, east), a point photo, and a cover photo, enabling clear
crop identification. For this study, we selected ten crops with
1,000 images each, to avoid class imbalance issues present in
less represented crops [13]: common wheat (B11), barley
(B13), oats (B15), maize (B16), potatoes (B21), sugar beet
(B22), sunflower (B31), rape (B32), soya (B33), and
grassland (B55) (Fig. 1).

However, the dataset has inherent limitations. Variability
arises from manual photo collection using different devices
across varied times, dates, and crop stages, causing potential
errors in crop labeling and image quality issues (blur, noise,
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overexposure, rotations). Additionally, crops can be
challenging to distinguish visually, particularly at early
growth stages or post-harvest. Nevertheless, the dataset’s
complexity and diverse perspectives often eliminate the need
for data augmentation.

® common wheat
® barley
® oats
maize
potatoes
® sugar beet
sunflower
rape and turnip rape
® soya
temporary grasslands

Fig.1. Geographical distribution of 10 crops of the
LUCAS dataset across the EU’s territory.

3. METHODOLOGY

3.1. Supervised learning

We selected a diverse set of widely recognized neural
network architectures, covering both high-capacity models
(VGGL16 [1], Inception [6], ResNet-18/50 [2], SqueezeNet
[7], ResNeXt-50 [8], MobileNet-V2 [9], ShuffleNet [10],
EfficientNet-V2 [3], ConvNeXt Tiny [11]).

3.2. Self-supervised learning with VICReg

SSL methods leverage unlabeled data for pre-training,
valuable for scenarios with limited labeled data such as crop
classification. We used VICReg, a non-contrastive SSL
method, to pre-train visual representations from unlabeled
LUCAS images [12]. VICReg consists of: (i) a CNN
backbone that extracts morphological features; (ii) a projector
network that maps features into an embedding space; and (iii)
a classification head that is utilized exclusively during
supervised fine-tuning. The VICReg loss combines three
terms as:

Lyicreg =A-S(Z,Z) + p- [v(Z2) + v(ZN] +v - [c(Z) + c(Z))],

where the invariance loss s(Z,Z") encourages similarity
between embeddings of augmented views, the variance loss
v(Z) ensures diversity in features, and Covariance loss ¢(Z)
penalizes redundancy across feature dimensions.

During fine-tuning, the CNN backbone was frozen to
preserve pre-trained embeddings, and a supervised
classification head was trained. This head consists of a fully
connected layer and a Softmax activation, optimized via
cross-entropy loss, using the same augmentations as SSL.

We separately optimized SSL and SL hyperparameters
using Bayesian optimization and Optuna multi-objective
tuning frameworks. Key VICReg hyperparameters included
weight decay, cosine annealing schedules, and embedding
dimensions. SL fine-tuning hyperparameters (learning rate,
weight decay) targeted stable convergence and robust
performance.

4. EXPERIMENTAL RESULTS

4.1. Supervised learning

We trained several widely-adopted SL models (see Section
3.1) with and without data augmentation (DA) such as
random horizontal flipping, cropping, adjusting brightness
and contrast, and randomly rotating. Table 1 summarizes
their performance.

Table 1. Comparing performance of selected SL models
on the LUCAS dataset with and without DA.

Without DA With DA

Model Loss Train | Test Loss Train | Test

Acc | Acc Acc | Acc

VGGI16 0.49 | 0.86 | 0.84 | 0.58 0.8 0.78
Inception 0.8 0.78 | 0.76 | 0.69 | 0.78 | 0.76
ResNet-18 0.05 | 098 | 0.76 | 0.36 | 0.88 | 0.86
ResNet-50 043 | 088 | 0.63 | 0.38 | 0.84 | 0.84
SqueeseNet 0.66 | 0.85 | 0.73 | 0.74 | 0.81 0.7
ResNeXt-50 0.73 | 099 | 0.86 | 0.5 0.8 0.8
MobileNet-V2 0.76 | 0.74 | 0.72 | 0.99 | 0.66 | 0.59
ShuffleNet 0.99 | 099 | 0.82 ] 097 | 0.86 | 0.73
EfficientNet-V2 | 046 | 0.96 | 0.68 | 0.5 0.92 | 0.66
ConvNeXt Tiny | 0.95 | 0.76 | 0.66 | 0.97 | 0.76 | 0.65

To further justify the choice of DA strategies, we conducted
additional experiments quantifying its impact on model
performance. These experiments confirmed that DA notably
improves accuracy for deeper architectures but can be neutral
or detrimental for lightweight models due to limited
representational capacity. We found that (i) DA significantly
improved test accuracy for deeper architectures such as
ResNet-18 (from 76% to 86%) and ResNet-50 (from 63% to
85%); (ii) Lightweight models (MobileNet-V2, ShuffleNet)
performed worse with DA due to limited representational
capacity; (iii) Models like ConvNeXt Tiny struggled
regardless of DA, highlighting sensitivity to dataset size.
Overall, ResNet models showed robust performance,
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balancing accuracy and training efficiency. The strong
accuracy was for dominant classes (maize, potatoes,
sunflower, rape) but revealed confusion among similar
classes (oats, barley, grassland).

4.2. VICReg self-supervised learning

VICReg SSL pretraining utilized unlabeled data (1000
epochs). Embedding dimensions were set at 512 (ResNet-18)
and 2048 (ResNet-50, ResNeXt-50). The training loss
decreased steadily, indicating effective convergence.
Embedding visualizations by UMAP (Fig. 2) demonstrated
distinct, semantically meaningful clusters, particularly with
ResNeXt-50.

A 14
~ 12 TkBape
c
oy aafe
2 10 . Phem * ﬁ} sgpGrassland
<3 yaatoes e S
£ gugar bee elaoatst s @ wharley
o %> oo @ e P o *Common wheat
O 8 AR % -
o - O v =
<
=
S 6 o ﬁsunflower =
& 3 'uwaize
4 " ——
E v &
4 »°
2 4 6 8 10 12
B
10
~ ﬁRape
:‘é 8 o M < Lna
S .;kPoti'Soya A **G_rassl_and
3 o R P I o
g 6 gugar beet 7 d 1 0ats <5 yharley!
S . - - #orﬁnmo'n wheat
a o o
< 4 ”
s ¢ r*Sunflower i
> a ta‘]}llaize
2 @ \?
-2 0 2 4 6 8
C 1 N
sRape
8 . .
‘N_, A ."‘f * s4Grassland
5 =g Barley o5 °_40ats e
[} 2 ]
8 6 't ,,e\B * *Ccmmon wh&;, L
o P 8
-
§ % ¥ Maize
o A
a 2 - - ~*Sunﬂower Sor ® IS
< -l "y 3
z . v o~ .:Pwa:atoes
1‘}Sugar beet Jome
-2 ¥
3 4 5 8 9 10 11

UM/(;P Com;onent 1
Fig.2. UMAP visualization of learned embeddings on the
LUCAS test datasets after VICReg pre-training with
ResNet-18 (A), ResNet-50 (B), and ResNeXt-50 (C)
backbones.

After fine-tuning (100 epochs, frozen backbone)
ResNeXt-50 outperformed other models, achieving 91%
accuracy and a macro F1-score of 0.91 (Table 2).

Table 2. A comparison of the training and test
performance of VICReg models on the LUCAS dataset

without DA.
Acc F1-score
Backbone | Loss Train | Test | Train | Test
ResNet-18 0.46 | 0.89 | 0.87 | 0.89 | 0.87
ResNet-50 0.3 09 08| 09 |0.89
ResNeXt-50 | 0.17 | 095 | 0.91 | 0.95 | 0.91

4.3. Impact of Training Data Availability

We evaluated SSL robustness using subsets of labeled data
(1%-100%). Results (Fig. 3) demonstrated that VICReg SSL
achieves competitive accuracy even at minimal supervision
levels, surpassing fully supervised baselines at just 5%
labeled data. This underscores SSL's effectiveness in limited-
data scenarios and suggests saturation of SSL benefits beyond
5-10% training data.
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Fig.3. Performance of VICReg with ResNeXt-50 varying

proportions of the LUCAS labeled training data
compared to the best SL. models accuracy.

100

5. CONCLUSION AND OUTLOOK

Our comparative study between SL and VICReg-based
SSL for crop classification using the LUCAS dataset
provided several key insights. SL models such as ResNet-18
ResNet-50 demonstrated high accuracy trained on LUCAS
dataset with DA. They benefited notably from data
augmentation and TL strategies. Conversely, DA had a
neutral or even negative effect on lightweight, efficiency-
focused models. MobileNet-V2 and ShuffleNet, designed for
low-power environments, experienced drops in test accuracy
with DA.

In contrast, VICReg-based SSL models exhibited notable
robustness under limited labeled data scenarios. Pre-trained
SSL models effectively captured transferable features from
unlabeled data, significantly enhancing performance even
with minimal supervision. Particularly, the ResNeXt-50
backbone consistently outperformed other architectures,
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approaching SL model performance using only 5% of labeled
data. Embedding visualizations via UMAP further
corroborated these quantitative results, showcasing clear and
structured crop-type clusters.

However, this study has limitations: (i) the LUCAS
dataset’s limited size, class imbalance, and geographic
restriction to the European Union; (ii) presence of textual
labels in images potentially biasing model performance; (iii)
exclusive evaluation of VICReg among SSL methods; (iv)
the use of frozen backbones during fine-tuning possibly
limiting adaptation; and (v) the empirical rather than
standardized approach to hyperparameter tuning, model
selection, and early stopping.

Future work should address
evaluating additional SSL frameworks, implementing
adaptive fine-tuning strategies, expanding geographic
coverage, mitigating textual bias within datasets, and
incorporating uncertainty quantification methods to enhance
robustness and interpretability. Overall, our findings affirm
the significant potential of SSL, particularly VICReg, in
efficiently addressing crop classification tasks, especially
under conditions of limited annotated data.

these limitations by
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ABSTRACT

In this study, we present a two-stage, expert-validated
labelling pipeline applied over 6,500 km? of southern
Vietnam, including the Mekong Delta. We combine Sentinel-
2 multispectral time-series, high-resolution Planet NICFI
mosaics and ancillary Google basemaps with local
knowledge to generate an initial reference map (Label V1),
which was systematically refined through targeted expert
review to yield Label V2. To quantify the effect of label
refinement, we trained and evaluated two LightGBM models
on multispectral features, observing a +4.6 % gain in F1-
accuracy on the test set (from 87.3 % to 91.9 %). Our best
map achieves 99.5 % overall accuracy and 99.7 % F1-score
on an independent set of reference points provided by Global
Mangrove Watch (GMW), outperforming the GMW baseline
(~98.5 % F1), especially in challenging transition zones. In
addition, we analyse spatial uncertainty and highlight areas
for future SAR integration to support all-weather mapping..

Index Terms—Mangrove ecosystems, Expert-validated
labelling, Machine learning, Sentinel-2 MSI, Mekong Delta.

1. INTRODUCTION

Mangroves provide coastal protection, blue-carbon storage,
and fisheries habitat, but have declined by ~30 % globally
since 1980 [1]. The Mekong Delta is among the hardest-hit
regions, where intensive land-use change and accelerated
sea-level rise have driven extensive mangrove loss and
degradation [2]. Existing global products, e.g., Global
Mangrove Watch (GMW) v4.0, report ~95.3 % overall
accuracy but misclassify narrow fringing forests and creek
edges, perhaps owing to their coarse resolution, causing
commission/omission errors in complex transition zones [3],
[4]. National-level inventories, while often more detailed at
a given point in time, use varying definitions of “mangrove
extent” (for example, including all forestland managed by a
single agency, regardless of actual canopy cover) and are
updated irregularly (some areas every year, others only once
every five years), resulting in spatial and temporal

* Corresponding author: quan.le@ucd.ie

inconsistencies [5]. Recent advances in remote sensing and
machine learning offer an opportunity to produce maps that
are both more accurate and more frequently updated. High-
resolution Sentinel-2 imagery (10 m pixels, 5-day revisit)
provides rich multispectral data ideal for distinguishing
mangrove vegetation [6], while the Planet NICFI basemaps
(~5 m) enable fine-scale canopy delineation even in often
cloudy tropical regions [7]. However, automated ML
approaches remain vulnerable to label noise and boundary
uncertainty where training data lack rigorous, expert-
validated labels [8].

To address these gaps, we propose an iterative, large-scale,
local-knowledge-based annotation protocol coupled with
applying LightGBM classifiers to map mangrove extent. Our
pipeline (1) generates initial labels by integrating Sentinel-2
multispectral time-series, high-resolution Planet NICFI
mosaics and ancillary Google basemaps with local field and
stakeholder inputs; (2) refines those labels through multi-
expert review to resolve ambiguous edges; and (3) trains a
gradient-boosted model on multispectral features to produce
high-accuracy, updatable mangrove maps.

2. STUDY AREA

Our study covers approximately 6,500 km? spanning the
coastal provinces of southern Vietnam, including the
Vietnamese Mekong Delta, characterised by intertidal flats,
tidal channels, and mixed aquaculture (Fig. 1). These areas
experience high tidal amplitude and frequent cloud cover,
which challenge optical-only satellite imagery mapping [5].
The regions include Can Gio (10.4758° N, 106.8650° E), Soc
Trang (9.6025° N, 105.9739° E), and Ca Mau (9.1527° N,
105.1961° E). The selection process considered various
criteria, with a focus on ecological significance, spatial
diversity, accessibility, local knowledge, stakeholder
participation, and collaborative efforts between experts in
mangrove ecology and artificial intelligence techniques.

Can Gio, designated as a Mangrove Biosphere Reserve,
serves as a noteworthy model for the harmonious coexistence
of conservation efforts and community livelihoods [9].
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Notably, Can Gio is distinguished as its strategic location
near the largest urban area of Vietnam (Ho Chi Minh City),
estuary and coastal zone, coupled with unique biodiversity.
In Soc Trang, mangroves play a crucial role along the
coastlines, safeguarding them against waves, erosion, and
storms [10]. Conversely, mangrove forests in semi-inland Ca
Mau exhibit distinct spatial characteristics, distributed along
shorelines in both accretion and erosion areas, within a
national park, and in production areas marked by intricate
patterns and dynamic changes [1], [11].

0 500°1,000 km
—

Fig. 1. Study-area map showing the locations of Can Gio (10.4758° N,
106.8650° E), Soc Trang (9.6025° N, 105.9739° E) and Ca Mau (9.1527°
N, 105.1961° E) in southern Vietnam (coordinates in decimal degrees,
WGS84).

3. DATA & METHODS

3.1. Input Data

Sentinel-2 MSI (L24): We developed an end-to-end pipeline
that automatically ingests all available Sentinel-2 MSI scenes
from Google Earth Engine (GEE) for each study tile, applied
cloud and cloud-shadow masking using QA60 and scene-
classification bands. Then, we computed two key vegetative
indices, Normalized Difference Vegetation Index (NDVI)
from the 10 m B4 (red) and B8 (NIR) bands, and a Mangrove
Vegetation Index (MVI) by incorporating the 20 m B11
(SWIR-1) band alongside B4 and BS.

Planet NICFI Basemaps: Planet NICFI basemaps consist
of monthly 4.77 m resolution tropical mosaics, which we
used to enhance fine-scale detection of fringing mangroves
during our labelling period (2020).

Google Basemaps: High-resolution RGB and street
imagery  for  contextual reference via  QGIS
QuickMapServices were used to locate each mangrove extent

polygon.

3.2 Two-stage Labelling Pipeline

Label Version 1 (V1): Twenty-four trained local annotators
delineate mangrove polygons in QGIS using a standardized
protocol integrating true-colour composites, NDVI, MVI,

mangrove extent maps created by the local government, and
local expert notes.

We identified multiple deficiencies in Label V1 that
necessitated systematic refinement. Specifically, V1
exhibited omission and commission errors—namely, missing
mangrove patches and misclassification of mangrove as
adjacent land-cover types—as well as spatial inaccuracies
manifested as displaced or imprecise mangrove-extent
boundaries; these shortcomings motivated the development
of the corrected Label V2.

Label Version 2 (V2): We recruited a team of eight domain
experts to produce mangrove annotations across the study
area. An independent four-member review panel then
assessed the annotated mangrove-extent polygons,
reconciled discrepancies, and corrected polygon geometry
where required. Through this expert adjudication and
polygon-correction workflow we produced the final
mangrove extent label (Label V2).

3.3. Feature Engineering & LightGBM Modelling

Feature Set: We implemented an end-to-end, fully automated
preprocessing pipeline that ingests Sentinel-2 MSI Level-2A
(surface-reflectance) products and extracts ten spectral bands
(B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12). The pipeline
applies standard preprocessing operations (e.g., cloud and
cloud-shadow masking), produces per-pixel median
composites over the analysis period, and exports spatially
tiled patches as model-ready inputs for downstream
modelling, ensuring reproducibility and a complete audit trail
of preprocessing steps

Training Splits: For each label set (~62 million pixels of
10x10 m?), we randomly divided its set of tiles into
training/validation/test splits with the ratios70 %/ 15 % /15
% [12].

Classifier: LightGBM with 1,000 trees, max depth = 16,
learning rate = 0.05.

Model Variants: Model V1: Trained on Label V1 and
Model V2: Trained on Label V2.

34. Evaluation Protocol

Pixel-Level Metrics: We evaluated model performance using
standard classification metrics, including the macro-average
F1-score, precision, and recall.

Point-Based Validation: An independent set of 19,688
reference points provided by the Global Mangrove Watch
(GMW) were used to compute the overall accuracy and F1-
score of the trained models.

4. RESULTS
4.1. Label Consistency & Model Performance

4.2. Through a structured expert-review process, we
enhanced the label quality, improving the F1-score on the test
set from 87.3% for Label V1 to 91.9% for Label V2. The
other improvement metrics are reported in Table 1. To be
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specific, during the review process, we identified and
corrected inconsistent mangrove polygons, particularly
around complex creek boundaries. Figure 2 illustrates an
example of an initial mislabel that was subsequently
corrected, while Figure 3 shows a case of disagreement
between trained local annotators and senior map experts.
These discrepancies were systematically reviewed and
resolved through multiple iterative rounds of expert
validation. This two-stage refinement yielded our high-
confidence V2 dataset.

Table 1. Performance on the test splits of the LightGBM model
trained on Label V1 and Label V2.

Table 2. Comparison of our map and the GMW 4.0 map
validated by the GMW independent reference points (19,688

points [4], [7]).

Metric (%) GMW 4.0 Our map
Accuracy 98.6 99.5
F1-score 98.5 99.7

Metric (%) Model V1 Model V2 A (pp)
Test F1-score 87.3 91.9 +4.6
Recall 86.1 90.8 +4.7
Precision 88.6 93.2 +4.6

R, A ¥ ] W\
(a) (c)
Fig. 2. This is an example of commission labels by the trained local
annotators during the labelling process at this location (8.74090,
104.99630): (a) Google high-resolution RGB basemaps, (b) Annotated
label, and (c) NICFI basemaps used to detect mangrove extent during
the labelling period (2020).

| il
LI

‘(0;‘

e Al

(c)

Fig. 3. This is an example of inconsistencies between trained local
annotators and experts at this location (8.69533, 105.00572): (a) Google
high-resolution RGB basemaps, (b) Labels (Green ~ mangrove labelled
by both the trained local annotators and experts; Red ~ experts labelled
mangrove while the trained local annotators missed it; and Black ~
experts labelled non-mangrove while the trained local annotators
labelled mangrove), and (c¢) NICFI basemaps used to detect mangrove
at the labelling period (2020).

4.3. Validation on the independent reference set

Table 2 shows the accuracy of our map (Model V2) and the
GMW 4.0 map validated by a reference set of 19,688 GMW
reference points. Model V2 achieved an overall accuracy of
99.5% (Fl-score = 99.7%) and GMW’s published 95.3 %
global accuracy (F1-score of 98.5% for the reference set) [4],
[7]. Based on local expert knowledge, our map outperforms
the GMW map in narrow-fringe, changeable (plantation or
productivity mangrove forests), or mixed-substrate regions

(Fig. 4).

(a) (b)

Fig. 4. An example to compare our map and the GMW v4.0 map in 2020
at (8.74465, 104.87913): (a) Google high-resolution RGB basemaps and
(b) Overlap of our map and the GMW v4.0 map (Green ~ mangrove
agreed by both our map and the GMW v4.0 map; Red ~ non-mangrove
in our map but mangrove in the GMW v4.0 map, and Black ~mangrove
in our map but non-mangrove in the GMW v4.0 map), and (¢) NICFI
basemaps used to detect mangrove at the labelling period.

S. DISCUSSION

Applying a mutual, iterative labelling workflow to generate
our mangrove training dataset yielded a 4.6 pp gain in F1-
score, underscoring the efficacy of repeated local-expert
refinement in reducing ambiguous labels [13]. In our
approach, initial labels were systematically reviewed and
corrected by trained local annotators, particularly along
habitat edges and in mixed aquaculture zones, thereby
eliminating small but systematic misclassifications before
retraining. These successive expert feedback loops translated
directly into more accurate segmentation outputs,
demonstrating that targeted correction of difficult examples
is critical for maximizing accuracy in remote-sensing habitat
mapping.

When compared with the Global Mangrove Watch
(GMW) v4.0 product, our map exhibits both lower omission
and commission errors across heterogencous landscapes.
GMW v4.0 is an improved version of v3.0, which is
documented to have global commission and omission rates
of ~10-15 % and ~14-16 %, respectively, in its 19962020
change assessment [4], and regional error rates can exceed 10
% commission and 20 % omission in fragmented zones [7].
We do not find such detailed documented information in the
GMW v4.0. Its overall accuracy reaches 95.3 % compared
with 93.1 % of the v3.0 [3], [4]. Interestingly, our model
reliably captures small, isolated mangrove patches in
aquaculture mangrove mosaics, features that GMW v4.0
often omits and avoids the slight over-prediction in dense
cores observed in the baseline product (Fig. 3b) [3].

Accurately defining mangrove patch perimeters remains
difficult for several primary geospatial reasons. First,
Sentinel-2 L2A products have documented geolocation
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accuracies of up to 12 m (95 % conf.) [14] and NICFI
basemaps up to 10 m (90 % conf.) [15], leading to co-
registration shifts of several pixels along shorelines. Second,
even when higher-accuracy co-registration methods are
applied, residual misalignments of 2—10 m between Sentinel-
1 SAR and Sentinel-2 optical imagery persist, particularly in
complex estuarine zones [16]. These small offsets
accumulate along convoluted boundaries, inflating
mislabelled areas and depressing the mapping accuracy.

Although our map attains 99.5 % overall accuracy against
19,688 GMW reference points, the is still a gap (Fig. 3b) in
tackling pervasive, small-scale boundary misalignments. The
GMW point samples might tend to cluster in easily
recognized core areas and under-sample transitional pixels at
complex edges, yielding overly optimistic accuracy estimates
[17]. Moreover, misregistration in the GMW v4.0 dataset
contributes random errors that inflate confidence intervals for
change estimate errors in both omission and commission [4],
but these point-based metrics fail to capture systematic
boundary drift in fragmented stands.

To further refine boundary precision, we recommend
integrating high-resolution, co-registered datasets such as
UAV-based data, which has been shown to improve
segmentation accuracy of individual mangrove trees beyond
canopy-height models [18]. Combined optical-LiDAR
approaches, for example, using UAV LiDAR with very-high-
resolution WorldView-2 imagery, reduce geolocation
uncertainty and enhance delineation of small patches and
narrow fringing zones [19]. Additionally, targeted collection
of dense boundary-point samples, or the adoption of
segmentation masks derived from UAV imagery, will yield
more representative validation of edge performance. Above
all, maintaining an iterative expert-labelling framework will
remain helpful for capturing subtle, site-specific nuances in
complex and anthropogenically altered mangrove habitats.

6. CONCLUSIONS & FUTURE WORK

We demonstrate that large-scale, expert-validated labelling
combined with LightGBM yields highly accurate mangrove
extent maps for the Mekong Delta, surpassing global
baselines, especially in critical zones. Future work will (i)
scale to the entire Vietnam, (ii) fuse Sentinel-1 SAR for all-
weather mapping & test the label datasets with advanced
deep learning models, and (iii) operationalize an active-
learning loop for continual label refinement.
Acknowledgement: This work was funded by Taighde
Eireann - Research Ireland grant 22/FIP/SDG/10899 “Al
Solutions for Mangrove Blue Carbon in Vietnam”
under the SFI Future Innovator Prize 2022.
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ABSTRACT

The quality of data is important for building reliable
Machine Learning (ML) models in Digital Soil Mapping
(DSM). Insufficient or unrepresentative training data
often limits the ML model's accuracy. This study
introduces a dissimilarity-driven sampling framework,
which integrates Area of Applicability (AOA) and
Iterative Dissimilarity-Driven Sample Selection (IDDSS)
methods to enhance the reliability of predictions for key
soil properties, such as Soil Organic Carbon (SOC). The
framework identifies targeted sampling locations that are
environmentally distinct from the current training data
and underrepresented in the covariate space. Using
Estonia as a case study, we determined that approximately
25% of the country lies outside AOA, which indicates
where predictions are unreliable. A total of 41,930
targeted sampling locations were identified within these
areas. This proposed framework provides a robust data-
driven strategy for optimising future fieldwork, which
ensures that new samples most effectively enhance the
reliability of ML models in DSM.

Index Terms— Machine Learning, Soil Organic
Carbon, Digital Soil Mapping, Area of Applicability,
Dissimilarity Index.

1. INTRODUCTION

The representativeness and volume of training data
influence the performance of Machine Learning (ML)
models in Digital Soil Mapping (DSM) [1]. However, the
soil legacy data used for training are often sparse and
contain spatial biases due to conventional sampling
limitations and accessibility constraints [2, 3]. ML models
trained on these biased datasets may produce inaccurate
predictions when applied to areas with unrepresented
environmental conditions [4].

To address current sampling limitations, we proposed
a novel dissimilarity-driven sampling framework to
optimise the soil fieldwork. Our proposed framework
integrates two methods: the Area of Applicability (AOA)
method, which identifies areas where ML-based
predictions are reliable [4], and the Iterative Dissimilarity-
Driven Sample Selection (IDDSS) method, which
iteratively selects the most dissimilar locations from

underrepresented areas while ensuring they are not too
similar to each other in the multivariate feature space.
This approach provides a systematic and data-driven
method for identifying and addressing the critical gaps in
current training datasets. By optimising the selection of
new soil samples in this way, our study presents a
replicable sampling strategy designed to enhance the
reliability of ML predictions.

2. DATA AND METHODS

2.1. Data and Preprocessing

In the study, we used 924 Soil Organic Carbon (SOC)
observations from across Estonia (Figure 1), which were
derived from 3 data sources [5, 6, 7]. These data, along
with 11 environmental covariates (Table 1), served as the
basis for predictive Random Forest (RF) modelling.

Fig. 1. The distribution of training samples across
Estonia.

Our framework identifies targeted sampling locations
at the scale of individual soil mapping units from the
EstSoil-EH dataset [5]. To prepare the data, we first
harmonised all environmental covariates into a single
unified dataset to ensure consistency. Using the zonal
statistics method from the rasterstats Python package [8],
we aggregated raster-formatted covariates (e.g.,
vegetation dynamics, topographic attributes, land use) to
these vector soil units. This process calculated the mean
values for continuous covariates (vegetation and
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topography) and the majority class for the categorical land
use covariate. Subsequently, a spatial join function in
GeoPandas [9] combined the harmonised covariates with
SOC observations based on geographic coordinates,
which created the final modelling dataset for the study.

Table 1. Environmental Covariates used in the study.

2.2.1. Baseline model

The workflow starts with building a baseline RF model
using Python’s scikit-learn package [14]. This initial
model was trained on the current 924 SOC observations
and optimised using a 5-fold cross-validation grid search.
The determined hyperparameters are shown in Table 2.
Based on this model, the SHapley Additive exPlanations

Category Covariates Type (SHAP) values were calculated and subsequently utilised
=  Normalised for the AOA computation [15].
Vegetation Difference Raster
Dynamics [10] Vegetation Index Table 2. Hyperparameters of RF.
DVI
. gayv ) Hyperparameter Value
. . Silt bootstrap False
Soil Texture [S] | Sand Vector criterion squared_error
*  Rock max_depth 10
= Slope max_features sqrt
*  LS-factor min samples leaf 2
Topographic ) Ef;éilr(lTngoughness Raster min_samples_split 5
Attributes [11] / n_estimators 100
=  Topographic
Wetness Index random_state 25
(TWI)
Hydrological . . . 2.2.2. AOA analysis
Features [12] Drainage ditches Vector
Land Use [13] * Land use types Raster Next, we identified underrepresented regions using the

2.2. Framework Overview

Our methodological framework is implemented through
the two-phase workflow summarised in Figure 2. The first
phase identifies regions where our baseline RF model is
likely to be unreliable through an AOA analysis. The
second phase uses that information to determine targeted
sampling locations within those regions, which can guide
future soil fieldwork to enhance the representativeness of
training data.

A Two-Phase Workflow

Phase 1: Baseline Model & Area of Applicability (AOA) Analysis

« Input: 924 Soil Organic Carbon (SOC) observations &
Environmental Covariates

« Process 1: Train Baseline Random Forest (RF) Model

* Process 2: Compute AOA

* Output: Identify Underrepresented Areas (classified as "Outside

AOA")

Phase 2: Targeted Site Selection

« Input: Underrepresented Areas (from Phase 1)

* Process 1: Execute Iterative Dissimilarity-Driven Sample Selection
(IDDSS)

« Output: Final Set of Targeted Sampling Sites

Fig. 2. Methodological framework for the targeted soil
sampling design.

AOA methodology. The AOA is defined by a
Dissimilarity Index (DI), which measures the degree of
difference between a new location and the training data
used for ML modelling in terms of its environmental
covariates. A DI threshold is then derived through a cross-
validation, which determines the boundary of reliable ML
model application. A location with a DI value above this
threshold is considered outside the AOA (unreliable
predictions), making it inappropriate to use the trained RF
model in that location.

2.2.3. Targeted site selection

Following the identification of underrepresented regions,
the IDDSS method was applied to select targeted
sampling locations (Figure 3). The selection process is
based on the AOA results, which selects the candidate
with the highest DI value at the start of each iteration.
Then, a filtering step uses this newly selected site to trim
the candidate pool; its multivariate distance to all other
remaining locations is calculated, and any found to be too
similar are permanently discarded. This iterative process
ensures that targeted sampling locations are both highly
informative relative to the current training data and
distinct from one another.
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An Iterative Dissimilarity-Driven Sample Selection (IDDSS)

[ Step 1: Sort Candidate Sampling Locations ]

*Sort candidate sampling locations by highest Dissimilarity

Index (DI) value

[ Step 2: Select Most Dissimilar Location ]

*Select the top-ranked candidate sampling location from the

sorted dataset

Step 3: Calculate Multivariate Distance

*Calculate multivariate Euclidean distance between the
selected sampling location and all remaining candidate

locations

l Step 4: Remove Similar Locations ]

*Exclude candidate locations with distance values below a
lower bound threshold (Q1 - 1.5 * IQR)

$

l Step 5: Iterate Until Condition is Met ]

*Repeat the selection process (Steps 1-4) until the candidate
pool is exhausted.

Fig. 3. A workflow for targeted sample selection.

3. RESULTS

Figure 4 shows the spatial distribution of DI values across
Estonia. Colours closer to red indicate higher dissimilarity
relative to the current training dataset. We found that
approximately 25% of Estonia lies beyond the AOA
threshold, with a DI greater than 0.11. This result suggests
that a substantial part of the country would be unreliable
using the RF model trained on the current training data
(Figure 5).

Legend
Dissimilarity Index (D)

Fig. 4. DI of the SOC prediction model across Estonia.

W Within AOA

Fig. 5. AOA of the SOC prediction model across
Estonia.

Based on the AOA result, we applied the IDDSS
method to identify 41,930 targeted sampling locations
situated exclusively within these high-uncertainty regions
(Figure 6). This analysis highlights the usefulness of the
AOA and IDDS frameworks in guiding strategic data
acquisition, as they help target underrepresented and
environmentally distinct regions not well captured in the
current training data.

Legend
Al Targeted Sampling Lacations

Fig. 6. All Targeted Sampling Locations for SOC
across Estonia.

4. DISCUSSION AND CONCLUSION

In this study, we introduced a novel dissimilarity-driven
sampling framework to optimise soil sampling design.
The proposed framework successfully integrates AOA
analysis with an IDDSS method to create a targeted data-
driven sampling plan. The application in Estonia shows
the usefulness of this approach, which identified that a
significant portion of the country (~25%) lies in regions
where the current SOC prediction model could be
unreliable. These areas are primarily located in southern
Estonia alongside the northern coast.
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Although conventional sampling strategies like grid
sampling or random sampling ensure spatial coverage of
the study area, they may inefficiently place new samples
in the multivariate feature space that are already well-
represented by the current training data. Our proposed
framework is designed to be more efficient by directly
targeting areas of high ML model uncertainty, thereby
improving the predictive reliability of the model. The
integration of AOA and IDDSS refines the process of
sampling location selection by ensuring that the selected
locations are both informative relative to the current
training data and distinct enough from one another. We
determined a total of 41,930 targeted sampling locations,
which represent the full candidate pool for enhancing the
quality of the current training data. From this candidate
pool, researchers could narrow down a smaller number of
sampling locations based on their practical constraints,
such as budget, accessibility, and the needed sample size
for their research.

The main contribution of this study is the
demonstration of this complete methodological
framework for soil sampling from the initial RF model
training to the final selection of targeted sampling
locations. Although a comprehensive validation of the
generated sampling plan through a dedicated fieldwork is
beyond the scope of this study, the work presented here
provides a robust and replicable strategy to guide such an
effort. To support reproducibility in research, the Python
codes used for the proposed sampling selection approach
will be made publicly available after the publication of the
related work.
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ABSTRACT

The application of Deep Learning (DL) to Earth Observa-
tion (EO) has yielded remarkable advancements across di-
verse tasks, including land cover classification and biophys-
ical variable regression. However, a significant gap persists
between the development of sophisticated DL. models and
their routine deployment in operational settings. This dis-
connect largely stems from the technical expertise needed to
handle complex DL workflows, which differs from standard
geospatial practices. To address this challenge, we introduce
xinfereo, a Python package designed to bridge the divide
between xarray Datasets, a common data structure for geospa-
tial data handling, and spatio-temporal DL models. We show-
case the package’s potential through a tree cover percentage
mapping application using Sentinel-2 data, emphasizing its
capacity for flexible analysis and scalable processing. Our re-
sults underscore the promise of xinfereo in democratizing
DL for EO, paving the way for wider adoption and operational
integration of these powerful techniques.

Index Terms— deep learning, Earth Observation, xarray,
Sentinel-2, scalability, remote sensing

1. INTRODUCTION

The past decade has witnessed extraordinary progress in the
application of Deep Learning (DL) methodologies to a broad
spectrum of EO tasks [2, 9]. From precise mapping down to
tree level to retrieval of drivers of deforestation, DL models
have demonstrated a capacity to extract valuable information
from complex remote sensing data [1, 5]. Despite these suc-
cesses, a critical bottleneck impedes the transition of these
models from experimental tools to operational assets. The
technical expertise demanded by DL, particularly in manag-
ing specific data structures and intricate pre-processing steps,
presents a substantial barrier. DL models often require data
to be structured in specific formats (e.g., torch or tensorflow
tensors with strict dimensions and various kind of preparation
steps such as positional encoding, padding or normalization),
and the absence of user-friendly tools to automate these trans-
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formations limits wider adoption. Consequently, DL for EO
remains, to a large extent, the domain of specialists.

However, this challenge is not insurmountable. Innova-
tive technical solutions can effectively bridge the gap be-
tween cutting-edge DL techniques and the practical needs of
geospatial scientists. In this paper, we present xinfereo,
a Python package developed to facilitate the integration of
xarray Datasets, a fundamental data structure in geospatial
analysis, with spatio-temporal DL models. Xarray Datasets
provide a robust framework for representing multidimen-
sional data as data cubes with clearly defined dimensions
and coordinates. Furthermore, the xarray ecosystem offers
seamless interoperability with other essential components of
the geospatial toolkit, such as Spatio Temporal Asset Catalog
(STAC) via odc-stac, the Geospatial Data Abstraction Library
(GDAL) via rioxarray, and dask.

The xinfereo package, in its current prototype form,
simplifies the application of DL models to EO data. Users
can generate model outputs by executing a single function on
a Sentinel-2 data cube encapsulated within an xarray Dataset.
The package handles the complexities of model execution,
including retrieving model parameters (which can be stored
on an online platform such as Zenodo), verifying data com-
patibility, and performing necessary transformations such as
normalization, padding and positional encoding. The model’s
prediction is then returned to the user as a NumPy array.

To illustrate the capabilities of xinfereo, we focus on
the task of mapping tree cover percentage. While our primary
objective is to demonstrate the package’s functionality and
ease of use, we provide an overview of the model architecture
and training strategy for context. The core emphasis remains
on enabling accessible and scalable model deployment. We
highlight the package’s flexibility in accommodating various
data scenarios and its ability to scale to large-area processing.

Section 2 describes the model, data, and scalability exper-
iment, section 3 presents and discusses results, and section 4
summarizes findings and future work.
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2. MATERIAL AND METHODS

2.1. xinfereo package

The xinfereo package is designed to streamline the inte-
gration of DL models into typical geospatial workflows. It
provides a user-friendly interface that simplifies the applica-
tion of pre-trained DL models to xarray Datasets. The core
functionality of xinfereo is encapsulated in a single func-
tion. This function accepts an xarray Dataset as input and
produces the model’s prediction as a NumPy array. Impor-
tantly, this function abstracts away much of the complexity
associated with preparing data for DL models. It handles the
following critical steps:

 Data conformance: The function begins by validating that
the input Dataset conforms to the model’s requirements,
checking for necessary variables and dimensions.

* Normalization: Any required normalization or scaling of
the input data is performed automatically.

* Temporal encoding: If the model requires it, temporal in-
formation (e.g., positional encoding) is generated and in-
corporated into the input data.

* Padding: Necessary padding of time or channel dimen-
sions is applied to ensure compatibility with the model’s
input shape requirements.

* Model execution: Finally, the pre-trained DL model is
loaded and executed on the prepared input data.

To ensure portability and ease of use, pre-trained DL
models and their associated parameters are stored in the
Open Neural Network Exchange (ONNX) standardized for-
mat. xinfereo handles the retrieval of these models and
parameters from their online location, relieving the user of
the burden of manual management. The core inference func-
tion supports xarray Datasets backed by either NumPy arrays
for in-memory computation or Dask arrays, thereby offering
both flexibility in execution and inherent scalability for large
data volumes.

Model-specific requirements, such as expected input vari-
ables and dimensions, are documented using a JSON-based
metadata schema. This metadata model is currently an evolv-
ing aspect of the package and is designed to align closely with
the STAC Machine Learning Model (mlm) extension. How-
ever, STAC mlm had limitations (e.g., temporal restriction or
optional bands), so our implementation, while inspired by it,
retains flexibility and doesn’t strictly adhere yet.

2.2. Tree Cover Percentage Mapping Model

To demonstrate the practical application of xinfereo, we
developed a DL model designed to map tree cover percentage
from Sentinel-2 time series data. This model aims to pre-
dict the proportion of tree cover within each pixel, generating
valuable information for forest monitoring and management
activities.

The training dataset for our model was derived from the
Copernicus 2018 Tree Cover Density (TCD) layer [4]. To
create this dataset, we randomly selected 4800 bounding box
locations, each 1280 m x 1280 m in size, across the Euro-
pean continent. For each of these locations, we extracted the
corresponding TCD layer and resampled it to a 20 m resolu-
tion to align with the spatial resolution of the Sentinel-2 data.
The resulting dataset was then partitioned into training (3200
patches), validation (800 patches), and testing (800 patches)
subsets.

It is crucial to acknowledge the inherent limitations of this
training data generation approach. The Copernicus TCD layer
is already the result of a model and represents an estimate of
tree cover with potential innacuracies. However, we reiterate
that the primary focus of this study lies in demonstrating the
xinfereo package’s ability to simplify the application of
DL models in a streamlined and scalable manner, rather than
producing a definitive tree cover percentage product. In real-
world scenarios, users frequently need to generate custom for-
est masks or tree cover estimates tailored to specific regions,
timeframes, or input data characteristics. For instance, Near
Real-Time monitoring systems often rely on up-to-date forest
masks, which may not always be readily available [3]. While
alternative methods, such as rule-based forest mask genera-
tion, exist, they may not be optimal in all situations [10].

In addition to the TCD data, we extracted one year (from
January 1st to December 31st 2018) of Sentinel-2 data at a
20m resolution for each of our selected bounding box loca-
tions. We retained the following spectral bands, relevant for
land surface analysis: B02 (blue), BO3 (green), BO4 (red),
BO5 (red edge 1), BO6 (red edge 2), BO7 (red edge 3), BOSA
(Near InfraRed), B11 (Short-Wave InfraRed (SWIR) 1), and
B12 (SWIR 2), as well as the Scene Classification Layer
(SCL) to allow the masking of clouds and shadows during
training and testing.

Our model architecture for tree cover percentage re-
trieval from Sentinel-2 time series is based on a simple 1D
Convolutional Neural Network (CNN), complemented by
a temporal attention mechanism [6, 7], and is remarkably
compact (42KB in ONNX format). The 1D CNN processes
each pixel’s time series independently, extracting spectral-
temporal features directly from raw input sequences. This
approach effectively handles irregular observation patterns
and heterogeneous data (e.g., varying observation counts
or residual clouds) without requiring prior temporal bin-
ning or interpolation. The temporal attention mechanism
complements the CNN feature extraction by weighing the
contribution of each time step, enabling the model to focus
on the most informative segments for accurate retrieval. This
combination offers significant flexibility and robustness to
varying data conditions.

To enhance the model’s versatility and robustness, we im-
plemented a range of data augmentation techniques during
the training process. These techniques simulate potential data
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availability scenarios that users may encounter in practice, in-
cluding:

* Cloud and shadow contamination: Randomly leaving por-
tions of the input data unmasked to mimic the presence of
residual clouds and shadows.

* Missing spectral bands: Randomly omitting spectral
bands to train the model to handle situations where certain
bands are unavailable.

* Partial temporal extent: Training the model on random
subsets of the one-year time series, enabling it to work
effectively with incomplete time series data.

This data augmentation strategy aims to improve the
model’s flexibility and adaptability to diverse data condi-
tions. While we anticipate the model to perform optimally
when provided with the full complement of Sentinel-2 bands,
properly masked for clouds and shadows, and the complete
one-year time series, it is also designed to provide reasonable
predictions even when faced with degraded data availability.

2.3. Scalability Experiment

To assess xinfereo’s scalability, we applied the tree cover
density (TCD) mapping model to the entirety of the 31TFK
MGRS tile, utilizing Sentinel-2 data from the year 2024. The
input dataset consisted of 7 months of observations, encom-
passing 44 Sentinel-2 acquisitions and amounting to approxi-
mately 16 GB of uncompressed data. This task was executed
using a Dask-based workflow on a 10 workers local clus-
ter within xinfereo, which processed the data in spatial
chunks of 244x244 pixels. Identical workflow can easily be
deployed on High Throughput Computing clusters, such as
the one available on the Big Data Analytic Platform (BDAP)
of the Joint Research Center [8], anticipating near-linear scal-
ing.

3. RESULTS AND DISCUSSION

3.1. Model Performance

The model’s predictive accuracy was assessed using the 800
patches designated for the test split, with the Root Mean
Square Error (RMSE) calculated across a matrix of varying
input data scenarios. As anticipated, the model performed
optimally when provided with a full year of Sentinel-2 data,
encompassing all specified spectral bands and with clouds
and shadows masked, achieving an RMSE of 11.14 % (Figure
1). Notably, many alternative scenarios involving degraded
input data such as omission of certain spectral bands, reduced
temporal coverage, or the absence of cloud masking, resulted
in only marginal reductions in performance. This observation
underscores the model’s versatility and robustness to vari-
ations in data availability and quality. For instance, these
results suggest that in practical applications, users may not
need to strictly adhere to the maximum data requirements;

All Bands No Red Edge Bands
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Fig. 1: Model performance on the dataset’s test split: (a) Root Mean
Square Error (RMSE) of predicted tree cover percentage for various
input data modalities. (b) Scatter plot of predicted versus reference
tree cover percentages for the best-performing input modality.

an acceptable tree cover density layer could potentially be
generated for a given year using as few as six spectral bands
and seven months of data. The most significant performance
degradation was observed when the input data was limited to
only three months, even if these were the summer months.
This finding suggests that observations from outside the peak
growing season are beneficial for accurately assessing tree
cover and unambiguously discriminating trees from other
land cover types.

3.2. Scalability

Processing the 16 GB 31TFK MGRS tile on the 10-worker
local Dask cluster took approximately 5 minutes (including
approximately 2 minutes for data loading from the EOS dis-
tributed file system). While tile-specific timing may vary, this
initial benchmark indicates the approach’s inherent scalabil-
ity. Consequently, mapping an EEA38-sized area (5.8 million
km?2) is projected in hours on an HTC infrastructure, confirm-
ing xinfereo’s suitability for large-scale operational tasks.

3.3. Discussion

The findings of this study underscore the potential of the
xinfereo package to democratize DL for EO analysis. By
offering a user-friendly interface that seamlessly connects
xarray Datasets with diverse DL models, including emerging
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foundation models, xinfereo lowers the barrier to entry
for geoscientists who may not possess specialized expertise
in DL. This can foster wider adoption of these powerful
techniques across a range of EO applications.

Furthermore, the modular design of xinfereo facili-
tates its integration into various geospatial processing work-
flows. This adaptability allows users to deploy xinfereo-
based inference across diverse execution environments, from
local Dask clusters to large-scale cloud platforms. Emerging
infrastructures like the Copernicus Data Space Ecosystem
(CDSE), which provide extensive access to Copernicus data
and associated processing capabilities, represent one such
type of environment where xinfereo could be effectively
utilized by users for their specific analysis needs.

The demonstrated scalability highlights xinfereo’s po-
tential for generating EO products over extensive areas in a
timely and efficient manner, a capability relevant for vari-
ous large-scale monitoring applications. While the tree cover
map produced in this study serves as an illustration of the
package’s technical capabilities, it is important to distinguish
it from officially validated data products. Operational ser-
vices, such as the Copernicus Land Monitoring Service, rely
on products that undergo rigorous accuracy assessment and
validation processes, typically overseen by entities like the
European Environment Agency (EEA), to ensure their fitness
for designated applications. The approach demonstrated here
has not been subjected to such extensive validation. Nev-
ertheless, xinfereo can empower users to generate cus-
tom/interim products when up-to-date outputs are needed, of-
ficial versions are unavailable, or existing products don’t meet
specific needs.

Importantly, xinfereo challenges the notion that ease
of use and scalability must be mutually exclusive. Our pack-
age demonstrates that it is indeed possible to provide a user-
friendly experience without compromising performance or
the ability to handle large datasets. This approach has the
potential to transform the way high-level EO products are
generated and delivered, perhaps even leading to the develop-
ment of new Copernicus services.

4. CONCLUSION

In this paper, we introduced xinfereo, a Python package
designed to democratize the use of DL in EO analysis by
effectively bridging the gap between xarray Datasets and
spatio-temporal DL models. We showcased the package’s
utility through a tree cover percentage mapping application
using Sentinel-2 data, highlighting its flexibility and scala-
bility. Our results indicate that xinfereo can significantly
simplify the integration of DL models into standard geospatial
workflows, thereby promoting broader adoption and opera-
tional implementation of these powerful techniques.

Future research will focus on expanding the capabilities
of xinfereo by developing a wider range of modular build-

ing blocks for data preparation and pre-processing, enabling
it to accommodate a greater variety of models and EO appli-
cations. We also plan to explore tighter integration with the
STAC mlm extension to facilitate more comprehensive model
documentation and metadata management.
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ABSTRACT

The AXIS 3 Governmental Hub is part of Greece's National
Satellite Space Project, which aims to enhance the country's
capabilities in satellite technologies and applications.
Specifically, AXIS 3 focuses on developing geospatial
services tailored to meet the needs of the Greek public
sector. The AXIS 3 Governmental Hub is a modular, cloud-
native Earth Observation (EO) infrastructure supporting the
delivery of five thematic services: Land, Forest, Water,
Agriculture, and Safety & Security. Developed under the
Greek National Earth Observation (GNEO) mission, the
Hub hosts and integrates data from GNEO AXIS 1.1, 1.2,
and 2 satellite missions, along with Copernicus and Landsat
products.  Its architecture combines EO Exploitation
Platform Common Architecture (EOEPCA) components and
Kubernetes orchestration to enable scalable data ingestion,
metadata harmonization (via a SpatioTemporal Asset
Catalog (STAC) -compliant catalogue), user-triggered
tasking, and automated processing. The Hub’s microservices
architecture supports federated access, metadata-driven
workflows, and asynchronous orchestration of EO services.
This paper presents the Hub’s infrastructure, highlighting
innovations in service orchestration, interoperability, and
modular processing pipelines.

Index Terms— GNEO, AXIS 3 Governmental HUB,
Earth Observation, Cloud-native architecture, STAC,
EOEPCA, Kubernetes, ARD

1. INTRODUCTION

The Greek National Satellite Space Project strengthens
national EO capabilities, equipping the public sector with
advanced tools for monitoring, analysis, and decision
support. At its core, it delivers geospatial services in five
domains, Land, Forest, Water, Agriculture, and Safety &
Security, through standardized processes ensuring reliability
and operational impact (Figure 1).

Recent EO platforms increasingly rely on cloud
infrastructures, data cubes, standardized APIs, and Al-
driven methods. Representative examples include Google
Earth Engine, Sentinel Hub, Open Data Cube, SEPAL,
openEO, JEODPP, pipsCloud, EarthDataMiner, GeoCube,
and the DestinE Platform [1-10]. These solutions
demonstrate advances in scalability, interoperability, and

real-time access, but most focus either on global analytics or
single domains, with limited integration of heterogeneous
data and end-to-end orchestration.
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Figure 1 High-level overview of the AXIS 3 Hub

The management and analysis of big Earth observation (EO)
data increasingly rely on cloud infrastructures, data cubes,
standardized APIs, and Al-driven methods. Key platforms
include Google Earth Engine, Sentinel Hub, Open Data
Cube, SEPAL, openEO, JEODPP, pipsCloud,
EarthDataMiner, GeoCube, and the DestinE Platform.
Google Earth Engine (GEE) enables petabyte-scale cloud
access, APIs, and machine learning for large-scale analysis
[1]-[4]. Sentinel Hub offers real-time streaming and GIS
integration [1], while the Open Data Cube (ODC) provides
an open-source spatio-temporal model for national ARD
systems [1], [5], [6]. SEPAL supports land and forest
monitoring [1], and openEO ensures interoperability
through standardized APIs [1], [7]. JEODPP and pipsCloud
deliver high-performance EO processing [1], [6]. Emerging
platforms such as EarthDataMiner apply Al analytics [8],
GeoCube enables raster—vector fusion [5], and the ESA
DestinE Platform provides access to Earth-system digital
twins for climate and environmental monitoring [9], [10].
The Governmental Hub draws upon these advances by
combining EOEPCA-based modules with Kubernetes

orchestration, custom developed components, STAC-
compliant  cataloguing, and  dedicated hardware
infrastructure, enabling interoperable and operational

services tailored to governmental needs.
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The Hub’s architecture is cloud-native, using EOEPCA [11]
components and Kubernetes orchestration for scalable data
ingestion, metadata harmonization through a STAC [12]-
compliant catalogue, user-triggered tasking, and automated
processing. This enables efficient handling of large data
volumes with high performance and reliability. The AXIS 3
Hub adopts a microservices architecture supporting
federated access, metadata-driven workflows, and
asynchronous orchestration of EO services. Its modular
design ensures flexibility to tailor pipelines for each
thematic domain, while providing analysis-ready data
(ARD) for efficient and accurate EO analysis.

2.1. Cloud-Native & Microservices Architecture

The Hub wuses a containerized, microservices-based
architecture, allowing independent deployment and scaling
of components (Figure 2). Each component (e.g., ingestion,
processing, cataloguing) communicates through APIs and
runs in Kubernetes-managed containers. This approach
ensures high availability and dynamic scaling based on
processing demands.
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Figure 2 High-Level System Architecture of the AXIS 3
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2.2. AXIS 3 Hub Core Components

The AXIS 3 Hub leverages the open-source EOEPCA,
which provides a reference framework for EO data
management and exploitation services. The core EOEPCA
modules integrated into the Hub include:
e Resource Catalogue (STAC-compliant) for product
discovery and metadata indexing;
e Processing Component for Common Workflow
Language (CWL)-based scalable job execution;
e Data Access prov1d1ng standardized 1nterfaces for
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Beyond the EOEPCA integration, the AXIS 3 Hub
introduces a set of core components that enable the
operational delivery of governmental thematic services.
These include:

e Data Ingestion and ARD Processor, responsible for
harmonizing external and mission-specific data streams
(e.g. Copernicus, Landsat, AXIS missions) into
Analysis Ready Data (ARD) formats.

e Services Orchestrator, which manages the sequencing
and execution of workflows across multiple processing
modules.

e Tasking Orchestrator, which extends Hub functionality
to manage satellite tasking requests with external Data
Hubs.

e APl Gateway, providing unified access to Hub
functionalities, ensuring secure interaction between
internal services and external applications.

e  Monitoring, Accounting, and Dashboards, which
support operational control, usage tracking, and
visualization for both administrators and end-users.

e Axis 3 Service Processes, that include the thematic
service algorithms (land, water, forest, agriculture, and
safety & security services).

2.3. Hardware Infrastructure and High-Performance
Resources

The AXIS 3 Governmental Hub is powered by a high-
performance compute and storage backbone tailored to the
demands of large-scale Earth Observation data management
and processing. The compute infrastructure combines
general-purpose servers with GPU-accelerated nodes,
enabling both standard processing and advanced AI/ML
workflows. The storage layer is based on an all-flash
enterprise system complemented by high-capacity disks,
providing more than 2 petabytes of raw storage and over
500 TB of NVMe flash for rapid data access and intensive
analytics. Cybersecurity is ensured through firewalls and
centralized monitoring, while the networking layer delivers
high-bandwidth switching with 100/400G uplinks and
10/25G  access,  ensuring  low-latency,  resilient
interconnectivity across the system. Together, these
resources provide the foundation required for the Hub’s
services.

3. DATA INTEGRATION & HARMONIZATION

3.1. Data Integration and Management

The AXIS 3 Governmental Hub manages EO data from both
national and international missions to support operational
workflows. Key sources include open datasets from the
Copernicus Data Space Ecosystem (CDSE) and Landsat,
accessed via ESA and USGS services, with open data
retained under a rolling one-year policy. National data
includes AXIS 1.1 (thermal, nominal and tasking), AXIS 1.2
(SAR, tasking-based), and AXIS 2.0 (optical, high-
acqu1s1t10n rate across HR VHR, hyperspectral IoT, and
0 E de ultiple processing
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mission data is archived for the
full operational lifecycle. This

supports  scalable,  timely
access for downstream
processing and  thematic
services.

The Hub uses a dual-mode
strategy to manage both
systematic and on-demand

data. Automated pipelines
ingest continuous streams from
open sources and nominal e
GNEO  missions.  Tasking — mseeason
workflows for GNEO missions =
allow users to request data by
area, time, or priority.

Ingested data are routed to
mission-specific storage, and
metadata is  automatically
generated with
spatial/temporal tags, sensor
info, and asset links. Once validated, products are indexed
and published in the Governmental Hub Catalogue (Section
3.4) for immediate discovery and use across all thematic
domains.
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AXIS 3 Governmental Hub

3.2. Analysis-Ready Data (ARD)

The AXIS 3 Governmental Hub adopts a standardized ARD
strategy to ensure all ingested datasets are preprocessed,
harmonized, and immediately usable across its thematic
services. ARD products serve as the primary input for

downstream processing.
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radiometric calibration, .. ,
geometric  and  terrain  Cowssvatond I
corrections, and T Rsdmenr 7
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where applicable.
To support integration with

[Metadata
Curation]

national datasets, all ARD  foeometd | co

products are transformed = = ----eeemeeeeeeeeeeeee

into the Greek Grid Fi 4 ARD H o

(EPSG:2100). The output . 2%r¢ armonization
Workflow

formats follow open

standards such as Cloud-Optimized GeoTIFF (COG) to
enable efficient access and cloud-native storage. Priority is
given to open Copernicus data, including Sentinel-1,
Sentinel-2, and Sentinel-3, to maintain continuity with
AXIS 1 and AXIS 2 products. Across all EO sources—
optical, SAR, thermal, and hyperspectral—the ARD
workflow ensures that data inputs are consistently
transformed into standardized, analysis-ready outputs that

are both poneptionalys AR Ands SsnificaibyaroRtpt

The AXIS 3 Governmental Hub generates and manages
ARD products across a range of sensor types to ensure
standardized processing and interoperability. For optical
imagery, the Hub processes Sentinel-2 Level 2A products,
AXIS 2.0 high-resolution and very-high-resolution
multispectral data, and Harmonized Landsat Sentinel (HLS)
products from Landsat. For Synthetic Aperture Radar
(SAR), it includes Sentinel-1 GRD products and various
imaging modes from AXIS 1.2, such as Scan, Strip, Spot
High-Resolution, Spot Fine, and Spot Extended. In the
domain of thermal and hyperspectral data, ARD is produced
from Sentinel-3 SLSTR, AXIS 1.1 thermal infrared and
AXIS 2.0 hyperspectral.

3.3. STAC Strategy

To ensure consistent and interoperable metadata
management, the AXIS 3 Governmental Hub adopts a
STAC (SpatioTemporal Asset Catalog) compliant strategy
across all EO products. As data from GNEO missions,
Copernicus, and Landsat is ingested, metadata records are
automatically generated with standardized spatial, temporal,
and sensor attributes, and references to data assets and
processing levels. All EO data—from raw satellite inputs to
products generated by AXIS 3 Thematic Services—are
mapped to STAC Collections, Items, and Assets (Figure 5).
This approach provides uniform cataloguing and exposure
of datasets to internal and external users, ensuring
discoverability, accessibility, and compliance with emerging
EO standards. STAC Items and Collections are validated
before indexing into the Hub Catalogue, enabling federated
access and scalable, cloud-native discovery and processing
across all services.
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Figure 5 STAC Catalogue Structure Strategy
3.4. GOVERNMENTAL HUB Catalogue

The Governmental HUB Catalogue will serve as the central
metadata repository for all datasets within the AXIS 3 Hub,
supporting comprehensive discovery and access. It will
cover both internally generated and externally sourced EO
datasets. Internally, this includes raw and processed data
from national missions—AXIS 1.1 thermal, AXIS 1.2 SAR,
and AXIS 2.0 optical and hyperspectral imagery—along
with value-added products from thematic services and
standardized ARD. Externally, it will index datasets from
Copernicus, USGS (Landsat), and other open-access
providers (Figure 6).
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access to multi-source datasets with
federated querying across thematic
domains via STAC-based APIs. All
metadata will follow STAC
specifications,  ensuring  machine-
readability, integration with external
platforms, and interoperability across
the wider EO ecosystem.

Copernicus

*Sentinel 2 — Optical
*Sentinel 1-SAR
*Sentinel 3
*Sentinel-5P

sLandsat HLS

*ARD_S2
*ARD_S1

*ARD_S3

*ARD_L8/L9
«ARD_AXIS11_THER

- ARD_AXIS12_(specific Modes)
*ARD_AXIS2_OPT_HR
*ARD_AXIS2_OPT_VHR
«ARD_AXIS2_HYPER

4. THEMATIC SERVICES AND
ADDED VALUE PRODUCTS

The AXIS 3 Governmental Hub
operates five thematic services—Land,
Forest, Water, Agriculture, and Safety
& Security—each built on standardized
EO pipelines aligned with public-
sector priorities. Outputs are published

#Water Monitoring Service
®Land Monitoring Service
®Forest Monitoring Service
eSafety and Security Service
#Agricultural Monitoring Service

N Figure 6
through the Hub Catalogue with vaernmental
STAC-compliant metadata, ensuring  gub Catalogue

traceability, discoverability, and

integration with national geospatial infrastructures.

The Land Service supports land cover classification, change
detection, InSAR deformation (PSI, SBAS), and urban
analytics including heat island effects, air quality, and health
indicators. The Forest Service covers national forests and
NATURA 2000 areas through forest type and fuel mapping,
health monitoring, biodiversity analysis, and threat
detection, delivering outputs such as fuel maps, tree cover
density, and biodiversity hotspot maps.

The Water Service includes Water Quantity, Water Quality,
and Maritime Surveillance modules, producing inland and
coastal water maps, indicators like chlorophyll-a, SST,
turbidity, oil spill detection, and maritime object
identification. The Agriculture Service provides crop type
prediction, vegetation indices (NDVI, SAVI, PSRI), radar
and texture metrics, growth estimates (LAI, Ccc, Cdmc),
and soil moisture analysis through optical-SAR fusion.

The Safety & Security Service addresses floods and
wildfires, generating high-resolution flood maps, depth and
risk assessments, wildfire danger forecasts, burn scar
mapping, fire spread predictions, and object tracking with
bounding boxes and trajectories.

5. INNOVATIONS AND CHALLENGES

The AXIS 3 Governmental Hub adopts a forward-looking
strategy based on open standards, modular architecture, and
cloud-native design. By integrating EOEPCA components
and leveraging Kubernetes, it ensures scalability, resilience,
and interoperability across EO data ecosystems. Metadata-
driven workflows, federated access, and microservices-
based automation enable seamless end-to-end service
delivery—from ingestion to analysis and visualization.
Strategically, the Hub acts as a national anchor for secure
EO operations while interoperating with European and
global platforms, supporting cross-border collaboration,
rapid thematic service deployment, and long-term
adaptability to new missions, sensors, and user needs.

6. CONCLUSION [Poster Session]

The AXIS 3 Governmental Hub establishes a scalable,
secure, and interoperable EO service delivery model,
demonstrating how cloud-native systems can support
strategic decision-making, environmental resilience, and
digital transformation. Supporting both national priorities
and European cooperation, it provides future-ready
infrastructure that turns EO data into actionable insights.
With its modular, standards-based design, the Hub enables
rapid deployment of thematic services while fostering
continuous innovation in data exploitation.
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ABSTRACT

The rapid growth of data from Earth Observation (EO) and
models presents significant challenges and opportunities for
the scientific community, emphasizing the need for scalable,
interoperable, and flexible analytical infrastructures. ESA’s
ongoing support for cloud-native Data Processing-as-a-
Service (DPaaS) platforms and standardization efforts (such
as EO Exploitation Platform Common Architecture project
(EOEPCA), openEO, and Application Propagation
Environments (4PEx)) has substantially streamlined access
to these datasets. At the same time, Python’s data science
ecosystem, particularly the Pangeo stack (based around
xarray, Dask, and Zarr), has gained popularity due to its
flexibility, transparency, accessibility, and extensive
analytic capabilities. The xcube toolkit integrates seamlessly
into both ecosystems, offering powerful tools for uniform
data access and harmonization, and analysis-ready EO data
cubes and other gridded datasets. The xcube datastore
framework has recently been enhanced with plugins for the
new Earth Observation Processing Framework (EOPF) Zarr
format, integration of STAC-compliant collections such as
those from the Copernicus Data Space Ecosystem (CDSE),
and dataset harmonization and combination via xcube-
multistore. These additions, together with advanced
visualization features in the xcube viewer and its new
chartlets extension, significantly enrich the framework.
Further advances include the xcengine processing tool and
integration into the FarthCODE project, particularly the
deep-code initiative, emphasizing reproducibility and
computational efficiency. This paper describes the features,
datastore architecture, recent developments and integration
capabilities of xcube, and highlights its role in enhancing
interoperability, flexibility, and analytical effectiveness
within the EO community.

Index Terms— EO Data Cubes, Cloud Computing,
Interoperability, Python Data Science, Gridded data, xcube

1. INTRODUCTION

The exponential growth of EO data volumes driven by
programs such as Copernicus requires sophisticated and
scalable solutions for effective data processing and analysis.
ESA has fostered various initiatives supporting a DPaaS

approach, such as EOEPCA [1], openEO [2], and APEx " to
facilitate setting-up and operation of a processing service as
well as to improve standardization and interoperability of
platforms. While these services substantially simplify EO
and gridded data processing and provide convenient access
to scalable cloud processing capabilities, many users,
particularly those with sufficient programming background,
appreciate the benefits of the long-established, flexible,
transparent, and reproducible programming environment
offered by Python’s data science ecosystem. Tools like
xarray, Dask, and Zarr, and the large collection of
associated packages that make up the Pangeo stack, are
particularly favoured for their capacity to handle large EO
and gridded datasets effectively across a wide range of
computing environments, from individual workstations to
large-scale clusters, all with the same code base. Moreover,
the wide adoption of the Pangeo stack in many user
communities has turned it into a quasi-standard with
minimum risk for lock-in with a specific service provider or
computational environment.

The xcube framework is fully integrated with the Pangeo
ecosystem?, offering powerful functionalities along the
entire workflow chain from data access to publication and
dissemination of data and workflows. Particularly, several
xcube tools effectively bridge the Python ecosystem and
ESA’s growing world of cloud services and applications.

2. PYTHON DATA SCIENCE ECOSYSTEM FOR EO
AND GRIDDED DATA

Python has emerged as a leading language for EO and
gridded data analysis, driven by libraries like xarray for
handling multidimensional arrays and Zarr for efficient,
cloud-friendly storage of large datasets. This ecosystem
offers considerable advantages in flexibility, reproducibility,
and transparency, making it very attractive for scientific
researchers, data scientists, and developers of EO-related
software. A key success factor has been the Dask package
for distributed computing, which allows for working with
data sets that are larger than available memory and
effectively abstracts away from users the burden of scaling

! https://apex.esa.int/
2 https://pangeo.io/#ecosystem
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workflows to multiple parallel compute nodes. It enables
users to seamlessly process very large, cloud-based datasets
from any machine running a Python environment.

Despite these strengths, users often encounter significant
challenges when attempting to integrate and harmonize
diverse EO and gridded datasets from various sources,
formats, and access methods, make their workflows
reproducible and shareable, disseminate their results through
standard services, or visualize them. While technically
feasible, each of the above steps may entail substantial
effort, leading to inefficiencies and raising barriers to rapid,
iterative, and collaborative progress in EO research.

3. THE XCUBE FRAMEWORK

The xcube’ framework addresses these typical integration
challenges directly, providing structured methods for
creating harmonized, analysis-ready data cubes from
multiple sources through its robust datastore framework and
rich functionalities, which offers seamless integration of
multiple services and platforms offering EO and gridded
data and by this means facilitates their integration into
Python data science workflows.

xcube is a Python toolkit designed for generating,
analyzing, and publishing EO data cubes. It leverages the
xarray library for handling multi-dimensional data arrays,
dask for parallel computing, and zarr for efficient storage.
Foundational libraries like rioxarray extend xarray to
handle geospatial raster data (utilizing rasterio for reading
and writing GeoTIFFs and managing coordinate reference
systems), while Pangeo provides a cloud-native ecosystem
for scalable data analysis with xarray and dask. Building
upon these tools, xcube offers higher-level abstractions for
data processing, including spatial rectification, resampling,
rechunking, subsetting, optimizing data cubes etc. all while
maintaining compatibility with existing xarray workflows.
A core strength of xcube is its robust datastore framework,
which integrates multiple EO and gridded data sources and
services seamlessly into Python workflows, allowing users
to abstract data retrieval and harmonization through simple,
reusable components. For dissemination and publication,
xcube includes fully integrated xcube server and xcube
viewer capabilities, supporting standard APIs for
interoperability and offering powerful visualization and

interactive  analysis tools directly within Python
environments as well as Jupyter Notebooks. This
comprehensive integration enables users to transition

smoothly from satellite products to analysis-ready data
cubes, facilitating efficient spatio-temporal analysis and
visualization.

3 https://xcube.readthedocs.io/en/latest/

To make Python user workflows reproducible and
integrate them with ESA’s EarthCODE* initiative, two
recently developed packages, deepcode® and xcengine®,
enable users to add their Python workflows to ESA’s Open
Science Catalogue, either as plain Jupyter Notebooks or
after turning them into an EO Application Package [3]. The
xcengine component can then run such packages and
provide them as a service.

4. ADVANCED DATASTORE FRAMEWORK AND
INTEGRATION CAPABILITIES

xcube’s datastore framework facilitates integration through a
continually growing set of specialized datastore plugins.
Any new datastore can be created as a plugin following the
design pattern shown in Fig. 1.

xcube.util.extension
ExtensionRegistry

point: xcube.core.store.openerT T point: xcube.core.store.writer

DataOpener DataWriter

point: xcube.core.store

DataStore

7

MutableDataStore

_______________________________________________

! A store implementation [N
i may use any existing openers/writers or define its
1 own, or not use any openers/writers at all.

Fig 1: xcube datastore design.

Recent developments include the following:

The STAC? Store plugin® allows dynamic discovery and
retrieval of datasets from STAC-compliant catalogues like
that of the CDSE [4]. It streamlines the creation of analysis-
ready data cubes by implementing a standardized and
efficient method for querying available data and metadata
and includes stitching and mosaicking of individual
products as shown in Fig. 2.

4 https://earthcode.esa.int

5 https://github.com/deepesdl/deep-code

6 https://github.com/xcube-dev/xcengine

7 https://stacspec.org/en

8 https://github.com/xcube-dev/xcube-stac
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%htime
store = new_data_store("stac-cdse-ardc", **credentials)

CPU times: user 743 ms, sys: 98.7 ms, total: 834 ms
Wall time: 986 ms

[4]: S&time

ds = store.open data(
data_id="sentinel-2-12a",
bbox=[9.1, 53.1, 10.7, 54],
time range=|"2028-07-15", "2620
spatial_res=18 / 111328, # met
crs="EP5G:4326",
asset names=["B82", "BO3", "BO4", "SCL"],
add_angles=True,
tile_size=2048,

)

ds

CPU times: user Bmin 6s, sys: 1.76 s, total: 6min 8s
Wall time: 7min 12s

[4]: xarray.Dataset

Dimensions: (kime: 11, lon: 17813, lak: 10020, angle_lon: 37, angle_lat: 22, angle: 2, band: 3)

¥ Coordinates:

time (time) datetimeb4fns] T =
spatial_ref 0 int64 =
lon (lon) floats4 =
tat (lat) floats4 =
angle_lon (angle_lon) floats4 =
angle_lat (angle_lat) floats4 =
angle (angle) object 'z =
band (band) 3 =

¥ Data variables:
B02 (time, lat, lon) float3z da =
B03 (time, lat, lon) float32 =
B04 (time, lat, lon) Float32 da =
scL (time, lat, lon) float32 =
solar_angle (angle, time, angle_lat, angle_lon) float3z da =
viewing_angle  (angle, band, time, angle_lat, angle_lon) float32 =

~ Indexes: (7)

~ Attributes: (3)

Fig 2: Sentinel-2 L2A analysis-ready datacube from
CDSE [5] SAFE-Format.

The EOPF Store plugin® supports the new EQPF!*1!
format, optimized for cloud environments. Leveraging the
Zarr storage format, this plugin provides rapid, efficient
access to large Sentinel data collections directly within
Python, significantly simplifying pre-processing and cube
generation. The datastore builds upon the recently released
EOPF engine for xarray'?.

The newly developed Multi-Source Data Store'3 enables
users to federate datasets from multiple heterogeneous
sources into a unified source. This capability eliminates
intermediate  steps  typically required in manual
harmonization, enabling cross-source analyses with minimal
effort.

The new datastores complement the long list of existing
stores e.g., for Copernicus Marine Service (CMEMS)',
Copernicus Land Monitoring Service (CLMS)?, Climate
Change Initiative (CCI) Open Data Portal'®, Zenodo!’, and
others as listed in the documentation's.

9 https://github.com/EOPF-Sample-Service/xcube-eopf/
10 https://zarr.eopf.copernicus.eu/

11 https://eopf.copernicus.eu/eopf/

12 https://eopf-sample-service.github.io/xarray-eopf/

13 https://xcube-dev.github.io/xcube-multistore/

14 https://github.com/xcube-dev/xcube-cmems

15 https://github.com/xcube-dev/xcube-clms

16 https://github.com/esa-cci/xcube-cci/tree/main

5. VISUALIZATION AND INTERACTIVE ANALYSIS

Beyond data integration and processing, visualization
plays a key role in analyzing EO and gridded data and in
communicating results to others. xcube addresses this
demand through its interactive Viewer!® component as
shown in Fig. 3 — a powerful and intuitive visualization
tool connected directly to the backend xcube Server. It may
be run as a stand-alone webpage but is also available as part
of the Python package for interactive development within
Jupyter Notebooks. With only three lines of code, users can
start a new Server instance, add an xarray dataset to it, and
launch a new Viewer instance, which can then be explored
interactively inline or in a new tab, with the full set of
functionalities of the app.

Fig 3: xcube Viewer.

The Viewer recently introduced the chartlets?® extension,
enhancing analytical functionality. Chartlets are interactive,
customizable widgets allowing users to create specialized
visual analyses — such as histograms, scatter plots, and
time-series — directly within the Viewer. This significantly
enhances user experience, providing immediate insights
without additional external analysis and visualization tools.

Beyond its role as the Viewer’s back end, xcube Server is a
robust tool with an extensible architecture that enables low-
cost development of plugins for additional interfaces. It
currently supports the following API endpoints shown in
Table 1.

Table 1: xcube Server APIs

Endpoint Purpose
Ni Providing the viewer application and
viewer )
configurations.
Server information and maintenance
/meta .
operations
/places Places API providing vector and feature data
/datasets Datasets API for accessing data cubes
/tiles XYZ tiles API for retrieving tiles as PNG

17 https://github.com/xcube-dev/xcube-zenodo

18 https://earthsystemdatalab.net/data/#available-data-sources
19 https://xcube-dev.github.io/xcube-viewer

20 https://github.com/bcdev/chartlets

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

215 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408



https://doi.org/10.2760/2119408

EO Platforms, Data Access & Interoperability

[Poster Session]

from image pyramids
A . Timeseries API for getting time-series data
timeseries
from data cubes
Jstats Statistics API for computing statistics from
given coverages
Volumes API for getting a 3D volume from a
/volumes
data cube
/ows/stac OGC STAC API for the configured datasets
OGC Coverages API for the configured
/ows/coverages d
atasets
Jows/wimts OGC WMTS API (an OGC wrapper of the
more flexible XYZ /tiles endpoint)
AWS S3 compliant API for directly accessing
/s3 the configured datasets as lazily loaded Zarr
datasets

6. COMPUTATIONAL BACKEND: XCENGINE

xcengine is a recent addition to the xcube ecosystem,
providing tools to convert Python Jupyter Notebooks to
containerized, standalone ‘compute engines’. These engines
can be run both in interactive mode (providing an xcube
Server instance supporting a wide range of standard and
specialized APIs and an interactive xcube viewer instance)
and in batch mode as a standardized EO Application
Package, suitable for integration into larger cloud-based
processing workflows. xcengine thus helps to bridge the
local, interactive and cloud-based, workflow-controlled
processing models with minimal additional effort required
from the user.

7. EARTHCODE INTEGRATION

The EarthCODE initiative seeks to ensure that EO
workflows created by researchers on ESA platforms are
persistent, findable, and reproducible as shown in Fig. 4. A
key element for Python workflows developed in Jupyter
Notebooks is the deep-code package, part of the Deep Earth
System Data Laboratory (DeepESDL)?' project, which
leverages xcengine and xcube to facilitate efficient,
reproducible processing workflows on EO datasets. deep-
code enables detailed versioning, tracking, and publication
of workflows encoded in Jupyter notebooks as well as EO
datasets in the ESA Open Science catalogue. The software
also supports converting a Jupyter Notebook into an
interoperable, and reproducible EO Application Package,
which can then be executed on other compatible platforms.

21 https://earthsystemdatalab.net/

poldr @ =

DeepESDL Hub GitHub { Datacubes

deep-code
publish

workflows

EarthCODE Catalog

Fig 4: Simplified EarthCODE publication workflow.

8. CONCLUSION

The xcube framework significantly advances interoperable,
federated gridded data processing and dissemination tasks,
directly addressing diverse scientific community needs not
covered by the other standard packages of Python’s data
science ecosystem. It particularly facilitates working with
Earth Observation data in ESA’s growing ecosystem of
platforms and services and enables Python users to comply
with the emerging and challenging requirements for
reproducibility and interoperability.
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ABSTRACT

color33 is a cloud-based service that enables semantic
enrichment of optical Earth observation (EO) images such as
from Sentinel-2. It does not require training samples, is
worldwide applicable, explainable, and transferrable. The
service uses the SIAM software to categorizing reflectance
values into colour names (spectral categories). Thus, color33
supports general-purpose and sensor-agnostic downstream
applications. The service is based on a modular, containerized
architecture and facilitates automated EO workflows through
standards-based APIs using OGC API — Processes and
STAC. As a foundational component and building block for
workflows, color33 enables downstream applications and
offers a fast, flexible alternative to end-to-end classification
approaches.

Index Terms— Sentinel-2, Copernicus, semantic
enrichment, OGC-API Processes, STAC, automatic
workflows

1. INTRODUCTION

The Copernicus Sentinel-2 mission is now operational for ten
years with a continuous data delivery. To date, there are more
than 105 Mio. Images with 51 PB of data in volume. The
main goal has been since then to create information and, in
turn, maps that can be used to make decisions.

In the efforts to create workflows that suit different end-
user needs a multitude of different approaches have been
proposed. Today, many of them use deep learing (DL)
artificial intelligence (Al), requiring training samples and -
time. Several limitations and challenges exist and are
documented [1]. Notable limitations and challenges that we
want to address are the following four: (1) fixed legends, (2)
end-to-end workflows, (3) limited transferability, (4)
explainability.

(1) Due to relying on training, the legend, i.e., the output
classes, is dependent on the available training samples. Users
requiring different or extended sets of target classes face the
tedious work of creating new training samples.

(2) Al models are typically trained directly on the
reflectance values and do not provide reusable, intermediate

layers that can be used as building blocks for ad-hoc
combinations and analysis. All start with the original
reflectance values from scratch, although the work on
analysis-ready-data (ARD) removes some of the burden of
repeated processing steps on the user side [2].

(3) Training samples typically cover local areas. Al
models for worldwide use are limited by specific domain, e.g.
clouds [3] or a huge undertaking with very few examples,
such as the Dynamic World (DW) dataset [4].

(4) Operational Al models are not explainable. To
overcome this, explainable artificial intelligence (XAI) is an
active research field. However, end wusers requiring
explainability today are still facing challenges.

We present a cloud-based service, called color33, that can
be used without Earth observation (EO) knowledge and
parameters to perform a semantic enrichment of optical
satellite images worldwide. This service is called color33
because the main output is a scene classification map (SCM)
with a pixel-based categorization of reflectance values into
33 color names (spectral categories). It is a general-purpose
shared legend, that can be generated from other images such
as Landsat, Sentinel-2, or Sentinel-3.

2. BACKGROUND

Semantic enrichment (SE) is known from the Semantic Web
with the aim of meaningfully annotating documents to create
a larger framework to link them. Thus, a knowledge graph is
created, that can be queried and information that is only
implicitly available can be produced. In the context of EO
imagery we refer with SE to interpreted content of EO
imagery (i.e., mapping data to symbols that represent stable
concepts). In contrast to SE providing textual descriptions of
EO image content, we refer to dense SE on a per-pixel level.

It is noteworthy that SE should provide general levels of
semantic  granularity to allow interoperability and
transferability. For example, users requiring specific legends,
e.g., a specific vegetation type, can start with general
vegetation categories. This approach is also known from land
cover classification frameworks such as the FAO LCCS [5].
Here, a dichotomous phase precedes a modular-hierarchical
phase, stepwise approaching more specific target classes
from general ones. It supports reusable components and
significantly reduces processing time and workflow
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complexity as well as transferability to larger areas or at even
the entire Earth, given that terms such as
“water”/“vegetation” are sufficiently generalized.

In color33 we use the satellite image automated mapper
(SIAM) software [6], which generates low-level, generic,
data-derived SE that is application-independent. SIAM
encodes a per-pixel-, spectral-, and physical-model-based
decision tree (DT) that can be applied to any EO imagery that
is calibrated to at least top-of-atmosphere (TOA) reflectance.
Thus, no training samples or user-defined parameter are
required. Instead, SIAM uses a priori knowledge encoded
into the DT, mapping each calibrated observation to one
stable, sensor-agnostic multi-spectral colour name (i.e.,
category) based on its location in a multi-spectral reflectance
hypercube. The result is a discrete and finite vocabulary for
observations. This vocabulary (i.e., colour names/categories)
is mutually exclusive (i.e., every observation belongs to one
single partition) and totally exhaustive (i.e., the entire multi-
spectral reflectance hypercube is partitioned).

SIAM can produce different granularities (i.e. number of
colour names) from coarse (i.e., 18 colour names) to fine (i.e.,
96 colour names), as well as additional data-derived
information layers (e.g., multi-spectral greenness index,
brightness). The 33 colour names are shared across different

Stk 0 & P o .ﬁ,.‘:.&l v 5 3 O -
Fig. 1. Examples of SE for Sentinel-2 images
worldwide: Cloud & cloud shadow in Austria, Oasis in the
Sahara Desert, Volga river delta, Venice lagoon.

Consequently, like the SE for the Semantic Web, the
semantic enrichment of EO images does not aim to create
specific land cover classes, but is a first necessary, not
sufficient step within a larger modular processing chain that
is in contrast to the limited end-to-end classification.

3. ARCHITECTURE

This vision of a modular, hierarchical EO analytics workflow
can be translated into a scalable architecture based on several
independent cloud services of which color33 is the first of its
kind. This architecture is modern, exchangeable, and
scalable. Fig. 2. illustrates how color33 can be used in a
broader workflow. It is noteworthy that the direct usage of
color33 outputs themselves is limited if the analysis goal is
beyond very simple categorisation, e.g., a vegetation mask.
Thus, users can run both Jupyter notebooks on-premise after
obtaining the semantically enriched images or connect to
external cloud-based processes, although they are currently
limited.

color33 employs a cloud-native, scalable, container-based
architecture. While users can interact with a graphical user
interface (GUI) or a command-line-interface (CLI) for

automated usage and batch processing as a frontend, the
backend consists of several interconnected steps that require
internal synchronization between them (Fig. 3).

API

Image Access Client /
archives color33 +_  End-user
- semantic - \\‘ O
enrichment 2
Image API - Processes ‘_"__‘
archives
[ exmmmm—

Fig. 2. Conceptual view on the usage of color33. It is a
building block of a service-based architecture.

The service is offered through a standardized OGC API
— Processes endpoint and users only specify the area-of-
interest (AOI) and the time interval as well as optional
settings, e.g., the coordinate reference system (CRS). The
API is implemented in a Python-based Django backend and
uses a PostgreSQL database system with the PostGIS spatial
extension for persistent storage.

color33 automatically obtains the accessible links to the
images that matches the search parameter. Several archive
connectors allow flexible use of different archives, specified
through administrative settings during the deployment.
However, for big data processing, the use of an archive in
close proximity to the processing deployment is preferred. In
European environments examples are the Earth Observation
Data Centre (EODC), CREODIAS, or the Open Telekom
Cloud (OTC).

The processing includes pre-processing (PP), the SE and
an output phase. The PP includes format conversions,
potentially re-projection, and stacking the bands to a six-band
composite, which constitutes the spectral signature as input
to SIAM. SIAM is scaled through OpenMP in a multi-CPU
setting. The parameter of the number of CPUs is tuned by the
administrator based on the available CPUs and the number of
images that are supposed to be processed in parallel. Using
elastic cloud virtual machines (VMs) this parameter can be
adjusted during re-sizing. The final steps include the
generation of cloud-optimized geotiffs (COG) and creating a
STAC catalogue.

The entire process is managed using Prefect as a
workflow orchestration tool. We chose Prefect because it is
developed in Python like the color33 service (except SIAM)
and uses annotations as an easy approach to elevate Python
scripts into managed workflows without extensive
reprogramming. This is ideal for projects that start small but
require a managed workflow at a later stage. In color33,
Prefect manages the described tasks in a job with subflows
that can be individually controlled. In situations with more
requests than available resources, the jobs are queued and
sequentially processed. Priority queues allow bypassing in
case of important jobs. Like the SIAM task, the number of
concurrent subflows is a tuning parameter that scales with the
available resources. Experiences did not reveal problems
scaling to common cloud flavours ranging from xlarge to
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8xlarge and did not require anything else than scaling the VM
and updating the tuning parameters.

The output is made available to the users as COGs within
a spatio-temporal asset catalogue (STAC). Each user has their
own STAC and the images of one job (typically a complete
AOI and a time interval) are added to a new collection, while
the job name presented to the user through the GUI or CLI is
the collection name. Thus, users’ STACs are growing over
time allowing a very flexible downstream use using standard
tools, e.g. STAC clients in different programming languages
or GIS such as ArcGIS or QGIS. The users’ STAC are
protected through token-based access, which they can obtain
using their username and password, for a better security in
programming-based usage.

For stable operation of the color33 service, Keycloak is
used for identity management providing standard OAuth
authentication services. Authorization is accomplished using
the Django backend. System and performance metrics are
collected via Grafana. Several test jobs a day ensure
consistency in the operation and detecting errors rapidly.

color33 Di 0GC
ango e
PostareSQL bajckeud \.-11’1— Processes O
/ PostGIS request
database ‘_"__ \
Trigger COG STAC —
access -
T Client /
Prefect workflow I End-user
Obtain Pre- ' COG &
—— o Pl||| Parallelised STAC
images v processing semantic eneration
Archive enrichment
connector

Fig 2. Architecture overview of the color33 service.

4. USE-CASE EXAMPLES

Application for SE-based analysis are as varied as the
questions they are meant to address and range from ad-hoc
analysis to dedicated processing pipelines. They include
application scenarios such as producing tailored land cover
classifications, automated asset monitoring, multi-temporal
change-detection and emergency response activities. As a
use-case example, analysing the spread of forest fires based
on color33 outputs allows for both continuous monitoring as
well as historical analysis and can be easily automated by
simple computation of SE categories (Fig 3). A major benefit
is the full automation including cloud-free image selection
and worldwide transferability without changes.

Fig 3. Detail view of the change map of the forest fire in

Teneriffe, Spain, on 15.08.2023 obtained using the
example workflow and color33's semantic enrichment.

Monitoring damages of vegetation and crops due to
droughts is another use-case where fully automated
categorical time series analysis can be beneficial. Questions
such as how long, how large can be answered with countable
observations. The automation and transferability of color33
is again a major advantage and facilitates production of masks
and layers that can serve as the basis for such efforts (Fig 4)
In contrast to approaches based on continuous variables, e.g
NDVI, the vegetation duration can be analysed providing
useful complementa: infon‘gation Fig 5).

o

: y AN 2 >
Fig 4. Comparison of a Sentinel-2 scene and overlayed
with a mask produced from vegetation categories.

et 7 P L
Fig 5: 2021 vegetation mask for Almeria (Spain)
produced via color33. Note: Values represent the
number of vegetation observations aggregated over the
whole year.

5. DISCUSSION

Cloud-based approaches are a now common and typical, but
typically offer locked-in processing chains, e.g. Google Earth
Engine, or specific applications, e.g. Sen4CAP.

color33 provides a building block for a multi-service-
based architecture that can consume cloud services, e.g.
image archives, but also be consumed by cloud services, e.g.,
for downstream applications. This is accomplished by
standards-based interfaces. color33 is operationally available
at https://color33.i0 and operated by the company Spatial
Services GmbH. As color33 is a new service, only few
downstream applications were developed so far but it has
been commercialized in selected use cases with very
promising results.
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The decentralized system goes beyond technical
considerations of a federated service-based architecture: The
SE provided by color33 is not the final output. Instead, it is a
building block of a larger environment, avoiding the typical
end-to-end classification, similar to the FAO LCCS.
Primitives, i.e. spectral categories, are intermediate products
for easy reuse to generate final products, e.g., a specific land
cover map with a tailored legend. The DW is meant to be used
similarly [4]. A main difference is that the DW lacks a generic
approach using spectral categories, which is a colour naming
and not land cover classes. Indicated by the number of classed
in the DW (nine, without cloud) in comparison to at least 33
spectral categories (including cloud) of color33, the need for
a dynamic worldwide classification is evident.

In current, ongoing discussions of energy consumption,
lack of explainability, transferability, and reusability of DL
approaches, more approaches that overcome these limitations
will be developed. Although color33 does not yet provide
land cover classes, as they can be generated downstream, it is
a step to overcome these limitations. The algorithm is
explainable, does not require training samples or energy-
consuming training, is worldwide applicable, and can be used
for different EO, e.g. Landsat, Sentinel-2, Sentinel-3, or very-
high-resolution (VHR) [6].

The highest impact and usability of color33 is achieved
with dense, long time series of EO images. A major
advantage is that a categorical sequence is very informative
about the Earth’s surface dynamics and leverages the fully
automated approach, shown by the two use-cases. Other use-
cases for agricultural monitoring [7] or vegetation dynamics
[8] demonstrated potential.

color33 was developed with scalability in mind, uses
OpenMP and Prefect for parallelization at different levels.
Scaling up and down works seamlessly. The algorithm itself
has been verified [9], although validation of downstream
applications needs to be done in case-by-case on user side.

There are also limitations, e.g., operationalization of
downstream applications needs to be tackled to leverage full
potential. Categorical variables, although very small (e.g.
approx. 30 Mb / Sentinel-2 image) are limited in their re-
usability in different CRS. Reprojection is limited (e.g.
nearest neighbour) as it may have a strong effect on spatial
accuracy. Reprojection is required prior to SE and needs to
be repeated for different CRS. However, only few CRSs are
usually required, e.g. UTM or a national grid.

6. CONCLUSION

color33 is a cloud-based service for SE of optical EO images,
in the first development for Sentinel-2. In contrast to
approaches based on DL, SE provided through color33 is on
a lower semantic granularity supporting reusability and
transferability. Users can include the results in cloud-based or
local workflows to refine the semantics towards their target
classes using spatial and temporal neighbourhoods or series,
or by additional geodata such as a digital elevation model and

derivatives such as height, slope, or aspect. This approach is
similar to the FAO LCCS concept and is different from
approaches that create target classes from reflectance values.
Still, if color33 is considered as a building block, it can be
included in DL-based workflows.

We showed the usability and potential in use-cases
focusing on automation, stepwise refining the target legend,
transferability, and explainability. Since color33 is applicable
worldwide, any application can be instantiated by users on
their own.

Future work will include an extension to additional EO
satellite images (e.g. Landsat or Sentinel-3) and providing
additional analysis capabilities.
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ABSTRACT

The Earth Observation Processor Framework (EOPF)
Toolkit is a community-driven set of resources that
facilitates the adoption of the Zarr data format for
Copernicus Sentinel data users, specifically targeting users
who are new to cloud computing. The Sentinels EOPF
Toolkit is developed by Development Seed, thriveGEO and
Sparkgeo, with a group of champion users. The main
resource that has been developed is EOPF 101, a
user-friendly online book consisting of documentation,
Jupyter Notebooks and open-source libraries and plug-ins
that showcase the use of Zarr format Sentinel data for
applications across multiple domains. In addition,
community engagement activities such as a notebook
competition helpsSentinel users to explore the new data
format while getting community support.

Index Terms— cloud-native data formats, Zarr, EOPF,
Sentinels, user engagement, earth observation

1. INTRODUCTION

Over the last few years, cloud-native tools like STAC for
data discovery and access and cloud-optimized data formats
such as Zarr and COGs have emerged and are currently
revolutionising how scientific communities work with
large-scale geospatial data. The European Space Agency
(ESA), through the Earth Observation Processor Framework
(EOPF), is currently reprocessing Sentinel-1, -2, and 3 data
into cloud-optimized data formats. Through the EOPF
Sentinel Zarr Samples Service, Copernicus Sentinel data
users get early access to “live” sample data from the
Copernicus Sentinel missions -1, -2 and -3 in the new Zarr
data format.

The EOPF Toolkit [1,2] engages the Sentinels user
community to facilitate the adoption of the new Zarr data
format, starting with the data published by the EOPF
Sentinel Zarr Samples Service [3]. The Toolkit team acts as
test users of the Samples Service data. In addition, the

resources being developed complement existing user
engagement efforts by specifically targeting users who are
new to cloud computing.

2. ABOUT EOPF

The Earth Observation Processor Framework (EOPF) is an
initiative led by the European Space Agency (ESA)
designed to modernise and harmonise data from the
Copernicus  Sentinel Missions. With the upcoming
Copernicus Expansion missions in 2028, the amount of data
produced daily will significantly increase. EOPF is ESA’s
solution to organise Sentinel data in a way that works
seamlessly with modern cloud technology. This will make it
easier to find, access, and process the information needed.
The new approach provides user-friendly access, simplifies
maintenance, and helps keep costs down, guaranteeing
reliable access to Sentinel data in the long run.

Under the EOPF Sentinel Zarr Sample service, ESA
provides access to re-engineered EOPF Zarr products. The
Sentinel-1, Sentinel-2, and Sentinel-3 missions are the first
to be re-processed and have been made available under the
EOPF Sentinel Zarr Samples STAC catalog [6].

3. ABOUT ZARR

Zarr is an open-source, cloud-native protocol for storing
multi-dimensional arrays. It is specifically designed to work
well with cloud storage and larger-scale computing systems
and can be seen as a cloud-native alternative to older
formats like HDF5 or NetCDF. A key advantage to
traditional formats is that the Zarr specification stores large
multi-dimensional arrays in chunks, which are smaller
pieces of the larger array. Chunks can be accessed
individually, or multiple chunks can be read and written in
parallel, making data access highly efficient.

Zarr works across different storage systems, including local
file systems, cloud object storage, as well as distributed file
systems, offering a greater flexibility compared to traditional
file formats.
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In addition, Zarr embeds metadata directly alongside the
data. This makes Zarr self-descriptive, as each data array
contains descriptive information about itself, such as data

type, dimensions or additional attributes.

4. EOPF RESOURCES

The EOPF Toolkit contains several useful resources to help
Sentinel data users get started with using the Zarr data
format. These resources include: an online book, open
source integrations and plug-ins, case studies that showcase
the use of Zarr format Sentinel data for applications across
multiple domains and a notebook competition. All materials
are open source and freely accessible online on Github [4].

The resources that have been developed under the
EOPF toolkit are addressing common questions that users
are asking around data access and use resulting in a
comprehensive resource about accessing and processing
Sentinel Zarr data. The toolkit highlights example
workflows by champion users and gives the user community
the chance to try it out themselves via a notebook
competition.

4.1. EOPF 101

The EOPF 101 online book [5] is a community resource
where data users learn how to discover, access and process
data from the EOPF Sentinel Zarr Samples Service by ESA.

The book is divided into five chapters: (i) Introduction to
EOPF, (ii) Introduction to Zarr, (iii) Introduction to EOPF
STAC, (iv) Tools to work with Zarr and (v) EOPF in Action.

Chapter 1 - ‘Introduction to EOPF’ provides a high-level
easy-to-understand overview of the EOPF project by ESA.
Chapter 2 - ‘Introduction to Zarr’ provides a practical
introduction to the cloud-optimized Zarr data format. It
shows the advantages of the format, gives an overview of
the data structure and includes performance comparisons
with other formats, too. Chapter 3 - ‘Introduction to EOPF
STAC’ gives easy-to-understand practical examples on how
to discover and access data with the EOPF STAC catalog.
Chapter 4 - ‘Tools to work with Zarr’provides a collection
of practical examples of libraries and plug-ins that support
users in working with data from the EOPF Samples Service.
Chapter 5 - ‘EOPF in Action’ is a collection of hands-on
practical end-to-end workflows featuring the use of Sentinel
Zarr data in different application areas. Part of these case
studies are co-developed with a set of early adopters, also
referred to as champion users.

4.2. Open source integrations and plugins

As part of toolkit a series of open-source integrations and
plugins for using the EOPF Sentinel Zarr Samples Service
(Table 1). These libraries and plugins will make it easier for
users to use the Samples Service data together with their

favourite programming languages and software. Table 1
provides an overview of integrations and libraries the EOPF
toolkit team is currently working on.

Table 1. Name and description of plugins and

integrations
Plugin / Library Description
STAC + Zarr EOPF Zarr Access from STAC
GDAL Zarr Driver Enhanced GDAL driver for
EOPF Zarr
QGIS Plugin Native QGIS integration for
EOPF Zarr

R Integration R libraries for EOPF Zarr access

Julia Integration Julia packages for EOPF Zarr

TiTiler Multidim Multidimensional data support

for TiTiler

Stackstac Optimizations | Enhanced Stackstac for EOPF

4.3. Case studies

A set of applied case studies along with Jupyter Notebooks
will be developed by a set of champion users. These
champion users bring specific domain expertise and will
provide example workflows for a variety of applications.
Each Champion User will also share their experience
working with Zarr as well as the advantages and
disadvantages they see using the new data format for
relevant workflows. The Jupyter Notebooks will serve as
easily modifiable templates for Sentinel data users to
develop their own workflows.

The case studies can be categorised as thematic and
technical case studies. Technical case studies demonstrate
workflows such as Zarr with QGIS, Zarr with R, multi-scale
Zarr and dataset screening with rio-tiler and lonboard. On
the other hand, thematic case studies demonstrate workflows
from different application areas such as wildfire assessment
with Sentinel-3 and Sentinel-2 data or monitoring coastal
dynamics in cloud-prone regions using Sentinel-1, or
flooding analysis in Valencia with Sentinel-1.

4.4. Notebook competition

To engage with Sentinel data users interested in working
with data from the EOPF Samples Service, a notebook
competition will take place between October 2025 and
January 2026. During this competition, the Sentinel data
user community is invited to try out the new Zarr data
format for themselves by creating workflows in Jupyter
Notebooks. A set of judges will decide at the end on the top
ten notebooks based on published evaluation criteria. The
top ten notebooks will be published on Github and the
winning notebook authors will be announced in an online
webinar.
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5. CONCLUSION

The resources from the EOPF Toolkit help Sentinel data
users who are new to cloud computing become familiar with
working with the Zarr data format in general and
reprocessed Sentinel Zarr data from the EOPF Zarr Samples
Service in particular. The additional development of
open-source integrations and plugins enable users to explore
the reprocessed sample data in their preferred programming
languages and tools.
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ABSTRACT

A new data format will be introduced for all Copernicus
Sentinel mission data. This marks a significant change in the
distribution and access of Sentinel data for users and data
providers. The EOPF Sentinel Zarr Samples service
provides early access to the new Zarr data format with the
objective to ensure user adoption. Jupyter notebooks and
open-source libraries are developed to support users on their
journey with the new format. Benchmarks of the EOPF Zarr
data format in comparison to the legacy SAFE format are
presented. Various benchmarking scenarios are defined to
give an objective comparison and to highlight potential
challenges and opportunities inherent to this data format
change for users and data providers.

Index Terms— Sentinel, Zarr, Cloud-native, Data
formats

1. INTRODUCTION

Over the past decade, the operational data processors for
Copernicus Sentinel missions have produced vast amounts
of Earth observation data, supporting a wide range of
scientific research and commercial applications. However,
the current data format used by ESA, known as SAFE
(Standard Archive Format for Europe), has become
increasingly outdated. In response, ESA initiated the
transition to a modern, cloud-native format based on Zarr.
This fundamental change is supported by the EOPF Sentinel
Zarr Samples service, offering early access to the new data
format and relevant documentation to guide users through
this transition.

This evolution is key to enabling a cloud-friendly,
interoperable data ecosystem that enhances accessibility and
integration with today’s data processing platforms. The
overarching goal is to harmonize data formats across all
Copernicus Sentinel missions, facilitate scalable cloud-
based processing, and ensure seamless compatibility with
modern data science tools. The initiative is designed to
minimize disruption while maintaining continuity for
existing users, applications, and services.

2. SERVICE COMPONENTS

The EOPF Sample Service consists of several core
components. The EOPF Core Platform transforms incoming
SAFE-format data into the new cloud-optimized EOPF Zarr
format and offers access through STAC and S3 APIs. The
EOPF Analytical Hub provides additional services for users,
including JupyterHub, Dask, and a STAC Browser. This
toolset was selected with the objective to lower the barrier to
cloud-based applications and to enhance data discovery
capabilities. Furthermore, a strong focus of the service is on
user support and engagement. High quality Jupyter
notebooks are provided complementing and demonstrating
the use of open-source software libraries exploiting the new
data format. User engagement is carried out through regular
user interactions via webinars, newsletters and moderation
of a community support forum.

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

225 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

EO Platforms, Data Access & Interoperability

[Poster Session]

) X
wcr? e =
s
— Ot Medium
O— 49! (&)
By —
| G| — =z~
_ . T
555555 | sTAC ® 3 ”;‘ cpse

Fig. 1: EOPF Sentinel Zarr Samples Service components

2.1. EOPF Core Platform

The EOPF Core Platform is deployed on a robust and
scalable infrastructure hosted and operated by EODC. The
re-formatting system is part of the EOPF Core Platform,
responsible for converting existing data from the Copernicus
Data Space Ecosystem (CDSE) in the current SAFE format
into the new Zarr-based EOPF format. At the core of this
system is the workflow engine, powered by Argo
Workflows and related projects (Argo CD, Argo Events).
Argo Workflows is an open-source container-native
workflow engine for orchestrating parallel jobs on
Kubernetes. The Object Storage Service is realized via
CEPH, an open-source storage platform, exposing a S3
compatible interface (S3 API). The STAC API, based on
eoAPI, enables interactive exploration of the EOPF Zarr
data offering. The STAC and S3 API is behind an API
Gateway to enforce security policies as required.

2.2. EOPF Analytical Hub

The EOPF Analytical Hub is a central component of the
service offering with the objective to facilitate user adoption
activities by providing a robust framework for data analysis
and computation. It includes the services JupyterHub, Dask
(Dask Gateway) and STAC Browser, all orchestrated on
Kubernetes to guarantee scalability. The EOPF Analytical
Hub is a fully managed service providing pre-configured
cloud environments to interact with the new EOPF Zarr
data.

EOPF Sentinel Zarr Samples Service STAC API ||

Fig. 2. STAC Browser

2.3. User Support and Engagement

A suite of Jupyter Notebooks has been developed by
consortium experts, including members of the Pangeo
community to support user adoption. These notebooks
demonstrate the practical use of the new format and are
regularly refined based on user feedback. Notebooks are
complemented by a set of open-source libraries and plug-ins
such as the xarray-eopf backend'. Development
contributions to standard libraries, such as GDAL, are
carried out to further enhance the user adoption in other
communities. Community engagement will be done via
various channels. The centerpiece of the activity is the
website, holding and linking all relevant resources for users.
Users can subscribe to the EOPF Zarr Newsletter to get all
the latest information. In total, 9 webinars are planned about
the EOPF Zarr format and to showcase dedicated use cases
demonstrations. Furthermore, a community support forum is
actively maintained and managed for direct interaction with
users and to collect feedback.

3. QUALITY ASSURANCE

Quality assurance procedures are implemented to ensure the
service operates according to functional and non-functional
requirements. GitHub and GitHub Actions are utilized to
implement these quality assurance procedures as depicted in
Fig. 3. Test cases are executed regularly via GitHub Actions
against the various user facing components of the EOPF
Sentinel Zarr Samples service.

! https://github.com/EOPF-Sample-Service/xarray-eopf
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Fig. 3. Quality assurance approach

One important aspect of the quality assurance is to
guarantee the EOPF Zarr standard and its specifications.
The conformance of the products is verified in respect to its
metadata properties, the structure of the Zarr product and the
STAC related entities. The underlying testing framework
used will be presented in the final paper. Moreover,
benchmarking tests of the EOPF Zarr products are
conducted.

4. PRODUCT BENCHMARKS

The EOPF Zarr product benchmarks will focus on data
access performance in comparison to the legacy format
SAFE and potentially other data formats. Objective
benchmark tests will be developed considering the
fundamental differences in data format and access between
the formats. Furthermore, the performance of the EOPF Zarr
data format on different cloud object storage solutions will
be presented. A set of scenarios will be developed for all
benchmarks, considering the various options provided by
Zarr to organize data. These options will represent typical
access patterns and use case scenarios resulting in different
data chunking and compression approaches of the data. The
performed benchmarks will analyze the resulting storage
requirements and access speeds compared to the SAFE
format and others.

5. CONCLUSION

Introducing a new data format for all Copernicus Sentinel
data products represents a significant change in how data get
consumed. The present paper outlines the challenges and
opportunities inherent to this data format change for data
providers and users.
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ABSTRACT

Remote sensing applications focused on hyperspectral
imaging have proven to be able to produce detailed and
comprehensive results in Earth Observation applications
compared to multispectral data. All recent implementations
of hyperspectral data, particularly those integrating machine
learning tools, suffer from relatively small datasets.
PRISMA mission, launched in 2019 by Italian Space
Agency (ASI), in specific, provides significant data through
its high spectral resolution, but it faces low revisit time. In
light of this, the production of synthetic hyperspectral
PRISMA images starting from multispectral data, becomes
all the more important. This work has explored different
Neural Network (NN) models, such as Multi Layer
Perceptron (MLP) and Generative Adversarial Networks
(GANs) to generate synthetic PRISMA data and further
proposes a number of new technologies or combinations
thereof, in the endeavor to optimally generate synthetic
hyperspectral data from multispectral ones, acceptable for
the purposes of training learning models.

Index Terms— PRISMA, synthetic data, hyperspectral
data generation, neural network, MLP, GAN

1. INTRODUCTION

Demand for high volumes of hyperspectral data is
continuously growing due to their usefulness in a variety of
fields ranging from fields like agricultural studies,
climatology, environmental science, land classification,
mineral recognition and mapping, lithologic mapping,
mineral resource prospecting, mining environment
monitoring, and leakage monitoring of oil and gas [1, 2].
Remote sensing technologies have seen remarkable
advancements over the past few decades, offering
unprecedented capabilities in environmental monitoring,
resource management, and scientific research [3]. Among
these technologies, hyperspectral imaging has emerged as a
powerful tool for capturing detailed spectral information by
having very narrow bands available across the entire VNIR
range of wavelengths, providing insights that go far beyond
the capabilities of traditional multispectral imaging.

However, despite the promise of hyperspectral imaging,
several challenges remain, particularly when it comes to the
collection of the acquisition and the utilization of robust data
for these applications.

A key challenge in remote sensing, especially with
hyperspectral imagery, lies in the availability of large,
high-quality datasets. The application of machine learning
methods often requires vast amounts of annotated data to
build effective predictive models. Unfortunately,
hyperspectral datasets, especially those derived from
specific platforms such as the PRISMA (PRecursore
IperSpettrale della Missione Applicativa) satellite by Italian
Space Agency (ASI), are typically limited in both size and
accessibility. While the PRISMA satellite provides
hyperspectral data with high spectral resolution, its data
acquisition is both costly and challenging. This makes it
difficult to rely solely on real-world data for training
machine learning algorithms, which depend on large
volumes of labeled examples.

In light of these limitations, the generation of synthetic
hyperspectral images has become a crucial area of research
[4, 5]. Synthetic data can offer a solution to the scarcity of
real-world data by providing an accessible and controlled
environment in which to generate large, diverse datasets.
Specifically, the focus of this work is on developing
synthetic PRISMA-like images that can be used for training
machine learning models. While the concept of synthetic
data generation has been explored in other areas of remote
sensing, the production of high-quality synthetic PRISMA
images remains a relatively unexplored domain. Currently,
there are little to no existing metrics or benchmarks for
entirely synthetic PRISMA data due to such generation not
having been previously attempted in full.

This paper investigates various technologies and
approaches for generating synthetic hyperspectral images
that closely mimic the characteristics of PRISMA data,
produced from multispectral Landsat 8/9 data. These two
missions share the same ground spatial resolution with pixel
size of 30 m, which is convenient to avoid and limit
discrepancies in the production of synthetic data. The
acquisitions of the two satellite sensors were chosen in the
same area and on the same day, ensuring matching pairs.
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The primary objective is to explore the usage of Feed
Forward Networks (FFNs) to generate synthetic imagery
with particular focus on Multi Layer Perceptrons (MLPs)
and Generative Adversarial Networks (GANs) that can
produce synthetic data that is not only computationally
efficient to generate but also sufficiently representative of
the original data.[11] The remainder of this paper is
structured as follows: Chapter 2 provides a review of the
different methods that can be used to synthetically generate
image data, focused in particular on deep-learning based
approaches to synthetic generation. Chapter 3 discusses the
experimental results as a proof of concept of PRISMA-data
generation. Chapter 4 presents a few proposals regarding
other techniques that are explored and compared with what
has already been done.

2. MATERIALS AND METHODS

PRISMA data were chosen, specifically examining the
VNIR range [1]. Attempts at synthesizing hyperspectral data
have already been made for various applications: of
particular note is pansharpening [6]. However, wholesale
generation of hyperspectral PRISMA data out of a
multispectral source is still a largely unexplored direction.

Several approaches can be taken to the generation of
hyperspectral data, for example methods that employ band
interpolation between the multispectral and hyperspectral
bands [6, 7]. However these standard approaches fail when
met with more complex band relationships that do not
directly correlate. This necessitates the usage of more
powerful modes of simulation: in particular, deep learning
techniques [8].

The first technique used in this study is that of a deep
feed-forward network (FNN), specifically a Multi Layer
Perceptron (MLP), which is used for simulating the
relationships between multispectral and hyperspectral bands.
In this study we also discuss two potential alternatives to
feed-forward networks.

The second technique used in this study is a Generative
Adversarial Network (GAN) which supports the necessary
structures for learning complex relations between input and
output features [8, 9]. GANs have a history of being used in
the field of remote sensing for similar applications [10-12].

However, few attempts have been made to generate
PRISMA data specifically and the production of synthetic
PRISMA images remains a mostly unexplored field, with
room for further experimentation [8].

This study relies on two primary data sources:
hyperspectral PRISMA and multispectral Landsat 8/9
imagery. The PRISMA data consists of 63 bands spectrum
in the VNIR with reflectance values expressed in the form of
digital numbers (DN) scaled to a [0,1] range. The Landsat
8/9 data brings a total of 5 bands in the VNIR range of the
spectrum.

Part of preliminary preprocessing operations includes the
corregistration of the acquisitions from the two sensors, to

ensure precision in the estimation of the synthetic spectra.
Extraction of reflectance values for each channel present in
the VNIR range is then conducted for both satellite datasets.
A deep learning approach was employed to predict the
synthetic hyperspectral PRISMA data based on multispectral
Landsat 8/9 input. The model architecture is a FFN with
parameters optimized over multiple trials. It consists of a
traditional multi-layer fully connected neural network,
implemented using the Keras deep learning framework with
TensorFlow backend. An optimization library (Optuna) is
used and repeated trials are performed to check for the
optimization of layer count, neuron count, epoch and batch
size and especially activation function choices, selected
from a pool of the following: ReLU, Sigmoid, ELU, SeLu,
Softplus, Tanh, Leaky ReLU, SiLU, ReLU6, GELU and
lastly, Linear.

2.1. Training Procedure

The training procedure involved making use of a dataset of 4
pairs of images, of 3548 data points, augmented with an
additional 1787 simulated points and then splitting the
dataset into training and validation subsets. The training
subset contained 70% of the available Landsat 8/9 and
PRISMA image pairs, while the validation subset contained
the remaining 30%. Data augmentation techniques such as
random rotation, scaling, and flipping were applied to the
training set to improve model generalization.

The architecture for the MLP consists of two layers of 52
and 22 neurons respectively, as well as GELU and ReLU6
activation functions, followed by a dropout layer (float =
0.1163) and a Linear activation function.

The training architecture for the GAN consists of a
generator with three processing branches. The first branch is
a dense 64-neuron layer, followed by batch normalization,
while the second branch is a skip connection branch based
on the concept initially presented in ResNet architecture
[13]. This is followed by a secondary dense layer of 32
neurons. Lastly, the Noise Processing branch which
processes noise input through a minimal 16-neuron dense
layer with ReLU activation and batch normalization. These
three branches are concatenated to form a coherent pipeline
that feeds into a progressive expansion architecture with
three layers. Based on 30 total experiments (each containing
200 trials) with parameter variation and the optimal values
for the network parameters were derived. .

Figure 1 and Figure 2 show the behaviours of the Model
Loss for MLP and GAN models during the training phase
according to the number of epochs.
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Fig. 1. Plot of model loss for the MLP model during
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Fig. 2. Plot of model loss for the GAN model during
training phases

3. RESULTS

Following the above training procedure, from both models
63 synthetic hyperspectral bands were simulated starting
from 5 multispectral Landsat 8/9 acquisition.

Model performances were assessed by evaluating the
synthetic PRISMA reflectances obtained against the original
ones from the validation set. Metrics were compared across
the whole spectra. These include Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Pearson Coefficient
and Coefficient of Determination (R?) and were used to
quantify the accuracy of the model’s predictions.

Table 1. Results of quality metrics of the MLP NN
training from the original and synthetic PRISMA
images.

Set R? RMSE MAE Pearson
Train 0.479 0.016 0.01 0.692
Test 0.447 0.017 0.011 0.668
Validatio
n 0.441 0.017 0.011 0.664

Table 2. Results of quality metrics of the GAN NN
training from the original and synthetic PRISMA

images.
Set. R? RMSE | MAE Pearson
Train 0.843 0.097 0.069 0.91
Test 0.844 0.097 0.068 0.918
Valigaﬁo 0.842 0.098 0.069 0.918

While the RMSE and MAE for the GAN approach is worse
than the MLP network, keeping in mind that the generator
has to compete against a robust discriminator architecture,
the R? score is significantly better, indicating a much
stronger correlation. Synthetic MLP samples and synthetic
GAN samples in RGB representation are provided in Figure
2 and Figure 3.
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Fig.3. Visual comparison in RGB composite of the
original multispectral Landsat 8/9, original
hyperspectral PRISMA and synthetic PRISMA
generated with the GAN model.

Synthetic (0,2)
14842 points

PRISMA (0,2)
14842 points

Landsat (0,2)
14842 points

38085 8085

om0 soso | §
H i H i
538075 | M 5 38075 ¥

B070 8070

1334 1335 1336 13.97 1338 1399 1340 1334 1335 13,36 1337 1336 1339 1340 1334 1335 1336 1337 1338 13.39 1340
Longitude Longitude Longitude
Landsat (1,0) PRISMA (1,0) Synthetic (1,0)
50785 points 50785 points 50785 points

816 816

¥
BIS] b ®15
814 FE B14
y w1344 P EE)
SR - £ m12
5 35

B11 B1L
B10 4 ®10

809 { 8 809

1320 1321 13.22 13.23 13.24 13.25 13.26 1320 13:21 13.22 1323 1324 1325 13.26 1320 132

2 13.23 13.24 13.25 13.26

Landsat (1,1)
50355 points

PRISMA (1,1)
50355 points

Synthetic (1,1)
50355 points

816 116 g3

815 ®15

814 ERTE

813 B3 |

gan
B

§»n

B11

810 810

809 809

1327 1328 13.29 13.30 13.31 1332 1333 1327 13.28 1329 1330 1331 13.32 1333
Longitude Longitude Longitude

Fig.4. Visual comparison in RGB composite of the
original multispectral Landsat 8/9, original
hyperspectral PRISMA and synthetic PRISMA
generated with the MLP model.

4. CoNCLUSIONS AND FUTURE RESEARCH

The results obtained from the two NN models are promising
for the application of simulating hyperspectral bands starting
from multispectral ones. The MLP approach certainly yields
promising results, but the GAN approach has proven to be
significantly better at synthesizing images. The GAN
network presented in this study currently simulates images
at a higher similarity than the known benchmarks, reaching
values of R? of 0.84 [8].

Future alternatives for research include exploration of
alternative network architectures within the MLP or GAN
umbrella. The implementation of CNNs, Variational
Autoencoders (VAEs) and diffusion techniques could also
prove promising outcomes.

This study was carried out in the framework of
AIOBSERVER  project (https:/ai-observer.eu/) titled
”Enhancing Earth Observation capabilities of the
Eratosthenes Centre of Excellence on Disaster Risk
Reduction through Artificial Intelligence”, that has received
funding from the European Union’s Horizon Europe
Framework Programme HORIZON- WIDERA- 2021-
ACCESS-03 (Twinning) under the Grant Agreement No.
101079468.

5. REFERENCES

[1] Gianinetto, Marco & Lechi, Giovanmaria. (2004). The
development of Superspectral approaches for the improvement of
land cover classification. Geoscience and Remote Sensing, IEEE
Transactions on. 2670 - 2679. 10.1109/TGRS.2004.835347.

[2] Li Zhizhong et al., "A review on the geological applications of
hyperspectral remote sensing technology," 2012 4th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), Shanghai, 2012, pp. 1-4, doi:
10.1109/WHISPERS.2012.6874235.

[3] Schaepman, M.E. & Green, Robert & Ungar, Stephen &
Curtiss, Brian & Boardman, Joe & Plaza, Antonio & Gao, Bo-Cai
& Ustin, Susan & Kokaly, Raymond & Miller, John &
Jacquemoud, Stéphane & Ben-Dor, Eyal & Clark, Roger & Davis,
Curtiss & Dozier, Jeff & Goodenough, David & Roberts, Dar &
Swayze, Gregg & Milton, E.J. & Goetz, Alexander. (2006). The
Future of Imaging Spectroscopy Prospective Technologies and
Applications. International Geoscience and Remote Sensing
Symposium (IGARSS). 2005 - 2009. 10.1109/IGARSS.2006.519.
[4] D. A. Abuhani, I. Zualkernan, R. Aldamani and M. Alshafai,
"Generative Artificial Intelligence for Hyperspectral Sensor Data:
A Review," in IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 18, pp. 6422-6439, 2025,
doi: 10.1109/JSTARS.2025.3538759.

[5] C. Giacomo et al., "The Hyperspectral Prisma Mission in
Operations," IGARSS 2020 - 2020 IEEE International Geoscience
and Remote Sensing Symposium, Waikoloa, HI, USA, 2020, pp.
3282-3285, doi: 10.1109/IGARSS39084.2020.9323301.

[6] Paul, S., & Kumar, D. N. (2020). Transformation of
Multispectral Data to Quasi- Hyperspectral Data Using
Convolutional Neural Network Regression. IEEE Transactions on
Geoscience and Remote Sensing, 1-17.

[7] Hoang, Nguyen & Koike, Katsuaki. (2017). Transformation of
Landsat imagery into pseudo-hyperspectral imagery by a multiple
regression-based model with application to metal deposit-related
minerals mapping. ISPRS Journal of Photogrammetry and Remote
Sensing.

[8] M. Monaco, G. A. Licciardi, M. L. Battagliere, R. Guarini, M.
G. C. A. Cimino and L. Candela, "A Machine-Learning Approach
for Generating Synthetic Prisma Hyperspectral Images from
Multispectral Data," IGARSS 2024 - 2024 IEEE International
Geoscience and Remote Sensing Symposium, Athens, Greece,
2024, pp. 3659-3662, doi: 10.1109/IGARSS53475.2024.10641756.
[9] Kurach, K., Luc¢i¢, M., Zhai, X., Michalski, M., & Gelly, S.
(2019, May). A large-scale study on regularization and
normalization in GANSs. In International conference on machine
learning (pp. 3581-3590). PMLR.

[10] Hennessy, A., Clarke, K., & Lewis, M. (2021). Generative
adversarial network synthesis of hyperspectral vegetation data.
Remote Sensing, 13(12), 2243.

[11] Nie, Y., Li, L., Gan, Z., Wang, S., Zhu, C., Zeng, M., ... &
Wang, L. (2021). MLP architectures for vision-and-language
modeling: An empirical study. arXiv preprint arXiv:2112.04453.
[12] Audebert, N., Le Saux, B., & Lefévre, S. (2018, July).
Generative adversarial networks for realistic synthesis of
hyperspectral samples. In IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium (pp. 4359-4362).
IEEE.

Proc. of the 2025 conference on 232
Big Data from Space (BiDS’25)

Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

[Poster Session]

EO Data Processing & AT Methods

A FRAMEWORK FOR GLOBAL HIGHWAY NETWORK CHANGE DETECTION APPLIED
TO LANDSAT DATA

!Johannes H. Uhl, ’Luca Maffenini, ’Panagiotis Politis, “Katarzyna Krasnodebska, 'Martino Pesaresi,
STaylor Jaworski, °Carl T. Kitchens

Joint Research Centre (JRC), European Commission, Ispra (VA), Italy
2UniSystems Luxembourg Sarl, Bertrange, Luxembourg
3European Dynamics Belgium S.A., Brussels, Belgium
Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
>Department of Economics, University of Colorado Boulder, Boulder (CO), USA
SDepartment of Economics, Florida State University, Tallahassee (FL), USA

ABSTRACT

Multi-temporal geospatial data measuring the evolution of
transportation networks is scarce, impeding our quantitative
knowledge on the dynamics of highway and other
transportation networks at global scale. To tackle this issue,
we developed a framework that integrates contemporary road
network data with road presence probabilities extracted from
historical, multispectral Landsat data (1990-2024), enabling
the measurement of highway network growth from 1990
onwards. The framework also supports earlier Landsat data,
other geohistorical data such as historical maps or pre-
Landsat aerial imagery. First experiments conducted for a
study area in the United States yield promising results,
achieving Area-under-the-Curve values of up to 0.88.

Index Terms— Road network, symbolic machine
learning, historical transportation networks, accessibility.

1. INTRODUCTION

Transportation networks are the backbone of economic
activity, enabling the shipping of goods, work-related
commuting, and transportation in general. The evolution of
such networks reflects patterns of economic development,
technological changes, or effects of transportation-related
policies, and is linked to issues of accessibility, often
reflecting social and economic inequalities [1].

While data on present-date transportation networks such as
roads and railroads are abundant, due to volunteered
geographic information (e.g., OpenStreetMap - OSM),
industry-fueled data harmonization efforts (e.g., Overture,
TomTom Traffic Stats, Microsoft MLRoads), or cartographic
products of national mapping agencies, digital geospatial data
on past states of transportation networks are scarce, and
typically involve considerable manual labor (e.g., [2]). The
evolution of local roads within settlements (i.e., cities, towns,
and villages) can often be inferred from construction year
information of buildings and properties, or neighborhood-

level development information [3]. In contrast, the evolution
of roads connecting settlements (e.g., highways, federal and
regional roads) cannot be easily inferred by measurable proxy
variables.

Hence, researchers have manually digitized such road
network geometries from road atlases and similar resources
[2], or developed automated methods to extract road network
data from historical maps [4]. However, these efforts are
typically regionally constraint. Thus, to our knowledge, no
harmonized, multitemporal dataset on highway networks at
global scale is available.

Herein, we describe a framework that aims to account for this
shortcoming. Specifically, we integrate present-day highway
network vector data from OpenStreetMap with multispectral
Earth observation data from the Landsat archive (1990-2024).
We first convert the historical Landsat data into probabilistic
estimates of road presence. Then, we measure differences in
road presence probability over time, and attribute these
change signals to vector representations of the highway
network. This way, contemporary highway network data can
be enriched with an age estimate. The proposed framework is
modular and extendible to other data sources, e.g., using
different supervised or unsupervised statistical methods,
incorporate other remote sensing data, or scanned and
georeferenced historical maps.

The resulting, enriched road network data will enable the
measurement of highway network growth, and aim to provide
a data source for modelling accessibility and the interactions
of connectivity and economic indicators over extended time
periods. This includes the multi-temporal modelling of travel-
time based commuting zones to better represent the dynamics
of functional urban and rural areas [5,6], supported by the
Global Human Settlement Layer (GHSL) project [7].

We test our method using manually digitized, as well as
authoritative historical highway network data for Interstate
highways covering the conterminous United States. While the
experiment presented herein focuses on a relatively small
area and uses Landsat data, the method is scalable to global
level, and can be used with heterogeneous input data.
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2. DATA

The choice of study area is mainly driven by the availability
of reference data and the occurrence of change in the highway
network. Herein, we focus on an area of approximately 720
km X 380 km covering the region around the Atlanta
metropolitan area (United States), see Figure 1.

We use contemporary highway network data from OSM,
reflecting the state in 2024. We filtered the OSM database to
get only major roads such as interstates, national and state
highways' using the Overpass API. Moreover, we acquired
cloud-free, top-of-atmosphere reflectance from multispectral
data from the Landsat 8 sensor (OLI) for 2024
(“contemporary” data), and from Landsat 4 and 5 (MSS, TM)
for the year 1992 (“historical” data), using the USGS Landsat
Collection 2, Level 1 data available via Amazon Web
Services (s3://usgs-landsat/collection02/level-1).

We use two sources of reference data: (a) manually digitized
highway network data [8]: These data have been curated from
contemporary road network data overlaid with historical road
atlases. Road segments not existing in a given year were
manually deleted from the set of contemporary roads to
produce historical depictions of the interstate, US highway,
and state highway networks. (b) We use authoritative,
multitemporal highway network data from the TIGER/Line
dataset, for the earliest available epoch 1992 and for 2020 [9]
(Figure 1).

Example of multi-temporal
reference data, including changes in the highway
network, shown for a subset of the Greater Atlanta study

Fig. 1. road network

area (USA) near Winder, Georgia: Authoritative
TIGER/Line roads in (a) 1992 and (b) 2020. The full study
area (white box in inset map) covers 720 km x 380 km.

3. METHODS

3.1. Definition of the “highway” domain

The proposed framework assumes that the highway network
grows, and does not shrink over time. Thus, we constrain our

analysis to the contemporary highway network as obtained
from OSM, buffered by a given distance (e.g., 200m) to
account for positional uncertainty in the data involved in the
analysis and potential resulting offsets. This domain contains
samples of stationarity (i.e., road presence in contemporary
and historical data) as well as samples of change (i.e., road
presence in contemporary, but not in historical data). This
makes the framework computationally efficient, as only
Landsat data within this highway domain need to be
considered.

3.2. Symbolic machine learning (SML)

For the areas within the defined “highway domain”, we first
create training labels, by rasterizing the contemporary OSM
highway vector data in a spatial grid. This grid can be user-
defined, or can be dictated by the Landsat scenes to be
analyzed. Grid cells intersecting with the OSM highway lines
(buffered by a distance reflecting approximate road width)
are considered “positive” labels, i.e., containing relevant road
signals. Grid cells within the highway domain, but not
intersecting the buffered OSM highway lines, are considered
“negative” labels, containing signals of non-highway objects
(e.g., vegetation, buildings, other). Next, “contemporary”
Landsat data (i.e., temporally close to the date of the OSM
highway data) are used to learn the relationship between
highway presence / absence and multispectral Landsat data.
In our first tests, we use R,G,B, and Near Infrared bands only,
but the flexible framework allows for derivation of further
features (e.g., band ratios, directional or morphological
features, or more complex representations).

For the experiment described herein, we use the Symbolic
Machine Learning method (SML; [10]), a weakly supervised,
frequentist classification method. SML has been proven
successful for global extraction of information related to
human settlements from multi-temporal stacks of
multispectral remote sensing data, in the context of the GHSL
project [7]. The SML method yields class-specific probability
surfaces, and these probabilities are denoted as @pps for road
presence, and @z for road absence. As the SML method has
been proven to be highly invariant to label noise, the method
can also be applied to historical Landsat scenes, despite
potential discrepancies between contemporary labels and
historical multispectral information due to occurred changes.
Thus, for a given pair of contemporary and historical Landsat
scenes, the SML method yields probability surfaces of road
presence and absence in the contemporary and historical
epochs, denoted as Dpos conremp, Pnec contemp, Pros Hist,
and Pk Hisr.

' We used the following query: tag = 'highway' and values IN (‘motorway', 'motorway link', 'primary', 'primary _link', 'secondary’,

'secondary_link', 'trunk’, 'trunk_link")
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3.3. Vector-raster data integration

In order to link the raster-based road presence and absence
probability surfaces with the highway network vector data,
we developed an efficient vector-raster integration approach
(Figure 2). This method is based on the contemporary OSM
highway network data, which is typically very detailed,
including individual lanes, ramps, frontage roads, etc. (Figure
2a). We first buffer these polylines, using a defined buffer
distance, and create the union of all buffered surfaces (Figure
2b). We then create the center line of the resulting polygons
using a skeletonization method, representing a generalized
depiction of the highway network (Figure 3c). The skeleton
line is then segmented into chunks of equal length (as defined
by the user; Figure 3d), and these segments are then buffered
by a given distance (Figure 3e). The resulting squares are
called buffered road segments (BRS) and represent the

OSM highway network data

Center line segmentation

Historical road

change probability
Low

Union of buffered polylines

analytical unit for any subsequent analyses. We then calculate
zonal statistics such as mean and median road presence
probability for each BRS based on the Landsat-derived
probability surfaces for contemporary and historical epochs
(Figure 2f,g). For evaluation purposes, the reference labels
are also attached to the BRS based on intersection with
reference road network data (Figure 2h).

3.4. Calculation of change indicators and evaluation

We calculate and test highway network change indicators,
including the absolute difference of probabilities A¢ between
historical and contemporary epoch (@x and @c, respectively),
and the normalized difference index
NDI = (Pc— ®Pn) / (®c+ Pr) [11]. Moreover, differences
can be calculated pixel-wise before calculating zonal

Skeletonization

Overlay W|th probabtllty surface

Reference label

Stable highway segment

mm New highway segment

Fig. 2. Illustrating the vector-raster data integration concept for highway network change detection. (a)
Contemporary OSM highway data, (b) union of buffer areas (distance to (a) =100m), (c¢) skeleton line (yellow) of the
union of buffered lines, (d) segmented skeleton line (i.e., separated into equal-length chunks of 100m, (e) buffered
road segments (BRS) based on the skeleton line segments (buffer distance 150m), overlaid with (a); (f) BRS overlaid
with a road absence probability raster surface derived from Landsat data in proximity of the contemporary major
road network. Panel (g) shows the historical road change probability after conducting zonal statistics (i.e., zonal
mean) for each BRS. The BRS constitute an abstract representation of the contemporary highway network. Panel
(h) shows the reference label for each BRS obtained from spatial overlay of the BRS with the reference data.
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statistics, or after, by subtracting the BRS-level zonal
aggregates. In the pilot experiment presented herein, we use
Receiver Operating Characteristic (ROC) analysis (i.e., the
area-under-the-curve - AUC metric) to test the
responsiveness of these change indicators to the changes
observed in the reference data. The data processing pipeline
and experiments are implemented in Python, using scikit-
learn, numpy, rasterio, geopandas, rasterstats, pygeoops, and
shapely python packages.

4. RESULTS

Based on the (continuous) change indicators and the binary
change / no change reference labels at the BRS level (e.g.,
Figure 2g,h) we observe considerably high AUC values, for
all tested change indicators, indicating that Landsat data in
combination with the SML-based probability surfaces and
derived change metrics are responsive to the change reported
in the reference data (Table 1). Notably, there are differences
between the two reference datasets used. For the manually
digitized reference data AUC values are all >0.85, while for
the TIGER/Line comparison, AUC values range between
0.65 and 0.77. This is possibly due to discrepancies in the
definition of highways between TIGER/Line and OSM data,
or potentially due to effects of road reclassification not
captured by the Landsat signals. Moreover, higher levels of
positional uncertainty in the 1992 TIGER/Line data could
contribute to the observed lower levels of AUC values.

5. CONCLUSIONS AND OUTLOOK

Herein, we described a framework to detect changes in
highway networks over extended time periods (1990 to
2024). First results show promising performance.
Importantly, these results are specific to the analysed study
area, and may not be generalizable to other regions where
land cover and spectral signatures of roads are different.

Thus, in future work, we will test the method at national and
global scale. The geographic non-stationarity of road
presence/absence signatures in multi-temporal, multispectral
imagery will likely require geographically adaptive models.
We will also test more complex, Landsat-derived spectral and
morphological features. We are currently experimenting with

cloud-based remote sensing data and processing
infrastructure to scale the method up. The use of spatio-
temporal asset catalogues (STAC) will facilitate the use of
annual composites, to reduce the effects of cloud cover, and
cloud-based processing will increase the efficiency of the
method. We will incorporate refined change indicators, as
well as earlier Landsat data (1975-1990) and historical maps
or historical aerial imagery to further extend the temporal
coverage of highway network changes measured within this
framework.
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Table 1. ROC analysis results (i.e., area-under-the-curve; AUC) of highway network change indicators using manually
digitized reference data (1990) and TIGER/Line road network data from 1992.

Zonal statistics of AUC AUC AUC AUC Normalized AUC AUC
onatstatisues o | pyioitized | TIGER/ Differences of Digitized | TIGER/ o0 ¢ Digitized | TIGER/
cell-level . . . differences of zonal .
differences ref. data Line zonal statistics ref. data Line statistics ref. data Line
1990 1992 1990 1992 1990 1992
Mean(A®pos) 0.872 0.662 | A(Mean(®pos)) 0.872 0.662 | NDI(Mean(®pos)) 0.852 0.651
Median(A®pos) 0.875 0.672 | A(Median(®pos)) 0.873 0.673 | NDI(Median(®pos)) 0.856 0.684
Mean(A®Dngg) 0.880 0.770 | A(Mean(®ygg)) 0.880 0.770 | NDI(Mean(®xgg)) 0.874 0.770
Median(A®nkG) 0.876 0.764 | A(Median(®ngg)) 0.879 0.761 | NDI(Median(®nkg)) 0.871 0.762
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ABSTRACT

Synthetic Aperture Radar (SAR) data enables large-scale
surveillance of maritime vessels. However, near-real-time
monitoring is currently constrained by the need to down-
link all raw data, perform image focusing, and subsequently
analyze it on the ground. On-board processing to generate
higher-level products could reduce the data volume that needs
to be downlinked, alleviating bandwidth constraints and min-
imizing latency. However, traditional image focusing and
processing algorithms face challenges due to the satellite’s
limited memory, processing power, and computational re-
sources. This work proposes and evaluates neural networks
designed for real-time inference on unfocused SAR data ac-
quired in Stripmap and Interferometric Wide (IW) modes
captured with Sentinel-1. Our results demonstrate the fea-
sibility of using one of our models for on-board processing
and deployment on an FPGA. Additionally, by investigating
a binary classification task between ships and windmills, we
demonstrate that target classification is possible.

Index Terms— Deep Learning, raw echo data, ship de-
tection, synthetic aperture radar (SAR), Field-Programmable-
Gate Array (FPGA)

1. INTRODUCTION

Synthetic Aperture Radar (SAR) satellite data enables all-
weather maritime monitoring. Traditional, on-ground Con-
stant False Alarm Rate (CFAR) [2] detection on focused SAR
images entails a costly downlink, focus, analyze pipeline,
incurring latency and limited contact windows. Processing
the data directly on the satellite significantly reduces the vol-
ume of data that needs to be downlinked by generating higher
abstraction level outputs (e.g., pixel coordinates of detected
ships) instead of raw data. Deep learning models have shown
promising results in this context [11, 12, 13, 4, 17], offer-
ing the opportunity to optimize for inference on embedded
devices straightforwardly. Yet, obtaining fully focused SAR

F. Kresse and G. Pilikos performed this work while at ESA and are no
longer affiliated with the agency.
Correspondence: Nicolas.Floury@esa.int

images on satellite is computationally and memory inten-
sive, prompting research into onboard ship detection using
the intermediate raw [3, 10] or range-compressed data prod-
ucts [16, 9, 8]. Overall, an effective onboard SAR ship detec-
tion algorithm must process small data segments to accom-
modate limited on-board memory, maintain a compact model
suitable for Field-Programmable-gate Arrays (FPGAs), di-
rectly output ship coordinates to reduce downlink and storage
requirements, and still achieve high accuracy. While prior
work addresses individual elements of this pipeline, none
achieve real-time, accurate detection on unfocused or range-
compressed data under embedded FPGA constraints.

In this work, we propose a range of lightweight deep-
learning models designed for Stripmap and Interferometric
Wide (IW) SAR data obtained with Sentinel-1, addressing the
requirements for on-board data processing. Our model con-
figurations, processing raw and range-compressed data, are
one-stage detectors built on ResNet blocks [5], allowing for
flexible model sizing. They employ a single-stage detection
layer as the final step, which performs coordinate predictions
and target classification following the grid-based approach of
the YOLO architecture [14]. Our smallest model operating
on Stripmap mode data delivers near-perfect ship detection
results in our evaluation scenes. Additionally, we demon-
strate that this model can be successfully deployed on a Xilinx
Zynq UltraScale+ MPSoC ZCU104 FPGA, achieving suffi-
cient throughput for real-time processing. For IW data, we
evaluate the performance of multiple model sizes, achieving
competitive results in open water scenes and offering valuable
insights for future research. We also show that our model can
perform binary target classification, distinguishing between
windmills and ships in the IW dataset we employ.

2. PROPOSED DEEP LEARNING ALGORITHM

Fig. 1 shows the processing pipeline for both the traditional
method, including range and azimuth compression, and the
approach adopted by us. Similar to previous work [3], for
Stripmap mode, we operate directly on raw data, while for
IW data, we perform range-compression.

Stripmap Preprocessing: We shift the raw data by half

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

237 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

EO Data Processing & AT Methods

[Poster Session]

Raw Data

Range Compression

Traditional
Detection Algo.

Detected Ships

=

) Azimuth Compression
— 1 3 >

Stripmap

; ' Iw Range Compression
A > ——
-

Ours

| — >

>

Fig. 1. The traditional pipeline (black box) focuses data before detection. Our approach bypasses this: we detect directly on

raw Stripmap echoes [3] and on range-compressed IW data.

the chirp length in the range dimension so that the feature
response aligns with the Single-Look Complex (SLC) labels,
accounting for mode- and chirp-specific acquisition offsets.

IW Preprocessing: Range-compressed IW features and
SLC labels are misaligned, so we apply a locally consistent
mapping between their pixel spaces. We compute the offset
from the center pixel of each range-compressed crop and use
it to shift the corresponding label crop.

Model: We employ a YOLO-style architecture for its
efficient single-stage design, enabling fast inference without
the overhead of region proposals [14]. The backbone consists
of four layers of ResNet blocks, preceded by a 7 x 7 con-
volution with 64 kernels. As in previous work, we treat the
complex-valued SAR data as two separate input channels [3].
We apply the network to crops of the original SAR image.
The network outputs predictions on a YOLO-style grid, where
each grid cell predicts the coordinates (x, y) and an objectness
score indicating the presence of a target. Since ships in our
datasets occupy a narrow range of sizes, we omit multi-scale
anchor-based detection typical in YOLO. We also perform bi-
nary classification between ships and windmills for IW data,
adding two additional outputs. Our output grid has size S x S,
with each cell corresponding to a 32 x 32 pixel region in the
input data. For example, an input crop size of 128 x 128 re-
sults in an output grid of size 4 x 4. The model configurations
evaluated in our experiments are listed in Table 1.

Table 1. Each Resnet-block contains two convolutions with
kernels of size 3 x 3, Batchnorm and ReL.U activation.

Param. (Size) | Blocks per Layer | Channels
96800 (S) 1,2,2,1 16, 16, 32, 32
1222368 (M) 3,4,6,3 64, 64, 64, 64
11222880 (L) 2,2,2,2 64, 128, 256, 512

Loss Function: We adopt the standard YOLO loss, omit-
ting only the bounding-box size regression term while retain-
ing all other components unchanged.

Prediction of Ship Locations: After obtaining predic-
tions, we assign a fixed 50-pixel bounding box to each de-
tected ship. As in the YOLO pipeline [14], we apply non-
maximum suppression (NMS) to remove overlapping boxes,

keeping the one with the highest confidence. The acceptance
threshold is set as the lower of the Youden J threshold [15]
and the minimum distance threshold from validation data,
rounded down to two decimals. We compute a distance-based
F'1 score F'l3g counting a prediction as correct if it lies within
30 pixels of a ground-truth label; unmatched predictions and
labels are false positives and negatives, respectively. Given
SAR resolutions (5 m x 5 m for Stripmap, 5 m x 20 m for
IW), this tolerance equals 150 m in range and up to 600 m
in azimuth, accommodating minor localization errors while
remaining well below the fixed box size.

3. EXPERIMENTS

We evaluate our proposed model using two different datasets.
The first dataset consists of raw SAR Sentinel-1 Stripmap
mode (S6) VV polarization data, as previously utilized by [3].
We show that the model trained on this dataset can be de-
ployed on an FPGA, achieving real-time throughput. We then
investigate an IW dataset from the Shanghai port. For this
dataset, we show good off-shore detection performance and
the ability of our model to distinguish between windmills and
ships. Both our datasets where originally obtained from the
Copernicus Data Space Ecosystem [1]. All experiments with
standard deviations given were performed with three seeds.

3.1. Sentinel-1 Stripmap Mode

The dataset from [3], consist of a total of 12 SAR images from
the Sdo Paulo port, with one image used for validation (84
ships), two for testing (155 ships), and the remaining for train-
ing (726 ships). We investigate the performance of the small-
est model outlined in Section 2 with a crop size of 128 x 128,
achieving an F'l3g score of 0.98 4 0.00 and 0.97 £ 0.01 on
our first and second test image (see Fig. 2 for qualitative re-
sults). After manually inspecting the few erroneous predic-
tions, these can be attributed to double detections of ships,
the NMS not being aggressive enough, and label ambiguities.
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Fig. 2. Left: real part of raw Stripmap SAR data, shifted by half-chirp to align SLC labels; Right: manually labeled SLC image
overlaid with the network’s post-processed detections (contains modified Copernicus Sentinel Data [1]).
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Fig. 3. Left: range-compressed IW SAR crop (input to the network) with center-based offset correction (Sec. 2); Right: post-
processed detections overlaid on the labeled SLC image for the (M) model (contains modified Copernicus Sentinel Data [1]).

3.2. Embedded Inference for Sentinel-1 Stripmap Mode

We deployed our 8-bit AdaQuant-quantized [6] model (via
Vitis Al 3.0 [7]) on a Zynq UltraScale+ MPSoC ZCU104
FPGA with no accuracy loss. Real-time operation requires
> 2027 FPS (PRF = 1664 lines/s x 19950 samples/line);
DPU inference (excluding preprocessing & NMS), achieved
3527 & 23 FPS with four CPU threads, exceeding the target.

3.3. Sentinel-1 Interferometric Wide Mode

Our hand-labeled IW dataset from the Shanghai port com-
prises 10 bursts of size 20760 x 1617 at 5 x 20 m resolu-
tion. We split 8/1/1 bursts for training/validation/test sets.
The training set contains 1163 ships and 460 windmills; af-
ter excluding near-shore ships, the test set contains 66 ships
and 19 windmills. Preliminary experiments with ships located
close to shore showed significant performance degradation,
possibly due to the complex and ambiguous backscatter in
these areas. Therefore, we exclude them from our final eval-
uation. The IW data presents additional challenges due to
the continuous antenna pattern steering in azimuth during the
acquisition and the more complex nature of the scenes inves-
tigated. Initial attempts using our models with small input
sizes on raw IW data did not yield adequate performance. As
a result, we utilized range-compressed data.

Table 2 reports detection metrics and class-wise F'l3g
(see Fig. 3 for quantitative results); class scores exclude the
other class’s labels to isolate per-class performance. Our
smallest model already performs well, and increasing crop
size and parameter count further boosts F'13g, though gains
plateau—Ilikely due to overfitting. After manual inspection,
a large number of remaining errors arise from closely spaced
ships, due to NMS limitations, and ambiguous labels.

Table 2. Comparison of Models: Results on Interferometric
Wide data for off-shore ships on our test image (Range Com-
pressed Input Data). Input denotes the crop size.

Size | Input | Flgg | Ship F'139 | Wind. F'l13q
L 256 | 0.87+£0.01 | 0.77£0.01 | 0.71 +£0.04
M 256 | 0.87+£0.05 | 0.78 £0.05 | 0.78 £ 0.02
S 256 | 0.79£0.01 | 0.56 £0.07 | 0.54 = 0.06
S 128 | 0.724+0.04 | 0.52£0.02 | 0.51 +£0.03

4. DISCUSSION

We conduct experiments on raw Stripmap and range-compressed

IW data. For Stripmap, excellent results are achieved by
shifting the raw input by half the chirp size, bypassing the
computationally expensive image-focusing step and enabling
direct predictions on small crops of raw SAR data. The
model remains compact in both parameters and forward-pass
complexity, and we deploy it on a Zynq UltraScale+ MPSoC
ZCU104 FPGA, demonstrating suitability for real-time em-
bedded processing. However, the Stripmap scenes used here
are relatively simple with similar backscatter, so future work
should test robustness under more complex sea conditions
and diverse environments.

In our evaluation of IW data, we find that raw data alone,
in contrast to Stripmap data, does not yield satisfactory re-
sults. As a result, we perform range-compression, resulting
in improved performance. We attribute this improvement to
the target energy being more concentrated and, hence be-
ing easier to identify with the small Field-of-View of our
neural network. By increasing both the input crop size and
the network complexity compared to our Stripmap model,
we achieve good performance on IW data. Additionally,
we demonstrate successful target classification, performing
binary classification between ships and windmills.
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A main limitation of our method is that it struggles to de-
tect ships very close to shore, so we exclude these cases from
the final evaluation. This low performance is likely due to
strong backscatter from surrounding structures and vessels,
and may be mitigated with more diverse training data.

Both the limitations observed in Stripmap and IW data
can be largely attributed to the availability and quality of the
datasets. A key challenge is the lack of sufficiently large and
diverse labeled raw SAR datasets, particularly with varying
sea conditions. The upcoming Sentinel-1 satellites, equipped
with AIS tracking antennas, holds promise for addressing this
gap by potentially enabling automated labeling through AIS
data correlation. Additionally, since numerous algorithms al-
ready exist for processing SLC images, future work could
leverage these methods to generate large-scale datasets by
aligning SL.C-based detections with raw SAR data, further ex-
panding the pool of labeled data for training and evaluation.

5. CONTRIBUTIONS

We demonstrated the feasibility of real-time ship detection
using deep-learning models applied to raw Stripmap data.
Furthermore, we deploy our Stripmap model on a Zynq Ultra-
Scale+ MPSoC ZCU104 FPGA, demonstrating its practical
use for real-time, onboard processing in resource-constrained
environments. For IW data, we show that using range-
compressed data and larger input sizes improves detection
and classification performance, enabling binary classification
of ships and windmills.
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DEVELOPING A CUBESAT FOR EDUCATIONAL PURPOSES
Viktors Gutakovskis, Aleksandrs Okunevs, Atis Vanags,
Daniils Marcenko

Riga Technical University, Riga Technical College

ABSTRACT

Developing CubeSat for educational purposes is an
excellent way to engage students in hands-on learning about
space, engineering, and science. It offers experience across
various fields, including physics, computer science,
mechanical engineering, and electronics.

Educational goals define the specific learning
outcomes you aim to achieve for students involved in the
project. Key educational goals could include Technical and
Engineering Skills:

Understanding Satellite Design: Teach students
how satellites are designed and how systems integrate into a
small form factor like a CubeSat. This includes knowledge
of structural design, subsystem integration, and component
selection.

Subsystem Design and Function:

Provide experience with designing or working with power,
communication, attitude control, and payload subsystems.
Students can learn the specifics of each system, such as how
solar panels provide power or how the attitude control
system stabilizes the satellite.

Programming and Software Development: Involve students
in programming the onboard computer (OBC) to perform
data acquisition, communication protocols, and mission
control functions. This also includes developing ground
station software for data retrieval and command sending.
Scientific and Analytical Skills:

Data Analysis and Interpretation: Teach students how to
analyze and interpret data from sensors on the CubeSat,
including any scientific or Earth observation data. For
example, students could analyze temperature variations in
orbit or assess radiation levels at different altitudes.
Research Skills: Introduce students to the scientific method
by having them define hypotheses, design experiments (for
experimental missions), collect data, and analyze results.
System Engineering and Integration: Educate students on
how complex systems are integrated into a single mission,
covering concepts like interface requirements, modularity,
and systems testing. In this publication, the real
implementation of the 1U CubeSat is represented. It was
developed in 3 months, in joint team from Riga Technical
College (4 students) and Riga Technical University (2
students) and 2 mentors. The result was represented on the
vocational education competition in the ZRKAC (Jelgava)
by MASOC on 11.04.2025.

1. INTRODUCTION

Educational goals define the specific learning outcomes you
aim to achieve for students involved in the project. These
goals are based on the mission’s complexity, the students’
skill level, and the depth of knowledge the project can
provide. Key educational goals could include:

Technical and Engineering Skills:

Understanding Satellite Design: Teach students how
satellites are designed and how systems integrate into a
small form factor like a CubeSat. This includes knowledge
of structural design, subsystem integration, and component
selection.

Subsystem Design and Function: Provide experience
with designing or working with power, communication,
attitude control, and payload subsystems. Students can learn
the specifics of each system, such as how solar panels
provide power or how the attitude control system stabilizes
the satellite.

Programming and Software Development: Involve
students in programming the onboard computer (OBC) to
perform data acquisition, communication protocols, and
mission control functions. This also includes developing
ground station software for data retrieval and command
sending.

Scientific and Analytical Skills:

Data Analysis and Interpretation: Teach students how
to analyze and interpret data from sensors on the CubeSat,
including any scientific or Earth observation data. For
example, students could analyze temperature variations in
orbit or assess radiation levels at different altitudes.

Research Skills: Introduce students to the scientific
method by having them define hypotheses, design
experiments (for experimental missions), collect data, and
analyze results.

Project Management and Teamwork:

Project Planning: Guide students through the stages of
project planning, budgeting, and scheduling. This includes
understanding timelines, deliverables, and deadlines, which
are essential in real-world engineering projects.

System Engineering and Integration: Educate students
on how complex systems are integrated into a single
mission, covering concepts like interface requirements,
modularity, and systems testing.

Collaboration and Communication: Encourage
teamwork and collaboration across different roles (e.g.,
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engineering, software development, testing), as well as
communication with external stakeholders like sponsors,
school officials, or industry advisors.

Hands-On Practical Skills, which were in this work:
Construction and Assembly: Allowed students to
participate in assembling and testing the CubeSat, teaching
theoretical and practical content about handling sensitive

electronic and mechanical assembly.

Testing and Troubleshooting: Gave students experience
with testing protocols, including vibration, thermal, and
vacuum tests. This teaches them about the importance of
testing in space missions and how to troubleshoot issues that
arise.

Operation and Maintenance: Teach students how to
operate and monitor the CubeSat once deployed in desktop
mode, including interpreting telemetry data and responding
to potential issues in orbit/ or in practice on the table.

STEM Engagement and Outreach:

Inspire Interest in Space and Engineering: using the
CubeSat as a vehicle to engage broader student interest in
STEM fields.

Documenting and Sharing Findings: students are
encouraged to document the project and share their findings
through presentations, reports, or outreach events. This
inspired other students and schools to pursue similar
educational projects.

Collaborations with Other Schools or Institutions:
Partner with other schools or universities are impressed by
project’s impact and allow students to engage in a
collaborative, multi-institutional project.

2. EXAMPLE OF EDUCATIONAL MISSION
OBJECTIVES AND GOALS

Mission Objective:

Deploy a 1U CubeSat as a desktop model to collect
temperature, humidity, GPS location and images for
analysis.

Educational Goals:

1.Teach students the fundamentals of satellite systems,
including power, communication, and payload subsystems.

2. Develop skills in programming the onboard computer to
collect and transmit data.

3. Engage students in data analysis and presentation of
findings, providing hands-on experience with real-world
satellite data.

4. Inspire students to pursue careers in aerospace, science,
and engineering through public outreach and project
showecases.

3. DEVELOPING A 1U CUBESAT USING ARDUINO
AND RASPBERY PI

In this work, a 1U CubeSat educational model was created.
The frame was created using moder CAD, 3D printed, and
CNC milled on the Hardford CNC mill. The internal
structure could be seen on the figure 1.

DHT11 Camera
L

12C

A Y

UART usse
m frdane

Raspberry Pi

Fig. 1. CubeSat structure design graph

The Arduino, Raspberry Pi and sensors connection process
can be seen on figure 2 and 3. Figure 4 represents the result
model of the developed CubeSat. Figures 5 and 6 represent
the result presentation of the CubeSat educational model in
local competitions and conferences.

Fig. 2. Basic electronics connections and testing
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Fig. 5. 3D printed prototype, CNC milled parts and
ready-to-use for educational process CubeSat model
(represented in the vocational skills competition,
ZRKAC, April 2025, Latvia, Jelgava).

Fig. 3. Assembly process of the electronic
connection process.

Fig. 6. Visual representation of CubeSat possibilities
(represented on 15.-16.05.2025., DEEP TECH
ATTELIER 2025, Latvia, Riga).

Fig. 4. The result model of the developed
CubeSat.

4. CONCLUSIONS

1. Establishing clear mission objectives and
educational goals is critical to creating an impactful
educational CubeSat project. This gave us an

opportunity to design, produce and to program the
1U Cubesat.

Proc. of the 2025 conference on 243 Sep. 29 — Oct. 10 2025
Big Data from Space (BiDS’25) doi:10.2760/2119408


https://doi.org/10.2760/2119408

EO Data Processing & AT Methods

[Poster Session]

2. The mission objectives focus on achievable,
educationally rich space activities, while the
educational goals align with students’ learning
needs. When combined, these objectives create a
practical, exciting, and informative experience that
can have lasting benefits on students’
understanding of space technology and inspire their
future careers.

3. Creating a CubeSat for educational purposes
involves assembling a team with a variety of skills
and securing funding to support the project. Below
are the steps and considerations for forming an
effective team and securing necessary funding.

4. 1U educational CubeSat was created, represented
in this work. The process took a lot of time from
developing CAD frame files and Mastercam CNC
design. Arduino and Raspberry Pi asked for skillful
students work. In total the result is very impressive.
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A COMPARISON OF THE ATLAS OF HUMAN SETTLEMENTS AGAINST THE GLOBAL
HUMAN SETTLEMENT LAYER

Georgios K. Ouzounis, Andrew A. Vekinis

Atlas Al
Al Research
Palo Alto, California, USA

ABSTRACT

The article presents the findings of a quality evaluation exer-
cise between the most recent releases of two planetary-wide
built-up basemaps; the Atlas of Human Settlements or AHS
of Atlas Al and the Global Human Settlement Layer or GHSL
of the Joint Research Center of the European Commission.
The exercise was split in two parts; a qualitative and a quanti-
tative analysis, both powered by data collected over 8 regions
across the world. The comparison yields an overwhelming
lead of the AHS over the GHSL.

Index Terms— ahs, ghsl, built-up, regression, evaluation

1. INTRODUCTION

The Atlas of Human Settlements or AHS [10] is a built-up
basemap of global extent, delivered at a nominal spatial res-
olution of 10m and updated annually, with historical records
dating back to 2016. The primary data layer, referred to as the
Built-up Index or Bul, reports the percentage of built surface
within a spatial unit of 100 square meters in size. The equiv-
alent term in GHSL [3, 8] is called the Built-up Fraction or
BUFRAC - Fig. 1. The Bul layer is generated using a state-
of-the-art deep-learning model implemented on a U-Net-like,
multi-scale convolutional attention encoder to transformer-
decoder architecture using multi-scale attention. Further to
the Bul, the AHS delivers the Built-up Confidence or BuC;
a raster image that reports the confidence of the regressor in
producing the Bul value for each input pixel.

The AHS is generated from two different models, one that
reports built-up (Bul) in the developed world, and a second
one tailored for built-up in the developing countries, capturing
residential buildings and structures in places where housing
and living conditions are poor. It uses a set of model weights
that shift the focus on smaller, more dense and radiometrically
more diverse patterns of built-up. This analysis is focused on
the former model due to limited reference data availability.

Reporting the built-up systematically, and in a globally
consistent manner allows for accurate change detection, free
of parallax-related artifacts, which in turn delivers actionable

R i 1 o L\ . 3
(b) The AHS-Bul layer (¢) The GHSL-BUFRAC

Fig. 1. AHS and GHSL views of the S-E Corridor, GA, USA.

data on the growth, regression, or stagnation patterns wit-
nessed in various human settlements across the world. This
wide area monitoring (WAM) service [1] is geography, scale,
climate, living standards and prior data agnostic and powers
a wide range of applications in key industry verticals. Fig. 2
shows an example of the state of built-up in the South-East
Corridor, Georgia, USA in early 2024 and built-up change
detection between the years 2021 and 2023.

The only known alternative to the AHS, i.e. being of
global coverage and delivering the same semantics, is the
Global Human Settlement Layer offered by the JRC of the
EC. GHSL-BUFRAC is available at 10m resolution for a
single year, 2018. The GHSL underwent several model im-
provements to enhance BUFRAC quality, each one referred
to as a Release for the 2018 epoch. All references to the
GHSL in this article point to the R2023 release/ 2018 epoch.
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(c) AHS Bul @ 2021 (d) AHS Bul @ 2024

Fig. 2. Change detection using WAM-AHS. The building
color coding for (b) is green: new, blue: unchanged.

i
~
-
-~
b 1

(b) GHSL - BUFRAC

(a) AHS - Bul

Fig. 3. Example of big building extraction consistency be-
tween the two layers

Having only two layers of the kind available in the market
today, this article attempts to identify the strengths and weak-
nesses of each through a qualitative and a quantitative exer-
cise presented in Sections 2 and 3 respectively. A summary
of findings and discussion of results is given in Section 4.

2. QUALITATIVE ANALYSIS

To evaluate qualitatively the two layers, we attempted to
capture the data scientist user-experience when confronted
with both layers as analysis ready data. We consulted four
geospatial-data analysts to identify key features that best de-
scribe their engagement with the data layers and recorded
their experiences when re-visiting each one separately. The
findings are discussed in Section 4. The features are:

- built-up surface completeness: empirical estimate of com-
pleteness of the binary built-up surface,

- noise in-between built-up: false BU positives inside the
studied settlements,

- noise outside settlements: false BU positives outside the
studied settlements,

- visual clarity of built-up: overall appreciation of the visual
scene - Fig. 1 (b, ¢),

- big building segmentation: suitability for segmenting

™ i \
Building reproject to generate
Footprints AHS Bul reference ——— reference Bul \
vector-file CRS (UTM) Bul \
. J o 7 }
|
(
crop to \
AHS Bul —— | reference [—— comparison % compute
ready AHS Bul metrics.
data AOT Y /
N J i
\
s N e N |
reproject to crop to comparison /’
GHSL BUFRAC AHSBul ——— reference | ——— ready GHSL
CRS (UTM) data AOI BUFRAC
' v N y

Fig. 4. Evaluation workflow.

clearly distinguishable big buildings- Fig. 3,
- built-up statistics: suitability for computing statistics,
- change detection: suitability for change detection, Fig. 2.

3. QUANTITATIVE ANALYSIS

The quantitative analysis of both layers was orchestrated as
a comparison against reference data. The latter was assem-
bled from 8 areas of interest (AOIs) in 6 different countries:
China - Jinxiang, Japan - Hamamatsu, Japan - Kyoto, Japan -
Maebashi, Poland - Warsaw, South Africa - Cape Town, UK
- Southampton, USA - Worcester (MA). They are referred to
as AOI 1 through 8, [5,2,4,6,9,7].

Manually delineated building footprints were collected
for each AOI and translated into test Bul surfaces, i.e. the
same material consumed by both AHS and GHSL models
during training. The term test Bul is referred to as reference
data instead of ground truth, as the quality of the building
footprints is subject to human interpretation and skill. Each
set of building footprints differs from the others in two ways,
the date of production and in the clarity/resolution of the
underlying image used to produce them. The reference data
used was selected based on the production date being as close
to the end of the year 2018 as possible.

To make this a fair comparison we computed the AHS-
Bul of each AOI for the year 2018. The quality figures
reported do not necessary reflect the true quality of the AHS
(underestimation) but allow for a one-to-one comparison
against the GHSL. The results are biased by the fact that we
compare findings computed on annual median composites
(AHS and GHSL) against the reference data generated for a
certain time stamp later in time; t > 2018. This propagates the
same error to both layers thus does not impact the outcome
of the comparison. A further, very minor bias in favor of the
AHS comes from the fact that both the reference data and the
GHSL layers used, were re-projected to the AHS CRS (UTM)
- Fig. 4. The latter was selected over the World-Mollweide of
the GHSL for its iso-tropic pixel representation, appreciated
in both ML model training and deployment.
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To compute the ‘closeness’ of each layer to the reference
data we utilized two sets of metrics; one for segmentation
and one for regression. The former set was used to evalu-
ate the completeness of the built-up surface, and the latter for
the evaluation of the pixel content accuracy. In the following
P, N, TP, TN, FP and FN stand for the number of pix-
els that are positive (Bul>0), negative (Bul=0), true positive,
true negative, false positive, false negative respectively. The
segmentation metrics used are as follows:

TP+ TN
Bi A P — 1
inary Aceuracy : —5———, (D
o TP ' TP
Precision : TP+ FD’ Recall : TPLEN 2)
2x PRx RE 2x TP
F1S : = 3
T T RE  2xTPLFP+FN O
Matthew’s Correlation Coefficient:
TP xTN —FP x FN
€]

/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

The regression metrics used are as follows:

Round Mean Square Error :

ISR
Mean Average Error : — Z | X; — X, (6)
=
and were computed for each inference image as a whole, and
for the Bul>0 and Bul=0 pixel sets separately.

4. DISCUSSION OF RESULTS

Qualitative analysis findings: Responses on the Built-up
Surface Completeness suggested that both layers, if treated
as binary surfaces, deliver a satisfactory IoU with reference
data, i.e. they do not miss and do not over-represent built-up.
Some in-between built-up noise appears in both, examples of
which are due to highly reflecting road segments, construc-
tion materials, aggregation of metal sheets that are not parts
of roofs (containers, trucks), parking lots, etc. The GHSL
slightly under performs due to increased sensitivity to parking
lots/loading bays. Some minor false positives appear outside
settlements and are primarily attributed to highly reflecting
rocks and in some instances to minor water bodies.

The visual clarity of built-up is the highest discriminator
between the two layers. While built-up is mostly captured
accurately in both, the GHSL delivers a blurry view making it
hard to trace individual buildings. By contrast to the GHSL,

the AHS presents clearly distinguishable buildings, even the
smallest ones, in cases they are further than 10m apart, i.e. 1
spatial unit separation. An example is shown in Fig. 1.

Big buildings can be extracted from both layers as stand-
alone structures that are useful and in-demand for supply-
chain and real-estate management applications. While gen-
erally highlighted well in both layers, in the GHSL big build-
ings appear with textural noise running through their extent
that makes it harder for simple/fast computer vision scripts to
return a single segment per building, Fig. 3.

Built-up statistics can be computed from both layers, of-
fering insights such as how much of a settlement surface area
is built, how dense is the built-up, etc. A limitation that re-
lates to the earlier observation on big buildings is that in the
case of the GHSL the built-up cannot be trivially binned to
size histograms reporting how many buildings are there for
specific size ranges. In case of very dense built-up both lay-
ers cannot discriminate between individual buildings and this
is primarily due to the spatial resolution of the input data.

Lastly, the GHSL being a single-year release cannot be
utilized directly in change detection, where as AHS-WAM de-
tects change robustly and among any two Bul instances from
the present date back to 2016. Change detection can be com-
puted by ML models on multispectral image pairs, but at the
cost of model retraining for each AOI to prevent drift, and in-
creased sensitivity to local built-up patterns. The unavailabil-
ity of historical GHSL data weakens its adoption by what ap-
pears to be one of the highest priority commercial use-cases.

Quantitative analysis findings: An initial observation
from Table 1 is that the GHSL has a major imbalance between
precision and recall. Low precision and high recall means that
the model is good at finding all the actual positives (Bul>0)
but among the instances the model predicts as built-up, many
are actually false positives. The lack of model sophistication
leads to poor generalization erring on the side of predicting
positive Bul and pretty much ‘catches everything’ but inac-
curately. The AHS maintains a far better balance between
the two metrics. Looking at the F1 and MCC scores (holistic
view of model performance), the AHS leads by 14% and 13%
respectively and this is consistent throughout all 8 AOIs.

Table 2 lists the regression metrics’ scores related to the
Bul values. The AHS layers on average and across all pixels
show a relative reduction of about 30% in regards to RMSE
and about 35% in regards to MAE when compared to the
GHSL layer values. These relative reductions persist in empty
(Bul=0) and non-empty (Bul>0) pixel sets too.

5. CONCLUSIONS

In this paper we evaluated the AHS on selected global AOIs,
comparing it to the GHSL. Both qualitative and quantitative
results show AHS has a competitive edge. As a continually
evolving product, further improvements are expected.

Proc. of the 2025 conference on
Big Data from Space (BiDS’25)

247 Sep. 29 — Oct. 10 2025
doi:10.2760/2119408


https://doi.org/10.2760/2119408

EO for Humanitarian, Urban & Societal Applications

[Poster Session]

Table 1. Segmentation Metrics
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Atlas Al Introducing aperture® pulse: A new era of scalable
economic change detection. https://www.atlasai.
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Source  Cooperative. Japanese building footprint
data. https://source.coop/repositories/
pacificspatial/flateau/description, 2024.

Christina Corbane, Vasileios Syrris, Filip Sabo, Panagiotis
Politis, Michele Melchiorri, Martino Pesaresi, Pierre Soille,
and Thomas Kemper. Convolutional neural networks for global
human settlements mapping from sentinel-2 satellite imagery.
Neural Computing and Applications, 33(12):6697-6720, 2021.
doi: 10.1007/s00521-020-05449-7.

geoportal.gov.pl.  Topographic objects database (bdotl10k).
https://www.geoportal.gov.pl/en/data/
topographic-objects-database-bdot10k/,
2023.

Planetek Hellas. Jinxiang building footprints dataset. manual
annotation, 2023. URL https://www.planetek.gr/.

City of Cape Town. 2d building footprints. https://odp—
cctegis.opendata.arcgis.com/datasets/

(9]

[10]

metric layer AOI1 AOI2 AOI3 AOI4 AOIS AOI6 AOI7 AOI8 average
Binary Accuracy | GHSL | 0.95449 | 095114 | 0.87118 | 0.81972 | 0.78339 | 0.94021 | 0.92876 | 0.85596 | 0.88810
AHS | 0.97388 | 0.98036 | 0.92371 | 0.93487 | 0.93890 | 0.96911 | 0.96635 | 0.94827 | 0.95443
Precision GHSL | 0.46971 | 0.45751 | 0.67842 | 0.43199 | 0.37874 | 0.55974 | 0.45056 | 0.37651 | 0.47539
AHS | 0.63336 | 0.71959 | 0.81203 | 0.72438 | 0.75916 | 0.74474 | 0.68024 | 0.68203 | 0.71944
Recall GHSL | 0.96417 | 0.96787 | 0.98799 | 0.98565 | 0.97163 | 0.98625 | 0.92083 | 0.95821 | 0.96782
AHS | 0.84213 | 0.86114 | 0.93088 | 0.85008 | 0.79426 | 0.90091 | 0.81496 | 0.77707 | 0.84642
F1 Score GHSL | 0.63169 | 0.62132 | 0.80445 | 0.60071 | 0.54503 | 0.71416 | 0.60506 | 0.54060 | 0.63287
AHS | 0.72297 | 0.78403 | 0.86740 | 0.78221 | 0.77631 | 0.81541 | 0.74153 | 0.72646 | 0.77704
MCC Score GHSL | 0.65567 | 0.64714 | 0.74130 | 0.57813 | 0.52037 | 0.71788 | 0.61520 | 0.54678 | 0.62780
AHS | 0.71753 | 0.77725 | 0.81794 | 0.74751 | 0.74121 | 0.80304 | 0.72707 | 0.69984 | 0.75392
Table 2. Regression Metrics
metric layer AOIl1 AOI2 AOI3 AOI4 AOIS AOI6 AOI17 AOI8 average
RMSE GHSL | 0.10310 | 0.09340 | 0.21453 | 0.17004 | 0.18895 | 0.12891 | 0.10707 | 0.11957 | 0.14069
AHS | 0.09198 | 0.06411 | 0.17369 | 0.11263 | 0.12570 | 0.09689 | 0.07332 | 0.09188 | 0.10377
MAE GHSL | 0.02259 | 0.02074 | 0.10674 | 0.07090 | 0.08300 | 0.03612 | 0.02743 | 0.04053 | 0.05100
AHS | 0.01846 | 0.01217 | 0.08121 | 0.03771 | 0.03909 | 0.02454 | 0.01638 | 0.02450 | 0.03175
RMSE - non empty | GHSL | 0.40256 | 0.33715 | 0.33785 | 0.33721 | 0.35086 | 0.38365 | 0.33130 | 0.30600 | 0.34832
AHS | 0.37423 | 0.27614 | 0.31414 | 0.28217 | 0.30835 | 0.30553 | 0.26902 | 0.26250 | 0.29901
MAE - non empty | GHSL | 0.31843 | 0.26816 | 0.27299 | 0.26933 | 0.27451 | 0.30701 | 0.26004 | 0.23602 | 0.27581
AHS | 0.29383 | 0.21599 | 0.25382 | 0.21822 | 0.23220 | 0.24036 | 0.20739 | 0.19934 | 0.23264
RMSE - empty GHSL | 0.06654 | 0.06691 | 0.14866 | 0.12764 | 0.15276 | 0.08033 | 0.07613 | 0.08580 | 0.10059
AHS | 0.05542 | 0.03452 | 0.07821 | 0.05219 | 0.06771 | 0.05342 | 0.03892 | 0.05622 | 0.05457
MAE - empty GHSL | 0.01047 | 0.01073 | 0.04835 | 0.04136 | 0.05590 | 0.01504 | 0.01401 | 0.02345 | 0.02741
AHS | 0.00718 | 0.00393 | 0.02060 | 0.01080 | 0.01180 | 0.00775 | 0.00538 | 0.00924 | 0.00958
REFERENCES cctegis::2d-building-footprints/about,
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ABSTRACT

Remote Imaging Support for Emergencies (RISE) is a novel
web application democratizing access to actionable geospa-
tial intelligence from Earth Observation (EO) data. Built
on the WASDI cloud platform, RISE transforms complex
EO workflows into user-friendly products for rapid crisis
response. It automates data ingestion, processing, and dis-
semination, enabling near real-time monitoring and impact
assessments. With capabilities from flood mapping to drought
monitoring, RISE delivers critical intelligence quickly and
cost-effectively. Successful field validation, coupled with
positive beta feedback, underscores RISE’s potential to revo-
lutionize emergency management.

Index Terms— Humanitarian, Geospatial Intelligence,
Emergency, RISE

1. INTRODUCTION

Timely geospatial intelligence from EO data (optical, SAR,
thermal) is vital for humanitarian crisis response, damage
assessment, and risk reduction. The foundational engine,
WASDI [1, 2], is a powerful cloud platform for large-scale
EO processing, with a proven record in high-impact events:
(i) Pakistan Floods (2022): Rapid preliminary damage assess-
ment for the Asian Development Bank; (ii) Cyclone Amphan,
Bangladesh (2020): Flood assessment support for WFP; (iii)
Typhoon Kammuri, Philippines (2019): Damage monitoring
for WFP; (iv) Ukraine Wildfires (2020): Monitoring support
for ESA.

*cristiano.nattero @wasdi.cloud
Thanks to the WFP’s Humanitarian Innovation Accelerator Program for
having funded the development of RISE.

While WASDI demonstrated significant capabilities, its
technical complexity limited direct use by many humanitar-
ians. This firsthand experience highlighted the need for a
more accessible solution. Data latency and the “human-in-
the-loop” are key bottlenecks; lengthy map production times
limit utility to post-event analysis or preparedness, whereas
rapid intelligence is crucial for in-emergency intervention.

RISE addresses this by leveraging WASDI’s power through
an intuitive interface. Developed by WASDI with LIST and
AICRL-SRU, and funded by WFP’s Humanitarian Innova-
tion Accelerator, RISE automates EO workflows. Its core
mission is to provide humanitarians with direct, timely, and
cost-effective geospatial intelligence, specifically to guide
interventions during acute emergency phases. Beta feedback
and the results from the final validation exercise are highly
positive.

2. RISE: CAPABILITIES ENABLED BY WASDI

Fig. 1. The Ul of RISE.
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RISE offers a diverse suite of geospatial products, oper-
ationalized on WASDTI’s cloud platform. While initial wide-
area screening for events like floods is supported by data from
providers like NOAA (e.g., VIIRS), feedback from our hu-
manitarian partners during the validation exercise confirmed
that these lower-resolution products were insufficient for their
operational needs. This finding validated our strategic deci-
sion to build the core of RISE’s high-resolution analytical ca-
pabilities upon the Copernicus programme. Our primary data
source for detailed, actionable flood mapping, urban analy-
sis, and impact assessment is Sentinel-1 SAR, complemented
by Sentinel-2 optical and Sentinel-3 thermal data. This focus
on the Copernicus suite ensures operational continuity, aligns
with European data infrastructure, and most importantly, de-
livers the high-quality intelligence our users require, thereby
mitigating dependencies on other data sources for our most
critical products.

A cornerstone of RISE is daily automated monitoring and
event identification, orchestrated by WASDI, with options to
upload ancillary data for contextualization.

Figure 1 shows the UI of RISE, with a flood and impact
analysis.

2.1. Flood Management and Monitoring:

Low-Resolution Daily Flood Maps: Derived from NOAA’s
VIIRS (Visible Infrared Imaging Radiometer Suite) data (typ-
ically 375m resolution for flood products), providing consis-
tent, wide-area screening using thresholding on specific spec-
tral bands and indices. Processing and dissemination are man-
aged via WASDI.

High-Resolution Flood Maps: Generated on WASDI
using LIST’s HASARD algorithm suite [3, 4, 5, 6, 7].
HASARD applies advanced change detection and SAR
backscatter analysis techniques to Sentinel-1 data to delin-
eate floodwater extent with high accuracy. The execution of
HASARD at scale is a key WASDI capability.

Urban Flood Maps: A specialized HASARD module
for urban environments, utilizing multitemporal interferomet-
ric SAR coherence analysis from Sentinel-1 to detect subtle
changes indicative of flooding amidst complex urban struc-
tures. This computationally intensive analysis is performed
on WASDL.

Composite Flood Map: An integrated flood product pro-
duced on WASDI, potentially employing rule-based integra-
tion or weighted fusion of different flood layers (e.g., VIIRS
and HASARD) to provide a more comprehensive overview.

Flood Relative Frequency Maps: Constructed on WASDI
through the systematic reprocessing of historical Sentinel-1
archives using HASARD, enabling the identification of areas
with high recurrent flood probability. This relies on WASDI’s
capacity for large-volume data processing.

Flood Depth Maps: Estimated on WASDI by integrat-
ing SAR-derived flood extent with Digital Elevation Models

(DEMs), using hydraulic principles or calibrated empirical re-
lationships.

Historical Flood Archives: RISE can reconstruct histor-
ical flood events using the HASARD algorithm, providing
valuable long-term data for risk assessment, trend analysis,
and planning, all stored and processed within WASDI.

2.2. Rain Observation

IMERG Rain Observation: Accumulated rainfall data from
NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG)
product, offering precipitation estimates at approximately
0.1° x 0.1° resolution with near real-time latency (latency of
a few hours for late run products). Data is ingested and made
available through WASDI.

2.3. Impact Assessment

Flood Impact Maps: Detailed assessments of flood impacts
on buildings, road networks, agricultural land (crops), and es-
timated population affected. Produced on WASDI by integrat-
ing flood extent/depth maps with exposure data layers (e.g.,
building footprints from CityWatch, global road datasets, land
cover classifications, and population density grids like World-
Pop or GHSL) using CIMA Research Foundation’s RASOR
(Rapid Analysis and SOlutions for Response) methodology.
This geospatial analysis is orchestrated by WASDI.

2.4. Drought Monitoring

Land Surface Temperature (LST): Derived from thermal
infrared data from Sentinel-3.

Drought Monitoring: RISE incorporates LIST’s innova-
tive Radiative Thermal Inertia (RTI) index [8], a physically-
based model for monitoring soil moisture and vegetation wa-
ter stress. The RTI model integrates LST and other EO data
(e.g., albedo, solar radiation) and has demonstrated a strong
correlation (coefficient of 0.62) with in-situ soil moisture
measurements across multiple sites—outperforming conven-
tional drought indicators such as the Keetch-Byram Drought
Index (KBDI) [9] and Apparent Thermal Inertia (ATI) [10].
These models are run on the WASDI platform.

2.5. Urban and Settlement Analysis

Settlements and Urban Area Maps (CityWatch): Leveraging
LIST’s CityWatch algorithm [11], RISE provides regularly
updated maps of urban areas and settlements, with process-
ing hosted on WASDI.

CityWatch Baseline: Global mapping of built-up ar-
eas at 10-meter resolution using a synergistic approach with
Sentinel-1 SAR and Sentinel-2 optical data. This involves
automated training data sampling and a label-noise robust
cross-fusion neural network.
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CityWatch Premium: Higher detail by incorporating
commercial Very High-Resolution (VHR) optical imagery.
This solution employs advanced Al techniques, potentially
involving transfer learning or weakly supervised learning,
to classify VHR images using lower-resolution labels from
CityWatch Baseline as a training source.

3. TECHNICAL ARCHITECTURE

RISE features an intuitive Ul presenting key indicators upon
entry: estimated people affected, ongoing events, and alerts.
All processing occurs on WASDI, a PaaS optimized for EO,
offering (i) Scalable Distributed Computing; (ii) Co-location
of Data and Processing; (iii) Interoperability via standards;
(iv) Robust Data Management.

RISE’s architecture uses containerized plugins deployed
on WASDI, interacting via APIs. RISE is an intelligent or-
chestrator and user-friendly front-end to WASDTI’s specialized
EO processing.

The decision to build RISE on the WASDI cloud plat-
form was a strategic one, driven by efficiency and cost-
effectiveness. As the developers of both RISE and the
underlying WASDI platform, our team was able to ensure
rapid development and a robust, seamlessly integrated user
experience. While this provides a strong foundation, we
recognize the importance of interoperability for wider adop-
tion. The WASDI platform is inherently designed to offer
this ~off the shelf,” as it supports approximately 90 different
standards across file formats, protocols, languages, and ar-
chitecture. These capabilities facilitate the rapid integration
of new functionalities from third-party providers through its
compliance with established standards integral to the Euro-
pean EO cloud ecosystem, including OGC WxS, OpenEO,
and the Earth Observation Exploitation Platform Common
Architecture (EOEPCA). This is demonstrated by our current
infrastructure; WASDI already operates several nodes on the
CloudFerro cloud, and exploits CREODIAS as one of its data
providers. Building on this, our future roadmap includes de-
veloping interfaces with other major European platforms and
services, including the Copernicus Data Space Ecosystem
(CDSE), WEKEO, the Copernicus Emergency Management
Service (CEMS), and the Destination Earth initiative, as well
as UN services, such as those by UN SPIDER, FAO, and
World Bank, to name but a few. This expansion is not only
a priority but also a streamlined process, allowing RISE ser-
vices to be discovered, accessed, and chained within a more
open and collaborative ecosystem.

4. MITIGATING LATENCY AND ENHANCING
EFFICIENCY FOR EMERGENCY INTERVENTION:

RISE significantly reduces latency to maximize EO data util-
ity for active emergency intervention with (i) End-to-End
Automation: From image retrieval (e.g., Copernicus Hubs)

through WASDI processing to RISE display, and (ii) Proac-
tive, Request-Free Product Generation: Core products
(e.g., daily flood maps) are generated proactively by sched-
uled WASDI processes, ensuring readiness.

Computational gains are substantial: LIST’s HASARD,
traditionally taking days, runs in hours on WASDI. The 2022
Pakistan flood assessment, manually requiring a 4+ person
team, is now automatable in hours. The primary speed im-
provement is removing the human-in-the-loop from critical
processing, transforming EO data from a retrospective tool
into a vital asset for immediate emergency decision-making —
RISE’s core purpose.

5. VALIDATION IN REAL-WORLD SCENARIOS

RISE is undergoing rigorous validation. Beta user feedback
(WFP, Red Cross) is highly encouraging. The field validation,
initially planned for Niger, was redirected to Madagascar (a
region with Red Cross presence and relevant flood/drought
events) due to security. It simulates response to the Cheneso
Cyclone (Jan 2023), focusing on Maroantsetra, selected for (i)
Humanitarian Data Availability, (ii) Optimal Sentinel-1 Cov-
erage, (iii) Local Red Cross team presence.

5.1. Validation Methodology

The exercise employed a comparative methodology designed
to establish a clear baseline for RISE’s impact. It is impor-
tant to note that this comparison was structured for analyti-
cal purposes; in a real-world scenario, RISE is intended to
be a complementary tool that enhances, rather than replaces,
traditional methods. For this validation, however, the two
approaches were deliberately separated to measure the plat-
form’s standalone contribution:

Team 1 (Standard), conducted the assessment using tra-
ditional methods, including field surveys, secondary data re-
view, and key informant interviews. This required 26 person-
nel and took 8 hours to complete.

Team 2 (RISE-Equipped), used only RISE’s analytical
products to guide their strategy. This required just 2 staff
members and was completed in 1 hour and 40 minutes.

The results of this baseline comparison were extraordi-
nary and demonstrate significant operational gains:

Quantitative Gains: The data shows that the RISE-
Equipped team was able to produce its initial assessment with
an 85% reduction in time and an 90% reduction in associated
costs (personnel and transport) compared to the team using
standard methods.

Accuracy and Effectiveness: The final report from the
exercise concluded that RISE provides “much more accu-
racy of data, when compared to standard methods, especially
linked to historical data... and no or hard to access areas.”
This is critical in humanitarian contexts where access can be
limited or dangerous.
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User Feedback: Qualitative feedback was highly posi-
tive, with the final report concluding that RISE could make
needs assessments ’more accurate, time, cost-effective and
safe.” A key advantage noted was the increased safety for hu-
manitarian workers, as the platform allows for rapid assess-
ment without deploying personnel to potentially unsafe areas.

These findings provide tangible evidence of RISE’s ca-
pacity to significantly enhance the speed, efficiency, and ef-
fectiveness of humanitarian response. Comprehensive results
will be presented at the BIDS 2025 conference.

6. THE FUTURE OF RISE: EXPANDING
CAPABILITIES AND TRANSFORMING
EMERGENCY MANAGEMENT

RISE’s plugin-based architecture on WASDI allows agile
expansion. Roadmap includes (i) Deforestation Monitoring:
Sentinel-1/2 and Landsat time-series; (ii) Active Fires and
Burned Area Mapping; (iii) Landslide Detection; (iv) Earth-
quake Impact Assessment. Enhancements will cover impact
assessment (socio-economic data, vulnerability models), data
fusion, and predictive analytics within the WASDI-RISE
ecosystem.

7. BROADER IMPACT AND RECOGNITION

RISE’s potential was showcased at the 2024 STI Forum, re-
flecting demand for automated, cloud EO solutions. Its adapt-
ability is proven by the validation redirection.

The successful validation in Madagascar, coupled with
positive feedback from the beta program, provided strong ev-
idence of RISE’s operational benefits.

8. CONCLUSIONS

RISE significantly advances the delivery of sophisticated EO
data in an accessible, actionable format for humanitarians. By
synergizing advanced algorithms, the scalable WASDI cloud
platform (its core processing engine), and a user-centric de-
sign with immediate key indicators, RISE empowers timely,
data-driven emergency decisions. Its architecture addresses
latency and efficiency through automation and optimized
cloud processing, transforming EO maps from historical
records into vital tools for in-emergency intervention.

The conclusive results from the Madagascar validation,
alongside positive beta feedback, have provided robust evi-
dence of RISE’s significant operational benefits. RISE is set
to establish a new standard in operational geospatial intelli-
gence, catalyzing change by effectively leveraging powerful
backend platforms like WASDI through user-focused appli-
cations for a more agile and effective global humanitarian re-
sponse.
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