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Preface

In times marked by global crises, Europe's resilience�digital, societal, and environmental�has never been more
vital. Being resilient means safeguarding our societies and our future in the digital space race: upholding
our laws, values, and sovereignty in how data are accessed, shared, and protected. With the adoption of
the European Union's Data Act (September 2025) and the world's �rst comprehensive AI Act, Europe has
taken bold steps to ensure that innovation and competitiveness go hand in hand with trust, fairness, and
fundamental rights. Together, these acts set the stage for a distinctly European way of governing the digital
future, ensuring that Big Data and AI serve not just technology, but people, society, and the planet.

Big Data from Space (BiDS) is not just about observing the Earth. It is about enabling smarter, faster,
and fairer decisions to meet the challenges of our time. From climate change and civil security to sustainable
competitiveness and digital innovation, the insights we derive from spaceborne and terrestrial data are
essential for evidence-informed action. In this sense, BiDS'25 was not only about advances in science and
technology, but also about ensuring that data-driven innovation supports Europe's ability to address societal
and security challenges.

Building on the success of the initiatives introduced in the last edition, BiDS'25 organised 23 satellite
events, 28 demos, lightning talks, and birds-of-a-feather sessions. As in BiDS'23, code sprints were held with
OSGeo and Pangeo to promote collaborative open-source software development. BiDS'25 also introduced
new formats and perspectives, including an award session for the best start-up ideas. It demonstrated how
scienti�c breakthroughs can evolve into entrepreneurial solutions and strengthen Europe's competitiveness.

Another novelty for this year's conference was the panel discussions that aligned with our mission of
connecting deep tech with deep purpose. On Wednesday, October 1, �Society at Risk: Challenges and
Priorities in the Space-Data Age�, explored critical questions at the intersection of technology and societal
well-being. On Friday, October 3, the �nal day of the conference, "From Raw Data to Real Decisions: Systems
that Work in the Space-Data Age" focused on bridging raw data to actionable decisions through resilient
infrastructure, AI, cybersecurity, and ethical frameworks�setting priorities for future research, policy, and
societal impact. These conversations re�ected our commitment to turning planetary-scale data into scalable
solutions for global challenges.

Latvia's space sector, a partner of ESA with a rich historical heritage and modern technological strengths,
brought unique value to this conference. With the support of the Investment and Development Agency of
Latvia (LIAA), a B2B networking event and industrial exhibition highlighted Latvia's growing role in the
European space economy.

The �gures of BiDS'25 demonstrate both its reach and dynamism: two weeks before the start, 621
participants had registered. With more than 40 participants on average, the satellite events were fully booked,
and 152 developers had registered for the code sprints. A total of 132 submissions were received from 34
di�erent countries, including papers, demos, satellite, and award events. Each submission was reviewed by
at least two experts from the Programme Committee. Of the 75 papers submitted, 42 were accepted as
oral presentations and 21 as posters. While Earth Observation played a central role in this edition, BiDS
covers the full spectrum of space domains�navigation, science and communications�and this breadth remains
essential to its identity. The presentations were organised across seven thematic sessions: Towards Digital
Twins: Integrating Data, Models, and Insight; Data Cubes: Advances and Applications; FAIR Work�ows;
Data Infrastructures & Services at Scale; GeoAI & Geospatial Intelligence; Optimising Processing from Edge
to Cloud; Societal Applications: Risk, Resilience, and Resource Monitoring.

This year's BiDS'25 keynote talks captured the breadth and urgency of the challenges at the intersection
of data, science, and society. Thomas Brunschwiler (IBM Research Europe, Switzerland) explored how
tokens and embeddings are emerging as a new lingua franca for AI-driven Earth Observation, reshaping
environmental science and data work�ows through foundation models. Lynn Dudenhöfer (Senior Intelligence
Professional) highlighted how the fusion of open-source intelligence and EO data is becoming indispensable
for addressing rapidly evolving threats, from transnational organised crime to geopolitical instability, in a
security landscape increasingly shaped by GenAI. Rosa M. Badia (Barcelona Supercomputing Center, Spain)
connected the dots from Europe's world-class supercomputing infrastructure to domain-speci�c and FAIR
application work�ows and digital twins. She showed how HPC, AI, and data analytics can together deliver
actionable solutions for society, with a focus on geohazards and risk mitigation. Together, these keynotes set
the tone for BiDS'25: advancing science and technology while ensuring that innovation is directed towards
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resilience, security, and sustainability.
Altogether, BiDS'25 o�ered a vibrant mix of science, technology, policy, and entrepreneurship. It stood at

the intersection of climate resilience, societal security, and digital sovereignty, reminding us that responsible
innovation is no longer optional. By bringing together diverse communities, BiDS'25 rea�rmed its role as
the place where Europe and the world set the course for data-driven resilience and sustainability. Several
contributions pointed to applications with direct impact on resilience and decision-making globally, as well
as for EU Member States and institutions, showing a strong bridge between research and operations. This
resonated with the European strategic context, where �agship programmes such as the EU Space Programme�
covering Copernicus, Galileo, and other space infrastructures�together with key policy frameworks like the
EU Strategic Compass and the EU Space Strategy for Security and Defence, supported the Union's ambition
for leadership and strategic autonomy.

We express our sincere gratitude to the Programme Committee members for ensuring the excellence of
this programme and these proceedings. Our local partner, the Ministry of Education and Science of Latvia,
played a pivotal role in hosting BiDS'25. Thanks to their support, we gathered at the inspiring National
Library of Latvia, and the University of Latvia hosted the satellite events. BiDS'25 again showcased the
strong engagement of its three organising entities�SatCen, ESA, and JRC�which remain at the forefront of
innovation and central to the themes of this edition. Ultimately, the outcomes of BiDS'25 extend beyond the
scienti�c community to operational actors�including those working in security and decision-making�ensuring
that innovation reaches end-users and has tangible impact.

Pieter Kempeneers, Stefanie Lumnitz,
Sergio Albani
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ABSTRACT 

The Digital Twin Earth (DTE) developments are 

constantly growing, offering an innovative approach to 

understand and manage complex, rapidly evolving 

environments. While key DTE initiatives under development 

are addressing domains such as climate or extreme weather 

events, a dedicated DTE for Defence and Security (DTE4DS) 

will answer specific needs in these complex and sensitive 

domains. DTE4DS, a Joint Initiative (JI) launched by the 

European Defence Agency (EDA) and the European Union 

Satellite Centre (SatCen), addresses the management and 

exploitation of Earth Observation (EO) Big Data, together 

with a very large amount of collateral data sources for 

defence or security scenarios. The system is conceived to 

exploit synergies with existing relevant initiatives while 

offering unique capabilities to defence and security 

stakeholders.  

Index Terms— Digital Twins, Earth Observation, Big 

Data, HPC, Security, Defence 

1. INTRODUCTION 

Security is an intricate subject in which a diverse number of 

scenarios can be triggered by different causes. Today, 

identifying causes of conflicts or disasters and understanding 

the link between these triggering events in diverse domains 

(e.g. climate, health, energy, food) and the impact on security 

is becoming more and more important not only for taking 

immediate responses, but also for policymaking. The 

evolution of security and its growing importance is 

highlighted in the most relevant European Union (EU) and 

global policies (e.g. EU Strategic Compass [1], EU Space 

Strategy for Security and Defence [2], EU Green Deal [3], 

UN Sustainable Development Agenda [4]), which are calling 

for advanced technological solutions to enhance current 

capabilities in the defence and security domains.  

Digital twin is a concept widely used for design, 

simulation and validation of results; when applied to the 

modelling of the Earth and its phenomena, it is identified as 

a promising evolution axis to provide end users with a holistic 

disruptive solution that will change the access to (and the 

 
1 https://destination-earth.eu/ 

amount of) information to support decision-making processes 

in given scenarios. A DTE relies on the coherent exploitation 

of EO Big Data, including both satellite and aerial sources, 

and its integration of a wide variety of on-ground data sources 

tailored to each scenario needs. The combination of advanced 

AI analytics and High-Performing Computing (HPC) 

capacity makes it possible to generate a dynamic virtual 

representation of the real world that enables an interactive 

interface towards the user, enabling the human-triggered 

simulation of events and its forecasted impact. The most 

recent initiatives at EU level (e.g. DestinE1) show the 

potentialities of DTs, with a focus on EO data.  

In defence and security, such a virtual model will mean 

changing the paradigm for decision-making in the field of 

Intelligence, Surveillance and Reconnaissance (ISR), 

boosting the ability to respond to diverse threats and crises in 

operational and strategic situations and, as final goal, also in 

tactical ones.  

However, when addressing sensitive topics that directly 

affect security of citizens and societies, it is very important to 

consider which specific additional needs must be considered 

and the benefits provided for the relevant stakeholders for 

defence and security. The present work aims at presenting the 

status of the DTE4DS, an EDA-SatCen JI carried out in 

cooperation with industry. 

1.1. Overview 

The first phase of the EDA-SatCen DTE4DS JI consisted in 

a landscape study performed in a structured activity flow 

(Fig.1). The study started with a state-of-the-art analysis to 

assess the status of relevant technologies and to identify 

synergies with initiatives in the civil domain, and with the 

definition of a set of reference scenarios that served to 

identify high-level user needs. After interaction with potential 

users in EDA and SatCen user forums, the reviewed reference 

scenarios and preliminary user needs have been used to 

sketch a high-level system architecture, to identify the 

technology gaps and to define a coherent technology roadmap 

and development plan, paving the way for the future 

development phases of this DTE4DS.  
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Fig. 1.  DTE4DS landscape study flow 

2. A DIGITAL TWIN EARTH FOR DEFENCE AND 

SECURITY: STATE-OF-THE-ART  

2.1. DTE definition 

If a Digital Twin is “a realistic digital representation of 

something physical” [5], or “a virtual replica of a physical 

system whose performance it can help optimize”2, the DTE 

should be a virtual representation of the Earth that is 

georeferenced and connected to the world’s digital 

knowledge archive. Such a system implements a Big Data 

lake and associated services that allow users to navigate 

through space and time, access historical data, and create 

future predictions. It can also be defined as digital replica of 

an Earth system component, structure, process, or 

phenomenon, obtained by merging digital modelling and 

real-world observational continuity – i.e. remote, in-situ, and 

synthetic data streams. A DTE must be seen as a living digital 

simulation model that updates and changes as its physical 

counterparts’ change [6]. A DTE could also be seen as an 

entire ecosystem, integrating and orchestrating various DTs 

to allow for simulations and predictions of complex Earth 

scenarios. 

2.2. Identified existing DTE initiatives 

An exhaustive analysis of the most relevant DTE initiatives 

was performed during the first phases of the study (first 

quarter of 2025), identifying the key initiatives (Table 1) to 

be considered to advance in the DTE4DS development. 

DestinE and EDITO projects are already functioning, 

however their development will continue in the next years 

(2030 as foreseen) to include new DTEs. In addition, there is 

a large and ever-growing number of local DTs initiatives in 

Europe (apart from manufacturing industries), forming part 

of digital transition strategy. The DTs are being implemented 

mostly at the city level, with the focus on urban planning, 

climate change adaptation, traffic controlling and emergency. 

They may be engaged in a future DTE ecosystem for 

 
2 Mirroring Reality. Digital Twins in Aerospace and Defence, Capgemini 

Research Institute (2023) 

downscaling simulations, predictions and training (e.g. for 

critical infrastructure protection). 

So far, the use cases foreseen in these key initiatives do 

not consider directly the operational needs of users in the 

security/defence domain, which are, in general, more 

demanding in terms of reliability, accuracy and protection of 

information. Hence, a clear need emerges for the DTE4DS, a 

system specifically tailored to defence and security actors, 

guaranteeing maximization of synergies and no overlapping 

with initiatives in the civil domain. The DTE4DS would take 

EU capabilities for decision-making to the next level, 

changing the paradigm of usage of information for ISR 

activities. 

 
Table 1: main DTE initiatives relevant for the DTE4DS 

Initiative Scope Main 

stakeholders 

DestinE1 EU funded initiative to 

develop a digital twin of 

our planet by 2030. 

 

EC, ESA, 

EUMETSAT, 

ECMWF 

EDITO3 A virtual representation of 

marine and coastal 

environments around the 

globe  

EC, 

CMS, 

EMODnet 

EDDI Establish a robust digital 

twin framework tailored 

for defence applications, 

enabling enhanced 

simulation, planning, and 

predictive maintenance 

capabilities. 

EDA, 

EU MoDs 

 

3. REFERENCE SCENARIOS 

Given the range of defence and security scenarios triggered 

by the current geopolitical situation, and the wide span of 

modelling specificities for each of them, it is needed to select 

a set of reference scenarios that serve as baseline to identify 

high-level user needs that drive the preliminary system 

design. The reference scenarios selected, based on interaction 

with potential users and relevant reports [7], [8], include: 

 

1) Preparation of the battlefield 

2) Forced displacement 

3) Situational awareness for crises and disasters 

4) Maritime surveillance 

 

These scenarios contemplate different decision-making 

time spans related to the need for information (i.e. short, 

medium and long-term) and have served to identify end-user 

needs associated to each of them. 

3 https://dive.edito.eu/ 
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4. DESIGN DRIVERS 

The final technical implementation of the DTE4DS and its 

sharing rules should be carefully decided among relevant 

stakeholders. However, there are a few high-level design 

drivers to be considered since the early phases for the 

initiative, to ensure that the solution is feasible and disruptive, 

while aligned with user needs.  

On one hand, the DTE4DS must be designed to: 1) 

increase the operational efficiency for decision-makers; 2) 

enhance the preparedness with predictive analysis; 3) provide 

new geospatial products for informed decision-making in the 

short/long term; 4) enhance the user experience 5) integrate 

user owned data into complex models to enhance the analysis.  

On the other hand, the high-level user needs defined for 

each reference scenario and time span were key to understand 

the technology to be implemented in the DTE4DS, and the 

different data sources to be integrated. Therefore, the 

DTE4DS system shall be designed to: 

 

1) Integrate very large amounts of EO data and 

collateral sources, considering high refreshment 

rates (up to continuous update of some sources) to 

ensure the provision of up-to-date and timely 

tailored information to different stakeholders 

involved in a given scenario in line with time span 

needs; 

2) Provide forecasting capacity to assess impact of 

given events through advanced, yet reliable, AI 

models; 

3) Implement a robust, secure and coherent integration 

of data to generate new information products and to 

support realistic simulations; 

4) Allow a dynamic interface enabling advanced 

visualization (e.g. 2D/3D, AR/VR) and interaction 

between actors in scenario; 

5) Offer the possibility to inject user-owned data to 

improve situational awareness capabilities. 

 

On top of these design drivers, it will be also important 

to identify the standards to be implemented to guarantee 

usability among the security and defence communities and 

monitor continuously any ethics issues related to the usage of 

data sources with personal information.  

5. DATA 

While the core data will consist of Big EO Data, scenarios 

related to defence and security will also require data from 

additional sources, usually sensitive, to be integrated in the 

DTE4DS. This includes geolocation and positioning, on-

ground imagery (e.g. video), social and environmental data 

and user-owned sources. Focusing solely on EO data, the 

variety and complexity of the geospatial big data needed to 

meet end-user needs across different applications is already 

considerable. The harmonization and adaptation of various 

data types (e.g. SAR, optical), along with different spatial and 

spectral resolutions and time series analysis of long-term 

archives, will present significant challenges that could be 

addressed by leveraging advanced AI models. Table 2 

provides more details about the diversity of the data to be 

dealt with, along with the specific need for each time spans: 

near-real time, mid-term and long-term usage.  

 
Table 2: Main data sources and usage identified 

accordingly to time span 

Data Near real-

time usage 

Mid-term 

usage 

Long-term 

usage 

EO data 

(satellite 

and aerial) 

 

Quasi-real 

time VHR 

multispectral/ 

hyperspectral, 

and SAR (AoI 

< 100 km²) 

VHR and HR 

multispectral/ 

hyperspectral

and SAR 

(AoI 100 < 

1000 km²) 

Archive MR-

LR 

multispectral/

hyperspectral

and SAR 

(AoI > 1000 

km²) 

Video (in-

situ) 

Real-time 

UAV/drone 

feeds 

Periodic 

aerial video 

updates 

Archive 

videos 

Demogra-

phic and 

socio-

economic 

data 

Basic overlays  Preliminary 

data fusion 

Long-term 

resilience and 

trend analysis  

Meteorologi

cal and 

climatologic

al data  

Realtime 

weather data 

Short-term 

forecasts  

Long-term 

climate 

trends  

Geolocation 

data from 

mobile 

devices 

Real-time 

tracking of 

population 

movements  

Monitoring 

activity and 

displacement 

patterns 

Analysis of 

long-term 

trends  

Land cover 

maps, DEM 

(satellites, 

Lidar, etc.) 

Up-to-date 

VHR  

Up-to-date 

VHR  

Up-to-date 

HR  

Social 

media/citize

ns science 

Real-time data 

about 

infrastructure 

status 

Updated 

status on spot 

locations 

Supportive 

use for long-

term 

assessment 

Security and 

military 

forces own-

data 

sources 

Real-time 

information for 

decision and 

actuation 

Organization 

of short-term 

actions 

Long-term 

analysis and 

preparedness 

6. HIGH-LEVEL SYSTEM CONCEPT 

The proposed high-level system architecture for the DTE4DS 

consists of multiple interconnected building blocks to ensure 

robust performance, security, scalability, and interoperability 

across different operational scenarios (Fig.2). The core 

architecture is structured into distinct layers to enable 
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modularity and efficient integration of very large and diverse 

datasets as well as advanced technologies. 

 

 
Fig. 2.  High-Level System Architecture of DTE4DS 

 

1. Data acquisition layer 

This foundational layer gathers diverse data streams from 

multiple sources with different refreshment rates including, 

at least, the data listed in Table 2. 

2. Data integration and fusion layer 

Collected data is standardized, harmonized, and integrated 

through advanced fusion algorithms. This layer ensures data 

quality, interoperability and seamless ingestion into the 

digital twin environment. Technologies involved include 

cloud-native architectures, data lakes and data hubs 

compliant with STANAG and OGC standards. 

3. Modelling and analytics layer 

Sophisticated AI-driven analytics and simulation models 

provide predictive insights and scenario analysis. Techniques 

employed include machine learning (ML), deep learning 

(DL), cognitive signal processing and adaptive data fusion. 

Key capabilities include threat assessment, impact 

forecasting and decision-support simulations tailored 

specifically for defence and security stakeholders. 

4. Digital twin environment layer 

This core component hosts virtual replicas of defence and 

security operational environments, allowing dynamic 

representation, visualization and interaction. It supports 

immersive interfaces, enhancing situational awareness and 

collaborative scenario exploration. 

5. Application and user interface layer 

Customized interfaces and decision-support dashboards 

facilitate user interaction with the DT. This includes 

operational decision-making tools, planning modules, real-

time monitoring and training environments. Advanced user 

experience (UX) design principles ensure usability and 

operational efficiency. 

6. Security and Governance Layer 

Given the sensitivity of defence and security applications, a 

transversal security layer with a robust cybersecurity 

framework is integrated across all layers. It comprises: 

 

• Secure data transmission (encrypted communication 

protocols); 

• Identity and access management (IAM); 

• Data privacy and protection mechanisms; 

• Security incident and event management (SIEM); 

• Compliance and governance policies aligned with 

national and EU security regulations. 

 

The combined architecture provides a secure, flexible and 

highly scalable digital ecosystem designed to consider 

continuous integration of new capabilities. 

7. CONCLUSIONS 

The present paper summarizes the status of the EDA-SatCen 

DTE4DS JI. The landscape study performed paved the way 

for the next phases that will focus on the prototyping of key 

technology blocks to derisk the full-scale system 

implementation.   
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ABSTRACT 

Although classified land-cover maps have been used in 
numerical weather forecast models, land-use datasets 
have not been incorporated at the same level, especially 
at a resolution of 1-10km, required in a Digital Twin 
design. Agricultural modifications and urbanization 
lead to changes in regional temperatures, roughness, 
albedos and flux distribution, affecting cloud and 
precipitation patterns, thus contributing to regional 
variability in weather. Improving representations of 
land-use distribution and dynamics is crucial for 
accurate weather forecasts. NASA is investing in the 
development of Earth System Digital Twins to better 
represent, predict, and investigate complex Earth 
system phenomena using advanced technologies, 
including machine learning and artificial intelligence. 
In particular, the NASA Land-Cover/Land-Use Change 
Program (LCLUC) is contributing to the development 
of Digital Twins by advancing the incorporation of 
available land-use data products based on timely 
updated moderate-to-high resolution satellite 
observations. 

1. INTRODUCTION 

Land-cover and land-use changes affect regional 
temperatures, roughness, albedos and flux distribution, 
leading to changes in cloud and precipitation patterns, 
thus contributing to regional variability in weather. 
Although classified land-cover maps have been used in 
numerical weather forecast models, land-use datasets 
have not been incorporated at the same level, especially 
at a resolution of 1-10km, required in a Digital Twin 
design. 

In the contiguous United States, a huge portion 
of land surface have been altered by anthropogenic 
activities, such as irrigation, crops production and 
timber harvesting, urbanization, recreation activities. 
Additionally, wildland fires have been significantly 
impacting land cover characteristics. All these changes 
have direct impact on local and regional meteorology. 
A tool for assessing these impacts would be a Digital 
Twin based on an improved modeling system. 

Digital Twin concept is based on developing 
an interactive, integrated multidomain, multiscale, 
digital replica of the state and temporal evolution of 
Earth systems. For weather forecast models, it would 
include dynamically integrated land-surface 
infrastructure and continuously assimilated timely 
observations of changes at land-atmosphere interface. 
Current challenges in numerical weather forecast 
modeling include relatively low horizontal resolution 
and low interactivity with the users. Higher resolution 
enables the incorporation of smaller-scale processes, 
described with physics, leading to higher fidelity in 
local information relevant for users and easier 
comparison with observations. Creation of an interface 
between model’s outputs and users’ inquiries is one of 
the advantages of DT concept compared to a common 
modeling approach. 

2. THE LCLUC PROGRAM GOALS AND THE 
CURRENT OBJECTIVES 

The primary goal of the NASA LCLUC program is to 
use satellite observations to improve our understanding 
of changes at land surface as an essential component of 
Earth System Science. The LCLUC program includes 
studies that detect and quantify changes in land cover 
and land use; examine their impact on the environment 
and interactions with climate and society; and model 
future scenarios of LCLUC impacts. The LCLUC 
program has been developing interdisciplinary 
research combining aspects of physical, social, and 
economic sciences, with a high level of societal 
relevance, using remote sensing data, methods, and 
tools. The LCLUC program aims to develop the 
capability for annual satellite-based inventories of land 
cover and land use to characterize and monitor 
changes at the Earth’s surface. Land use is a human 
activity therefore social and economic science research 
plays a crucial role within the LCLUC program. It 
includes quantifying the impacts of changes in human 
behavior at various levels on land use, land-use 
impacts on society, and how the physical, social and 
economic aspects of land-use systems contribute to, 
are impacted by and adapt to environmental changes. 
LCLUC, ubiquitous worldwide, is having a significant 
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impact on the environment, the provision of ecosystem 
services, and human livelihoods at the regional, 
national, or global scale, often with economic and 
policy implications. The policy implications can, for 
example, be in terms of current policies that have 
prompted or exacerbated land-use change, or policy 
changes that would lead to sustainable land-use 
practices.  

As extreme weather events become more 
frequent and severe, they pose significant threats to 
ecosystems, infrastructure, and communities. For 
instance, hurricanes can cause coastal erosion, 
deforestation, and destruction of urban infrastructure, 
while droughts may lead to agricultural failures, water 
shortages, and ecosystem degradation. Heatwaves can 
affect human health or lead to wildfires that devastate 
forests and grasslands. Similarly, floods and storms 
disrupt entire regions, damaging crops, displacing 
populations, and creating health risks. By combining 
advanced satellite data on land use with weather 
forecast models and socioeconomic indicators, 
LCLUC studies will capture the spatial and temporal 
dynamics of these events, providing insights into their 
impact on land use, economic stability, and societal 
well-being. 

The goal of the current work is to contribute to 
Digital Twins’ development for improving weather 
forecasts by providing near real-time data on human 
land uses at the highest spatial and temporal 
resolutions, useful in simulations of the ongoing 
interactive processes in the Earth’s system. 

3. DATA AND MODELS USED 

Incorporation of land surface data in numerical models 
range from coarser spatial resolution sensors, such as 
MODIS on Terra and Aqua and VIIRS on Suomi-NPP 
platforms to medium-to-high resolution, such as 
Landsat and Sentinel-1 and -2, to very high-resolution 
data from commercial vendors, such as Planet Lab. 
Researchers also use observations from instruments on 
board the International Space Station, such 
ECOSTRESS (infrared data) and GEDI (lidar data). 
Models also utilize the NLCD & NLUD data (Fig. 1).  

 

Fig. 1 Satellite-derived National Land Cover Database 
(NLCD) and (b) the National Land Use Dataset (NLUD) [1] 

 

Various models have been applied in 
advancing the incorporation of land-use data. They 
include Land Surface Models, such as NOAH Multi-
parameterization (MP) Heterogeneous Urban 
Environments (HUE) and NOAH-MP-Crop models 
[2], [3], [4], Community Land Model (CLM) [5], 
NCAR-Community Earth System Model (CESM) [6] 
and Weather Research and Forecasting (WRF) models, 
including NASA Unified WRF (NU-WRF) model [7] 
along with meteorological fields and re-analysis data, 
such as MERRA or NCEP/NCAR reanalysis.  

4. TOWARDS IMPROVING WRF MODELS 

The above models are being used by several NASA-
funded LCLUC Program’s teams to study the effect of 
incorporating satellite-derived dynamic boundary 
conditions in state-of-the art WRFs to improve the 
weather forecasts in urban and agriculture sectors. 

4.1. Urban studies 

The LCLUC ongoing studies are focused on urban 
infrastructure (buildings, greenspace, water features), 
which would account for variability at scales finer than 
the horizontal grid resolution of operational numerical 
weather prediction for US cities. These projects use 
WRFs with a multilayer urban canopy model to 
generate target surface flux fields as well as urban heat 
island and precipitation fields. Once validated, these 
fields form the targets to train a model to identify 
effective land-use parameters for the coarse 
operational models and for machine learning and deep 
learning algorithms component to a land surface model 
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to capture the sub-grid scale effects. In particular, the 
role of green infrastructure in coupled land-atmosphere 
prediction is assessed.  

The remote sensing component include 
mapping efforts of highly detailed urban elements such 
as trees, paved areas, buildings, turf and natural 
grasses. Those are used to develop biophysical 
variables such as leaf area index, albedo, emissivity, 
building heights, and roughness lengths as input to the 
surface models used, such Noah-MP HUE, currently 
coupled with WRF models, integrates surface 
hydrological processes, including impervious area-to-
vegetation water transfers and pavement shading and 
canopy interception. This, in turn, allows for a more 
representative urban environments and urban energy 
partitioning, which leads to a more realistic coupling 
between surface and atmosphere.    

One research project focuses on appropriate 
spatial aggregations of remote-sensing data into the 
lower boundary conditions and determine model 
sensitivity to the various parameters. To compare 
simulations with in-situ field reference data values the 
team uses observations captured by a set of 
meteorological stations and then use the results to 
study urban heat island mitigation efforts in the 
downtown urban areas. The research teams construct 
multi-resolution datasets from a variety of platforms, 
suitable for estimating fractional, subpixel 
coverage estimates for multiple aggregations of land 
use. The datasets are further used by machine learning 
algorithms for classification and modeling. The data 
are then entered into boundary layer components of 
numerical weather forecast models. The hindcast 
weather simulations are constructed and compared 
with past and current data collected from a variety of 
ground-based sources, including updated stations with 
radiation shields and cellular data transmission, which 
provide the accurate representation and real-time 
collection of air temperature.  

Another study is developing a new, high-
resolution urban albedo dataset based on Landsat and 
Sentinel-2, separating roofs from impervious ground in 
the NLCD impervious surface dataset. The research 
team conducts and analyzes WRF simulations with the 
new urban albedo dataset and implement this dataset 
into publicly released WRF versions. The improved 
characterization of the albedo parameters in WRF will 
improve the simulation of urban meteorological 
variables and thus empower stakeholders and 
researchers to better navigate urban planning and 
policies. 

4.2. Agricultural studies 
 

To determine the impact of land use on vegetation-
atmosphere feedback and drought development in the 
U.S. agricultural lands, land cover type and irrigation 
data are being used in numerical experiments. The 
NU-WRF coupled regional model is used to conduct 
sensitivity experiments to determine the impact of land 
cover type, irrigation fraction, irrigation strategy, and 
initial conditions on the onset and amplification of the 
rapid emergence and onset of land drying and 
vegetation stress. A prototype of Land Digital Twin is 
being designed to examine a range of scenarios for 
exploring land use impacts on short range weather 
conditions (atmospheric temperature, aridity, boundary 
layer growth, cloud development, and precipitation) 
and drought development. The goal is to better inform 
decision-making under forecasted drought by 
improving society drought preparedness through 
changes in land management strategies. The NU-WRF 
short-range and sub-seasonal weather forecast uses 
MODIS-derived land cover data and irrigation data 
from the U.N. Food and Agriculture Organization. 

To improve weather prediction and better 
understand agriculture-weather interactions, NASA 
LCLUC researchers combine remote sensing data and 
machine learning techniques. They develop a suite of 
dynamic high-resolution annual crop and irrigation 
data over the continental US during the past 25 years 
to incorporate them into WRF/Noah MP-Crop model. 
The current static, outdated crop and irrigation input 
maps in WRF are being replaced by the suite of annual 
maps at 30- m field-scale historical and in-season crop 
types with rotation patterns, state-level crop planting 
and harvesting dates, the 4-km crop growing degree 
days, and 5-yearly field-scale 30-m irrigation area 
maps. Model sensitivity is being tested to quantify key 
factors affecting weather prediction, associated 
mechanisms, and uncertainty, in non-extreme and 
extreme conditions, including extreme precipitation, 
heat waves, and droughts. In developing a prototype 
Land Digital Twin, some researchers use Google Earth 
Engine, which facilitates the identification, processing, 
and transfer of land-use data that are further utilized in 
the NU-WRF model. Machine learning and Artificial 
Intelligence are employed to assess the impact of land 
surface changes on regional weather.  

NASA researchers strive to integrate 
heterogeneous datasets to assess the implications on 
regional sustainability, focusing on extreme weather 
risks and crop production. With an interactive 
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interface, a Digital Twin prototype will allow 
stakeholders to engage in an analysis of agricultural 
scenarios to support sustainable land management. 

5. CONCLUSIONS 

The NASA LCLUC program is in a good position to 
contribute towards developing Earth System Digital 
Twins. The current paper is focused on LCLUC efforts 
in advancing improvements to Numerical Weather 
Regional Forecast Models by incorporating available 
land-use data on a weekly scale. The projects just have 
started, so it is too early to provide results of the extent 
the weather forecasts would improve after land-use 
data have been incorporated. Incorporation of dynamic 
spatial distribution of land use is specifically focused 
on providing better boundary conditions on such 
processes as urban structural changes and agricultural 
practices, such as crop rotation and irrigation.
 LCLUC studies will provide indication which 
land-use variables are critical in models and the scale 
at which their impact becomes important for 
improving forecasts. The next step will include 
assessment of socio-economic impacts, which will 
imply the use of social science and econometric 
models and data. Additional efforts within the 
program, not described here, will be made to advance 
Earth System models using land-use data globally and 
regionally on a longer-term, decadal scale. Ultimately, 
Land Digital Twins based on these studies will be 
beneficial to stakeholders and economy. 
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ABSTRACT 

This paper presents an updated overview of the DestinE 

Platform, developed by the European Space Agency (ESA) 

within the European Commission’s Destination Earth 

(DestinE) initiative—an ambitious programme to build a 
high-precision digital twin of the Earth [1] [2] [3]. While 

serving as a unified access point to a wide range of Earth 

observation (EO) services and datasets, the platform also 

integrates advanced cloud-native processing tools, federated 
data access, and scalable infrastructure on EuroHPC [4]. 

The paper introduces key architectural and operational 

innovations in big data handling, including the use of 

Polytope [5] for multidimensional data extraction, real-time 

event-based workflows with Aviso, and distributed 
processing via JupyterLab and DASK [6]. It also explores 

user engagement through platform analytics, user profiles, 

and early case studies focused on climate resilience, 

environmental monitoring, and tourism applications. 
Finally, the paper outlines the long-term sustainability 

roadmap, including eco-design, carbon impact assessment, 

and strategies for platform governance and maintenance. 

These contributions aim to position DestinE as an evolving, 
user-centric ecosystem for next-generation EO data 

exploitation and scientific collaboration. 

Index Terms— Destination Earth, DestinE Platform, 

Big Data, Federated Access, Earth Observation, Digita l 

Twin, Sustainability, User Engagement.  

1. INTRODUCTION 

The DestinE Platform, developed under the leadership of the 
European Space Agency (ESA), plays a central role in the 

European Commission’s Destination Earth (DestinE) 

initiative. This large-scale digital infrastructure aims to build  

a high-precision digital twin of the Earth to support evidence-

based policy making, environmental monitoring, and 
sustainable development. 

Beyond serving as a central hub for accessing Earth 

observation (EO) data, models, and services, the DestinE 

Platform has been designed with a focus on innovation in big 
data processing, cloud-native architecture, and user-driven  

analytics [4]. It leverages distributed computing through 

EuroHPC, federated access layers across institutional data 

providers, and modular services that enable real-time or 
large-scale EO applications. 

This paper expands on previous presentations of the 

platform by: 

• Introducing novel technical components not covered in 

standard documentation; 

• Highlighting how users are engaging with the platform, 

with early case studies; 

• Clarifying the long-term sustainability and governance 

roadmap. 

The structure of this paper is as follows: 

• Section 2 describes the user journey from registration to 

advanced access; 

• Section 3 presents the service registry and data 

exploitation tools; 

• Section 4 introduces the platform architecture and big 

data handling innovations; 

• Section 5 covers user engagement and community 

building; 

• Section 6 outlines the sustainability roadmap; 

• Section 7 concludes with a discussion of ongoing and 

future developments. 

 

 

Fig. 1. DestinE Platform Homepage. 

2. DESTINE PLATFORM USER JOURNEY 

The DestinE Platform has been designed to offer a user-

friendly and scalable pathway for accessing and leveraging 
high-precision EO data and services. The user journey is 

structured around four key steps: 

1. Registration 

2. Access Upgrade 

3. Service Discovery via Registry 
4. Support and Engagement 
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2.1. Registration 

Users start by visiting https://platform.destine.eu and 

selecting the “Register” button. The registration process 

collects personal details, the user’s institutional or 
organizational affiliation, and their profile category (e.g., 

research, public authority, NGO, citizen). Upon submission, 

a verification email is sent to activate the account. 

Registration grants access to the basic features of the 
platform and allows users to explore a selection of available 

services and datasets. 

2.2. Access Upgrade 

Two access tiers are available: 

• Basic Access (default after registration) 

• DPAD Access (DestinE Primary and Altered Data 

Access), which requires approval. 
DPAD Access enables users to download and utilise: 

• DestinE Primary Data: Geospatial datasets from 

ECMWF-operated Digital Twins, made available via 
Polytope on EuroHPC infrastructure. 

• DestinE Altered Data: Data derived from Primary Data 

that retain enough metadata to allow traceability, without 

containing significant intellectual or creative 

contributions from the user. 

Users can request an access upgrade via the “Access Policy 
Upgrade” page after login. This process includes:  

• Selecting the user category (e.g., academia, public 

authorities, SMEs) 

• Reviewing and accepting the Terms & Conditions for 

DestinE Priority Users 

• Submitting the form for manual review 

2.3. Service Registry Access 

The Service Registry provides a curated catalogue of 

operational services, publicly accessible for browsing and 

filtering, whereas access to the services requires an account. 
The services are organised into four main categories:  

 

• Data Access management 

• Data Analysis and Modelling 

• Data Visualisation 

• User Workflow 

 

Services can be searched and filtered by category, data 

source, or tags. This modular structure supports a wide range 
of users — from data scientists to policy analysts — enabling 

discovery and integration of EO services tailored to specific 

needs. See Section 3 for detailed service descriptions. 

2.4. Support 

To ensure a responsive and inclusive user experience, several 

support mechanisms are in place: 

• FAQ Section on the platform 

• Service Documentation for each registered service 

• Dedicated Service Desk, accessible via the “Contact 

Us” form  

• DestinE Platform Learning Hub (launched in June 

2025, available at https://learninghub.destine.eu  
designed to support user upskilling and knowledge 

sharing 

• Community Forum (currently in development) 

3. SERVICE REGISTRY 

As of August 2025, the DestinE Platform hosts 25 
operational services, covering a diverse range of capabilities 

from data visualisation to advanced modelling and 

processing. Each service has passed a structured onboarding 

and evaluation process. 
Below is a summary of currently available services: 

• Aviso: Event-based data notification service for 

workflow automation. 

• CityNexus: Urban digital twin modelling impacts of 

road and urban design changes. 

• Data Cache Management: Supports efficient storage, 

handling, and user-driven requests for EO data. 

• DEA: A no-code platform for interactive storytelling and 

visualisation using DestinE data. 

• DeltaTwin: Collaborative toolbox for building and 

managing Digital Twin components. 

• DestinEStreamer: Streamlines climate data access and 

processing. 

• DT-HEAT+: Provides real-time intelligence on heat-

related mortality. 

• Earth Data Hub: Fast browsing, analysis, and 

computing on pre-processed EO datasets. 

• EDEN: Central interface to explore and access Digita l 

Twin data and anticipate climate-related impacts. 

• GeoAI: Geospatial AI platform for designing and 

deploying AI-based EO solutions. 

• HDA: Discovery and access to the DestinE Data 

Portfolio. 

• HIGHWAY: Integrates ESA Earth Explorer datasets 

into DestinE with visualization and processing tools. 

• HOOK: Serverless workflow orchestration via DestinE 

Data Lake. 

• Insula Code & Processing: Visual storytelling and 

scalable EO data processing services. 

• Islet Compute & Storage: Infrastructure/Platform as a 

Service near DestinE Data Lake. 

• miniDEA: Lightweight visual component powered by 

DEA. 

• Polytope: Efficient, federated access to EO hypercubes 

via API and Python client. 

• SesamEO: Thematic discovery and download of 

Copernicus and other EO products. 

• STACK: Cloud-native JupyterLab and DASK-based  

processing environment. 

• Tourism Square: Analyses climate and environmental 

impact on tourism activity. 
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• Urban Square: Provides tools to analyse and anticipate 

environmental threats in urban areas. 

• Vision & VizLab: Immersive 3D storytelling and 

visualization for Digital Twin data across desktop and 
VR/AR platforms. 

Each service is accessible via the Service Registry and 

integrated into a common platform environment, ensuring 

interoperability and standardisation across user workflows. 
 

 

Fig. 2. DestinE Platform Service Registry. 

4. BIG DATA ARCHITECTURE AND PROCESSING 

INNOVATIONS 

One of the central technical challenges addressed by the 

DestinE Platform is the handling of massive EO datasets from 

multiple sources, generated at high temporal and spatial 

resolutions by Digital Twin engines. To support scalable, 
federated, and real-time data exploitation, several 

architectural innovations have been introduced: 

4.1. Federated Data Access with Polytope 

Polytope provides efficient, federated access to 

multidimensional data "hypercubes" produced by DestinE 

Digital Twins. It allows users to extract targeted spatial-

temporal subsets via an API or a Python client, enabling 
selective access without the need to download full datasets. 

This capability is crucial for reducing data movement and 

supporting low-latency applications [5]. 

4.2. Event-Driven Processing with Aviso 

The Aviso service implements an event-based architecture 

that allows users to subscribe to specific data events (e.g., 

new forecast availability or data ingestion) [7]. These triggers 

can launch downstream workflows, notifications, or custom 
analytics — enabling automation and real-time response. 

4.3. Cloud-Native Analytics with STACK and DASK 

The platform offers near-data processing capabilities through 

STACK, which integrates JupyterLab with DASK, 

allowing scalable computation directly in the cloud [6]. This 

minimises latency and supports complex operations such as 

time series extraction, spatial transformations, and data 
fusion — particularly useful for heavy geospatial workloads. 

4.4. Data Processing and Modelling Services 

Services like Insula Processing, DeltaTwin and GeoAI  

provide modelling, orchestration, and AI integration 

capabilities. These support both no-code users (via UI) and 
expert users (via CLI or APIs), making the platform adaptable 

to different skill levels. 

4.5. Interoperability and API Standards 

All services conform to shared platform policies and 

interoperability standards (e.g., STAC, OGC APIs), ensuring 

integration with external systems and reproducibility of 

results. 
Collectively, these components position the DestinE 

Platform not only as a data access point but also as a 

computational environment for big data exploitation, 

enabling rapid prototyping and operational services in EO. 
 

5. USER ENGAGEMENT AND COMMUNITY 

BUILDING 

The DestinE Platform has demonstrated strong early user 

engagement across Europe and internationally. A Public 

Dashboard (available at https://platform.destine.eu/public-

dashboard) provides real-time insights into platform usage, 
access levels, and geographic reach. As of August 2025: 

• Registered Users: 3,783 

• Visitors (since launch): 58,847 

• Operational Services: 25 

• Service Onboarding Requests: 54 

5.1. User Profile Breakdown 

Analysis of user profiles shows broad participation across 

domains highlighted in Figure 3 below: 
 

 

Fig. 3. Total Registered users trend by user profile. 

This diversity reflects the platform’s dual mission: enabling 

cutting-edge research and supporting operational applications 
such as policy-making and emergency response. 
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5.2. Use Case Highlights 

Although still early in deployment, several compelling use 

cases have emerged: 

• Flood Mapping and Impact Forecasting : Using real-

time Digital Twin outputs with DeltaTwin and 

DestinEStreamer to model regional flood risk in  
Central Europe. 

• Urban Heat Island Monitoring: Leveraging GeoAI  

and Earth Data Hub to study urban microclimates 

during extreme heat events in Southern Europe. 

• Tourism Climate Services: Through Tourism Square, 

local governments are assessing the impact of weather 

variability on tourism infrastructure and services. 

• Cross-border Environmental Cooperation: 

Transnational projects are using shared Digital Twin  

outputs to align climate adaptation strategies. 

6.   DESTINE PLATFORM SUSTAINABILITY 

ROADMAP  

A strategic priority for the DestinE Platform is ensuring long-

term sustainability. To this end, and following a roadmap 
defined in Q4 2024 and updated in 2025, the platform team  

has initiated a range of activities to guarantee operational 

continuity, environmental responsibility, and institutional 

governance [9] [10]. 

6.1. Environmental Responsibility and Eco-Design 

The roadmap also integrates a clear environmental agenda, 

aligned with the European Green Deal and EU climate 
objectives: 

• Carbon Footprint Assessment: Initial measurement 

frameworks are being piloted, focusing on compute- and 

data-intensive services. 

• Reduction Action Plan: Early results will inform a 

reduction strategy for energy-intensive workflows and 

infrastructure. 

• Green-by-Design Principles: Service providers are 

required to consider energy impact during onboarding 

(e.g., efficient algorithms, minimisation of data 

replication). 

• KPI Tracking and Reporting: Sustainability Key 

Performance Indicators (KPIs) will be monitored via the 
platform dashboard. 

 

7. CONCLUSIONS AND FUTURE DEVELOPMENTS  

This paper has presented a revised and enriched view of the 

DestinE Platform — moving beyond a descriptive overview 

toward a more technical and strategic narrative that highlights 

the platform’s innovations in data handling, user engagement, 
and sustainability [11]. 

7.1. Key Achievements to Date 

• 3,783 registered users and 25 operational services (as of 

August 2025) 

• Robust, modular user journey with tiered access and 

integrated support 

• Technical services for big data federation, event-driven 

processing, and scalable analytics 

• Clear roadmap for sustainability, eco-design, and cross-

provider governance 

7.2. Outlook and Next Steps 

• Forum Launch: Targeting end of 2025 to boost 

community knowledge sharing and technical literacy. 

• Expansion of Onboarded Services: A total of 54 

onboarding requests were received, many of which 

address climate impact, agriculture, marine monitoring, 

and infrastructure resilience. 

• Operationalisation of Sustainability Metrics:  

Including public reporting on energy consumption and 
carbon footprint. 

 

With these next steps, the DestinE Platform aims to 

become not only a technical enabler of Digital Twin Earth 
initiatives, but also a sustainable, user-driven ecosystem 

capable of transforming how we observe, understand, and 

respond to planetary challenges. 
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ABSTRACT

We present a new-generation, AI-agent-powered digital assis-
tant featuring four specialized engines for satellite imagery:
search by image, search by caption, visual question answer-
ing, and knowledge graph question answering. At the core
of the system is a Task Interpreter, designed as a multi-agent
system, which coordinates these engines to address complex
user requests for Earth observation data. The Task Interpreter
comprises four agents: an Engine Routing Agent that selects
the appropriate engine or rejects unmanageable requests; a
Conversational Agent that handles general or out-of-scope
queries; an Argument Extraction Agent that identifies image
type parameters for retrieval tasks; and a Tool Feasibility
Agent that assesses the applicability of tools for domain-
specific queries. This multi-agent system enables seamless
interaction with Digital Twins of Earth, with an emphasis on
modularity and extensibility to adapt to the rapid evolution of
remote sensing technologies.

Index Terms— Multi-agent systems, digital assistant,
digital twins, search by image, search by caption, visual
question answering, knowledge graph question answering

1. INTRODUCTION

In Artificial Intelligence (AI), an agent is an autonomous en-
tity capable of perceiving its environment, making decisions,
and acting upon it to achieve specific goals. Multi-agent sys-
tems (MAS) is a subarea of AI studying societies of agents
in cooperative or competitive settings and has a long tradition
of outstanding research results. With the recent revolution of
large language models (LLMs) and foundation models (FMs),
the area of MAS is receiving again a lot of attention with the
proposal of LLM-powered agent frameworks such as Auto-
Gen [13], LangChain and CrewAI.

As part of these recent developments, we have seen the
proposal of agent and multi-agent system architectures pow-
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ered by LLMs in the Remote Sensing (RS) area [4, 9, 10,
11, 14]. Remote Sensing ChatGPT [4] introduces a system
where ChatGPT interprets user requests and sequentially
invokes specialized RS models for tasks such as object de-
tection and land use classification. RescueADI [11] focuses
on disaster interpretation, employing a LLM-driven agent to
dynamically plan and execute multiple specialized tasks like
damage assessment and rescue pathfinding. RS-Agent [14]
extends this paradigm by integrating high-performance tools
and a retrieval-augmented knowledge base to support pro-
fessional geospatial analysis. GlobeFlowGPT [9] applies a
multimodal LLM orchestrator to facilitate complex geospa-
tial workflows, including flood forecasting and vegetation
monitoring, with containerized tool integration. Similarly,
GeoLLM-Squad [10] adopts a MAS, using an orchestra-
tor to coordinate specialized agents for a broad range of
remote sensing tasks, such as urban monitoring, climate anal-
ysis, forestry protection, and agricultural studies. Like our
approach, it emphasizes modularity, extensibility, and the
separation of orchestration from task-solving components.

Parallel to these developments, the emergence of Digital
Twins of Earth (DTEs) —high-fidelity, dynamic digital repre-
sentations of the Earth’s systems—has created new demands
for intelligent, continuous interaction with massive Earth ob-
servation (EO) datasets. DTEs require the ability to access,
interpret, and integrate diverse data streams in a flexible, scal-
able, and context-aware manner. MAS are particularly well
suited to meet these needs, enabling specialized tools to work
together dynamically to support the complex data require-
ments of DTEs.

However, despite recent advances, there is currently no
EO data provider that offers a digital assistant capable of guid-
ing users in finding the EO data they seek. This is a crit-
ical functionality gap, especially as the volume of EO data
made available through initiatives like Copernicus and Land-
sat continue to expand. Without intelligent assistance, this
wealth of data remains difficult to access for both expert and
non-expert users, such as journalists searching for timely EO
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imagery of environmental disasters or policymakers monitor-
ing climate events.

To address this challenge, we introduce the Digital As-
sistant for Digital Twins of Earth (DA4DTE), an AI-powered
multi-agent digital assistant designed to facilitate seamless
interaction with EO datasets. In DA4DTE, a Task Inter-
preter operates as a multi-agent system comprising special-
ized agents that collaboratively interpret user requests and
orchestrate the activation of appropriate search engines or
tools. We distinguish between the specialised engines serving
EO tasks, the multi-agent Task Interpreter with its agents—
autonomous functional components responsible for specific
subtasks—and the assistant, the overall user-facing system
deployed to fulfill complex information retrieval workflows.
We make the source code of our system publicly available1.

2. MULTI-AGENT SYSTEM FOR ORCHESTRATION

DA4DTE enables a user to pose multi-modal requests, that —
in addition to text— can include RS images, either uploaded
or selected on the User Interface map. The assistant’s toolset
allows for a variety of requests including geospatial or visual
queries, requests for images by describing their visual context
or metadata, image search requests, and queries for explana-
tion on image similarity results. Between the user and the
DA4DTE engines lies the Task Interpreter: a MAS respon-
sible for engine orchestration and the mediation between the
user and individual engines. The architecture is illustrated
in Figure 1, which highlights the collaborative roles of each
agent module and their interactions with the user interface and
underlying engine components.

To ensure future extensibility, we categorize orchestration
responsibilities into two types: core and assistant tasks. Core
tasks are permanent and fundamental to any version of the as-
sistant, regardless of the tools or data sources integrated. In
contrast, assistant tasks are tailored to the current implemen-
tation state and may evolve as functionalities and resources
expand. Each task is assigned to a dedicated agent, forming
a MAS, implemented using the AutoGen [13] framework and
currently comprising the following four agents.

The first agent is the Engine Routing Agent (Core). This
agent is a zero-shot prompted LLM that selects the most ap-
propriate engine to activate based on the user request. It also
has the capability to reject requests that fall outside the scope
of all available engines.

The second agent is the Conversational Agent (Core).
This is a fallback conversational agent designed to handle
general, ambiguous, or out-of-domain queries. Although it
is a capable LLM, it is specifically prompted not to respond
to irrelevant requests so the assistant remains task-focused.

The third agent is the Argument Extraction Agent (As-
sistant). This is an agent dedicated to extracting key param-

1https://github.com/rsim-tu-berlin/DA4DTE

eters required by specific tools. In the current implementa-
tion, it identifies the requested image type (e.g., Sentinel-1 or
Sentinel-2) when the Search-by-Image engine is activated.

Finally, the fourth agent is the Tool Feasibility Agent
(Assistant). This is a utility agent responsible for validat-
ing whether a requested operation is feasible under current
system capabilities. For example, the Search-by-Text engine
presently supports only vessel-related queries. If a user re-
quest falls outside this domain, the agent triggers a relevant
explanatory message to the user.

3. ENGINES AND THEIR FUNCTIONALITIES

DA4DTE integrates four specialized engines, tailored to spe-
cific Question Answering (QA) or retrieval tasks.

The first engine is the Knowledge Graph QA Engine
TerraQ [8]. TerraQ2 is a QA system that is designed to pro-
cess natural language requests that include spatiotemporal or
metadata related criteria and satisfy the request by retrieving
data from a Knowledge Graph (KG). User requests can in-
clude references to image metadata (e.g., snow percentage in
an image), geoentities (e.g., the country France), administra-
tive divisions (e.g., municipalities, regions), as well as spa-
tiotemporal constraints.

For example, users can make requests like “Give me a
hundred images of rivers near ports in France, with less than
20% snow coverage and more than 10% cloud coverage,
taken in 2021”. The engine then takes this request as input,
translates it into a semantically equivalent SPARQL query
as follows: First, relevant entities and classes are extracted
from the KG. Then, relations between the retrieved entities
and classes are identified, including spatial and temporal
relations. At this stage, the core of the query is complete,
and the expected return values are identified by a finetuned
Llama 2 model. The query generator then produces the com-
plete, executable SPARQL query. This query is subsequently
enhanced by a finetuned on SPARQL Mistral-7b-v2 model,
and rewritten to optimize execution efficiency by replacing
GeoSPARQL functions with equivalent materialized topo-
logical predicates. In the end, the query is executed over a
GraphDB endpoint, and the QA process is complete.

The second egine is the Search-by-Image Engine. This
engine takes a query image and computes the similarity func-
tion between the query image and all archive images to find
the most similar images to the query in a scalable way. This
is achieved based on two main steps: i) the image description
step, which characterizes the spatial and spectral information
content of RS images; and ii) the image retrieval step, which
evaluates the similarity among the considered hash codes and
then retrieves images similar to a query image in the order
of similarity. Our Search-by-Image Engine is defined based
on two self-supervised methods: 1) deep unsupervised cross-

2https://terraq.di.uoa.gr/
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Fig. 1. High-level architecture of the digital assistant (DA4DTE), showing the user interface, multi-agent Task Interpreter, and
the specialized engines (figure inspired by Figure 1 of [14]).

modal contrastive hashing (DUCH) [12]; and 2) cross-modal
masked autoencoder (CM-MAE) [6]. For both methods, the
image description step is composed of two modules: 1) a fea-
ture extraction module, which learns deep feature represen-
tations of RS images by exploiting visual transformers (ViT);
and 2) a deep hashing module, which learns to map image rep-
resentations into hash codes. The first module of the DUCH
method is based on contrastive self-supervised image rep-
resentation learning, while that of the CM-MAE method is
based on unsupervised masked image modelling. The second
module of each method employs a hashing subnetwork with
binarization loss functions. Our engine has both the single-
modal (also known as uni-modal) and cross-modal content-
based image retrieval capability due to the consideration of
the modality-specific encoders.

A key feature of the search-by-image engine is the inte-
gration of the Explainability tools to understand and explain
the decision of the engine in retrieving a particular image
given a query image. To this end, we incorporate two ex-
plainability tools: Layer-wise Relevance Propagation (LRP)
[1] and BiLRP [3]. The LRP highlights areas in the in-
put image supporting a specific class decision by generating
heatmaps. Since CM-MAE is self-supervised and lacks class
predictions, we train an auxiliary classification head to esti-
mate class probabilities for each image pair. These predic-
tions enable the generation and interpolation of class-specific

LRP heatmaps, which emphasize semantically similar regions
across image pairs. BiLRP, while more computationally in-
tensive, identifies in the image pairs shared regions without
needing a classification head.

The third engine is the Search-by-Text Engine. This
engine takes a text sentence as a query and efficiently re-
trieves the most similar images to the query text, achieving
scalable cross-modal text-image retrieval. The Search-by-
Text Engine is developed by adapting the above-mentioned
self-supervised DUCH [12] to be operational on text based
queries. To this end, the feature extraction module is adapted
to extract feature representations of image-text pairs by ex-
ploiting bidirectional transformers (e.g., BERT [2]) as text-
specific encoders together with ResNet-152 [7] as image-
specific encoders. The second module of each method is
adapted to learn cross-modal binary hash codes for image and
text modalities by simultaneously preserving semantic dis-
crimination and modality-invariance in an end-to-end manner.

To evaluate DUCH, we constructed a vessel captioning
dataset, consisting of vessel text-image pairs generated via
a template-based image captioning approach. This approach
consists of creating predefined sentence templates with empty
slots. The slots are then filled using semantic cues from vessel
bounding boxes (e.g., count, size) and contextual data from
OpenStreetMap, particularly coastline proximity (i.e., vessel
locations relative to harbors or coastlines). Vessel sizes, de-
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rived from bounding box dimensions, were categorized into
five classes (very small to very big) and mapped to two vessel
types: boats (very small to medium) and ships (big and very
big), reflecting typical usage and navigational context.

Finally, the fourth engine is the Visual QA Engine. This
engine enables users to ask questions about the content of
RS images in a free-form manner, extracting valuable in-
formation. It employs the LiT-4-RSVQA [5] model, which
has been trained and evaluated on RSVQAxBEN3. The LiT-
4-RSVQA architecture focuses on achieving state-of-the-art
performance, while also providing rapid response times. To
do so, it employs the following modules: i) a lightweight text
encoder module; ii) a lightweight image encoder module; iii)
a fusion module; and iv) a classification module. A RS image
I and a question Q about this image are considered as input.
The encoder modules produce vector representations which
are subsequently passed to the fusion module. The feature fu-
sion module consists of two linear projections and a modality
combination. The projections map the two modalities with
dimensions dt and dv into a common dimension df, where
dt and dv denote the dimensions of the flattened output of
the text and image encoder modules, respectively. The value
of dv differs depending on the used lightweight transformer.
The projected features are then elementwise multiplied. The
classification module is defined as an MLP projection head.

4. DA4DTE IN ACTION

We now consider a use case scenario for the digital assistant.
The assistant welcomes the user and asks them to pose a re-
quest. The user asks for a Sentinel-1 image from France dur-
ing 2020, with snow coverage of more than 50%. Then, the
Engine Routing Agent of the Task Interpreter decides that this
is a request that should be fulfilled by the Knowledge Graph
QA Engine which returns the appropriate image. The inter-
action goes on with the user asking for a similar Sentinel-2
image and then the Search-by-Image Engine is selected by
the Engine Routing Agent. The term “Sentinel-2” is extracted
by the Argument Extraction Agent as the modality argument,
so the engine is activated and returns the appropriate image.
Having selected that Sentinel-2 image, the user asks whether
it presents a rural area and the answer by the Visual QA En-
gine is presented. Finally, the user closes the interaction with
the assistant and the Engine Routing Agent of the Task Inter-
preter calls the Conversational Agent to answer appropriately.

5. FUTURE WORK

We plan to explore several research directions to further im-
prove the capabilities of the system. First of all, we aim to im-
plement an alternative Engine Routing Agent using the Func-
tion Calling paradigm in LLMs, to improve control over en-

3https://zenodo.org/records/5084904

gine invocation compared to the current zero-shot prompting
setup. We also plan to extend the assistant’s capabilities to
multi-step requests where multiple engines can be activated
in a sequence. As the complexity of the system increases, we
intend to integrate a Manager Agent to oversee and coordinate
the behavior of all other agents within the Task Interpreter.
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ABSTRACT

The exponential growth of Earth Observation (EO) data
presents significant challenges for efficient data access, pro-
cessing, and analysis. Current approaches often involve dis-
parate data formats, coordinate systems, and access patterns,
limiting interoperability and scalability. Recently, the Zarr
data storage format has been adopted as a unifying cloud-
native foundation for various domains, including climate,
EO, bio-imaging, and genomics. Secondly, Discrete Global
Grid Systems (DGGS) such as HEALPIX, or ISEA-based
hexagonal DGGS are being increasingly used to provide
indexing beyond traditional grids, by providing equal-area
pixels and location- and resolution encoding indices. Lastly,
the recently published OGC API DGGS standard specifies a
lightweight web service API for clients accessing data organ-
ised according to Discrete Global Grid Reference Systems
(DGGRS).

We implemented a Python FastAPI service (pydggsapi)
that exposes the OGC DGGS API standard with a back-
end utilizing Zarr archives indexed by DGGS cells. This
work demonstrates a novel architecture that combines DGGS
with cloud-native Zarr storage to create universal building
blocks for EO data management, enabling seamless tran-
sitions between high-performance computing environments
and lightweight client applications.

Index Terms— DGGS, OGC API, ZARR, indexing, web
service

1. INTRODUCTION

Earth Observation (EO) data volumes continue to increase ex-
ponentially, driven by new satellite missions, higher sensor
resolutions, and increased temporal coverage. The Coper-
nicus program alone generates TB of data every day. Cur-
rent approaches often involve disparate data formats, coor-

dinate systems, and access patterns, limiting interoperability
and scalability across different processing environments [1].

Conventional web service standards such as Web Cov-
erage Service (WCS), Web Coverage Processing Service
(WCPS), and Web Map Service (WMS) have provided stan-
dardized access to geospatial data [11]. However, these
services typically rely on traditional coordinate reference
systems and raster-based approaches that present challenges
when working with global datasets at multiple resolutions or
when combining heterogeneous data sources.

The Discrete Global Grid System (DGGS) paradigm of-
fers a solution to these challenges by providing a unified spa-
tial reference framework based on hierarchical tessellation of
the Earth’s surface [13]. The Open Geospatial Consortium
(OGC) has developed standards and best practices for DGGS
implementation, including the DGGS Abstract Specification
and the DGGS API. The OGC Testbed-16 Engineering Re-
port (ER-16) and the ESA technical study on Sentinel-2 ARD
handling with DGGS further elaborate on implementation ap-
proaches and use cases [12, 14].

Equal-area DGGS implementations, such as HEALPix
[5], rHEALPix [4] and ISEA [15], have gained particular at-
tention for Earth Observation applications due to their ability
to maintain consistent area measurements across the globe
[9], and their usability for large-scale EO analysis, including
improved statistical analysis and multi-resolution data fusion.

In parallel, the scientific Python ecosystem has seen sig-
nificant developments in data handling capabilities with tools
like Xarray [6], which provides labelled multi-dimensional
array operations. The XDGGS extension for Xarray enables
direct manipulation of DGGS-indexed data within this frame-
work [7]. Additionally, the XPublish concept provides a
mechanism for exposing Xarray datasets through web service
interfaces, bridging the gap between analytical environments
and web-based access patterns.

In this paper, we describe universal building blocks
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Fig. 1. Architecture

that combine DGGS with cloud-native Zarr storage to cre-
ate a comprehensive framework for EO data management.
This approach enables seamless transitions between high-
performance computing environments and lightweight client
applications while maintaining spatial alignment through
DGGS indexing. By integrating these technologies, we ad-
dress key challenges in the EO data processing chain, from
initial data organization to final delivery and visualization.

2. METHODOLOGY

We implemented a Python FastAPI service that exposes the
OGC DGGS API standard (pydggsapi [8]) with a backend
utilizing Zarr arrays indexed by DGGS cells. The concept
is inspired by the TiTiler and XPublish packages, which can
employ a ”serverless” FastAPI web service routing interface
on top of cloud-native and Xarray datasets. This architecture
leverages complementary technologies as shown in Fig. 1.

The Discrete Global Grid System (DGGS) serves as a uni-
versal spatial index, providing a hierarchical, multi-resolution
grid system that consistently indexes geospatial data across
the entire globe. This eliminates the need for reprojection
when combining datasets from disparate sources and enabling
immediate analysis without preprocessing steps, and extends
and improves upon the grid notion, that is established in the
met/ocean and climate communities.

Zarr technology functions as the cloud-optimized storage
foundation, with its chunked, compressed array format en-
abling efficient parallel access to massive datasets stored in
object storage systems while maintaining critical dimensional
information and supporting selective data extraction at multi-
ple resolutions.

As a novel composite aspect, the architecture leverages
already available software, such Xarray-XDGGS, which is
a package, that implements 1-D DGGS indexed arrays to
work with various open-source DGGS libraries and systems.

Through the Xarray DataTree model and the representation in
Zarr data groups, we can aggregate data towards higher-level
DGGS refinement levels. The concept corresponds to image
pyramids and overviews in other cloud-native formats like
COG GeoTiffs or PMTILES. Exemplary, we show use of
vector tiles (MVT) to enable a visual and data access. MVT
can be very efficient in-browser rendering by using webgl
with MapLibre GL JS as shown in Fig. 2 a.

Ultimately, the system employs a Python FastAPI-based
OGC DGGS API interface that serves as the primary access
point for web clients, providing both visualization services
and precise data access through standardized formats includ-
ing DGGS JSON, GeoJSON, or as hybrid Zarr ”packages”
that maintain the original data structure while enabling effi-
cient transfer. The web service API is meant for light-weight
query and visualisation access for web- or mobile (or IoT)-
based client applications.

3. IMPLEMENTATION

Our concept bridges two distinct operational scales - cloud-
native big data processing, and a more refined web service-
based access for lightweight clients. Zarr arrays stored in
object storage serve as the unified data foundation, enabling
direct access for high-performance computing and cloud-
based modeling workflows. The OGC DGGS API implemen-
tation, akin to XPublish for Xarray, provides standardized,
RESTful access to the same underlying data for a diverse
range of web, mobile, and IoT clients and applications. This
dual-scale approach ensures data consistency across use cases
while optimizing for different computational and bandwidth
constraints.

The data collection provider components enable access
to DGGS-indexed datasets through middleware that man-
ages connections to cloud-storage Zarr archives. Based on
the OGC ER-16 report, the application also showcases an
experimental connector for the Clickhouse database to pro-
vide fast on-demand aggregation and analytical queries on
DGGS-indexed database tables.

The main archticture relies on pre-aggregated pyramids,
where the data access middleware reads metadata from Zarr
archives. During initialization, it extracts DGGS parameters
from the Zarr archive’s attributes, including the DGGS type
(such as HEALPix or H3) and the indexing scheme used or
additional index parameters (e.g., HEALPIX’ nested or ring
scheme), available refinement levels, and the available data
variables.

The architecture aims to abstract the underlying storage
system through the Zarr application library interface, provid-
ing consistent data retrieval whether data is stored in AWS
S3, Azure Blob Storage, Google Cloud Storage, or local file
systems. For each API request, the middleware identifies the
target collection from the URL path, loads the Zarr meta-
data, attaches DGGS configuration to the request context, and
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queries the Zarr store instance purely on zone identifiers. To
improve performance, the system maintains an in-memory
cache of collection metadata, reducing storage access opera-
tions and speeding up repeated queries for common metadata.

This approach enables the FastAPI application to seam-
lessly serve OGC DGGS API requests while maintaining the
performance benefits of cloud-native Zarr storage for Earth
Observation data indexed by DGGS cells.

DGGS indexing automatically aligns diverse data prod-
ucts spatially and temporally, facilitating immediate analy-
sis without further preprocessing. Via the OGC DGGS API,
it is possible to provide convenient access to clients to cell-
based summary queries, for examples as shown in Fig. 2 b.,
at a specific refinement level (i.e. higher resolution). The
OGC DDGS API layer enables targeted data extraction for
non-DGGS-capable clients, reducing data transfer volumes
and simplifying implementation for client applications. Di-
rect HPC access to cloud-stored Zarr archives is facilitated
by high-throughput network connections and cloud-aware li-
braries like fsspec and xarray. These tools enable HPC ap-
plications, e.g. built on libraries like Dask to stream Zarr
chunks directly from object storage APIs (e.g., S3), enabling
efficient, highly parallelised batch processing over large areas
and timescales without pre-staging the entire dataset.

4. DISCUSSION

4.1. Universal Building Blocks for Earth Observation
Data

Why universal building blocks? The combination of DGGS
and Zarr creates building blocks for Earth Observation data
management that address key challenges in the geospatial
data pipeline. Maintaining a unified base of DGGS-indexed
Zarr archives enables consistent data organization across mul-
tiple use cases. This approach supports both large-scale and
local applications through a dual-access pattern: direct access
to cloud-stored Zarr archives for high-performance comput-
ing and API-mediated access for web clients with bandwidth
constraints.

Pydggsapi also includes the well-known OpenAPI3/
Swagger documentation and client, which provides a low-
barrier entry into experimenting with the API. In the near
future we will also provide training materials based on
Python/Jupyter notebooks.

4.2. Standardization Requirements

The OGC DGGS working group is advancing standards
for DGGS implementations, but additional components are
still needed. A registry for DGGS Reference Systems sim-
ilar to the EPSG codes and Proj/WKT CRS definitions is
needed. Clear conventions for storing DGGS parameters in
Zarr metadata fields must be established. For HEALPIX,

(a) (b)

Fig. 2. Examples of DGGS web clients, a) MVT allows
for lightweight browser visualisation; b) Cell-based summary
queries

essential parameters include the desired resolution and the in-
dexing scheme (nested or ring), while more flexible systems
like rHEALPix or ISEA-based DGGS may use additional
parameters such as indexing/numbering scheme, origin, and
rotation. The CF Metadata Conventions community has also
picked up a discussion on grid parameter specification for
NetCDF and Zarr archives [2].

The OGC DGGS API implementation requires an in-
dexing scheme that encodes the refinement level in the zone
identifier. Systems like H3 and S2 have popularized this
approach, and newer DGGS references systems like IGEO7
(DGGRID/Z7 [10]) and rHEALPix can also provide this
functionality. However a more accessible implementation is
needed for HEALPIX (namely nuniq or zuniq). A notable
requirement in the OGC DGGS API standard is subzone
ordering, which currently only ISEA3H/9R appears to fully
support [3]. Most DGGS implementations have a space-
filling curve index and rely on associating data values with
zone identifiers during data transport.

4.3. Technical Limitations and Future Work

The current implementation faces certain limitations that re-
quire further research and software engineering expertise. For
example, Xarray’s eager indexing of dimensions may limit its
utility for very large DGGS archives, as all dimension indexes
are loaded into memory. More efficient handling of multi-
resolution DGGS data may require extensions to the Xarray
data model or more direct Zarr-native access approaches.

The use of Zarr groups/Xarray data trees to represent
refinement level aggregations requires additional experi-
mentation to ensure interoperability and efficient chunk-
ing/sharding, which takes DGGS cell topologies and parent-
child-cell boundaries into account. The OGC ER-16 report
outlines the methodology for providing descriptive statistics
per cell, including standard deviation, ranges, min/max val-
ues, and variance. Implementing this efficiently within the
Zarr data model across refinement levels would be useful to
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better convey the uncertainty of aggregated data.
Initial performance benchmarks do not indicate disadvan-

tages compared to traditional approaches regarding data ac-
cess performance. Combined with the inherent advantages
of DGGS for global data analysis, these results suggest en-
couraging progress. There remains substantial potential for
improvements in both usability and performance as the tech-
nology matures.

5. CONCLUSION

The integration of OGC DGGS API with Zarr storage repre-
sents a significant step toward universal building blocks for
Earth Observation data. This approach enables a seamless
continuum from big data processing to lightweight client
applications while maintaining spatial alignment through
DGGS indexing. We hope for the near future that this
might develop towards a new paradigm for value added AI-
integrated and ARD integration-ready data market APIs.
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ABSTRACT 

The steadily increasing amount of available Earth 
observation and other geospatial data provides unprecedented 
opportunities to measure, monitor, and understand natural, 
environmental, anthropogenic and social processes. 
However, to maximise the impact of space-based and other 
data on society, effective ways to extract, integrate, 
summarise and communicate the information contained in 
these sheer data volumes are needed. Herein, we focus on the 
latter of these components: communication of trends derived 
from Earth observation data by means of data visualisation. 
Specifically, we highlight how settlement and population 
dynamics, urbanisation patterns and land development 
processes can be visually represented to effectively 
communicate relevant information to a wide range of 
audiences, ranging from scientists to planners, policymakers 
and to the general public. The underlying data has been 
generated by the Global Human Settlement Layer (GHSL) 
project of the European Commission’s Joint Research Centre 
(JRC) by leveraging and integrating vast amounts of global 
remote sensing data from the Landsat and Copernicus 
Sentinel-2 missions to derive spatio-temporal gridded data 
measuring the distribution and dynamics of the built 
environment, settlements and human population from 1975 
onwards.  

Index Terms— Data visualisation, data animation, 
GHSL, Degree of Urbanisation, visual analytics 

1. INTRODUCTION 

The famous cholera map of John Snow, identifying the source 
of a 1854 cholera outbreak in London by mapping the 
location of infected cases [1] is a timeless example for the 
importance of data visualisation to reveal spatio-temporal 
patterns and its impact on society. The significance of data 
visualisation remains unchanged, and the advances in data 
availability, processing capabilities, data visualisation tools 
and in particular digital media- and web-based dissemination 
channels facilitate static, dynamic and interactive data 
visualisation in unprecedented ways. 
Visualisation is key to enable data-based insights, support 
evidence-based policy through data-driven decisions by 

stakeholders and policymakers, and an important tool for data 
and knowledge democratisation [2]. 
Earth observation data and other geospatial data are critical 
to monitor and understand pressing issues related to 
urbanisation, such as sustainable development, land take, 
biodiversity loss and social inequality. Detailed knowledge of 
the spatial characteristics and the evolution of the built 
environment and of human population is critical for informed 
urban and regional planning and policy-making, ensuring 
effective disaster risk management and crisis response, as 
also highlighted in the Agenda for Sustainable Development 
Indeed, accurate human settlement data aligns with the 
second principle of the Sustainable Development Goals 
(SDGs), “Leave no one behind”, acknowledging gridded 
population data as an important resource for delivering 
actionable data to monitor health and infectious diseases. 
The Global Human Settlement Layer (GHSL) is a project of 
the European Commission’s Joint Research Centre (JRC), 
producing and providing free and open geospatial data, 
mapping population distributions and characterising human 
settlements at a global scale, at high spatial resolution of up 
to 10 m, and over extended time periods from 1975 to 2030 
[3]. The GHSL data products integrate multi-source data, 
including planetary-scale Earth observation data from the 
Landsat and Sentinel sensors and population data from census 
figures in a spatio-temporal modelling framework, to produce 
fine-grained estimates of built-up surface, settlement age and 
function, building height and volume, taxonomies of the built 
environment, and human population, all consistently 
enumerated in global geospatial grids [3]. These data 
products have been used widely by the scientific community 
and beyond, since the first data release in 2016 [4]. 
With increasing complexity of the GHSL data ecosystem, we 
are currently developing effective visual-analytical methods 
to integrate and summarise relevant trends measured by the 
multivariate spatio-temporal GHSL data, fostering data usage 
and facilitating the access to information inherent in the data. 
Herein, we present selected static and animated data 
visualisation techniques based on GHSL data. These 
visualisations are automatically generated, for global, 
country-level, regional, and local (i.e., city-level) scope, 
using a combination of spatial and non-spatial visualisation 
techniques. They aim to represent complex datasets in 
comprehensive ways, making information accessible to wider 
audiences. These visualisations intend to facilitate faster 
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communication, fostering a deeper understanding of 
urbanisation trends and settlement dynamics to be used for 
outreach purposes, infographics, dashboards or other 
interactive data visualisation platforms. 

2. DATA AND METHODS 

2.1. Data sources 

We use data from the Global Human Settlement Layer release 
R2023A [4], at spatial resolutions of 100m and 1km. For local 
(city and region level) we rely on the 100m data, whereas for 
country-level and global analyses, the aggregated 1-km 
GHSL datasets are used, to speed up computational 
processing. These datasets include: built-up surface area 
estimates from GHS-BUILT-S, GHS-POP (gridded estimates 
of residential population, derived from disaggregating 
census-based population counts into fine grid cells using 
dasymetric modelling [5], Degree or Urbanisation, a model 
of the rural-urban continuum (partitioning land areas into 3-7 
rural-urban classes) available at 1-km resolution [6]. 
Moreover, we use the Copernicus GLO-30 Digital Elevation 
Model (CopDEM) [7], available at 30-m resolution, and 
global administrative boundaries from the GADM [8] dataset. 
Finally, the GHSL Urban Centre Database (UCDB) is used, 
an integrated, vector-based dataset delineating over 10,000 
urban centres globally [9], according to their definition in the 
degree of urbanisation framework, with rich attributes on 
socio-demographic, environmental, and risk-related urban 
characteristics from various data sources. 

2.2. Data processing 

All GHSL raster data layers are enumerated in a global grid 
at 100m and 1-km resolution, respectively, in World 
Mollweide Equal Area projection (ESRI:54009). Urban 
centre boundaries from the UCDB nest within this grid. This 
facilitates joint processing of multiple variables. We 
distinguish four geographic levels for data visualisations: 
urban centre level, region-level, country-level, or global. 
Data processing is fully automated, implemented in Python 
3.9, using gdal, rasterio, geopandas, pandas, numpy, 
matplotlib, and seaborn python packages. Based on the user-
specified geographic object of interest (e.g., an urban centre 
or country, specified by its name, or a region defined by a 
user-provided bounding box), the raster data covering the 
respective region are cropped and extracted to memory. In 
case of urban centre- or country-level visualisations, the area 
of interest is rasterised to the GHSL grid, and non-relevant 
areas are masked out. If input datasets have different spatial 
resolutions (e.g., CopDEM, or GHS-SMOD, which is 
available at 1-km resolution only), the cropped input data are 
resampled in memory to the highest resolution among input 
datasets. For spatial visualisations at country-level or at 
smaller extents, cropped datasets can optionally be warped 
into local UTM projection for mapping purposes. All 

relevant, gridded data are then loaded into spatio-temporal 
3-d arrays, and for non-spatial visualisations, 3-d arrays are 
restructured to a 2-d array, and stored in tabular data frame, 
with columns representing the different input raster datasets, 
and rows representing an individual grid cell. Finally, 
relevant summary statistics are extracted, e.g., total built-up 
surface and population by degree of urbanisation class and 
year. 

2.3. Data visualisation 

Based on the spatio-temporal data cubes covering the area of 
interest, and/or the extracted summary statistics, different 
static and animated data visualisations can be produced. 
Herein, we discuss a selection of them, including (1) 
automatically produced animated GIFs of urban change per 
urban centre, and (2) Built-up area - population (BUPOP) 
plots. 

2.3.1. Animated GIFs depicting urban change 

Based on the spatio-temporal 3-d arrays loaded in memory, 
matplotlib Python library is used to render temporal slices of 
the data as individual maps, depicting the distributions of 
built-up surface, building volume, resident population, or 
rural-urban classes, including automatically added map 
elements such as scale bar, north arrow, title, and legend. 
Rendered images are again stored in memory and exported to 
an animated GIF (graphics interchange format) or MP4 
movie file. Figure 1 shows examples of individual frames 
(i.e., epochs) of these animated maps for selected variables. 

2.3.2. Built-up area – population plots (BUPOPs) 

As an example of non-spatial data visualisation, we 
developed “BUPOPs” – built-up area – population plots. 
BUPOPs are bidirectional, horizontal, stacked bar charts, 
conveying information of four variables measured and 
mapped in the GHSL data collection: 1) built-up surface, 2) 
resident population, 3) their variation over time, 4) within 
classes of the rural-urban continuum, according to the Degree 
of Urbanisation framework. The input data is based on cross-
tabulation of the gridded data and extracted summary 
statistics, e.g., total built-up surface area in a given year, 
within a given class of the Degree of Urbanisation. See Figure 
2 for some examples. 

3. RESULTS 

We generated animated GIFs of built-up surface, building 
volume, resident population, and Degree of Urbanisation for 
each of the >10,000 urban centres of the UCDB, and 
produced the BUPOPs for each urban centre, and for each 
country globally. Such animated maps illustrate effectively 
the patterns of urban configuration and urban change, 
immediately understandable to expert and non-expert 
audiences, and the differences between individual cities, such 

Towards Digital Twins: Integrating Data, Models, and Insight

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

22 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


as the fast, concentric growth of built-up areas in Ibadan 
(Figure 1 left) as compared to the subtle change of the urban 
footprint in Riga, with declining population densities, most 
pronounced in the central parts of Riga, from 1975 to 2030 
(Figure 1 right). 
The BUPOPs shown in Figure 2 require the readers to 
“orient” themselves: population extends to the right, built-up 
surface to the left, time from bottom to top, red color indicates 

urban, yellow peri-urban, and green rural areas. Once the 
reader is familiar with this concept, the multivariate urban 
dynamics, including their interactions (e.g., change in built-
up area in relation to change in population, which is an 
important metric for measuring land use efficiency using 
SDG indicator 11.3.1) become obvious, and the “signature” 
of multiple cities or regions can be compared effectively. For 
example, in Ibadan, population has increased much more than 

 
Fig. 1. Examples of stills of fully automatically produced animated maps of spatio-temporal GHSL variables at the 
urban-centre level. Left: Built-up surface distributions shown for the city of Ibadan (Nigeria) in 1975 and 2030, based 
on GHS-BUILT-S R2023A; Right: Residential population distributions shown for the city of Riga (Latvia) in 1975 
and 2030, based on GHS-POP R2023A.  
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Fig. 2. BUPOPs (built-up area – population plots) 
effectively illustrate the settlement dynamics of a given 
place, region, or country, in terms of the change in built-
up area and population over time and their shares across 
rural, peri-urban, and urban classes. 

built-up area. In Riga, built-up area has experienced a very 
moderate growth rate, while population has been declining 
since 1990. In the case of Las Vegas (USA), built-up area and 
population have grown approximately with the same relative 
change rates. Moreover, the skewness of the triangular shape 
indicates the relationship between built-up area and 
population: a skew to the right indicates low built-up area per 
capita (e.g., Ibadan) suggesting high population density, 

while the slight skew to the left as observed for Las Vegas 
indicates the opposite, high rates of built-up area per capita, 
suggesting lower population densities. In all cases, growth 
occurs within the urban centre, while the relative shares of 
population and built-up area in peri-urban areas have been 
stable (Riga) or declining (Las Vegas) over time. 

4. CONCLUSIONS AND OUTLOOK 

Herein, we described selected, effective visual tools to 
convey information on urbanisation and settlement dynamics 
to expert and non-expert audiences, fostering insights from 
integrated, large amounts of open Earth observation and other 
data sources. In future work, we will develop and test further 
visualisation techniques and make them available to the 
public via a web-based tool. Importantly, the prototypes 
presented herein are based on locally stored data. For 
efficient, customised, user-centric web visualisation, we are 
currently exploring the use of pre-computed summary 
statistics and modern web-based infrastructure (e.g., Voilà 
dashboards [10], Google Earth Engine, cloud-optimised 
GeoTIFFs (COGs), cloud storage infrastructure), facilitating 
the real-time visualisation of large datasets such as the GHSL 
data. Such tools will foster data democratisation, the 
accessibility to space-based knowledge, and contributing to 
data-driven decision making. 
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ABSTRACT

Satellite image time series methods have proven to be a valu-
able approach for analysing large datasets in Earth observation.
Time series offer a systematic means of capturing change,
leveraging the enhanced temporal resolution of satellites such
as Sentinel-1 and Sentinel-2. This paper presents insights and
lessons learned when applying time series analysis to big EO
data, especially in the context of land use in tropical forests
and statistics of tropical agriculture. We discuss the need for
flexible definitions of data cubes, the benefits of the time-first,
space-later approach, the importance of modelling events in
time series, and the key differences between model validation
and map accuracy. The authors also present some perspectives
on possible trends in big EO data analysis.

Index Terms— Big EO analytics, satellite image time
series, EO data cubes, foundational models.

1. INTRODUCTION

With free access to Earth observation (EO) massive data sets,
we need new methods to measure change on our planet. One
particular research area that big EO data have enabled is the
analysis of time series of satellite images. Combined with
EO data cubes, time series are a powerful tool for monitoring
change. Using time series, experts improve their understanding
of ecological patterns and processes. Instead of selecting
individual images from specific dates and comparing them,
researchers track change continuously.

To support research and operational work using time series,
the authors have been developing the sits package, an end-
to-end environment for land use and land cover classification
[1]. Since 2020, the package has been utilised for large-scale
operational land use monitoring, including the measurement
of tropical deforestation and agricultural statistics. Such ex-
perience enabled package authors and users to learn several
lessons related to big EO analytics, particularly in the context
of time series. This paper presents some of these lessons to
share experience in big EO analytics.

Thanks to IKI (Germany International Climate Initiative) for funding.

2. BRIEF DESCRIPTION OF SITS

The sits programming interface (API) provides a set of func-
tions to create a workflow for land classification. The package
is written in R and offers an API for both R and Python. The
package leverages analysis-ready data (ARD) collections to
extract and classify time series. Supported collections include
AWS, Microsoft Planetary Computer, Copernicus Data Space
Ecosystem (CDSE), Digital Earth Africa, Digital Earth Aus-
tralia, and Brazil Data Cube. Since machine learning algo-
rithms for time series require consistent data, sits creates
regular data cubes from parts of ARD collections. The package
also provides methods for merging data cubes from different
satellites (e.g., Sentinel-1 and Sentinel-2) and ancillary data
such as DEMs. Users can also apply arithmetic operations
to derive new attributes from data cubes, such as vegetation
indices.

Given a regular data cube and a set of ground truth data,
sits obtains training samples containing time series for se-
lected locations in the training area. Users can perform quality
control on training samples using self-organised maps [2] and
also reduce sample imbalance.

Supported machine learning algorithms include Random
Forests, XGBoost, Temporal Convolution Neural Networks
[3], Temporal Attention Encoders [4], and Residual Networks
[5]. Data cube classification uses GPUs when available, pro-
ducing probability matrices that are post-processed to remove
outliers using Bayesian smoothing [6]. The package also esti-
mates classification uncertainty to support active learning.

3. LESSONS LEARNED IN BIG EO ANALYTICS

3.1. Flexible Definition of Data Cubes

Machine learning and deep learning (ML/DL) algorithms for
spatiotemporal data require conversion of ARD image collec-
tions from EO cloud services to regular data cubes. Appel
and Pebesma [7] propose a definition of data cubes as an
n-dimensional matrix of cells combining a 2D geographical
location, a 1D set of temporal intervals, and a k-dimensional
set of attributes. For each position in space, a data cube gen-
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erates a multidimensional time series. For each time interval,
users obtain a valid 2D image. In this definition, all pixels of a
data cube follow the same coordinate system.

In sits, we have extended that data cube definition to
include a further dimension related to the spatial organisation
used by the ARD image collection. For example, Sentinel-2
images are organised in the MGRS tiling system, which fol-
lows the UTM grid. Thus, to process data spanning multiple
UTM grid zones, EO data cubes require an additional dimen-
sion provided by the ARD tiles. This extension enables sits
to process large-scale data, unlike systems that adopt a more
restricted data cube definition.

3.2. Time-first, space-later

The time-first, space-later concept in satellite image classifi-
cation prioritises time series analysis as the initial processing
step. Then it uses spatial information after classifying all
time series. The time-first part allows a better understanding
of changes in landscapes. Time series classification is pixel-
based, producing a set of class probability matrices for each
pixel. This result is the input for the space-later part of the
method. In this phase, a smoothing algorithm improves the
results of the time-first classification by considering the spatial
neighbourhood of each pixel. The resulting map thus combines
both spatial and temporal information.

Spatial smoothing methods improve the accuracy of land
classification by incorporating spatial and contextual infor-
mation. The smoothing method available in sits uses an
Empirical Bayes approach, adjusted to the specific properties
of land classification. The assumption is that class probabili-
ties at the local level should be similar. Thus, probabilities in a
spatial neighbourhood of a pixel provide the baseline for com-
parison with those produced by the classifier for each pixel.
Based on these two elements, Bayesian smoothing adjusts the
probabilities of the pixels, taking into account spatial depen-
dence [6]. Our experience is that the space-later part of the
time series analysis significantly improves the results.

3.3. Modelling Events in Time Series

To represent change in geographical space, authors distinguish
between objects and events [8]. Objects refer to entities that
endure through time even while undergoing different sorts
of changes. The Amazon Forest and the city of Brasilia are
objects. Events occur within a well-defined period and may
have distinct stages during this time. Cutting down a forest
area, cultivating a crop in a season, and building a road are
events. Time series analysis methods are particularly well-
suited for detecting events in data cubes, as they can capture
seasonal variations and abrupt changes.

Souza et al. [9] built a set of event-based training samples
for measuring deforestation in the Amazon using Sentinel-2
time series. The authors considered three types of classes:

(a) deforestation classes defined based on events measured
by breaks in the time series, (b) natural classes with events
linked to seasonal variation, and (c) stable natural classes. An
example of the first case is a time series that begins with the
response of a stable forest cover and is interrupted by a signal
related to a forest fire. In the second case, we have seasonally
flooded wetlands; their signals follow seasonal patterns. Sea-
sonally variable classes are often confused with deforestation
areas when working with single-date images. Kinnebrew et al.
[10] report that Global Forest Change maps confuse wetlands
with agriculture based on a single-date comparison. Using
time series minimises such confusion. The authors achieved
a 95% agreement with expert visual interpretation, which is
much better than other automated methods [11].

3.4. Model Validation and Map Accuracy

Most works on ML models for EO use cross-validation for
assessing the generalisation performance of machine learning
models. Its primary purpose is to provide an unbiased estimate
of a model’s ability to perform on independent, unseen data,
thereby helping to prevent overfitting. However, performance
estimates obtained via cross-validation may not fully reflect the
conditions encountered in real data. In most situations, training
samples do not capture the full variation present in the entire
dataset. Thus, measures of cross-validation are not reliable
predictors of map accuracy. To achieve proper map accuracy,
one should employ a statistically based sampling approach to
compare predicted and actual pixel classes on the resulting
map [12]. In real-world cases, map accuracy results differ
substantially from those obtained through cross-validation.

Due to this focus on cross-validation, few works in the
literature provide a statistically sound comparison of ML al-
gorithms for EO. In Souza et al. [13], we evaluate how the
temporal convolutional neural network (TCNN) [3] and the
lightweight temporal self-attention (LTAE) [4] differ in their
cross-validation and map accuracy. We selected a study area
in Petrolina, located in the Caatinga biome, a semi-arid region
characterised by land changes driven by agricultural expan-
sion and livestock farming. These areas are complex land-
scapes with distinctive land use practices and climate regimes.
We achieved high F1 scores for both methods during cross-
validation, with values greater than 0.90.

Map accuracy measures differ significantly from cross-
validation in our case study. For natural vegetation, we ob-
tained an F1-score of 0.81 using TCNN, whereas LTAE pro-
duced an F1-score of 0.90. LTAE enabled better identification
of smaller areas covered by xeric shrubland and thorny trees.
Given the well-defined seasonal patterns of permanent crops
and water bodies, LTAE and TCNN achieve high accuracy
when classifying them. TCNN had a much lower F1-score
(0.41) than LTAE (0.81) for temporary crops that do not have
well-defined seasonal variations. Overall, LTAE is signifi-
cantly better than TCNN for Petrolina.
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The results indicate important differences between these
algorithms. Convolution-based approaches, such as TCNN,
are effective in areas with well-defined temporal signatures
and for detecting abrupt events. In cases where the same
class is associated with different temporal signatures (as in
semi-arid regions), attention-based methods such as LTAE are
more effective. We conclude that users need to understand
how each ML algorithm works in practice to choose the best
method for their problems. The work also demonstrates that
cross-validation is not a reliable predictor of map accuracy.

3.5. Quality Control of Training Samples

Selecting high-quality training samples for machine learning
classification of satellite images is crucial for achieving accu-
rate results. Thus, it is beneficial to use pre-processing methods
to improve the quality of samples and eliminate those that may
have been incorrectly labelled or possess low discriminatory
power.

When working in a large geographic region, the limitation
of terms to describe nature and the variability of vegetation
phenology lead to the assignment of the same label to differ-
ent spectral and temporal responses. A related issue is the
limitation of crisp boundaries to describe the natural world.
Class definitions use idealised descriptions (e.g., ”a savanna
woodland has tree cover of 50% to 90%, ranging from 8 to 15
m in height”). Class boundaries are fuzzy and sometimes over-
lap, making it hard to distinguish between them. To improve
sample quality, sits supports training data evaluation using a
SOM-based algorithm [2]. The SOM-based method identifies
potential mislabelled samples and outliers that require further
investigation. Unlike methods based on confusion matrices,
algorithms such as SOM allow quality estimators for individ-
ual samples. The resulting improvements show the need for
further research on methods for sample quality control [14].

4. PERSPECTIVES

Research on big EO data analytics has been heavily influenced
by techniques derived from Computer Vision, such as U-Net,
masked autoencoders and Vision Transformers. These meth-
ods underpin most current research focused on foundational
models for Earth observations [15, 16]. However, there are im-
portant shortcomings in the current generation of ML models
for EO, especially those whose input consists of fixed-sized
labelled patches [17]. In many cases, these patches are RGB
images. Satellite images, such as Sentinel-2, have 10 spectral
bands; reducing them to RGB patches leads to a significant
loss of information content. As pointed out by Xiao et al. [18],
foundational models for EO face several challenges, which
include the differences between satellite and natural images, a
shortage of large training sets, and their reliance on Computer
Vision techniques.

Most current algorithms for object classification rely on
the distinction between foreground (“things”) and background
(“stuff”). While this design is suitable for high spatial resolu-
tion images with pixels of 3 meters or smaller, it is unsuitable
for mid- to low-resolution images (pixels of 10 meters or
larger). Mid and low-resolution images are continuous distri-
butions of radiance values and are better described as fields
than as collections of objects [19]. Human-sized, everyday
objects depicted in natural photos differ from continuous land-
scapes captured in satellite images. All pixels matter when
working with Sentinel-like data for land mapping and similar
broad-area applications; the distinction between foreground
and background is not universally applicable.

Arguably, no proper “objects” exist in mid to low-
resolution images; image classification identifies compact
regions of similar values in multidimensional spaces. While
domain scientists may believe they recognise objects in a
remotely sensed image, they are actually measuring fields.

A further challenge to ML models derived from Computer
Vision is dealing with satellite image time series. Time series
capture the evolution of geospatial fields and objects, enabling
the detection of events such as deforestation, desertification,
mudslides, and surface water loss. Event definitions are not
covered in fixed hierarchies such as ImageNet because they
require continuous change monitoring.

Current research on foundational models for EO focuses
on combining diverse datasets, many with different resolutions
and sensors, in the expectation of extracting embeddings that
can be applied to various problems [15, 16]. These models
make the strong assumption that spectral and temporal signa-
tures of classes in remote sensing images are separable and
mappable to a hierarchical structure such as that of ImageNet,
where each term is unique and precisely defined. However,
ontologies that describe the geographical world are inherently
polysemic. Consider the concept of ‘forest’. What counts
as a forest depends on who defines a certain piece of land as
one [20]. Countries use different conceptualisations of forest,
based on the physical parameters of tree height and crown
canopy cover [21]. The UN Food and Agriculture Administra-
tion (FAO) considers that a forest may be temporarily devoid
of trees. Thus, it is unlikely that foundational models will be
able to support variable definitions of ‘forest’ without massive
improvements in data collection.

Remote sensing classification will always be task- and
context-dependent. Many foundational models combine differ-
ent sources, including SAR and optical images, DEMs, land
use maps, and text, without considering their inherent differ-
ences. However, in the absence of suitable training data to
validate the model, reported performance accuracies [22] fail
to match what is currently achieved with application-centred
training data sets.

Arguably, there are alternative paths to make progress in
big EO analytics. One recommended approach is to place an
increased emphasis on improving the collection of training
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data. As stated by Roscher et al. [14]: “A shift from a model-
centric view to a complementary data-centric perspective is
necessary for further improvements in accuracy, generalisation
ability, and real impact on end-user applications”. The lack of
methods for improving the extraction and evaluation of train-
ing samples remains a significant barrier to innovation in big
EO analytics across various approaches. Without significant
progress in this area, ML algorithms for EO will continue to
require substantial effort from users when selecting datasets to
achieve high-quality results.
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ABSTRACT 

Addressing environmental challenges demands 

accessible and well-structured Earth observation data. This 

paper presents the development of a national-scale data cube 

for Estonia, integrating diverse remote sensing (Sentinel-1/2, 

Light Detection and Ranging (LiDAR)) and geospatial 

datasets. The aim is to provide analysis-ready data, 

particularly for biodiversity and carbon dynamics research, 

by overcoming common technical hurdles associated with 

Earth Observation big data. The framework emphasizes user-

friendliness, offering intuitive access and visualization tools. 

By leveraging cloud computing and open-source standards, 

this work facilitates efficient data retrieval and analysis, 

empowering researchers and policymakers with timely 

environmental information for informed decision-making 

and sustainable development. 

Index Terms— data cube, Earth Observation, 

biodiversity, carbon 

1. INTRODUCTION 

Addressing pressing global environmental challenges, 

including land use change and climate change, requires the 

availability of timely and accurate information regarding 

their drivers and impacts. Earth Observation (EO) data, 

encompassing satellite and in-situ data from diverse sources 

[1], has emerged as a crucial resource for monitoring these 

dynamics. Facilitated by free and open data policies [2] and 

advancements in open-source software and cloud computing 

[3], EO data enables more effective environmental 

management, informed policy assessment, and ultimately 

contributes to sustainable development. The capacity to 

process and analyse the burgeoning volumes of EO data holds 

immense potential for understanding complex environmental 

processes and informing decision-making across various 

scales, particularly when fusing diverse geodata and remote 

sensing data from disparate sources. This integration of 

multi-modal data, such as combining optical imagery with 

active sensor data like LiDAR and radar, allows for a more 

holistic and detailed understanding of environmental 

conditions and changes. 

However, the effective utilization of EO big data presents 

significant technical hurdles [4]. Prior research has 

highlighted key obstacles, such as limitations in data storage, 

transmission, and analysis, alongside the need for developing 

suitable computational architectures capable of handling such 

immense datasets [5]. Furthermore, classical data cube 

implementations often fall short of providing analysis-ready 

data optimized for advanced analytical techniques, 

particularly artificial intelligence (AI) and machine learning 

(ML) algorithms. These methods thrive on structured, 

consistently formatted, and feature-rich datasets, which 

traditional data cubes may not inherently offer. Moreover, 

data cube platforms should be user-oriented, providing 

intuitive access, analysis tools, and customizable 

functionalities to cater to a diverse community of researchers, 

policymakers, and practitioners. 

The aim of this work was to construct a comprehensive 

data cube at the national level for Estonia, leveraging remote 

sensing and geospatial data to mainly advance biodiversity 

and carbon dynamics research. The full potential of fusing 

active (LiDAR, radar) and passive remote sensing has not 

been fully developed and utilized yet in biodiversity and 

carbon modelling studies. To efficiently relate the ground 

measurements with remote sensing data and create spatial 

models, unified easily accessible data is needed. Moreover, 

multi-temporal (seasonal) data sets, consisting of numerous 

combinations of spectral bands, can hold significant potential 

to predict compositional vegetation classes and other 

environmental variables. 

 

2. DATA AND METHODS 

We used remote sensing data, including Sentinel-1, Sentinel-

2 (ESA Copernicus), and high-resolution airborne LiDAR 

data as raw point cloud data and digital elevation model 

(Estonian Land and Spatial Development Board),  
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Fig. 1. The spatial sub-division of Estonia into 100×100 km 

processing zones. 

 

 

Estonian soil map EstSoil-EH [6] for the data cube layer 

preparation.  

We created a spatial grid to divide the area into equally 

sized manageable tiles for processing and export (Fig. 1). 

These tiles were used to create spatially aligned 10m 

resolution tiles in Estonian National CRS (L-Est-97, EPSG 

3301). Based on the tiles, we created Cloud Optimized 

GeoTIFFs (COGs) (https://cogeo.org/), which ensure fast 

read and download operations [7].  

We used the following workflow for processing Sentinel-

1 and Sentinel-2 images with the Python GEE API: 

1) For Sentinel-1 (ascending) and Sentinel-2 L2A images, 

we created seasonal (April–May, June–August, September–

October) median composites for every year. For Sentinel-1, 

we implemented the speckle filter developed by Mullissa et 

al. [8]. For Sentinel-2, cloud masking using the CloudScore+ 

algorithm [9] was used. 

2) Based on the seasonal composite images, various 

vegetation indices were calculated: Normalised Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), Fractional Vegetation Cover (FVC), Normalised 

Difference Water Index (NDWI), Bare Soil Index (BSI), 

Normalised Difference Moisture Index (NDMI), Green 

Normalised Difference Vegetation Index (GNDVI), Radar 

Vegetation Index (RVI). 

3) For biodiversity assessment, spectral species concepts 

and k-means clustering are commonly used to analyse 

gridded remote sensing data, producing 2D α- and β-diversity 

heterogeneity maps. We calculated α- and β-diversity 

heterogeneity using the biodivMapR library [10]. 

4) Due to infrequent cloud-related no-data pixels in 

seasonal composites over the past few years, we applied gap-

filling using a yearly mean composite. We also generated a 

corresponding binary no-data mask, allowing for the 

identification of gap-filled areas in subsequent analyses if 

necessary.  

In addition to the Senintel-1 and Sentinel-2 data, we 

added climate data from ERA5 Land monthly reanalysis data: 

Mean Air Temperature (2m), Total Precipitation, Minimum 

Air Temperature (2m), Maximum Air Temperature (2m). We 

also calculated different topographic indices based on the 10 

m Estonian digital elevation model [11]: slope, Terrain 

Wetness Index, Terrain Ruggedness Index, LS-factor. 

From LiDAR point cloud data [11], we calculated various 

indices relevant for biodiversity: ecosystem height 

(maximum, mean, median vegetation height), ecosystem 

cover (density of vegetation points within defined height 

layers, canopy openness), ecosystem structural complexity 

(coefficient of variation of vegetation height, standard 

deviation of vegetation height, variance of vegetation height). 

We used PDAL [12] for LiDAR point cloud reclassification 

and filtering and laspy [13] for low-level bit corrections. 

PDAL pipelines were used to calculate the indices. 

 

3. IMPLEMENTATION 

We utilized the high-performance cloud computing platform 

provided by the University of Tartu [14] to execute our data 

cube operations. For data storage, we employed S3-

compatible object storage (buckets) to manage the Cloud 

Optimized GeoTIFFs (COGs). Using libraries such as 

rasterio, we scanned these files to extract metadata for our 

SpatioTemporal Asset Catalog (STAC), including asset 

names, extent boundaries, spectral bands, resolution, 

coordinate reference systems (CRS), data types, and nodata 

values. This information was instrumental in generating 

STAC JSON metadata collections, which we made accessible 

through a STAC-compatible web service based on pygeoapi. 

To enhance our service, we extended pygeoapi to enable 

search functionalities via the STAC-API. In QGIS, we 

employed the QGIS STAC API Browser plugin to connect to 

and query our STAC API endpoint. For high-performance 

computing (HPC) and scripted batch processing workflows, 

we utilized the Python pystac library to query the STAC 

metadata and select GeoTIFFs for processing. For the 

creation of CSW/ISO-compatible metadata, we adhered to 

the ISO 19115/117 and ISO 19137 XML standards for 

geographic metadata, which were implemented in the 

GeoNetwork OpenSource metadata catalog server 

(https://geonetwork-opensource.org/). 

The core of our Data Cube Viewer (https://geokuup.ee/) is 

implemented in the Elixir language, using the Phoenix 

(https://www.phoenixframework.org/) framework. The data 

cube viewer component is building on the MapLibre 

JavaScript library to link in the WMS and WMST/Tiles 

layers. The COGs are visualised as WMS through GeoServer, 

which are directly registered from their object storage bucket 

locations. The Data Cube Viewer enables quick visualisations 

of all the layers and also timeseries queries. 
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 In the Data Cube Viewer, datasets are also organised into 

collections - here datasets are referred to via the linkage to  

 

Fig. 2. The data cube viewer that enables quickly visualize 

all layers and make quick queries, including timeseries. 

 

 

viewing services, such as the GeoServer 

(https://geoserver.org) WMS.  This allows users to view, 

compare, and query these layers. Several collections are 

already provided by us, including seasonal views of Sentinel-

1 and Sentinel-2 indicators, terrain and topographic indices.  

Several choices of the general architecture are oriented on 

common best practices for working with big geospatial data, 

such as using object storage and STAC collections to index 

data files, building upon the easy-to-use standards-based 

open-source tools like GeoServer, pygeoapi, and 

GeoNetwork, and relying on the Pangeo (https://pangeo.io/) 

ecosystem of well-integrated geospatial Python libraries for 

processing and workflows. However, for the user-facing Data 

Cube Viewer portal we adopted the Phoenix framework (built 

on Elixir and the BEAM virtual machine) as a pragmatic 

technology choice to balance performance, maintainability, 

with developer experience and efficiency. 

We considered the Elixir, Phoenix, and LiveView 

combination being advantageous over separate JavaScript or 

Python-based alternatives, particularly in handling 

concurrent user connections and maintaining system stability 

under varying load conditions. At the same time, the 

developer experience with Phoenix and its LiveView 

capabilities allows our small team to rapidly implement 

responsive UI components without the complexity of 

maintaining separate frontend and backend codebases. In 

addition, we opted for the MapLibre over Leaflet or 

OpenLayers for its out-of-the-box rendering performance 

with mixed data sources, including tiles and vector data 

sources. Another advantage is its recent 3D globe view 

implementation, that interacts well with otherwise standard 

geospatial data sources, but does not exhibit the 

implementation complexities of libraries, like CesiumJS. 

 

4. CONCLUSIONS 

Our framework organizes analysis-ready spatial data in a data 

cube at national level, enabling efficient retrieval, storage, 

and extraction of spatial and temporal extents from input and 

project-generated datasets. The data cube is very user 

oriented and aims to provide easy access to the high-

resolution spatial data for academic and governmental 

agencies. The data cube includes variables mainly relevant 

for biodiversity and carbon studies, but this can be also easily 

extended to other studies with additional data. The future 

work includes further processing data into multi-resolution 

and adding complementary datasets and processing 

workflows for data retrieval and analysis.  
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ABSTRACT

Biodiversity research requires complete and detailed in-
formation to study ecosystem dynamics at different scales.
Employing data-driven methods like Machine Learning is
getting traction in ecology and more specific biodiversity,
offering alternative modelling pathways. For these methods
to deliver accurate results there is the need for large, cu-
rated and multimodal datasets that offer granular spatial and
temporal resolutions. In this work, we introduce BioCube,
a multimodal, fine-grained global dataset for ecology and
biodiversity research. BioCube incorporates species obser-
vations through images, audio recordings and descriptions,
environmental DNA, vegetation indices, agricultural, for-
est, land indicators, and high-resolution climate variables.
All observations are geospatially aligned under the WGS84
geodetic system, spanning from 2000 to 2020. The dataset is
available at https://huggingface.co/datasets/
BioDT/BioCube, the acquisition and processing code base
at https://github.com/BioDT/bfm-data.

Index Terms— Dataset, Multimodal, Engineering, Ma-
chine Learning, Biodiversity

1. INTRODUCTION

Biodiversity is undergoing rapid transformation due to human-
induced environmental change, land-use shifts, and climate
variability. Monitoring these changes at scale requires com-
prehensive datasets that not only capture singular modalities
like species presence, but also contextual environmental in-
formation. However, most available biodiversity datasets are
limited either to observational records or specific modalities
such as imagery or genetic sequences, often lacking the nec-
essary integration across environmental, spatial and temporal
dimensions.

Recent advances in Digital Twins (DTs), Machine Learn-
ing (ML) and Earth Observation (EO) technologies have
opened new avenues for ecological forecasting and biodiver-
sity assessment. Yet, the full potential of these approaches

∗Work performed during internship at TNO

is often hindered by challenges like fragmented data land-
scapes, inconsistent resolutions or modality gaps [1]. In
response to these challenges we have engineered a multi-
modal dataset that provides a foundation for building scalable
models that can be used for biodiversity monitoring, conser-
vation planning and ecological forecasting at both global and
local scales.

A series of ecology and biodiversity specialized datasets
have recently emerged like BIOSCAN-5M [11] that con-
tains over 5 million specimens of insects along with images,
DNA barcode sequences, taxonomy, geographic information.
Species distribution modeling is the focus of GeoLifeClef [4]
dataset by merging 1.9 million plant and animal observations
with high resolution remote sensing imagery, land cover and
climate variables. In a similar direction, GeoPlant [7] pro-
vides over 5 million plant occurrence records across Europe,
positivity enriched with Sentinel-2 satellite imagery and 20
years of climate time-series to support high-resolution spatial
biodiversity observations. However, these datasets are far
from containing enough diversified parameters to cover cur-
rent needs in ecology. More specific, none of these datasets
jointly integrates images, audio, eDNA, land, agriculture,
conservation status, and climate variables. This gap moti-
vated the construction of BioCube as a more diversified and
holistic dataset.

The rest of the paper is organized as follows. Section 2 in-
volves the methodology used, including data acquisition, pre-
processing, and integration. In Section 3 the resulting data, its
coverage, composition of modalities, and quality of the data
are described. In Section 4, strengths, limitations, and open
challenges regarding construction of large-scale biodiversity
datasets that can be applied in ML are addressed. Finally,
the prospect of the importance of BioCube to biodiversity re-
search and ecological forecasting is discussed in Section 5.

2. METHOD

Latest ML methods like Foundation Models require large,
well-curated, modality-rich datasets [2]. Accordingly, we as-
sembled data from diverse sources, combining climate vari-
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ables, species observations, land indicators, and conserva-
tion records, as listed in Table 1. Acquisition used both API
and file-based ingests to ensure scalability and spatiotemporal
coverage.

2.1. Data Sources

BioCube dataset integrates data from several sources:
• Climate Variables: ERA5 hourly global reanalysis

data, such as temperature, wind, pressure, and humid-
ity, both in surface and atmospheric layers, obtained
from the Copernicus Climate Data Store (CDS) [6].

• Species Observations: Images and metadata, such as
taxonomy, geolocation, and timestamps collected from
iNaturalist 1 and iNat2021 [5]. These datasets provide
direct presence evidence.

• Acoustic Data: Bird vocalizations and metadata re-
trieved from Xeno-Canto 2 and from Xeno-Canto in
GBIF [10], crucial for species monitoring where visual
observation is difficult.

• Species Descriptions and Conservation Status: Tex-
tual records describing habitats, traits from Map of
Life [9] and IUCN Red List 3, including red list index
values and threat categories. The Red List is a global
reference for extinction risk, with categories ranging
from Extinct (EX) to Least Concern (LC).

• Species Distribution: Data is derived from the Living
Planet Index 4, which aggregates population trends of
species globally.

• Environmental DNA (eDNA): Genetic barcode se-
quences obtained from the Barcode of Life Data Sys-
tem (BOLD) [8].

• Land and Vegetation Indicators: NDVI sourced from
Copernicus Land Services 5, and forest cover, land and
agricultural indicators from The World Bank 6.

2.2. Acquisition Methods

API-based acquisition had a focus on the dynamic and real-
time data retrieval. ERA5 climate variables were obtained
through CDS using bounding boxes and temporal filters, with
batch processing. Species data, including images, taxonomy,
and geolocation, were collected via the iNaturalist API, while
bird vocalizations were retrieved from the Xeno-Canto API,
based on quality and location filters. Environmental DNA
(eDNA) was sourced from the BOLD Systems API, and
species descriptions together with the threat categories (e.g.,

1https://www.inaturalist.org
2https://xeno-canto.org
3https://www.iucnredlist.org
4https://www.livingplanetindex.org/
5https://land.copernicus.eu/en/products/vegetat

ion/normalised-difference-vegetation-index-v3-0-
1km

6https://data.worldbank.org/indicator

IUCN Red List status) were accessed using the Map of Life
API. To ensure efficiency and data integrity, we have imple-
mented independent API modules to promote scalability and
flexibility.

File-based acquisition provided an access to static and his-
torical datasets, adding essential temporal depth and spatial
coverage. The Living Planet Index (LPI) has contributed an-
nual species distribution data from 1950 to 2020. NDVI prod-
ucts from Copernicus Land Services supplied vegetation in-
dices recorded every 10 days at 1 km resolution, resampled
to 0.25° grids for consistency. Land-use indicators, includ-
ing arable land, irrigated areas, cropland extent, and forest
cover, were sourced from the World Bank for the years 1961
to 2021. Offline datasets such as iNat2021 (2.7 million la-
beled images) and archived Xeno-Canto audio recordings ac-
cessed via GBIF further enriched the dataset. The complete
file sizes and metadata can be found in Table 2.

2.3. Preprocessing

The obtained data could not be used in its raw format. Spe-
cific preprocessing steps detailed below needed to ensure con-
sistency, quality and compatibility across modalities, while
serving as a foundational component in the construction of
structured data batches or cubes used for downstream mod-
elling tasks. The preprocessing methods were performed dur-
ing the dataset preparation phase and are crucial for generat-
ing uniform and high-quality inputs, harmonised to a 0.25°
WGS84 geodesic coordinate grid, and temporally aligned to
daily or monthly intervals.

• Audio: Silence removal, noise reduction (spectral gat-
ing), resampling, MFCC extraction.

• Image: Denoising, resizing, cropping.
• Text: Stopword and punctuation removal, stemming,

lemmatisation, BERT embeddings and bag-of-words
transformation.

• eDNA: Sequence filtering, k-mer vectorization and
normalization.

• Climate and Land Data: Missing data interpolation,
normalisation and temporal aggregation of variables
such as temperature, wind, and pressure.

While end-to-end neural networks now dominate mod-
ern image, audio, and text analysis, we deliberately included
traditional feature extraction methods (e.g., MFCC, TF-IDF)
to ensure reproducibility and to provide baselines for re-
searchers employing classical ML methods.

3. RESULTS

To construct unified dataset for biodiversity, we have acquired
and curated multimodal data from multiple sources as a first
step. Then the collected data available at Table 3 has been
integrated into a structured species dataset with the following
fields:
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Table 1. Overview of data modalities and variables included in the dataset.
Modality Source Variables

Surface Climate Copernicus (ERA5) 2m temperature, 10m wind (u/v), mean sea-level pressure
Atmospheric Variables Copernicus (ERA5) Geopotential, temperature, humidity, wind (13 pressure levels:

50–1000 hPa)
Single-Level Variables Copernicus (ERA5) Land-sea mask, surface geopotential, soil type
Species Observations iNaturalist, GBIF, Xeno-Canto Images, audio, coordinates, timestamp, taxonomy
Descriptions Map of Life Text descriptions (behavior, habitat)
eDNA BOLD Systems DNA sequences (ATCG), taxonomic identifiers
Distribution Trends Living Planet Index Annual species occurrence and population trends (1950–2020)
Red List Index (RLI) IUCN / Map of Life Extinction risk index (0–1), categories: EX, EW, CR, EN, VU,

NT, LC
NDVI Copernicus Land (SPOT,

PROBA-V)
Vegetation index values (-1 to 1), 10-day temporal resolution, 1
km spatial resolution

Agri/Forest Indicators World Bank Arable land, irrigated land, cropland area, forest cover, total land
area

Table 2. Data Sources by File Count and Total Size

Data Source Name Total Files Total Size (GB)

Climate Variables 24,510 160
Species Observations 51,918 52
Acoustic Data 43,511 104.4
Species Descriptions 20,593 0.005
Environmental DNA 16,257 0.1
Species Destribution 4,922 0.03
Land Indicators 7 0.0001
Species Conversion Status 1 0.011
Vegetation Indicators 258 88

• Species Identification: Species, Phylum, Class, Order,
Family, Genus

• Location and Time: Latitude, Longitude, Timestamp
• Multimodal Inputs: Image, Audio, eDNA, Description,

Redlist, Distribution

Table 3. Statistics of the Species Folder Contents

Category Count

Total number of Species 40,282
Species with eDNA, no images, no audios 15,064
Species with images, no audio, no eDNA 16,630
Species with images and audio, no eDNA 1,849
Species with audio, no images, no eDNA 2,772
Species with images and eDNA, no audio 738
Species with audio and eDNA, no images 182
Species with all modalities 273

These records are extracted from over 40,000 species
folders, each containing varying combinations of modalities.

To efficiently extract relevant data, we implemented a folder
filtering mechanism based on a hash-table-inspired approach.
Each folder is being treated as a unique bucket, and its in-
ternal CSV files (image, audio, eDNA, etc.) are scanned
for timestamps. Only folders containing at least one times-
tamp within the target date range (2000–2020) are selected
for further processing. This has minimised memory usage
and accelerated BioCube’s construction time by avoiding
unnecessary I/O on irrelevant folders.

Image-Audio Matching: When both images and audio
were available, we matched them by averaging their meta-
data; latitude, longitude, timestamp, and paired them to max-
imise spatiotemporal alignment. Additionally, species-level
data such as taxonomy and distribution are matched using the
closest year and location for each sample.

Efficient Storage: All data is stored in Apache Parquet
format to optimize I/O operations. Tensors are serialised
(as base64-encoded arrays), and each sample is assigned a
unique id to avoid duplication. Latitude and longitude val-
ues are rounded to a 0.25-degree resolution to align with other
datasets such as climate and land-use data. If different coor-
dinates systems were found, we transformed them to WGS84
format. The data are saved incrementally after processing
each folder, enabling scalable and resilient processing.

Land indicators (agriculture, forest cover, NDVI) required
additional preprocessing. Because several sources report only
country-level values, we extracted country bounding boxes
and interpolated these to a spatial grid to align with species-
level data. NDVI at 1 km monthly resolution was harmonised
separately from annual forest and agriculture statistics ob-
tained from the World Bank and Copernicus services. Table 4
summarises the total values only for Europe.
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Table 4. Summary of Environmental Indicators (Europe)

Indicator Type Total Values Countries

Agricultural (Arable) 2,311,390 42
Agricultural (Irrigated) 411,482 33
Cropland Area 2,276,021 38
Forest Cover 1,285,834 44
Land Area 852,248 44
NDVI (Vegetation Index)* 15,929,016 44

* NDVI values are recorded monthly, while all other indicators are
reported annually.

4. CONCLUSION AND DISCUSSION

BioCube marks a big step towards progressing biodiversity
research through its complete multimodal analysis of fine-
grained environmental and ecological data across the globe.
BioCube connects species observations including imagery,
audio recordings, environmental DNA data as well as de-
scriptive information with precise climate, land-use data,
vegetation measurements and conservation metrics to fill a
significant research gap between singular modality datasets.
Its main strengths lie in the breadth of data types, global
geospatial alignment, and open availability. These enable
research in species monitoring, conservation planning, and
ecological forecasting. Still, some limitations remain, like
NaN and missing values, taxonomic and geographic biases,
reliance on legacy feature extraction, and as well as incom-
plete modal or spatial representation. Overall, BioCube is
a scalable step toward developing biodiversity foundation
models [2], supporting hybrid experiments now, while future
work should expand modalities, improve coverage, and add
real-time data streams.
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ABSTRACT 

The constellr HiVE satellite mission significantly enhances 
environmental monitoring through innovative thermal remote 
sensing capabilities. By providing global daily data at high 
spatial resolutions (5 to 30m), the mission effectively 
addresses limitations in existing satellite technologies. This 
paper discusses the mission specifications and the advanced 
data handling methodologies employed, focusing specifically 
on the implementation of big data architectures and data cube 
technology. Data cubes streamline complex spatial-temporal 
queries and enhance data accessibility for diverse 
stakeholders, including urban planners, agricultural 
managers, and policymakers, enabling targeted 
environmental interventions. 

Index Terms — Big Data, Data Cube Technology, 
Thermal Remote Sensing, Land Surface Temperature, 
Environmental Monitoring 

1. INTRODUCTION 

The increasing frequency and intensity of climate-induced 
phenomena such as urban heat islands, drought, and 
agricultural stress highlight the necessity for timely and 
detailed thermal data. Current satellite technologies often 
compromise between spatial detail and temporal frequency, 
limiting their practical effectiveness. The constellr HiVE 
satellite constellation addresses these gaps through high-
resolution thermal imaging and frequent revisits, supported 
by advanced big data and data cube technologies, 
dramatically improving environmental data handling and 
access. 

2. CONSTELLR HIVE MISSION OVERVIEW 

2.1. Satellite and Sensor Specifications  

The HiVE constellation employs sophisticated thermal 
infrared (TIR) and visible near-infrared (VNIR) sensors. The 
payload for the constellation includes two primary imaging 
instruments: a Thermal Infrared (TIR) sensor and a Visible 
and Near-Infrared (VNIR) sensor. The TIR sensor, 
specifically designed by OHB for constellr, operates within 

the spectral range of 8-12 µm, capturing data in four discrete 
spectral bands (8.6 µm, 9.2 µm, 10.6 µm, and 11.75 µm). It 
features a Mercury Cadmium Telluride (MCT) detector array 
of 640 × 512 pixels, which is cryogenically cooled to enhance 
its sensitivity. The optical system of the TIR telescope 
comprises six refractive lenses, enabling high-precision Earth 
imaging from a sun-synchronous orbit at approximately 540 
km altitude. For detailed technical specifications, refer to 
Table 1. 
 
Accompanying the TIR sensor, the VNIR camera utilizes a 
commercially sourced Simerasense Multiscape100 system. 
This camera captures images across 10 spectral bands ranging 
from 400 nm to 1000 nm, corresponding closely to Sentinel-
2 spectral bands to ensure interoperability. The ground 
sampling distance (GSD) varies between 10 m and 60 m 
depending on the spectral band and binning configuration, 
allowing comprehensive surface characterization. 
 
The HiVE SkyBee 1 satellite was developed with ESA 
support under the InCubed program and was successfully 
launched in January 2025. Operated by constellr, SkyBee 1 
enables targeted Earth surface imaging, featuring an 18.5 km 
swath width and nadir pointing capability of up to ±30°. Its 
local time of descending node (LTDN) is 10:30 AM. Figure 
1 illustrates a data acquisition by SkyBee 1 conducted on May 
19th 2025, demonstrating uncalibrated relative radiance 
differences highlighting cooler (blue) and warmer (red) areas. 
It shows a coastal area in Queensland, Australia, 
demonstrating the high resolution potential of the 
constellation. SkyBee 2 is scheduled for launch in June 2025, 
with additional satellites planned for yearly launches 
thereafter. 
 
The accuracy of the Level 2 (L2) Land Surface Temperature 
(LST) product depends significantly on atmospheric 
conditions during image capture. Given a TIR instrument 
radiometric error of ≤2%, the absolute temperature accuracy 
typically ranges from 1.2K in dry arctic conditions to 2.2K in 
humid tropical conditions. The constellr LST algorithm 
generates high-resolution, surface-optimized temperature 
data by leveraging prior emissivity estimation, advanced 
atmospheric correction via real-time MODTRAN 
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simulations, and a flexible multi-band Equivalent 
Temperature approach. Constellr employs a sophisticated U-
Net deep convolutional neural network for cloud masking, 
trained extensively on the Cloudsen12 dataset (Aybar et al., 
2022) and enhanced with additional samples from 
challenging regions. The operational temperature range for 
the instruments is from -20°C to +80°C (253K to 353K). [1] 

Table 1. Technical Specification of HiVE SkyBee1. 
Mission 

parameter 
VNIR SWIR 

Spectral Bands 
(µm) 

0.44 | 0.49 | 0.56 | 
0.67 | 0.71  0.74 | 
0.78 | 0.84 | 0.87 | 

0.95 

8.6 | 9.2 | 10.6 | 
11.8 

LST uncertainty   <2K for mid 
latitudes 

LST sensitivity  0.03K 
Geolocation 
accuracy (m) 
wrt to Sentinel-
2 reference 
image 

<10m 1.5 pixels (42m) 
(CE90), for 

<10° off nadir 
angle 

Band to band 
registration 
accuracy 

0.2 pixels 
(1sigma) 

0.2 pixels 
(1sigma) 

Ground 
instantaneous 
field-of-view (m 
x m) 

10 x 10 (Band 
2/3/4/8) 
20 x 20 (Band 
5/6/7/9) 
60 x60 (Band 
1/10) 

30 x 30 

Signal-to-noise 
ratio (SNR) 

10m: >1:200 | 
20m: >1:170 
60m: >1:500 

B01: 1:530 | 
B02: 1:450 

B03: 1:540 | 
B04: 1:150 

Swath width / 
length / day 
(km) 

20 / 1000 18.5 / 1000 

Product Level 
for users 

L2A L2A 

Metadata  and 
Data Format 

Cloud Optimized 
GeoTiff | STAC 

Cloud 
Optimized 

GeoTiff | STAC 
Data Access API or GUI Web 

Platform 
API or GUI 

Web Platform 

2.2. Operations 

Operating in a sun-synchronous orbit at approximately 550 
km altitude, the HiVE constellation achieves daily global 
coverage. Skybee-1 launched on January 14th 2025 and 
Skybee-2 launches in June 2025., with the full constellation 
daily revisit operational by 2026, ensuring unprecedented 
temporal and spatial resolution in thermal remote sensing. 

Fig. 1: show one the first images acquired by SkyBee 1 and 
showing the sharpness and extreme high level of detail and 
sensitivity of the satellite system.  
 

 

Fig. 1. HiVE SkyBee 1, LWIR thermal image, 
Queensland, Australia, 19.05.2025 

 

 

Fig. 2. Comparison of Landsat ST (20.05.2025) vs 
uncalibrated constellr HiVE (19.05.2025) data 

 

Data cubes: Advances and applications

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

38 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


3. ADVANCED DATA HANDLING 
INFRASTRUCTURE 

3.1. Big Data Architectures 

Given the massive volume and velocity of data generated by 
the HiVE satellites, a robust big data architecture is essential. 
This infrastructure uses cloud-optimized GeoTIFF and 
SpatioTemporal Asset Catalogs (STAC) to facilitate efficient 
data storage, retrieval, and integration, significantly 
streamlining workflows for researchers and policymakers. 
The use of Pangeo Stack provides a powerful and scalable 
environment for efficiently handling and analyzing HiVE 
satellite data, which often involves massive datasets with 
high spatial, spectral, and temporal resolution. Leveraging 
cloud-optimized tools within the Pangeo ecosystem, such as 
Xarray for multidimensional data handling, Dask for parallel 
and distributed computation, and Zarr for scalable storage. 
Users can significantly enhance their ability to perform 
complex analyses on HiVE datasets. The stack supports 
streamlined workflows for data ingestion, exploration, 
processing, and visualization, enabling users to rapidly 
interact with large volumes of satellite data without 
downloading entire datasets locally. By facilitating on-
demand access and processing directly in the cloud, Pangeo 
reduces computational overhead and accelerates scientific 
insights derived from HiVE satellite missions. 

3.2. Utilization of Data Cube Technologies 

We are currently developing a multidimensional data cube by 
leveraging the robust capabilities of the Pangeo Stack, 
thereby creating an advanced data management and 
analytical environment tailored specifically for HiVE satellite 
datasets. Unlike working solely with Cloud Optimized 
GeoTIFFs (COGs), which are typically two-dimensional 
raster files, integrating a data cube framework allows us to 
seamlessly organize, query, and analyze satellite data across 
multiple dimensions, such as spatial coordinates, spectral 
bands, and temporal intervals simultaneously. The primary 
advantage of this approach is the ability to efficiently perform 
complex queries, rapidly extract insights from time-series 
analyses, and conduct large-scale parallel processing, 
significantly enhancing accessibility, scalability, and 
computational performance compared to handling individual 
COG files separately. 
. 

4. SPECIFIC USE CASES OF DATA CUBES WITH 
CONSTELLR DATA    

4.1. Urban Heat Island Analysis 

Most cities world-wide are affected by urban heat and are 
setting up strategies for climate adaptation and mitigations 
measures. At the same time, urban digital twins are becoming 
more and more common. This allows urban planners, real 

estate developers and decision makers to use thermal 
intelligence data cubes to analyze historical and real-time 
thermal data, identifying patterns and anomalies at 
neighborhood scales. The ability to query and visualize 
thermal data across different time frames assists in 
proactively implementing heat mitigation strategies, 
optimizing the placement of green, blue and grey cooling 
infrastructures, and enhancing urban resilience.  Preliminary 
data from constellr’s SkyBee-1 satellite reveals distinct 
thermal signatures associated with various urban structures 
and materials. For example, industrial areas and solar 
installations exhibit specific thermal characteristics, whereas 
water bodies function as natural moderating elements. 
Utilizing a data cube approach provides comprehensive, 
multi-temporal analyses of urban heat dynamics, essential for 
informed urban planning. This method enables city 
authorities to strategically position cooling infrastructures, 
green spaces, and reflective surfaces, effectively mitigating 
urban heat islands [2]. Furthermore, with the availability of 
constantly updated time series of thermal data, development 
projects can be monitored in near real time as they progress. 
This enables a comparable benchmarking of the thermal 
impact of any development as well as a clear measurement of 
the positive effect on heat resilience of any mitigation project. 
As urban energy demands for cooling are projected to rise 
substantially by 2050 [3], constellr’s data supports proactive 
and sustainable urban designs. 

4.2. Precision Agriculture and Water Efficiency 

The high-resolution thermal data provided by constellr 
significantly enhances the capability to detect crop water 
stress by analyzing variations in land surface temperature 
(LST). Thermal imagery helps farmers precisely locate fields 
requiring targeted irrigation, optimizing water usage 
efficiency. Integrating these datasets into a data cube 
framework facilitates the systematic management and 
analysis of temporal and spatial trends, allowing agricultural 
practitioners to transition seamlessly from traditional 
resource-intensive methods to precision agriculture. This 
technique greatly mitigates drought risks, improves crop 
yield stability, and strengthens food security [4]. 

4.3. Public Health Monitoring 

In the context of public health, data cubes facilitate 
monitoring of thermal comfort and health risks related to 
urban heat. Public health authorities can rapidly access 
relevant thermal data, identify vulnerable communities and 
effectively deploy targeted interventions such as cooling 
centers and green spaces. The escalating intensity of urban 
heat islands poses significant risks to public health, 
particularly during severe heatwaves. Constellr’s thermal 
imaging capabilities offer crucial insights for assessing heat-
related health risks. Ballester(2023)[5] indicate that 
heightened urban temperatures can substantially increase 
mortality rates, potentially causing millions of heat-related 
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fatalities by the end of the century. Incorporating thermal data 
into a data cube structure enables efficient tracking and 
predictive modeling of heat stress, facilitating targeted 
interventions such as establishing cooling centers, shaded 
public spaces, and urban greening initiatives. This level of 
detailed thermal monitoring enhances community resilience 
and preparedness against heat-induced health crises. 

4.4. Civil Security and Defense Applications 

Constellr’s TIR data plays a vital role in defense and security, 
enabling real-time, global monitoring of critical military and 
civilian infrastructure. Delivered in data cube format, TIR 
data allow for integrated analysis across temporal and spatial 
dimensions. This facilitates early detection of anomalies such 
as overheating in industrial assets, border incursions via 
unusual heat signatures, or hidden underground activity 
through surface thermal patterns. TIR sensing also supports 
resilient mission planning by identifying climatic stressors 
like drought, flooding, or water scarcity, which is essential 
for training and operations. Compared to optical data, thermal 
observations provide earlier insight into environmental 
stability, aiding logistics in foreign deployments. In conflict 
zones, TIR enables rapid damage assessment, tracks 
functional changes over time, and uncovers covert or 
asymmetric activities not visible to optical sensors. 
Additionally, it serves as a discreet tool for early warning of 
crises—such as persistent droughts or migration 
movements—and for monitoring sensitive regions where 
camouflage or darkness limit conventional imaging. 
 
TIR is also a key enabler for civil protection and disaster 
resilience, providing critical insights for early warning, 
response, and recovery. Thermal data cubes enable 
continuous spatial and temporal analysis of extreme weather 
events, droughts, and supply shortages, forming the backbone 
of national and cross-border early warning systems. TIR 
sensing supports disaster response by identifying heatwave- 
and flood-prone zones, assessing post-disaster impacts on 
critical infrastructure, and mapping the availability of food 
and energy for humanitarian aid. It also offers potential for 
geophysical event forecasting—such as volcanic or seismic 
activity—through the detection of surface thermal anomalies. 
On a broader scale, TIR enables economic and environmental 
monitoring by revealing the activity status of key industrial 
facilities (e.g., refineries, steel plants) and tracking climate-
induced risks like wildfires and persistent droughts. 
 

5. FUTURE PERSPECTIVES AND INTEGRATION 
WITH OTHER MISSIONS  

The constellr HiVE mission, through its robust big data 
architecture and innovative data cube technologies, 
represents a significant advancement in thermal remote 
sensing. By enhancing data accessibility and usability across 
multiple sectors, it directly contributes to addressing critical 

environmental challenges and promoting informed, resilient 
urban and agricultural practices. In future we will combine 

6. CONCLUSIONS  

The constellr HiVE mission, through its robust big data 
architecture and innovative data cube technologies, 
represents a significant advancement in thermal remote 
sensing. By enhancing data accessibility and usability across 
multiple sectors, it directly contributes to addressing critical 
environmental challenges and promoting informed, resilient 
urban and agricultural practices. 
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ABSTRACT 

Big Earth Observation (EO) data, such as provided by the 

European Copernicus programme, are a great opportunity for 

highly frequent global monitoring of the environment. 

Challenges exist not only in processing big multitemporal 

data but also in communicating results in a meaningful and 

useful manner, especially for non-EO experts. Our approach 

uses big EO data analyses in a semantic EO data cube and 

communicates results using a single-layer multi-temporal 

representation, where colour represents different user-defined 

time periods and changes. The visualisation in colour-codes 

reduces terabytes of multi-temporal information into a single, 

comprehensive layer. While this approach is backed by 

established geovisualisation techniques, we extend it to 

unveil temporal processes and dynamics hidden in big EO 

data. The resulting layer can be used in a very simple way: It 

functions as an interpretable basemap, either integrated 

within GTIF-AT or accessed externally via WMS/STAC, to 

complement user or domain-specific data with a temporal 

perspective.  

Index Terms— change detection, semantic querying, big 

EO data, multitemporal change indication 

1. INTRODUCTION 

Big Earth observation (EO) data, such as provided by the 

European Copernicus program, are a great opportunity for 

highly frequent global monitoring of the environment. 

Challenges exist not only in processing big multitemporal 

data [1] but also in communicating results in a meaningful 

and useful manner, especially for non-EO experts [2]. 

Related to establishing a Digital Twin for Austria, these 

publicly funded, open, and free Copernicus satellite data sets 

are invaluable for monitoring the environment. They also 

serve as valuable input to modelling approaches necessary for 

current global challenges, like climate change adaptation and 

the green transition towards an urgently needed sustainable 

society and its local impacts and mitigations in Austria. 

ESA Green Transition Information Factories (GTIF) 

initiative, especially the GTIF-Austria demonstrator (GTIF-

AT), wants to showcase domains and tools that support the 

green transition. Within the current GTIF-AT 

implementation many important topics for supporting and 

monitoring the green transition are made available to 

different users in an easy to grasp manner, but are often 

focused only on very specific domains, data sets and dates. 

A key asset of the open and free Copernicus Sentinel-2 

data is their temporal frequency, and GTIF-AT lacks a 

temporal component to a dynamic integrated view on the 

green transition. Generic temporal vegetation change 

information derived from Sentinel-2 data could enrich 

existing, application-specific static information layers. There 

is Sentinel-2 coverage at least 5 days (higher for overlapping 

orbits) for Austria, offering considerable change information 

over time, which is missing and underused in GTIF-AT as a 

cross-domain layer because such an approach cannot be 

easily integrated in a classical non-dynamic web-GIS 

interface.  

In this study, we incorporate a temporal basemap layer 

into GTIF-AT, which offers general information about 

vegetation changes. This layer is designed for seamless 

combination with most thematic datasets currently available 

within the demonstrator. Our methodology uses all Sentinel-

2 observations from 2018 onward - the first year with full 

dual-satellite coverage - into a reproducible and interpretable 

format. The result is a comprehensive multitemporal 

representation for Austria, which is fully automated and has 

the potential for global application. By providing this change 

detection layer, we introduce an additional temporal 

component to existing GTIF-AT datasets, enabling the 

integration of temporal dynamics across a broad range of 

thematic applications. 

The primary challenges were twofold: first, the 

development and implementation of innovative, scalable, and 

reproducible methodologies for managing and analysing 

large volumes of EO data; and second, the effective 

communication of the resulting multitemporal insights to 

support spatial decision-making processes, particularly for 

users in Austria and beyond. 

2. METHODS 

2.1. Big EO Data processing 

The big EO data analyses behind the multi-temporal thematic 

layer are conducted in a semantic EO data cube [3], where for 

each observation at least one nominal (i.e. categorical) 

interpretation is available and can be queried in the same 

instance. Our implementation - Sen2Cube.at, see detailed 

description of the implementation in [4] - is a worldwide 
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unique semantic EO data cube implementation available for 

all of Austria, where every Sentinel-2 satellite image taken 

since 2015 and their derived categorical information layers 

can be analysed in the cloud. Data cubes have the advantage 

that the spatial and temporal extent to be analysed can be 

dynamically selected using meaningful coordinates, while the 

images are indexed in multiple dimensions. Semantic data 

cubes extend this flexibility with a semantic query option that 

allows analyses integrating categorical information with raw 

data directly in the selected spatial and temporal extent. 

This approach uses semantic enrichment to calculate the 

pixel-based percentage of vegetation versus non-vegetation 

observations using all Sentinel-2 images in a user defined 

analysis period (e.g. years or seasons). Different to index-

based approaches, e.g. using NDVI only, no thresholds need 

to be defined since the semantic classes (here: spectral 

categories, see [5]) also reflect cloud-like / bare-soil-like / 

vegetation- and water-like categories. In contrast to machine 

learning / deep learning approaches, such a knowledge-based 

semantic enrichment approach does not rely on localized 

training samples and is, therefore, worldwide applicable. 

Scaling the approach to larger areas needs less energy 

consumption, which facilitates its proven transferability to all 

Sentinel-2 data worldwide within the ESA inCubed project 

SIAMaaS [6] (see also https://app.color33.io). All available 

imagery can be used without additional pre-processing to 

filter cloud-affected data. This approach allows the use of 

smaller cloud-free areas even in highly cloudy images, 

increasing the number of valid, clear observations and 

thereby enhancing statistical reliability. The approach can be 

scaled up to any region worldwide since the semantic 

enrichment approach does not require re-training or 

adaptations for other regions.  

2.2. Visualisation approach 

The visualisation of analytical results derived from remote 

sensing data plays a significant role in the communication of 

this information. Although effective geovisualisation is not a 

new area of research [7], it takes on added significance within 

the Copernicus Programme. This is due to the high volume 

and temporal resolution of data - such as that from Sentinel-

2 - which makes the purposeful visualization and 

communication of the temporal dimension especially 

important alongside large-scale Earth observation data 

analysis workflows. The initial single-layer representation of 

different time steps is based on the RGB colour model and 

was developed together with users from different domains. 

It’s a simple additive colour model, used to visualise the 3 

different grayscale layers for each time period, each 

indicating the proportion of vegetation observed. The 

approach allows changes from three periods to be displayed 

on a map in a single image using different colour 

combinations.  

Such multitemporal colour compositing is not new in 

remote sensing especially for visual interpretation of changes 

[8] [9], but we further developed this approach into a 

transferable technique on semantic vegetation counts for 

fixed time frames which can be combined individually and 

are afterwards still interpretable. The interpretation of the 

colours can be drawn from the proposed colour cube (see Fig. 

2), which applies a fixed layer sequence - from oldest to 

newest (see Fig. 1) - to ensure consistent meaning across 

combinations. Since the yearly vegetation percentages are 

counts of cloud/snow free vegetation observations, the RGB 

composite is still interpretable on a yearly basis and slight 

colour changes can be still linked to percentage changes in 

vegetation. The RGB colour palette and colour cube for the 

interpretation does therefore not only communicate 

vegetation change but also changes in intensity and/or partly 

changed vegetation to non-vegetation and vice versa using 

main RGB colours and mixed colours plus their intensity.  

 

 

Fig. 1. An RGB colour composite created from vegetation 

data collected over different years. To enhance 

interpretation, we follow a fixed band assignment: the 

oldest timestamp to the red channel, the middle 

timestamp to the green, and the most recent timestamp to 

the blue channel. 

IMPLEMENTATION 

For the implementation a semantic query model has been 

developed within the semantic EO data cube and be applied 

to all Sentinel-2 data within Austria from 2018-2024 on a 

yearly basis. The first implemented layer in GTIF-AT is a 

long-term change combination 2018-2021-2024 (https://gtif-

austria.info/narratives/vegetation-change-dynamics). 

The period matches between the updating cycles of the 

European Copernicus Land Cover products, such as the 

CORINE land cover layers 2018 to 2024 (the latter is 

expected to be published early 2026). Eventually the single 

years can be combined as needed from a user perspective, e.g. 

Fig. 3 shows a combination of 2019-2020-2021 for 

evaluating specific events in a narrower time frame in the 

federal state of Salzburg. Fig. 4 shows a result for parts of the 

city of Salzburg overlaid with Urban Atlas 2018 data to 

stratify the result by different land use / land cover for 

different purposes. 
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Fig. 2. Proposed RGB dynamic visualisation cube for the interpretation of our RGB timely composite of different 

vegetation layers to directly derive and interpret change occurrence, time and duration of change, and severeness 

(intensity). Intense colours represent strong change, while subtle changes will be indicated by pastel colours. 

 

Fig. 3. Example for a one-layer representation of the changes of observed vegetation counted from every Sentinel-2 

image in the years 2019, 2020 and 2021 (can be adapted to any time period (e.g. different years or seasons)). Upper left: 

RGB layer representing changes in road construction based on vegetation change derived from all Sentinel-2 images, 

the colours represent the years when the changes occurred (removal of vegetation during construction, but also 

vegetation regrowth of parts of the area when the roads were finished). Upper right: VHR image of the same area taken 

after the changes happened (>2022). Lower left: RGB representation for a mudflow taken place in Bad Hofgastein, 

Austria, early July 2020. Since the vegetation was removed by the mudflow the colour changes to red (not vegetated 

parts of 2020 and 2021), for some parts to magenta, which indicates a regrowth of vegetation already in 2021. Lower 

right: VHR image of the same area taken after the changes happened (>2022)
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FIG. 4. Change layer combined with different land use / 

land cover masks taken from the Urban Atlas data (EEA, 

2018) to stratify changes for different analysis purposes. 

Top: RGB change layer (2018–2021–2024) for a part of 

the city of Salzburg. Changes stratified to forest areas 

(middle) showing only small impact spots, combined 

urban fabric classes (bottom) highlighting urban 

densification / loss of urban vegetation. 

RESULTS AND DISCUSSION 

The single-layer representation of multitemporal 

vegetation changes is designed to improve the 

communication of multi-temporal analyses to a broad range 

of users - such as planning authorities, decision-makers, and 

non-EO experts. It is particularly effective for integrating 

change or monitoring layers with specific application topics 

within GTIF-AT, or for use as a WMS basemap that can be 

directly combined with users’ sensitive internal data. This 

approach clearly highlights areas of change and provides 

insights into the intensity of those changes. Unlike 

conventional basemaps commonly used in GIS-based 

decision support systems, which typically rely on mono-

temporal data like static maps or image mosaics with unclear 

observation dates, our method delivers time-sensitive and 

actionable information. 

Potential application areas include, but are not limited to: 

comprehensive monitoring of green spaces and their 

dynamics across Austria, tracking land use changes related to 

energy production (e.g., construction of solar or wind power 

facilities), forest monitoring (e.g., identifying landslides, new 

roads, or changes in protection forests), environmental and 

soil protection (e.g., detecting soil sealing or agricultural 

deposits), and nature conservation efforts (e.g., observing 

vegetation shifts driven by climate change). 
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ABSTRACT

Earth Observation (EO) analytics is experiencing a paradigm
shift from cloud-centric processing toward hybrid archi-
tectures that leverage client-side computation. This re-
search investigates the technical feasibility of fully web-
native EO DataCube exploration and analytics using Zarr
format, eliminating server-side dependencies for interac-
tive analysis. Through an experimental prototype integrat-
ing Zarrita.js, OpenLayers DataTile extensions, and Web
Worker-based analytics, we demonstrate sophisticated EO
analysis—including Urban Heat Island mapping, spectral
categorization, and zonal statistics—entirely within web
browsers. Real-world validation through the SpongeCity
Toolbox serving 120 municipalities shows 5.9-19 second
analysis times for municipality-scale operations when cached
(initial loading: 27-252 seconds), with browser cache achiev-
ing up to 43× speedup. The approach handles diverse data
types (Float32/Uint8) and resolutions (10m/70m) while main-
taining operational performance on both desktop and mobile
devices. We developed and published the ol-zarr package
for OpenLayers-based Zarr visualization [6], available as
open-source software on GitHub and Zenodo. While ana-
lytical algorithms (UHI, zonal statistics) remain integrated
within the SpongeCity dashboard, these implement standard
algorithms demonstrating Zarr’s browser-based feasibility
rather than novel methods requiring separate distribution.
This work advances FAIR principles in EO data access while
addressing critical democratization barriers for educational
institutions and resource-constrained environments where
traditional cloud infrastructure is unavailable.

Index Terms— Earth Observation, Zarr, Cloud-native,
Web-native analytics, Data democratization, SpongeCity

1. INTRODUCTION

The proliferation of Earth Observation data has transformed
geospatial analytics, with cloud-native platforms enabling
planetary-scale analysis [4, 1]. However, traditional ap-
proaches create persistent barriers through platform depen-
dencies and infrastructure requirements that restrict access

This work was supported by the SpongeCity project within the Interreg
Danube Transnational Programme.

to specialized communities [3]. Recent advances in web
technologies—particularly Zarrita.js for browser-based Zarr
processing [13] and OpenLayers DataTile for dynamic raster
rendering [10]—enable unprecedented browser-native scien-
tific computing capabilities, with research confirming accept-
able performance when properly optimized [11].

The Zarr format provides critical enabling technology
through chunked access patterns aligned with browser con-
straints [9, 7], with NASA’s adoption [8] and GeoZarr’s OGC
Community Standard approval demonstrating operational
maturity. This research validates whether cloud-native stor-
age formats can support fully autonomous, browser-based
EO analytics without server-side computation through im-
plementation in an operational web toolbox serving 120
municipalities.

2. METHODS

2.1. System Architecture Overview

We developed a general-purpose browser-based Earth Obser-
vation datacube system that enables direct client-side access
and processing of Zarr-formatted EO data without server-
side computational dependencies. The system architecture
comprises two core components: (1) Interactive Exploration
enabling direct visualization of datacube contents through
spatial and temporal queries, and (2) In-browser Analytics
providing client-side computational capabilities for EO data
analysis. The technology stack integrates Zarrita.js (v0.5.0)
for Zarr format handling, custom OpenLayers extensions for
direct chunk visualization, Web Workers for parallel pro-
cessing, and vanilla JavaScript optimization for numerical
computations. This architecture eliminates traditional de-
pendencies on tile servers, processing servers, or specialized
software installations, requiring only a modern web browser
for full functionality.

2.2. Zarr DataCube Architecture

2.2.1. DataCube Structure and Organization

Raster datasets are compiled into Zarr datacubes using a
Python-based preprocessing pipeline leveraging Xarray for
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multi-dimensional array handling, zarr-python for Zarr for-
mat writing, and Rasterio for geospatial raster processing.
This pipeline is dataset-agnostic, capable of ingesting any
georeferenced raster data regardless of source sensor or data
type. The preprocessing generates multi-resolution pyra-
mids and computes per-timestamp statistics, preparing data
for efficient browser-based access. Our system operates on
a hierarchical Zarr datacube structure designed for efficient
multi-resolution access:

Dataset (zgroup)
+-- Zoom Levels (zgroup: 0, 1, 2, ..., n)

|-- times (zarray)
|-- statistics (zarray)
|-- values (zarray: [time, band, y, x])
|-- y (zarray)
+-- x (zarray)

Each zoom level represents a pre-generated pyramid with
2× spatial resampling, enabling efficient multi-scale visu-
alization. The datacube optimizes for interactive browser
queries through specialized arrays: times (1D timestamps
for temporal queries), x/y (coordinates for spatial indexing),
statistics ([min, max, mean, 2nd/98th percentiles] per
timestamp for dynamic visualization), and values ([time,
band, y, x] with [1, 1, 256, 256] chunking). This chunking
prioritizes spatial slice performance for tile-based rendering
over pixel time series extraction—while full time series re-
quire multiple chunk fetches, point-based temporal analysis
remains feasible as demonstrated in our occurrence analysis.
Zarr datacubes are hosted on MinIO Object Storage with S3-
compatible APIs, providing direct HTTP range requests with
CORS configuration for browser access.

2.3. Interactive Exploration of EO DataCube

The interactive exploration component implements a direct
Zarr-to-visualization pipeline through our custom ZarrTile
class extending OpenLayers’ DataTile functionality [6]. The
tile loading process operates as follows: OpenLayers de-
termines required tiles based on viewport extent and zoom
level, ZarrTile computes spatial indices by intersecting tile
extent with datacube’s coordinate arrays, constructs multi-
dimensional queries combining spatial, temporal, and band
indices, and retrieves the corresponding Zarr chunks. Re-
trieved data undergoes processing in Web Workers for nor-
malization and format conversion before returning to Open-
Layers for rendering. We encapsulate the ZarrTile/DataTile
combination within OpenLayers’ WebGLTile layer, provid-
ing GPU-accelerated rendering and interactive visualization
adjustments. OpenLayers’ dual-layer caching—rendered
tiles in memory and Zarr chunks in browser cache—persists
across all zoom operations, eliminating re-fetching during
navigation.

2.4. In-browser Analytics of EO DataCube

The analytics component implements comprehensive EO
analysis capabilities entirely within the browser environ-
ment, processing data retrieved directly from Zarr datacubes
without server-side computation. Each analysis operation re-
quires four core inputs: analysis area(s) as polygons, dataset
reference to specific Zarr datacube, spectral bands, and tem-
poral range. Input polygon coordinates are reprojected to the
dataset’s CRS using Proj4.js, with geomask.js implementing
the Dufour-Peyton intersection algorithm to convert polygons
to gridded masks. The analysis engine constructs optimized
queries by converting temporal ranges to array indices and
mapping polygon extents to array indices using coordinate
arrays. For multiple analysis areas, data retrieval occurs in
parallel with Web Workers managing concurrent requests.
Analysis computations utilize optimized vanilla JavaScript
implementations with direct manipulation of typed arrays
(Float32Array, Uint8Array) for memory efficiency. All ana-
lytical operations execute in dedicated Web Workers to main-
tain UI responsiveness through separated concerns allowing
different stages to execute concurrently.

2.5. SpongeCity Toolbox Implementation

To validate our technical approach, we integrated the browser-
based EO datacube system into the SpongeCity Toolbox
(spongecity.zgis.at), serving 120 settlements across 12 Danube
region countries. This implementation provides an ideal
validation environment as primary users are non-technical
stakeholders including municipal decision-makers and ur-
ban planners. We prepared three complementary datasets as
Zarr datacubes: (1) ECOSTRESS Land Surface Tempera-
ture: NASA’s thermal data at 70m resolution [5], (2) SIAM™
Land Surface Appearance Categories: 34-class categorical
data at 10m resolution using the Satellite Image Automatic
Mapper [2], and (3) SIAM™ Greenness Index: vegetation
vigor indicator at 10m resolution [2]. Four analysis functions
demonstrate diverse computational patterns: Urban Heat
Island Analysis (temperature differentials between urban ar-
eas and rural buffers), Multi-temporal Occurrence Analysis
(pixel counts meeting specified thresholds across time se-
ries), Multi-temporal Zonal Statistics (statistical summaries
within user-defined polygons), and Multi-temporal Distribu-
tion Analysis (frequency distributions of categorical classes).

2.6. Performance Evaluation

We evaluated all four analysis functions across three datasets
using Pécs, Hungary as our test case. Our instrumentation
captures network metrics (HTTP timing, data transfer, cache
hits) and processing metrics (execution time, memory usage),
differentiating between data retrieval (network-bound) and
processing (compute-bound) phases. Tests were conducted
on iPad 8th Generation (Safari, 3GB RAM) and HP EliteBook
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Fig. 1. SpongeCity Toolbox showing SIAM™ Land Surface
Appearance Categories rendered directly from Zarr datacube
storage without server-side tile generation.

Fig. 2. Urban Heat Island analysis results rendered in the
SpongeCity Toolbox, showing temperature differentials be-
tween urban areas and rural surroundings computed entirely
within the browser from ECOSTRESS Zarr datacube.

840 G9 (Chrome, 32GB RAM) with 40/10 Mbps connectiv-
ity. The evaluation covered Pécs municipality (163 km²)
for standard analyses and extended area (378 km²) for UHI
analysis with 3km rural buffer, processing 21 ECOSTRESS
thermal acquisitions (70m, Float32) and 27 SIAM™ acquisi-
tions (10m, Uint8/Float32) from January-June 2024.

2.7. Quantitative Performance Results

Table 1 presents comprehensive performance metrics from
the SpongeCity Toolbox implementation:

The evaluation reveals critical insights about browser-
based EO analytics performance. Browser caching provides
transformative performance improvements, achieving 2.3×
to 43× speedup with the most dramatic benefits for high-
frequency data access patterns. Data retrieval constitutes
87-99% of total execution time for uncached operations but
drops significantly when cached, while processing times re-
main consistent (0.2-13.9 seconds) regardless of cache state.
The 70m ECOSTRESS analysis achieves sub-3.5 second

Fig. 3. Multi-temporal occurrence analysis results for
SIAM™ Greenness Index displayed in the SpongeCity Tool-
box, demonstrating client-side time series analysis and visu-
alization capabilities.

performance even without caching, while 10m analyses re-
quire 27-252 seconds initially. Mobile devices demonstrate
unexpected processing advantages in some cases, with both
platforms maintaining stable performance requiring only
0.27-1.11 MB/s average bandwidth.

3. DISCUSSION AND CONCLUSIONS

This research demonstrates the technical feasibility of browser-
native Earth Observation DataCube analytics using Zarr for-
mat, successfully implementing Urban Heat Island mapping,
spectral categorization, and zonal statistics entirely within
web browsers. Our work provides empirical evidence that
Zarr’s chunked architecture enables efficient client-side EO
analytics across multiple data types and resolutions, directly
addressing traditional barriers that limited EO data access
to specialized communities. The browser-native approach
enhances FAIR principles [12] through standardized web
protocols and URL-shareable analytical configurations.

3.1. Performance and Limitations

Browser caching provides transformative performance im-
provements up to 43× speedup, enabling interactive expe-
riences suitable for real-time stakeholder engagement. The
system processes 3.3 million pixels with modest bandwidth
requirements (0.27-1.11 MB/s average) and cross-platform
compatibility. Initial loading requires 125-252 seconds for
municipality-scale datasets (Pécs, Hungary: 163 km² at 10m
resolution, 27 temporal acquisitions, 84.6 MB compressed),
while browser memory limits restrict analysis to datasets
under 400-500 MB uncompressed. Rather than competing
with server-side computational throughput, our approach
optimizes for zero-infrastructure deployment and immedi-
ate accessibility—enabling EO analysis where server access
is unavailable or cost-prohibitive. Performance evaluation
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Table 1. Performance metrics for browser-based EO analytics in SpongeCity Toolbox (Pécs, Hungary test case)
Analysis Dataset DType/Res Time Steps Area Time (seconds) Data (MB) Bandwidth (MB/s)

(km²) Total Retrieval Process Compressed Uncompressed Avg Peak

iPad Performance - No Cache / Cached

Urban Heat Island ECOSTRESS LST F32/70m 21 378 3.4 / 2.1 1.8 / 0.4 1.6 / 1.6 5.8 9.5 0.41 / 2.99 6.82 / 20.45
Distribution SIAM™ Categories U8/10m 27 163 252.0 / 5.9 249.0 / 1.9 4.0 / 4.0 43.9 84.6 0.48 / 2.90 2.40 / 9.76
Zonal Statistics SIAM™ Greenness F32/10m 27 163 125.2 / 120.8 123.2 / 118.9 2.0 / 1.9 513.0 338.5 1.11 / 0.91 123.97 / 134.34
Occurrence SIAM™ Mixed Mixed/10m 27 163 175.0 / 170.1 173.6 / 168.6 1.0 / 1.0 43.9 84.6 0.50 / 2.90 3.42 / 9.76

Desktop Performance - No Cache / Cached

Urban Heat Island ECOSTRESS LST F32/70m 21 378 2.3 / 1.0 2.1 / 0.9 0.2 / 0.2 5.8 9.5 0.55 / 1.22 4.65 / 14.31
Distribution SIAM™ Categories U8/10m 27 163 27.7 / 19.0 13.8 / 5.7 13.9 / 13.2 43.9 84.6 0.30 / 1.61 2.72 / 13.95
Zonal Statistics SIAM™ Greenness F32/10m 27 163 141.6 / 16.3 138.6 / 14.7 2.9 / 1.6 513.0 338.5 1.03 / 2.24 19.32 / 2.63
Occurrence SIAM™ Mixed Mixed/10m 27 163 142.5 / 18.2 139.1 / 15.4 3.2 / 2.7 43.9 84.6 0.27 / 1.47 3.01 / 11.85

thus prioritizes user-centric metrics (time-to-insight, cache
efficiency) over raw computational benchmarks, reflecting
the system’s focus on exploratory analysis and stakeholder
engagement.

3.2. Conclusions and Future Work

The convergence of cloud-native storage formats with browser-
based processing represents a significant advancement in
Earth Observation accessibility. Our empirical validation
confirms operational viability for urban planning workflows,
with municipality-scale analyses completing in seconds when
cached. The published ol-zarr package [6] provides reusable
OpenLayers extensions for Zarr visualization, while our im-
plementation demonstrates feasibility of complex analytics
entirely within browsers. By eliminating infrastructure de-
pendencies, browser-native EO analytics opens new possibili-
ties for stakeholder engagement in environmental monitoring
and decision-making.

As web technologies evolve and Zarr adoption expands,
browser-native analytics will increasingly democratize Earth
Observation data access. Future research directions include
WebGPU technologies for performance improvements, tem-
poral chunk optimization, WebAssembly kernels, and Pro-
gressive Web Application architecture for offline capabilities.
The ol-zarr package will be extended to support additional
Zarr v3 features and multi-dataset fusion, further advancing
browser-native EO capabilities.
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ABSTRACT

The increasing volume of datasets generated by new
satellite missions necessitates efficient access within cloud
environments to fully harness their potential. To achieve
this, algorithms must be relocated to the data, and workflows
should be reproducibly offered as cloud services. In this
paper, we present the development of an end-to-end FAIR
(Findable, Accessible, Interoperable, and Reusable) work-
flow for Sentinel-1-based deforestation detection, deployed
as a cloud service. This approach democratizes access to
complex algorithms, ensuring that scientific results are both
reproducible and applicable to new areas of interest. We
discuss the challenges and benefits associated with this tran-
sition. Additionally, during the migration to the cloud we
enhanced the algorithm’s runtime, achieving a 27% reduction
in processing time through algorithmic and implementation
improvements.

Index Terms— FAIR, time series analysis, Common
Workflow Language (CWL), Sentinel-1,

1. INTRODUCTION

Contemporary Earth System Science increasingly depends on
comprehensive data analysis workflows. As these analyses
grow in complexity, understanding and reproducing a work-
flow based solely on the materials and methods section of a
research article becomes more challenging. Publishing the
source code of the data analysis is a crucial first step toward
establishing a FAIR workflow. However, merely providing
the workflow’s code is insufficient for enabling seamless end-
to-end processing by future users. To achieve this, the neces-
sary data must be accessible, and computing resources should
be co-located with the data.

In this paper we describe how we made a reproducible
workflow out of a scientific analysis code. Section 2 intro-
duces the algorithm and its data requirements. Section 3 de-
tails how we improved the code to reduce the runtime. Section
4 describes the implementation of the end-to-end FAIR work-
flow. The end-to-end FAIR workfow is containerized in the
Common Workflow Language (CWL) adhering to the OGC
Best practices for Earth Observation Application Package.

2. ALGORITHM AND DATA

In this section we describe the workflow and the necessary
data for the improved and deployed Sentinel-1 based forest
change detection algorithm [2]. Figure 1 illustrates the work-
flow of the forest change algorithm. The algorithm utilizes
Sentinel-1 time series data. The Sentinel-1 data needs to be
stacked as a time series so that we can apply the Recurrence
Quantification Analysis (RQA) algorithm to each pixel’s time
series. Therefore, the algorithm currently relies on analysis
ready Sentinel-1 data, where every scene of the same relative
orbit is aligned to the same grid. To minimize geometric ef-
fects arising from varying relative looking angles, we conduct
the time series analysis on each relative orbit independently.
Currently, the analysis is performed on preprocessed Sentinel-
1 data [4]. The data is organized into 15,000 x 15,000 pixel
tiles within the EQUI-7 Grid [1], with each scene stored sep-
arately. This approach can result in time series with numer-
ous missing values if all scenes of the same area are simply
stacked. In Section 3 we describe how we improved the load-
ing of the data to get time series with less missing values.

After applying the RQA algorithm on every pixel of the
Sentinel-1 time series we mask forest areas with a forest/non-
forest map [3] and we cluster the detected change pixel into
areas of at least 30 pixels to eliminate spurious single pixel
change detections. Figure 2 shows an example of the forest
change algorithm for the Harz mountains in central Germany.
The different coloured datasets represent the forest change for
the different years between 2018 and 2022.

3. CODE ENHANCEMENT

We further improved the algorithm to make the inner loop
fully allocation free, reducing the runtime of the time se-
ries analysis for a single pixel by 91% for a 100 step time
series. Figure 3 compares the runtime, memory usage and
allocations between the original and the improved version of
the implementation. The original version exhibited a near-
exponential increase in memory usage, whereas the improved
version eliminates memory allocation, significantly enhanc-
ing runtime and reducing pressure on the garbage collector.
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Fig. 1. Schematic workflow of the analysis. Orange ellipses
specify input data and blue ellipses show the computational
steps

Fig. 2. Result of the forest change algorithm for the Harz
mountain in Central Germany.

However, this reduction in runtime and memory footprint
does not directly translate to a reduction for an entire data
tile, as detailed in Table 1. The algorithmic changes for indi-
vidual time series altered the input data requirements. While
the previous version could handle regularly occurring miss-
ing values, the optimized version produced incorrect results
under the same conditions. Consequently, we modified the
data loading and preprocessing steps. Sentinel-1 data for
each tile was grouped by acquisition time, allowing scenes
acquired on the same date to be mosaicked together. This
mosaicking process eliminated regularly occurring missing
values but increased the runtime for preparing the data for an
entire tile. During the recurrence analysis, we examine every
time point pair, resulting in the algorithm scaling quadrati-
cally with the length of the time series. Additionally, since
we do not incorporate information from neighboring pix-
els, the algorithm is embarrassingly parallelizable for larger
areas of analysis. This characteristic provides flexibility in
the workflow execution plan, allowing adaptation to the file
structure and chunking schemes of the dataset at individual
processing nodes. Finally, CWL workflows can be executed
and orchestrated on any Kubernetes cluster using Calrissian.

Fig. 3. Comparison of the old and the improved version of
the algorithm. The old version had a near exponential increase
of the memory usage while the improved version does not
allocate memory.

Table 1. Improvements of the runtime and memory footprint
due to the code improvements.

Indicator v0.1 v0.2 Improved
by

Duration (tile) [s] 884.03 649.04 27%
Duration (point) [s] 12.774 1.137 91%
Mem usage (tile)
[GiB]

606.03 223.29 63%

Mem usage (point)
[KiB]

3.75 0 100%

Mem alloc. (tile) 1.49e10 887461 99.94%
Mem alloc. (point) 8 0 100%

4. CLOUD DEPLOYMENT

A Julia library, as described in Section 3, is not sufficient
on its own to ensure efficient and reproducible execution.
We adhere to the principle of data locality by bringing the
code to the data, rather than downloading the data for lo-
cal execution. This necessitates running the code in cloud
environments without direct server access, as detailed in Fig-
ure 4. We followed two different approaches to deploy the
code to the cloud. For the first approach we encapsulated the
analysis code in a containerized workflow following OGC
Best Practice for Earth Observation Application Package
(https://docs.ogc.org/bp/20-089r1.html). Hereby we utilize
the Common Workflow Language (CWL) to describe the in-
dividual steps: stage in, process and stage out. The ”Stage
in” process ensures uniform data access for the workflow and
the user. Then we initiate the OGC API process to start the
workflow via a REST API from pygeoapi. Then we use a
python function to call the CWL Workflow. This nested ar-
chitecture allows cloud providers to seamlessly integrate the
workflow into their execution environments. The CWL em-
ploys a Docker container to host the Julia library, and we use
STAC and Zarr as output formats to deliver the final results to
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Fig. 4. Software architecture

the user.
For the second approach we compiled the function for the

RQA Trend computation for a single time series into a stan-
dalone binary. This standalone binary can then be called via a
C-API without having a julia runtime. This approach allows
to run the RQA Trend function as an inner user defined func-
tion in an openEO backend. In this setup, the openEO back-
end manages data loading and postprocessing, while the Julia
function is utilized solely in the core data processing stage.

The development of a FAIR workflow is influenced by
the licenses and popularity of the tools and input datasets.
Achieving accessibility requires permissive licenses, which
is generally not a significant issue due to the widespread use
of open-source software in the scientific community. While
Level 2 satellite datasets are typically freely available, further
processed products are often proprietary or only available at
certain cloud providers, though the data can often be repro-
duced using open-source software.

Reproducibility is relatively straightforward to achieve
through containerization, provided the algorithm is deter-
ministic and its input data is FAIR, as is the case with our
workflow. One common challenge to achieving FAIRness is
availability of datasets or tools. Specific datasets may not be
available on relevant cloud platforms, hindering workflow ex-
ecution at scale. Similarly, some software may not be widely
provided.Enhancing support for containers and CWL work-
flows in openEO would significantly ease the deployment of
future workflows.

5. DISCUSSION AND OUTLOOK

This work demonstrates how we enhanced the algorithm and
effectively brought it to the data. It highlights the necessity of
evaluating algorithm improvements within the context of the
entire workflow, as individual steps cannot be entirely iso-
lated. The effort to reduce allocations in single-pixel analysis
necessitated changes in data loading and preprocessing. This
preprocessing step diminished the expected runtime improve-
ments that might have been anticipated from simply extrapo-

lating single-pixel runtime enhancements to the entire tile.
As future steps, we aim to explore deploying the algo-

rithm across other cloud providers. Currently, this is chal-
lenged by the algorithm’s reliance on stacked time series of
Sentinel-1 data, which is less readily available compared to
SLC or GRD data. We plan to investigate enabling the direct
use of SLC data and stacking SLC data from the same burst
ID to derive Sentinel-1 time series directly in radar geometry.
Such a time series would be feasible since the algorithm is
spatially independent.

6. CODE AVAILABILITY

The code is published free and open source under an MIT
licence. The Julia package for the RQA based time series
analysis is available at:

https://github.com/EarthyScience/RQADeforestation.jl
And the code for the cloud deployment is available here:

https://github.com/EarthyScience/FAIRSenDD/
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ABSTRACT 

Forest height and volume estimation using spaceborne SAR 

remains challenging in regions with uneven terrain and 

variability in forest structure and tree species. In this work, 

we investigate the potential of TanDEM-X bi-static 

interferometric data for hemiboreal forest height estimation 

in Estonia. The novelty of our study is a systematic 

assessment of how interferometric parameters, forest 

properties, and environment conditions affect forest height 

estimation accuracy. Combining multi-temporal TanDEM-X 

acquisitions with auxiliary LiDAR-derived and forest 

inventory data, this study is the first step towards a scalable, 

robust, and accurate forest height monitoring method for 

future multi-static SAR missions.  

Preliminary results highlight the strengths and 

limitations of existing forest height estimation methods and 

provide an overlook into how forest height retrieval behaves 

under different conditions. 

Index Terms— forest height, tandem-x, bi-static SAR, 

time-series analysis 

1. INTRODUCTION 

Sentinel-1 is a powerful data factory. No other current SAR 

mission produces data with systematic global coverage in 

such a large quantity. However, its information content is 

relatively limited – dual-polarization backscatter and repeat-

pass interferometry data. Across-track interferometry is not 

feasible with Sentinel-1 due to temporal decorrelation (6 or 

12 days) and short interferometric baselines (<100 m) [1]. 

The limited information content of Sentinel-1 sets an 

inherent limit to forestry applications built on Sentinel-1 

reducing its scalability [2]. 

One of the efficient methods for forest height 

estimation is across-track interferometry from a bi-static 

SAR system, for example – TanDEM-X. Existing studies 

have sufficiently shown the usefulness of the TanDEM-X 

for forest height estimation across different forest types – 

boreal, temperate, and tropical forests. However, 

publications often omit critical details about data acquisition 

parameters, processing methods, or even the study areas 

themselves. This represents a significant research gap, 

especially given that numerous studies have emphasized the 

influence of data characteristics and processing choices on 

the accuracy and reliability of results. 

Consequently, this work aims to fill this research gap 

and develop a transparent and reliable methodology for 

hemiboreal forest height estimation. For that the goal is to 

systematically quantify the effects of interferometric 

variables (e.g., polarization, baseline) and forest properties 

(e.g., height, density, tree composition) on forest height 

estimation using TanDEM-X data as a proxy. KappaZeta 

Ltd. from Estonia is developing a receive-only three-satellite 

constellation (“3D-SAR”) to fly in formation with Sentinel-

1 to enable the multi-static dimension, and therefore enrich 

the information provided by Sentinel-1, Fig. 1. 3D-SAR 

Mission Concept. The mission is expected to produce three 

times the amount of raw data that Sentinel-1 does for the 

same area. The focus of 3D-SAR is on producing a global 

forest height layer through single-pass across-track SAR 

interferometry, a proven method for high accuracy forest 

height monitoring.  

 

 

Fig. 1. 3D-SAR Mission Concept 

2. TANDEM-X FOR FOREST HEIGHT ESTIMATION 

TerraSAR-X and TanDEM-X are a pair of nearly identical 

satellites launched in 2007 and 2010 respectively. The 

satellites fly together in a close helix formation and acquire 

unique single-pass polarimetric interferometric data 

unaffected by temporal decorrelation [3], [4]. The data 

acquired by the mission was originally intended to be used 

for a global digital elevation model generation. However, 
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multiple studies have found that the X-band is also suitable 

for forest height estimation [4]. Since then, many 

researchers have attempted to perform forest height 

estimation with TanDEM-X data using various approaches, 

which are generalized here into three groups: inversion 

models, machine learning methods, and digital surface and 

terrain models (DSM-DTM) differencing techniques. 

The inversion models include the Random Volume 

Over Ground (RVoG) model and its modifications, SINC, 

and C-SINC models. These models are widely used for tree 

height inversion in boreal (e.g. [5]), temperate (e.g. [6]), and 

tropical (e.g. [7]) forests. The models proved to be robust, 

accurate, and easy to use. In the case of the RVoG, the 

model also has high interpretability since it utilizes the 

extinction coefficient, interferometric phase, and ground-to-

volume ratio [8]. However, numerous drawbacks inhibit the 

application of the models. For example, the RVoG requires 

fully polarimetric data, which is not routinely available from 

the TanDEM-X platform [8]. Additionally, the above-

mentioned models are insensitive to terrain variations, 

which cause under- or over-estimation in high slope areas 

[6]. 

Among the machine learning models, Random Forest 

(RF) is one of the most used methods for forest height 

estimation [9]. Compared to the inversion models, machine 

learning methods are not strictly limited by the data 

requirements. That makes it possible to easily integrate data 

from multiple additional sources [10]. Moreover, RF is an 

interpretable method. This trait is widely used by 

researchers to explain the results of the modelling and 

define the most important features in the datasets [11], [12]. 

Apart from the RF, more advanced methods were used in 

recent studies. They include, but are not limited to, 

Classification and Regression Tree (CART), Gradient-

Boosting Decision Tree (GBDT), Support Vector Machine 

(SVM), and more [13]. While these methods tend to 

perform slightly better, they lack the explainability of the 

RF method. 

The DSM-DTM differencing techniques require 

additional high-quality DTM data for the study area. The 

exact approach varies from study to study. In some cases, it 

can be expressed as a simple DSM-DTM subtraction [13]. 

However, due to certain penetration capabilities of the X-

band into the canopy, the results of such methods are of a 

lower quality [4]. Alternatively, if InSAR height is corrected 

to a penetration depth, the results show comparable or better 

accuracy to other methods [14]. 

In addition to the methods described, various pre-

processing and data fusion techniques have positive effects 

on accuracy. For example, in coherence estimation, the 

window size cannot be set deliberately, as it might cause 

loss of information [8]. Given that TanDEM-X acquisitions 

are with high temporal resolution, temporal averaging of 

interferometric features can improve the results of the height 

estimation [11]. In case the area of interest is well covered 

by other data sources – terrain, climate, and optical data can 

be used as well [12], [13]. 

3. PROJECT OVERVIEW AND CURRENT STATUS 

3.1. Study area 

The area of interest is approximately 800 square kilometers 

in size, and it is split between two locations, Fig. 2. Study 

area. The first site is situated in the former Pikknurme forest 

district within Jõgeva County, Estonia. This region is well-

known for extensive forest research, and it is one of the first 

permanent forest observational plots [15]. The second site is 

in the Western part of Saaremaa Island, Estonia. The areas 

are dominated by European Spruce (Picea abis) and Silver 

Birch (Betula pendula) species. 

 

 

Fig. 2. Study area 

3.2. Data 

The primary data source used in this study is TanDEM-X. 

Particularly for this activity, 33 datatakes were scheduled: 

18 of which cover Saaremaa and the remaining 15 cover 

Pikknurme area of interest. The data was acquired in 

VV/VH polarization, StripMap mode, from August and 

October 2024. There is confirmation from DLR that most of 

the datatakes were successful, but as of April 2025, the data 

has not been delivered yet. Therefore, for test purposes and 

pipeline development, data from the TanDEM-X Science 

Archive was used. 

We use 5m DTM as a primary source of terrain 

information, which was obtained from the airborne LiDAR 

collected by the Estonian Land Board [16]. For comparison 

purposes, we also use Copernicus 30m and SRTM elevation 

models. 

Additionally, we use tree species and forest 

compartments from Forest Registry [17], a canopy height 

map derived from airborne LiDAR data collected by 

Estonian Land Board. The data is available on Estonian 

Land Board portal [16]. 

3.3. Methods 

So far, a major part of the work has been spent on getting 

familiar with the specifics of the bistatic TanDEM-X data, 
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data processing steps, and quality control. SNAP 8.0 is used 

as primary tool for interferometric processing. The 

processing steps are divided into three groups, depending on 

what data is required: backscatter, coherence, or InSAR 

height, Fig. 3. TanDEM-X Processing Pipeline. 

 

Fig. 3. TanDEM-X Processing Pipeline 

 

Preliminary processing parameters were outlined based on 

the existing studies. There are different options and 

combinations due to the software, study area, and data 

differences. Thus, the final processing configuration and 

parameters are not stated. See Fig. 4. InSAR Height Raster 

for an example of the InSAR Height raster. 

 

 

Fig. 4. InSAR Height Raster 

In addition to the interferometric features, SNAP is 

configured to output ancillary raster data which includes no-

data mask, Local Incidence Angle, Elevation, and Height of 

Ambiguity. Miscellaneous topographic and LiDAR data 

have not been thoroughly investigated and validated yet. 

4. FUTURE WORK 

4.1. Project outlook and 4-year plan 

Forest height estimation using TanDEM-X is the first part of 

a 4-year doctoral project which is done by KappaZeta Ltd. 

in cooperation with the University of Tartu. The name of the 

project is “Estimation of forest height and forest volume in 

hemiboreal forests from multi-static synthetic aperture 

radar”. The project is intended to provide a better 

understanding of how various interferometric variables 

influence forest height and volume estimation. This 

information will be used to develop a reliable and 

transparent methodology to estimate forest properties. 

The work is divided into three parts, which contribute 

to the overall goal of the project. The first two parts focus 

on forest height and volume estimation using Estonian 

hemiboreal forests as a case study. In these studies, we aim 

to understand the importance of various interferometric 

features and how to get the most information from them. 

Using additional data from other satellites is not our priority. 

Once we understand the data well enough and can provide 

reliable results on a local scale, we start to focus on the 

extended area of interest. That includes forests in Finland, 

Norway, and other neighboring countries. The goal of the 

third part is then to develop a large-scale model for forest 

height and volume estimation. Research progress and the 

results of each part will be disseminated in peer-reviewed 

scientific journals. The project is expected to be concluded 

at the end of 2028. 

4.2. Near future and 1-year plan 

In the near future, we are focusing exclusively on forest 

height estimation. We continue with the literature overview, 

focusing on data processing methods, forest properties, and 

data parameters. We start to look at the quality of the 

validation data and undertake additional processing steps if 

needed. We expect DLR to provide access to the requested 

data by June 2025 so that we can start data processing and 

methodology validation. 

In addition to the requested TanDEM-X dataset, we are 

considering writing a proposal for extra bistatic acquisitions 

in the year of 2025 and 2026. We plan to have new data to 

be timewise as close as possible to the airborne LiDAR 

scanning performed by Estonian Land Board. Moreover, we 

are looking at the options to perform in situ data collection 

together with research groups from the University of Tartu. 
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5. CONCLUSION 

In conclusion, existing forest height estimation methods 

from bi-static SAR data, though not without drawbacks, are 

powerful tools for forest monitoring. Initial findings 

demonstrate a variety of existing and promising new 

developments in the domain. Further work will focus on 

achieving high accuracy in forest height estimation over test 

areas in hemiboreal forests. The presentation will showcase 

the latest findings, highlighting achieved results and 

possible limitations. 
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ABSTRACT

Anomaly detection is a problem faced daily by space
mission operations control centers. These tasks involve
identifying unexpected values in telemetry (TM) data
originating from various onboard systems. Operators
generally rely on classical systems such as the definition
of nominal ranges, so the inclusion of more advanced
techniques such as artificial intelligence can speed up
and reduce the cost of these processes. PitIA was devel-
oped to address this challenge by optimizing operations
and improving equipment utilization. It uses an unsu-
pervised process to identify periods of anomalies in the
data, enabling anomaly detection and a better anomaly
management. We have evaluated PitIA using the ESA
anomalies dataset published in June 2024, and in this
letter we propose a realistic unattended operational de-
ployment .

Index Terms— Anomaly detection, PitIA, Teleme-
try, Machine Learning.

1. INTRODUCTION

Anomaly detection is a critical challenge in spacecraft
missions, where the reliable operation of onboard sys-
tems is essential for mission success. These missions
generate large volume of TM data from various systems
and subsystems, such as thermal control. The identifi-
cation of anomaly behavior in this data is key to ensure
operational continuity, however this data is composed of
several (hundred) of individual sensors coupled in some-
how between them, making manual inspection or rule-
based monitoring insufficient and inefficient.

From a data perspective, TM data can be represented
as multiple time series. Anomaly detection in time se-
ries is an active field of research, and the literature of-
fers a wide range of techniques, from those based on sta-
tistical models to more complex approaches leveraging
artificial intelligence. We invite to the reader to go to
reference [1], where the authors stablish a taxonomy of
outlier techniques based on outlier type which is used in
this research.

In this context, GMV has developed PitIA [2], a
solution capable of detecting anomalies in multivari-
ate time series, while also identifying which variables
(channels) contribute most to each anomaly. This greatly
assists spacecraft operators in diagnosing the root cause
of anomalous behavior. PitIA is based on Multivariate
Statistical Process Control (MSPC), a discipline exten-
sively studied in industrial applications [3], which we
apply here to spacecraft telemetry data—specifically, the
satellite anomaly database released by ESA [4]. In this
work, we compare the performance of the PitIA solution
against the algorithms proposed in the same dataset, and
we further extend the study by introducing a continu-
ous training approach tailored for real-world mission
scenarios.

The paper is organized as depicted in Fig. 1, describ-
ing the main steps of the pipeline, and we finish with the
result of apply this procedure to anomaly database.

ESA dataset
Resampling
Interpolation

Data Preprocessing

Train PitIA

Training

Refinement
Group same
anomalies

Postprocessing

Evaluate with
ESA metrics
Compare using

F0.5 score

Evaluation

Fig. 1. Execution pipeline of the anomaly detection
framework from data preprocessing to final evaluation.

2. DATASET

Due to the lack of publicly available datasets and stan-
dardized benchmarks for advanced automatic anomaly
detection in space mission telemetry, the European Space
Agency (ESA) has released a curated dataset of real satel-
lite telemetry. This dataset is accompanied by a hierar-
chical evaluation pipeline and benchmarking results for
various anomaly detection algorithms. The dataset com-
prises telemetry data from three different ESA missions,
two of which are included in the benchmarking frame-
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work. Each dataset is annotated by domain experts and
cross-validated using state-of-the-art techniques.

The evaluation pipeline is tailored to the practical
requirements of Satellite Operations Engineers (SOEs),
featuring novel evaluation metrics and simulation of real-
world operational scenarios. The benchmarking process
assesses common anomaly detection algorithms to high-
light areas where further improvements are needed.

3. DATA PREPROCESSING

The preprocessing pipeline begins with a resampling
step that reduces the number of data points and enforces
uniform sampling across TM channels—an essential re-
quirement for time-series models. Each mission uses
a specific resampling interval based on its native res-
olution (30 sec for Mission 1 and 18 sec for Mission
2). Following resampling, missing values are imputed
using a modified zero-order hold interpolation method
that preserves causality by propagating the last known
value without referencing future data. This process
includes timestamp alignment, value propagation, and
an anomaly-preservation step that ensures annotated
events are retained in the resampled dataset. Together,
these steps produce a temporally consistent and complete
dataset suitable for unsupervised anomaly detection [4]

4. TRAINING PITIA MODEL

PitIA performs anomaly detection through a dimension-
ality reduction approach based on Principal Component
Analysis (PCA). Once the model is trained on nomi-
nal telemetry data, each new observation is projected
onto the principal component space. Two statistical met-
rics are then computed to evaluate the deviation from
normal behavior Squared Prediction Error (SPE), and
Hotelling’s T2, being the first the main metric used to
determinate anomalies. SPE measures how much of
an observation is not explained by the principal com-
ponents. A high SPE value suggests that the sample
deviates significantly from the learned structure and may
indicate a novel event or unmodeled behavior. SPE is
given by:

SPE =
k∑

i=1

(xnew,i − x̂new,i)
2
, (1)

where k is the total number of observation, xnew,i is the
ith observation and x̂new,i is the prediction of the obser-
vation vector from the PCA model. The number of prin-
cipal components is automatically established, reaching
the 90% of accumulative variance in the latent space [5].
In MSPC, an observation is considered anomalous if it
exceeds the upper control limit (UCL)

UCLSPE =
ν

2b
χ2
α

(
2b2

ν

)
, (2)

where ν and b are the sample variance and the sam-
ple mean of the SPE values respectively. χ2

α(·) is the
Chi-squared distribution at significance level α (95%).
Whereas this UCL is statistically well defined, it did not
give us as good results as those obtained after a post-
processing. We noticed that when two or more different
anomalies coincide in a given range of time, the contribu-
tion to SPE from one of them is usually greater than then
rest, hidden the rest of anomalies. Figure 2 illustrates an
example of SPE.

Fig. 2. SPE for Mission 2 and full set of channels. Train
period: 01/01/2020 - 01/07/2020.

5. POSTPROCESSING

To enhance the reliability of the detected anomalies and
reduce noise in the results, a postprocessing stage is ap-
plied.

On one hand, to refine the detection signal, the gradi-
ent of the prediction error values SPE is computed, that
is, ˙SPE to measure the rate of change over time. By
using the absolute value of the gradient ∥ ˙SPE∥, both
upward and downward changes in the error are captured.
This approach highlights the magnitude of deviation be-
tween consecutive data points, offering a more sensitive
anomaly indicator. In general, SPE is almost constant,
so ˙SPE ≃ 0 and the thresholds for anomaly detection
is just simply an inter-percentile formula, that is, IPR =
P95−P5 and the lower and upper limits are P5−1.5IPR
and P95 + 1.5IPR respectively. With this configuration
we obtained the best results.

On the other hand, detected anomalies that occur
within short time intervals are likely to be manifestations
of the same underlying issue. To account for this, tem-
porally adjacent anomalies are grouped together if the
time difference between them is below a configurable
threshold. In our implementation, anomalies occurring
less than 6 hours apart are considered the same one.
This threshold is not a fixed or arbitrary value, but was
selected based on GMV’s expert input from satellite op-
erations centers, ensuring its relevance for real-world
use cases. The technique consolidates multiple small,
potentially redundant anomaly events into a single larger
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anomaly, thus avoiding an excessive number of consec-
utive alarms and facilitating clearer interpretation of the
results.

6. EVALUATION

The performance of the proposed anomaly detection sys-
tem was evaluated using the event-wise F0.5 score, the
primary metric recommended by the ESA for bench-
marking anomaly detectors. This score combines pre-
cision and recall, with a higher weight on precision,
which is critical in operational settings to minimize false
alarms.

An anomaly is considered successfully detected if its
timestamp overlaps with a labeled anomaly event, and
the system avoids raising multiple redundant alarms for
the same event. The F0.5 score provides a robust balance
between detection accuracy and alert relevance. In ad-
dition, two complementary metrics were used to assess
the interpretability of the results: i) Subsystem-aware:
Measures whether the predicted anomalies were assigned
to the correct subsystem; ii) Channel aware: Evaluates
whether the channels most responsible for the anomaly
were correctly identified. These secondary metrics help
verify the model’s ability not only to detect anomalies
but also to attribute them correctly, supporting actionable
insights in telemetry monitoring. For brevity reasons, we
restrict ourselves to F0.5 score.

7. RESULTS: FROM BENCHMARK TO
OPERATIONS

Now we describe the main results, this section is divided
in two: first subsection adds a new column (technique) to
Table 2 and Table 3 from ESA reference [4]. This helps
to measure the performance of our approach compared
to other techniques. The second subsection describes a
methodology to use anomaly detection models in a unat-
tended way, ready to operations.

7.1. Benchmark

We evaluated PitIA on the ESA anomaly benchmark us-
ing datasets from two satellite missions, under multiple
training and test configurations. Experiments were as-
sessed using the event-wise F0.5 score, which prioritizes
precision. The train/test dataset periods are the same
from ESA paper: Each mission is divided into halves of
which the first half is taken as a training set and the sec-
ond half as a test set. This gives 84 months of training
data for Mission1 and 21 months for 16 Mission2. In
both cases, the last 3 months of the training set are taken
as the validation set. A summary of quantitative results
is presented in Table 1.

Configuration PitIA Best ESA Model Second Best ESA Model
Mission 1 – Full channels 0.424 0.061 (Teleman-ESA P.) 0.008 (Teleman-ESA)
Mission 1 – Subset (ch. 41–46) 0.323 0.786 (Teleman-ESA P.) 0.253 (Global STD5)
Mission 2 – Full channels 0.760 0.241 (STD5) 0.100 (PCC)
Mission 2 – Subset (ch. 18–28) 0.794 0.949 (Window iForest) 0.842 (Teleman-ESA P.)

Table 1. Summary of F0.5 scores across ESA benchmark
experiments

PitIA consistently achieved high F0.5 score in full-
channel settings. Its performance across temporal shifts
in Mission 2 demonstrates robustness, and its general-
ization across reduced channel subsets highlights adapt-
ability. Analysis of undetected anomalies revealed some
false positives corresponded to likely unlabelled events.

In Mission 2, PitIA achieved top-tier performance
when using the full channel set (F0.5 = 0.760) and strong
results on a reduced subsystem (F0.5 = 0.794), with
excellent precision (up to 0.910). While Teleman-ESA
Pruned outperformed in some cases, PitIA’s performance
remained robust across data dimensionalities and time
splits. Here we remark that Teleman-ESA Pruned is an
ad-hoc version of Teleman-ESA algorithm [6] difficult to
train due to hyperparameter settings and required com-
putational resources (8.5h for trainning for full set of
channels of Mission 1 )

In Mission 1, a more challenging dataset due to
less structured anomalies, PitIA still outperformed most
ESA baselines and showed notable generalization in
reduced input settings. Despite some missed anoma-
lies—often attributed to weak signal changes or label
inconsistencies—PitIA also detected events not included
in the ground truth but with clear error spikes, suggesting
possible unlabelled anomalies.

These findings validate PitIA as a practical anomaly
detection tool that balances operational precision and
computational efficiency, and performs well under con-
strained telemetry conditions.

7.2. Operations

The previous subsection shows PitIA performance com-
pared to other techniques. However, this approach is
still far from being ready for an operational environment,
leaving several open questions: Should the model be re-
trained? When should retraining occur? Is it necessary to
wait 84 months (i.e., 7 years of data for Mission 1) to col-
lect sufficient training data? As we can see, these unan-
swered questions highlight the challenges of deploying
an anomaly detection solution in real-world operations.

Unlike traditional systems that require extensive re-
training or full reconfigurations, PitIA supports a contin-
uous model updating approach. In our deployment sce-
nario, the system is trained using only one month of his-
torical data and evaluated on the immediately following
month (see Fig. 3). After each cycle, the training win-

FAIR work�ows

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

59 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


Jan Feb M
ar Apr

M
ay Ju

n Ju
l

Aug Sep Oct Nov Dec

TRAIN TEST
TRAIN TEST

TRAIN TEST
TRAIN TEST

TRAIN TEST
TRAIN TEST

TRAIN TEST
TRAIN TEST

TRAIN TEST
TRAIN TEST

TRAIN TEST
Training window Testing window

Fig. 3. Continuous model updating using monthly slid-
ing windows.

dow slides forward by one month, allowing the model
to adapt to recent patterns and preserve contextual rel-
evance. This sliding window approach ensures that the
anomaly detection model remains up-to-date without re-
quiring full retraining from scratch.

This incremental strategy offers several operational
advantages: i) no need for labeled anomalies: since PitIA
relies on unsupervised learning, the approach is fully au-
tonomous and does not depend on manual annotations;
ii) fast model update: each training iteration takes <2
minutes, even when using up to 12 months of telemetry
data, ensuring minimal computational burden; iii) scal-
ability: this setup supports daily or incremental prepro-
cessing, allowing integration with real-time data inges-
tion pipelines; and iv) robustness in operation: by always
training with recent data, the system is resilient to long-
term drift and evolving system behavior.

Table 2 shows the results under this configuration.
Note that there is no direct comparison with other tech-
niques, as this specific setup is not evaluated in the ESA
reference. The results are consistent with those in Ta-
ble 1, but in this case the evaluation is performed con-
tinuously, and only one month of data is required, so the
solution can be deployed after just one month of obser-
vations.

Configuration PitIA
Mission 1 – Full channels 0.424
Mission 1 – Subset (ch. 41–46) 0.332
Mission 2 – Full channels 0.882
Mission 2 – Subset (ch. 18–28) 0.880

Table 2. Summary of F0.5 scores across ESA benchmark
experiments using a continuous training approach.

8. CONCLUSIONS

In this work, we presented PitIA, a robust and fully
autonomous tool for unsupervised anomaly detection
in satellite telemetry. Validated against ESA’s open
anomaly benchmark dataset, PitIA demonstrated strong
performance across different missions and configura-
tions. The system is generic, lightweight, and scalable,

making it suitable for diverse operational scenarios and
capable of handling large volumes of telemetry data with
minimal computational overhead. Its ability to operate
without human intervention, combined with mechanisms
for automatic training and threshold tuning, ensures
adaptability and long-term reliability.

PitIA achieved outstanding results on Mission 2 (Full
channels) and performed competitively on the challeng-
ing Mission 1, showing its robustness even in noisy or
weakly labeled environments. Furthermore, its design
aligns with key requirements for space operations: ac-
curate detection with low false alarm rates, ease of de-
ployment, and autonomous retraining capabilities. As the
only method evaluated that meets all operational criteria,
PitIA is a strong candidate for integration into real-time
satellite monitoring workflows.
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ABSTRACT 

Many web-based platforms provide access to satellite Earth 

Observation (EO) data, now often combined with cloud 

computing resources and applications. Users benefit from the 

ability to process data remotely, bypassing traditional 

download and storage limitations. Our vision is to enhance 

interoperability between these platforms to create an open 

network for seamless data access. To achieve this, we are 

establishing best practices for EO exploitation platforms 

based on open standards and developing a reference 

implementation of building blocks as free open source 

software. This project is sponsored by the European Space 

Agency (ESA), with its first iteration, EOEPCA, starting in 

2018, and it's second iteration, EOEPCA+, starting in 2023, 

and aims to demonstrate the architecture and software in 

operational platforms. 

Our presentation will highlight the generalized 

architecture, standards, best practice and open-source 

software components available. 

Index Terms - EO, Exploitation Platform, Open Source, 

Interoperability 

1. INTRODUCTION 

The ‘Exploitation Platform’ concept derives from the need to 

access and process an ever-growing volume of data. Many 

web-based platforms have emerged - offering access to a 

wealth of satellite earth observation (EO) data. Increasingly, 

these are collocated with cloud computing resources and 

applications for exploiting the data. Rather than downloading 

the data, the exploitation platform offers a cloud environment 

with access to EO data and associated compute and tools that 

facilitate the analysis and processing of large data volumes. 

Users are beginning to appreciate the advantages of 

exploitation platforms. However, the market now offers a 

plethora of platforms with various added value services and 

data access capabilities. This ever-increasing offer is rather 

intimidating and confusing for most users. In order to fully 

exploit the potential of these complementary platform 

resources we anticipate the need to encourage interoperation 

amongst the platforms, such that users of one platform may 

consume the services of another directly platform-to-

platform. 

EOEPCA+ continues the progress of the original 

EOEPCA initiative – but with a greater focus on the real-

world use cases of platform providers. As an OSGeo 

Community project, EOEPCA+ has established a steering 

committee of Stakeholders that are committed to adopt the 

building blocks in their operational platforms. This ensures 

that EOEPCA+ efforts are focused towards needed 

capabilities, and that the solutions are production ready. 

Stakeholder engagement ranges from feature/use-case 

definition and adoption, through to co-design and co-

development of building-blocks and features. This has led to 

the inclusion of several new building blocks, covering 

capabilities including: Datacubes, workflow federation , ML 

model development, automation, best practices for open 

science and operational resilience. 

The primary users of EOEPCA+ are Platform Providers 

- helping them to build their platforms that provide the 

services needed by their users - reusing the EOEPCA+ 

building blocks as required. The needs of their users informs 

the features required of the building blocks – this includes 

data providers, scientists (data analysis, algorithm 

refinement), application developers – and ultimately policy 

makers that consume the value-adding information that has 

been derived from the platform data. 

2. COMMON ARCHITECTURE 

EOEPCA+, also known as EO Exploitation Platform 

Common Architecture, [1] is an ESA funded project with the 

goal to define and agree a re-usable exploitation platform 

architecture using standard interfaces to encourage 

interoperation and federation between operational 

exploitation platforms - facilitating easier access and more 

efficient exploitation of the rapidly growing body of EO and 

other data. 

 

Fig. 1. Data Transformation 

Interoperability through open standards is a key guiding 

force for the Common Architecture: platform developers are 

more likely to invest their efforts in standard implementations 

that have wide usage; off-the-shelf clients and software are 

more likely to be found for standards-based solutions. Whilst 

standardization at the service layer is a key step towards 

interoperability, we recognize that there are additional factors 
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that apply friction to full interoperability – including 

metadata vocabularies and data formats – in particular across 

different communities and domains.  

The presentation of actionable information to decision 

makers is at the end of a potentially complex chain of data 

transformation, processing, interpretation and presentation. 

Exploitation platforms must provide the tooling and services 

to support these needs – Fig. 1 illustrates the end-to-end 

capabilities of an information factory that transforms original 

data to Actionable Information. This is a multi-step workflow 

in which data may be pre-processed into Analysis Ready Data 

[2] designed for access as a Data Cube [3]; or prepared for 

input to Machine Learning model development and 

execution. 

3. ARCHITECTURE 

The System Architecture [4] is defined by a set of Building 

Blocks with open standard interfaces, each of which 

contributes to the overall capabilities of an integrated 

platform. A building block (BB) is defined as an open source 

software component that implements a specific platform 

capability and typically provides a service interface (REST 

API) – deployed to Kubernetes with its associated helm chart. 

Building blocks are designed to either be used on their own, 

or in combination as a system. 

 

 

Fig. 2. Architecture of EOEPCA+ 

 

The architecture presents the building-blocks within a set 

of layers that attempt to reflect their notional role with a 

multi-platform distributed ecosystem. This layering should 

be regarded as illustrative as, in practice, the building-blocks 

and the architecture are flexible for adaption to many 

deployment scenarios. 

The Platform Layer comprises capabilities for discovery 

of data and other resources, execution of processing 

workflows, and management/exploitation of added-value 

assets. 

The Federation Layer comprises capabilities that 

operate across a set of distributed platforms, and attempt to 

consolidate their combined offerings towards a more 

homogenous consumable experience. 

The Application Layer provides capabilities for 

development and publishing of applications for exploitation 

of platform services, and for showcasing research outcomes 

through information dashboards and web-enabled 

applications - applicable for both Platform and Federation use 

cases. 

Fig. 3 shows the team responsible for the EOEPCA+ 

building block development. 

 

 
 

Fig 3: EOEPCA+ Building Block Development Team 

3.1. Reproducible Science 

To support reproducible open science, the architecture must 

support the capability to record the details of process and 

workflow execution, in order to reproduce the conditions of 

the original. This impacts on the following building blocks: 

• Resource Discovery. Maintain records of workflow 

job execution details. 

• Processing Engines. Report details of (sub-) 

workflow job executions – possibly to be 

consolidated by the Federated Orchestrator. 

• Orchestration. Report details of orchestrated 

workflow job executions – by consolidation of sub-

workflow jobs in Processing Engines. 

 

To achieve all reproducibility scenarios (rerun, repeat, 

replicate, reproduce, reuse) the job details must be recorded 

regarding workflow execution at all levels. Thus, the 

Processing Engines must output jobs details that can be 

recorded as resources in the Resource Discovery. The 

Federated Orchestrator must similarly output aggregated job 

details pertaining to the overall workflow execution, 
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comprising the details of individual steps executed in the 

Processing Engines. 

 

 
Fig. 3. Reproducible Science 

3.2. User-defined Processing 

The Processing Building Block is designed to provide 

capabilities for the hosted execution of processing 

workflows. 

 
Fig. 4. Processing 

 

As illustrated by Fig. 4, these workflows are defined as: 

1. OGC API Processes Part 1 [5] Part 2[6] – EOEPCA+ 

has supported the development of the OGC Best 

Practice for EO Application Package [7] that 

formalizes how processing algorithms are packaged 

and described for platform integration. Particularly 

suited to large scale batch processing. 

2. openEO API – with client-oriented semantics (Python, 

R and JavaScript) that abstract the API. openEO offers 

close Datacube integration. 

 

Both approaches provide a portable means to submit user-

defined processing for execution close to the data. To achieve 

this, a generic data curation approach is favored, allowing the 

needs of various processing workflows to be met across 

multiple platforms. This approach eliminates the necessity for 

each individual platform to develop its own unique data 

integration solutions. 

The processing architecture is designed for an extensible 

set of execution engines, including Kubernetes, HPC, dask, 

Argo Workflows – each of which can be integrated behind 

the standard OGC API with support for Application 

Packages. 

3.3. Platform Resources 

The Resource Discovery building block maintains a metadata 

catalogue for the resources held within a platform – with 

OGC API Records and STAC APIs. It supports platform 

federation by maintaining records to resources in other 

platforms. 

In supporting the Find capability as one of the FAIR 

principles, the Resource Discovery Building Block provides 

discovery for not only data (e.g., datasets, data cube, virtual 

data cube), but also workflows, job details, Jupyter 

Notebooks, Executable Services, Platform Services, Web 

Applications, Documentation, etc. 

The Data Access building block, provides feature-rich 

and reliable interfaces to access, retrieve and visualize 

geospatial data assets stored in the platform, addressing 

human and machine users alike. Capabilities are delivered 

through standard service interfaces, including OGC APIs 

Features/Tiles/Maps - supporting data assets (incl. 

multidimensional data formats) persisted via common storage 

technologies including S3-comptabile object storage, HTTP, 

file system. Access to Analysis Ready Data is enabled 

through the Datacube Access Building Block. 

In supporting the Reuse capability as one of the FAIR 

principles, the Resource Registration Building Block 

provides support for ingesting resources into the platform so 

that they can be discovered, accessed and used 

collaboratively. 

The Workspace building block provides 

users/projects/teams with the capability to maintain their own 

resources within the platform - including data for processing, 

processing workflow packages ready for execution, and 

results output from workflow executions. The Workspace 

provides object storage bucket management to persist these 

assets – with facilities for sharing assets outside the 
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Workspace. Each Workspace also provides a vCluster to its 

members through which bespoke services can be hosted and 

published. 

3.4. User Analysis and Exploitation 

This area of the EOEPCA+ environment focuses on machine 

learning, interactive analysis, application best practice, event-

driven behaviors and operational outcomes. The MLOps 

building block provides support services for training of 

machine learning models within the cloud platform. It also 

integrates within the EOEPCA+ Building Block ecosystem, 

with the other Building Blocks such as Processing, 

Workspace, and Resource Discovery. 

The Application Hub building block is a comprehensive 

and modular platform delivering SaaS products, designed to 

cater to the diverse and multifaceted needs of the EO 

community. It is crafted to support a wide array of 

stakeholders, from developers and service providers 

integrating cutting-edge algorithms to researchers harnessing 

computational power, and analysts requiring clear and 

concise visualizations. 

The Application Quality building block’s aim is to support 

the evolution of a scientific algorithm (processing workflow) 

from a research project to one that can be utilised in a 

production environment, with tools for verifying non-

functional requirements (code quality, best practice for open 

reproducible science, performance optimisation). 

The Notification & Automation BB is designed to 

facilitate intra-Building-Block asynchronous 

communications. This means it allows different parts of the 

system to communicate with each other without needing to 

wait for responses, thereby improving efficiency and 

responsiveness. It supports triggers that can initiate 

automated behaviour. These triggers can be based on external 

events (e.g. events from object storage, etc) or can be 

scheduled to occur at certain times. 

Finally, the Resource Health BB offers a generalized 

capability that allows all types of users to specify and 

schedule checks relating to their resources of interest, to 

visualize the outcome of the checks, and to receive 

notifications according to the outcome. 

3.5. Platform Federation 

The final area of the EOEPCA+ environment concerns 

platform federation, through federated workflows, abstract 

data access and federated user identity. The Federated 

Orchestrator building block allows for cross-platform 

workflow execution, and hybrid workflows, combining OGC 

API Processes, Application Packages and openEO Process 

Graphs. 

The Data Gateway building block enables data source 

abstraction, with data access protocol, with the use of Python 

library and extensible data providers.  

Finally, the IAM building blocks is key for single sign-on 

and external provider integration. 

4. NEXT GENERATION SDI 

Gomes et al [8] identifies some key attributes of next 

generation SDI. EOEPCA+ responds to these challenges: 

• Scalability and resilience. Use of Kubernetes, which 

also provides platform-agnostic reusable building-

blocks 

• Moving Code paradigm. Use of OGC Application 

Packages and openEO for user-defined code 

• Job Parallelisation. Common Workflow Language 

(CWL) scatter patterns combined with Kubernetes 

workload orchestration 

• Interoperability. Open standard interfaces delivered 

through REST APIs - including OGC, STAC and 

openEO 

• Array Data. Datacube services for efficient access to 

multi-dimensional data 

• Simplified Usage. Programmatic clients (e.g. 

openEO) to abstract APIs and facilitate user update - 

noting that EOEPCA+ requires additional client 

support to cover its breadth of capabilities 

5. NEXT STEPS 

The EOEPCA+ architecture and reference implementation 

have made good progress to mature a set of building blocks 

for interoperable exploitation platforms. Through its 

Stakeholders, the project will continue to engage with 

operators of existing platforms to understand and respond to 

their real-world use-cases - and to support the integration of 

the EOEPCA+ building blocks into their platform offering – 

to enhance their platform capabilities and to provide feedback 

on the utility of the building blocks. 
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ABSTRACT

Remote sensing data are useful covariates to aid with the
production of soil properties maps. The increasingly-iner
resolutions of remote sensing products aids the production
increasingly-finer resolution soil maps. However, the result-
ing products must be evaluated for pointwise accuracy as
well as how realistically they represent the soil landscape.
This study presents a dedicated reproducible computational
framework for integrating remote sensing into digital soil
mapping workflows, and methods for the evaluation of the
derived products.

Copernicus, Data integration, digital soil mapping, high
performance computing, reproducibility

1. INTRODUCTION

Digital Soil mapping (DSM) at continental and global scale
provides standardised global information layers based on
predictive models. It is also an important tool to create soil
information layers for areas for which local soil survey in-
formation is lacking. The recent availability of global and
continental remote sensing-derived products, coupled with
the ease of access to computational resources, has made the
production of such layers easier across the globe. There-
fore, it is ever more important to assess the quality of DSM-
derived products.

This paper presents a computational framework to pro-
duce and evaluate soil properties maps for Europe at 20m
resolution, with a key aspect being the integration of ad-
vanced remote sensing datasets.

2. DATA

2.1. Soil observations

The observations used for mapping were queried from the
WoSIS database [2]. Soil observations from approximately

Funding: CUP4SOIL (Framework Partnership Agreement on Coper-
nicus User Uptake); HoliSoils (European Union’s Horizon 2020 research
and innovation programme grant agreement No. 101000289)

94k locations were available. Most of the observations be-
long to the LUCAS sampling [13]. The primary soil prop-
erties in table 2.1 were modelled for top soil (0-30cm).

Property Description Units
soc Soil organic carbon content g/kg
phh2o pH in water pH
nitrogen Total nitrogen g/kg
bdod Bulk density, oven dry kg/dm3
cfvo Coarse fragments, volumetric cm3/100cm3
sic Soil inorganic carbon content g/kg
sand Sand g/100g
silt Silt g/100g
clay Clay g/100g

2.2. Environmental Covariates

Sentinel 2

SCMaP [11, 20] is a specialised processing chain for detect-
ing and analysing bare soils/surfaces on a large (continental)
scale. Bare surface and soil pixels are selected using a com-
bined NDVI and NBR index (PVIR2) calculated and ap-
plied for each individual pixel. Sentinel-2 scenes recorded
between January 2018 and December 2022 in Europe were
used with a cloud cover of < 80 % and a sun elevation of >
20 degrees. The data products are available at a pixel size
of 20 m for 10 Sentinel-2 bands (B02 to B08, B08a, B11,
B12).

The products used in this work are: 1. ”Bare Surface
Frequency Product” provides the number of bare soil occur-
rences over the total number of valid observations. 2. ”Re-
flectance Composite - Mean” represents the mean reflectance
of all valid observations including vegetation, bare and other
surfaces 3. ”Reflectance Composite - Standard deviation”,
which contains the standard deviation per band for all valid
observations.

Sentinel 1

The Sentinel-1 (S1) mission data were pre-processed, pre-
pared, mosaicked and downloaded from Google Earth En-
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gine [10]. S1 provides SAR (Synthetic Aperture Radar)
backscatter signal for VH (vertically transmitted and hor-
izontally received) and VV (vertically transmitted and re-
ceived). The polarization ratio was calculated: (V H −
V V )/(V V + V V ) as it was proven useful for discriminat-
ing land covers with different canopy densities and it is an
important parameter for soil moisture detection [9]. The
overall median (2018 to 2020) was calculated and used as
covariates.

Morphology

The Copernicus Digital Elevation Model [6] was used to
derive the following morphological features: 1. Elevation
from sea level (m) 2. Slope as the steepest slope angle, 3. To-
pographic wetness index [22] defined as the ln(a/tan(b))

Climate data

ERA5 is the fifth generation ECMWF atmospheric reanal-
ysis of the global climate [7] combining model data with
global observations. ERA5 provides aggregated values for
each month for the following ERA5 climate reanalysis pa-
rameters: temperature (2m), total precipitation, and total
evaporation. Monthly total precipitation values are given as
monthly sums. All other parameters are provided as monthly
averages.

Downscaling of climate data

The input rasters were resampled by filtering the input with
an analytic kernel [4]. Each output cell is typically calcu-
lated based upon a small subset of the input cells perform-
ing convolution (i.e. a weighted sum is calculated for every
raster cell). The input range is mapped to the width of the
window function, so wider windows will be ”sharper” (have
a higher cut-off frequency). The implements FIR (finite im-
pulse response) filtering. All of the functions are low-pass
filters. The filter used were gauss, box with the radii
equal to 1.5 ∗ inputresolution and 3 ∗ inputresolution
respectively. The gauss filter is a gaussian kernel filter,
while the box filter is a finite window filter.

Land cover

The Dynamic Land Cover map at 100 m resolution (CGLS-
LC100) product includes continuous field layers for all ba-
sic land cover classes that provide proportional estimates for
vegetation/ground cover for the land cover types.

The 2019 products [3] with the proportional estimates
for vegetation/ground cover for the land cover types are pro-
vided as environmental layers in this project.

Parent material

Information from parent material was derived from the Eu-
ropean Soil Database v2.0 [18]. Both primary (Code for
dominant parent material of the STU) and secondary (Code
for secondary parent material of the STU) units where ras-
terized in binary (presence/absence) format.

Vegetation phenology

Products to describe the phenology of the vegetative sea-
son were used [5] 1. Season amplitude, 2. productivity and
3. length.

3. METHODS

3.1. Digital Soil Mapping

The DSM approach builds on the methods described in [19].
Random Forests was used as the modelling method, us-
ing the ranger package [23], with the option quantreg
to build Quantile Random Forests (QRF) [15]. With QRF,
predictions generate a cumulative probability distribution of
the soil property at each location, rather than a single aver-
age value from the ensemble of decision trees.

Recursive feature elimination [14] was used for covari-
ates selection. Model tuning was conducted using a 10-fold
cross-validation procedure applied to multiple combinations
of hyper-parameters: number of decision trees (ntree pa-
rameter) and numbers of covariates (mtry parameter). Pre-
dictions accuracy was assessed using root mean squared er-
ror (RMSE) and model efficiency coefficient (MEC)[12].
The model evaluation was based on the performance met-
rics of the selected hyper-parameters combination. The final
model was fitted with all available observations, the covari-
ates and the hyper-parameters selected in the previous steps.

With this approach both the mean predictions and the
quantiles can be obtained. The 5th and 95th quantiles were
used according to the GlobalSoilMap specifications [1].

3.1.1. Maps evaluation

Maps were evaluated using the following approaches:
• model uncertainty ((Q95−Q05)/Q50) per pixel [19]
• comparison of spatial patterns [21]
• area of applicability (AOA) of (spatial) prediction mod-

els [16]. In particular a dissimilarity index (DI) is cal-
culated based on distances to the training data in the
multidimensional predictor variable space.

• Quadmap: Variable resolution maps to better repre-
sent spatial uncertainty [17] based on quadtree algo-
rithm recursively partitioning the map into quadrants
until the uncertainty criteria are fulfilled
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(a) Mean predictions pH (water) (b) Uncertainty for pH

Fig. 1. Predictions and their uncertainty index

4. COMPUTATIONAL FRAMEWORK

The soil properties maps were produced at 20m resolution
for of Europe. This required adaption of the approach de-
scribed in [8]. The methods to evaluate maps also needed
to be adapted to work for continental scale products, both
from a methodological and computational points of view.
New approaches were implemented to tile covariates be-
fore the modelling, for the parallelisation of computation
for the Area of Applicability and to compute meaningful
variograms for continental extents.

All computations were performed using apptainer im-
ages containing the relevant software and packages, in par-
ticular R, python and GRASS-GIS.

5. PRELIMINARY RESULTS

The preliminary results show examples of the products for
Europe (figure 1). Figures 2 and 3 show the results of the
evaluation of the maps. The preliminary outputs indicate
that the computational framework was able to create fine
resolution soil properties maps integrating advanced earth
observation data. The framework allows also the analysis of
the spatial pattern of the products both in space and in the
covariates space. These preliminary results indicate both
the needs for in depth maps evaluation and the feasibility of
adapting existing workflow to dataset with orders of magni-
tude more pixels and covering large geographical extents.

6. CONCLUDING REMARKS

Remote sensing provides invaluable information for soil map-
ping. The availability of remote sensing product at finer res-
olution allows to produce soil properties maps at fine resolu-
tion. This requires adapting existing workflow and methods
both from a computational and conceptual point of view.
What works at field or catchment level will not necessarily
work for a continental or global product. Furthermore, ex-
pert knowledge (domain, users, stakeholders) is fundamen-

(a) Dissimilarity index (b) DI by percentiles

Fig. 2. Example of AOA analysis

(a) Low uncertainty threshold (b) High uncertainty threshold

Fig. 3. Example of analysis with quadmap

tal to evaluate the generated DSM products. Soil products
must be created for the specific purpose and at the required
scale and resolution. We need to use more options than ac-
curacy metrics to evaluate DSM products, in particular their
relationship with the landscape, model applicability and un-
certainty.
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R. Müller, S. Zepp, M. Wiesmeier, and P. Reinartz.
Soil reflectance composites—improved thresholding
and performance evaluation. Remote Sensing, 14(18),
2022. ISSN 2072-4292. doi: 10.3390/rs14184526.

[12] P. Janssen and P. Heuberger. Calibration of process-
oriented models. Ecological Modelling, 83(1):
55–66, 1995. doi: https://doi.org/10.1016/

0304-3800(95)00084-9. Modelling Water, Carbon
and Nutrient Cycles in Forests.

[13] A. Jones, O. Fernandez Ugalde, S. Scarpa, and
B. Eiselt. Lucas soil 2022, eur 30331 en.

[14] Kuhn and Max. Building predictive models in r using
the caret package. Journal of Statistical Software, 28
(5):1–26, 2008. doi: 10.18637/jss.v028.i05.

[15] N. Meinshausen. Quantile regression forests. Jour-
nal of Machine Learning Research, 7(35):983–999,
2006. URL http://jmlr.org/papers/v7/
meinshausen06a.html.

[16] H. Meyer and E. Pebesma. Estimating the area of ap-
plicability of remote sensing-based machine learning
models with limited training data. In 2021 IEEE In-
ternational Geoscience and Remote Sensing Sympo-
sium IGARSS, pages 2028–2030, 2021. doi: 10.1109/
IGARSS47720.2021.9553999.

[17] J. Padarian and A. McBratney. Quadmap: Vari-
able resolution maps to better represent spatial uncer-
tainty. Computers Geosciences, 181:105480, 2023.
ISSN 0098-3004. doi: https://doi.org/10.1016/

j.cageo.2023.105480.

[18] P. Panagos, M. Van Liedekerke, P. Borrelli,
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ABSTRACT

Current satellite LiDAR missions, such as GEDI and ICESat-
2, provide billions of points annually that are typically not
cloud-optimized and require additional quality filtering be-
fore any further analysis. In this study, we present Open-
LandMap GEDI (OLM-GEDI), a new open, cloud-optimized,
and global GEDI point dataset, for which we establish a
spatio-temporal structure to facilitate efficient access. We
show random access to OLM-GEDI achieves 20 seconds and
a minute for areas around 50-thousand and 3-million km2,
respectively. The OLM-GEDI STAC catalog is further es-
tablished, which can be readily loaded into a local or cloud
computing environment, such as openEO. This open GEDI
dataset can be beneficial to future studies to enhance their
reproducibility and mitigate the complexity of handling large
GEDI data volumes (∼ 120 TiB) and quality filters.

Index Terms— Global satellite LiDAR, GEDI, canopy,
terrain, cloud-native format, Geoparquet, STAC, openEO

1. INTRODUCTION

Recent satellite LiDAR (Light Detection and Ranging) mis-
sions, such as Global Ecosystem Dynamics Investigation
(GEDI) and Ice, Cloud, and Land Elevation Satellite 2
(ICESat-2), have been collecting near-global and global 3-
dimensional (3D) information about the Earth’s surface since
early 2019 and late 2018, respectively. They utilize sensors
that generate, transmit, and deflect laser pulses in several
directions, which enables the sampling of 3D information,
i.e., recording the backscattered laser energy distribution
along the range at each sampling location, along eight and six
ground tracks per every GEDI and ICESat-2 orbit [1, 2]. With
pulse repetition frequencies of 242 Hz and 10 kHz, GEDI and
ICESat-2 currently provide billions of points annually, which,
due to their sparse, irregular, and 3D nature, are often more
complex for analysis than classical satellite images.

This work has received funding from the European Union’s Horizon Eu-
rope research and innovation programme (grant agreement No. 101059548)

Satellite LiDAR data have already been used for large-
scale land and water surface applications. Several stud-
ies, e.g., contributed with global high-resolution (30–10 m)
canopy height mapping, where sparse satellite LiDAR points
were combined with multispectral images from Landsat or
Sentinel-2 to achieve wall-to-wall machine-learning-based
height predictions [3, 4]. In topography, satellite LiDAR
data have recently been used to map a global 30 m digital
terrain model again within a machine learning framework [5].
Furthermore, recent studies have also shown the potential of
satellite LiDAR for monitoring the surface levels of inland
and wetland waters [6, 7].

The above studies are computationally and data-intensive,
requiring appropriate indexing and other optimizations for ef-
ficient data access and utilization at large scales. Furthermore,
although satellite LiDAR data are openly accessible, consid-
erable data quality filtering is still required before they can be
used for specific use cases [8, 9, 10, 11]. To increase repro-
ducibility and lower the aforementioned barriers for a broad
range of users, this paper presents a global cloud-optimized,
quality-filtered satellite LiDAR dataset for efficient queries,
exemplified by GEDI and potentially applicable to other
datasets.

2. MATERIAL AND METHODS

2.1. GEDI data

GEDI is a full-waveform satellite LiDAR that records backscat-
tered laser energy levels (waveforms) along the laser beam’s
line of sight (range), near-globally, between 51.6°N and S,
within a laser footprint diameter of 25 m [1]. The GEDI Level
2A product includes waveform (point-level) metrics such as
ground elevation, relative height (rh) calculated between the
waveform’s lowest mode and different waveform energy lev-
els (e.g., rh98 is the relative height at the 98 percentile of
the waveform energy), waveform processing algorithm in-
formation, different quality flags, and auxiliary information
such as beam identifier, etc.[11]. The GEDI Level 2B product
includes point-level canopy cover and vertical profile bio-
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physical metrics, such as plant area index profiles, foliage
height diversity, etc. [12].

2.2. Quality Filtering and Waveform Metrics Selection

Our dataset was created by combining the Level 2A and 2B
GEDI datasets, then selecting only high-quality GEDI obser-
vations and finally, the most relevant metrics that can readily
contribute to different land surface applications. We consid-
ered the first four years of data, i.e., acquired between March
25th, 2019 and March 15th, 2023.

We used the unique GEDI shot (point) identifier to join
the Level 2A and Level 2B metrics. Then, we excluded
GEDI points with a quality flag of 0 and a degradation flag
greater than 0, or points with a sensitivity (the maximum
canopy cover that can be penetrated) of less than 0.95. The
typical sensitivity threshold values used to filter out low-
quality GEDI observations in vegetation and terrain studies
range from 0.90 to 0.99 [8, 9, 10, 11]. Our threshold is
positioned in the middle of that range, providing not only
high-quality points but making them more readily accessi-
ble to users via the cloud. To further constrain the dataset
size, we made a selection of the relevant waveform metrics
for land surface applications, such as RH percentile values
for different processing algorithms, plant area index, differ-
ent waveform energy components, etc. These metrics allow
users to perform both further data filtering and modeling.
A detailed list of all selected metrics and their description
can be found in our GitHub repository (github.com/
Open-Earth-Monitor/GlobalEarthPoint).

2.3. Spatio-temporal structuring

Originally GEDI data are structured in an orbit-oriented or-
der, with each file representing a sequential time period and
covering a wide spatial extent. In land surface applications,
spatial blocking, global-local calibration, and local validation
are commonly used for mapping and assessment. For these
purposes, accessing raw GEDI data typically requires read-
ing large volumes of data and applying subsequent filters to
extract information for a specific area and time period. To
enable easier access and reduce data transmission overhead,
we constructed a spatio-temporally partitioned GEDI dataset
optimized for efficient point queries.

Spatio-temporal structuring is carried out in two main
steps: (1) streaming data from orbit-oriented raw HDF files
into a spatio-temporal block structure, and (2) aggregating
each partition into a single GeoParquet file (Fig 2.3). We
processed each raw HDF file by filtering and selecting (men-
tioned in Section 2.2), using a predefined spatio-temporal
block (5°×5°×year). The remaining points were then parti-
tioned into small subsets, each stored locally according to
its corresponding spatio-temporal block. Finally, these sub-
set files–originating from multiple sources but belonging to

the same block–were aggregated and converted into a single
GeoParquet file.

Fig. 1. Illustration of GEDI structuring achieved by partition-
ing and parallelization.

2.4. Data access and visualization

In order to increase interoperability, we integrated Spatio-
Temporal Asset Catalogs (STAC). At the collection level, we
provide collection-level metadata, including licensing infor-
mation, available attributes, DOI, and a reference to STAC
items for spatial querying. At the item level – representing
individual partitions – we include S3 links to the correspond-
ing GeoParquet files, along with overviews and metadata such
as file size, point count, temporal coverage, and more. The
STAC catalog is used to organize the partitioned data and
serves as a single entry point for the dataset. Additionally,
we provide an example of accessing through OpenEO [13],
enabling fully cloud-based processing of the dataset.

3. RESULT

3.1. Structuring: data streaming and aggregation

Table 1 summarizes the comparison between the LC DAAC
GEDI02 dataset and OLM-GEDI. The raw GEDI Level 2
dataset is composed of 2A (101.8 TB) and 2B (22.0 TB). We
streamed the entire dataset using 960 CPUs across 10 servers,
each equipped with 1 TB of RAM and connected to local stor-
age servers with InfiniBand. The computing of data streaming
and aggregation took 40 hours and 6 hours respectively, under
full parallelization. The filtered GEDI dataset in GeoParquet
format has an approximate size of 759 GB and contains 5.4
billions points.
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Table 1. Summary of raw GEDI and OpenLandMap GEDI.
Product
Name LP DAAC GEDI02 OLM-GEDI

Time
Coverage 03.25.2019 ∼ 03.15.2023

Data
Size

- Level 2A: 101.8 TB
- Level 2B: 22.0 TB

Level 2 A&B:
759 GB

Data
Format

Hierarchical Data
Format (HDF) GeoParquet

3.2. Benchmark for data access

The result (Fig 2) shows the relationship between the query
area and query time for our dataset. We simulated queries
of varying area sizes and locations, repeating each configu-
ration 100 times. Each query consists of two components:
(1) spatio-temporal filtering at the partition level using STAC,
and (2) lazy loading at the file level using DUCKDB. For ar-
eas smaller than 50,000 km2, query times fluctuate below 20
seconds. As the query area increases, the time grows accord-
ingly. For areas larger than 3 millions km2, query time ranges
from 60 to 100 seconds, approximately the size of India.

Fig. 2. Benchmark for OLM-GEDI query time versus query
area size.

3.3. Use case: Streaming OLM-GEDI into an openEO
Cloud-Processing Workflow

The OLM-GEDI collection can be accessed through openEO
via the load_url process. The STAC collection (Fig 3.3)
provides the metadata and easy access to the partitioned data
set.

We created a notebook that demonstrates how to access
and manipulate OLM-GEDI [14] in a cloud environment.
Figure 3.3 illustrates the workflow of loading and overlaying
OLM-GEDI and a global DEM in a given bounding box,
established in openEO.

Fig. 3. STAC collection of the OLM-GEDI dataset at Open-
LandMap STAC.

Fig. 4. openEO process graph for loading data sources and
extracting raster values.

4. CONCLUSION

This study presented OpenLandMap GEDI (OLM-GEDI), a
cloud-optimized, quality-filtered global GEDI point dataset.
The proposed filtering methods, metric selection, and spatio-
temporal structuring reduce complexity and provide an effi-
cient means of accessing large volumes of GEDI data. The
results show that this form of GEDI data partitioning–when
exposed through a STAC catalog and stored in GeoParquet
format–enables rapid cloud-based access and straightforward
loading in a local computing environment, requiring less than
2 minutes for an area of 3 millions km2. We also demon-
strated that accessing the data through STAC on a cloud plat-
form such as openEO is equally straightforward. OLM-GEDI
can be readily applied to various land surface applications and
improve research reproducibility.

5. DATA AND CODE AVAILABILITY

Data is openly available through STAC (stac.openlandmap.
org/GEDI02/collection.json) under the Creative
Commons Attribution CC-BY 4.0 license. All code to
process raw data, establish STAC, benchmark is openly
available in Open-Earth-Monitor GitHub (github.com/
Open-Earth-Monitor/GlobalEarthPoint) under
Apache-2.0 license.
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ABSTRACT 

Open satellite imagery from the Copernicus Program has 

the potential to address societal and environmental crises. 

However, data access and processing limitations, along with 

a lack of standards, have hindered the development of 

operational solutions. Copernicus Data Space Ecosystem 

(CDSE) marks a shift in Earth Observation (EO) by providing 

API (Application Programming Interface) access, 

overcoming the limitations of downloading and local 

processing. By moving data processing to the cloud, user 

demands for bandwidth, storage, and processing are reduced. 

Users can focus on data processing, since management and 

visualization are handled by the system. The API approach 

supports FAIR (Findable, Accessible, Interoperable, 

Reuseable) principles, enhancing the transferability of EO 

processing pipelines and simplifying learning. Additionally, 

Level 3 analysis ready data (ARD) and pre-trained models in 

CDSE facilitate the use of deep learning workflows. Cloud 

computing, integrating optimized data storage, server-side 

processing, and virtual machine capacity, is transforming 

Earth Observation. 

Index Terms— Cloud Computing, Big Data, API access, 

code sharing, data infrastructures 

1. INTRODUCTION 

 

Free, public, global scale earth observation data has been 

available since the release of the Landsat archive in 2008. 

However, although more than 15 years have passed and the 

ambitions Copernicus Program has also been launched, 

global challenges such as deforestation monitoring and urban 

planning are still information starved. The European Union 

Common Agricultural Policy (CAP) monitoring (1) has 

proven that satellite data can support continental scale crop 

monitoring and classification, but operational applications at 

similar scales are rare. The reason for this is complex, but as 

stated in the Earth Observation for Sustainable Development 

Goals Compendium from 2020, “The main limitation now is 

not if EO data exists but where it can be stored, accessed and 

in a format ready to be used” (2). 

The Copernicus Open Science Hub (predecessor of 

CDSE) has been instrumental in providing access to vast 

amounts of EO data, but required considerable skills to 

handle, did not provide instant access to most of the archive, 

and mainly focused on being a source for downloading data. 

As a result, users without access to high performance 

computing facilities or with limited knowledge of EO 

analytics coding were left behind.  

Many of these limitations are solved by the cloud 

processing paradigm (3). If the data is stored on an accessible 

cloud, and API requests support data processing, the user 

does not need to download data or process it on their own 

infrastructure. The Copernicus Data Space Ecosystem, the 

data gateway and cloud platform of the Copernicus Program 

was designed according to this concept. However, CDSE 

goes further by offering immediate access to all Sentinel 

datasets, in-code access with APIs, an open codebase, an 

integrated processing infrastructure, and free quota to support 

the uptake (Fig.1) This evolution has been fostered by 

advancements in cloud computing, which have broken down 

barriers in processing capacity, data storage, and algorithm 

sharing. The result is substantially faster computing – eg. a 

benchmark test by Ray (4) showed that using API processing 

the download and processing time for an agricultural use case 

of can be reduced by a factor of more than 100. 

 

 
FIGURE 1: OVERVIEW OF CDSE FUNCTIONALITY 
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Here two spectral indices were calculated and a threshold 

applied within a Sentinel Hub Statistical API request, and 

compared to image tile downloading and local processing 

with Odata and processed with Rasterio. The full code for the 

benchmark is available here: https://github.com/eu-

cdse/notebook-

samples/blob/main/sentinelhub/EGU_notebook.ipynb 

2. CLOUD COMPUTING AS A TRANSFORMATIVE 

SOLUTION 

Cloud computing has revolutionized EO by enabling on-

demand data processing through streaming-compatible data 

formats and optimized API requests. Transferring Terabytes 

of data over the web is still a cumbersome task. The legacy 

approach is to break the data into pre-defined chunks (tiles) 

and send them as a compressed archive. The new approach is 

to query only the data within the user’s area of interest 

without loading the full file into the memory, do the 

processing on the cloud server, and transfer only the result to 

the user. This eliminates the need for powerful local 

computers, as the processing power resides in the cloud 

platform. DIAS (Data Information Access Services) 

infrastructures have already adopted this paradigm several 

years ago but providing it as a public service with free quota 

in CDSE has created the necessary critical mass for it to 

become an industry standard. Meanwhile, CDSE is not a 

commercial platform and does not compete with commercial 

providers. Public institutions are provided with large 

individual quotas, but large-scale commercial processing 

should still be done with commercial platforms. However, 

CDSE supports prototyping and learning Copernicus data and 

tools, and provides regional-scale processing capacity as a 

resource for starting. 

3. SIMPLIFYING EO CODING 

Nearly 80% of EARSC member companies have reported 

that they have difficulties in finding suitable candidates for 

filling positions (4). One of the main reasons behind this lack 

of specialists is the challenge of learning programming of the 

EO data processing workflows. Mastering the processing and 

analysis of satellite imagery requires a wide range of skills 

that take a long time to acquire. This is also difficult to 

achieve in a sequential manner: in order to carry out the 

simple task of requesting an image from a repository, 

applying a spectral index and visualising it online, a 

developer already has to understand big data management, 

data formats and projections, optical analysis, and web GIS. 

If we add to this the need for understanding the application 

domain, the requirements are nearly impossible to fulfil for 

someone at the early stage of their career. What is needed is 

a system for data access and visualisation that is easy enough 

to handle for domain specialists (ecologists, social scientists, 

agriculture experts etc.) but powerful enough to work on 

global scale, - and a standard-ready codebase that can be 

learned incrementally. 

The CDSE backend, frontend, and codebase are providing 

exactly this, redefining the learning curve for EO coding. By 

handling data management in the repository and visualization 

in the Browser, the CDSE allows users to focus on the actual 

task of data processing. The integration of coding and 

visualization within the Copernicus Browser or openEO Web 

Editor (Fig.2), along with a comprehensive tutorial base 

(including user-contributed examples), makes EO coding 

FIGURE 2: EXAMPLE OF THE OPENEO WEB EDITOR, A GRAPHICAL INTERFACE TO CDSE DATA 

COLLECTIONS AND PROCESSING ALGORITHMS 
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accessible to the masses. Hackathons for high school students 

have shown that EO data analysis is now within reach of non-

specialists using these tools (5). For advanced users, CDSE 

offers onboarding of the custom algorithms via the openEO 

Algorithm Plaza, Sentinel Hub eval scripts, and JupyterLab 

environment (Python, R, Julia, ESA-Snap kernels supported 

- access date 17.06.2025 ). Moreover, JupyterLab offers 

Linux command line where users can uploand and execute 

their own binaries. Currently, the support for onboarding 

custom Docker containers is not supported. 

4. DATA INTEGRATION AND INTEROPERABILITY 

We will never have one data repository to rule them all: 

different datasets require different infrastructure, and the 

dataset owners will always have the preference to keep data 

where they can control it (6). Therefore, it is necessary to 

operate cloud processing solutions that can integrate data 

from different backends while still running the processing in 

the cloud and not on the user’s machine. OpenEO API 

processing and STAC (7) facilitate data integration across 

multiple backends, enabling seamless access and integrated 

processing of data from various cloud provider backends 

without the need for local downloads. These tools are 

designed specifically as a standard that can connect many 

data sources, and since they are open and community owned, 

using them does not create a competitive disadvantage for 

industry players. As large global datasets become 

interoperable, the stage is set for new, innovative applications 

for sustainability. 

5. ADVANCING DEEP LEARNING AND AI 

Deep learning for image analysis has also been available for 

10 years now. Still, operational applications for earth 

observation are not widely seen. The main difficulty for 

machine learning is often the cost of data wrangling - 

preparing noisy, inconsistent datasets to a format compatible 

with the learning models.  

CDSE hosts machine learning-ready data, including 

Sentinel-1, Sentinel-2 Level 3 mosaics and Sentinel-3 Level-

2 data, significantly reducing the data preparation phase for 

machine learning applications. Additionally, most global 

datasets of the Copernicus Land Monitoring Service (CLMS) 

are now also served in CDSE, providing an additional layer 

of analysis-ready datasets, representing land cover and bio-

physical quantities such as soil moisture, vegetation status, 

lake water quality and surface temperature (Fig. 3). These 

datasets are also served in a unified common structure, 

enabling their direct analysis with AI tools Furthermore, tools 

like Major Tom embeddings (8) and the compatibility of 

openEO with deep learning models from ONNX (9) are 

accelerating AI processing of Sentinel data. By providing a 

standard for sharing deep learning models that are compatible 

with API access to massive datasets, significant obstacles 

towards the application of AI in satellite data analysis have 

been removed. 

 

6. STANDARDIZATION AND KNOWLEDGE 

SHARING 

Transferability is always an essential issue in EO: most 

applications are for managing large areas, so algorithms have 

to work for different conditions. Standards are a key tool for 

transferability, but are difficult to establish in the first place. 

For a standard to work efficiently, it has to be compatible with 

a wide range of tools and datasets, well documented, actively 

maintained and most importantly it has to be used by a large 

community. The tools created in CDSE are rapidly becoming 

the standard for both open and commercial data and solution 

providers. CDSE is generating a strong mainstream with a 

community of more than 400 000 users, providing incentive 

for the adoption of the cloud computing approach, and 

specifically the STAC standard and the openEO and Sentinel 

Hub API-s by industry players and large international 

agencies. 

In fact, according to the EARSC Survey (4), CDSE has 

emerged as the leading EO data platform for businesses in 

Europe, despite its public and free-quota nature. Its 

compatibility with commercial data and solution providers 

has fostered a thriving ecosystem where data, algorithms, and 

downstream products converge. Currently, Copernicus 

Browser has more than 500 000 visitors monthly, and more 

than 350 million API access requests are processed each 

month. A real-time interactive public dashboard enables users 

or prospective partners to follow the evolution of the user 

base and system performance here 

https://dashboard.dataspace.copernicus.eu/ . The next step is 

to grow a federated ecosystem of public and commercial 

actors based on this common, shared platform. 

7. CONCLUSIONS 

The transformative shift in Earth Observation is driven by 

concurrent advancements in data storage (COG/Zarr 

formats), API development (e.g., openEO), and virtual 

machine computing (e.g., Jupyter Labs). These technologies 

combined are providing much stronger impact than they 

would individually. Coupled with the open data policy of the 

Copernicus Program and the public virtual machine resources 

it offers, the new developments in cloud computing and API 

access have democratized access to location-based insights. 

The scene is set to overcome the limitations posed by the lack 

of expertise, computer capacity and data storage. With an 

internet connection and some very basic knowledge, users 

can start directly exploring the application of Sentinel data to 

their field while developing a skillset that leads towards 

advanced operational applications. As a result, EO data and 

insights are now within reach of a wider range of users, 

including environmental NGOs, farmers, and mainstream 

news sites. Above all, this leads to stronger trust and 

transparency (10): now, satellite data does not only enable 

companies and governments to monitor citizen activities but 
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also the other way round, as individual agents have the tools 

to monitor large industry and public actors and hold them 

accountable. The CDSE exemplifies the power of open data 

and collaborative innovation in shaping the future of Earth 

Observation. It shows how technology-aware public 

investment can break new ground in the application of earth 

observation for sustainability, supporting growth in the 

industry, government and non-profit sectors. 
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ABSTRACT 

Openly available Earth Observation (EO) data has 
significantly advanced climate and Earth System science; 
however, collaboration around the resulting downstream 
research datasets remains a challenge. Despite the growing 
focus on creating open science data catalogues across 
various institutions, the implementation of FAIR (Findable, 
Accessible, Interoperable, Reusable) practices remains 
fragmented. EarthCODE aims to overcome these challenges 
by providing researchers in Earth system science with the 
tools and means to practice FAIR and Open Science. 
Promoting interoperability and coordination among 
integrated European EO platforms, EarthCODE enables 
scientists to discover, develop, execute, and publish data and 
workflows aiming to maximise reusability. This paper 
illustrates the strategy adopted in the federated ecosystem of 
EarthCODE to go beyond openness, striving to make 
research open, FAIR, and reproducible. 

Index Terms— FAIR, Open Science, Earth 
Observation, Earth System Science, Cloud Computing, 
Reproducibility. 

1. INTRODUCTION 

Earth Observations are essential to advancing Earth System 
science and enabling innovation. Missions such as ESA’s 
Earth Explorers and the EU’s Copernicus Programme 
generate vast, openly accessible datasets—crucial for 
scientific progress. Yet these data alone are not sufficient to 
drive science-based action. Gaps remain in our ability to 
quantify global cycles, identify tipping points, and assess 
system resilience, all of which require large-scale 
coordination and knowledge exchange between researchers. 

Open Science has emerged as a key enabler of sustained 
collaboration, supported by global programmes [1],[2] and 
reinforced through international policy guidance [3],[4]. 
This momentum comes at the time of the cloud revolution 
that now allows researchers to access and analyze data at 
scale—on demand and directly in cloud-native EO 
platforms. 

Together, Open Science and EO platforms create the 
opportunity for the infrastructure required to fill the 
scientific knowledge gaps and address the pressing societal 
challenges of today – a process referred to as “Earth 
Action”. This infrastructure for open science empowers 

scientists to 1. Access and process satellite and in-situ data 
in collaborative cloud environments, 2. Develop and publish 
reusable code and workflows, 3. Validate outputs and share 
reproducible results, and 4. Collaborate across institutional, 
disciplinary, and national boundaries. 

ESA’s vision for EO Open Science and Innovation [5] 
captures this opportunity, providing a structured framework 
to embed FAIR and Open Science practices across its Earth 
Observation activities. EarthCODE is part of this larger 
panorama of strategic initiatives. Through its ecosystem of 
tools and platforms, it aims to transform FAIR and Open 
principles from an aspiration to routine practice for Earth 
Science activities funded through its programme and beyond 
(e.g., including collaborations with EU funded research).  

The EO landscape includes several major initiatives 
addressing open data and computational challenges. The 
European Open Science Cloud (EOSC) offers cross-domain 
infrastructure, NASA Earthdata and Copernicus Data Space 
provide data access, and Pangeo delivers computational 
environments. Yet none fully address the need for 
automated, portable FAIR workflows across federated EO 
platforms. 

At a high-level, EarthCODE enables scientists to find 
and reuse research data, use integrated EO platforms to 
develop scientific workflows, and publish them by 
automating the “FAIRification” process. In a first stage, the 
key EarthCODE stakeholder groups include the activities 
contributing to the various ESA Science Clusters, and the 
Earth System Science Hub. 

2. CHALLENGES 

Still, on the path to implementing the vision there are 
numerous interlinked, complex challenges that need to be 
overcome. The measure–understand–predict–decide–act 
cycle in EO critically depends on digital research objects—
data, software, workflows, models, and services—being 
FAIR. Despite the growing focus on creating open science 
data catalogues from various institutions, FAIR 
implementation remains fragmented. 

EO datasets are often cataloged but isolated in system-
specific silos with inconsistent metadata and weak links to 
tools and workflows. Tools like PySTAC and stactools help 
improve metadata generation, but require platform-specific 
adaptations, limiting automation and discoverability. 
Although open APIs and cloud services have improved data 
accessibility, challenges persist due to inconsistent 
authentication, documentation gaps, and unclear licensing. 
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Interoperability remains a barrier due to heterogeneous 
formats, metadata, and execution environments; even FAIR 
components remain incompatible without shared APIs, 
containers, or workflow engines. Reusability is limited by 
missing provenance, weak documentation, and absent best 
practices (semantic versioning, persistent identifiers), 
undermining reproducibility. 

Despite progress on data accessibility, workflow 
metadata still lags; FAIR community standards only 
recently converged on machine-readable metadata [10] with 
standards for explicit provenance, standard packaging, and 
linking code, inputs, and configurations into discoverable, 
citable, executable objects. 

Implementing Open Science principles in the cloud era 
introduces additional technical complexities. Traditional 
paradigms assume “one-click” retrieval, but high-resolution 
global datasets from cloud-optimized EO platforms are too 
large for cost-effective download and separating them from 
native infrastructure undermines reproducibility and 
reusability. 

Moving compute next to data solves this, but requires 
orchestration across diverse data infrastructures, each with 
unique storage layouts, metadata schemas, access protocols, 
and authorization. Additionally, EO workflows are often 
tightly coupled to specific data, infrastructure, and execution 
environments, limiting reuse and reproducibility. Although 
most EO cloud platforms support STAC for data discovery, 
their compute interfaces remain highly heterogeneous.  This 
fragmentation leads to a lock-in effect: code and pipelines 
built for one platform often require substantial modification 
to function on another’s infrastructure or to be reused, 
forcing scientists to repeatedly reengineer workflows rather 
than advancing science. 

Existing efforts only partially address the problem, for 
example, the EOSC provides general FAIR guidance but 
lacks EO-specific automation, DestinE delivers powerful 
compute yet prioritizes predefined operational models over 
open research workflows. The lack of unified FAIR 
automation, platform federation, and workflow portability 
hinders reproducible Earth System Science. 

3. THE EARTHCODE ECOSYSTEM FOR FAIR AND 
OPEN SCIENCE 

EarthCODE overcomes these challenges by providing 
scientists with accessible tools and guidelines to practice 
FAIR & Open Science. It promotes coordination among 
various EO cloud providers to enable portable and 
reproducible science across a federation of platforms by 
using open standards. The federated ecosystem of 
EarthCODE goes far beyond openness, it strives to be open, 
FAIR, and reproducible. 

Unlike existing initiatives, EarthCODE targets 
automated, cross-platform FAIR workflows via: (1) true 
federation across EO platforms with SSO and cross-
execution of workflows; (2) FAIRification automation 

during research (not post-hoc); (3) end-to-end 
reproducibility linking data, experiments, and workflows; 
and (4) sponsored compute to lower barriers—bridging open 
data and reproducible research. 

EarthCODE provides a central portal which serves as the 
single-entry point for accessing all services. Through the 
portal, users engage with a federation of EO cloud platforms 
(Fig. 1) which provide standardized capabilities, access to 
EO data on the platforms, tools for developing and 
executing workflows, automated publication mechanisms to 
the EarthCODE catalog, and the ability to run published 
experiments, across platforms. ESA provides sponsorship to 
computing and storage resources on these platforms via the 
Network of Resources (NoR) for eligible projects. Users can 
also use their own local environments to access, reuse and 
publish to EarthCODE. 

The Open Science Catalog (OSC) is EarthCODE's 
central platform for publishing, discovering, and accessing 
EO data, workflows and documentation. The OSC leverages 
open-source geospatial technologies like stac-browser, 
pycsw, PySTAC, and OpenLayers and tries to contribute 
back to these projects in terms of software and 
standardization [6]. 

Finally, the EarthCODE Discourse forum is a space for 
users to openly engage in dialog about Earth Sciences, with 
the ability to contact the authors of published results. 

4. BUILDING EARTHCODE WITH OPEN-SOURCE 

EarthCODE relies on the services provided by already 
mature EO Platforms and cloud computing infrastructures 
currently on offer on the global EO market. the initial batch 
of integrated platforms, EarthCODE has selected the CDSE 
openEO federation, Euro Data Cube and DeepESDL 
platforms, alongside others selected in 2025 which are not 
publicly announced at the time of writing this paper. 

Platform providers play a key role in the 
EarthCODE ecosystem (Fig. 1) by either providing the 
FAIR Open Science environments to create scientific 
workflows, discover and reuse data, and publish to the 
catalog or by providing integrated infrastructure to run or 
reproduce these workflows at scale close to hosted EO data 
using the open, standardized metadata describing the 
workflows on the OSC. 

 

 
Fig. 1.  FAIR Tools Platforms for development and 

Infrastructure Platforms as execution environments. 
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EarthCODE significantly advances FAIRness and 
federation across platforms by leveraging open standards 
and protocols to improve cross-platform workflow 
execution and data reusability. This is a major step 
forward—particularly in addressing interoperability, a key 
challenge for researchers who are typically familiar with 
only one environment and struggle to reuse their work 
across others. However, further progress is still needed to 
ensure metadata itself meets FAIR standards consistently 
across platforms. 

In EarthCODE, scientific output data are referred to as 
Products and are described in rich STAC medatada. The 
STAC metadata is hosted on the OSC, while the data are 
hosted either in the ESA Project Results Repository [9] 
(PRR) or in external persistent repositories. Each product 
includes a link to the dataset representing measured or 
derived variables, links to supporting documentation, and 
metadata capturing mission provenance, project affiliation, 
and thematic classification (Fig. 2). Shared taxonomies and 
metadata standards ensure products are findable and 
interoperable across platforms and domains. 

Crucially, a product in EarthCODE is not an isolated 
artifact but is explicitly linked to an Experiment—the 
structured execution context that produced it. Experiments 
capture human-readable descriptions, machine-executable 
workflows, input datasets (referenced with persistent 
identifiers), and runtime configurations described as OGC 
API - Records. This complete metadata chain enables 
reproducibility and transparency, supporting both manual 
re-execution and machine-driven automation. 

Workflows within EarthCODE are formalized as 
executable objects compatible with integrated platforms, 
leveraging open standards such as openEO Process Graphs, 
OGC API Processes (e.g., CWL, Application Packages). 
Platforms are then responsible for ensuring the means of 

execution of workflows based on the metadata defined in 
the experiment or workflow. Source code may be 
referenced, but workflows themselves must be described in 
an executable, platform-independent manner to guarantee 
cross-platform compatibility. 
 

 
Fig. 2. EarthCODE Metadata Standards 

 
EarthCODE implements FAIR principles for both 

workflows [10] and research data [11] by following 
community guidelines. In this context, EarthCODE adopts 
the broad definition of “research data” inspired by the 
Beijing Declaration on Research Data [12], encompassing 
not only datasets, but also metadata, software, methods, 
algorithms, and related documentation. 

4.1. A FAIR Example 

To demonstrate how EarthCODE implements FAIR we 
walk through an example experiment published in the OSC 
and the principles it covers [10], [11] as shown on Fig. 3. 

Note that EarthCODE is under development during the 
time of writing of this paper. The example below generates 
cropland and crop type maps from input Sentinel-1 and 
Sentinel-2 data [13].  The experiment metadata of this 
example [14] is described as an OGC API Record (F2, I1), 
with rich metadata describing its input parameters (F2, I4), 

Fig. 3. EarthCODE FAIR Principles 
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configuration options (F2, I4, R1.3), and the infrastructures 
where it can be executed (F2, I1, I4), in this case, the CDSE 
openEO federation. It is further enriched with the 
EarthCODE vocabulary (I2), e.g., research themes for land. 

The experiment links to the corresponding WorldCereal 
Workflow [16]. It is an OGC API Record (F2, F3), which 
represents versioned OpenEO Process Definition (I1) that 
reads specific inputs and configurations (I3). The workflow 
also links to the code which is stored on Github (F1.2). 
Metadata describes the infrastructure endpoints where it can 
be executed and thematic details (R1, I1, I2), in this case, 
the CDSE OpenEO Federation. Workflow components, 
options for execution environment infrastructure, license 
and provenance details are fully recorded (R1.3).  

The results from the execution of the experiment are a 
data product ([15]) - a STAC Collection (F2, I1) enriched 
with EarthCODE taxonomy elements (Themes, Variables, 
EO Missions) (I2). It explicitly includes standardized 
references to the dataset and its components (F3). Qualified 
references to related datasets and workflows are included 
(I3), and standardized EO formats (COG/TIFF) ensure 
scalable access (A1.1). Licensing and provenance are 
recorded using open, standardized practices (R1.1, R1.2), 
linking to Sentinel data used for the analysis. All metadata 
aligns with community standards widely adopted in Earth 
Observation (R1.3) such as STAC. 
All metadata including input, configuration, workflows, 
experiments and products on the catalog are assigned 
persistent, globally unique identifiers (F1, F1.1) and are 
indexed and searchable through the Open Science Catalog 
(F4), held separately from the data (A2). The catalog 
exposes data via open, standardized protocols such as 
HTTPS or STAC API (I.1, A1, A1.1, A1.2). 

Together, the WorldCereal resources form a fully 
FAIR research object chain, where data, infrastructure, 
methods, and outputs remain findable (F1–F4), accessible 
(A1–A2), interoperable (I1–I4), and reusable (R1–R3) 
across platforms, infrastructures, and research communities. 
This metadata is automatically generated and published via 
integrated platforms. 

5. CONCLUSION 

EarthCODE is developed by implementing three 
workstreams, as follows: Infrastructure (WS1), FAIR Open 
Science (WS2), and Community Engagement (WS3), 
through an open competition under Best Practice 
procurement, renewed annually. To ensure long‑term 
sustainability, EarthCODE is embedded in ESA’s multi‑year 
FutureEO Programme. In EarthCODE’s operating model 
ESA provides governance, reference architecture and 
decision making, while platform partners commit to 
maintaining open-source platforms and building blocks 
under a shared‑services agreement. The current phase 
focuses on initial platform integration, publication of 
experiments and outputs to the Open Science Catalog, and 

dissemination of scientific results. Phase 2 will focus on 
deeper interoperability using ESA’s EOEPCA+ building 
blocks. Science stakeholders directly shape the evolution of 
the ecosystem as a FAIR Collaborative and Open 
Development Environment for Earth System Science.  
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ABSTRACT

To maximize the potential of big geospatial data streams, they
shall be processed on high-performance computing (HPC) in-
frastructure, whereas local code shall be adopted to use this
infrastructure efficiently. This paper presents a non-profit ini-
tiative, GEO-OPEN-HACK, that aims at lowering the tech-
nical barrier for environmental scientists through one-week
hackathons on open-source HPC processing approaches, such
as openEO, Pangeo, and OEMC. We present the above solu-
tions, hackathon setup, and analysis based on the pre-event
questionnaire about the participants’ big data projects.

Index Terms— Geocomputation, Education, HTC

1. INTRODUCTION

A full exploration of big geospatial data, originating mainly
from open satellite image archives such as those of the Euro-
pean Commission’s Copernicus and the NASA-USGS Land-
sat programmes, requires both high storage and high com-
puting capacity that no longer fit in a local workstation used
for Earth Observation (EO) studies. Thus, studies typically
rely on high-performance computing (HPC), which enables
parallel processing across multiple processors and nodes, to
dramatically accelerate their data processing [6, 5].

HPC also comes with technical complexity in its storage
and computing systems. To address this, several higher-level
open-source engines for geospatial workflows have been in-
troduced recently. For example, openEO masks out code par-
allelization, unifies the interaction with different backends,
and also supports processing user-defined functions [7]. Pan-
geo provides server-side computation via lazy evaluation, re-
lying on Python tools (xarray) to handle multidimensional

This work has received funding from the European Union’s Horizon Eu-
rope research and innovation programme (grant agreement No. 101059548).
We thank also SURF (www.surf.nl) for the support in using the Spider clus-
ter.

datasets and Dask for parallelization [1]. The Open Earth
Monitor Cyberinfrastructure (OEMC) project is another open
initiative that supports existing solutions with additional open
tools and data.

Several hackathons, workshops, and summer schools
feature Geospatial data processing with open tools. Spatial
Ecology is organizing an annual event on geocomputation
and machine learning (ML) for environmental applications.
OpenGeoHub Foundation is also organizing yearly summer
schools on data science for EO. Those events are either on
the introductory or intermediate level, with a primary focus
on building open geospatial workflows. At the last BiDS2023
conference, an openEO and Pangeo tutorial was given, but
rather as a half-day sprint. Thus, there is a need for an event
where intermediate- and advanced-level participants can learn
about different HPC approaches and look at them through the
prism of their use cases.

This paper presents the GEO-OPEN-HACK, a non-profit
initiative focused on transferring knowledge about the ad-
vanced processing of big spatial data using open tools in an
HPC environment. We outline the objectives and setup of
GEO-OPEN-HACK-2024, and provide an overview of HPC
processing with openEO, Pangeo, and OEMC.

2. GEO-OPEN-HACK OBJECTIVES AND SETUP

GEO-OPEN-HACK-2024 was a give-and-take, non-profit
initiative introduced under the OEMC project to: (a) lower
the barrier and transfer knowledge to users dealing with big
geospatial data analytics, i.e., the give part, and (b) foster the
co-creation of open OEMC geospatial data and tools through
user feedback, i.e., the take part. The event took place from
June 24 to 28, 2024, at the International Institute of Applied
Systems Analysis (IIASA) in Laxenburg, Austria. The focus
was on presenting HPC approaches with different levels of
technical complexity so that the participants were enabled
to: (a) judge whether their big data problem is suitable for
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HPC, (b) determine what would be the most appropriate HPC
approach for their big data problem, and (c) process their
data on HPC. This was an advanced-level hackathon, ideal
for early-career researchers, scientists, and professionals who
already had intermediate skills in Linux, bash, Python, and
R. A basic familiarity with geoinformation processing and
EO was also required. This was a one-week event featuring
a keynote speech, a tutorial by teachers, a big-data story by
a teacher, and a hands-on session led by participants on their
own data. Here is the detailed agenda and links material.

The participants worked on three backends. They mostly
worked on the Spider cluster, which is a part of the Dutch na-
tional research infrastructure, SURF. The cluster comprises
42 nodes, providing over 3,000 cores with 8 GB RAM and
80 GB local SSD scratch disk space per core. Furthermore,
Spider offers PB-scale internal storage with CephFS filesys-
tem and network uplink of 1200 Gbit/s. With openEO and
Pangeo, participants also worked with the Copernicus Data
Space Ecosystem (CDSE) and the European Open Science
Cloud (EOSC) backends.

Fig. 1. The GEO-OPEN-HACK-2024 setup with three dif-
ferent HPC processing approaches and three backbends.

3. GEODATA PROCESSING APPROACHES

3.1. Direct Processing on HPC

During the direct processing on HPC, the participants had to
set up an HPC environment for efficient geo-data processing.
This involves organizing a logical folder structure, preparing
outputs, and utilizing submission scripts, such as sbatch, to
efficiently manage tasks . Proper directory and alias setup al-
lows users to monitor jobs, handle errors, and reprocess failed
tasks easily. Bash scripting automates these processes, ensur-
ing repeatability and minimising human error. Raster pro-
cessing, resampling, modelling, and landscape analysis be-
come feasible even for continental-scale studies. Techniques
such as splitting datasets, parallel resampling, and running
GIS commands in batch are essential. Ultimately, such an

HPC setup transforms geospatial analysis from a bottleneck
into a streamlined, robust operation.

3.1.1. GDAL, pktools and GRASS GIS on HPC

In the hands-on session, multiple scripting techniques were
introduced using GDAL, pktools, and GRASS. These tools
provided fast, flexible, and scalable features and functions
for raster-based analysis with a Bash command environment.
Moreover, parallelization is accomplished by dividing a large
geospatial dataset into regular tiles, conducting the operation
on each tile with a dedicated CPU, and finally mosaicing them
back to the original extent. A concise overview and descrip-
tion of the script used in the hackathon for the above steps are
given on the BASH tutorial and the GRASS tutorial pages.

3.1.2. pyjeo and HPC

pyjeo is an open source library for geospatial image pro-
cessing in Python [4]. It has been implemented in the Joint
Research Centre of the European Commission and is dis-
tributed under the GPLv3 license. The design of pyjeo is
based on a C/C++ implementation with Python bindings that
are made available through the Simplified Wrapper and Inter-
face Generator (SWIG [2]). Parallel processing is supported
via multithreading using the OpenMP API in C/C++. Addi-
tionally, high-throughput computing can be achieved through
a tiling mechanism when combined with a job scheduler. Un-
like other libraries such as Dask, the tile-based orchestration,
including the merging step, is not automated and is not part
of the pyjeo library. It also relies on a job scheduler such
as HTCondor to launch the individual jobs that process the
different tiles. In [3], the authors show different strategies
using pyjeo for the parallel processing of geospatial data in a
cloud computing infrastructure.

3.2. Pangeo Approach

The Pangeo ecosystem provides an open-source, cloud-,
and HPC-ready platform for scalable geoscientific and cli-
mate data analysis. Built on modern Python tools such as
xarray, Dask, and Zarr, Pangeo facilitates the analysis of
multi-dimensional datasets that exceed in-memory capacity.
Within the GEO-OPEN-HACK event, Pangeo was introduced
as a framework that supports interactive, scalable work-
flows, embodying FAIR (Findable, Accessible, Interoperable,
Reusable) and reproducible science principles.

Pangeo involves lazy evaluation and parallel execution us-
ing Dask. This allows users to work efficiently with large
volumes of data stored in cloud-optimized formats (COG and
Zarr). Participants engaged in hands-on workflows imple-
mented in Jupyter notebooks deployed on Dask clusters, ex-
ploring essential EO data processing tasks including subset-
ting, aggregation, statistical analysis, and visualization.
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Two Pangeo deployment setups were demonstrated:
one on EOSC and another on the Spider cluster. The lat-
ter leveraged Apptainer containers and the hpc-container-
wrapper framework to execute Pangeo environments effi-
ciently on SLURM. Developed in collaboration with SURF
and the Netherlands eScience Center, the Spider deployment
built upon open scripts and documentation contributed by
Francesco Nattino, Meiert W. Grootes, and Ou Ku. Partic-
ipants were instructed on launching JupyterLab with Dask
via SLURM job scripts and accessing remote sessions using
SSH tunneling. For users lacking container access, alter-
native solutions using micromamba, jupyter-forward, and
dask-jobqueue were also demonstrated.

Both deployments emphasized the paradigm shift from
downloading data locally to executing code where the data
resides—leveraging public S3 buckets and open SpatioTem-
poral Asset Catalogs (STAC) for direct data access. This ap-
proach was particularly beneficial for participants constrained
by limited local computational resources. The event further
highlighted containerized reproducibility through the use of
Docker and Binder, enabling the creation and sharing of fully
executable environments.

3.3. openEO Approach

openEO is an open-source framework that standardizes and
streamlines the access, processing, and analysis of EO data
across heterogeneous backends. Traditional EO workflows
often involve time-consuming steps, including data discovery,
download, and platform-specific pre-processing. This poses
challenges in scalability and interoperability, especially when
integrating multiple data sources. openEO addresses these
limitations by defining a unified API that abstracts the un-
derlying data infrastructures and exposes consistent function-
ality through client libraries in various languages, including
Python, R, and JavaScript.

During the hackathon, we showcased the capabilities and
usability of the openEO framework. Our demonstration used
the openEO Python client within Jupyter notebooks to con-
nect to the CDSE backend. Participants were guided through
essential steps, including library import, authentication, and
backend connection. Limited memory on the CDSE Hub
caused occasional kernel crashes, which were mitigated by
reducing data size. Additionally, we introduced the concept
of datacubes, a central feature of openEO that structures EO
data in a spatiotemporal grid. This model enables server-side
declarative processing, significantly streamlining complex
analyses and enhancing reproducibility and cross-platform
integration in EO applications.

3.4. OEMC Approach

OEMC software and data products were also presented at the
hackathon to gather user feedback and foster co-development.

3.4.1. GlobalPointTools

GlobalEarthPoint is an open-source software library for ac-
cessing large geospatial point datasets stored in cloud envi-
ronments such as S3. Python and R bindings enable efficient
(interactive) queries and downloads of data stored in cloud-
optimized formats (e.g., partitioned GeoParquet). The soft-
ware supports lazy evaluation for high-performance data re-
trieval through technologies like Apache Arrow and Polars.

3.4.2. OEMC ML Deployment and Central app

Besides organizing and enhancing the accessibility of ex-
isting EO and in-situ data, the OEMC project is producing
European-wide [5] and global datasets [6] at a 30-m spatial
resolution, tailored to meet the needs of the use cases. The
production of these datasets is running via an ML pipeline
deployed in an in-house HPC/HTC infrastructure hosted
by OpenGeoHub Foundation. With more than 1,000 CPU
threads across 14 high-density nodes and 3 Petabytes of stor-
age space, the infrastructure runs a suite of open source so-
lutions, including SeaweedFS as object storage, SLURM as
workload manager, and Docker as containers manager. The
ML algorithms/methods rely on scikit-learn and utilize
spatiotemporal overlay and predictions via scikit-map.
Feature selection, hyperparameter tuning and the training of
the final ML models run in a single node (96 CPU threads
and 1 TB of RAM), while the prediction/inference of billions
of 30-m pixels run in SLURM, where each chunk of input data
(ex. 4000x4000 pixels) is assigned to an processing node by
an embarrassing parallel strategy. Predictions of tree-based
models were sped up by compiled models based on tl2cgen
and lleaves libraries. The OEMC ML Deployment proved
to be reliable in a production environment once all layers,
produced in the context of the project, are publicly available
as open data (CC-BY) at OEMC Central App, OpenLandMap
STAC, EcoDataCube STAC, and Zenodo.

4. RESULTS

4.1. Hackathon Participants

The hackathon had 20 on-site and 21 online participants from
17 countries, with the majority coming from Europe. Most
of them were PhD students (4̃6%), followed by early-career
researchers (2̃5%), and postdoctoral researchers (1̃8%); the
rest comprised master’s students, professors, and employees
from the private sector. Most of them consider themselves
ecologists or environmentalists, but there were also remote
sensing scientists, geographers, hydrologists, and economists
(Fig. 2).

The questionnaire also revealed that every fourth partic-
ipant had prior experience with HPC processing. Neverthe-
less, most of them have also been using open-source tools and
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Fig. 2. The expertise of the hackathon participants.

Python modules, such as GDAL, Rasterio, NumPy, Geopan-
das, QGIS, GRASS, PyTorch, PKTools, Pandas, and Scikit-
learn.

4.2. Perception of Big Data

Almost half of the participants (4̃6%) work with geospatial
datasets that are stored both online and locally, whereas the
rest of the participants work only with data stored online
(2̃8%) or only with data stored locally (2̃6%). Their locally
stored data are primarily in the 10-100 GB range, whereas
only about 15% work with locally stored data on a TB scale
(Fig. 3). Furthermore, the data were mainly related to the
following topics: land monitoring (2̃0%), hydrology (1̃6%),
agriculture (1̃4%), vegetation (1̃1%), although topics such as
hazards, economics, climate, soil, urban, health, and biodi-
versity were also covered.

Fig. 3. What is the size of your local geospatial dataset that
you work with?

5. DISCUSSION AND CONCLUSIONS

Despite the capabilities of the HPC approaches, participants
encountered challenges related to environment configuration,
Dask performance tuning, and conceptual adaptation from se-
rial to parallel processing. These insights underscore the im-
portance of streamlined deployment practices and enhanced
training resources in lowering entry barriers and fostering the
broader adoption of scalable open science workflows.

The pre-hackathon questionnaire, completed by partici-
pants, revealed several interesting insights. The participant
structure showed that the hackathon primarily attracted re-
searchers and PhD students, with a notably small number of
participants from the private sector. However, the geospatial
industry and academia should collaborate more, as open-
source projects can benefit more from such partnerships.
Thus, the next hackathons should focus more on engaging
with industry.

The local data volumes typically processed by the par-
ticipants were 10 TB or smaller. Such data can be readily
handled with HPC, suggesting that the barrier is rather in ad-
justing code for efficient HPC processing. Therefore, present-
ing and interacting with different HPC processing approaches
and backends is fully justified and shall remain the focus for
future hackathons.

Finally, it is worth noting that, in addition to a one-time
budget allocated by IIASA and the OEMC project for orga-
nizing GEO-OPEN-HACK-2024, the event received signifi-
cant support from the community, including teachers and or-
ganizations such as SURF, Spatial Ecology, and OGH. Nev-
ertheless, it is essential to secure future funding sources to
ensure its long-term sustainability.
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ABSTRACT 

This paper presents the EUMETSAT Data Lake’s (EDL) 

ongoing evolution and planned integration with the Long-

Term Archive (LTA) to establish a sustainable, user-centric 

data access model. From the perspective of the EDL and its 

user-facing components—the Data Store and Data Tailor—

we describe how this integration will enable a fluid retrieve-

transform-deliver paradigm designed to optimise access, 

customisation, and delivery of Earth observation data. The 

system is being designed to address diverse user scenarios 

while reducing operational overhead by supporting dynamic 

workflows, such as on-demand generation of virtual Zarr 

datasets tailored to different performance or analysis needs. 

This evolution aims to provide a more efficient and scalable 

infrastructure for data access, reuse, and long-term 

preservation, while also strengthening business continuity 

through improved resilience and recovery capabilities. 

Index Terms— Data Preservation, Data Lake, Cloud 

Integration, Multi-tier Storage, Data Repatriation, Data 

Customisation, Unified Data Access, Earth Observation 

Data 

1. INTRODUCTION 

Earth observation plays a central role in supporting the 

European Green Deal, UN Sustainable Development Goals, 

and climate resilience strategies. The transformation of the 

EUMETSAT Data Lake contributes to these societal 

priorities by enabling faster, more reliable, and energy-

efficient access to data essential for environmental 

monitoring and decision-making. 

 

EUMETSAT provides essential Earth observation data 

for weather forecasting, climate monitoring, and 

environmental studies. The EUMETSAT Data Lake serves 

as the ingestion, indexing, and access hub for this data. It is 

complemented by the Data Store [1][2], which acts as the 

user interface and API access point, and by the Data Tailor 

[3][10], which enables product transformation and 

customisation. Together, these services support a rapidly 

growing and increasingly cloud-native user base. 

 
 

FIGURE 1 - components 

 

Historically, data access and preservation have been 

handled by separate systems. The legacy UMARF (Unified 

EUMETSAT Meteorological Archive and Retrieval 

Facility) [4][5] system relies on tape-based storage, which is 

optimised for long-term preservation but cannot meet the 

performance demands of modern usage. Through the Long-

Term Data Preservation & Access Management Evolution 

(LTDPA) initiative, the EDL will integrate with the new 

Long-Term Archive (LTA), leveraging it as a cost-efficient 

deep storage tier while enabling seamless data repatriation. 

 

The LTDPA vision is 

 

Efficient and affordable management of and access to 

large volume of satellite data with an appropriate Quality of 

Service (QoS)   

 

and is driven by increasing data volumes, rising storage 

costs, and the need to support on-demand, customised data 

access workflows. The EDL will evolve to tackle these 

challenges by adopting a modular and incremental design, 

accommodating real-world workflows, and facilitating faster 

iteration cycles. 

 

This vision reinforces the need to integrate the 

transformation layer more closely within the Data Lake 

architecture, not merely as a supporting tool but as a core 

capability. By doing so, EUMETSAT will be able to serve a 

broader range of use cases while maintaining sustainability, 

reliability, efficiency, and user flexibility. 
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2. OBJECTIVES AND MOTIVATION 

As part of the LTDPA project, the EDL is undergoing a 

transformation to become a more intelligent, sustainable, 

and user-centric data access infrastructure, driven by several 

interrelated factors: 

 

• Exponential Growth in Data Volumes: 

EUMETSAT currently manages over ten Petabytes 

of data, supporting many different formats. With 

upcoming missions such as Meteosat Third 

Generation, Metop Second Generation or 

Copernicus (Sentinels, CO2M, etc.), data volumes 

are expected to grow exponentially. This growth 

challenges current storage and access paradigms. 

• Diversifying User Expectations: Users 

increasingly require cloud-native solutions, on-

demand access, and integration with modern 

analysis tools. Emerging formats like Zarr [6][7] 

are designed for scalable, partial access but require 

flexible chunking strategies that depend on the 

user’s intended analysis workflow. 

• Limitations of Legacy Approaches: Maintaining 

multiple pre-processed versions of the same dataset 

to support different use cases is no longer feasible. 

It leads to high storage costs and conflicts with 

long-term preservation strategies. 

• Strong Need for Enhanced Business Continuity: 

Ensuring that critical business functions relying on 

data access systems can continue without 

interruption in the face of unexpected events—such 

as system failures, cyberattacks, or data 

corruption—is essential to maintaining customer 

trust and operational resilience. 

 

EUMETSAT is developing a new approach to optimise 

data access and meet these challenges. This approach will 

retrieve products from the most appropriate source (online 

or archival tiers), apply transformations as needed (e.g., 

subsetting, reformatting, reprojection), and deliver the 

results through a secure and manageable interface. 

 

Integrating the Data Tailor as a native transformation 

layer within EDL, along with technologies like VirtualZarr 

and Kerchunk, will enable the on-the-fly generation of 

virtual data representations tailored to diverse access 

patterns. This approach will support performance, 

flexibility, and sustainability without increasing physical 

storage demands. 

 

Ultimately, the LTDPA project will support: 

 

• Innovation in data access workflows by replacing 

pre-generated products with dynamic, on-demand 

virtual datasets. 

• A reduction in infrastructure duplication, leading to 

a more scalable and sustainable model compared to 

conventional satellite data distribution strategies. 

• Unified access across all EUMETSAT datasets 

(online and archived) 

• Sustainable cost models through tiered storage 

• Improved usability through customisable outputs 

and cloud integration 

• A more adaptable architecture that evolves with 

user needs and technology trends 

• A more flexible approach to data management for 

business continuity. 

3. METHODOLOGY 

The cornerstone of the new paradigm for big dataset 

retrieval is a  

 

retrieve → [transform] → deliver 

workflow: 

 

• Retrieve: Data will be sourced from the optimal 

tier, including online EDL storage or repatriated 

from LTA. 

• Transform: If requested, data can be processed via 

the integrated Data Tailor, enabling 

transformations such as reprojection, reformatting, 

and subsetting. By using a plugin architecture, we 

will be able to integrate other transformation 

frameworks that will be available in the future. 

• Deliver: The final product will be placed in a target 

location, with smart retention and quota control. 

Initially, the Data Store will manage this location 

and implement it as a standard S3-compatible 

bucket. However, the concept will be expanded to 

support delivery to alternative endpoints—such as 

user-provided storage in the European Weather 

Cloud, Destination Earth Data Bridges, or other 

controlled environments—allowing users to access 

data close to their computational resources. 
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Figure 2 Retrieve-Transform-Deliver 

 

This model will support advanced use cases such as the 

on-demand generation of virtual Zarr datasets. Since there is 

no one-size-fits-all strategy for chunking in Zarr, the ability 

to create tailored virtual cubes per request will be a powerful 

capability. Different chunking strategies will be applied 

dynamically, based on the user’s intended access patterns 

(e.g. time-series analysis vs. spatial browsing), improving 

performance and usability in AI/ML and cloud-native 

workflows [6][7][8]. 

 

Additional strategic enhancements will include: 

 

• A multi-tier storage model, with flexible movement 

between caching, online, and glacier tiers. 

• Predictive queuing to evaluate job impacts and auto-

approve low-impact user requests. 

• Fast delivery to external cloud environments, 

supporting efficient data offloading and processing. 

 

 

Figure 3 strategic enhancements 

 

4. RESULTS AND EXPECTED BENEFITS 

This architecture also reinforces EUMETSAT’s 

commitment to FAIR data principles, ensuring that satellite 

data is Findable, Accessible, Interoperable, and Reusable. 

The use of open protocols and standards—such as Zarr, 

Kerchunk, and fsspec—facilitates integration with existing 

scientific tools and promotes open science. 

 

A reliable data access service must go beyond simply 

making data available—it must ensure operational integrity 

and reliability, equitable access, and adaptability to diverse 

user needs. Several key principles guide our architectural 

and operational decisions: 

 

• Sustainability: EUMETSAT must continuously 

balance data access performance with the cost of 

storage. This requires selecting between fast but 

costly tiers and more economical archival layers 

based on actual usage patterns. 

• Reliability: Users rely on consistent service 

delivery. The system must be resilient to failures 

and designed for business continuity, particularly 

for critical operational and scientific use cases. 

• Quality of Service (QoS): To prevent resource 

exhaustion, we enforce quotas and implement 

scheduling to ensure fair usage. This prevents a 

small subset of users from monopolising shared 

infrastructure. 

• Authentication: Identifying the user allows for 

tiered service options. Without authentication, 

providing differentiated service levels or usage 

controls is impossible. 

• Authorisation: Some data (e.g., Level 0 or 

restricted mission datasets) is not publicly 

available. Authorisation policies ensure that only 

eligible users can access these products following 

licensing or policy constraints. 

• Data Analytics: Collecting usage patterns helps 

identify popular datasets and access methods. This 

data-driven approach informs resource planning, 

caching strategies, and the development of new 

features. 

• Virtualisation of the Data Endpoint: Abstracting 

the physical location of the data allows us to move, 

replicate, or transform data behind the scenes 

without impacting the user. This decoupling is 

fundamental to supporting architectural evolution. 

• Integration with Standard Libraries: Scientific 

and operational communities use established tools 

and workflows. Supporting libraries like fsspec [9] 

—a Python abstraction layer for filesystem-like 

access to remote data—enables users to access our 

services as if the data were local, without 

modifying their applications. 

 

For these reasons, simply placing data in an S3 bucket 

with anonymous access is not sufficient. While this 

approach may suit simple file distribution, it falls short in 

delivering critical capabilities such as service monitoring, 
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access controls, transformation, observability, and long-term 

sustainability. EUMETSAT’s approach, in contrast, 

provides a managed, intelligent, and user-aware access 

platform that aligns with the principles of FAIR data and 

ensures service continuity across missions and decades.   

 

The EDL-centric approach will deliver: 

 

• Unified access through a single interface for all 

data types, with streamlined workflows. 

• Rapid delivery of customized datasets, reducing 

overhead and time-to-access. 

• Efficient repatriation from LTA to support 

reprocessing campaigns, gap-filling, and user-

driven data exploration. 

• Cost savings through smarter tiering and 

reduced duplication. 

• Flexibility to generate optimised data structures 

(e.g. Zarr cubes) tailored to each use case. 

 

5. CONCLUSIONS AND FUTURE WORK 

EDL enables a more scalable and sustainable data 

ecosystem by shifting from siloed services to an integrated, 

workflow-centric approach. The retrieve-transform-deliver 

paradigm supports current user needs while laying the 

foundation for future innovations in cloud-native data 

access, including dynamic data structuring and AI-ready 

workflows. 

 

The project is planned to last three years. We are 

currently in 'phase 0', which focuses on careful requirements 

gathering and high-level system design. The implementation 

will be structured around three major iterations, each 

concluding with a Minimum Viable Product (MVP) that 

provides incremental functionality, allowing early feedback 

and progressive system refinement. 

 

Future directions include: 

• Extending transformation capabilities to cover 

more advanced use cases. 

• Refining Zarr optimisation logic based on user 

behaviour and analytics. 

• Enhancing observability and automation in the 

queuing and delivery pipeline. 

• Delivering an FS-spec library for direct access to 

online data 

• Preparing a clear data management approach to 

ensure the system meets operational and user 

requirements 
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ABSTRACT 

The GNSS Science Support Centre (GSSC) is the European 

Space Agency’s (ESA) platform dedicated to Global 

Navigation Satellite Systems (GNSS) data exploitation. As 

part of it, GSSC Now provides centralized, cloud-native 

access to a rich repository of GNSS datasets, including 

observations from ESA missions, ground networks and third-

party sources to form the ESA International GNSS Service 

(IGS) Global Data Centre. This platform also integrates data 

discovery, visualization and analysis capabilities, enabling 

scientists to work directly with GNSS data without the need 

to download or configure local tools. Through a suite of 

browser-based Datalabs, users can launch scientific 

applications on demand and perform advanced analysis in 

environments such as JupyterLab or Octave. This paper 

introduces the GSSC Now platform, highlights its 

architecture and data lake design, and presents practical 

examples of how users are engaging in GNSS science with 

unprecedented efficiency. 

Index Terms— GNSS, open science, big data, cloud 

computing, scientific exploitation 

1. INTRODUCTION 

 Global Navigation Satellite Systems (GNSS) form a 

cornerstone of modern geospatial science. Their ability to 

provide precise positioning, timing, and velocity (PVT) 

services has enabled a wide array of scientific and operational 

applications across domains such as geodesy, space weather, 

seismology, atmospheric science, and environmental 

monitoring. Researchers use GNSS data to track crustal 

deformation, estimate tropospheric water vapour, study 

ionospheric irregularities, and support real-time responses to 

natural hazards. 

Over the past decade, the volume, diversity, and scientific 

relevance of GNSS data have grown significantly. This 

expansion has been driven not only by the increasing number 

of satellites and ground stations, but also by the integration of 

GNSS sensors into spaceborne platforms and mass-market 

devices. However, this growth has also introduced technical 

and organizational challenges. Data has historically been 

spread across a fragmented landscape of archives, often using 

non-standardized formats and metadata, limited in 

discoverability, and lacking tools for efficient analysis. 

In response to these limitations, the European Space Agency 

(ESA) established the GNSS Science Support Centre 

(GSSC), through its Navigation Directorate and the European 

GNSS Evolution Programme. The GSSC aims to enhance 

and streamline the scientific use of GNSS data by providing 

a platform that supports data centralization, access, 

processing, visualization and analysis under a unified 

framework. Located at ESA’s European Space Astronomy 

Centre (ESAC), the GSSC is a key component of ESA’s 

digital transformation strategy, bringing together data, tools, 

and users in a modern, scalable environment designed to 

foster open science and innovation in the GNSS domain. 

2. GSSC NOW: ENABLING OPEN GNSS SCIENCE 

The GSSC constitutes ESA’s strategic initiative to enable and 

enhance scientific research through the exploitation of GNSS 

data. Conceived as a thematic exploitation platform, the 

GSSC is designed to bridge the gap between vast GNSS data 

archives and the research community’s ability to derive 

actionable insights from them. Its mission extends beyond 

simple data access, focusing instead on creating an open, 

integrated environment that supports the entire research 

lifecycle — from data discovery and pre-processing to 

advanced analysis, modelling, and visualization. 

The GSSC provides access to a wide spectrum of GNSS-

related data products. These range from Level-0 raw 

observables captured by ground and space-based receivers to 

higher-level data such as zenith tropospheric delay (ZTD), 

total electron content (TEC) maps, orbit and clock products, 

and differential code biases (DCB). These datasets are made 

accessible through an infrastructure that ensures 

responsiveness, scalability, and long-term data preservation. 

At the heart of this ecosystem is GSSC Now, the interface of 

the platform that operates ESA’s vision of open and 

reproducible science. GSSC Now combines a powerful 

metadata-driven search engine, RESTful APIs for automated 

data interaction, and a suite of user-facing services including 

graphical explorers, programmatic interfaces, and browser-

executed scientific tools. This allows users to interact with 
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massive data archives without the need to download files or 

set up local processing environments. 

GSSC Now also embraces the FAIR principles (Findable, 

Accessible, Interoperable, and Reusable), ensuring that 

GNSS data is not only available but also structured and 

documented in a way that facilitates discovery and reuse 

across scientific domains. Through standardized formats, 

persistent identifiers, and harmonized metadata schemas 

aligned with ISO and INSPIRE standards, GSSC Now 

provides a robust foundation for multi-disciplinary research. 

Crucially, the platform supports not only traditional GNSS 

science such as geodesy or navigation, but also emerging 

domains including space weather, environmental monitoring, 

urban mobility, and even space science and fundamental 

physics. By enabling cross-correlation of GNSS signals with 

atmospheric, seismic, and geomagnetic phenomena, GSSC 

Now transforms GNSS data into a powerful sensor network 

for Earth and space system science. 

In summary, GSSC Now stands as a catalyst for data-driven 

innovation, lowering the barriers to entry for scientific users, 

enabling collaboration across domains and institutions, and 

accelerating the translation and combination of raw GNSS 

data into meaningful scientific outcomes. 

3. THE GSSC ARCHIVE AND DATA LAKE 

At the core of the GNSS Science Support Centre lies its 

federated data archive and integrated data lake infrastructure 

— a foundational component that enables reliable, high-

throughput access to diverse GNSS datasets. Designed for 

long-term preservation, rapid indexing, and on-demand 

availability, the GSSC archive adopts a multi-tiered 

architecture that blends scalability with scientific rigor. 

The GSSC archive ingests and harmonizes data from both 

spaceborne and terrestrial sources, providing access to over 

300 million individual data assets. These resources include: 

• Observation Data: Daily and hourly RINEX-

formatted observations from globally distributed 

ground-based GNSS receivers. These data form the 

backbone of positioning and geodetic studies, 

enabling the reconstruction of precise orbits and 

atmospheric states. 

• Navigation Data: Key satellite broadcast products 

such as ephemerides, precise orbit and clock 

solutions, DCB files, and ionospheric corrections. 

These elements are indispensable for high-accuracy 

applications like real-time kinematic (RTK) 

positioning and PPP (Precise Point Positioning). 

• Atmospheric Products: Derived datasets that 

provide critical insight into atmospheric variability, 

including ZTD, Slant Total Delay (STD), Integrated 

Water Vapor (IWV), and global/regional TEC maps. 

• Space Segment Data: Onboard telemetry from 

GNSS receivers aboard ESA’s Earth Observation 

and scientific satellites — such as Galileo, Sentinel, 

MetOp, SWARM, GOCE, and ICESAT — 

offering unique opportunities for space-based 

geodetic and ionospheric science. 

To ensure discoverability and standardization, all resources 

are enriched with semantic metadata aligned to INSPIRE and 

ISO 19115 specifications. Each entry includes provenance, 

spatial and temporal granularity, processing level, 

sensor/platform information, and licensing constraints. These 

metadata elements allow for high-performance faceted search 

and data federation across research infrastructures. 

The ingestion process itself is automated and modular. 

Pipelines constantly monitor and pull updates from trusted 

sources such as the IGS, BKG, CDDIS, IGN, ILRS, and ESA 

internal systems. Upon ingestion, each dataset is validated for 

integrity, assigned to a Resource Class (e.g., Observation, 

Product, Document), and catalogued within GSSC's indexing 

engine based on defined Science Domains — Positioning and 

Navigation, Geodesy, Ionosphere and Magnetosphere, and 

Troposphere. 

GSSC also enforces use of community-standard formats, 

including: 

• INEX 2/3/4 for raw GNSS observables, 

• SP3 for satellite ephemerides, 

• SINEX-BIAS for inter-frequency bias estimation, 

• IONEX for ionospheric TEC maps. 

This ensures interoperability with external GNSS 

processing frameworks like RTKLIB, Bernese, GIPSY, and 

ESA’s own gLAB. The adherence to these standards also 

facilitates integration with federated infrastructures and 

European initiatives promoting FAIR and open-access data. 

A significant innovation introduced by GSSC Now is its 

interactive, map-based search interface. Unlike 

conventional FTP or static directory structures, the GSSC 

Explorer allows users to query datasets based on multiple 

attributes, including: 

• geographic bounding boxes or station locations, 

• time ranges (e.g., storm periods, mission phases), 

• GNSS constellations (GPS, Galileo, BeiDou, 

GLONASS), 

• observation parameters (sampling rate, signal type, 

frequency), 

• data quality indicators and completeness. 

This interface not only accelerates data discovery but also 

enhances user experience, especially for multi-disciplinary 

researchers unfamiliar with the intricacies of GNSS data 

hierarchies. 

In essence, the GSSC archive and data lake serve as the 

digital substrate upon which advanced GNSS scientific 

analysis is built. By consolidating heterogeneous data 
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sources, embedding metadata intelligence, and supporting 

scalable access models, ESA has laid the groundwork for a 

next-generation GNSS research environment that is as 

powerful as it is accessible 

4. ARCHITECTURE AND DESIGN 

GSSC Now is architected as a modular, cloud-native platform 

built on containerized microservices and orchestrated through 

Kubernetes. This design enables independent deployment, 

maintenance, and scaling of core services, ensuring 

operational resilience and flexibility in accommodating 

diverse scientific workflows. 

The system is structured around three primary functional 

layers: 

• Data Lake Services, responsible for the ingestion, 

storage, and classification of GNSS data. Ingested 

resources are validated and enriched with metadata, 

which is indexed for efficient discovery using 

Elasticsearch. The storage architecture combines 

high-performance local caching with scalable object 

storage to support both frequent access and long-

term preservation. 

• Core Engine, which coordinates processing and 

workflow execution. It enables users to launch 

analysis environments, manage personal 

workspaces, and run data-driven applications 

through GSSC Now’s processing framework. This 

includes integration with ESA Datalabs, providing 

browser-based access to environments like 

JupyterLab and Octave. 

• User Services, encompassing both graphical and 

programmatic interfaces. The GSSC Now Explorer 

offers faceted search and map-based navigation for 

dataset discovery. RESTful APIs and command-line 

tools provide automation options for advanced 

users, while session and identity management are 

handled via ESA's Single Sign-On (SSO) and secure 

JWT-based access control. 

Together, these components deliver a flexible and secure 

platform that supports real-time interaction with GNSS data, 

facilitates the development of custom applications, and 

ensures that both new and experienced users can work 

seamlessly across visual and scripted interfaces. 

5. BROWSER-BASED SCIENTIFIC COMPUTING 

One of the most transformative features of GSSC Now is the 

integration of browser-based scientific computing through its 

Datalabs system. This capability fundamentally changes 

how researchers interact with GNSS data by eliminating the 

need for local software installations or high-performance 

computing resources. Instead, scientists can launch analytical 

environments directly from their web browser, bringing 

computation closer to the data. 

GSSC Now Datalabs are based on containerized execution 

environments, managed within ESA’s secure cloud 

infrastructure. These containers are deployed on demand and 

pre-configured with widely used scientific tools. Among the 

default options available are: 

• JupyterLab, a powerful notebook-based 

environment for interactive computing in Python, 

widely adopted for data science, machine learning, 

and visualization. 

• Octave, a numerical computation tool with 

compatibility for MATLAB scripts. 

• gLAB, ESA’s GNSS-Lab tool capable of full GNSS 

processing, from raw RINEX files to precise 

positioning results. 

These environments are tailored to GNSS applications, and 

the catalogue is constantly evolving. In addition to generic 

tools, users have access to mission-specific and thematic 

notebooks, custom scripts, and pre-integrated libraries for 

tasks such as signal quality assessment, ionospheric analysis, 

or satellite orbit reconstruction. 

Once a Datalab is launched, it has access to: 

• the full GSSC data lake via mounted volumes, 

• persistent user storage to retain intermediate 

results and notebooks across sessions, 

• and optionally, GPU resources for acceleration of 

machine learning workloads or large-scale 

simulations. 

The workflow is designed to be seamless and efficient. After 

logging in through ESA’s SSO system, users can: 

1. Search and filter data through the Explorer interface. 

2. Select a dataset of interest. 

3. Launch a Datalab with a single click. 

4. Begin analysis immediately — no need to download 

data, set environment variables, or manage 

dependencies. 

This model, in which computation is brought to the data, 

aligns with ESA’s broader ESA Datalabs strategy and 

supports the FAIR and Open Science principles by enabling 

fast prototyping, reproducibility, and sharing of research 

workflows. Notebooks can be exported or shared via 

persistent URLs, supporting collaboration within the 

scientific community. 

GSSC Datalabs represent more than just tools — they are 

scientific workspaces designed to accelerate research, lower 

the technological barrier to entry, and empower users to 

explore complex GNSS datasets without friction. 
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6. USE CASES: ADVANCED ANALYTICS AND 

MACHINE LEARNING 

GSSC Now supports advanced analytics through Datalabs 

designed for Machine Learning (ML), citizen science, and 

Internet of Things (IoT)-based applications. In the ML-Lab, 

users can develop models directly in-browser using libraries 

like TensorFlow and scikit-learn. Typical use cases include 

anomaly detection in GNSS signals and prediction of 

atmospheric parameters such as ZTD, using GNSS and 

meteorological data as input. 

The platform also supports large-scale participatory science. 

The CAMALIOT initiative, for example, enabled collection 

of over 50 million GNSS observations from smartphones 

during a six-month campaign. These data were processed 

within GSSC for ML-based forecasting of tropospheric and 

ionospheric conditions and are accessible through dedicated 

Datalabs. 

In parallel, projects like UbiSAP illustrate the integration of 

low-cost IoT GNSS sensors with GSSC workflows. Using 

RTK techniques, researchers monitor structural 

displacements and landslides near critical infrastructure, with 

analysis and visualization performed entirely within the 

platform. 

These examples highlight how GSSC not only enables 

scientific research but also extends GNSS data exploitation to 

public engagement and operational monitoring contexts. In 

this sense, the modular design and usability of GSSC Now — 

particularly through the Datalabs environment — provide an 

effective framework that can accommodate both domain 

experts and newcomers. The integration of scalable 

infrastructure and open data sources further aligns the 

platform with broader strategic objectives. While the cases of 

CAMALIOT and UbiSAP already illustrate community 

participation and operational relevance, documenting 

additional evidence of real-world adoption and uptake would 

further strengthen the demonstration of impact and the long-

term sustainability of the approach. 

7. CONCLUSIONS, LESSONS LEARNED AND 

FUTURE WORK 

GSSC Now has established itself as a key enabler of open, 

data-driven science in the field of GNSS. By integrating high-

quality datasets, scalable cloud infrastructure, and accessible 

tools into a unified platform, it addresses long-standing 

challenges around data accessibility, reproducibility, and 

usability. Researchers from diverse domains — including 

geodesy, ionospheric physics, meteorology, and education — 

can now explore, process, and share GNSS data efficiently 

and collaboratively. 

Its open and modular architecture supports both expert users 

developing advanced processing pipelines, and newcomers 

engaging in exploratory analysis through user-friendly 

Datalabs. The platform exemplifies ESA’s broader strategy 

for digital transformation and scientific innovation. 

Throughout the development and deployment of GSSC Now, 

several lessons have been learned that can be of value to the 

broader Earth Observation (EO) community. Firstly, the 

adoption of community standards (RINEX 2/3/4, SP3, 

SINEX-BIAS, IONEX, ISO 19115, INSPIRE metadata) has 

proven essential to ensure interoperability with external 

infrastructures and tools (e.g. RTKLIB, Bernese, GIPSY, 

ESA gLAB). This approach has significantly reduced barriers 

for integration and collaboration across different research 

groups. 

 

Another key lesson is the importance of bringing 

computation to the data through browser-based 

environments (JupyterLab, Octave, gLAB). This paradigm 

has accelerated scientific workflows, promoted 

reproducibility, and simplified onboarding of new users. 

 

Looking ahead, GSSC Now will continue to evolve through 

several key developments: 

• Performance improvements and stability of the 

GSSC Now platform 

• Interoperability with other space geodetic 

techniques data platforms (e.g. Very Long Baseband 

Interference) 

• Expanded APIs for integration with institutional 

workflows (e.g. in the context of the ESA Genesis 

mission) 

• Educational Content to support universities and 

training programmes in GNSS science. 

By adhering to the FAIR principles and contributing to 

ESA’s Digital Twin Earth and Open Science Cloud 

initiatives, GSSC is building the foundation for a new 

generation of scientific discovery — one in which GNSS data 

plays a central role in understanding and monitoring the 

Earth. 
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ABSTRACT

Web Map Tile Service (WMTS) is a fundamental compo-
nent of a digital infrastructure for visualizing geospatial big
data, supporting many applications across various domains.
Despite their ubiquity and long-standing use, systematic and
dedicated benchmarks are currently lacking. Practitioners
will highly benefit from such a framework since it provides
clear guidance on assessing the performance, scalability, and
advantages of WMTS implementations under varying con-
ditions, especially in data-intensive contexts such as those
demanded by modern AI applications. This work proposes
a framework to study which aspects a WMTS benchmark
should consider. By empirically evaluating custom and open-
source WMTS solutions, this work identifies specific factors
that significantly impact test outcomes, emphasizing the need
for well-defined and representative test cases.

Index Terms— WMTS, benchmark, big data, data visu-
alization, digital infrastructure

1. INTRODUCTION

In recent years, the large availability of high-resolution spa-
tial imagery from diverse sources and formats has created a
growing need for efficient systems capable of rendering and
delivering such data to scientific users and the general public.
Web Map Tile Services (WMTS) is a key technology that can
address these challenges. Numerous applications have since
been developed using various architectures and technologies
to meet the rising demands of big data and AI-ready geospa-
tial services [1] to be integrated into agentic AI systems.

As geospatial data’s volume, heterogeneity, use cases,
and autonomous AI agents rapidly evolve and continue to
expand, pre-generating static tiles for every need and lever-
aging a caching mechanism is a tricky solution. Tiles must be
generated dynamically in many scenarios based on specific
dataset requests and styling parameters. Consequently, the
performance of the WMTS itself becomes a critical factor.
While previous studies have compared the performance of
raster versus vector rendering [2, 3] and evaluated specific
software implementations, a standardized benchmark for
assessing the performance of WMTS applications remains
lacking [1]. This gap can create uncertainty when selecting
the best solution in a given setting. Building on prior research

HTTP HTTP

REVERSE

PROXY WMTSCLIENT

t1 t2 t3 t4 t5

Fig. 1: A simplified client-server architecture for a Web Map
Tile Service.

on benchmark development [4], this study aims to identify
some characteristics that influence tile delivery performance
in WMTS solutions. The findings represent an initial step
toward defining a standardized benchmarking framework that
practitioners can use to evaluate and select the most appropri-
ate WMTS for their specific requirements.

2. METHODOLOGY & EXPERIMENTS

The purpose of a benchmark is to provide a synthetic but in-
formative overview of how a system performs under specific
conditions. On the one hand, this can be highly valuable for
practitioners, as it allows them to avoid the time-consuming
process of evaluating multiple WMTS solutions every time.
On the other hand, benchmarks can drive misleading or in-
complete conclusions if they fail to account for critical aspects
of real-world applications. This work aims to identify and
analyze aspects particularly relevant to dynamic WMTS. For
example, a given WMTS may exhibit excellent performance
with vector data but perform significantly worse with raster
inputs or even vary considerably between different types of
raster formats and styles.

A first step for conducting such experiments is the defini-
tion of a generalizable digital architecture that reflects typical
deployment scenarios while remaining flexible enough to ac-
commodate a range of contexts. This ensures that the findings
are broadly applicable and reflect realistic use cases.

Subsequently, isolating and evaluating individual system
components is essential to understand their performance lim-
itations under fixed hardware resource constraints. Our focus
is not to identify the peak performance metrics or the satu-
ration point of system resources of a given WMTS. Instead,
we are particularly interested in how its performance varies
in relation to specific variables, such as data formats, styling
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Users 25Th 50Th 75Th 95Th

10 7 10 16 27
25 8 14 23 45
50 11 20 33 59
75 13 26 47 89

100 38 77 94 118

Table 1: Response Time (RT) percentiles on a minimal con-
figuration (1 Core, 1 GB RAM) in milliseconds.

complexity, or rendering strategies.
Finally, we propose a hypothesis-driven experimental

approach, formulating and empirically testing assumptions
about which aspects most influence performance across dif-
ferent WMTS implementations. This structured method-
ology enables a deeper understanding of system behavior
and informs the development of meaningful, context-aware
benchmarks.

2.1. Overal Digital Architecture

The experimental setup and the overall architecture (see Fig-
ure 1) include three main components: the client, which sends
tile requests to the WMTS; a reverse proxy, which manages
the incoming and outgoing traffic; and the WMTS server,
responsible for rendering and serving the tiles according to
some specification detailed by the client requests. More com-
plex and simpler data infrastructures are possible, but the ar-
chitecture for this work contains the typical elements of a web
service architecture.

The communication protocol is HTTP(S). We define the
timing components of the request-response cycle as follows:
t1 as the client-side rendering time, t2 as the network la-
tency over the internet, t3 as the time needed by the reverse
proxy to handle the request and forwarding it, t4 is the intra-
network latency, and t5 is the WMTS processing time. There-
fore, the total response time observed by the client is RT =
t1 + t2 + t3 + t4 + t5, and it is our primary performance in-
dicator [5]. Lower values of RT mean better performance of
the WMTS and the overall digital infrastructure. Preliminary
tests showed that t2, t3, and t4 are negligible compared to t5,
although this assumption may not hold in more complex or
distributed environments. Therefore, RT is close to t5 in a
testing environment.

A prerogative of a benchmark is isolation and repro-
ducibility; thus, all the components we use in this work are
containerized applications. In our case, the client machine
is a high-performance system with 70 cores at 2.40 GHz and
1 TB of RAM, while the server machine, which in our exper-
imental setting hosts both the reverse proxy and the WMTS,
is equipped with 40 cores and 515GB of RAM.

Wor. Rep. Core RAM 50Th 75Th 95Th

1 20 1 10 7 14 31
2 10 2 20 9 15 31
20 1 20 200 7 14 33

Table 2: Response Time (RT) percentiles on different config-
urations in milliseconds. Work. stands for workers, Rep. for
replicas. RAM values are in GB.

2.1.1. WMTS Server

In this work, we considered GeoServer 1 and TileGeo
2 as a pool of dynamic WMTS. GeoServer is written in
Java, and its project has been running for many years; in-
stead, TileGeo is an “in-house” development of the Joint Re-
search Centre written in Python, combining the capabilities
of FastAPI for the web service, while GDAL and Mapnik
are used for handling geospatial datasets and rendering tiles.
Both WMTSs support raster and vector source datasets. No
particular production optimization is set for both WMTS.
TileGeo is run with the prod starlette flag, while GeoServer,
according to the documentation, comes with many optimiza-
tions by default 3.

To improve observability, the TileGeo server includes
additional HTTP headers containing the WMTS processing
time t5, the CPU and RAM usage. The asynchronous ar-
chitecture of FastAPI, built on Starlette, allows TileGeo to
handle concurrent requests efficiently. The number of Star-
lette workers can be tuned to scale horizontally, with each
worker capable of managing multiple simultaneous requests.
GeoServer leverages a JAI thread pool executor. TileGeo,
through the Antigrain Geometry renderer, is able to serve
tiles in many different formats (JPEG, PNG, and WebP) with
different setting parameters of compressions, color quantiza-
tion, and quality levels. GeoServer’s WMTS service primarly
supports PNG, PNG8, and JPEG without the possibility of
tuning specific settings. GeoServer does not natively support
JPEG2000 as an input file type.

2.1.2. Client

To evaluate WMTS performance, it is essential to simulate
the behavior of multiple users making simultaneous tile re-
quests. To generate concurrent load, we use Locust4, an
open-source performance testing tool that supports HTTP and
other protocols. Locust enables the definition of user behav-
ior in plain Python, providing the flexibility to simulate re-
alistic interaction patterns without being limited by a GUI

1https://github.com/geoserver/geoserver
2Available soon as OSS. The source code can already be shared based on

a reasonable request.
3https://docs.geoserver.org/latest/en/user/

production/index.html
4https://github.com/locustio/locust
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or domain-specific language. Our Locust test suites include
the modeling of user behaviour in requesting the tiles as sug-
gested in the literature [6, 7, 8].

Locust has command-line and web-based interfaces, al-
lowing for real-time monitoring of throughput, response
times, and error rates. Thanks to its event-driven architecture
(built on gevent), a single process can simulate thousands
of concurrent users, making it highly suitable for testing sys-
tems like WMTS under high concurrency conditions. All
Locust workers are deployed on the same client machine,
leveraging its high-performance hardware to ensure that the
generated load is not limited by client-side constraints.

Each virtual user in our test scenario initiates a single
HTTP session and requests 10 tiles. This approach mimics
a map browsing behavior, such as a user panning or zooming,
which leads to multiple tile requests within a short time frame.
This configuration is deliberate: distributing the same total
number of tile requests per second across more users—each
making fewer requests—would not produce equivalent con-
ditions. Doing so would introduce additional overhead due
to repeated HTTP session initialization, rather than reusing
persistent connections. Consequently, such a scenario would
artificially inflate network and protocol-related delays, devi-
ating from the real-world usage pattern we aim to reproduce.

2.2. Preliniminary Experiments

Preliminary experiments indicate that client-side rendering
time is negligible, as it only accounts for the completion of
tile transfers—not their actual rendering in a map interface.

Following recommendations for the definition of a bench-
mark [4], we first tested the server’s basic response capacity
using a minimal HTTP service. This allowed us to validate
the use of Locust for load generation and tune the number
of workers appropriately. We also benchmarked the reverse
proxy, an Nginx instance configured to accept up to 8K con-
current connections. The results confirm it does not represent
a bottleneck in the tested configuration. To assess the capacity
of the TileGeo WMTS server, we tested a single worker con-
figured with 1 CPU core and 1 GB of RAM. As shown in Ta-
ble 1, it can handle approximately 10 concurrent requests effi-
ciently. Finally, we explored the effects of horizontal (adding
more server instances, balancing the load between them) ver-
sus vertical scaling (upgrading the capabilities of the exist-
ing server). Results presented in Table 2 show no significant
performance improvement. A similar investigation is also ap-
plied to GeoServer.

2.3. Data

The input datasets for our benchmark consist of Sentinel-2
Level-2A rasters over a heterogeneous test site in north-
ern Italy, each containing only the three spectral bands
(B02-Blue, B03-Green, and B04-Red) at 10 m resolution. To

assess the impact of input payload volume, we prepared three
input file-size categories where the covered area is different:
“extra-small” counts a few megabytes, “small” hundreds of
megabytes, and “large” totaling several gigabytes.

2.4. Hypotheses for Benchmark Definition

As a first step towards defining a robust and meaningful
benchmark for WMTS performance, we formulated a set of
hypotheses intended to identify potential factors that may
introduce bias or variability in benchmark results. These
factors, if unaccounted for, can lead to inconsistent or non-
reproducible outcomes.

Our set of hypotheses investigates whether performance is
affected by variations in the input data format, output image
format, input file size, and requested zoom level. To evaluate
this, we employed a range of commonly used geospatial raster
formats for input, including GeoTIFF, JPEG2000 (JP2), and
PNG. Each of these formats presents different characteristics
in terms of file size, compression algorithms, and decoding
complexity. For output formats, we tested PNG, JPEG, and
WebP, as well as format variations involving different com-
pression levels, color quantization strategies, and image qual-
ity settings. Additionally, we tested tile requests at multiple
zoom levels to assess whether the scale and corresponding tile
resolution influence performance, for example due to differ-
ing data volume per tile or variations in rendering complexity.

These combinations allow us to assess whether the encod-
ing/decoding overhead, image optimization processes, or tile
scale have a measurable influence on server-side performance
or response time. Identifying such dependencies is crucial for
defining benchmark conditions that are both fair and repre-
sentative of real-world usage scenarios.

3. RESULTS

Validating the robustness of the WMTS performance mea-
surements under different load scenarios is a key aspect of
the evaluation process. For TileGeo, we conducted each ex-
periment with both 100 and 200 concurrent simulated users,
each issuing either a single-tile request or a batch of ten tiles
at a time. Across all configurations, the latency distributions
remained virtually unchanged between the 100 and 200 user
loads and between one and ten tile batches, confirming that
the results presented below are stable and reproducible re-
gardless of moderate variations in request concurrency or tile
batch size. GeoServer is more hardware resources demand-
ing; we were able to simulate a maximum of 10 concurrent
users in order not to degrade the application’s performance.

Results are presented in Figure 2a for TileGeo and in
Figure 2b for GeoServer. The aggregated performance mea-
surements across our experimental conditions are summa-
rized as follows. For input file size, “large”, “small”, and
“extra small” tiles exhibited very similar latency distributions
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Fig. 2: 50Th (Dark green) and 75Th (Green) percentiles of the re-
sponse time (RT) per feature on Tilegeo (Figure 2a) and GeoServer
(Figure 2b).

in the case of TileGeo. Instead, in the case of GeoServer,
the input file size has a rather high impact with median (50th
percentile) times ranging from 100 ms to 1700 ms. When
varying output image format and encoding parameters, al-
most all the JPEG and PNG variations yield similar results
for TileGeo, but in the case of WebP, the median value of 16
ms and the 95th percentile of 25 ms is significantly higher.
Across zoom levels (7, 12, 15, 17), performance was again
consistent for TileGeo, while this aspect has a quite relevant
impact on GeoServer, degrading response time significantly
as zoom levels increase. Finally, the input format (GeoTIFF,
JP2, PNG) for TileGeo showed negligible differences, with
all medians around 7 ms and 95th-percentiles around 19 ms.

4. CONCLUSIONS

WMTS(s) are a foundational component of digital infras-
tructure for visualizing geospatial big data, supporting many
decision-making processes in various applications. While
widely adopted, WMTS implementations vary significantly
in performance, scalability, and resource efficiency, which
are central aspects to be considered in cloud-native and big
data applications. However, there is currently a lack of sys-
tematic and dedicated benchmarks that allow practitioners
and decision-makers to evaluate and compare fairly different

WMTS solutions. This is likely due to the fact that it is dif-
ficult to find WMTS with similar characteristics and scope.
This contribution proposes an initial framework for identify-
ing the elements a replicable benchmark for a WMTS should
consider, thus promoting open science and interoperable so-
lutions. We empirically evaluate open-source WMTS(s). The
different behaviours of the considered WMTS presented in
the results highlight that input file size, output encodings,
and zoom levels are discriminatory aspects that have to be
included in the benchmark definition of a WMTS. The num-
ber of WMTS servers tested can be a limit for this research.
In future works, we will consider more WMTS and different
system setups. Investigating other elements that may impact
performance will also help better understand the additional
aspects to be included in the benchmark of a WMTS.
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ABSTRACT 

Geospatial Intelligence requires the exploitation and link of 

huge amounts of heterogeneous data. New developments in 

Knowledge Graph technologies enable to tackle real-life 

requirements and build large-scale applications, which is 

crucial for facing Geospatial Intelligence scenarios. In this 

paper, two different applications based on Knowledge 

Graphs technologies are presented to demonstrate the added 

value of Knowledge Graph for Geospatial Intelligence 

stakeholders. The first application integrates multiple and 

heterogeneous sources for the analysis of natural hazards 

and impact assessment, while the second application focuses 

on the relevant change detection for the monitoring of 

illegal activities. Within these use cases, Knowledge Graph 

demonstrates to be a useful technology for a flexible 

integration of knowledge, facilitating the analysis of 

complex relationships in the data, and an enhancement on 

Machine Learning algorithms and their explainability. 

Index Terms— GEOINT, Knowledge Graph, Natural 

Hazards, Change Detection 

1. INTRODUCTION 

Geospatial Intelligence (GEOINT) is the collection, 

analysis, and visualization of geographically referenced data 

for the purpose of providing an understanding of a specific 

area or region. As the amount of geospatial data grows, the 

ability to effectively analyze and interpret them becomes 

increasingly important. The fusion of different data sources 

is key to GEOINT, as it allows for the consolidation, 

correlation, and analysis of data from disparate sources. 

Knowledge graphs (KGs) are a flexible knowledge 

representation paradigm intended to facilitate the processing 

of knowledge for both humans and machines. They are 

widely recognized as a key enabler for a number of 

increasingly popular technologies including Web search, 

question answering, personal assistants, and (explainable) 

Artificial Intelligence (AI) across many sectors. However, 

KGs (including machine learning approaches like class 

expression learning) are not very popular in GEOINT 

domain because they present some limitations: 

1. fail to scale to large graphs with billions of edges; 

2. are bound to consistency in particular formalisms; 

3. fail to exploit the semantics modelled into the KGs; 

4. rely on a one-shot explanation paradigm if they are at 

all explainable. 

In this paper, the results of different GEOINT use cases 

(developed as part of ENEXA1 project) are presented to 

demonstrate the added value of KG technologies in this 

domain.  

2. KG TECHNOLOGIES EXPLOITED 

The core objective of ENEXA is to address the challenge of 

developing explainable Machine Learning (ML) approaches 

for real-world KGs with a focus on human-centred 

explanations. ENEXA has developed novel hybrid ML 

approaches that can exploit multiple representations of 

knowledge graphs concurrently taking advantage of 

different technologies presented here below. With these 

technologies it is possible to tackle real-life runtime 

requirements and build large-scale applications, which is 

crucial for facing GEOINT scenarios. Some of the 

developed technologies are introduced below. 

 

 
 

Fig. 1. Simple workflow of KG technologies considered. 

2.1. Extraction modules 

Extraction modules are in charge of getting information of 

the different sources and translate it into triples to be 

ingested in a KG, enabling the integration of multiple and 

heterogeneous data sources. For the GEOINT use cases 

addressed (detailed in following sections), both structured 

and unstructured datasets were considered. While structured 

data sources can be processed easily with “mappings”, 

unstructured datasets require a more complex processing 

considering Large Language Models (LLMs). 

 
1 https://enexa.eu/ - Project funded by the European Union  
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The two main challenges of the developed extraction 

modules are entity linking and the efficient management of 

geospatial data. 

2.1.1. Entity linking 

Entity linking is a key part of the information extraction 

pipeline connecting knowledge graphs to text. The methods 

developed in ENEXA [1] have been exploited. The entity 

linking enables the connection with other KG and source of 

information (e.g. wikidata), facilitating the exploitation of 

complex relationships and semantic meaning, which is one 

of the reasons for using KG instead of relational DB. 

2.1.2. Management of spatial data 

In GEOINT, the spatial relations of the features/events are 

critical. They can be exploited in a KG with the use of 

GeoSPARQL, that provides a topological ontology in 

RDFS/OWL for representation as well as a SPARQL query 

interface with a set of spatial SPARQL extension functions 

[2]. In order to be able to exploit the geospatial relations in 

triple storage not supporting GeoSPARQL, an alternative 

approach has been implemented. When using systems 

without GeoSPARQL support, the extraction module is able 

to generate additional triples that enable spatial queries. 

Within this approach, the H3 grid (Uber’s Hexagonal 

Hierarchical Spatial Index) [3] is used. This reference grid is 

integrated in the KG (at a configurable level of precision 

(see Fig. 2)), and it is indicated with explicit triples for 

every spatial element in the KG, which are the H3 cells 

where the feature is. This way, it is later possible to make 

spatial queries without the GeoSPARQL functions. 

 

 
Fig. 2. Example of H3 cells in Niger at different levels. 

2.2. Triple storage 

Efficient storage solutions for the KGs are indispensable for 

their use in real applications. In this work two different 

triples store have been used: Tentris [4] and GraphDB. 

Tentris represents RDF knowledge graphs as sparse 

order-3 tensors using a novel data structure called hypertrie. 

It then uses tensor algebra to carry out SPARQL queries by 

mapping SPARQL operations to Einstein summation. By 

being able to compute Einstein summations 

efficiently, Tentris outperforms the commercial and open-

source RDF storage solutions in terms of the average 

number of queries it can serve per second on datasets of up 

to 1 billion triples. 

Tentris, although offer big advantages in terms of 

efficiency, has some limitations (work in progress) like the 

support for GeoSPARQL, but this issue has been solved by 

the use of a reference grid. 

2.3. Embeddings generator 

A Knowledge graph embedding (KGE) is a representation 

of a KG element as a vector with the objective of entity 

classification, link prediction or recommender systems. 

DICE embeddings [5] has been used in this work to 

obtain the embeddings for both applications. 

2.4. Class expression learning 

Class expression learning aims to learn complex class 

expressions from the knowledge graphs. Users can harness 

machine learning techniques to derive meaningful insights 

and patterns from their data. Typically, the user can provide 

positive and negative examples (e.g. legal mining sites vs 

illegal mining sites) and the module extract “rules” to be 

able to classify new entities. This approach enables also the 

explainability of the results of a classification. 

3. GEOINT USE CASE 

3.1. GEOINT current challenges 

The three main GEOINT challenges that can be faced using 

the KG technologies are: 

• Data heterogeneity - In the GEOINT domain, huge 

amounts of data (Earth Observation (EO) and not-EO, 

in different formats like raster/vector or text), must be 

exploited together. For EO data, the collocation and 

transformation of raster/vector data is typically enough, 

but when managing the ancillary data different 

processing are needed, including LLM-based extraction 

pipelines. 

• Limited use of contextual information - Some 

approaches in GEOINT processes just take into account 

the changes that are detected from EO imagery and 

classify them according to the changes in the 

reflectance (optical imagery) or back-scatter/coherence 

(in Synthetic-aperture radar (SAR) imagery) but, 

usually, to use more contextual information in order to 

properly classify the changes is very useful (e.g. land 

cover in the surroundings, distance to certain features). 
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This is usually made by analysts, but the automation of 

these processes would facilitate their job. 

• Lack of Explainability - The explainability of the 

Machine Learning (ML) results would allow analysts to 

understand them and decide about their reliability. 

3.2. GEOINT User stories 

Different user stories have been collected from GEOINT 

stakeholders to assure the relevance of developed 

applications to real users. 

1. As a GEOINT analyst, I want to find relevant events 

from different sources (e.g. floods) in a specific 

area/time, so that I can assess their impact for relevant 

decision-makers (e.g. impact of events in refugee 

camps, impacts on critical infrastructures). For this, I 

want to generate queries linking OpenStreetMap data 

(or other geospatial databases) and event data, so that I 

can quickly find relevant details. Also, I want to 

generate queries to find infrastructure affected by 

specific events (e.g., floods) in a defined period / area, 

to support decision-making processes in relevant 

domains.  

2. As a GEOINT developer, I want to find satellite images 

that I can use to train my models so that the labelling 

time is reduced. 

3. As a GEOINT analyst, I have to monitor an area of 

interest during a period of several months. I want to be 

automatically notified when a relevant change takes 

place. Additionally, I want the platform to extract 

explanations supporting a change detected in satellite 

imagery, so that I can confirm most quickly their 

relevance. 

3.3. GEOINT applications 

To address the user stories and demonstrate the added value 

of KG technologies, two different applications have been 

developed. 

3.3.1. Integration of multiple and heterogeneous sources: 

Analysis of natural hazards and impact assessment 

This application (addressing user stories 1 and 2) 

consists of the integration of multiple sources addressing 

natural hazards as well as ancillary/contextual information. 

The use of KG in this application aims to a) homogenize 

and complete the information by integrating information 

from different sources including data generated from EO 

algorithms developed by SatCen, b) detect inconsistencies 

(e.g. identification of duplications or contradictory data) and 

c) improve queries for analysts and developers, facilitating 

the discovery of correlations and complex links between the 

data. 

The data integrated includes: 

• Natural hazards data sources [6] containing information 

of past events (including affected people, severity and 

other event characteristics)  

o Desinventar – Sendai Framework  

o Colorado Flood Observatory 

o Copernicus Emergency Management Service  

o Wikipedia 

• Ancillary data 

o OpenStreetMap for affected infrastructure  

o Socio-economic data (e.g. World Bank) 

o Land Cover 

o Satellite imagery metadata  

o ACLED (Armed Conflict Location and Event 

Data) [7] and migration/displacement data 

• Results from EO pipelines (e.g. identification of 

flooding and impact assessment) 

3.3.2. Relevant change detection 

This application focuses on the detection of relevant 

changes (user story 3). The methodology has been applied, 

in particular, to the detection of possible illegal activities 

like illegal mining. It provides: a) the identification and 

classification of relevant changes (changes can be detected 

with EO, but it is needed to develop a methodology able to 

classify them as relevant or not) and b) the explanation of 

changes (the classification of the changes has to be 

explained in order to allow analysts a quick confirmation). 

4. IMPLEMENTATION AND RESULTS 

4.1. Integration of multiple and heterogeneous sources 

For this application a new ontology was built based on the 

KnowWhereGraph ontology [8]. The entities were linked 

when possible with wikidata entities and other thematic 

dictionaries like sendai-hip for the hazard classification [9]. 

The extraction of the information and the ingestion in 

the triple store solutions of more than 1 billion triples was 

made in around one day, using python scripts and Tentris 

and GraphDB deployments in a k8s cluster. 

The resulting KG has been exploited through Jupyter 

notebooks (see Fig. 3) with ready-to-use templates that 

enable final non-experts users to run SPARQL queries in a 

friendly way using widgets to define their requests. Some 

thematic examples are:  

• Statistics/Evolution of past floodings in specific 

country/region - e.g. represent the number of floodings 

in Niger during the last decade; 

• Identification of training datasets for new EO models - 

e.g. provide a list of Sentinel-1/2 images over an area 

affected by flooding; 

• Estimation of severity of a new flooding based on 

historical data of previous flooding (similarity); 

• Analysis of possible impact of hazards in conflicts and 

migration 
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Fig. 3. Example of templates for the exploitation of KG 

developed. 

4.2. Relevant change detection 

The application consists of the integration of a monitoring 

pipeline in SatCen Geospatial platform (GEO-DAMP) (see 

Fig. 4) that is able to detect illegal mining activities based in 

three main models executed sequentially: 

• Deforestation monitoring with HR imagery (Sentinel 

data) 

• Contextualization of AoI: when a deforested area is 

detected, contextual information is extracted (an 

integrated in a KG) including land cover and new man-

made structures (e.g. new airstrips, buildings) identified 

using Enhanced ML algorithms taking advantage of 

class expression learning 

• Classification of changes as relevant or not using a 

trained model generated using class expressions 

learning obtained from positive and negative examples 

from known mining sites databases. 

 

 
Fig. 4. Example of relevant change detection integration 

in SatCen Geospatial Platform (GEO-DAMP). 

5. CONCLUSIONS AND WAY FORWARD 

The use of KG technologies is supporting GEOINT analysts 

by allowing a flexible integration of huge amounts of data 

that facilitates the research of complex links between events 

by harmonizing data and combining siloed data sources. 

Moreover, it also enhances some ML algorithms while 

enabling the explainability. 

The solutions developed can be optimized for specific 

applications. For example, the current KG for the analysis of 

natural hazards contains global data in order to demonstrate 

the scalability of the systems, but it could be adapted or 

even the application could create on-demand KGs with only 

data of specific countries or date ranges for specific tasks, 

allowing also to the users to decide which sources of 

information could be relevant to include. 

Finally, although the creation of ready-to-use templates 

for the exploitation of the KG enables the use of the system 

by non-expert users, they cannot exploit its capability to its 

maximum extent without a minimum knowledge of 

SPARQL. For this reason, a future evolution will consist of 

supporting natural language queries. Also, an assessment of 

the use of other ontologies will be considered as 

YAGO2geo [10]. 
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1. ABSTRACT

Accurate forest biomass estimation is essential for climate
change mitigation, biodiversity monitoring, and sustainable
forest management. Recent advances in remote sensing and
machine learning have opened new avenues for large-scale,
high-resolution biomass mapping. In this work, we intro-
duce Grünblick, an AI-powered service designed for scalable
forest biomass estimation, leveraging multi-sensor Earth Ob-
servation (EO) data, including Sentinel-1 and Sentinel-2 im-
agery. The Grünblick pipeline integrates modular deep learn-
ing models, notably U-Net architectures with interchangeable
feature extraction backbones, to perform pixel-wise above-
ground biomass (AGB) regression. We validate our system
using the public Biomassters benchmark, demonstrating sig-
nificant performance gains through multi-modal sensor fusion
and self-supervised pretraining strategies. Future extensions
will include uncertainty quantification and global deployment
capabilities.

2. INTRODUCTION

Forest biomass estimation has been a research focus for many
years [1]. It is essential for various applications, including cli-
mate change mitigation, biodiversity assessment, forest man-
agement, and sustainable supply chain monitoring.

With the advent of Artificial Intelligence (AI) and Big
Data from space, new methodologies have emerged, mak-
ing the field of forest biomass estimation highly dynamic
and interdisciplinary. This area combines remote sensing
technologies, machine learning, and ecological modeling ad-
vances. Recent studies demonstrate improved AGB estima-
tion through multi-source satellite fusion and the application
of deep learning models [2, 3, 4].

Existing efforts like ESA’s Climate Change Initiative
(CCI) [5], FAO’s Open Foris [6], and the BioMassters bench-
mark [7] support biomass estimation using remote sensing
data, though often at lower resolutions or with less flexibility
than AI-powered systems.

In this work, we introduce Grünblick, an AI-driven ser-
vice designed for comprehensive forest monitoring. It targets

forestry management, environmental conservation, and land-
use monitoring industries. Grünblick integrates state-of-the-
art deep learning architectures with software tools to facilitate
global end-to-end forest biomass querying. Our system will
enhance the value of Copernicus products by utilizing mul-
tispectral Sentinel-2 and Sentinel-1 Earth Observation (EO)
data to generate precise forest biomass estimates.

3. GRÜNBLICK PIPELINE

Grünblick is a biomass estimation service currently under de-
velopment at the German Aerospace Center (DLR). Its pri-
mary objective is to enable continuous, large-scale monitor-
ing of biomass using a combination of multi-source satel-
lite data, particularly multi-spectral imagery (MSI) and syn-
thetic aperture radar (SAR). The service is being designed
with adaptability and scalability in mind—capable of ingest-
ing new data streams as they become available and integrating
emerging data modalities and sources over time.

The overarching goal of Grünblick is to provide regularly
updated, high-resolution biomass estimates that can support
decision-making in forestry and related sectors. To achieve
this, we are developing a modular processing pipeline com-
posed of two main components: (1) a Machine Learning (ML)
Model Training and Inference Service, and (2) a front-end
system responsible for data caching, visualization, and deliv-
ery to end users. A high-level overview of this processing
pipeline is illustrated in Figure 1.

One of the key features of Grünblick is its interactive user
service, which will allow users to submit a request via a JSON
file specifying an area of interest. In response, the system will
generate and return a raster file containing biomass estimates
for the specified region.

The ML Model Training and Inference Service underpins
the core estimation functionality. This component includes
the development of biomass prediction models and associated
data acquisition workflows, all implemented in Python. The
software is hosted on GitHub (private at the time of writing)
and follows CI/CD-based development practices.

We use Google Earth Engine to obtain co-registered
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Sentinel-1 and Sentinel-2 patches aligned with ground-truth
AGB data, which support supervised model training. Once
trained, models are deployed in an operational pipeline that
includes a geographic cache for efficient access and a data
delivery service enabling users to download biomass maps on
demand.

Fig. 1. Grünblick Schematic Diagram

4. DATASETS

This section outlines the dataset used for estimating above-
ground biomass (AGB) in forested landscapes. The data
pipeline ingests multi-source satellite imagery and aligns it
with ground-truth biomass observations to train and validate
machine learning models. Two primary sources are utilized:
the BioMassters benchmark, and a regional dataset focused
on British Columbia, Canada. These were chosen to support
the Grünblick pipeline (see Fig. 1), which requires high-
resolution imagery, spatial consistency, and reliable biomass
reference data for supervised learning.

4.1. BioMassters

The BioMassters dataset [7] serves as a principal test bed for
the experiments in this paper. it is a publicly available bench-
mark for above-ground biomass (AGB) estimation, derived
from extensive LiDAR-based forest inventory plots across
multiple regions in Finland. Collected across multiple years,
between September 2016 and August 2021, the dataset offers
pixel-level annotations of biomass components, including
whole stem, branch, foliage, and bark, expressed in tons per
hectare. Given that the AGB ground truth is not collected
in one pass, the authors use a stratified sampling strategy in
order to avoid any temporal bias in the geographic coverage
of the territory. In practice, they identify reference areas
that evenly cover the territory, for the AGB measurement

campaign of each year. Then, the obtained ground-truth val-
ues are rasterized to align with the spatial resolution of the
accompanying monthly satellite imagery of the past year.

Each of the 13000 data samples consists of a 2560×2560
meter satellite image patch at a 10×10 meter resolution co-
registered with a 16×16 meter resolution biomass grid derived
from LiDAR. The dataset encompasses approximately 8.5
million hectares of forested area and includes over 310,000
paired satellite–ground truth samples. This precise spatial
alignment enables accurate pixel-level supervision and sup-
ports high-resolution model training. According to the au-
thors, the test set is generated using 20 to 30 percent of the
references areas for most of the temporal strata (2018, 2019,
2020, 2021), which are already evenly spread over the terri-
tory and without overlapping images. The remaining samples
constitute the training set, which we separate into our final
training and validation sets, using a 80 versus 20 percent
random splitting rule.

A key strength of the BioMassters dataset lies in its rich
biomass component labels, which facilitate detailed analysis
of ecological structure and allow for the evaluation of model
performance across a variety of biomass-related attributes.
Furthermore, its standardized format and public availability
make it a valuable resource for benchmarking and model
comparison within the research community.

This dataset plays a crucial role in evaluating the transfer-
ability and robustness of the Grünblick system, serving as a
complementary reference to our regional dataset and provid-
ing a foundational step toward the system’s global scalability.

4.2. British Columbia

British Columbia (BC) is a region of interest for future experi-
ments, due to its ecological heterogeneity and the availability
of detailed forest inventory data. The province possesses a
wide range of forest types and climatic zones, making it an
ideal setting to assess model generalizability.

Satellite data are obtained from the Sentinel-1 and Sentinel-
2 missions of the Copernicus program. Sentinel-2 provides
multispectral imagery across bands including B2 (blue), B3
(green), B4 (red), B8 (near-infrared), and B11/B12 (short-
wave infrared)—spectral regions frequently used in vegeta-
tion analysis. Sentinel-1 supplies synthetic aperture radar
(SAR) data, offering complementary structural information
and ensuring data availability under all weather conditions.

Ground-truth biomass estimates are derived from the
British Columbia Vegetation Resources Inventory (VRI),
maintained by the provincial government [8]. As of 2023,
the dataset includes over 5.9 million delineated forest stands,
covering roughly 5.5 GB in spatial data.

5. BIOMASS ESTIMATION METHODOLOGIES

The Grünblick system delivers above-ground biomass (AGB)
analytics as a service for forested regions in the Northern
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Hemisphere. Its analytical back-end consists of pixel-wise
AGB regressors based on a modular U-Net architecture [9],
adapted from semantic segmentation to perform continuous
biomass regression using satellite imagery.

We employ a fixed U-Net structure while varying the
encoder (feature extractor) to balance performance and ef-
ficiency. The toolbox supports backbones such as VGG,
ResNet (18–50 layers), and EfficientNet-B0 [10], allowing
flexible trade-offs in model complexity and accuracy. As
shown in Figure 2, the choice of backbone significantly af-
fects the quality of the predictions.

Each model currently operates in a mono-temporal set-
ting, predicting peak AGB for a specific timestamp. Be-
sides, the system also supports multi-sensor input fusion via
channel-wise stacking of co-registered SAR and MSI data,
enabling richer feature representation. Because of the current
temporal restriction, our system does not perform any har-
monization for the time series of the available of modalities.
For the case of sensor fusion, we only consider reference
areas and timestamps where both sensors are simultaneously
available.

Additionally, we incorporate transfer learning using self-
supervised weights pretrained on large EO datasets such as
SSL4EO-S12 [11], boosting performance with limited la-
beled data.

Future work will integrate uncertainty quantification [12]
to provide confidence intervals alongside predictions, sup-
porting risk-aware decision-making in environmental moni-
toring. Additional extensions may include multi-temporal es-
timation, though this would increase computational demands
and require some harmonization, potentially achieved by con-
sidering as target temporal consistency, the temporal avail-
ability of the most irregular sensor (Sentinel-2).

6. RESULTS

We evaluate the Grünblick system on the BioMassters dataset
(Section 4.1) using two benchmarks: (1) multi-modal sen-
sor fusion and (2) self-supervised pre-training. Model perfor-
mance is reported using the coefficient of determination (R2),
a standard metric for regression.

6.1. Multi-Modal Estimation

To assess the benefit of combining EO data sources, we
trained U-Net regressors with inputs from Sentinel-1 (SAR),
Sentinel-2 (MSI), and their channel-wise fusion. Each con-
figuration was evaluated using multiple encoder backbones:
ResNet-18, ResNet-34, and EfficientNet-B0. As shown in
Figure 2, fused inputs consistently outperformed single-
sensor setups. For instance, with EfficientNet-B0, R2 scores
improved from 0.541 (S1) and 0.583 (S2) to 0.688 (fusion).

Backbone selection also affected performance. EfficientNet-
B0 (5M parameters) outperformed the deeper ResNet-34

(22M, R2 = 0.651) and ResNet-18 (12M, R2 = 0.659),
highlighting that smaller, efficient architectures can match or
exceed heavier models.

These results confirm that Grünblick’s modular archi-
tecture and multi-modal capability significantly enhance
biomass estimation. For reference, the benchmark-leading U-
TAE model [7], which uses multi-temporal imagery, achieves
an R2 of 0.765—a target future versions of Grünblick could
approach by integrating temporal dynamics.

Fig. 2. Performance of U-Net regressors using different sen-
sor inputs and backbones. Models trained for 50 epochs on
the BioMassters dataset.

6.2. Effect of Self-Supervised Pre-Training

We also evaluated the impact of self-supervised pre-training
(SSL) using U-Net models with ResNet-50 backbones. Initial
weights came from random initialization or SSL on Sentinel-
1 or Sentinel-2 data. As shown in Figure 3, sensor-consistent
pre-training improved accuracy. For example, using SSL
weights trained on Sentinel-1 for Sentinel-1 fine-tuning
yielded R2 = 0.544, compared to 0.535 from random initial-
ization. Cross-modal pre-training (e.g., S2-to-S1) decreased
performance to R2 = 0.524.

In fusion scenarios, both SSL variants improved per-
formance over baseline: Sentinel-2 pre-training resulted in
R2 = 0.666, Sentinel-1 yielded 0.658, and random initializa-
tion gave 0.653. These findings indicate that SSL improves
transferability when the pre-training modality aligns with the
downstream task.

In summary, Grünblick benefits from both input fusion
and SSL-based initialization, enabling higher accuracy with-
out added model complexity or data requirements.

7. CONCLUSION

In this work, we introduced Grünblick, an AI-driven ser-
vice designed for scalable and accurate forest above-ground
biomass (AGB) estimation. As a testbed, we focused on two
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Fig. 3. R2 for U-Net regressors (ResNet-50) trained with ran-
dom or SSL-initialized weights.

regions in the Northern Hemisphere: Finland (using the pub-
lic Biomassters benchmark), and British Columbia, Canada
(using an in-house dataset). Both regions offered diverse
conditions for evaluating AGB estimation models based on
multi-sensor Earth Observation data, specifically SAR and
multispectral imagery.

To address this task, we developed a modular deep learn-
ing toolbox based on U-Net architectures, enabling flexible
integration of various feature extractors and sensor modali-
ties.

Benchmark experiments demonstrate that Grünblick suc-
cessfully leverages sensor fusion and self-supervised learning
techniques to improve model accuracy. Specifically, fusing
Sentinel-1 and Sentinel-2 data significantly enhances predic-
tion performance compared to using individual sensors. Fur-
thermore, fine-tuning models with pre-trained weights on EO
datasets further boosts estimation accuracy, highlighting the
value of transfer learning for biomass mapping.

Looking ahead, Grünblick will be extended to include un-
certainty quantification in biomass predictions, offering users
additional insight into the reliability of the estimates. We also
plan to scale the system toward global deployment, enabling
continuous, high-resolution biomass monitoring as a service
for forestry, conservation, and climate research communities.

REFERENCES

[1] Taiyong Ma, Chao Zhang, Liping Ji, Zheng Zuo,
Mukete Beckline, Yang Hu, Xiaojuan Li, and Xi-
angming Xiao. Development of forest aboveground
biomass estimation, its problems and future solutions:
A review. Ecological Indicators, 159:111653, 2024.

[2] Yaxuan Xing, Feng Wang, and Feng Xu. Above ground
biomass estimation by multi-source data based on in-
terpretable dnn model. In IGARSS 2023 - 2023 IEEE

International Geoscience and Remote Sensing Sympo-
sium, pages 1894–1897, 2023.

[3] Tuomas Hame, Yrjö Rauste, Oleg Antropov, Heikki A.
Ahola, and Jorma Kilpi. Improved mapping of tropi-
cal forests with optical and sar imagery, part ii: Above
ground biomass estimation. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sens-
ing, 6(1):92–101, 2013.

[4] Autumn Nguyen and Sulagna Saha. Machine learning
and multi-source remote sensing in forest carbon stock
estimation: A review, 2024.

[5] European Space Agency. Climate change initiative:
Biomass, n.d. Accessed: 2025-04-23.

[6] Food and Agriculture Organization of the United Na-
tions. Open foris: Tools for forest monitoring, n.d. Ac-
cessed: 2025-04-23.

[7] Andrea Nascetti, Ritu Yadav, Kirill Brodt, Qixun Qu,
Hongwei Fan, Yuri Shendryk, Isha Shah, and Chris-
tine Chung. Biomassters: A benchmark dataset for for-
est biomass estimation using multi-modal satellite time-
series. In Advances in Neural Information Processing
Systems, volume 36, pages 20409–20420. Curran Asso-
ciates, Inc., 2023.

[8] Government of British Columbia. VRI - 2023 - Forest
Vegetation Composite Rank 1 Layer (R1), 2023. Ac-
cessed: 2025-04-30.

[9] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, pages
234–241, Cham, 2015. Springer International Publish-
ing.

[10] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In
Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6105–6114. PMLR,
09–15 Jun 2019.

[11] Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong,
Chenying Liu, Conrad M. Albrecht, and Xiao Xiang
Zhu. Ssl4eo-s12: A large-scale multimodal, multitem-
poral dataset for self-supervised learning in earth obser-
vation. IEEE Geoscience and Remote Sensing Maga-
zine, 11(3):98–106, September 2023.

[12] Nils Lehmann, Nina Maria Gottschling, Jakob Gaw-
likowski, Adam J. Stewart, Stefan Depeweg, and Eric
Nalisnick. Lightning uq box: Uncertainty quantification
for neural networks. Journal of Machine Learning Re-
search, 26(54):1–7, 2025.

GeoAI & Geospatial Intelligence

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

104 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


AUTOMATING EARTH OBSERVATION ANALYTICS PIPELINES WITH AGENT RAVEN

Gereon Dusella*, Haralampos Gavriilidis*, Binger Chen*,
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ABSTRACT

Efficient integration of vector databases, such as those con-
taining administrative boundaries and land parcels, with re-
mote sensing images is essential for various Earth Observa-
tion (EO) applications. Zonal statistics (ZS) offer a powerful
tool for this purpose, but their computation remains chal-
lenging due to fragmented system interfaces, diverse prepro-
cessing needs, and inconsistent performance across systems.
Current methods optimize execution within single systems
but lack support for dynamic, cross-system workflows. To
address this, we present Agent Raven, the first AI-driven
multi-agent system designed to autonomously manage the
full lifecycle of ZS computation and deployment. Building
on the Raven framework, Agent Raven dynamically selects
execution backends, optimizes query pipelines, and adap-
tively manages workflows based on previous experiments.
Our work represents a step forward in intelligent orchestra-
tion across heterogeneous systems in EO data analytics.

1. INTRODUCTION

The availability of remote sensing imagery has significantly
increased [1, 2, 3] due to advancements in satellite technol-
ogy. Programs like Copernicus [13] provide vast amounts
of freely available raster data, while the volume of vector
datasets (e.g., OpenStreetMap, governmental geospatial data)
is also expanding. To effectively utilize these data for Earth
Observation applications (e.g., climate monitoring, wildfire
prediction, urban planning) [18, 17, 14, 16], efficient process-
ing techniques are essential. A key step in these applications
is the computation of Zonal Statistics (ZS), where pixel-based
raster data are aggregated within defined vector-based geome-
tries, such as city boundaries or farmland parcels. For exam-
ple, to identify deforested areas, one can apply ZS on satellite
images and polygons that define forest boundaries [15].

Computing ZS requires combining raster (gridded cells)
and vector (geometric features) data. Geospatial systems such
as PostGIS1 and Beast [5] handle these data types, but their
APIs and performance vary widely. This variability forces
data scientists to navigate multiple systems, adding complex-
ity and inefficiency. The architecture of each system also

1https://postgis.net/
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Fig. 1: Performance in different development phases

impacts its suitability for different stages of a data science
project. For example, PostGIS is well-suited for development
involving multiple queries on smaller datasets, while Beast
is better for large-scale experiments with single-shot queries.
Figure 1 illustrates this distinction.

While optimizing individual queries is well-studied in
data systems engineering, optimizing the iterative process of
refining an analytics pipeline is significantly more challeng-
ing. This challenge is even greater for ZS queries, as not all
geospatial systems support raster-vector joins equally, forcing
users to adjust queries for each system’s unique API. In addi-
tion, pre-processing steps, such as rasterization, vectorization,
format conversion, and coordinate reference system (CRS)
alignment, are often necessary, depending on the data model
of each system. As queries evolve, the optimal combination
of parameters can change significantly. These challenges
make it difficult for users to efficiently manage evolving ZS
workflows across heterogeneous geospatial systems.

Given these challenges, emerging AI agent technologies
offer promising solutions for automating complex geospatial
workflows. AI agents are bridging the gap between computer
scientists and other users, enabling almost anyone to accom-
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plish tasks that once required years of expertise. They are now
used across various fields for tasks like visual reasoning [9],
code generation [11], scientific experimentation [8], and
model interpretation [10]. In geospatial applications, there
has been a shift from manually created processing scripts to
intelligent agents that autonomously manage remote sensing
data, select tools, and refine outputs for tasks like land cover
mapping, change detection, or geospatial question answer-
ing [7, 12, 6]. These advancements lay the groundwork for
dynamic, multi-system geospatial workflows.

We propose Agent Raven, our vision for an AI-powered
assistant that supports data scientists at all stages of ZS ex-
perimentation - from initial development to continuous de-
ployment. Agent Raven interfaces with the Raven core com-
ponent [4], our framework for executing ZS queries seam-
lessly across multiple geospatial systems. By selecting the
optimal backend and applying query optimizations based on
a database of past experiments, Agent Raven learns and en-
hances performance over time. To the best of our knowledge,
Agent Raven is the first system to offer deep, end-to-end in-
tegration of geospatial data science tasks, aiming to signifi-
cantly reduce development time and operational complexity.

Our contributions are twofold. First, in Section 2, we
describe how Raven integrates heterogeneous geospatial
systems, providing uniform access and enabling seamless
switching between them. This integration simplifies interop-
erability and lessens the workload for data scientists. Second,
in Section 3, we propose Agent Raven, our vision for an
AI-driven assistant that supports data scientists across the
full lifecycle of ZS experimentation. By leveraging past ex-
periment data, Agent Raven accelerates the transition from
early-stage development to robust production pipelines.

2. PLAIN RAVEN FRAMEWORK

Today’s data scientists face multiple challenges when
implementing zonal statistics, due to the varying interfaces
and configuration parameters exposed by existing geospatial
systems, the varying pre-processing steps that these systems
require, and their divergent runtime performance capabili-
ties. In response to these challenges, Raven2 aims to: 1)
offer an easy-to-use zonal statistics interface; and 2) highlight
performance differences in geospatial systems. To achieve
this, Raven exposes a declarative zonal statistics interface
based on a DSL that we developed. Using this DSL, Raven
can transparently optimize and execute a given zonal statis-
tics task on multiple geospatial systems. As a result, Raven
provides system independence, thereby helping users avoid
vendor lock-ins. Furthermore, by automating execution and
providing detailed performance results, Raven simplifies se-
lecting the most efficient system for a given workload. In the
following, we give a brief overview of Raven’s components.

2https://github.com/polydbms/RaVeN

2.1. Architecture Overview

Figure 2 presents Raven’s architecture. Raven accepts a
ZS task expressed in its DSL (the query) and relies on its
Pipeline Planner for optimization. Combined with a
Capabilities file specifying any system limitations, the
planner identifies any necessary pre-processing steps, such as
format or CRS conversions, and builds a Pipeline represen-
tation that it passes to the Execution Interface. This
system-developer-provided interface includes a IR (Internal
Representation) Converter and a GSS (Geospatial System)
Connector. The IR Converter translates Raven’s abstract
syntax tree (AST) into system-specific code using parame-
terized templates, and the GSS-Connector enables execution
on the underlying systems and result retrieval. Additionally,
Raven stores execution metrics, e.g., runtime and resource
consumption for each step, in its experiment database, which
is accessible to other systems. The current systems supported
by Raven are PostGIS, Beast, Apache Sedona3, HeavyDB4,
and RasDaMan5.

2.2. Zonal Statistics Parameters

To simplify Zonal Statistics (ZS) queries across different
geospatial systems, Raven provides a domain-specific lan-
guage (DSL, Listing 1) that abstracts system-specific syntax
and allows users to define and tune ZS queries in a struc-
tured way. We have identified four key operator classes that
a tunable ZS query consists of: Dataset operators (L. 2–4)
specify the raster and vector datasets used for analysis. Ag-
gregation operators (L. 6–7) define how pixel values within
vector-defined zones are processed, including grouping, fil-
tering, and computing summary statistics. System operators
(L. 9) determine which geospatial system executes the query.
Execution Parameter operators (L. 11–12) allow fine-tuning
of execution, such as raster tile size adjustment, vector sim-
plification, and CRS alignment.

2.3. Zonal Statistics Pipelines and Optimizations

The AST generated by Raven’s Pipeline Planner (cf.
Figure 2) encapsulates the end-to-end processing of a ZS
task. This includes pre-processing operations, such as chang-
ing format to support loading into the given system, aligning
CRSs, filtering the datasets, as well as the join and aggrega-
tion operations. Raven then allows a data scientist or AI agent
to configure each of these parameters individually, enabling
fine-grained control over the pipeline execution.

We can categorize these parameters into three groups.
First, they can reduce the number of processed pixels and
vector features as early as possible. Second, they can tune the

3https://sedona.apache.org/
4https://heavy.ai
5https://rasdaman.org/
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1 # Datasets definition
2 zs_result = ZSGen(
3 raster="/data/vegetation_idx",
4 vector="/data/plots") \
5 # Aggregation operations
6 .group("oid") \
7 .summarize({"avg": ZSGen.AVG}) \
8 # Systems
9 .system([ZSSystem.Beast]) \

10 # Parameter settings (optional)
11 .raster_tile_size("auto") \
12 .vector_simplify([0, 200])

Listing 1: ZS Query in Raven’s DSL

partitioning of raster and vector data to improve query exe-
cution. Third, they can minimize computational overhead by
avoiding expensive operations when possible. These tuning
techniques leverage the available ZS parameter operators and
incorporate methods from existing research. Together, they
can speed up ZS queries significantly [4].

2.4. Benchmarking Mode

The performance of ZS tasks in different geospatial systems
can vary significantly depending on the data and workload.
To uncover this, Raven features a dedicated benchmarking
mode. This mode allows users to execute multiple pipelines
and produce detailed performance plots, e.g., breakdown per-
formance of different pipeline stages, facilitating easy com-
parison of different systems and parameter combinations. As
a result, users can gain insights into potential bottlenecks and
enhance system performance by fine-tuning available param-
eters. Overall, Raven’s integrated benchmarking component
provides valuable tools for optimizing zonal statistics tasks
across diverse geospatial systems.

3. AGENT RAVEN: AUTONOMOUS ZONAL
STATISTICS BEYOND RAVEN

Calculating the results of a ZS task is only one part of broader
multi-stage geospatial data science pipelines. To cover other
parts of the pipelines, we propose Agent Raven, a multi-agent
extension of the plain Raven framework. Agent Raven al-
lows users to describe analytical goals in natural language,
while internal agents automatically discover datasets, con-
struct pipelines, invoke tools like plain Raven, and manage
execution from development to deployment. It can also re-
trieve external resources, such as data catalogs or tool manu-
als, to assist its reasoning during task planning and execution.

3.1. Background on AI Agents for Geospatial Workflows

An AI agent is a system that perceives its environment, rea-
sons about goals, and acts autonomously to fulfill user re-
quests. These agents typically leverage large language models
and tools to interpret user intent, plan tasks, access external

systems, and manage workflows adaptively. While traditional
single-agent systems struggle with scalability, specialization,
and responsiveness when workflows become complex, multi-
agent systems organize multiple specialized agents under an
orchestrator that coordinates their collaboration [6]. Each
agent focuses on a smaller set of capabilities, such as dataset
discovery, ZS, or deployment, while the orchestrator handles
planning, task assignment, and execution monitoring. Multi-
agent frameworks can more easily scale across domains, in-
tegrate heterogeneous tools, recover from errors, and provide
faster intermediate feedback.

Agent Raven uses a multi-agent framework consisting of
three agents: the Discovery Agent, which identifies and
retrieves relevant input datasets; the Zonal Statistics
Agent, which constructs ZS pipelines and selects appropri-
ate geospatial systems by invoking the core Raven system as a
tool; and the Deployment Agent, which manages down-
stream tasks such as continuous monitoring and scheduled
deployment. A centralized memory allows the system to im-
prove decision-making across tasks. This shared memory will
replace the database used in the plain version of Raven.

3.2. Workflow Example of Agent Raven

We envision Agent Raven as a deeply integrated multi-agent
system, where specialized AI agents collaborate to automate
the end-to-end ZS workflow. Instead of requiring users to
manually script queries, Agent Raven allows users to sim-
ply express their goals in natural language. The agents then
automatically handle dataset retrieval, pipeline construction,
execution, and continuous pipeline deployment.

Consider a data scientist interested in monitoring a spe-
cific geospatial area over an extended period, such as tracking
the percentage of trees in a given region to observe deforesta-
tion. They would interact with Agent Raven by specifying the
task and suggesting relevant criteria for suitable datasets. In
response, the orchestrator in Agent Raven schedules dataset
retrieval to its Dataset Discovery Agent, which searches for
and returns a selection of candidate datasets, complete with
metadata. To minimize perceived latency and improve user
experience, Agent Raven proactively initiates multiple par-
allel actions. While the Dataset Discovery Agent retrieves
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datasets, the ZS Agent begins preparing preliminary pipeline
templates based on the user’s task description. When candi-
date datasets are identified, the ZS Agent automatically gen-
erates the pipeline representation and invokes the underlying
plain Raven engine as a tool to execute the ZS operations.
This process includes selecting an efficient geospatial system
capable of handling the candidate datasets. To provide early
feedback and save resources, Agent Raven initially executes
the pipeline on a small geospatial subset, quickly producing
preliminary results. In cases where datasets are particularly
large, Agent Raven may suggest applying approximate query
processing to reduce the dataset size and speed up the query,
while trading accuracy. Additionally, Agent Raven leverages
its shared memory, which records all past task steps, param-
eters, and outcomes, to predict optimal configurations based
on prior experience, further reducing the need for user inter-
vention. If a dataset appears highly promising, Agent Raven
can even pre-run partial queries while awaiting final user con-
firmation, further improving the perceived latency.

Once the user is satisfied with the preliminary results,
Agent Raven will switch over to full-scale experiment mode.
It again analyzes all parameters, considering available re-
sources and time, selecting the best system and execution
strategy. The final results will be passed to the continuous
Deployment Agent, which manages ongoing deployments
and regularly updates Agent Raven on its operations. This
allows Agent Raven to adapt any parameters if necessary.

4. OUTLOOK

This paper presents Agent Raven, an AI-powered multi-agent
system that automates ZS-based EO analytics pipelines across
diverse geospatial systems. By adaptively selecting execution
systems, optimizing queries, and managing workflows based
on historical performance, Agent Raven enhances both the
efficiency and accessibility of EO applications.

Looking ahead, we plan to extend Agent Raven with real-
time data streaming support and integrate additional geospa-
tial backends. Moreover, we plan to incorporate fault-tolerant
execution strategies within the multi-agent framework to en-
sure robust execution in dynamic environments.
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ABSTRACT 

This abstract introduces a unifying spatial framework based 
on Discrete Global Grid Systems (DGGS) to facilitate an 
interoperable data economy and scalable GeoAI workflows. 
It proposes a spatial tokenizer, a DGGS-based abstraction 
layer that partitions the Earth’s surface into hierarchical, 
equal-area zones, providing a shared reference for spatial 
data fusion, indexing, and AI modeling. This approach 
supports FAIR principles, Data Spaces, and addresses 
challenges of data harmonization, explainability, and 
reusability. The DGGS acts as an analog-to-digital converter 
for geospatial data, transforming the continuous Earth 
surface into discrete, computable units. By adopting DGGS, 
data producers and consumers can decouple analytics from 
native formats, enabling applications like climate resilience 
assessment and risk modeling. The concept is demonstrated 
through a DGGS API and storage layer. 

Index Terms— DGGS, GeoAI, Spatial Tokenizer, Data 
Economy, Interoperability 

1.​ INTRODUCTION 

The exponential growth of spatial data has opened new 
possibilities for analytics, forecasting, and decision-making 
[1]. However, technical fragmentation - across coordinate 
systems, data models, and storage architectures - still limits 
effective integration of Earth Observation (EO) with 
AI-driven analytics [2]. This abstract proposes a unifying 
spatial framework based on Discrete Global Grid Systems 
(DGGS)[3] to underpin an interoperable data economy and 
enable scalable GeoAI workflows. 

We introduce the concept of a spatial tokenizer: a 
DGGS-based abstraction layer that systematically partitions 
the Earth’s surface into hierarchical, equal-area zones, 
providing a shared reference for spatial data fusion, 
indexing, and AI modeling [Figure 1]. This approach aligns 
with FAIR principles[4], supports Data Spaces [5], and 
addresses core challenges of data harmonization. Here, the 
term ‘tokenizer’ is borrowed from the broader AI 
community, where ‘tokenization’ refers to the process of 
breaking raw data into smaller, discrete units. 

Just as digital systems require discrete units to process and 
represent information, AI requires data to be digitized into 
consistent, structured tokens. In contrast, geographic space 
is inherently continuous and heterogeneous. A DGGS acts 
as the analog-to-digital converter (ADC) for geospatial data, 

transforming the continuous Earth surface into discrete, 
computable units [6]. It digitizes geography in the same way 
a microphone digitizes sound - enabling AI to understand, 
index, and model spatial phenomena. 

By adopting a DGGS as an underlying indexing and storage 
mechanism, data producers and consumers can decouple 
analytics from native formats and projections, enabling 
policy-relevant applications such as climate resilience 
assessment, dynamic risk modeling, and near-real-time 
monitoring. The tokenizer concept is demonstrated through 
a DGGS API and storage layer within the context of the 
Open Geospatial Consortium (OGC) [7]. 

This work aligns with the European Commission's 
Interoperable Europe initiative, which promotes 
cross-border and cross-sector interoperability as a 
foundation for public sector innovation and digital 
sovereignty [8]. It also supports objectives of the EC’s 
SIMPL (Smart middleware platform) framework, which 
aims to establish trusted mechanisms for data sharing and 
reuse in accordance with the European Data Strategy [9]. 

2.​ BACKGROUND AND RELATED WORK 

Recent efforts such as the Copernicus Data Space 
Ecosystem, Destination Earth (DestinE), and ESA’s Digital 
Twin Earth highlight the need for unified spatial 
infrastructures that can accommodate diverse data streams 
and analytical workloads [cf. 10]. However, these initiatives 
still rely heavily on conventional GIS paradigms, where 
spatial joins, reprojections, and data fusion are 
computationally expensive and semantically inconsistent. 

DGGSs offer a promising alternative, standardizing spatial 
representation into discrete, indexable units [3]. This 
inherently supports hierarchical aggregation, consistent 
downscaling, and AI-ready feature extraction. Prior 
implementations (e.g., ISEA3H, H3, rHEALPix) have 
demonstrated technical feasibility, yet lack unified APIs, 
integration with modern cloud-native architectures, or 
adoption as analytical primitives for AI [cf. 11]. 

Our work builds on ongoing standardization efforts in the 
OGC and extends them with a programmable interface for 
data ingestion, transformation, and retrieval. The 
DGGS-based tokenizer enables alignment of datasets by 
spatial keys rather than geometry, offering substantial 
performance and interoperability benefits. 
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Fig. 1. Hexagonal grid over Europe, a common spatial data space for GeoAI 

3.​ GEOPLEGMA: A UNIFIED INTERFACE FOR DGGS 

While the DGGS concept is powerful, its practical use 
remains limited by fragmented implementations and 
complex, often theoretical, tooling. To address this, we 
introduce GeoPlegma: a lightweight and user-friendly 
software interface designed to aggregate and unify access to 
diverse grid systems, including DGGRID, DGGAL, 
HEALPix, H3, S2, and others. 

GeoPlegma abstracts the complexity of each underlying 
DGGS implementation and exposes a common interface for 
spatial indexing, data ingestion, and retrieval. It lowers the 
entry barrier for developers, analysts, and institutions 
looking to adopt DGGS for scalable spatial analysis. Rather 
than promoting a single grid, GeoPlegma emphasizes 
interoperability and composability, making it possible to 
discretize and quantize, i.e. tokenize, space and give the 
ability to analyze across different grids for specific 
use-cases. 

This approach enables experimentation, comparison, and 
co-existence of multiple DGGS types within a single 
processing framework, which is providing practical 
interoperability for AI and EO workflows. It also supports 
the emergence of a modular ecosystem of spatial tools, 
aligned with the broader goals of the Interoperable Europe 
initiative and the upcoming Digital Europe Programme [12]. 

4.​ TOWARD A UNIFIED SPATIAL DATA SPACE 

The vision of a federated, interoperable data space is gaining 
traction across domains, from EO to civil security to digital 
governance. However, the technical realization of such a 
space still faces substantial challenges. A key example is the 
International Hydrographic Organization (IHO), where 
national hydrographic offices manage independent data 
lakes, yet seek a common spatial framework for seamless 
integration and analysis. A DGGS can serve as this 
harmonizing layer, enabling consistent representation and 
cross-border interoperability. 

Importantly, a unified spatial data space must go beyond 
conventional GIS. EO and geospatial datasets are often 
siloed and incompatible with structured data workflows. 
DGGS zones act as  keys that allow data to be reshaped, 
indexed, and queried like database records. This process 
enables users to view and access their data lake through the 
lens of a chosen grid geometry that best suits their use case. 

Through spatial tokenization, data becomes accessible not 
only by location or geometry, but as rows in a scalable,  
schema based on Zone IDs. This supports the design of 
modular, queryable data systems that conform to Data Space 
principles and enable composable spatial analytics at scale. 
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Fig. 2. Example data of canopy height in Belgium at https://demo.geoinsight.ai 

5.​ IMPLEMENTATION AND DEMONSTRATION 

We are actively developing components to operationalize the 
DGGS tokenizer concept. The DGGS API hosted at 
https://dggs.geoinsight.ai/ is part of the OGC pilot initiative 
and provides endpoints for spatial queries, zone inspection, 
and hierarchical operations. It enables real-time 
DGGS-based interactions through a standard interface. 
GeoPlegma (https://github.com/GeoPlegma), written in 
Rust, implements multiple DGGS variations from scratch 
while also leveraging existing open libraries. The codebase 
is modular and designed for performance, with an emphasis 
on type safety and extensibility. It has been released under 
the MIT or Apache 2.0 license. A visualization tool is in 
progress, expected to be deployed at https://dggs.io, 
enabling users to explore DGGS coverage and interact with 
geographic information and insights through an intuitive 
web interface. Additionally, integration with the STAC 
(Spatio Temporal Asset Catalogs) ecosystem is planned to 
enhance access and metadata exchange. Previews and 
system diagrams will be made available via 
https://demo.geoinsight.ai, where users can evaluate the 
proposed system architecture and workflows in action 
(Figure 2). 

6.​ USE CASES AND APPLICATIONS 

The primary use case of a DGGS is to enable data 
interoperability across heterogeneous sources, unlocking 
advanced analytical capabilities. By assigning spatial units 
to each data point - regardless of origin, projection, or 

resolution - DGGS provides a universal reference frame for 
integration. A typical use case involves combining EO data 
with ancillary sources such as demographic statistics, IoT 
sensor streams, climate variables, and social media signals 
[cf 13, 14, 15]. Once harmonized through DGGS, this fused 
data can support real-time monitoring, automated index 
generation, advanced spatial statistics, and machine learning 
workflows,  providing a foundation for operational GeoAI. 
In the maritime domain, the International Hydrographic 
Organization (IHO) illustrates the potential of DGGS to 
create a pan-European spatial data space. Here, national 
hydrographic datasets can be consistently partitioned and 
queried through shared grid zones, promoting cross-border 
interoperability and unified maritime analytics. DGGS zones 
also offer strong policy relevance. Because the zones are 
discrete, stable, and reproducible, users can query the same 
data slice across systems and over time. This consistency 
ensures transparency, reproducibility, and comparability, 
which are key enablers for regulation, reporting, and 
evidence-based policy. 

One forward-looking GeoAI scenario envisions exploratory 
queries: users could select zones of interest and let the 
system automatically search for similar spatial patterns 
elsewhere in the dataset. This supports unsupervised 
discovery, anomaly detection, and feature-based spatial 
search at scale. In the long term, we envision GeoAI 
architectures that directly leverage the structure of DGGS. 
The fixed topology and relations between zones across the  
hierarchy make DGGS a natural substrate for Graph Neural 
Networks (GNNs) [16], where each zone acts as a node and 
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adjacency relations define the graph. Such models can learn 
from neighborhood context, perform hierarchical reasoning, 
and generalize spatial knowledge across scales. To ensure 
broad participation and respect organizational boundaries, 
federated learning approaches are planned, where 
institutions contribute local models trained using a DGGS 
without sharing the data itself. This enables collaborative AI 
training across jurisdictions, preserves data sovereignty, and 
supports scalable GeoAI development across Europe and 
beyond. 

7.​ PERSPECTIVES AND BROADER ADOPTION 

By solving the AI readiness of the geospatial data thanks to 
DGGS, the next frontier of Geo related AI , in particular 
with Large Models, will then be the data access per se. Not 
only providing a smooth and powerful access, the challenge 
will be to go beyond the bottleneck of sourcing input 
material, i.e. geospatial data. In other words, tearing down 
the AI Geodata wall so that AI can actually deliver its 
potential at the full scale. With respect to that concern, 
strategies like federated data access and mutualization of 
resources are being explored and should be examined to 
scale up and feed AI applications accordingly.  

8.​ CONCLUSIONS 

The proposed spatial tokenizer based on Discrete Global 
Grid Systems (DGGS) offers a unifying framework to 
address technical fragmentation in geospatial data 
integration, enabling scalable GeoAI workflows. By 
transforming the continuous Earth surface into discrete, 
computable units, DGGS acts as an analog-to-digital 
converter for geographic data, facilitating consistent data 
harmonization, indexing, and AI modeling. This approach 
supports FAIR principles and Data Spaces. GeoPlegma, a 
user-friendly software interface, simplifies access to diverse 
grid systems, promoting interoperability and lowering the 
entry barrier for DGGS adoption. The implementation of the 
DGGS API and associated tools, aims to create a unified 
spatial data space based on zones. This creates a basis for 
operational GeoAI. Our long-term visions include GeoAI 
architectures that leverage the structure of DGGS for Graph 
Neural Networks and federated learning approaches to 
ensure data sovereignty and collaborative AI training. The 
DGGS approach promises transparency, reproducibility, and 
comparability, essential for evidence-based policy and 
regulation. 
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ABSTRACT 

AI-ready data is an evolving concept, with its definition 

depending on the specific AI application. The adoption of 

structured metadata and standardized APIs can significantly 

improve data findability and accessibility for Large Language 

Models (LLMs). This paper concentrates on the Spatio-

Temporal Asset Catalog (STAC) standard, examining its 

strengths in supporting LLM spatio-temporal data retrieval. 

For this purpose, a prototype was developed to demonstrate 

how an LLM agent can retrieve, and process geospatial data 

exposed by a STAC catalog. The study reveals some key 

challenges such as excessive token use, imprecise spatial 

queries, and redundant endpoints, and shows possible 

targeted mitigations. The results demonstrate STAC’s 

foundational strengths and the Model Context Protocol 

(MCP)’s enabling role for agentic geospatial artificial 

intelligence (GeoAI) workflows.  

Index Terms— STAC, LLM agent, GeoAI, MCP, LLM-

ready spatio-temporal data 

1. INTRODUCTION 

The concept of AI-ready data is still evolving, and there is 

currently no universal method that can preemptively prepare 

all data for every AI application. Gartner has noted that AI 

readiness highly depends on the specific AI use case [1]. 

Consequently, rather than addressing AI-ready data in 

general—which spans disparate domains from structured 

time-series datasets to unstructured multimedia—this paper 

narrows its scope to LLM-ready spatio-temporal data, 

described through the STAC standard.  

Retrieving the data is the first fundamental step in any 

data processing and analysis workflow, whether traditional or 

AI-based. It is therefore essential for geospatial artificial 

intelligence (GeoAI), where geospatial studies and artificial 

intelligence intersect [2]. A typical application is rapid 

conversational access to spatio-temporal assets that can 

improve environmental monitoring and crisis management. 

This can foster better situational awareness, faster anomaly 

detection, and more effective resource coordination. 

This paper focuses on spatio-temporal datasets and 

demonstrates how the Spatio Temporal Asset Catalog 

(STAC) standard [3] with its rich metadata and formalized 

API specifications establishes a strong foundation for agentic 

geospatial intelligence. To this end, a working prototype was 

implemented, and it allowed to highlight challenges and 

mitigation strategies.  

2. FROM STAC TO LLM-READY SPATIO-

TEMPORAL DATA 

STAC has become a key standard for organizing and sharing 

geospatial data, especially for Earth Observation and remote 

sensing. It provides metadata with extensive descriptive 

fields that enable AI models to parse and contextualize 

imagery and sensor data. Domain-specific extensions [4] 

further enhance this metadata, supporting specialized AI 

tasks with improved accuracy. In addition, STAC metadata 

and API specification [5] defined via the JSON schema [6] 

and the OpenAPI [7] standard respectively, provide a 

machine-readable interface that can be used as a basis for 

automated geospatial intelligence.  

STAC’s extensibility is another major strength. 

Community-driven extensions can add new metadata fields 

without breaking core specifications, ensuring backward 

compatibility while adapting to evolving needs. Its alignment 

with Open Geospatial Consortium (OGC) standards [8] and 

support for cloud-native formats like Cloud Optimized 

GeoTIFF (COG) [9] and Zarr [10] also streamline integration 

with machine learning and geospatial analytics pipelines. 

However, despite these native strengths, achieving full 

LLM-readiness requires additional capabilities that STAC 

alone does not provide. This requires additional components 

which include conversational tool descriptors that define 

human-readable functions, dynamic controls like pagination 

and rate-limiting to support interactive, dialog-based usage, 

and contextual metadata summaries providing aggregated 

information [11]. 

3. LLMS, AGENTS, AND TOOL CHAINING 

LLMs are neural networks trained on massive text corpora to 

generate human-like text. They can summarize information, 

answer questions, translate text, or carry on a conversation by 

predicting the next word in a sequence. However, these 

models inherently lack the capacity to interact with external 

tools or retain memory across interactions and their 

knowledge is frozen at training time. Moreover, every LLM 

has a finite “context window” meaning it can only consider a 

limited amount of text at once. These constraints – static 

knowledge, no stateful memory, and limited context – restrict 

an LLM’s ability to operate autonomously or reliably over 

extended tasks. 
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Agentic systems build on LLMs by adding autonomy, 

planning, and external interaction. In technical terms, an AI 

agent uses a language model as its reasoning core but can 

formulate plans and take actions beyond the original training 

data. Key to agentic systems is access to tools and external 

resources. Tools are executable components—such as 

operations, algorithms, or services—that perform specific 

tasks when invoked. Resources refer to structured datasets or 

content repositories that provide information upon request. 

Unlike a stand-alone LLM, an agent can break a complex task 

into subtasks and can orchestrate multiple tools in sequence 

(a process sometimes called tool chaining) where the output 

of one tool serves as the input for the next, creating complex 

processing pipelines that can adapt to diverse tasks and data 

scenarios [12].  

Central to this new paradigm is Model Context Protocol 

(MCP), an open standard recently introduced by Anthropic 

[13]. MCP enables secure and standardized communication 

between LLM agents and external systems, eliminating the 

need for custom integrations with each new tool or resource. 

By providing a unified interface for tool and data discovery, 

MCP empowers agents to dynamically expand their 

capabilities and operate in increasingly complex and 

interconnected environments. 

The evolution from traditional LLMs to intelligent agentic 

systems marks a significant step toward enabling autonomous 

task execution. These advancements lay the groundwork for 

agentic geospatial intelligence, where AI-driven agents 

autonomously manage geospatial data retrieval, processing, 

and analysis with contextual awareness. 

4. GEOAI PROTOTYPE 

A prototype was developed to demonstrate how geospatial 

data, structured with the STAC standard, can be made LLM-

ready and integrated into an agentic intelligent system (see 

Fig. 1).  

 

Fig. 1. Agentic architecture accessing three MCP servers 

(on the right) 

It consists of an LLM agent that interacts with three MCP 

servers. The servers were implemented using Anthropic MCP 

Python SDK [14]. A first MCP server (Nominatim) is 

responsible for geocoding and is used to convert names of 

locations on earth to GeoJSON polygons. It relies on 

OpenStreetMap’s Nominatim service [15]. Central for this 

study is the STAC MCP server that links the AI agent to the 

STAC APIs provided by the Copernicus Data Space 

Ecosystem (CDSE) [16]. This STAC endpoint was chosen 

because of its openness and matureness. This server allows 

the agent to discover and search the available geospatial data 

in the CDSE catalog. The third MCP server is responsible for 

image processing, also based on a CDSE implementation 

(Sentinel Hub) [17]. In this study, it is used as an example to 

complete the agentic processing chain.  

Standard API endpoints are exposed as MCP servers, 

creating the corresponding tools and resources. In Fig. 2 a 

simple example is shown of how to construct an MCP tool by 

wrapping an API function call. 

The AI agent itself was built with the mcp-agent 

framework [18]. It orchestrates tool invocation and response 

handling hereby interacting with the three MCP servers and 

the LLM based on LLM Claude 3.5 Sonnet [19]. Finally, a 

simple user interface was built with Streamlit [20] to directly 

interact with the user and visualize the results. 

Fig. 2. Example of MCP tool wrapping getCollections 

method of STAC APIs. 

An end-to-end pipeline from the text query to the final 

geospatial insight is demonstrated using the following query: 

“Analyze vegetation over the Ispra (Italy) area in the most 

suitable day of spring 2024”. This query was intentionally 

phrased ambiguous, to test the interpretation capability of the 

LLM in the context of GeoAI. Vegetation can be analyzed 

with remote sensing imagery, typically by calculating the 

normalized difference vegetation index (NDVI) [21]. This 

requires the LLM to select an optical sensor with the 

appropriate spectral bands, for instance the multi-spectral 

instrument (MSI) onboard on the Copernicus Sentinel-2 

satellites. In this case, cloud cover is an important factor when 

selecting the optimal acquisition date of optical Earth 

Observation imagery. This request enchained three steps 

shown in Fig. 3.  
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Fig. 3. Agentic workflow explained by the LLM to the 

user.  

Information recorded in a log file provided insight into how 

the LLM agent reaches its final answer. It was shown how the 

request was translated into a chain of subsequent calls to tools 

and resources. 

1. Geocoding: convert the input location (in this case Ispra) 

to a polygon by calling the Nominatim MCP server. 

2. Search data: 

a. Query the list of existing Earth Observation 

collections available in the CDSE STAC catalog by 

calling the getCollections method of the STAC 

APIs. This retrieves information on the available 

collections and identifies those that include spectral 

bands suitable for calculating the Normalized 

Difference Vegetation Index (NDVI). Among them, 

the Sentinel-2 L2A collection is identified, 

providing the red (B04) and near-infrared (B08) 

bands. 

b. Query the catalog by calling the search method of 

the CDSE STAC APIs. This selects the images in the 

retrieved collection (Sentinel-2 L2A) with the lowest 

cloud coverage. The LLM agent formulates the 

query parameters (coordinates, date range and 

others) according to the STAC specifications and 

passes them to the STAC MCP server. 

3. Image processing: call CDSE Sentinel Hub processing 

APIs to compute NDVI on the extracted items. The LLM 

agent formulates the query parameters according to the 

Sentinel Hub specifications and passes them to the 

Sentinel Hub MCP server, which returns the image with 

the calculated index. 

This workflow shows how an LLM agent can autonomously 

decide and chain steps leveraging MCP-compatible services, 

with the LLM providing the logic and natural language 

instructions. The prototype demonstrated that the LLM agent 

successfully completed its workflow like a human 

programmer: retrieved the location geometry, then queried 

the STAC catalog for relevant data, and finally generated a 

meaningful image along with an explanation of how to 

interpret it, as shown in Fig.4. No modifications or fine-

tuning were applied to the LLM. The selection of criteria, 

such as identifying the lowest cloud coverage or choosing the 

appropriate spectral bands, was based solely on the input 

prompt and the provided context. 

Further analysis and interpretation of the resulting NDVI 

image are essential to fully address the user's query. 

However, these steps would require additional specialized 

tools or cooperating AI agents and are therefore left for future 

research. The primary aim of the prototype in this study was 

to assess the STAC readiness for integration with LLMs, with 

the data processing components included mainly to complete 

the end-to-end workflow.  

 

 
Fig. 4. Result image of NDVI calculation over Ispra area 

in Spring 2024 and related LLM description.  

5. DISCUSSION 

The geospatial AI prototype that was implemented in this 

study has revealed some key challenges for making LLM 

ready data leveraging on STAC. Initial experiments 

highlighted several obstacles. One major issue was excessive 

token usage, with conversations exceeding 70,000 tokens and 
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frequently reaching the LLM’s token limit. Another 

challenge was that the LLM struggled to handle structured 

geospatial queries directly. When given a place name (e.g., 

'Ispra'), it would attempt to estimate the location by retrieving 

its coordinates and then constructing a bounding box around 

it. This approach led to imprecise spatial representations and 

introduced unnecessary steps into the workflow. 

Additionally, the use of one-to-one endpoint mappings, 

resulted in inefficient and redundant API calls, emphasizing 

the need for optimized endpoints. 

To overcome these challenges, several targeted 

optimizations were implemented. The use of the STAC API 

extension, Sort and Fields, significantly reduced token usage 

by limiting metadata requests to essential fields and ordering 

results by relevance. This reduced the conversation size from 

approximately 70,000 tokens to just 4,000. Local caching of 

geometries and images helped avoid redundant data transfers 

by storing geometry definitions and image payloads locally, 

thus eliminating the need to transmit large JSON or binary 

streams to the LLM. Furthermore, the integration of 

authoritative polygon geocoding through the Nominatim tool 

simplified preprocessing and reduced query complexity by 

directly retrieving accurate GeoJSON polygons. 

These optimizations substantially improved both the 

efficiency and reliability of the agentic workflow. Future 

enhancements may include the implementation of adaptive 

pagination strategies and the use of embedding-based pre-

filtering of assets to further streamline and refine query 

handling. 

6. CONCLUSION 

This paper articulates an agentic approach to LLM‑driven 

spatio‑temporal data retrieval and analysis leveraging on 

STAC. A prototype was implemented to demonstrate how an 

LLM agent can retrieve, and process geospatial data exposed 

by a STAC catalog, using MCP-enabled tools. The study 

reveals some key challenges for making LLM ready spatio-

temporal data, suggesting mitigation strategies and 

highlighting STAC’s strengths.  

In this prototype, relatively simple queries were used to 

validate the feasibility of the approach. Further investigation 

is required to evaluate performance with more complex and 

diverse queries, which will provide deeper insights into 

robustness and scalability. Future work should explore 

adaptive interaction strategies, multi-agent orchestration, and 

enhanced tooling for image analysis, visualization and batch 

processing. These  advancements aim to extend agentic 

geospatial workflows to broader and more complex 

application scenarios. 
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ABSTRACT 

Earth observation (EO) data plays a key role in the analysis and 
monitoring of land cover dynamics. With increased availability of 
long time series of EO data, it is essential to develop effective 
workflows across studies to evaluate the land cover changes. In 
contrast to approaches relying on analysing the reflectance values 
directly, we developed a workflow for long EO time series analysis 
based on semantic categories and evaluated its effectiveness in 
monitoring and quantifying long-term land cover dynamics in semi-
arid regions. The analysis aimed to answer the question, “How 
effective are a semantic EO workflows in monitoring and 
quantifying long-term land cover dynamics, while ensuring 
automation, reproducibility and scalability?” A semantic EO 
workflow was used to analyze the data, relying on the Satellite 
Image Automatic Mapper (SIAMTM) to semantically process the 
datasets and the Semantique python library for semantic querying. 
The semantic EO workflow is complementary to existing 
approaches but provides additional insights into spatio-temporal 
land cover dynamics and confirms the reproducibility of results, 
automation and scalability of the approach. 

Index Terms— Earth Observation, Land Use Land Cover, 
Semantic Enrichment, Semantic Querying. 

1. INTRODUCTION 

Land use land cover change (LULCC) is a global phenomenon 
that has significant environmental impacts including vegetation 
changes and biodiversity loss [1]. Over the past four decades, 
LULCC has intensified and is closely linked to accelerating global 
environmental crises [2]. Arid and semi-arid regions - covering 
about 41% of the Earth’s land surface and supporting roughly 2.5 
billion people - are particularly vulnerable, with vegetation highly 
sensitive to climate change and water scarcity [3].  

Meanwhile, the increasing availability of long-term remotely 
sensed Earth Observation (EO) data offers both opportunities and 
challenges for innovative data retrieval, processing, and analysis. As 
the volume of EO data grows, traditional methods of managing it 
have become inefficient and unable to meet the demand for timely 
insights [4]. In turn, automated workflows have emerged as 
solutions. While many of them rely on analysis of reflectance values 
or spectral indices such as the normalized difference vegetation 
index (NDVI), a semantic approach based on semantic enrichment 
(SE) of spectral categories can provide additional insights, because 
categorical analysis can express queries such as “how many”, “how 
often” etc. SE refers to the process of assigning concepts from global 
ontologies to semantic types in local ontologies to create a 

terminology knowledge base (TKB) [5]. One of the approaches used 
to produce a semi-symbolic layer from EO data is using the Satellite 
Image Automatic Mapper (SIAMTM) software [6]. It implements a 
fully automated physical-model-based decision tree that assigns a 
multi-spectral color name (category) to EO data without training 
samples. Those categories can be semantically queried in EO data 
cube instances using semantic EO data cubes. 

Effectiveness in a semantic EO workflow is measured by 
analyzing attributes of 1) automation – reducing manual 
interpretation by mapping data to semantic concepts, 2) 
reproducibility – ensuring transparent and shareable workflows 
through explicit ontologies and mappings, and 3) scalability – 
enabling efficient large-scale, multi-temporal analyses via EO data 
cubes and standardized interfaces. Given there has been limited 
research on the effectiveness of semantic EO workflows in 
analyzing long-term land cover dynamics, this study aimed to apply 
a semantic EO workflow using a semantic querying and analysis 
approach for categorical time-series applied to Landsat 8 and 
Sentinel-2 data. 

2. METHODS 

2.1. Trend in EO Data Generation and Management 

The Landsat and Copernicus Sentinel programs have been 
central to EO satellite technology development and have realized a 
rich repository of satellite imagery. Currently, satellite observations 
provide wide area coverage and long-term sources for EO data and 
are crucial for monitoring and identifying insights on earth changes 
and anthropogenic influence [7]. Improvements in the storage and 
processing of large EO data do help with the monitoring and 
analysis. 

2.2. Semantic EO Data Cube 

A data cube is a multi-dimensional array that arranges data in a way 
that makes data storage, access, and analysis easier than file-based 
storage and access [8]. EO data cubes contain raster data that is 
organized along multiple dimensions that can be directly accessed. 
The structure improves data accessibility, allowing users to retrieve 
specific subsets through spatial or temporal queries [9]. Semantic 
EO data cubes move beyond data storage and provision and offer 
basic, interoperable spectral categories as building blocks of image-
derived information within the cube. Users can create more 
expressive, thorough rulesets and queries as a result, and semantic 
analyses can be integrated into basic rule-sets in domain language 
[8]. Certain semantic content-based queries covering a user-defined 
area of interest (AOI) in each temporal extent are possible given 
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semantic enrichment that includes clouds, vegetation, water, and 
"other" categories. 

2.3. Semantic Enrichment with SIAM 

SE of EO images refers to “interpreted content of EO imagery (i.e., 
mapping data to symbols that represent stable concepts)” [10]. 
SIAMTM is a fully automated program that works without training 
data or human input [11]. It is designed for: 

1. Converting multi-sensor, multi-spectral (MS) reflectance 
data into a structured set of color names at different levels 
of detail, forming a hierarchy of color vocabularies. 

2. Identifying connected regions (super pixels or segments) 
within the color-mapped image. 

3. Assessing the accuracy of image compression using 
vector quantization (VQ) by measuring the root-mean-
square error (RMSE). 

SIAM™ emulates a pre-attentive phase of human vision, 
performing the first classification of satellite data autonomously 
without the need for user guidance or training [6]. It is the first, 
necessary step towards semantic analysis, which requires semantic 
querying on user-side to generate meaningful results. 

2.4. Semantic Querying with Semantique Library 

The Semantique Python package allows implementation of a 
structured framework for semantic querying in EO data cubes. There 
are three main components of the framework and include the real-
world, image, and mapping domains. Semantique makes a clear 
separation between the image domain and the real-world domain. In 
this study, it is used for the analysis of the long categorical time 
series. 

2.5. Study Area 

The research focuses on Kanthuni area, Makueni County, Kenya. 
The area was selected for this study as it lies in the arid and semi-
arid zone of the Eastern region of the country which is characterized 
by frequent draught and minimal rainfall. Due to the rainfall 
shortage in the region, sand dams have been significantly 
constructed between 2011 and 2014 as a solution for water 
harvesting and management. In this context, our method supports 
the research on the impact of these sand dams on their environment 
[12].  

2.6. Data 

The primary datasets for this study were Landsat 8, and Sentinel-2, 
which provide multi-temporal coverage of the study area over a 10-
year period for the former and 8 years for the latter. ERA5 data were 
also used as complimentary to the categorical time series analysis. 
ERA5 is the 5th generation of European Centre for Medium-Range 
Weather Forecasts (ECMWF) atmospheric reanalysis of the global 
climate from 1940 to the present [13]. 

2.7. Data Processing and Analysis 

Semantique was utilized for data preparation and entity 
mapping for vegetation cover. Next, the framework’s filtering 
capabilities were used to filter cloud cover. Query recipes were then 
employed for analysis to compute metrics such as the percentage of 
vegetation cover and seasonal changes. The reduce function was 
also crucial in the analysis as it allowed reduction by time and space 
before query recipes were executed in the defined data cube for the 

area of interest (AOI). When reducing by time, the reduce verb 
aggregates data across different timestamps for each spatial location. 
This means getting a single value for each spatial coordinate, 
summarizing the number of observations across all timestamps. 
Conversely, reducing by space aggregates data across all spatial 
locations for each timestamp. It results in a single value for each 
timestamp, summarizing how many locations reported the presence 
of the concept (vegetation). 

The analysis for this study included vegetation analysis, 
seasonality analysis, greenness index (GI), vegetation intensity 
analysis. A total of 1,137 scenes were processed for the area of 
interest: sentinel-2 (519) and Landsat 8 (608). To examine spatial 
distribution of vegetation class observations, reduction by time 
approach was applied which checks the frequency at which 
vegetation class and subclasses were recorded at a particular pixel 
on the AOI expressed as a percentage. Seasonality analysis was done 
using monthly mean vegetation percentages where an additive 
model was adopted, since it assumes that the observed data is the 
sum of three elements: residuals, trend, and seasonality. GI - a 
numerical value calculated using satellite imagery to measure the 
amount of vegetation present in an area, was derived from SIAMTM. 
Further, a semantic querying approach was used to evaluate 
vegetation intensity over time, indicating potential vegetation 
changes and classifying outputs in three vegetation categories 
(strong, average, and weak). 
 

 
Fig 1. Data processing and querying workflow 

3. RESULTS 

As indicated in fig 2 and 3, the highest vegetation observation 
frequency was 42.6% and 36.3% for Sentinel-2 and Landsat 8 
SIAMTM outputs. 

 
Fig 2. Landsat frequency of vegetation observation as a 
percentage (2013-2023) 
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Fig 3. Sentinel frequency of vegetation observation as a 
percentage (2016-2023) 

The analysis of intensity subclasses—weak, average, and 
strong—focuses on the frequency of observation of each subclass as 
a percentage over the dataset temporal range, as highlighted in fig 4. 
The average vegetation subclass had the highest frequency of 
observation compared to the other subclasses. 

 
Fig 4. Maximum percentage of vegetation frequency 
observation 

The seasonal decomposition of vegetation class observation 
frequency in fig 5 reveals distinct patterns across the original raw 
data, trend, seasonal, and residual components. Both Sentinel-2 and 
Landsat 8 datasets exhibit periodic peaks in the raw data, with 
notable increases in 2018, 2020, 2022 and 2023. In this case, the 
vegetation entity consisting of several vegetation spectral categories 
was reduced over space and the result is the relative area and not the 
vegetation intensity. The relative area covered by vegetation can be 
sensitive to precipitation or irrigation. 
 

 
Fig 5. Seasonal decomposition of vegetation percentage over 
space (2016-2023) 

The seasonal vegetation observation frequency data, grouped 
into wet and dry seasons and overlaid with seasonal precipitation 
trends highlight the interplay between vegetation dynamics and 
rainfall patterns. Sentinel-2 (fig 6) and Landsat 8 (fig 7) outputs 
consistently show that wet season vegetation observation 
frequencies peak during periods of increased precipitation. 

 
Fig 6. Overlay of vegetation observation frequency and 
precipitation data (Sentinel 2016-2023) 

 
Fig 7. Overlay of vegetation observation frequency and 
precipitation data (Landsat 2013-2023) 

Fig 8 and 9 show that in contrast to vegetation percentage 
indicating the covered area, the greenness index is more sensitive to 
vegetation health, biomass, and water content which are important 
considerations as the area of interest is a semi-arid area [14]. The 
index captures this seasonal variability peaking during the wet 
season (March to May and October to December) and dropping 
during the dry season (January to February and June to September)  

 
Fig 8. Mean monthly greenness and precipitation data (Sentinel 
2016-2023) 
 

 
Fig 9. Mean monthly greenness and precipitation data (Landsat 
2013-2023) 
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4. DISCUSSION AND CONCLUSIONS 

The study evaluated the effectiveness of a semantic EO 
workflow in monitoring and quantifying long-term land cover 
dynamics. Vegetation frequency observations recorded in both 
Sentinel-2 and Landsat 8 had a maximum record of 42.6% and 36% 
respectively, providing an overview of the entire dataset. The spatial 
distributions of the frequency of vegetation class observations had 
higher percentages recorded in areas around sand dams, indicating 
the water resilience has an impact on vegetation cover. The 
distribution was also more pronounced in Sentinel-2 than Landsat 8; 
this could be attributed to the spatial resolution of Landsat 8 (30m) 
compared to Sentinel-2 (10m). The consistency between the outputs 
from Sentinel-2 and Landsat 8 SIAM-derived data confirms the 
reliability and transferability of the approach across different data 
products. This not only underlines the confidence of the results but 
also highlights the flexibility of semantically enriched data cubes for 
multi-sensor analyses, which is crucial for achieving comprehensive 
temporal coverage in studies requiring long-term environmental 
monitoring. In this study, the semantic EO workflow was effective 
as it autonomously transformed the raw spectral values into valuable 
land cover classes without human interpretation, by means of 
ontology-mappings. The reproducibility was also met because the 
query recipes can be reapplied for different temporal datasets and 
retain the same results without rewriting scripts for analysis. Lastly, 
scalability is also feasible for potential future applications since the 
workflow, underpinned by EO data cubes and standardized 
interfaces, is built for handling progressively more enormous and 
complex datasets more effectively. Future studies should focus on 
Semantique’s library query expressiveness in supporting complex 
spatiotemporal patterns and uncertainty quantification for more 
nuanced detection of land cover changes.  

5. OUTLOOK 

This work showed semantic-based EO workflows provide nuanced 
insights into landscape evolution at different temporal scales. This 
is particularly relevant in areas of high seasonal variation and strong 
phenological dynamics, where traditional and static methods of 
LULC classification fall short. Once these dynamics have been 
assessed at both annual and long-term scales, their association with 
water retention and conservation efforts like use of sand dams can 
be examined in detail to attribute landscape changes to the date and 
location of sand dam construction. This can be achieved using 
geostatistical methods and space-for-time substitution, but also 
requires a multidisciplinary perspective including groundwater 
changes, topography, climate trends and land surface temperature 
changes. Earth observation methods can provide data on all of these 
aspects and help to assess the actual impact of sand dams on their 
environments. 
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ABSTRACT

This work addresses mechanical defocus in Earth observation im-
ages from the IMAGIN-e mission aboard the International Space
Station (ISS), proposing a blind deblurring approach adapted to
space-based edge computing constraints. Leveraging Sentinel-2
data, our method estimates the defocus kernel and trains a restoration
model within a Generative Adversarial Network (GAN) framework,
effectively operating without reference images.

On Sentinel-2 images with synthetic degradation, SSIM im-
proved by 72.47% and PSNR by 25.00%, confirming the model’s
ability to recover lost details when the original clean image is known.
On IMAGIN-e, where no reference images exist, perceptual quality
metrics indicate a substantial enhancement, with NIQE improv-
ing by 60.66% and BRISQUE by 48.38%, validating real-world
onboard restoration. The approach is currently deployed aboard
the IMAGIN-e mission, demonstrating its practical application in an
operational space environment.

By efficiently handling high-resolution images under edge com-
puting constraints, the method enables applications such as water
body segmentation and contour detection while maintaining process-
ing viability despite resource limitations.

Index Terms— GenAI, defocus noise, remote sensing, edge
computing

1. INTRODUCTION AND STATE-OF-THE-ART

The IMAGIN-e mission (ISS Mounted Accessible Global Imaging
Nod-e) is a space edge computing initiative hosted aboard the ISS.
IMAGIN-e operates as a functional demonstration payload with real-
world applications for Earth observation. Its primary objective is to
evaluate the capabilities and operating modes of onboard edge com-
puting by processing Earth observation data directly within the pay-
load. An optical sensor was integrated to capture images that fuel
onboard applications. However, the captured images exhibit sig-
nificant mechanical defocus characterized by wide dispersion and
smoothing (see Fig. 1), complicating precise interpretation and hin-
dering the extraction of meaningful insights.

In this context, missions like Sentinel-2 from the Copernicus
program -which provide multispectral images with higher spatial
resolution (GSD) and additional spectral bands— could serve as
a reference to estimate the defocus kernel when contrasted with
IMAGIN-e RGB images. Nonetheless, IMAGIN-e images are not
georeferenced at origin and include uncertainties (e.g., the sensor’s
final orientation due to its uncharacterized mechanical and thermoe-
lastic misalignments), posing a significant challenge for restoration
in the absence of sharp reference images.

Recent studies, such as Popika and Lelechenko [1], have used
synthetic distortions to train models for satellite image restoration in
post-processing. Our approach builds on this idea, adapting it for

Fig. 1: Captured image from the IMAGIN-e payload without further
processing, showing significant mechanical blur.

onboard edge computing to enable real-time correction within the
IMAGIN-e payload (see Section 3).

Traditional deblurring approaches, such as the Wiener filter [2]
or Richardson-Lucy deconvolution [3], rely on known blur kernel
characteristics, which limits their performance for complex, non-
uniform blurs observed in space-based imagery. The advent of deep
learning has enabled robust alternative strategies. Early methods
employed Convolutional Neural Networks (CNNs) to learn the map-
ping between blurred and sharp images [4, 5], while GAN-based
approaches like DeblurGAN [6, 7] addressed blind deblurring when
the blur kernel is unknown. More recently, transformer-based
architectures have emerged as promising candidates for image
restoration tasks. For instance, DeblurDiNAT[8] presents a compact
model that leverages dilated neighborhood attention mechanisms
to achieve robust generalization and high perceptual fidelity, even
in out-of-domain settings . In parallel, MIMO-Uformer [9] inte-
grates a U-shaped structure with window-based attention (W-MSA),
enabling efficient capture of both local and global dependencies
with a computational footprint suitable for resource-constrained
environments.

Despite these advances, most state-of-the-art approaches assume
access to paired blurred-sharp images or mandate substantial com-
putational resources, rendering them incompatible with the onboard
processing constraints of the IMAGIN-e mission.

1.1. Contribution of This Work

Our research contributes a blind deblurring methodology for satel-
lite imagery without reference images that leverages Sentinel-2 data
to characterize the defocus kernel. We adapt MIMO-Unet++[10] for
space-based edge computing, optimizing computational efficiency
while preserving restoration quality. Quantitative and qualitative
analysis validates our approach, showing significant improvements
in structural similarity and edge preservation. Additionally, we pro-
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Fig. 2: Illustration of the payload orientation on the Bartolomeo
platform, showing its backward tilt relative to the ISS trajectory.

vide insights into deep learning-based image enhancement for space-
based observation systems with limited resources.

This study introduces a generative AI framework for defocus
correction within the constraints of the IMAGIN-e mission, enhanc-
ing onboard edge computing for Earth observation and enabling the
effective utilization of otherwise compromised instruments. The
ability to perform defocus correction onboard enables the utilization
of restored images in time-sensitive applications including disaster
response, where immediate image analysis can save lives, precision
agriculture requiring real-time crop monitoring, and environmental
hazard detection where processing delays could compromise critical
decision-making.

2. PROBLEM CHARACTERIZATION

2.1. Platform and Payload Orientation

The payload is hosted on an external platform for payload hosting,
mounted on the Columbus module of the ISS. Although its nomi-
nal alignment is Earth-facing, the imaging system is not perfectly
oriented in the nadir direction; rather, it is directed a few degrees
backward relative to the ISS trajectory (see Fig. 2). This orienta-
tion results in a non-perpendicular incidence angle compared to a
purely nadir-pointing configuration, potentially affecting the obser-
vation geometry and data acquisition characteristics. Moreover, the
payload was installed using a robotic arm, so the exact sensor orien-
tation relative to nadir was not known a priori.

2.2. Sensor Data Characteristics

The sensor acquires RGB images compressed in JPEG format at
a resolution of 2048×1536 pixels. The Ground Sample Distance
(GSD) ranges from 37.5m to 41m, depending on altitude variations,
ISS pitch fluctuations, and terrain elevation changes. The captured
images exhibit significant optical defocus noise, likely due to me-
chanical miscalibration, while some images also display minor shot
noise, though its intensity is considerably lower than that of the de-
focus blur. Figure 3 provides a spectral comparison between an
IMAGIN-e capture and its corresponding Sentinel-2 scene, high-
lighting the frequency-domain effects of these noise sources.

2.3. Onboard Deblurring Process

The deblurring process is designed to be executed onboard without
dedicated acceleration hardware as a critical step in the postprocess-
ing stage of the capture pipeline. It takes place immediately after
image acquisition, ensuring that restoration is completed before the
images are passed on for further analysis. Third-party applications,
which request image captures and process them upon availability,

(a) Sentinel-2: Scene and FFT spectrum

(b) IMAGIN-e: Scene and FFT spectrum

Fig. 3: Comparison of Sentinel-2 and IMAGIN-e images along with
their frequency spectra. The Sentinel-2 scene, composed of RGB
bands downscaled to a 40m GSD, and its corresponding frequency
spectrum are presented in (a). The IMAGIN-e scene and its respec-
tive frequency spectrum are shown in (b), illustrating the effects of
defocus and alterations in the frequency domain.

rely on this preprocessing step to enhance data quality and optimize
downstream computational tasks.

Given the constraints of onboard execution without specialized
hardware, the deblurring model must operate efficiently within the
platform’s limited computational resources. To meet this challenge,
the MIMO-Unet++ model was selected for its high efficiency in
generative processing, enabling real-time deblurring with minimal
hardware requirements. By integrating this model into the capture
pipeline, image restoration is performed onboard without compro-
mising system performance, ensuring that the processed images
maintain the necessary fidelity for further analysis.

3. METHODOLOGY: DEBLURRING WITHOUT
REFERENCE IMAGES

3.1. Model Architecture and Training Strategy

To enhance structural features critical for georeferencing, we ex-
tracted 1024×1024 pixel patches from Sentinel-2 imagery and down-
scaled them to 256×256 pixels. This size reduction simplified the
learning process by focusing the model on sharpening primary edge
structures rather than on subtle textures. A batch size of 4 patches
was chosen to balance computational efficiency with training stabil-
ity. We used a MultiStepLR schedule with an initial learning rate of
1e-4, reducing it every 500 iterations by a factor of 0.5 over 3000
iterations to progressively refine the model’s ability to produce spa-
tially coherent reconstructions.

Initially, only defocused images—accompanied by tentative ge-
olocation from the ISS’s position and attitude data were available,
making it extremely difficult to align these images with established
ground references due to severe defocus and unknown noise char-
acteristics. To tackle this, we first trained an early version of the
MIMO-Unet++ model using RGB images generated from Sentinel2
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Application requests capture

Camera API forwards request

Sensor captures image

Post-processing: deblurring

Image stored

Application consumes processed image

Fig. 4: The diagram illustrates the position of the deblurring process
within the image processing chain. An application requests an im-
age from the camera API, which then communicates with the sensor
for acquisition. The raw image undergoes a post-processing stage,
including deblurring, before being stored for later consumption by
the application.

products and augmented with various noise types (Gaussian, defo-
cus, shot, motion, and spin blur). The outputs of this model allowed
us to correlate the images relative to their Sentinel-2 counterparts,
leading to improved noise characterization and the creation of more
realistic synthetic training data.

Subsequently, we used these synthetic images to train a re-
fined MIMO-Unet++ model within a GAN framework, with the
model serving as the generator, i.e., the component responsible
for producing deblurred images from blurred inputs. A multi-
scale discriminator—designed to evaluate the generator’s outputs
at multiple image resolutions simultaneously, capturing both global
structures and fine-grained details—was employed, inspired by
Pix2pixHD[11], enhanced with self-attention mechanisms[12] and
spectral normalization, ensuring effective extraction of features
across all resolutions and promoting superior image reconstruction.

The overall loss function combined the standard adversarial loss
with an L1 loss and an FFT-domain loss—as proposed in the orig-
inal MIMO-Unet++ framework—as well as a perceptual loss com-
puted using a VGG16 [13] model pre-trained on Sentinel-2 images.
This comprehensive training strategy yielded a robust generator ca-
pable of delivering deblurred images with enhanced visual fidelity
and structural accuracy, which is crucial for Earth observation tasks
in edge computing environments.

3.2. Edge Implementation

For deployment in the IMAGIN-e mission, the model must oper-
ate onboard a hosted payload on the ISS, sharing computational
resources with other processes and without dedicated acceleration
hardware. Therefore, it is imperative to maintain low latency to
ensure seamless integration into the image post-processing pipeline
(see Fig. 4). The system constraints summarized in Table 1 require
that processing speed and resource usage be carefully managed to
meet the rigorous demands of edge computing environments.

4. RESULTS AND DISCUSSION

The proposed deblurring approach significantly enhances image
clarity and structural reconstruction. Initial models trained on

Table 1: Problem conditions

Parameter Value
Acceleration HW Not present
Available RAM memory 300 MB
Virtual memory 2 GB
Available CPU 3 cores (shared)

(a) Raw image (b) Deblurred image

Fig. 5: Initial deblurring effectively sharpened main borders but pro-
duced low quality images and ringing effect on some captures. Left
image (Fig.5a) shows the output of the sensor, while right image
(Fig.5b) shows the deblurred scene with the initial model.

Sentinel-2 imagery were able to improve the sharpness of IMAGIN-
e data (see Fig. 5), enabling subsequent georeferencing and a more
comprehensive characterization of noise type, effective resolution,
and spectral sensitivity. In addition, the application of a Sobel edge
detection filter confirmed that, despite some undetected boundaries,
the edges of critical objects and terrains were more clearly delineated
(See Fig. 6). These improvements are paramount for subsequent
object detection and segmentation tasks in onboard applications.

Quantitative evaluation demonstrates a substantial enhancement
in image quality across multiple metrics (see Table 2). On Sentinel-2
images, SSIM improved by 72.47% and PSNR increased by 25.00%,
calculated by comparing noisy synthetic images with reference im-
ages in the initial state and processed images with the same refer-
ences in the final state. In contrast, for IMAGIN-e, image percep-
tual quality improved significantly, with NIQE showing a 60.66%
enhancement and BRISQUE improving by 48.38%. Since these
metrics evaluate image quality without requiring clean reference im-
ages, they are particularly valuable for real-world applications where
reference-free assessment is necessary, as is the case for IMAGIN-e.

From a computational standpoint, the deblurring process op-
erates within the edge computing constraints outlined in Table
1. Under these conditions, the model successfully processes a
2048x1536 pixel image in approximately 5 minutes, demonstrating
its ability to handle high-resolution inputs despite resource limita-
tions. Peak memory consumption reaches 600 MB, exceeding the
available RAM and requiring the use of virtual memory. While this
contributes to an extended processing time, the results highlight the
model’s adaptability in constrained environments and underscore the
role of efficient memory management in optimizing performance.

Occasional ringing artifacts were observed, probably due to
scaling operations during patch processing (see Fig. 7). Moreover,
the effective Ground Sample Distance (GSD) varied between 37.4
m and 41 m, reflecting the dynamic imaging conditions of the ISS
and underscoring the need for adaptive processing workflows.
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(a) Border extraction from raw image

(b) Border extraction from deblurred image

Fig. 6: Edge detection using a Sobel filter from both the raw image
(6a) and the deblurred version of it (6b)

.

Fig. 7: Ringing effect on the images

5. CONCLUSIONS AND FUTURE WORK

Despite the inherent complexity of blind deblurring, our results
demonstrate that incorporating Sentinel-2 imagery enables effec-
tive iterative processing. This strategy refined image synthesis
techniques and achieved acceptable outcomes without sharp refer-
ence images. The final model executes efficiently onboard during
post-processing, ensuring IMAGIN-e compatibility and maximizing
instrument utilization.

Moreover, the restored images prove valuable for specific appli-
cations, such as water body segmentation and coarse contour detec-
tion for map generation. However, it is important to note that while
these results are promising for certain contexts, the current resolu-
tion is insufficient for detecting small objects or for the fine segmen-
tation of closely related classes. This limitation reflects the trade-off
between processing speed and image quality inherent in edge com-
puting scenarios.

Further research could focus on leveraging enhanced onboard
computational resources to deploy more powerful models that pro-
cess image patches at their original resolution. By eliminating the
need for downscaling and subsequent upscaling, this approach would
likely yield images with increased realism and detail. Such improve-
ments could enhance the deblurring performance while expanding
the applicability of processed imagery, especially in tasks that re-

Table 2: Image quality metrics for Sentinel-2 synthetic validation
images and IMAGIN-e real ones

Dataset Metric Original Deblurred ∆%
Sentinel-2
(Synthetic)

SSIM 0.4442 0.7662 +72.47%
PSNR 24.0127 dB 30.0159 dB +25.00%

IMAGIN-e
(Real)

NIQE 21.9257 8.6263 +60.66%
BRISQUE 110.8351 57.2149 +48.38%

quire the detection of small objects or fine-grained segmentation.
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ABSTRACT 

The data processing orchestration used in the Sentinel-1C 

Copernicus Production Service has been developed from a 

science-mission data processing framework in the ESA Earth 

Explorer programme. The methodology of the framework 

including specific implementations for the Sentinel-1C 

mission and the application setup as deployed in the public 

cloud is presented. Results from the commissioning phase 

show the performance and scalability of the system. Stability 

and flexibility of the data processing framework, as inherited 

from the operational science-mission context proves to serve 

well for its application for a larger-scale operational Sentinel 

mission. 

Index Terms— Copernicus, Earth Explorer, systematic 

production, cloud computing 

1. INTRODUCTION 

The Copernicus Programme of the European Commission is 

the largest Earth Observation programme on Earth and 

consists of a variety of missions and operational initiatives to 

collect environmental data and exploit valuable information 

gathered in the different subservices. The Sentinel-1 mission 

is the first in the series of Sentinel satellites developed by the 

European Space Agency (ESA) for the Copernicus 

Programme. It consists of a constellation of synthetic aperture 

radar (SAR) imaging satellites designed to provide 

continuous, all-weather, day-and-night imagery of the Earth's 

surface. Its constellation consists of two satellite units, the 

older Sentinel-1A satellite launched already in 2014 and the 

newer Sentinel-1C, which has been launched on 5 December 

2024 and replaced the retired 1B unit. Sentinel-1's SAR 

imagery supports a wide range of applications, including land 

and sea monitoring, natural disaster mapping, sea ice 

observations, and ship detection. This data is widely used for 

environmental monitoring, emergency response, and 

maritime safety. 

The ground segment of the Copernicus Space 

Components are procured as industrial subservices, which are 

interlinked closely and coordinated centrally with common 

procedures. The payload data processing is delegated to the 

Production Services, which are renewed periodically to 

enable competitive service evolution. The computational 

environment for the software elements of the Production 

Services are operated in European cloud infrastructures with 

their inherent benefits of optimized performance, scalability, 

portability, political resilience and compliance. 

With the launch of Sentinel-1C, a new production system 

was put into operation and its setup and features are presented 

in this paper. The software system is based on a processing 

framework “Olib”, which has been developed and used 

successfully for scientific missions in ESA’s Earth Explorer 

programme such as Swarm, EarthCARE, Biomass ([1], [2], 

[3], [4], [5]) as well as the new Generic Processing 

Orchestration System for Earth Explorer missions [8]. The 

framework matured and additional components have been 

added in the past years, such as a data management setup with 

AI-supported operations for a Copernicus Long-Term 

Archive [7]. 

2. METHODS AND TECHNOLOGIES 

The Sentinel-1C data processing builds on a setup of software 

facilities implemented using the Olib processing framework. 

The Production Service delivers Sentinel-1C data processing 

by a dedicated DevSecOps team, along with comprehensive 

service management, reporting, and security oversight. For 

the methodology presented in the following, the focus is on 

the data processing facilities. 

The major use cases of the Olib have been the payload 

data processing facilities, i.e. the Core Processing Facilities 

(CPF) as part of the Earth Explorers’ PDGS and later the 

Copernicus Production Service (CPS), for which the OLib-

software has been qualified since 2024. The Olib is the central 

element of the systematic processing function implementing 

all or most of a mission’s production model. Processing starts 

with the availability of raw data from the acquisition facility 

and usually covers Level-0 (raw time ordered data), followed 

by Level-1 (engineering), Level-2 (geophysical) product 

generation. The actual processing algorithms are 

implemented in processor software elements, which are 

integrated into the CPS production workflows as external 

components. The Olib provides the processing management 

layer in charge of the processing orchestration, which allows 

to properly execute the various processors in line with the 

Sentinel-1-specific production model. 

The processing orchestration is fully configurable and is 

able to handle re-use of existing baseline workflows from the 

Copernicus and Earth Explorer context. To do this, the Olib 

is able to handle production rules and timers for making 
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decisions on processing steps to be performed according to 

the availability of data or time events, as well as processors 

in charge of executing the elementary processing steps of the 

production model. The mission specific configuration has 

been adopted in the orchestration workflows for the 

systematic processing of the Sentinel-1C products. 

2.1. CPS processing facility 

The CPS uses a software system consisting of multiple 

components as depicted in Figure 1. It is a distributed system 

with management entities containing the high-level business 

logic and so-called agents, which carry out the low-level 

business logic (e.g. individual production or dissemination 

steps) using a typical micro-service approach. The micro-

services are deployed in a dedicated Kubernetes cluster 

platform, where agents are running on Kubernetes pods. 

Deployment of the Cluster and on-demand scaling is easy and 

helps to manage different load situations and system 

recovery. Although orchestration frameworks such as 

Apache Airflow, Spring Cloud Data Flow, Pegasus, and 

Prefect support a range of workflows, this PDGS-oriented  

framework leverages a combination of cloud native concepts 

with efficient local caching,  reliable long-term  request queue 

handling, and effective priority handling for all mission's 

specific workflows based on different timeliness 

requirements e.g. NRT, NRT-PT and FAST-24 - computed 

dynamically on runtime. A generic workflow language, such 

as CWL, is not used here, since the processing steps are 

defined based on ESA’s Task Table ICD. The Olib software 

is based on widely used and well supported COTS and 

standard protocols and the framework is published under an 

open source license. The system is implemented in Java Open 

JDK 11, the database system used is PostgreSQL with 

PostGIS extension and Linux is used for the operating system 

for the involved machines.  

 

Fig 1: Processing facility as part of the Copernicus 

Production Service of the Sentinel-1C mission 

The Sentinel-1C Production Service is grouped into three 

functional elements (see Figure 1): the Processing Facility, 

the Production Interface Point (PRIP) Facility and the 

Monitoring Facility. These facilities constitute the automatic 

software system as part of the service elements of the 

Production Service. External Clients can access the 

Monitoring facility through the monitoring dashboard and the 

PRIP service via the respective interfaces such as 

subscription to new publications, data queries and data 

downloads. 

2.1.1. Processing Orchestrator and Nodes 

The Processing Orchestrator is the core component of CPS 

software where the business logic is located. The orchestrator 

provides requests, workflows, resource control and general 

service functionality. The data harvesting and processing 

tasks as part of the production system workflows are 

distributed to a configurable number of processing nodes and 

harvesting nodes. Processing Messages are handled by a 

message queue within the Processing Facility which are 

consumed by the PRIP facility. Measurements and log 

messages are provided to the Monitoring Facility to keep 

track of the status of the processing jobs. 

The software provides horizontal and vertical scaling 

possibilities leading to flexible sizing in order to support any 

kind of (ad-hoc) scaling needs. The scalability is also used to 

fine-tune the performance of the system when bottlenecks are 

identified, usually by adding components, however, 

automatic scaling based on system metric, as supported by 

the framework, is not applied in the CPS, because resources 

were provisioned to anticipate predictable, consistent, and 

systematic production workload. The orchestrator makes use 

of multiple production nodes to perform the CPU and I/O 

intensive work like higher level data production, transfer of 

data from/to external entities, and trace calculations as well 

as routine quality control. Each node contains a single 

instance of the CPS Processing Node Handler, which is 

connected to the CPS Orchestrator. It delegates processing 

tasks, data transfers, and traceability calculations to its 

associated agents. Intermediate products are cached locally 

for efficient access as soon as jobs can be merged in case of 

the same node resources selection (e.g. between Level-1 and 

Level-2 steps). 

2.2. CPS Monitoring 

The monitoring facility in Fig. 1 is supplied with operational 

information from all service elements, and it builds the 

monitoring subsystem in the technical setup of the Production 

Service. It is responsible for metrics gathering and 

consolidation as well as logging. 

The monitoring information data is visualized in specific 

dashboards using Grafana, which provides all means to 

navigate through historical and current time windows. The 

raw values used for the visualization and key performance 

indicator calculation, i.e. communication status with external 

interfaces, components availability, production status, and 

resource usage, are collected automatically by the Monitoring 

and Logging component. Two example screenshots are 

provided in Fig. 3. Additionally, alarms are configured on 

critical thresholds to inform the operators proactively with 

push notifications. 
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Fig 3: Informative Monitoring Dashboards for the 

Sentinel-1C operators, visualizing the downlink 

information (upper panel) and the resource usage (lower 

panel) 

3. SENTINEL-1C PRODUCTION CHAIN 

The Sentinel-1C payload data production is implemented for 

all instrument acquisition modes: the StripMap (SM), 

Interferometric Wide swath (IW), Extra Wide swath (EW), 

and Wave (WV) mode, while a generic data processor is used 

for the generation of Level-1 and Level-2 data. 

The Level-0 production process starts with collecting the raw 

input data known as Channel Access Data Unit (CADU). The 

CADU data is either downloaded from the ground stations 

utilizing CADU interface Point (CADIP) or via the European 

Data Relay System (EDRS). Subsequently, the raw data then 

undergoes different collective and consolidative steps 

depending on downlink chunking, gaps and polarization to 

ensure that the data is complete and properly consolidated. 

Once aggregated, the L0 raw data is assembled and 

segmented into overlapping L0 slices along the azimuth 

direction - these L0 sliced products serve as the foundation 

for the higher level processing steps. 

For subsequent L1 processing, the Level-1 Instrument 

Processing Facility (IPF) is utilized.  Several processing steps 

such as calibration, Doppler Centroid (DC) estimation, and 

terrain height correction are performed by the L1 IPF. Level-

1 Single Look Complex (SLC) and Level-1 Ground Range 

Detected (GRD) products are systematically produced based 

on the Level-0 products. The EW Mode constitutes an 

exception to SLC workflow because it is triggered over 

specific geographical areas only. 

 

 

Fig 4: Simplified Sentinel-1C production model focusing 

on processors without refinement for the different 

acquisition modes 

For Level-1 Extended Timing Annotation Dataset 

(ETAD), Sentinel-1 Extended Timing Annotation Processor 

(SETAP) is utilized.  The SETAP processor uses Sentinel-1 

Level-1 SLC Annotation products and additional Auxiliary 

data to generate ETAD products.  These ETAD products 

provide improved geometric accuracy for Sentinel-1 Level-1 

SLC products. 

Level-2 OCN processing is systematically triggered for 

WV mode, while for other modes (IW, EW, SM), it is only 

triggered when the products footprints are located over the 

sea. 

As a part of SAR Post Processing (SPP) chain, Orbit 

Baseline and TOPSAR Synchronization (OBS), products are 

generated systematically by a dedicated IPF. The ERRMAT 

processing chain systematically generates Error Matrices 

files. These files contain detailed error characterization which 

is essential for accurate calibration of Sentinel-1 SAR data. 

The orchestration framework supports both event-driven 

and scheduled workflows, while CPS relies on events from 

the messaging system (RabbitMQ).  Once an event occurs, 

the corresponding workflow is initiated. However, some 

workflow-steps may wait until all required dependencies are 

met before proceeding.  For example, a Datatake that is split 

across different downlink stations needs to be consolidated. 

The CPS creates a request and waits until all segments 

corresponding to a Datatake become available, then it 

proceeds with execution of the request. 

3.1. New AIS Processor 

The integration of an Automatic Identification System (AIS) 

for vessels with Sentinel-1's radar capabilities improves 

maritime safety by helping ships avoid collisions, supporting 

efforts to detect illegal activities, and mitigating pollution 

risks. 

The Sentinel-1C mission includes the use of the AIS 

processor for ship tracking, enhancing their capabilities for 
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maritime monitoring. The satellite carries an antenna that 

captures AIS signals transmitted by ships, which include 

details such as the vessel's identity, location, and direction. 

The AIS processor on the Sentinel-1C satellite allows for 

precise tracking of ships and is intended to be used for the 

upcoming Sentinel-1D unit as well. AIS imagery is made 

available to European Maritime Safety Agency (EMSA), 

enabling EMSA to utilize this satellite AIS data in 

conjunction with terrestrial data to enhance the safety of 

various maritime operations. 

3.2. Resource usage during Commissioning 

The initial stages of the Sentinel-1C commissioning were 

designed to test the nominal functioning of the Satellite’s 

instruments under minimal load. As the payload increased 

during later stages, the production capacities were scaled up 

to anticipate the increased load accordingly. During the final 

phase of Sentinel-1C commissioning, the system load was 

ramped up to nominal operational capacity - approximately 

800 GB of raw data was processed to produce ~5 TB across 

Level-0, Level-1, and Level-2 products on daily-basis. The 

production was carried out on a Kubernetes based cluster 

consisting of over 625 CPU cores and 3 TB of RAM, 

distributed across different machine types tailored to meet 

varying processing demands. Fig. 5 depicts the number of 

products produced by Sentinel-1C during a single week of the 

commissioning phase. 

 

Fig 5: Production counts for 7 days during commissioning 

accumulated by processing level (left), product type 

(middle), and instrument mode (right) 

4. SUMMARY AND CONCLUSIONS 

A generic processing framework for scientific Earth 

observation missions’ processing in the ground segments is 

used in the Copernicus Programme for the operational 

payload data processing of the Sentinel-1C mission. The 

system concept and software implementation has been 

matured with the different use cases and similar setups will 

build the data processing backbone of some of the near-future 

science missions in the Earth Explorer programme.  

A modified instance of this processing facility is used by the 

Authors’ company to operate one of the Copernicus Long-

Term Archive Services in a public-cloud environment since 

year 2020 [7]. These multi-purpose use cases of the 

framework enhance the stability and variety of the system’s 

modules. 

The software framework is published as Generic 

Processing Orchestration System in a Space CODEV 

repository [9]. Although the software had a science focus 

originally, the Sentinel-1C application as well as the 

Copernicus Long-Term Archive Service demonstrate the 

successful knowledge transfer from explorational science 

activities to large scale, operational programmes of the 

society. 
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ABSTRACT 

Operationalizing algorithms in the Earth Observation (EO) 

domain requires scalable and maintainable workflows to 

manage the variety and large data volume of satellite  

missions. This paper presents the processing system for 

DLR’s Sentinel-1 Normalized Radar Backscatter (NRB) 

product, designed for operational deployment and data 

production. High-Performance Computing (HPC) resources 

are utilized to efficiently process the large data volumes  of 

Sentinel-1 on DLR’s high performance data analytics 

platform terrabyte. The workflow is modeled using Business 

Process Model and Notation (BPMN), chosen for its clarity , 

standardization, and suitability for managing complex 

processing chains. The combination of BPMN and HPC 

enables automation, robustness, and traceability in the 

product generation process. This approach supports 

consistent and high-quality production of the NRB product, 

demonstrating the importance of structured workflows in  

transitioning EO algorithms from research to operational 

environments. It is based on open source software developed 

in the framework of ESA’s Exploitation Platform Common 

Architecture (EOEPCA).  

Index Terms—Workflow, BPMN, HPC, Analysis-

Ready-Data, Sentinel-1, EOEPCA 

1. INTRODUCTION 

In the field of Earth Observation (EO), the transition of 

algorithms from research to operational use presents 

significant challenges. These include not only algorithmic 

robustness and data quality but also the development of 

scalable, maintainable, and automated workflows capable of 

supporting continuous production. The Copernicus Sentinel-

1 mission provides Synthetic Aperture Radar (SAR) data on 

a global scale. To maximize the scientific value of this data, 

derived products such as the Normalized Radar Backscatter 

(NRB) [1] must be generated routinely and reliably. 

The NRB product represents a radiometrically calibrated, 

terrain-corrected SAR backscatter dataset, suitable for long-

term monitoring and geophysical analysis. Ensuring the 

operational availability of such a product involves more than 

implementing the core algorithm, it requires a comprehensive 

processing system that addresses data ingestion, scheduling, 

execution, error handling, and data publication. 

To meet these demands, workflows play a central role. In 

this context, workflows are not merely sequences of tasks but 

structured representations of the entire processing pipeline, 

enabling transparency, reproducibility, and scalability. 

Business Process Model and Notation (BPMN) was selected 

as the workflow language due to its standardized notation and 

suitability for modeling complex, conditional logic in a 

readable format. BPMN supports collaboration between 

domain experts, software engineers, and operators, 

improving communication and maintainability throughout 

the system lifecycle. 

The implementation on DLR’s high performance data 

analytics platform terrabyte [2] leverages High-Performance 

Computing (HPC) infrastructure to address the computational 

load imposed by the large data volumes of Sentinel-1. The 

use of HPC resources ensures timely product generation, 

while BPMN enables clear orchestration of parallel 

processing steps and quality control procedures. 

This paper describes the design and implementation of the 

operational processing system for the Sentinel-1 NRB 

product, with a focus on the integration of hybrid processing 

environments (Cloud and HPC) within BPMN-based  

workflows. The goal is to demonstrate how modern workflow 

technologies support the operationalization of EO algorithms , 

enabling reliable and scalable production systems aligned 

with the growing demands of satellite-based Earth  

monitoring and considering the different perspectives of 

algorithm developers, processing environments, workflow 

orchestration, and operations . 

2. THE SENTINEL-1 NRB PRODUCT 

The Sentinel-1 NRB product was originally defined by 

University of Jena for ESA. Together with the product 

definition, a prototype processor was implemented to 

generate test datasets for product demonstration. This work 

has been continued at DLR by operationalizing the prototype 

processor and refining the product definition. The main  

measurement is radiometrically terrain corrected (RTC) 

gamma naught backscatter (𝛾𝑇
0) per acquired polarization . 

Additionally, several ancillary layers support the backscatter 

interpretation: a multi-layer data mask containing layover and 

shadow masks as well as water body mask, the ellipsoidal and 

local incident angles, the local contributing area, a ratio for 

converting to sigma naught backscatter, and a layer 

delineating the extent of the source products. 
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Fig. 1. Sentinel-1 NRB product in MRGS tiling scheme. 

Blue: MGRS tiles; White: Sentinel-1 GRD footprints. 

2.1. Software 

The open-source Analysis Ready Data (ARD) processor 

s1ard [3] orchestrates the ARD generation. It queries source 

scenes from a database, invokes a core SAR processor for 

generating geocoded SAR backscatter and ancillary products, 

and converts the output into the final NRB structure including 

file format conversion, re-gridding and metadata generation. 

As core SAR processor ESA SNAP [4] is currently used 

because of its open-source availability and comprehensive 

functionality. However, the modular design facilitates easy 

replacement of the core processor by other software 

solutions. pyroSAR [5] is used for reading SAR product 

metadata, configuring and running SNAP workflows, as well 

as downloading needed ancillary for processing like digital 

elevation models and orbit data. 

2.2. Processing steps 

The key processing steps are as follows: 

• Configuration Setup: Generates a configuration file  

specifying parameters such as scene selection, output 

paths, and metadata. 

• Job Order Creation: Defines the area of interest and 

acquisition parameters (e.g. time range, mode) and 

creates a vector geometry file. 

• Job List Generation: Queries the database to identify  

MGRS tiles and matching Sentinel-1 scenes, storing 

scene-to-tile associations in job lists. 

• SAR Processing: Executes SAR core processing for 

each scene using the defined configuration. 

• ARD Conversion: Converts processed scenes into NRB 

tiles through mosaicking, cropping, and metadata 

generation. 

• STAC Registration: Ingests the final product metadata 

into a STAC-compliant database for API-based access. 

2.3. Data input and output 

Sentinel-1 GRD products serve as input. The whole archive 

is stored on terrabyte for immediate availability. Carefu l 

curation of this product ensures that always the latest 

processed GRD products are available to avoid duplication.  

The ARD data output is gridded – identical to Sentinel-2 data 

– in tiles of 110x110 km size aligned to the Military Grid  

Reference System (MGRS) with a pixel spacing of 10 m (see 

Fig. 1). The binary data of the product is stored in cloud-

optimized GeoTIFFs (COGs). In addition, comprehensive 

metadata has been defined in JSON files  compliant to the 

SpatioTemporal Asset Catalog (STAC) specification. 

The data volume of the final NRB product is about 2.3 

times that of the input GRD product resulting in 9 PB. Data 

volume is increased by adding several ancillary layers  and 

COG overviews as well as  through the MGRS grid overlap. 

A decrease in volume is achieved by applying compression. 

The full archive is currently being processed and gradually  

made available to users. An example of data cube analysis 

capabilities was presented at the last BiDS [6]. 

3. PROCESSING ENVIRONMENT 

The terrabyte EO exploitation platform is used to produce the 

Sentinel-1 NRB product. Terrabyte is a hybrid high 

performance data analytics platform based on on-premise 

High-Performance Computing (HPC) and on-premise cloud-

like infrastructures. Both, HPC and cloud, are connected 

internally with high-speed network to the Data Science 

Storage (DSS), where all data – EO data, intermediate data, 

and the final product – is stored. DSS Management Servers 

are available for high-speed data access.  

3.1. Algorithm packaging 

Packaging is an important activity to have a trusted source of 

dependencies necessary for the algorithms used in a 

processing campaign. Today, Docker containers are used 

often to package an algorithm with a defined set of software 

necessary to execute the algorithm. However, containers 

cannot be used in all environments or need to be converted to 

other container formats (e.g., HPC systems do not allow for 

Docker containers, but they can be converted to Charliecloud 

or Singularity containers). To be interoperable with different  

infrastructures, Micromamba [7] has been selected to conduct 

the algorithm packaging with all software dependencies, 

which can be used in both, HPC- and cloud-based 

infrastructures. Micromamba environments can be either 

used individually (e.g., as base environment for an HPC job) 

or installed within containers (e.g., Docker container for 

cloud-based processing).  

3.2. terrabyte HPC 

The terrabyte HPC system, with 44,000 virtual CPU cores 

and 287 TB RAM, supports high-throughput processing of 

compute-intensive jobs. For the Sentinel-1 NRB processing, 

two HPC job types are executed: (1) SAR scene processing 

using ESA SNAP software (16 cores, 45 GB RAM, 60–90 

min runtime) and (2) ARD conversion using the Python-

based s1ard (4 cores, 40 GB RAM, 5–10 min runtime per 

tile). At full capacity, up to 2,750 SAR jobs can run in  
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parallel. Jobs are submitted via SLURM CLI or REST API, 

accessible only within secure networks. Accordingly, 

workflow steps involving job submission must run within  

these environments (e.g., HPC login-nodes). 

3.3. terrabyte Cloud 

While HPC is used for CPU and RAM-intensive processing 

tasks, the cloud environment can be best used for low-level 

tasks, such as input data discovery, creation and registration 

of metadata as well as data validation. terrabyte Cloud has a 

maximum of 3,000 CPU cores and is used for all terrabyte 

web services (e.g., metadata catalogue, visualization services, 

support forum, workflow orchestration). For the Sentinel-1 

NRB processing it is mainly used for workflow orchestration.  

3.4. terrabyte Data Science Storage Management Nodes 

The terrabyte Data Science Storage Management Nodes 

provide the best performant access to the large Data Science 

Storage system. These nodes can be used for input and output 

data validation and integrity checks (e.g., checksums) as well 

as data transfers from the temporary processing folder to the 

central location for data publishing. 

4. PROCESS ORCHESTRATION 

Operational product generations require the coordination of a 

sequence of processing steps (see Chapter 2.2). This set of 

tasks must be designed and integrated into structured and 

repeatable processes to ensure the reliability, maintainability  

and scalability of the whole processing system. In this 

context, workflow definitions based on the Business Process 

Model and Notation (BPMN) specification provide a 

structured and transparent approach to process definition and 

orchestration. By providing a clear and visual framework, 

BPMN models enhance the visibility of the process during 

the development as well as the operational phase, bridging 

the gap between stakeholder requirements, technical 

implementation and operational tasks. They serve as the 

backbone of operational production, enabling the automated 

execution of workflows in a controlled and traceable manner.  

4.1. BPMN models 

A BPMN model is a static representation of the workflow as 

a BPMN 2.0 process definition. It defines the sequence of 

activities (service tasks), events and (conditional) sequence 

flows to be executed during the workflow and is usually 

stored as an XML file. An overview and the specification of 

all possible BPMN modelling elements can be found in [8]. 

The workflow for Sentinel-1 NRB has been separated into 

four models to achieve a better overview, organization and 

error handling for the operator:  

• Data discovery and job preparations for a user-defined 

area and time of interest 

• Grouping of the processing for each Sentinel-1 data 

take found in data discovery step 

• Geocoding of each Sentinel-1 GRD scene 

• ARD conversion and data publishing for each MRGS 

tile of data take 

4.2. Automated product validation 

An important step in the workflow is the automated product 

validation for both SAR processing and ARD conversion to 

the final output format. Diverse errors can happen during the 

processing, e.g. issues with access to the data storage, 

execution in SNAP, creation of metadata, failed downloads 

of auxiliary data, processing timeout.  

After the HPC job is finished either in a failed or 

completed state, the generated output is validated and the log 

files are scanned for typical errors. If there is a “well known 

error” (e.g., failed downloads or access to storage is not 

available), the processing job will be automatically cleaned 

and retried, which is modelled in the BPMN diagram. Only  

for specific or unknown errors or too many retries, the 

processing job will be directed with a conditional sequence 

flow to a human user task in the BPMN model. An operator 

or expert of the algorithm needs to manually check the error 

and restart or finish the execution of the job.  

4.3. System architecture 

As a central BPMN-workflow orchestration tool, the Open 

Source BPMN engines Camunda 7 and Flowable 7 can be 

used on terrabyte. Currently, the NRB processing workflow 

is operated with Camunda but with the upcoming release 2.0 

of ESA’s Exploitation Platform Common Architecture 

(EOEPCA) components, the workflow will be migrated to 

EOEPCA’s Resource Registration building block, which uses 

Flowable as workflow engine. 

A BPMN workflow engine supports the execution of 

service tasks as internal, synchronous invocation of code 

deployed in the workflow engine itself or as external, 

asynchronous tasks provided to an external worker. This 

external worker process is an entity that is independent of the 

workflow engine. It does not need to run in the same process, 

on the same machine or even in the same cluster. When the 

workflow engine encounters a service task that is configured 

to be externally handled, it provides this unit of work as a job, 

which can be polled and acquired by the external worker. The 

worker then executes the job and sends the result back to the 

engine. The benefit of this pattern is that the entities 

performing the actual work are independent of the workflow 

engine which allows the worker to be deployed, scaled out or 

maintained independently. 

In the NRB processing system the workers are distributed 

between the terrabyte HPC, Cloud, and DSS Management 

Node environments. CPU intensive workflow tasks like SAR 

processing and ARD conversion are handled by workers  

deployed on the Login-Node which submit corresponding 
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HPC jobs to the cluster and manage their states. In contrast, 

the more data and access related tasks like data validation, 

data transfer and metadata registration are deployed on both, 

Cloud and DSS Management Nodes, to benefit from fast 

access to the platform storage.  

4.4. Operations 

For the operations of the product generation, dashboards have 

been developed to show different aspects of the processing 

campaign: (1) the HPC resources available and used (see Fig. 

2), (2) the amount of scenes processed, (3) the amount of 

errors, (4) the HPC jobs and their current state (queued, 

running, finished), (5) the storage capacity for the 

intermediate processing location as well as the final output 

location, and (6) the amount of ARD tiles generated. In case 

of errors, the operator can use the Camunda web interface to 

analyze the error and inspect the log files.  

 

Fig. 2. Monitoring of HPC resources used. 

5. CHALLENGES AND OUTLOOK 

Producing Sentinel-1 NRB products operationally involves 

key challenges in data handling, resource management, and 

data format limitations. Large data volumes, especially  

during parallel processing, require stringent cleanup 

procedures to avoid storage overload. Temporary files must 

be removed immediately after each processing to maintain  

system stability. Job scheduling also poses difficulties : Fast 

ARD jobs (5–15 minutes) must be prioritized over longer 

geocoding tasks (60–90 minutes) to optimize HPC utilization . 

This demands adaptive orchestration strategies that respond 

to workload fluctuations. Furthermore, the reliance on GRD 

input data simplifies access—since the full archive is online 

via DLR's terrabyte platform—but introduces border 

inconsistencies between scenes. SLC data avoids this issue, 

yet its larger size and limited online availability present 

significant processing and access challenges. These issues 

underline the need for flexible, automated systems capable of 

balancing efficiency, quality, and operational readiness. 

Future improvements to the NRB production system focus 

on enhancing data quality and ensuring operational 

sustainability. A shift from GRD to SLC input is planned to 

increase data quality, but this requires handling significantly  

larger datasets and addressing the limited availability of SLC 

data, which needs to be retrieved from DLR’s long-term 

archive. Additionally, with the end of open-source support for 

Camunda 7 by late 2025, workflow orchestration will migrate 

to the Harvester component of ESA’s EOEPCA+ framework. 

Harvester supports workflow modeling and execution while 

maintaining compliance with open-source and European data 

standards. These transitions  aim to boost the system's quality, 

scalability, and interoperability, ensuring the S1-NRB 

production remains reliable and adaptable in evolving 

computing environments. 

6. CONCLUSIONS 

The Sentinel-1 NRB product enables consistent, analysis-

ready backscatter data for scientific and monitoring  

applications. Its operational production relies on a robust 

system that combines HPC capabilities with BPMN-based  

workflow orchestration. This paper detailed the system’s 

architecture and addressed challenges related to data volume, 

job prioritization, and input data limitations. Planned 

transitions to SLC input and open-source orchestration tools 

like EOEPCA’s Harvester will further enhance product 

consistency and long-term maintainability. The S1-NRB 

system demonstrates how research-grade EO algorithms can 

be successfully operationalized for large-scale, high-

throughput production, supporting long-term environmental 

monitoring on a continental scale. 
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ABSTRACT 

Global mapping of burned areas (BA) at high spatial 

resolution is critical for understanding fire impacts on 

ecosystems and emissions. This paper analyzes the technical 

obstacles in processing global Sentinel-2 20m imagery for 

BA detection and introduces an optimized, incremental time 

series algorithm designed to minimize computational costs. 

The new approach, implemented within the Calvalus 

processing system on the Copernicus Data Space 

Ecosystem, eliminates redundant input/output operations by 

avoiding the storage of intermediate products and leveraging 

a sliding window strategy. This results in substantial 

reductions in memory usage and processing time, enabling 

scalable and cost-effective production of global high-

resolution BA datasets. 

Index Terms— Burned Area mapping, Sentinel-2, 

High-resolution remote sensing, High volume data 

throughput, Algorithm optimization 

1. INTRODUCTION 

Fire has a profound impact on ecosystems, atmospheric 

chemistry, CO2 emissions as well as human settlements and 

air quality. Burned area (BA) estimation from satellite data 

has been performed since the 70s [1]. Large scale BA 

products from medium resolution optical satellites are 

available but have been shown to be unable to reliably 

detect small fires (< 100 ha). In [2], [3] an approach for 

large scale BA mapping using Sentinel-2 images with 20m 

resolution has been developed and applied to create a data 

base covering all of sub-Saharan Africa. 

 

However, when applied globally, the processing of high 

resolution imagery on very large scales poses significant 

computational challenges, due to the very large data sets 

involved. The processing chain must be extremely efficient 

and well adapted to the underlying computer infrastructure 

to make global scale processing possible and cost effective. 

This paper analyses the computational challenges involved 

in global processing of high resolution burned area, using 

Sentinel-2 20m data with the algorithm proposed in [2], [3] 

and presents a new formulation of the algorithm as an 

incremental time series algorithm. 

 

Processing is done using the Calvalus processing system, 

developed by Brockmann Consult GmbH, Germany 

(https://www.brockmann-consult.de/calvalus/) which 

provides a framework for big data earth observation 

processing based on Apache Hadoop [4]. For the global 

computation of burned area, Calvalus is deployed on the 

Copernicus Data Space Ecosystem (CDSE) [5]. 

2. ALGORITHM 

The algorithm is presented here in an abbreviated manner, 

focusing on aspects that are relevant to the technical 

challenges associated with very large-scale processing. For a 

more in-depth discussion of the algorithm, see [2], [3]. 

 

Fundamentally, burned area is determined in two phases. In 

the first phase, a per-pixel confidence level of burned area is 

computed for all (unordered) pairs of distinct Sentinel-2 

MSI L2A products from the same platform with an 

observation date no longer than 40 days apart. Pairs consist 

of one later observation, termed reference and one earlier 

observation, termed predecessor. The second phase 

encompasses all remaining steps in which the confidence 

levels are filtered and aggregated into monthly products. 

 

The determination of burned area between a pair of 

Sentinel-2 observations in phase one takes into account the 

differences between the Mid-Infrared Burned Index 

(MIRBI) and Normalized Burned Ratio 2 (NBR2) spectral 

indices and the NIR band B8A of the reference and 

predecessor images. Pixels classified as burned are only 

considered if they form a patch larger than 30 ha and are 

close to an active fire, sourced from the VIIRS sensor. The 

scene-classification (SCL) mask provided by the Sen2Cor 

algorithm is used to exclude clouds, no data and water 

pixels from the analysis. This first step is called pre. 
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The second phase comprises a sequence of filters and 

aggregations. The steps of the second phase are termed post, 

fuse and tile. In the first phase, the same observation serves 

as a reference for multiple pairs of observations, visualized 

in Fig. 1. The post step classifies for each reference and 

each pixel if the pixel has been observed, if it was burned 

and selects the confidence level from the pre step with the 

least temporal distance to the reference where the pixel has 

been observed in both elements of the pair. Both pre and 

post steps operate only on observations from the same 

platform, either Sentinel-2A or Sentinel-2B. In the second 

step of the second phase, fuse, pixels classified as burned by 

one platform that have been classified as observed but not 

burned by the other platform are discarded. The final step of 

the second phase, tile, temporally aggregates the filtered 

burned area confidence levels and classifications into a 

monthly product.  

 

Further steps, not discussed here, spatially aggregate and 

resample the results into 5-by-5-degree tiles and a global 

product with reduced resolution. Each of the steps described 

in this paper operates on input products (Sentinel-2 MSI 

L2A) or on intermediate products produced by a prior step 

which have the same extent and UTM projection as the 

inputs. 

2.1. Original Implementation

 

Fig. 1. Processing flow of the original implementation for 

a single platform. Each box represents an intermediate 

or output product that is written to disk and can be 

inspected. Products depend on inputs to their left. 

Additionally, fuse and tile steps depend on inputs from 

the other platform. 

 

The baseline implementation, which has been used to 

generate products for south-Saharan Africa for the years 

2016  [2] and 2019 [3] computes each step atomically, 

reading all necessary inputs and writing a single output. This 

approach allows for maximum parallelization on the 

algorithm step level, as each computation is only dependent 

on its required inputs to be present on the distributed file 

system. The local state in the main memory on any specific 

node is only relevant to a single step and held only for a 

short time. Fig. 1 shows the structure of the algorithm for a 

single platform. 

2.2. Performance considerations for global processing 

While the baseline implementation allows for extremely 

parallel execution, the number of parallelizable steps far 

exceeds the number of available computing notes. There are 

two main contributions to redundant input and output (I/O) 

operations. First, intermediate results are created on disk 

which are not part of the delivered product. This is 

particularly relevant in the case of the pre step, which 

creates an output for each pair of inputs. Second, each step 

must read all input products required for its computation. 

However, the required inputs for many steps overlap 

significantly. For the pre step, each input product acts as a 

reference product for four to eight predecessors and as a 

predecessor for four to eight other reference products. 

Therefore, the same product may be read up to 16 times, 

significantly driving up resource costs. The fuse step reads a 

time series of all post step intermediate products in a time 

window of 80 days. The fuse step for the next observation 

date of the same platform reads the same time series shifted 

by a few days, which changes the required inputs only at the 

edges of the time window. Significant time is spent on 

writing to disk and reading inputs.  

 

To make the global production cost effective, a new 

computational approach has been developed to more 

efficiently compute the same burned area product for very 

large-scale processing. The new implementation is designed 

to avoid the most significant computational inefficiencies 

described above. The new approach seeks to minimize I/O 

operations, keep memory usage low to accommodate 

multiple instances on one machine and optimize CPU usage. 

2.3. Incremental time series approach 

The new implementation is based on an incremental time 

series analysis approach. Fig. 3 shows the set of 

intermediate products held in main memory at a single 

instant in time. The algorithm maintains two cursors into the 

time series of Sentinel-2 observation dates of the current 

granules, which are the inputs to the algorithm,  to define 

the processing window. The two cursors can be interpreted 

in relation to the input products as well as the intermediate 

products produced by the post step, as described in section 

2.1.  

 

In the new implementation, these intermediate products are 

never written to disk. We name the cursor indicating the 

start of the processing window the time frame cursor and the 

cursor at the end the product cursor. 
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Fig. 2. Fuse step. To filter a target observation of S2A, the observations of S2B 40 days before and after the target 

observation are aggregated separately. Dark pixels represent a high confidence burned area, light pixels low 

confidence burned area. White pixels are not observed. A thick red border marks pixels that are overwritten in the 

aggregation process. 

 

In addition to the intermediate products in between the 

cursors, the algorithm maintains accumulated state products 

for the fuse (one per platform) and tile steps. These state 

products have a similar memory footprint to a single 

intermediate product of their respective step and serve to 

reduce the number of intermediate products in memory. 

 

 

Fig. 3. Processing flow of the new implementation 

 

In relation to the input products, any product older than the 

time frame cursor as well as its derivative products from the 

post and fuse steps is completely processed. The data from 

these inputs only affect future results though the 

accumulated states described below. With regard to the post 

step intermediate products, the cursors define the range of 

post step intermediate products that are required to compute 

the future fuse step intermediate products. The product 

following the time frame cursor is the next product to be 

filtered in the fuse step. The time frame cursor advances, 

after a fuse step has been performed and the result is 

integrated into the algorithm state. The product cursor 

advances when a new product must be opened to generate a 

new post step intermediate product. The products with time 

stamps in between the two cursors are, by definition, the 

minimal set of products needed to advance the algorithm. 

This sliding window approach minimizes product reads and 

writes to the achievable minimum, as every input product is 

read exactly once, and no intermediate products are written 

or read. Only the final products required for delivery are 

written to disk. 

 

In the following, the dependencies between the various 

algorithm steps are analyzed, to find the minimal set of 

products required at any point in the algorithm. These 

dependencies are expressed as the (intermediate) input 

products read by each step in the original implementation of 

the burned are algorithm. Trivially, each pre step requires 

two input products, predecessor and reference, when it is 

performed. The post step requires the results of all pre steps 

with the same reference product, as it selects the most recent 

classification and confidence levels for one reference. The 

fuse step, visualized in Fig. 2, requires all products from the 

other platform, e.g. Sentinel-2B for a main input computed 

from Sentinel-2A observations, in a time window of ±40 

days. The tile step requires all results computed by the fuse 

step belonging to observations in its target month, plus all 

fuse result products from 40 days before the beginning of 

the month, to make sure the same burned area is not counted 

twice, in two separate months. 

 

It could be concluded that the maximum number of products 

that the algorithm must keep in memory encompasses 40 

days of fuse result products before the beginning of the 

month and 40 days of post result products after the end of 

the month in addition to fuse and post result intermediate 

products inside the month. This maximum occurs at the end 

of the month, when the earliest intermediate product 

required by the tile step has a time stamp 40 days before the 

beginning of the month, and the latest intermediate product 

required by the fuse step, 40 days after the most recent 

observation, are furthest apart. Fortunately, we can reduce 

the number of open products significantly, by taking 

advantage of the fact that most intermediate products can be 

aggregated in time immediately, as only the aggregated 

products are required to compute the later algorithm steps. 

This strategy can be applied to the post, fuse and tile steps. 
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This process yields an advantage, as the algorithm can 

discard those intermediate products that affect further 

computation only in the form of the aggregated product. 

 

The post step selects the confidence level of that pre step 

computation which has the smallest temporal distance 

between reference and predecessor. This means, it is enough 

to keep track of the most recent confidence level for each 

pixel, when computing the pre steps for a single reference in 

order of largest temporal distance to smallest. In this case, 

only two intermediate results need to be saved, the most 

recently computed one and the aggregation for the current 

reference. 

 

The fuse step filters the intermediate product for a single 

reference observation produced by the post step, by 

aggregating future and past time series of post step products 

of the other platform, to confirm or reject burned area 

observations. The post step intermediate product to be 

filtered is referred to as the target. Fig. 2 shows the 

aggregation step for a short time series. The fuse step 

prioritizes information of the post step results from 

observation dates closest to the target reference date. 

Information from the latest observation before the target has 

the highest priority in the past aggregation and information 

from the observation immediately following the target has 

the highest priority in the future aggregation. For the fuse 

step, this process is subject to two caveats: Once a post step 

result has been integrated into the aggregated state, the fuse 

step cannot be computed for any observation time stamp 

before the newly integrated post step result because of the 

overwritten information. Secondly, the algorithm cannot use 

the same strategy to keep an accumulated state into the 

future. The future aggregation must be computed backwards 

in time, starting from the latest observation and finishing 

with the observation immediately following the target. Fig. 

2 shows information that is overwritten in the aggregation 

process with a thick, red border. The pixel overwritten in the 

future aggregation is relevant for the next fuse step 

computation. However, it is lost in the aggregation for the 

current fuse step. This means that the algorithm needs to 

keep access to the product at 𝑡2. Conversely, the product at 

𝑡−2 can be safely discarded, because the product overwriting 

its information has higher priority for all future fuse step 

computations. 

 

The tile step proceeds in a similar way to the past 

comparison of the fuse step and keeps an accumulated state 

of the most up to date information for the currently 

unfinished month. Taking advantage of aggregated state 

products for the post, fuse and tile steps, the algorithm needs 

to keep track of post result intermediate products for 40 days 

to compute the future aggregation of the fuse step. The 

aggregated products eliminate the need to access 

intermediate products behind the time frame cursor. The 

past aggregation of the fuse step is replaced by an 

aggregated product. Besides accumulated states for tile and 

fuse with a memory requirement similar to a single 

intermediate product of their kind, no products outside of 

the 40-day time frame need to be kept in memory. 

2.4. Reduction in IO operations for sub-Saharan Africa 

The global SFD dataset is based on 3,060,962 Sentinel-2 

L2A input products. The 2019 sub-Saharan Africa product 

has 882,642 inputs of the same type. In the 2019 production, 

using the original implementation, the pre step was executed 

2,426,459 times, reading two products each. The number of 

input product reads is reduced by a factor of approximately 

5.5, from reading two products per observation pair to 

reading each input only once. Further, all reads and writes of 

intermediate products from the pre, post, fuse and tile steps 

have been eliminated, including the 2.4 million pre step 

intermediates (sub-Saharan Africa), read once, and 327,741 

post intermediates, read multiple times each in the fuse step. 

3. CONCLUSIONS 

In this paper, we discuss the challenges posed by global 

production of a high resolution burned area dataset as well 

as an optimized implementation scheme for the existing 

burned area algorithm. The new implementation minimizes 

input and output operations by eliminating all intermediate 

products that were created by the original implementation 

and drastically reducing the number of reads of the input 

products. At the cost of losing the intermediate information 

for later inspection, the new implementation considerably 

reduces the computational requirements.  
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CLOUD-NATIVE DATA SERVICES AT EUMETSAT: A PORTFOLIO APPROACH FOR 
SCALABLE USER ACCESS FOR A DIVERSE USER COMMUNITY

Daniel Lee, Michael Schick
EUMETSAT

ABSTRACT
EUMETSAT, Europe's organisation for the 
exploitation of meteorological satellites, has 
transformed its approach to data access from 
predominantly real-time satellite broadcasts to a 
versatile, cloud-native data access portfolio. This 
shift allows for the service portfolio to be managed 
according to cost and service level targets. The 
services are available using a combination of 
public clouds, private clouds, and on-premises 
environments, including the European Weather 
Cloud (EWC). Leveraging an extendable, service-
based architecture has allowed EUMETSAT to 
rapidly adopt and support interfaces such as the 
WMO Information System 2 (WIS2), backed by 
the robustness of the cloud-native approach. 
Additionally, EUMETSAT actively enhances its 
data readiness for Artificial Intelligence (AI) and 
Machine Learning (ML) workflows guided by 
adherence to FAIR principles, especially in data 
accessibility and reusability.

Index Terms — cloud-native, FAIR, data 
access, services portfolio, AI/ML readiness

1. INTRODUCTION
Historically, EUMETSAT provided satellite data 
primarily through real-time dissemination systems, 
requiring users to independently manage local 
archives if they needed fast access to time series. 
Historical products could be retrieved from a tape 
archive service, but this was not an online service 
and response times were high. Increasingly diverse 
user needs and growing satellite data volumes 
brought this model to its limits, prompting the 
development of a modern, centralized, cloud-
native data service portfolio. This portfolio is more 

flexible and is compatible with a multitude of 
workflows and use cases. This paper describes 
EUMETSAT's transformation, emphasizing its 
alignment with the BiDS 2025 theme of scalable 
digital infrastructures optimized for diverse 
applications. The new architecture has served 
EUMETSAT well as user needs have evolved and 
technology opportunities have presented 
themselves.

2. CENTRALIZED PROCESSING, 
DECENTRALIZED USER CONTROL

Fig. 1. EUMETSAT’s data access services 
portfolio.

EUMETSAT’s legacy is as a real-time data 
provider for nowcasting and numerical weather 
prediction. Additionally, its data products were 
used for monitoring the climate. This led to a 
bifurcation of data access early in the 
organisation’s history; data was made available to 
users with the lowest timeliness possible in order to 
maximise its use in making weather-related 
decisions, often to preserve life and property, in 
real-time, and additionally, data was available from 
a long-term, tape-based archive.
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This setup was cost-effective and fulfilled the 
needs of EUMETSAT’s users very well. However, 
the addition of new missions, the continuous 
increase of data volumes, user demands, and the 
need for online data access changed the 
environment, exposing gaps in EUMETSAT’s data 
access strategy. As more missions were added to 
EUMETSAT’s portfolio and the use of satellite 
data products became more feasible for a wider 
range of users, our potential community expanded 
greatly. In order to allow more users to reap the 
benefits of our data products it was necessary to 
provide data to users in such a way that didn’t 
require them to maintain antennae for real-time 
data reception, operate their own archives to access 
time series on short notice, or write their own 
software in order to visualize our products or use 
them in their own processing chains.

EUMETSAT's data access strategy was therefore 
reworked to leverage a portfolio that takes the 
burden associated with data management and 
processing off users’ shoulders by centralizing a 
variety of data services:

• EUMETCast: A real-time, high-
availability multicast service delivering 
time-critical satellite data globally, suitable 
for users who require immediate, 
operationally relevant data.

• Data Store: Provides online access to 
extensive historical and near-real-time 
datasets, enabling access and integration of 
data products into user workflows.

• EUMETView: Offers interactive 
visualization of satellite products directly 
using standardized web interfaces, 
removing the need for custom visualization 
software.

• Data Tailor: Allows users to transform 
datasets into custom formats tailored 
specifically to their unique processing 
toolchains and specific use case 
requirements.

All these data services can be used in the cloud of 
users’ choice, be it a public cloud, on-premises, or 
a hybrid. Furthermore, EUMETSAT further 

enhances this portfolio by offering hosted 
processing in the form of managed, data-proximate 
processing environment, significantly reducing 
infrastructure demands previously placed on 
individual users. Several environments offer 
computing services tailored specifically to the 
needs of different user communities, sometimes as 
part of a federative offering with other 
organisations. This lets users maintain 
decentralized control by freely deploying and 
interacting with these services across various 
environments, including public clouds and local 
on-premises setups.

3. THE ADVANTAGES OF SERVICE 
ORIENTATION: WMO INFORMATION 

SYSTEM 2
EUMETSAT's adoption of a service-based 
architecture benefits not only our users directly, but 
also our internal development and maintenance 
teams, by providing flexibility. This flexibility is 
evidenced by the rapid implementation of 
EUMETSAT’s interface to WMO Information 
System 2 (WIS2). The existing architecture 
required only minimal, targeted extensions to 
support WIS2, avoiding major rewrites or 
additional service deployments.

Previous architectures would likely have required 
significant development work or the development 
of a new bespoke service to fulfil the required 
interfaces. However, the portfolio approach 
allowed us to extend services surgically. In this 
case, all that was required was the addition of a 
pub/sub service to the Data Store announcing the 
availability of new data products. Users – including 
WIS2 infrastructure – can then access the products 
of their interest from the Data Store directly. No 
changes to our access management technology 
stack were necessary.

This extendibility significantly enhances 
EUMETSAT’s ability to serve the WMO user 
community, increasing data visibility and 
accessibility while incurring low costs and minimal 
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operational disruption, and validates the flexibility 
and future-readiness of the chosen architecture.

4. MULTI-MISSION ARCHITECTURE AND 
SCALABLE ACCESS

Previously, each satellite mission required 
bespoke adjustments to infrastructure and data 
services, increasing both complexity and user-side 
costs. Data formats varied significantly, and users 
often developed unique tools to handle data 
visualization and processing. In contrast, the new 
portfolio allows users to tailor data directly to their 
workflows with minimal effort, significantly 
reducing barriers to adoption. These 
customisations can be executed on EUMETSAT 
computing assets using the Data Tailor Web 
Service, which interfaces with products stored in 
the Data Store, or after downloading from the Data 
Store using a local Data Tailor installation.

The Data Store itself is engineered to be data-
agnostic, and its functionality is limited to data 
discovery and download. Under the previous 
architecture, data products accessed from the tape 
archive could be customized before download via 
a monolithic service. This rich functionality proved 
cumbersome because the provision of data 
collections to users was tightly coupled with any 
customisations that we wanted to offer on those 
data. Decoupling the Store and Tailor functionality 
has made the portfolio more flexible; new data 
collections can be added asynchronously with 
customisations, and the Tailor service can be 
upgraded independently of the storage and 
provisioning services. Further details on the Data 
Store can be found in “Retrieve, transform, deliver: 
Integrating preservation and performance in the 
EUMETSAT Data Lake” by Colapicchioni et al., 
which is also presented at BiDS 2025.

EUMETView also represents a significant step 
forward in the user experience. The service profits 
significantly from the use of standard data formats 
in EUMETSAT’s newer generations of satellites. 
Previously, mission data was provided in bespoke 
formats; users had to understand the bespoke 

formats that were used and develop their own 
software if they wanted to visualize our data. 
EUMETView has made this situation much 
simpler; for heritage missions, users can simply use 
OGC services to consume our data in the form of a 
Web Map Service. Certain products are also 
available as Features or Coverages.

The use of netCDF as the native format for new-
generation satellites not only simplifies the 
development of visualization and processing 
software, but also allows EUMETSAT to more 
rapidly develop and deploy visualisations that are 
available to users as a service on EUMETView. 
EUMETView also allows users to more easily 
share views of our data with colleagues.

All of these services are available both via a 
graphical user interface as well as via REST APIs, 
which makes it easy to interface them with 
downstream automated processing. This allows us 
to offer a high-quality user experience, whether our 
users are humans or machines.

Furthermore, as mentioned previously, real-time 
data provision used to be available only to users 
who operated satellite antennae to receive products 
downlinked from space. This service, 
EUMETCast, has been expanded to offer reception 
not only via satellite but also via terrestrial 
networks. On a per-user basis this allows the 
EUMETCast services (both Satellite and 
Terrestrial) to disseminate more than a petabyte of 
data to users per day, located worldwide.

5. FAIR PRINCIPLES AND FUTURE 
DIRECTIONS

EUMETSAT’s commitment to FAIR (Findable, 
Accessible, Interoperable, and Reusable data) 
principles drives continuous enhancements in data 
discoverability, accessibility, and reusability. 
Expanding the availability of comprehensive time-
series datasets improves their utility for climate 
research, training, and various operational 
purposes. Future initiatives include allowing data 
discovery using SpatioTemporal Asset Catalog 
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(STAC), which we anticipate will significantly 
enhancing catalog navigation and interoperability. 
Such developments ensure that EUMETSAT's 
satellite data holdings become increasingly user-
friendly and widely usable.

6. AI/ML READINESS AND INNOVATIVE 
DATA PROVISION

EUMETSAT is also exploring innovative 
approaches to data provision such as data cubes and 
formats such as zarr to facilitate AI/ML workflows. 
This should allow data to not only be discovered 
and utilized, but also allow our data to be used at 
massive scale. Concurrently, first experiments with 
generative AI chatbots are being trialed, aimed at 
simplifying interactions with our data services by 
enhancing data discoverability, streamlining API 
usage, and making it easier to navigate our 
comprehensive documentation. Although these 
technologies remain exploratory, they demonstrate 
our forward-looking perspective to preparing our 
data services for our users’ evolving requirements 
and the needs of our diverse and growing user 
community.

7. OUTCOMES
The data services have produced an excellent 
performance track record in operations. On a daily 
basis, more than 500 TB are delivered to in real-
time to users on in 150 countries using 
EUMETCast. EUMETView serves up more than 
2 million images per day, and over 400 TB per 
month are delivered to users by the Data Store and 
Data Tailor. These services are reachable in the 
cloud of users’ choice, using APIs, CLIs, and 
GUIs. And the technology stack has proven 
reliable and adaptable as new needs arise.

8. CONCLUSIONS
The portfolio approach adopted by EUMETSAT is 
a significant step forward in the way users can 
access and exploit our data. The new portfolio 
offers a richer set of capabilities, improving the 
user experience while saving costs on all sides 
simultaneously.

Because EUMETSAT remains dedicated to 
serving national meteorological and hydrological 
services, an important consideration in the 
portfolio’s design was not only ease of use, but also 
flexibility. For this reason, we have worked hard to 
achieve a situation where our services can be used 
with equal ease in on-premises computing 
environments, as well as public and hybrid clouds. 
This includes hosted processing cloud offerings 
that EUMETSAT offers for specific user 
communities. Thus the portfolio allows us to 
harness the advantages of centralized processing 
and storage, whilst allowing users to be flexible in 
where they work and consume these services and 
data products.

Furthermore, by building a cloud-native 
architecture, the services are highly scalable and 
interoperable. This lets us respond rapidly to 
technological advancements and new user needs. 
An example of this is the speed and ease with 
which it was possible to extend the data services to 
fulfil the needs of WIS2. It is also demonstrated in 
our ability to experiment with emerging 
technologies and use cases. Currently known 
examples are catalogue services such as STAC, as 
well as new data interfaces such as data cubes and 
zarr. Our focus is not only on human, but also on 
machine consumption, which means that our data 
needs to be available at scale, and these efforts have 
already proved worthwhile through the ease with 
which experimental generative AI applications can 
work with our data services.

EUMETSAT remains committed to providing life- 
and property-saving data services to our users, and 
the use of a cloud-native architecture has helped us 
pursue this goal with flexibility, low costs, and fast 
learning cycles. Similar organisations might do 
well to use this template also, by adopting cloud 
technologies and architecting their solutions to be 
focused on limited functionality and achieve rich 
functionality through a portfolio approach.
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ABSTRACT 

The Earth Observation (EO) sector increasingly demands 
actionable insights rather than raw data. AI-eXpress (AIX), 
developed within ESA’s InCubed initiative by Planetek 
Italia, D-Orbit, and AIKO, revolutionizes the satellite-as-a-
service paradigm by integrating deep-learning models 
directly onboard satellites. AIX introduces an open “App 
Store” ecosystem, facilitating rapid in-orbit demonstrations 
(IOD) and validations (IOV) of advanced AI applications, 
such as real-time object detection and anomaly 
identification. By efficiently managing onboard resources, 
irrelevant data is automatically discarded, optimizing 
memory usage and bandwidth. 

AIX’s low-latency services are crucial for security and 
disaster responsiveness. Actionable intelligence can trigger 
autonomous onboard decisions or be transmitted back to 
Earth as real-time notifications and alerts, ensuring swift 
responses to critical situations. This capability accelerates 
the transition from technology “makers” to “enablers.” 

The AIX mission envelope exemplifies this potential. 
AIX-1p (“The Pathfinder”), launched on 14th January 
2025 onboard SpaceX F9 Transporter-12 (T-12), carries a 
COTS RGB payload (~15 m GSD) assembled in-house by 
D-Orbit, enabling early demonstrations of onboard AI 
processing. AIX-1 (“The Innovator”), launched on 23rd 
June 2025 (T-14), follows with an upgraded architecture and 
expanded service offering. AIX-1+ (“The Visionary”), 
scheduled for the October 2025 Transporter, upgrades the 
imaging capacity with a dual-head imaging payload: a nadir-

looking multispectral camera with ~10 m GSD across 
Sentinel-2 equivalent bands (from B2 to B8a) plus a 
panchromatic channel, complemented by a forward-looking 
wide-swath RGB camera (~150 m GSD). This combination 
supports both fine-scale tasking and broad-area situational 
awareness, demonstrating powerful onboard computing, 
blockchain-enabled services, and near real-time 
responsiveness. 

Index Terms- satellite-as-a-service, ai-augmented 
onboard processing, low-latency insights delivery, Earth 
Observation, autonomy, software-defined missions 

1. INTRODUCTION 

The Earth Observation (EO) sector increasingly demands 
actionable insights rather than mere raw data. Traditional 
EO missions face challenges such as limited onboard 
resources (power and bandwidth), inefficient data downlink 
(irrelevant or low-quality imagery), and delayed decision-
making due to ground-based processing ([1]-[2]-[3]). AI-
eXpress (AIX), developed by Planetek Italia, D-Orbit, and 
AIKO within ESA's InCubed initiative, introduces a 
paradigm shift towards Satellite-as-a-service. Leveraging 
powerful onboard computing, artificial intelligence (AI), 
and blockchain technologies, AIX enables real-time onboard 
processing, discarding irrelevant data, thus optimizing 
satellite memory and bandwidth usage. This workflow is 
referred to as “SpaceStream”. In this approach, data is 
processed where it is most effective, seamlessly bridging 
space and ground resources. In this context, AIX defines 
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“Spacedge” services, a novel approach for interfacing EO 
users with both the satellite and ground segments. 
 

 
FIGURE 1. THE PLANETEK’S SPACEDGE 

ECOSYSTEM, POWERED BY AIX 
CREDITS: HTTPS://WWW.AIEXPRESS.EU [4] 

AIX provides an open 'App Store' ecosystem where users 
can access pre-built applications (e.g., wildfire detection, 
vegetation monitoring, maritime anomaly detection) or 
deploy custom AI algorithms for rapid in-orbit 
demonstration (IOD) and validation (IOV). 

In January 2025, the first AIX satellite (AIX-1p, “The 
Pathfinder”) was successfully launched, demonstrating on-
board processing and paving the way for subsequent 
missions within 2025.  
The second successfully launched satellite, AIX-1 (“The 
Innovator”), incorporates enhanced scalability and near real-
time data services, while the final mission, AIX-1+ (“The 
Visionary”), is scheduled for October 2025, featuring dual-
head multi-spectral imaging capabilities and seamless 
integration with the AIX App Store. All three missions 
(supported by ESA’s InCubed program) are designed to 
lower barriers for SMEs, accelerate EO innovation, and 
confirm AIX as a fully flexible, information-driven satellite 
service platform. 

2. BUILDING BLOCKS 

The AIX/SpacEdge framework, as shown in Figure 1 
consists in several core principles: onboard intelligence, 
modular software design, and a user-focused ecosystem. 
Below is a brief overview of how these elements come 
together: 
1. Space Segment: Leverages D-Orbit's ION Carrier [5], 

which comprises two main components: a modular 
platform and hosted payloads. The ION carrier provides 
standard spacecraft functions (attitude control, 
command and telemetry processing, maneuvers) and 
hosts custom payloads. A dedicated on-board software 
framework supports the execution of user-defined 
algorithms, in particular AI-based applications, 
enabling real-time data filtering, compression and 

information extraction using on-board accelerators 
(GPUs, VPUs). 

 
2. Ground/User Segment: Provides an app store-like web 

interface where users can configure satellite resources 
and tasks, deploy their custom AI applications, and 
manage data acquisition and processing workflows on-
demand. Users interact by selecting sensors, 
configuring acquisitions, algorithms and pre-processing 
steps, and then directly retrieve processed results. 

 

 
FIGURE 2. AIX FRAMEWORK: HIGH-LEVEL 
ARCHITECTURAL SCHEME 

3. Software Framework: As shown in Figure 2, the 
Spacedge-enabled system comprises layered 
architecture: 
• System Controller Abstraction Layer: Manages 

secure and abstracted communication between 
system controllers and applications through remote 
interfaces, handling authorization and remote 
procedure calls (RPC). 

• Monitoring & Control Layer: Provides basic 
housekeeping, network, storage and fault 
detection/recovery services to ensure observability 
and control reliability. 

• Application Support Layer: Hosts runtime services 
for deterministic image processing and AI tasks, 
facilitating the deployment of AI algorithms through 
acceleration devices and parallel processing. 

• Data Processing Layer: Utilizes Planetek's 
proprietary SDK (PkSpacekit), which offers a 
comprehensive ecosystem for data handling, image 
processing, multi-platform support, and hardware 
acceleration through parallelization (e.g., OpenCL, 
GPUs), augmented by AIKO’s services for 
applications and autonomous operations ([9]); 

• AI Augmentation Layer: Enables integration and 
execution of neural network models using widely-
adopted formats (ONNX [6], Apache TVM [7], 
CNNs), allowing efficient inference and 
quantization for onboard processing. Figure 3 
depicts such a mechanism, sketching the basic 
behavioral model supported, and extensible, via the 
framework. 
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FIGURE 3. AIX SUPPORT FOR NEURAL 
NETWORKS: THE INFERENCE ENGINE 
PERSPECTIVE 

 
4. Blueprint Editor: As highlighted in Error! Reference 

source not found., this tool provides a graphical 
interface for designing custom data-processing and AI 
workflows. It automatically generates the underlying 
code, allowing non-expert users to rapidly compose and 
deploy onboard applications without extensive 
programming effort. 

 
FIGURE 4. PROTOTYPAL DEMO IMPLEMENTED 
WITH THE IMGUI-NODE-EDITOR OPEN-SOURCE 
PROJECT [8] 

5. Imaging systems: The first two AIX missions (AIX-1p 
and AIX-1) are equipped with a commercial-off-the-
shelf (COTS) RGB camera, assembled in-house by D-
Orbit, delivering a ground sampling distance (GSD) of 
~15 m. These payloads provide rapid prototyping 
capability for in-orbit AI demonstration and service 
validation. The third mission, AIX-1+ (‘The 
Visionary’), introduces a dual-head multispectral 
payload: a nadir-looking imager with ~10 m GSD 
across Sentinel-2 equivalent bands (B2–B8a) plus a 
panchromatic channel, complemented by a forward-
looking wide-swath camera (~150 m GSD). This dual-
head mosaic snapshot camera system (supplied by TSD 
Space) supports both high-resolution tasking and broad-
context monitoring, expanding the range of applications 
from local asset monitoring to regional-scale anomaly 
detection. 

 
6. Operational Workflow: Users configure services via a 

web portal, defining sensors, acquisitions time, 
processing chains, and actionable outputs. Configured 
tasks are scheduled, uploaded via ground infrastructure, 

executed onboard, and results returned to users. 
Resources are automatically released after execution, 
enabling continuous and optimized resource utilization. 
Figure 5 shows the entire workflow from the user 
request to the insights’ delivery. 

3. CONOPS 

By processing data in orbit, AIX fundamentally changes the 
speed and efficiency of Earth Observation. Instead of 
collecting raw images and sending them to ground for 
analysis, the satellite itself evaluates and filters out what's 
irrelevant - such as cloudy scenes or areas of no interest - 
and then quickly downlinks only the important results. This 
eliminates wasted bandwidth, reduces delays and allows 
faster response to events on the ground. For instance, a 
wildfire detection app can highlight hot spots and generate 
an alert almost instantly, rather than waiting for a full image 
to be downlinked and reviewed later. 
 
The "app store" approach gives researchers and companies a 
straightforward way to test and deploy their own algorithms 
in space. It eliminates the long lead times typically required 
to integrate new software into a mission, making it possible 
to run quick experiments or deploy updated versions of 
existing applications whenever needed. This creates an 
ecosystem where new ideas can reach orbit faster and 
promising algorithms can be demonstrated under real-world 
conditions. 
 

 
FIGURE 5. AIX OPERATIONAL SERVICES FLOW 

 
AI-eXpress also paves the way for new business models 
based on on-demand satellite services. Customers pay only 
for what they need – like a specific type of data product, a 
short test campaign, or a continuous monitoring service. 
This makes satellite resources more accessible to smaller 
companies and research groups, who can now affordably 
access advanced in-orbit computing capabilities. 
In the long term, such flexibility and shared resources could 
accelerate innovation across the EO sector, shifting the 
focus from raw data to immediate, actionable insights. By 
lowering the entry barriers, AIX democratizes access to 
space technology, enabling a broader range of stakeholders 
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to participate in and benefit from EO advancements. This 
democratization fosters a more competitive and dynamic 
market, where even small-scale enterprises and academic 
institutions can contribute to and drive technological 
progress. 
Moreover, the on-demand model supports a more 
sustainable approach to satellite operations. By optimizing 
the use of satellite resources and reducing unnecessary data 
transmission, AIX helps minimize the environmental impact 
of satellite missions. This efficiency not only conserves 
bandwidth and energy but also aligns with global efforts to 
promote sustainable practices in space exploration and 
technology. 
AIX 's innovative approach also encourages the 
development of specialized applications tailored to specific 
industry needs. For instance, agriculture companies can 
leverage real-time crop monitoring and predictive analytics 
to enhance yield and resource management. Disaster 
response teams can benefit from rapid damage assessment 
and situational awareness, enabling quicker and more 
effective interventions. Urban planners and environmental 
agencies can utilize up-to-date land use and environmental 
data to make informed decisions and policies. 
Furthermore, the integration of blockchain technology 
within AIX ensures data integrity and security, providing an 
additional layer of trust and transparency for users. This 
feature is particularly valuable for applications requiring 
high levels of data accuracy and reliability, such as financial 
services, insurance, and regulatory compliance. 
Overall, AIX not only transforms the EO sector by 
providing low-latency, actionable insights but also fosters a 
collaborative and innovative ecosystem. By making 
advanced satellite services more accessible and sustainable, 
AIX is poised to drive significant advancements in various 
industries, ultimately contributing to a smarter and more 
connected world. 

4. RELEVANCE 

 
AIX is a versatile platform that benefits various industries 
by providing advanced AI capabilities and low-latency 
information processing and delivery directly onboard 
satellites. Few some examples of industries that benefit from 
such a platform/service, with a special focus on defence, 
security and sustainability is: 
 
Defence and Security: AIX significantly enhances defence 
and security operations by providing real-time, actionable 
intelligence. The platform's ability to process data onboard 
and deliver low-latency alerts is crucial for timely decision-
making in critical situations. For instance, AIX can be used 
for: 

• Real-time object detection: Identifying potential 
threats such as unauthorized vessels in restricted 
areas. 

• Anomaly detection: Monitoring and detecting 
unusual activities or changes in strategic locations, 
which can be vital for national security. 

• Autonomous decision-making: Enabling 
autonomous decision-making based on predefined 
criteria, such as initiating countermeasures or 
alerting ground control about potential threats. 

 
Civil protection and emergency response: AIX supports 
civil protection and emergency response by providing rapid 
assessments and situational awareness during disasters. This 
includes: 

• Fire detection: Identifying and monitoring 
wildfires in real-time to assist firefighting efforts. 

• Oil spill detection: Detecting and tracking oil 
spills to mitigate environmental damage. 

• Disaster management: Providing real-time data 
on natural disasters like floods and earthquakes to 
coordinate rescue and relief operations 

 
Environmental monitoring: AIX aids in environmental 
monitoring by providing detailed and timely data on various 
environmental parameters. This includes: 

• Forest health management: Monitoring forest 
conditions to detect diseases, pests, and illegal 
logging activities. 

• Urban planning: Providing data on land use and 
environmental changes to support sustainable urban 
development. 
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ABSTRACT 

Earth Observation (EO) satellite data are increasingly 
recognized for their role in addressing global challenges, 
including climate change and urban resilience. Despite their 
potential to enhance monitoring and planning, adoption by 
Local and Regional Authorities (LRAs) remains limited and 
underexploited. This paper investigates the perceived drivers 
and obstacles shaping EO adoption among LRAs, using an 
integrated framework based on the Technology Affordances 
and Constraints Theory (TACT) and the Technology-
Organization-Environment (TOE) model. A survey was 
conducted among LRAs engaged in EU-funded EO-related 
projects. Results from 17 EU countries show a moderate 
adoption rate (56%), mainly for specific projects. EO data are 
valued for decision-making support and cost-effectiveness. 
Still, barriers persist, including technological limitations, lack 
of skilled personnel, and weak regulatory incentives. 
Participation in projects and internal organisational needs 
emerge as key drivers. Despite the limited sample size, these 
findings offer insights into the end-users’ perspectives and 
enabling conditions for expanding EO data use within LRAs. 

Index Terms— Copernicus’end-users’ perspectives; 
Urban Climate adaptation; Space economy. 

1. INTRODUCTION 

Earth Observation (EO) satellite data are increasingly 
recognised as strategic assets for monitoring environmental 
change, contributing to the Sustainable Development Goals 
(UNOOSA, 2019)[1]). According to the European 
Commission’s Knowledge Centre on Earth Observation 
(KCEO), EO products and services can contribute to over 28 
EU policy areas, including climate adaptation, agriculture, 
and urban development. The value of EO data is particularly 
relevant at the local and regional levels, where climate-related 
risks are most concentrated, and the capacity for monitoring, 
planning, and resilience-building needs to be supported. EO 
and other geospatial technologies offer powerful tools for 
enhancing local decision-making in domains such as climate 
adaptation, land use, and urban heat mitigation (Dowell M. et 
al., JRC, 2025) [2]. With nearly 70% of Europe’s population 
residing in urban areas, mainstreaming the use of EO by 
Local and Regional Authorities (LRAs) is critical for 
delivering space-enabled policy impact. Nevertheless, 

despite the growing availability of EO data and platforms, 
adoption by LRAs across Europe remains limited (EARSC, 
2023).[3] In addition, the perspectives of local users—who 
must translate EO data into policy, planning, or service 
delivery—are still underexplored in both academic literature 
and institutional strategies (OECD, 2023 [4] [2]). Building on 
earlier author’s studies in Italy (Filippi et al. 2025) [5], this 
paper extends the analysis on a European scale, applying an 
integrated theoretical framework, Technology–
Organization–Environment (TOE) [6] and Technology 
Affordances and Constraints Theory (TACT) [7], to assess 
factors influencing EO adoption and use. The paper addresses 
the following research questions: RQ1: What are the main 
technological, organisational, and environmental factors 
influencing EO adoption by LRAs? RQ2: What affordances 
and constraints are perceived in the use of EO satellite data 
and services? 

2. METHODOLOGY 

This study adopts a qualitative, theory-informed 
approach based on multiple case studies (Yin, 2017) [8] to 
explore the adoption and use of Earth Observation (EO) 
satellite data by Local and Regional Authorities (LRAs) 
across Europe. This design enables both comparative 
analysis across organisational and territorial contexts 
and theoretical generalization from prior research conducted 
in Italy. Given the specialized nature of the target population 
and limited sample size, the study follows the logic 
of analytical generalization, aiming to identify transferable 
patterns and theory-informed insights. Survey Design and 
Theoretical Framework. To address the research questions, 
a structured survey was designed and administered to a 
purposive sample of European LRAs. The survey builds on a 
framework developed in two prior author’s studies. It is 
grounded in two complementary theories: Technology 
Affordances and Constraints Theory (TACT) (Majchrzak & 
Markus, 2013) [7], used to assess the perceived benefits and 
limitations of EO technologies. Technology–Organization–
Environment (TOE) (Tornatzky & Fleischer, 1990) [6] was 
used to identify organisational and environmental conditions 
influencing adoption. In addition, three more sections have 
been introduced in the survey: organisation’s background, 
EO usage patterns, Barriers/enablers and peer advice. The 26-
question survey employed Likert scales, single/multiple-
choice, ranked responses, and one optional open-ended item. 
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Sampling Strategy and Data Collection. The target 
population included subnational public authorities (cities, 
regions, agencies) (potentially) interested in EO satellite data. 
A purpose-driven sampling strategy was adopted, identifying 
LRAs engaged in EU-funded projects (i.e. through Horizon 
Europe, Life+, Interreg, EUI, URBACT) related to EO, 
climate adaptation/mitigation, or smart cities. A total of 30 
LRAs were identified, and the survey was distributed 
via LimeSurvey (v6.4) in English. Responses from those not 
using EO were routed to a shorter version (approx. 1 minute); 
full participation took 10–12 minutes. Data Analysis 
Approach. Given the limited sized of the sample (N=25), the 
analysis focused on descriptive statistics (frequencies, means, 
SD) for EO use, affordances, barriers. 

3. RESULTS 

3.1 Sample overview. Thirty-three individuals representing 
55 individuals from 50 LRAs across EU were contacted. A 
total of 50 responses to the survey have been received, of 
which 25 are fully complete (completion rate: 50%). 
Notably, Italian LRAs were deliberately excluded to avoid 
overlap with the author’s prior national-level study and to 
ensure the European focus of the present analysis. 
Respondents came from 17 EU countries, with a balanced 
mix of cities, metropolitan cities, and regional/municipal 
agencies, while regions are underrepresented. Most were 
from medium-sized organisations, with over half employing 
up to 3,000 people. 

3.2 EO data usage and adoption patterns. Out of the 25 
respondents, N=1 reported not knowing whether their 
organisation uses Earth Observation (EO) satellite data, and 
N=1 reported they are not using this technology. N=7 
respondents indicated that EO data is used only indirectly, 
primarily via tools such as Google Earth, without structured 
access to EO datasets or services. The remaining eight, N=14 
respondents, reported direct use of EO satellite data. This 
group of direct users includes representatives from all 
organizational types in the sample (cities, metropolitan cities, 
and regional/municipal agencies), suggesting no clear 
association between the type of organization and the 
likelihood of direct EO adoption. As shown in Table 1, the 
level of EO data adoption is mostly (86%) concentrated at the 
lowest level (Level 1-2), with residual respondents (14%) 
reporting a more structured use (Level 3-4). 

Table 1. Degree of EO satellite data adoption and use 
among surveyed LRAs (N=14) 

Level of 
EO Usage 

Description Respondents  
(N) 

Level 1 Tested experimentally 5 
Level 2 Used occasionally for specific 

projects or reports 
7 

Level 3 Regular use in workflows 1 
Level 4 Institutionalised use 1 

 
In terms of thematic domains of application, EO satellite data 
was most frequently used for addressing urban heat islands 
(N=8), followed by urban planning and urban greening (each 
N=6). And land use and land cover (N=5). Less frequent 
domains include air quality (N=3), emergency and Ground 
motion (N=2) and single mentions for biodiversity, hydro-
meteorological monitoring. The primary source of EO 
satellite data used is the Copernicus programme, cited by 
71% of users, 21% reported to use primarily national satellite 
constellations and only 1 (a Dutch org.) a commercial satellite 
data. In terms of purposes, monitoring (N=8) and planning 
activities (N=6) are almost equally represented among the 
respondents, while no respondents reported using EO data for 
law-making or forecasting systems. 
3.3 Technology Affordances and Constraints. This section 
was completed only by the 14 respondents who 
reported direct use of Earth Observation (EO) satellite 
data within their organisations. Participants were asked to 
indicate their level of agreement with the following five 
statements using a 5-point Likert scale. 

Figure n.1 Respondents' agreement (5-point Likert scale) 
on five statements reflecting EO satellite data affordances 
and constraints. Values represent average values across 
eight EU LRA respondents directly using EO 
technologies. 

 
 
As can be seen in Figure n.1, respondents 
expressed moderate to moderately high levels of 
agreement, suggesting a generally favourable perception of 
EO technologies, albeit with some reservations. EO satellite 
data was seen as moderately useful to improve decision-
making (mean = 3.8), and they are recongnized as cost-
effectives compared to other sources of data (3.5). Also, their 
integration into an existing platform is perceived as quite 
manageable (mean = 3,.6). However, concerns about cost and 
ownership of commercial data are common issues. The 
resolution adequacy of the EO satellite in meeting the 
organisations’ operational and knowledge needs scored 
lowest (mean= 3.2), indicating perceived limitations. This 
finding is consistent with the high frequency of "EO satellite 
data does not fully meet our operational and knowledge 
needs" being cited as a major barrier in the subsequent 
section. 
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3.4 Influential factors. All the respondents, including those 
using EO only indirectly (total N=21), except for those not 
using EO satellite data or not aware of it (N=2), participated 
in the survey. 

Figure n.2 Respondents' agreement (5-point Likert scale) 
on four statements reflecting organisational factors. 
Values represent average scores across respondents N=21 

 

As shown in Figure 2, the responses indicate a widely 
perceived lack of awareness among high-level management 
regarding EO technologies (mean = 3.8), highlighting a 
potential leadership-level barrier to adoption. More critically, 
there is strong evidence of a weak organisational capacity, 
particularly in terms of training provision (mean = 
1.6) and internal technical expertise (mean = 2). These 
results suggest that most organisations lack the skills and 
knowledge required to autonomously process and exploit EO 
data. On a more positive note, respondents 
reported moderate agreement regarding the existence of 
a general data culture and trust in data (mean = 3.3), 
which could serve as a partial enabling factor. 

3.5 Environmental influential factors. Regarding 
regulatory pressures, among the 21 respondents, only one 
reported a clear legal or regulatory mandate/encouragement 
for the adoption of EO satellite data. At the same time, N=13 
answered "No" and N=7 selected "Only indirectly". These 
findings indicate that external institutional pressure is 
currently minimal. However, the presence of indirect 
references to support EO in broader policy frameworks 
suggests a latent or "hidden" potential for regulatory 
incentives to play a more prominent role in the future. 

Regarding inter-organisational cooperation at the regional 
scale, such as collaboration with other cities, provinces, or 
regions, 10 respondents confirmed active cooperation, 
while 4 indicated they are not experimenting it. 

A particularly strong consensus emerged on the value 
of structured exchange and learning opportunities among 
public authorities. 21 out of 25 respondents agreed that such 
opportunities would support EO adoption in their 

organisation, with only 4 respondents expressing 
disagreement. This result underscores the importance of peer-
to-peer learning, knowledge transfer, and capacity-building 
networks as enabling conditions for wider and more effective 
EO integration in public sector contexts. Also, respondents 
were asked to evaluate if and to what extent the access to EU 
funds has been key to start EO data adoption. The mean 
value =3.6 indicates a moderately high value of EU funding’s 
perception as an opportunity to support the adoption of EO 
satellite data. 

3.6 Perceived Barriers, Drivers perceived, Peer to Peer 
advice. All the survey respondents, including those not using 
EO satellite data (N=25), were asked to identify the main 
barriers to adopting and using EO data in their 
organization. They have been invited to choose the three most 
relevant barriers from 6 different options. 

As shown in Table 2, respondents highlighted skill shortages 
(N = 17), budget costraints (N=12) and EO satellite data 
suitability (N =11), as top barriers. 

Table 2. Main perceived barriers to EO data adoption 
among surveyed LRAs (N = 25) 

Barrier (N) 
Lack of properly trained staff 17 
Limited budget 12 
EO data does not fully meet 
operational/knowledge needs  

11 

Complexity of the procurement 6 
Complexity of the technology 5 
Lack of top-management/ legal inputs 5 

3.7 Key drivers perceived. Respondents who declared to use 
directly EO satellite data (N=14) were asked to identify, 
based on their experience, the key factors enabling EO 
satellite data adoption, by choosing three among 9 pre-
defined options.  

Table 3 Main perceived drivers fostering the adoption of 
EO satellite data among LRAs surveyed using EO data. 
(N=14) 

Driver (N) 
Participation in a specific project or 
initiative 

10 

Organisation’s internal need 9 
Collaboration with a university or 
research institution 

6 

My own individual awareness or 
motivation 

5 

Effective collaboration with an 
industrial service provider 

5 

Availability of funding from an EU 
programme 

4 

Engagement with ESA 1 
Strong commitment from leadership 0 
Legal or regulatory requirements 0 

As shown in Table 3, the most frequent factor (N=10) is the 
participation in a specific project or initiative, followed by 
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the organisation’s need for the improvement of monitoring 
and planning (N=9).  
Among secondary factors, collaboration with universities 
(N=5) or individual awareness or motivation and 
collaboration with a company (N = 5 each) were identified 
as moderately influential. 
3.5 Peer-to-peer recommendations. Drawing on their 
experience, the eight respondents who directly use EO 
satellite data were asked what advice they would give to a 
public authority planning to initiate EO data use by selecting 
the three most relevant recommendations from a pre-defined 
list. 
Table n.4 Peer-to-peer recommendations among LRAs 
surveyed (N=14) 

Recommendations (N) 
Establish partnerships with research centers/univ. 10 
Invest in internal training for staff 7 
Collaborate with an industrial service provider to 
develop tailored solutions 

6 

Raise awareness and commitment from 
political/institutional leadership 

5 

Build direct cooperation with ESA or the National 
Copernicus Users Forum 

4 

Allocate funding within ordinary budget 4 
 
As shown in Table 4, the most recommended peer-to-peer 
advice is building academic partnerships (N=10) and (N = 7), 
followed by service provider collaboration, increased 
leadership awareness, and engagement with ESA (N=4). 

4. CONCLUSIONS 

Although preliminary, the results reveal consistent patterns. 
Despite being distributed among LRAs already involved in 
potentially EO-relevant projects, the small but institutionally 
diverse sample (N = 14), comprising cities, metropolitan 
cities, and regional agencies, highlights that only 57% of 
respondents directly use EO satellite data, and even then, 
mainly in experimental or project-based forms rather than 
through institutionalized adoption.   

 
Organizational barriers are significant. A shortage of skilled 
personnel, limited training opportunities, and low leadership 
awareness consistently hinder adoption. Externally, 
regulatory drivers are weak, with little formal pressure to 
adopt EO technologies. However, peer-to-peer exchanges are 
seen as highly valuable, and EU funding plays a moderately 
supportive role. The potential for regional cooperation 
remains partially underexploited. 
 
Perceived affordances of EO data are moderately positive. 
Users value EO’s contribution to decision-making and cost-
effectiveness despite ongoing concerns about data resolution 
and cost and ownership issues for commercial data. Not 
unexpectedly, among key barriers, we find inadequate 
internal expertise, limited data adequacy for operational 

needs, and budget constraints, aligning with findings from 
previous studies (Filippi E. et al., 2025 [8]; JRC 2025 [2]). 
Adoption seems to be driven by a combination of internal 
organisational needs and external opportunities, notably 
participation in EU-funded projects. This suggests a hybrid 
model, where bottom-up organisational needs appear to 
trigger interest in EO technologies, and actual adoption is 
often activated and supported by externally driven 
opportunities.  
Peer-to-peer recommendations confirm these insights: 
experienced users emphasise investments in human capital, 
strategic collaboration with research, industry partners and 
ESA, and a stronger leadership engagement. 
The study presents relevant limitations due to the size of the 
sample and its composition derived from a purposing sample 
strategy. However, the survey, grounded in two theoretical 
models and already tested, could serve as a reference for 
future research. New investigation is needed with a larger 
sample to allow for cross-countries and cross-organisation in 
depth analysis and correlation. Still, the findings highlight 
that EO satellite data have substantial potential to improve 
local policy and service delivery but remain only partially 
underutilized. A comprehensive approach, combining 
technological upgrades, organizational capacity-building, 
and targeted policy interventions, is needed to foster broader 
and more systematic EO integration. 
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ABSTRACT 

Precise and regularly updated maps of burned area extents are 
essential for effective wildfire management. Ground surveys 
for this purpose are costly and time-intensive, making 
satellite remote sensing a fundamental and efficient 
alternative. This study presents a deep learning-based 
framework for burned area detection in Greece, leveraging 
Sentinel-2 satellite data. A U-Net model was trained using 
data from the past two years of fire events cataloged by the 
Copernicus Emergency Management Service (CEMS). The 
methodology included preprocessing Sentinel-2 imagery, 
generating training samples, training the model, and 
implementing pixel-wise classification with U-Net. To assess 
performance, the U-Net model was compared to baseline 
models such as DeepLabV3 and MMSegmentation. The U-
Net outperformed the baselines, achieving an accuracy of up 
to 96% and high F1-scores, while demonstrating 
computational efficiency. Validation was conducted on two 
wildfire events (EMSR747 and EMSR767), with overlap 
analyses showing high agreement (94.5% and 95.7%, 
respectively) between the U-Net predictions and EMS 
reference products, indicating that, the U-Net model reliably 
delineated burned areas across diverse landscapes. This study 
highlights the potential of deep learning in advancing wildfire 
monitoring and management, offering scalable, accurate, and 
efficient solutions for post-fire assessment. 

Index Terms— Wildfire, deep learning, classification, 
remote sensing, U-Net 

1. INTRODUCTION 

Wildfires are among the most devastating natural hazards, 
resulting in significant ecological, economic, and social 
impacts globally. Greece, a country characterized by its 
Mediterranean climate and diverse ecosystems, has faced 
increasingly severe fire events over recent years due to a 
combination of climatic changes and human activities. These 
events not only cause extensive damage to flora and fauna but 
also contribute to soil erosion, long-term land degradation 
and even lead to severe flooding. The importance of effective 
post-fire management and rapid response strategies 
necessitates the availability of precise and up-to-date burned 
area maps [1]. 

Remote sensing has emerged as a critical tool for wildfire 
monitoring and assessment, providing a cost-effective and 
efficient means to gather information across vast and often 
inaccessible landscapes. Satellite-based remote sensing has 
long been a cornerstone in the study of wildfires, offering 
critical insights into pre-fire conditions, active fire detection, 
and post-fire impacts. For post-fire analysis, it provides 
essential data for quantifying burn severity and delineating 
the spatial extent of fire-damaged areas [2], [3]. Sentinel-2, a 
key mission within the European Copernicus Program, is 
particularly well-suited for this purpose. With a spatial 
resolution of 10 meters and frequent revisit cycle (5 days), 
offers opportunities for detailed and timely burned area 
mapping [4]. Its multispectral imaging capabilities, combined 
with its global coverage, enable the detection of subtle 
spectral changes associated with burned vegetation [5]. These 
capabilities are particularly relevant in the context of the 
Greek territory, where fire events are both frequent and 
spatially extensive. 

This study builds upon the existing research and 
contributes to the growing field of remote sensing and 
artificial intelligence by developing a deep learning-based 
framework for burned area detection across the entire Greek 
territory using Sentinel-2 data. It incorporates the following 
innovative aspects: 

 
● Two-Year Dataset: Leveraging data from two years 

events adds temporal depth. 
● Model Generalization: Training the U-Net model on a 

diverse dataset of fire events ensures robustness across 
varying conditions and regions within Greece. It 
provides a scale of application (nationwide 
application) that is less common in existing literature. 

● Operational Scalability: The framework is designed to 
infer burned areas efficiently across the entire Greek 
territory, enabling rapid deployment in operational 
settings. 

2. MATERIALS AND METHODS  

2.1. Study area 

Greece, located in Southeastern Europe, is characterized by a 
diverse topography. This geographical diversity is 
accompanied by a Mediterranean climate, marked by hot, dry 
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summers and mild, wet winters. These climatic conditions, 
combined with human activities, make Greece particularly 
susceptible to wildfires, especially during the summer 
months. Over the past decade, the country has experienced 
numerous devastating fire events (Figure 1), with significant 
impacts on its ecosystems, economy, and local communities. 
The study area encompasses the entirety of Greece, including 
both mainland and island regions. The selection of the study 
area is critical, given its ecological significance and the 
increasing frequency of wildfire events. 

2.2. Satellite data 

This study leverages Sentinel-2 satellite data, which provides 
multispectral imagery crucial for capturing the spectral 
changes caused by wildfires. The dataset includes records 
from fire events across Greece over the past two years, as 
catalogued by CEMS. This extensive dataset ensures that the 
U-Net model can be trained to recognize and classify burned 
areas with high accuracy across the country’s diverse 
landscapes. 

In this approach, twenty (20) Sentinel-2 level-2A 
(Bottom-Of-Atmosphere) images during 2023-2024 were 
obtained. The criteria for the selection of scenes were the high 
quality of data and the limited cloud coverage (absence of 
clouds over the burned areas of interest). A few examples are 
presented in false color composites (Figure 2). 

2.3. Methodological procedure 

2.3.1. Tools 

For this study, ArcGIS Pro was used as the primary tool for 
the implementation of the workflow. ArcGIS Pro’s Image 
Analyst extension supports advanced deep learning 
capabilities, including tools for data preparation, training, and 
deployment of DL models. Its integration with deep learning 
frameworks like TensorFlow and PyTorch enables seamless 
workflows for pixel classification, object detection, and 
semantic segmentation. Αll computations were performed on 
a Windows 10 workstation equipped with an Intel Core i5-
8300H CPU, 32 GB of RAM, and an NVIDIA GeForce GTX 
1050 GPU. 

2.3.2. Initial processing of Sentinel-2 data 

Sentinel-2 imagery was preprocessed to ensure consistency 
and readiness for classification. This included resampling the 
SWIR-2, NIR, and Red bands [4] using the nearest neighbor 
algorithm to match a uniform spatial resolution. The bands 
were then stacked to create a single composite image. This 
preprocessing step is critical to align spectral data and 
facilitate efficient training and classification of imagery. 

 
Figure 1. Spatial distribution of the wildfire events in 
Greece (2023-2024) used as training data for the 
algorithm, shown as points with their corresponding 
CEMS codes overlaid on a Sentinel-2 cloudless mosaic. 
 

 
Figure 2. Examples of wildfire events displayed in a false 
color composite (R: SWIR-2; G: NIR; B: Red). 

2.3.3. Classification of imagery 

A binary classification scheme was employed to categorize 
areas into two thematic classes as either burned or not burned. 
Manual classification was conducted for all images to ensure 
the accuracy of labels. It has to be mentioned that several 
representative samples of confirmed land cover were selected 
from across the scene and not a particular area to capture the 
spectral variability. This process involved visually inspecting 
each image and assigning classes based on the observed 
spectral changes caused by fire events. 
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2.3.4. Raster to vector 

The classified images were converted into vector format, 
retaining only the polygons representing burned areas. Each 
polygon was manually reviewed to eliminate false positives, 
ensuring that the dataset reflected accurate burned area 
delineation. 

2.3.5. Export training data 

Once samples have been collected and processed, they were 
exported to training data in order to be used in the DL model. 
The training data, consisting of classified tiles in TIFF format 
(one classified image chip per input image chip), was 
prepared for pixel classification. ArcGIS Pro’s deep learning 
labeling tools were used to export data in 64*64 tile size (the 
size of the image chips) and 32*32 stride (the distance in the 
x direction when creating the next image chips). When stride 
is equal to tile size, there will be no overlap. When stride is 
equal to half the tile size, there will be 50 percent overlap, 
which was the case in this study. 

2.3.6. Train deep learning model 

The U-Net architecture was selected for training due to its 
demonstrated efficacy in semantic segmentation tasks, 
particularly for remote sensing applications. U-Net is a 
specialized type of fully convolutional neural network (FCN), 
designed to assign class labels to individual pixels [6]. 

U-Net builds upon the Fully Convolutional Network 
(FCN) [7], which replaces the fully connected layers in CNNs 
with up-convolutional layers, allowing the network to output 
dense pixel-wise classifications. U-Net comprises a 
symmetrical U-shaped architecture, consisting of a 
contracting path and an expansive path [8], [9]. 

The training process leveraged GPU acceleration for 
computational efficiency. To enhance feature extraction, 
several backbone models (e.g., ResNet, VGG) were tested as 
encoders in the U-Net architecture. These backbone models 
provide pre-trained convolutional layers, which help to 
improve training efficiency and accuracy, particularly for 
datasets with limited labeled samples. 

3. RESULTS 

3.1. Model performance evaluation 

To assess the effectiveness of the proposed methodology, a 
total of 8,534 training samples were utilized to train and 
validate the U-Net architecture alongside several baseline 
models for comparison. The models were evaluated using 
common performance metrics, including accuracy, precision, 
recall, and F1-score. Training time was also recorded to 
assess computational efficiency. 

The results indicate that the U-Net model consistently 
outperformed the baseline models across all metrics. Notably, 
U-Net paired with ResNet encoders demonstrated 
exceptional performance, achieving the highest overall 

accuracy (96%) and balanced scores across precision, recall, 
and F1 metrics. Additionally, U-Net model exhibited 
significantly faster training times compared to other 
architectures, making them not only accurate but also 
computationally efficient. 

 A few common error metrics regarding the validation of 
the models are presented in Table 1. 

Table 1. Baseline models. 

Model Encoder F1 Training 
time 

U-Net ResNet18 0.95 24’ 36’’ 
U-Net ResNet34 0.95 24’ 50’’ 

DeepLabV3 ResNet18 0.90 39’ 49’’ 
DeepLabV3 ResNet34 0.89 52’ 57’’ 
DeepLabV3 DenseNet-121 0.84 49’ 14’’ 

MMSegmentation HRNet 0.92 1h 58’ 26’’ 

3.2. Inference on new data 

To validate the trained U-Net model, an inference was 
performed on two selected regions affected by wildfires, 
corresponding to CEMS activations EMSR747 and 
EMSR767. The results were compared with the delineation 
products that are presented in Figure 3. 

Copernicus EMS supports emergency response efforts for 
various disasters, including wildfires. Upon activation, the 
EMS provides high-resolution wildfire maps generated from 
satellite imagery to assess burned areas and severity levels. 
The delineation product, outlines the extent of burned areas 
and served as the reference layer for an overlap analysis. This 
involved comparing the EMS reference layer with the burned 
area maps generated by the U-Net model (overlay layer). The 
analysis measured the overlap percentage and the total area 
of burned regions as detected by each approach. The overlap 
analysis results are summarized in Table 2. 

Table 2. Comparison of burned area delineation and 
overlap percentages between the U-Net model and the 

Copernicus EMS reference products for EMSR747 and 
EMSR767. 

Approach 
EMSR747 EMSR767 

Area (ha) Overlap Area (ha) Overlap 

U-Net 1088.8 
94.5 % 

5619.2 
95.7 % 

EMS 1138.4 5829.9 
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Figure 3. Burned area delineation for EMSR747: 
Comparison between the Copernicus EMS reference 
product and the burned area map generated by the U-Net 
model, including zoom-in views. 

4. DISCUSSION 

The results of this study underscore the efficacy of the U-Net 
model for burned area detection. Achieving high overlap 
percentages with Copernicus EMS delineation products 
(94.5% for EMSR747 and 95.7% for EMSR767), the U-Net 
model demonstrates its ability to produce reliable burned area 
maps that align closely with authoritative reference data. 

Comparisons with baseline models further emphasize U-
Net's advantages. While alternatives like DeepLabV3 and 
MMSegmentation provided reasonable performance, they 
required longer training times and delivered lower accuracies, 
especially when using encoders like DenseNet-121. U-Net, 
paired with ResNet encoders, achieved superior precision and 
computational efficiency, making it a highly suitable tool for 
operational applications. 

Despite these promising results, some discrepancies 
between the U-Net model and EMS reference data were 
observed, indicating opportunities for improvement. These 
minor differences may stem from variations in acquisition 
times and implemented methodology. 

5. CONCLUSION 

Monitoring catastrophic events in near real-time is crucial for 
effective disaster response. The timely detection and accurate 
delineation of affected regions are essential for providing 
critical information to public authorities and stakeholders. 
Such efforts play a pivotal role in minimizing the impact of 
disasters and supporting recovery initiatives. 

The insights gained from this work are not limited to 
Greece but are also applicable to other Mediterranean regions 
with similar climatic and topographical challenges that face 

analogous wildfire risks, thereby demonstrating the broader 
value of the proposed methodology. 

Future research will focus on integrating more diverse 
datasets, enabling the model to generalize better across 
varying conditions and regions. 
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ABSTRACT 

This study addresses the critical gap in harmonized 

geospatial data on fixed asset values (FAV) across European 

human settlements by integrating the EU-wide HANZE grid 

with 100m-resolution built-up surface data from the Global 

Human Settlement Layer (2020). The methodology enables 

reliable FAV estimation at grid level, adaptable to diverse 

spatial scales (e.g., cities, regions) using input data routinely 

produced by EUROSTAT and Copernicus. Results include 

Pan-European human settlements FAV metrics (total €, € 

per capita, € per km²) disaggregated by territorial typology 

and hazard type for 2000 – 2020 at 5 years interval. 

Summary statistics are aggregated into NUTS3 units for 

policy applications. A use case is presented by analysing the 

exposure of built-up area to river flood hazard using 

Copernicus Emergency Management Service data. By 

embedding this dataset into the JRC Risk Data Hub, the 

research enhances disaster risk management tools and 

information systems, supporting climate adaptation 

planning. 

Index Terms— Risk Data Hub, Copernicus Exposure 

Mapping 

1. INTRODUCTION 

1.1. Addressing the Exposure Information Gap for 

Human Settlements 

Accurate information on human settlements to sustain next 

generation adaptation and resilience policies must go 

beyond baseline information. Past efforts have significantly 

contributed to establishing global information systems like 

the Global Human Settlement Layer that maps built-up, 

population and settlements at global level [1]. Yet, 

information on the characteristics of such settlements is still 

scarce. The estimation of the monetary value of human 

settlements exposed to natural hazards is key, but a gap 

exists for harmonized, high-resolution geospatial data on  

 

 

fixed asset values (FAV) across Europe. This gap limits 

the ability of policymakers and stakeholders to quantify 

infrastructure exposed, potential losses, prioritize 

investments, and design targeted adaptation measures [2]. 

The need for robust and multi-exposure information is 

underscored by the increasing frequency and severity of 

climate-related hazards, and by the requirements of the EU’s 

disaster risk management frameworks, the climate 

adaptation strategies, the Cities Mission, and the Sendai 

Framework for Disaster Risk Reduction. 

1.2. Data Integration: HANZE Grid and High-

Resolution Human Settlement Exposure Baseline Data 

To bridge this information gap, our approach integrates the 

HANZE v2.0 exposure dataset [3] with the Global Human 

Settlement Layer (GHSL) built-up surface data at 100 m 

resolution. The resulting asset value grids are embedded 

within the JRC’s Risk Data Hub (RDH), a key platform for 

disaster risk data and analytics in Europe. Within the RDH, 

these datasets are combined with hazard layers (e.g., floods, 

earthquakes, wildfires, subsidence) and territorial 

typologies, enabling multi-hazard exposure assessments at 

various spatial scales (from local administrative units to 

NUTS3 regions). The RDH’s analytical tools facilitate the 

aggregation of FAV metrics (total €, € per capita, € per km²) 

and their disaggregation by settlement type and hazard, 

supporting evidence-based policy development and resource 

allocation. The integration of the FAV dataset in the RDH is 

planned for 2025. By addressing the exposure information 

gap through the integration of HANZE and GHSL data 

within the Risk Data Hub, this work provides a harmonized, 

scalable, and policy-relevant foundation for pan-European 

fixed asset valuation. 
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2. MATERIALS AND METHODS 

 

The core of the implemented methodology is the 

integration of the HANZE v2.0 exposure grid with the 

100m-resolution built-up surface data from the Global 

Human Settlement Layer (GHSL) via geospatial processing. 

2.1. HANZE Grid 

The HANZE grid [3] provides a peer-reviewed high-

resolution (100m) estimates of fixed asset value (FAV), in 

various sectors (residential dwellings, services, residential 

contents, infrastructures, industry, agriculture and forestry) 

for 42 Pan-European countries over time ˗˗from 1870 to 

2020 (for this study a shorter time window 2000 – 2020 at 5 

years interval is used). The disaggregation from regional 

socioeconomic statistics (EUROSTAT input data) to grid 

cells employs a two‐step dasymetric approach, combining 

population density (60%) and land use/soil sealing (40%) as 

predictors (Copernicus Land data). Fixed assets, expressed 

in absolute terms at the regional level, are calculated by 

Paprotny et al. by multiplying the regional GDP by the 

corresponding wealth-to-GDP ratio for each sector [4]. 

For the Total Fixed Asset  Value in Human Settlements 

the following sectors were considered: Residential and 

services, industry, residential contents and infrastructures. 

2.2. Global Human Settlement Layer 

The Global Human Settlement Layer, produced as 

Exposure Mapping Component by the Copernicus 

Emergency Management Service delivers global 

information on human settlements as open geospatial hig-

resolution grids. The GHS-BUILT-V and GHS-SMOD 

products are used in this study to obtain the "settlement 

mask" to extract HANZE FAV data. 

The GHS-BUILT-V [5] product consists in Built-up volume 

grids (100m), derived from multi-sensor satellite imagery 

(Landsat, Sentinel-2), available for 1975–2030 at 5-year 

intervals and provides total and non-residential built-up 

volume estimates (in m3). 

The GHS-SMOD product [6] classifies each 1km grid cell 

in a harmonised urban, intermediate and rural classification 

from the Degree of Urbanisation (urban centre, urban 

cluster, rural areas), based on population density, 

implementing EUROSTAT’s DEGURBA framework. GHS-

SMOD is used to disaggregate zonal statistics to obtain total 

FAV in urban centres, urban clusters and rural areas. 

2.3. Exposure Data: 

The exposure from HANZE and GHSL is also combined 

with the river flood hazard maps for Europe and the 

Mediterranean Basin region using the 100 years return 

period [7]. The river flow data used for the maps are 

generated by JRC using the open-source hydrological model 

LISFLOOD, while flood inundation simulations are 

conducted with the hydrodynamic model LISFLOOD-FP. 

The coverage area includes most of geographical Europe 

and flood hazard maps are produced for river basins larger 

than 150 km², with each cell value representing water depth 

in meters. For this study the hazard map has been obtained 

by thresholding the water depth >20cm. 

2.4. Geospatial Processing: Zonal Statistics 

The methodology to obtain the Total FAV in Pan-European 

Human Settlements delineated with the GHSL is based on 

geospatial overlay and zonal statistics. This technique 

returns a sum in the intersection between HANZE and 

GHSL grids. The target sum is the FAV by sector for all 

HANZE grid cells with settlement information (i.e. BUILT-

V ≥ 0). The sum is then aggregated to rasterised NUTS3 

polygons, and disaggregated by GHS-SMOD grid cell types. 

The procedure is repeated for all the years (2000-2020:5).  

The grid-based approach provides significant spatial 

flexibility and allows to further integrate this new dataset 

with other information like hazard data (similarly, the 

overlay between the Total FAV in Pan-European Human 

Settlements grid and the hazard map is used to quantify the 

total amount of FAV in exposed areas). 

Fig. 1 shows a schematic workflow, input and output data. 

With the above method the following indicators are 

calculated per each year: Total FAV – Monetary Value 

(EUR): Sum of the monetary value of the assets in each grid 

cell or aggregated zone (i.e. NUTS3); Per-capita FAV: Ratio 

of assets to population in each spatial unit (i.e. NUTS3) 

(EUR per person); FAV per km²: asset values normalized by 

the area of the spatial unit (i.e. NUTS3) (EUR per per km² 

of the NUTS3).  

 
Fig. 1. schematic view of input data, processing chains 

and outputs. 
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3. RESULTS 

The geospatial data integration returns a Pan-European 

dataset that quantifies fixed asset values (FAV) in human 

settlements at multiple geographical scales in grid format 

(100m and 1000m) and in tabular format from zonal 

statistics (summary for NUTS3 and country totals) for the 

year 2000, 2005, 2010, 2015, 2020. The analysis of the 

obtained dataset reveals significant disparities in FAV: 

• The total FAV in Pan-European human settlements in 

2020 is in the range of 92 trillion Euro, of which 44% 

in urban centres, 33% in urban clusters, and 23% in 

rural areas. Five NUTS3 (Paris, Madrid, Milano, 

Roma, and Berlin) concentrate more than 1,000 billion 

in fixed asset values (in 2020 – Fig. 2); 

Fig. 2. Absolute Fixed Asset Value in Pan-European 

NUTS3. 

• By territorial typology, 10 NUTS3 exceed 500 billions 

of residential built-up fixed asset values in urban 

centres (2020) these include Paris, Berlin, Madrid, 

Milano, München, Kreisfreie Stadt, Hamburg, Wien, 

Roma, and Barcelona. 

• Between 2000 and 2020 FAV increases by 43% in 

urban centres and 44% in urban clusters, compared to 

35% in rural areas (Fig. 2);  

• A typical West/East regional divide clearly emerges 

(Fig. 3). East Europe Member States have a relatively 

lower residential built-up absolute FAV; 

• The overlay with flood hazard reveals that about 7% of 

the Pan-European FAV in human settlements is 

exposed to potential floods with 100 years return 

period;  

• Figure 4 displays the share of FAV exposed to floods 

across the study area revealing that 16 NUTS3 have 

more than 35% of their built-up exposed, with an 

estimated FAV of about 507 billion Euro. 

 
Fig. 3. Absolute Fixed Asset Value in Pan-European 

NUTS3. 

Fig. 4. Relative Fixed Asset Value exposed to 100 years 

return period riverine flood in Pan-European NUTS3. 

 

4. DISCUSSION 

4.1. Improving Exposure Information and Enhancing 

the JRC Risk Data Hub for Pan-European Risk 

Assessment 

Despite preliminary, the results of this application of remote 

sensing and other data sources, indicates the feasibility of 

estimating fixed asset value in Pan-European human 
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settlements. The integration of high-resolution fixed asset 

value data for human settlements directly addresses the need 

for risk-informed urban planning, a cornerstone of modern 

disaster risk management and climate adaptation strategies. 

By providing spatially explicit information on the 

distribution and value of assets exposed to hazards, this 

dataset empowers planners and policymakers to identify 

vulnerability hotspots, prioritize risk reduction investments, 

and implement zoning policies that minimize future 

exposure. The production of such exposure data is the first 

step towards improving disaster risk information systems. 

Embedding the harmonized FAV dataset into the JRC Risk 

Data Hub (RDH) significantly upgrades the platform’s 

analytical capabilities. With the inclusion of detailed, grid-

level asset valuation, the RDH can now support more 

nuanced, multi-hazard exposure analyses at various spatial 

scales-from local municipalities to NUTS3 regions. By 

adding the monetary dimension to human settlement 

exposure (i.e. built-up as provided by the Copernicus 

Emergency Management Service Exposure Mapping 

Component) this study prototypes a new dimension of 

exposure information. This research contributes to the 

objectives of the EU Strategy on Adaptation to Climate 

Change, which outlines a vision for a climate-resilient 

Europe fully adapted to the impacts of climate change by 

2050 aligning with the Strategy’s goal of “smarter 

adaptation” improving climate loss data. 

4.2. Limitations and next steps 

The choice of the dataset by Paprotny et al. was determined 

by scalability. In fact, the geospatial covariates used for the 

HANZE grid are regularly produced by Copernicus (Land 

Monitoring Service), and the economic data are produced by 

EUROSTAT with periodic updates. 

Despite the availability of FAV by sector in the HANZE 

grid, we did not include further sectoral disaggregation by 

sector (besides the built-up residential, the main component 

of built stock) as the infrastructure assets represented an 

implausible 4.8% of the total value in the input HANZE 

data, with this share reducing to 3.2% in the human 

settlement mask. We therefore computed an overall/gross 

FAV in human settlements. 

Further research might be needed to refine and harmonise 

proxies for disaggregation (i.e. fully align to GHSL) and to 

improve the disaggregation by economic sectors. The usage 

notes and limitations in the HANZE supporting publications 

are valid for the zonal statistics presented in this article as 

well [3-4]. Given the continuous availability of input data 

for later points in time, a routine production of the FAV 

indicators could be considered. 

5. CONCLUSION 

This study presented a prototype for a novel, harmonized 

methodology for estimating fixed asset values (FAV) across 

European human settlements by integrating the HANZE 

grid with high-resolution data from the Global Human 

Settlement Layer.  The resulting dataset fills a crucial 

exposure information gap, enabling spatially explicit and 

temporally dynamic analyses of asset distribution and 

hazard exposure at Pan-European scale. A full-scale 

deployment of the method to Copernicus hazard data, 

combined with the integration of the resulting exposure 

metrics into the JRC Risk Data Hub, is expected to 

substantially enhance the analytical capabilities available for 

disaster risk management, climate adaptation planning, and 

policy evaluation at multiple spatial scales.  
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ABSTRACT

Artisanal and small-scale gold mining (ASGM) is a major
driver of land cover change in the Amazon, often challeng-
ing to detect due to its spectral similarity with other surface
features. This study investigates whether incorporating con-
textual geospatial data from OpenStreetMap (OSM) along-
side Sentinel-2 imagery can improve ASGM detection in
Venezuela’s Bolı́var state. Rasterized OSM-derived seman-
tic masks are appended as additional input channels to the
satellite imagery and processed through a CNN. This setup
enables joint learning of spectral and contextual features, al-
lowing for a more accurate and reliable distinction between
ASGM sites and spectrally similar land uses.

1. INTRODUCTION

Artisanal and small-scale gold mining (ASGM) is a largely
informal mining practice where individuals or small groups
extract gold using rudimentary techniques. It is the pri-
mary driver of illegal mining in the Amazon rainforest [1].
Remote sensing has emerged as a key tool for monitoring
ASGM [2]. However, current mining detection models rely
solely on spectral information, which presents challenges
in distinguishing ASGM sites from other land-use changes,
such as dried riverbeds or bare soil patches that exhibit simi-
lar spectral characteristics [3]. This limitation highlights the
importance of integrating complementary data sources that
can provide additional contextual information.

One promising way to address these limitations is the in-
tegration of contextual geospatial data. A prominent example
is OpenStreetMap (OSM) [4], which contains detailed, freely
accessible information on infrastructure, transportation net-
works, and settlements. This study explores whether incor-
porating such contextual data alongside satellite imagery can
improve the detection of ASGM activity by providing addi-
tional cues to distinguish it from spectrally similar land-use
changes. To explore this issue in detail, this study focuses on
the southeastern Venezuelan state of Bolı́var, one of the most
ecologically significant and mining-affected regions within
the Amazon basin. We investigate whether integrating con-
textual geospatial data from OSM improves the performance

of ASGM detection using satellite imagery. Sentinel-2 pro-
vides spectral signals related to land disturbance. At the same
time, OSM contributes spatial context, such as the presence of
rivers, roads, or buildings, which can help distinguish ASGM
sites from visually similar land uses. To test this, rasterized
OSM-derived semantic masks are appended as additional in-
put channels to the Sentinel-2 imagery and processed together
through a convolutional neural network (CNN). This setup
enables the model to jointly learn spectral and contextual pat-
terns, allowing for an evaluation of the added value of OSM
data for ASGM classification.

2. RELATED WORK

Satellite Imagery for Remote Sensing. Researchers have
utilized various geospatial data sources, notably optical satel-
lite imagery, to detect land disturbances associated with
ASGM [5]. These approaches build on established remote
sensing techniques for LULC change detection, widely ap-
plied to monitor deforestation, urban growth, agriculture, and
natural disasters [6–9]. Sentinel-2 imagery is particularly
effective for identifying ASGM impacts such as vegetation
loss, exposed soil, and sediment-laden water, observable via
changes in surface reflectance and water clarity [10–12].
However, optical imagery alone has limitations: ASGM sites
often resemble agricultural or natural disturbances spectrally,
leading to frequent misclassifications [3].

Image Classification with Contextual Data. Incorporat-
ing contextual information into image classification improves
model performance by enabling reasoning. Applications in
product recognition and medical imaging benefit from spa-
tial and semantic context, which enhances the detection of
small objects and anomalies [13, 14]. Fusing remote sens-
ing with spatial features such as land types and surroundings
provides semantic cues that enhance accuracy [12, 15]. For
instance, Gomez et al. [16] used proximity to transport and
water networks to detect ASGM activity using SAR imagery
and manually derived features. In contrast, our study employs
a framework that integrates multispectral Sentinel-2 imagery
with geographic OSM data. OSM, a crowd-sourced dataset,
offers layers such as roads, rivers, land-use, and buildings.
For example, [17] used OSM building footprints to classify
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informal settlements via spatial clustering and machine learn-
ing. Similarly, [18] aligned OSM features with remote sens-
ing data for LULC classification and infrastructure detection.
Despite its utility, OSM poses challenges due to variable qual-
ity and coverage, particularly in remote regions such as the
Amazon Basin.

3. METHODOLOGY

This study builds on an open-source pipeline for ASGM de-
tection using Sentinel-2 satellite imagery provided by Earth
Genome [19]. While the baseline system includes labeled
sampling points, a patch extraction process using Google
Earth Engine (GEE), and a CNN for binary classification,
this work extends it by incorporating contextual geospatial
information from OSM, particularly features such as high-
ways, waterways, buildings, land-use, and aeroways. The
proposed method processes Sentinel-2 patches with added
channels of rasterized OSM-derived semantic masks in the
CNN architecture. This setup enables the model to learn spec-
tral and spatial-contextual patterns, with the aim of improving
performance.

Sampling Points and Patch Extraction. The study fo-
cuses on the Bolı́var region of southeastern Venezuela. This
region was selected due to its high density of mining opera-
tions and the availability of labeled ASGM data.

The baseline process handles Sentinel-2 patch extraction
[19], which converts each sampling point into a standardized
satellite image patch. Using consistent projection and spa-
tial resolution, a square tile is generated and aligned with
Sentinel-2 imagery for each sampling point. Sentinel-2 im-
age data is retrieved from GEE for 2021, corresponding to the
period when the sampling points were published on GitHub.
The extracted bands include B1–B4, B5–B7, B8, B8A, B9,
B11, and B12, covering the visible, red-edge, near-infrared,
and shortwave-infrared regions. Band 10 is excluded as it
is primarily used for cloud detection and is not relevant for
land cover analysis. To reduce the impact of clouds, cloud
shadows, and other atmospheric effects, a median compos-
ite is generated by averaging all observations across the year.
This approach enhances image quality and consistency, par-
ticularly in cloud-prone regions such as the Amazon Basin.

The resulting image patches are uniformly sized with
the 12 spectral channels. Each patch covers an area, cen-
tered around a sampling point labeled as either mining or
non-mining. This patch captures the mining activity and
the surrounding area, which can provide additional context
through OSM data. The dataset includes 156 mining patches
and 323 non-mining patches.

OSM Data. Vector-based geospatial features were ex-
tracted from OSM. These features were selected based
on their relevance to ASGM operations. They comprise:
(1) highway, including roads, tracks, and footpaths indicat-
ing access to mining areas; (2) waterway, such as rivers and

Fig. 1. Spatial Distribution of OSM Features in Bolı́var.

Fig. 2. Visualizations of random patches with OSM overlays.

streams, often used in alluvial mining; (3) building, repre-
senting nearby informal or residential structures; (4) land-
use, comprising tagged areas potentially overlapping with
ASGM zones; and (5) aeroway, which may denote airstrips
supporting remote mining operations. See Figure 1 for the
spatial distribution of the OSM features in the Bolı́var region.

Rasterization of OSM data. For each image patch, a cor-
responding subset of OSM features is extracted by clipping
the vector data to the same extent. Each feature has its own
channel, where a pixel with values for that feature receives a
value of 1, and a pixel without that feature receives a value
of 0. This ensures that both inputs have identical footprints,
allowing the OSM data to be rasterized and stacked with the
Sentinel-2 bands before model training. Of the 156 mining
patches, 95 contain one OSM feature, representing 60.9%
coverage. Among the 323 non-mining patches, 245 include
OSM annotations, resulting in 75.85% coverage. This varia-
tion reflects the inconsistent availability of OSM data in re-
mote regions, such as Bolı́var, where mapping is often sparse.

Model. The baseline model is adapted from Earth
Genome’s open-source ASGM detection pipeline [19], which
employs a lightweight CNN. The architecture consists of nine
convolutional layers, each with 32 filters and 3×3 kernels,
using ‘same’ padding and ReLU activation functions. These
layers are grouped into three convolutional blocks, each fol-
lowed by max-pooling layers (2×2 or 3×3) to progressively
reduce the spatial resolution. The convolutional feature ex-
traction stage is followed by three dense layers with 64, 64,
and 32 neurons. Dropout layers with a rate of 0.3 are included
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after each dense layer to prevent overfitting. The final output
layer is a sigmoid-activated neuron for binary classification.

4. EVALUATION

4.1. Experimental Setup.

To prevent spatial leakage, the dataset is split using DBSCAN
clustering on patch center coordinates, with clusters randomly
assigned to train (70%), validation (15%), and test (15%) sets.
Patches with excessive masking are filtered out, and Sentinel-
2 reflectance values are normalized to the range of [0, 1]. All
models use the same CNN architecture trained for up to 160
epochs using the Adam optimizer (3 × 10−4), binary cross-
entropy loss, and a batch size of 16. Data augmentation (ran-
dom rotations, shearing, zooming, flips) is applied via Keras’
ImageDataGenerator. Experiments vary by patch size
(48px vs. 256px), class imbalance weighting, negative sam-
pling strategy (156 points curated from Earth Genome vs. 780
points randomly sampled), and inclusion of OSM features.

4.2. Results and Discussion.

Ten ASGM detection experiments were conducted under
varying patch sizes, negative sampling strategies, class im-
balance handling, and the inclusion of OSM features. Perfor-
mance was evaluated using F1 (with bootstrap confidence in-
tervals), precision, recall, and PR-AUC to capture threshold-
dependent and threshold-independent model performance.
Table 1 summarizes performance across these settings.

Patch Size. In curated settings, both 256px (Exp 1, F1 =
0.867) and 48px (Exp 3, F1 = 0.711) models achieved strong
performance without OSM. Adding OSM improved perfor-
mance at 256px (Exp 2, F1 = 0.923; –2 FN, –5 FP), but only
slightly at 48px (Exp 4, F1 = 0.788; –2 FP). This indicates
that OSM features are more effective with larger patches that
capture broader spatial context.

Class Weighting. With curated negatives, class weight-
ing (Exp 5) increased FP (+7) and lowered precision (0.594),
dropping F1 to 0.728. OSM (Exp 6) further raised FP (+10)
and reduced F1 to 0.611, well below the unweighted OSM
model (Exp 2). In random-negative settings, class weighting
destabilized training: Exp 9 performed poorly (F1 = 0.129;
FP = 62), while Exp 10 achieved F1 = 0.898 with perfect re-
call but lower precision.

Negative Sampling. With random negatives and no class
weighting, performance remained strong: Exp 7 (F1 = 0.948)
and Exp 8 (F1 = 0.792) both achieved high recall with few
FP. Class weighting caused instability, leading one model to
collapse (Exp 9) and another to trade precision for recall (Exp
10). Overall, curated negatives yielded more stable results,
while random negatives better reflected real-world variability
but increased uncertainty.

Confidence intervals highlight variability across experi-
mental setups. Models trained with curated negatives and

Fig. 3. Impact of removing OSM feature layers on model per-
formance, reported as mean F1, precision, and recall. Results
are shown relative to the full OSM model (Exp2).

larger patches showed narrower confidence intervals, while
random-negative sampling produced wider intervals, reflect-
ing greater variability and task difficulty.

Ablation Study. Figure 3 shows how the exclusion of
different OSM feature layers influences performance. While
most features contribute positively, certain layers have a more
pronounced effect on the F1 score and precision than others.

Removing highway features resulted in the largest perfor-
mance decline (F1 = 0.587), underscoring their importance in
distinguishing ASGM sites. Land-use removal also reduced
performance, while aeroway, waterway, and building layers
had moderate effects. Overall, the study shows that multiple
OSM layers contribute to detection, with highways providing
the most critical contextual cues.

Limitations. This study focused exclusively on the
Bolı́var region in Venezuela, which limits the generalizability
of the findings to other Amazonian settings. Model perfor-
mance is strongly dependent on OSM coverage, which is
uneven in remote areas and may bias results toward data-rich
regions. A temporal mismatch between Sentinel-2 imagery
from 2021 and OSM features from 2025 could also distort
observed associations. In addition, the use of all 12 Sentinel-
2 bands, including less informative ones such as B1 and B9,
indicates the need for a more critical assessment of feature
selection and modeling choices.

5. CONCLUSION

This study demonstrates that integrating contextual geospatial
data from OSM with Sentinel-2 imagery can improve ASGM
detection, particularly when larger patches and curated neg-
atives are used. The most consistent benefit of OSM was a
reduction in false positives, which helped distinguish mining
from spectrally similar areas, although this sometimes came
at the cost of recall. Notably, in the most challenging setting
with random negatives and class weighting, OSM features en-
abled strong performance, whereas the spectral-only model
failed to generalize. Overall, these results show that con-
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Exp OSM Patch Neg Type Class Weight F1 [95% CI] PR-AUC FP FN Precision Recall
1 No 256 Curated No 0.867 [0.739, 0.960] 0.865 6 0 0.769 1.000
2 Yes 256 Curated No 0.923 [0.827, 1.000] 0.972 1 2 0.947 0.900
3 No 48 Curated No 0.711 [0.529, 0.851] 0.850 7 5 0.682 0.750
4 Yes 48 Curated No 0.788 [0.625, 0.913] 0.782 3 5 0.833 0.750
5 No 256 Curated Yes 0.728 [0.565, 0.849] 0.866 13 1 0.594 0.950
6 Yes 256 Curated Yes 0.611 [0.444, 0.744] 0.677 23 1 0.452 0.950
7 No 256 Random No 0.948 [0.800, 1.000] 0.900 1 0 0.900 1.000
8 Yes 256 Random No 0.792 [0.533, 0.957] 0.909 3 1 0.727 0.889
9 No 256 Random Yes 0.129 [0.028, 0.237] 0.069 62 4 0.075 0.556

10 Yes 256 Random Yes 0.898 [0.727, 1.000] 0.928 2 0 0.818 1.000

Table 1. Performance metrics across ASGM detection experiments with varying use of OSM data, patch sizes, negative sample
types, and class weighting settings. Bootstrap confidence intervals are shown for F1-scores.

textual information can substantially enhance detection accu-
racy, but its effectiveness depends on data quality, temporal
alignment, and the training setup. Future work should extend
evaluation across regions, develop a tailored model, incorpo-
rate historical OSM data to address temporal mismatches, and
explore advanced fusion strategies that more effectively align
spectral and contextual features.
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ABSTRACT 

Wildfires pose a significant threat to the Latin America and 
Caribbean (LAC) region, with widespread impacts on 
ecosystems, public health, and economic stability. The 
CopernicusLAC Platform delivers Earth Observation (EO) 
services for comprehensive wildfire management, including 
fire danger estimation, burned area mapping, and post-fire 
vegetation recovery. Integrating data from Sentinel-2, 
Sentinel-3, and VIIRS satellites, the platform offers 
near-real-time monitoring and analysis tools, supporting 
preparedness, impact assessment, monitoring and recovery. 
Demonstrated during the 2023 Chile wildfires, these 
services are providing timely, high-resolution insights for 
decision-makers in the LAC region. With growing user 
engagement, the platform is enhancing regional resilience 
and aims to scale EO-driven solutions across the region to 
improve wildfire preparedness and response. 

Index Terms— Disaster management, Wildfire, Earth 
Observation service, NRT monitoring, Copernicus, LAC. 

1.​ INTRODUCTION 

Wildfires do not impact only forests but have many impacts 
on human and environmental health, altering the 
composition of atmosphere, vegetation dynamics, soil 
erosion, water quality, with many disrupting consequences 
on socio-economic assets. Wildfires present a serious 
challenge to the Latin America and Caribbean (LAC) 
region, as shown in the 2023 fire events that occurred in 
Argentina, Bolivia, and Chile. Each year, wildfires impact 
over 3 million square kilometers of total land area burned 
only in South America (Global Wildfire Information 
System, 2025) [1]. Monitoring systems based on Earth 
Observation (EO) data are widely employed to provide 
timely information across the three key stages of wildfire 
management: prevention, response, and post-fire recovery. 
The Copernicus Centre for Latin America and the Caribbean 
(CopernicusLAC), based in Panama, serves as a regional 
hub for promoting the use of free and open EO data from the 
Copernicus missions across the LAC region, building 
regional capacity in EO applications, and fostering 
collaboration among local stakeholders and the global EO 
community, and for strengthening resilience to natural 
disasters, including wildfires. In this framework, the 
CopernicusLAC Platform, an exploitation platform 
developed by Terradue for the CopernicusLAC Centre, 

provides tailored EO services to address various natural 
hazards, including floods, wildfires, and landslides. 
Concerning wildfires, the CopernicusLAC Platform offers 
customized geospatial services for end-to-end tools for fire 
danger estimation, early detection, burned area mapping, 
severity assessment, and post-fire recovery. 

2.​ MATERIAL 

The EO services of the CopernicusLAC Platform take 
advantage of a robust ensemble of EO datasets and models, 
selected for their relevance to fire dynamics, spatiotemporal 
resolution and environmental context of the LAC region. 

2.1.​ Satellite observations 

Radiance Brightness Temperature from daytime and 
nighttime acquisitions of Sentinel-3 SLSTR data, are used 
primarily for thermal anomaly detection and hotspot 
identification over the LAC region. Time series of TOA 
reflectance from Sentinel-2 MSI data are used for pre- and 
post-event change detection analysis, focusing on areas 
surrounding SLSTR-detected hotspot clusters to map burned 
areas and assess post-fire vegetation recovery. 

2.2.​ Detected fires and meteorological indicator 

In addition to Sentinel-3 SLSTR thermal anomalies, VIIRS 
Suomi-NPP Near Real-Time (NRT) hotspots are also 
gathered from the NASA FIRMS service [2] to further 
complement the mapping of wildfire events. The Fire 
Weather Index (FWI) [3], from the Global Wildfire 
Information System (GWIS), is also employed in the 
CopernicusLAC Platform to get both historical (from 2017) 
and forecast (up to 10 days lead time) fire danger indicator 
at ~8 km resolution. The FWI is employed because it 
integrates weather variables including temperature, 
humidity, wind, and fuel moisture to classify fire danger into 
five levels, from low to extreme. Also, a Fire Occurrence 
Probability dataset derived from historical fire occurrence 
data, using complete time series from MODIS and VIIRS 
sensors (2000-2024). These dataset help identify areas with 
higher fire frequency in the past, which is crucial for 
assessing current and future fire risks. 
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2.3.​ Land cover and surface elevation 

To support the vegetation-type mapping and fuel modeling, 
EO services rely on the Copernicus Global Land Cover 
(GLC) [4], which provides annual land cover maps 
(2015–2019) at 100 m spatial resolution, categorizing 
terrestrial surfaces into 23 classes based on the FAO Land 
Cover Classification System. To have an estimation of 
vegetation structure, the ETH Global Canopy Height Model 
(2020) [5] at 10 m resolution, is employed for biomass 
estimation and fire behavior modeling in forested 
ecosystems. Elevation data is derived from the FABDEM 
(Forest and Buildings removed Copernicus DEM) [6], 
which is a 30 m resolution global digital elevation model 
that excludes above-ground features, providing an accurate 
terrain surface for fire spread simulation. 

3.​ METHOD 

The CopernicusLAC platform offers to users a thematic 
workspace named Wildfire Results Explorer, which is a 
specialized web application designed for the visualization 
and analysis of geospatial outputs generated by three 
wildfire service modules: Fire Danger Mapping, Burned 
Area Mapping, and Post Fire Vegetation Recovery. 

3.1.​ Fire Danger 

The Fire Danger Mapping (FDM) service employs a 
combination of static variables (e.g., land cover, vegetation 
height, fire history) and dynamic inputs like the FWI from 
GWIS to assess localized fire danger. To generate regionally 
accurate fire danger indices, the service allows users to 
customize weights and define areas of interest. 
 

 

Fig. 1. High level schema describing input data and 
workflow for the Fire Danger Mapping service. 

3.2.​  Wildfire Events 

The Burned Area Mapping (BAM) service operates in two 
stages: real-time hotspot detection using Sentinel-3 thermal 
imagery, followed by detailed burned area and severity 
mapping using the Normalized Burned Ratio 2 (NBR2) 
(Storey et al. 2016) [7] and the Mid-Infrared Burn Index 
(MIRBI) (Trigg and Flasse 2001) [8] spectral indexes from 
Sentinel-2 MSI data and hotspots from VIIRS Suomi-NPP. 
When a significant density of hotspots is detected by 
Sentinel-3 SLSTR , the system automatically activates the 
ingestion of Sentinel-2 MSI L2A data acquired before and 
after on-going active fires. After the pre-processing of all the 
needed Sentinel-2 and VIIRS data, the system applies a 
modified version of the FireCCISFD20 algorithm (Roteta et 
al, 2021) [9] to map burned areas, in which the pre-fire 
image is replaced with a multitemporal composite to 
mitigate the effects of persistent cloud cover. 

 
Fig. 2. Workflow of the Burned Area Mapping service. 
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At each overpass of the Sentinel-2 satellite the BAM 
algorithm delineates burnt areas using the MIRBI and the 
NBR2 indexes and the Scene Classification layer derived 
from Sen2Cor. After that, the service uses VIIRS S-NPP 
hotspots as ancillary information to confirm the burned areas 
from the spectral indexes. From this stage a statistical 
approach based on initially burned statistics is then applied 
to extract the burned area probability. Later, burned area 
extent maps are then derived from a thresholding and 
binarization of this probability. Finally for all the areas 
mapped as burned the burned area severity is computed, 
using the Relativized Burn Ratio (RBR) from Parks et al., 
2014 [10]. A fully automated chain has been designed to 
adapt the original algorithm to a near real time execution of 
the service via a dedicated configuration of the servers. The 
chain efficiently allocates computing resources only to 
high-priority zones identified by clusters of aggregated 
hotspots. The platform offers multiple geospatial products to 
assess wildfire impacts and guide decision-making. This 
early detection capability provides a near-instantaneous 
view of fire activity, allowing for rapid situational awareness 
and initial response. 

3.3.​ Post-fire Vegetation Recovery 

Once fire activity ceases, the Fire Recovery Mapping (FRM) 
service automatically activates to monitor vegetation 
recovery. It provides a monthly Normalized Difference 
Vegetation Index (NDVI) composite and a recovery layer. 
The percentage of recovery process is derived using NDVI 
composites and cumulative recovery rasters generated at 
regular time intervals. 

Fig. 3. Schema describing the progression from pre-fire 
conditions to post-fire recovery with the FRM service. 

4.​ RESULTS 

In the CopernicusLAC platform, the FDM, BAM and FRM 
services are triggered over a region of interest in the LAC 
and by defining a date from which the wildfire monitoring 
shall start. Hereinafter are shown examples of results from 
these services derived for a large wildfire event that took 
place in central Chile in February 2023. EO services are 
pre-executed to simulate the whole event in all its stages as 
if it had been a near-real-time monitoring. The FDM service 
provides a daily estimation of fire danger from Low to 
Extreme, providing comprehensive hazard assessments 
highlighting areas at risk of fire. Fire danger categories are: 
Low (Minimal fire risk), Moderate (Fire conditions may 
ignite under certain circumstances), High (Increased 
likelihood of fire ignition and spread), Very High (Fires can 
start and spread rapidly), and Extreme (Exceptional fire 
danger; rapid and intense fire propagation is expected). In 
figure 4 is shown an example of a Fire Danger Map 
computed for the day after the beginning of the large 
wildfire event in the area of Concepción and Los Ángeles, 
Chile. Areas in orange indicate High fire danger meaning 
that fires can start and spread rapidly as the area near Los 
Ángeles. 

 
Fig. 4. Visualization of fire danger map over AOI near 
Los Àngeles, Chile for date 01/02/2023. 

Starting from the 3rd of February 2023, the BAS service 
identified hotspots from Sentinel-3 SLSTS thermal 
anomalies in the area near Los Ángeles with a peak of active 
fires registered for the 7th of February 2023 which 
correspond to the date of the first Sentinel-2 pass over the 
area after the beginning of the event (see figure 5). Burned 
area extent and severity products are then derived by the 
BAM service over all the Sentinel-2 tiles intersecting 
hotspots, using the acquisitions of the 7th of February as 
post-event SWIR/NIR reflectances and multi temporal 
mosaics from previous Sentinel-2 acquisitions as pre-event 
reference ones. An example of a burned area extent product 
is shown in Figure 5. In red are shown burned areas, in 
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green burnable areas, and in grey regions where no valid 
observations were available for analysis. The mapping of 
burned areas and its severity is then updated automatically 
by the system at each following pass of Sentinel-2 over the 
same tile. The systematic monitoring with the BAM service 
is maintained up to 30 days after the last hotspots registered. 

 
Fig. 5. 3D view of the Burned Area Map derived from 
Sentinel-2 L2A imagery acquired on 07 Feb 2023 near 
Santa Juana, Región del Biobío, Chile. 

Once the monitoring of on-going wildfires with the BAM 
service ends, the CopernicusLAC Platform keeps ingesting 
Sentinel-2 L2A data and automatically triggers the FRM 
service to assess post-fire vegetation recovery. The FRM 
service takes as input Sentinel-2 imagery and the last burned 
areas detected from the BAM service (temporal aggregation 
of all burned area extents product across the event) and 
provides post-fire NDVI composite and vegetation recovery 
rates in percentage at a 15-days frequency. In figure 6 is 
shown an example of the FRM output map showing the 
recovery of vegetation in (high values in green) over burned 
areas after 7 months since the beginning of the event. 

 
Fig. 6. Visualization of vegetation recovery map over the 
AOI near Los Àngeles, Chile for 31 Aug 2023.  

Vegetation recovery maps measure cumulative regeneration 
in the area, useful to identify areas needing ecological 
restoration and guide long-term recovery strategies. 

5.​ CONCLUSION 

CopernicusLAC’s integrated approach showcases the 
potential of EO tools in advancing wildfire management 
from preparedness to response and recovery. After the 
engagement with multiple institutions across the LAC 
region, the wildfire EO services have been tested by users 
from February to June 2025 in the CopernicusLAC platform 
for a NRT monitoring of Central America and Colombia. In 
this demonstration users had the opportunity to engage with 
the tools, provide feedback, and contribute to the evolution 
of the service. Registered users are currently 140 from 
national agencies and ministries of Belize, Colombia, 
Ecuador, Guatemala, Honduras, Panama, Peru, República 
Dominicana, and the Caribeean and from UN organizations. 
Future work will focus on further tailoring EO services to 
the needs of users from the LAC, strengthening regional 
resilience with the offering of a scalable model for wildfire 
management. 
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ABSTRACT
Slope instability and forest fires are growing threats to com-
munities, infrastructure and ecosystems, exacerbated by cli-
mate change and human activity . Effective management
of these phenomena requires integrated monitoring and risk
analysis solutions based on up-to-date, interoperable data
that can support timely decision-making. In this framework,
Rheticus® Safeland 2.0, developed by Planetek Italia as
part of the PNRR and AI-LAND projects,integrates high-
performance computing, big data analysis and 3D digital
models to process multi-thematic information on landslides
and fires. The system identifies critical areas and levels of
attention by combining evolutionary scenarios and interfer-
ometric data, providing a dynamic framework for defining
mitigation and intervention strategies. Thus, Safeland 2.0
is configured as an operational tool for proactive land man-
agement, in line with the Sustainable Development Goals of
Agenda 2030 .

Index Terms— Landslides, fires, multi-risk, monitor-
ing,digital twin

1. INTRODUCTION

Rheticus® Safeland, developed by Planetek Italia, is a land
stability monitoring and warning service that, automatically
assigns an attention level to each segment of the territory.
This classification is based on the analysis of trends and
anomalies in ground surface displacements detected via satel-
lite remote sensing. The service offers a synoptic view of
the territory, providing constantly updated information on the
attention level, distinguishing between stable areas and areas
exhibiting signs of landslides or slow subsidence, and thus
complements in situ monitoring activities.
Over the years, the Rheticus® Safeland has involved into
a multi-risk analysis platform. While in a first version the
service provided the user with a classification of the territory
based only on interferometric data, the service now allows
the user to obtain a more complete picture of the territory
by integrating the aforementioned interferometric data with

additional information layers considered essential for the
identification of areas at greater hydrogeomorphological and
fire risk. In particular, new parameters have been defined to
improve the performance of multi-temporal interferometric
analyses (MTInSAR). The results of the MTInSAR analyses
were integrated with auxiliary data necessary for hydro-
geomorphological and fire risk characterization, including
fire risk, hydraulic hazard and landslide hazard maps. This
integration was performed using the Ordered Weighted Av-
eraging (OWA) methodology. This procedure provides an
Inspection Priority Score (IPS) for each hexagonal cell: a
continuous value between 0 and 1 that quantifies the level of
attention required. The IPS enables the territory to be cate-
gorized into one of three risk classes: low, medium, or high.
The final result is integrated into an interactive, 3D digital
twin environment where users can explore the data inputs
used to define the IPS, as well as data relating to changes in
land cover derived from a machine learning algorithm applied
to Sentinel-2 optical satellite data, thematic maps, geological
and infrastructure data, climate information and historical
movement data. This supports timely diagnoses and tar-
geted interventions. This evolution of the service represents
a quantum leap towards a truly operational, multi-risk system
capable of providing a holistic, dynamic view of the territory.
Compared to the initial version, the new tool enhances the
accuracy, predictive capacity and automation of the process,
thereby improving territorial resilience and the effectiveness
of mitigation strategies.

2. RHETICUS® SAFELAND 2.0: SERVICE
DESCRIPTION

The platform interface, as shown in the figure, provides for
territorial segmentation based on a grid of hexagonal cells,
each covering approximately 5 hectares. These cells are clas-
sified by automatic procedures based on analysis that eval-
uates movement trends and anomaly patterns. The level of
attention is determined by combining surface displacement
measurements with other parameters that take into account ar-
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eas affected by fires, areas at risk of flooding and landslides,
and slopes calculated by the DTM. The status of the cells is
represented by traffic light colors: green (stable), yellow (re-
quires monitoring), and red (requires immediate inspection)
and summarized in a pie chart at the top right of the platform
that shows the number and percentage of cells for each color.
This color is derived from an inspection priority score asso-
ciated with each cell of the AOI, which can vary between 0
and 1, also shown in a curve that evaluates the IPS trend of
the cells within the platform and is used to classify the ur-
gency of the inspection (Fig. 1). Each cell can be queried and
provides information such as:

• Unique cell identifier

• Geographical coordinates (latitude, longitude)

• Municipality and Province

• Presence of transport infrastructure

• Prevailing land cover

• Any changes in land cover

• Area of spatial anomaly cluster

• Area of spatio-temporal anomaly cluster

• Area of burned area

• Elevation and class of slope

• Attention level class

• Inspection Priority Score

• Mean velocity ascending and descending

• Highest hydraulic and landslide hazard values

• Predominant geological cover

• Climate data

• Types of landslide

The service enables end users to explore an area of inter-
est in detail by integrating various customization informa-
tion layers that can be activated or deactivated directly on the
map. These include cell thematisation based on the Inspec-
tion Priority Score (IPS), visualization of spatial and spatio-
temporal anomaly clusters, ground movement data (PS/DS),
and information derived from OpenStreetMap, such as build-
ings, roads, and railways. Other available features include
geological mapping, burned areas, land cover and land use
change maps, ERA5 climate data, hydraulic and landslide
hazard maps (PAI) and the IFFI inventory.

Fig. 1. Rheticus® Safeland Interface

3. CELL RANKING METHODOLOGY TO
ESTIMATE THE LEVEL OF ATTENTION

(INSPECTION PRIORITY SCORE)

The new version of the Rheticus® Safeland service, which
was developed as part of the AI-LAND project, allows users
to access a comprehensive and current overview of the state
of the territory, classified by level of risk. Unlike the pre-
vious version, the system now integrates additional layers of
information, as well as interferometric data, to identify areas
exposed to greater hydrogeological and fire risk. The territory
is divided into hexagonal cells and classified according to the
IPS calculation, which assigns each cell a level of attention
according to the hazards detected in the area of interest. IPS
is determined through a combined analysis of weights derived
from different geospatial data sources and amplification fac-
tors, enabling areas at higher risk of instability to be identi-
fied. The IPS calculation takes into account three main types
of data and their respective weights.

• Spatial anomalies: The identification of unstable ar-
eas is based on the analysis of mean displacement
velocity values of Persistent Scatterers (PS) and Dis-
tributed Scatterers (DS), measured along the Line of
Sight (LOS) and extracted from the EGMS geoportal.
For each acquisition geometry, PS and DS exhibit-
ing homogeneous kinematic behavior are grouped into
clusters. Each cluster is assigned a unique identifier
and is spatially represented by an enclosing polygon;
The weight assigned to clusters of spatial anomalies
in the Inspection Priority Score (IPS) calculation al-
gorithm is determined based on two main parameters:
consistency, defined as the ratio between the number
of PS/DS points within the cluster (excluding outliers)
and the total number of PS/DS in the cluster, and the
average speed of movement calculated along the LOS.
The weight of the spatial anomalies of each hexagon
is calculated as the sum of the weights of the individ-
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ual clusters corrected for the fraction of area that each
cluster occupies within the hexagon itself.

• Spatio-temporal anomalies: Identified by the analysis
of displacement time series of PS and DS along the
LOS, extracted from the EGMS geoportal. For each
acquisition geometry, the first step involves detecting
temporal anomalies by identifying breakpoints that
appear in the most recent segment of the time series.
These breakpoints represent either changes in displace-
ment velocity or abrupt shifts (also referred to as steps),
which are temporally well-defined and easily identifi-
able. Following this, a clustering process is carried out,
grouping together PS and DS points that exhibit similar
kinematic behavior. Each resulting cluster, character-
ized by shared motion patterns, is assigned a unique
identifier and is spatially represented by an enclosing
polygon;
The contribution of space-time anomaly clusters in the
Inspection Priority Score (IPS) calculation algorithm
is determined by combining three main parameters:
consistency, calculated as the ratio between the num-
ber of valid PS/DS points within the cluster, excluding
outliers, and the total number of PS/DS points in the
cluster, the difference in average speed of movement
before and after a trend change, and the displacement
step, which represents the significant discontinuity of
movement between two consecutive dates. The total
weight assigned to spatio-temporal anomalies in each
hexagon is calculated as the sum of the weights of
the individual clusters, each corrected according to the
portion of area actually covered by the cluster within
the hexagon itself.

• Isolated PS/DS, i.e., measurement points that do not
fall within the clusters of anomalies: PS/DS that do
not generate spatial/spatio-temporal anomalies. It is
planned to use the displacement time series obtained
along the LOS and extracted from the EGMS geopor-
tal [1]. The weight of the PS/DS within the algorithm
is calculated by taking into account both the average
speed of movement and the density of points within
the hexagon. This means that areas affected by sig-
nificant point movements, even if they are not char-
acterised by aggregate anomalies, are adequately con-
sidered in the classification process.The weight of the
PS/DS within the algorithm is calculated by taking into
account both the average speed of movement and the
density of points within the hexagon. This means that
areas affected by significant point movements, even if
they are not characterised by aggregate anomalies, are
adequately considered in the classification process.

In addition to ground motion data, the system considers a se-
ries of amplification factors that contribute to the prioritiza-
tion of cell attention levels:

Fig. 2. 3D visualization system

• Landslide Hazard: The landslide hazard layer pro-
duced by the Istituto Superiore per la Protezione e
Ricerca Ambientale (ISPRA) represents a mapping of
the areas of the Italian territory exposed to different
landslide hazard classes. The classification is based
on geomorphological, hydrogeological and historical
criteria, which take into account both already occurred
landslide events and the susceptibility of the territory
to instability phenomena [2].

• Hydraulic Hazard: The hydraulic hazard layer pro-
duced by the Istituto Superiore per la Protezione e
Ricerca Ambientale (ISPRA) represents a mapping of
the areas of the Italian territory exposed to different
landslide hazard classes [2].

In the Inspection Priority Score calculation algorithm,
each landslide e hydraulic hazard class is assigned an
increasing weight based on the level of risk attributed
to it. This weight is proportionate to the percentage of
the specific class’s surface area that falls within each
analysis hexagon. If there are multiple hazard classes
within a single hexagon, the contributions are added
together to obtain the overall value of the amplification
factor associated with the landslide and hydraulic risk.

• Burned Areas: The burned area layer, produced as
part of the European Forest Fire Information System
(EFFIS), is a Europe-wide mapping of areas affected
by forest fires. This system monitors and records areas
affected by fires using high-resolution satellite imagery
and automated detection algorithms [3]; Several pa-
rameters are considered when calculating the weight
associated with forest fires in each hexagon: the per-
centage of burned area relative to the hexagon area,
the average slope of the hexagon, and the time interval
since the fire event. The latter parameter is used to
modulate the influence of fires based on their date of
occurrence. If there are multiple events in the same
hexagon, the contributions are combined, taking into

Societal Applications: Risk, Resilience and Resource Monitoring

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

167 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


account any spatial overlaps.

The final weight of each cell is calculated by aggregating the
normalised contributions of movement data and amplification
factors, with a combination of predefined weights applied.
This process uses the Ordered Weighted Averaging (OWA)
methodology [4], which is a technique that allows multiple
factors to be aggregated while taking into account a flexible
weighting criterion. OWA assigns weights to different levels
of information based on their relevance in determining a cell’s
attention level. The customer can customise this methodology
based on their knowledge of the territory , and an expert user
can monitor it. It enables the influence of each contribution
to be modulated via a weighting function, thereby ensuring a
balanced approach between different data sources. The IPS
is therefore an optimal combination of the different contribu-
tions. The resulting IPS value is then used to classify cells
into one of three attention levels: i)Low (green): stable,no
intervention needed; ii)Moderate (yellow): Potential instabil-
ity, monitoring advised; iii)High (red): High-risk, inspection
required.
The final output of the algorithm, the Inspection Priority
Score (IPS), was validated by comparing it with available
ground truth data, including official landslide inventories,
fire records and other documented evidence of instability.
Validation was also conducted in collaboration with local
authorities, such as the Civil Protection Agency, the Forestry
Police and relevant regional structures, to verify consistency
between areas classified as highest priority and actual sit-
uations on the ground. This iterative calibration process
strengthened the model’s operational reliability and useful-
ness for decision support.
In this context, geo-analytical indicators generated by the
Rheticus® Safeland 2.0 service, are integrated into an interac-
tive 3D environment.The 3D Digital Twin model, which has
been developed, integrates geospatial data, three-dimensional
models and high-density point clouds in order to reconstruct
accurate and interactive virtual environments. Its architecture
enables complex scenarios to be visualised by combining
satellite surveys, digital terrain models (DTMs), Light De-
tection and Ranging (LIDAR) and photogrammetry, and
supports dynamic data to simulate evolutionary phenomena.
Optimised rendering algorithms, level of detail (LOD) man-
agement and progressive streaming techniques ensure high
performance, even with large datasets. The platform sup-
ports immersive navigation, contextual information overlay
and real-time, multi-user interaction, making it an advanced
tool for environmental analysis, planning and risk scenario
management.(Fig. 2).

4. CONCLUSION

Rheticus® Safeland 2.0 is a significant methodological ad-
vance in integrated hydrogeological risk and forest fire anal-

ysis. This enhanced system combines multi-temporal inter-
ferometric observations with auxiliary data layers, including
topographic, climatic and thematic mapping information, to
provide a thorough classification of instability conditions. Its
hexagonal cell structure enables consistent and scalable spa-
tial analysis, and the Inspection Priority Score (IPS) algo-
rithm facilitates the early identification of critical areas and
the transparent and reproducible establishment of intervention
priorities. The interconnected nature of these risks means that
forest management directly affects erosion control and slope
stability, linking fires and landslides in multi-hazard scenar-
ios. The system’s output, integrated into a three-dimensional
digital twin model, enables current conditions and evolution-
ary scenarios to be visualised. Continuous monitoring enables
previously undetected areas of instability to be identified and
tracked over time, thereby strengthening the effectiveness of
mitigation strategies and risk reduction planning in line with
resilience and sustainable land management objectives.
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ABSTRACT 

The AXIS 3 Safety & Security Service, part of the Greek 

National Satellite Space Project, is a modular and scalable 

Earth Observation based solution designed to support near 

real-time environmental risk monitoring and security 

operations. This paper presents the system architecture, 

service components, and integration with the Governmental 

Hub and EOEPCA processing ecosystem. Through 

dedicated services for flood risk, wildfire surveillance, and 

target identification, the AXIS 3 platform delivers timely 

geospatial insights using SAR, Optical, and Thermal 

satellite data. 

Index Terms— Safety, Security, Earth Observation, 

Satellite Remote Sensing, Geospatial Products, STAC, 

EOEPCA 

1. INTRODUCTION 

The aim of the project is to enhance Greek capabilities in 

satellite technologies and applications and empower the 

country to exchange satellite data. AXIS 3 addresses the 

need for a national Earth Observation (EO)-based 

infrastructure delivering timely, reliable, and operational 

geospatial products. It leverages national (AXIS 1.1, 1.2, 

2.0) and international assets (e.g., Copernicus, Landsat) to 

support disaster response, security, and environmental 

protection. AXIS 1.1 provides thermal infrared imagery for 

environmental monitoring, AXIS 1.2 offers all-weather SAR 

imaging for maritime and land surveillance, and AXIS 2.0 

delivers high-resolution multispectral and hyperspectral 

data. The Service designs, develops, validates, integrates, 

and delivers the Safety and Security Service of AXIS 3, 

including external data integration. It establishes an end-to-

end service chain—from data collection to geospatial 

product delivery—along with user tools. The goal is to meet 

national needs for spatial, temporal, and thematic resolution 

using AXIS satellite data. These needs shape software 

requirements, resulting in value-added products like 

thematic maps, insights, and user-friendly services with 

timely and systematic delivery. Big EO data is handled via 

batch processing and parallel computing to manage volumes 

efficiently and accurately. 

 

 

Figure. 1. AXIS 3 Safety & Security Service High-level schematic 

representation 

2.  ARCHITECTURE & DESIGN PRINCIPLES 

The AXIS 3 Safety & Security Service is built on a modular, 

scalable architecture, supporting the full EO data lifecycle—

from acquisition to analysis and delivery. Each function is 

encapsulated in a dedicated module, allowing independent 

development, testing, and scaling without disrupting the rest 

of the system. The architecture offers key benefits: 

scalability (modules like ingestion or training can grow as 

needed); maintainability (updates in one area don’t impact 

others); and reusability (core components adapt across 

services). It also ensures interoperability for easy integration 

with national and international EO infrastructures (e.g. 

AXIS 3 Governmental Hub, HSC Data Hub). 
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Figure . 2. Service Architecture for Governmental Hub Integration 

 
The Server Services Module forms the processing core and 

includes: Data Ingestion Module - Collects EO data from 

AXIS satellites and sources like Copernicus, supporting 

standard geospatial formats and APIs for compatibility and 

efficient flow; Data Preprocessing Module - Cleans, filters, 

and normalizes data, ensuring sensor consistency and filling 

gaps by aligning third-party datasets to the national mission;  

Feature Extraction Module - Converts cleaned data into 

structured features using statistical and geospatial 

algorithms, preparing outputs for modeling or decision 

tools. Model Training Module: Trains AI models with EO 

features, supporting hyperparameter tuning, validation, and 

transfer learning to optimize models for tasks like flood risk 

or wildfire forecasting. Prediction and Inference Module: 

Applies models to new data for batch or real-time insights, 

supporting services like target tracking and disaster alerts 

with robust scalability. Each thematic service -Flood Risk 

Assessment, Wildfire Monitoring, Target Identification-

operates as an independent pipeline while sharing a unified 

backend, following a common flow: ingest → preprocess → 

extract → train → predict. The use of containers and 

metadata standards ensure smooth operation with platforms 

like the Governmental Hub and Earth Observation 

Exploitation Platform Common Architecture (EOEPCA)[1]. 

3. THEMATIC EO SAFETY & SECURITY SERVICE 

IMPLEMENTATIONS  

The AXIS 3 Safety & Security Service implements a suite 

of EO services, built on a modular architecture. These 

services deliver actionable insights for risk mitigation and 

security operations across Greece. Each pipeline integrates 

data ingestion, preprocessing, model-based processing, and 

product delivery, tailored to its thematic objective. 

3.1. Flood Risk Assessment and Mapping  

3.1.1. Rapid and Accurate Flood Delineation  

Flood extents and water depth are detected using SAR 

(Sentinel-1, AXIS 1.2) and optical (Sentinel-2, AXIS 2.0) 

imagery. A Multi-Otsu’s thresholding method [2,3] 

classifies flooded areas, and the FLEXTH tool [4] estimates 

water depth. Optical data preprocessing includes NDWI and 

cloud masking [5]. For SAR data, calibration, speckle 

filtering (Lee filter), terrain correction, and dB scaling [6] 

are applied. 

3.1.2. Flood Risk Prediction  

Flood risk is predicted using the 

LISFLOOD model [7], 

simulating runoff and 

hydrological processes across 

Greece. Inputs include 

meteorological data 

(precipitation, temperature, 

evapotranspiration) and static 

maps (land use, soil, 

topography). The model 

generates daily or weekly risk 

maps for flood response and 

mitigation planning. 

3.2. Wildfire Analysis and 

Surveillance 

3.2.1. Wildfire Danger 

Forecasting and Fire Risk  

This service predicts fire risk 

up to three days in advance by 

integrating satellite data with 

environmental and human 

variables. Machine learning 

models [8] trained on 

meteorological, fuel, and terrain 

data produce fire danger maps, 

anomaly reports, and 

explainable AI visualizations to 

support early warnings. 

3.2.2. Burn Scar Mapping  

Deep Learning models using the FLOGA dataset [9] map 

burn scars from multispectral and SAR imagery. The system 

provides accurate post-fire damage assessments, even in 

inaccessible or cloud-covered areas, aiding recovery, land 

use, and fire mitigation strategies. 

Figure 3 Preliminary 

results of Safety & 

Security Services 
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3.2.3. Fire Severity Mapping  

This service estimates fire damage intensity, supporting 

ecological assessments and recovery efforts. The GeoCBI 

algorithm [10] classifies fire severity using multispectral 

satellite data, informing reforestation, soil stabilization, and 

ecosystem resilience planning. 

3.2.4. Restoration and Regeneration Monitoring  

This service monitors vegetation regrowth across biomes in 

Greece, using Copernicus and AXIS multispectral data, fire 

severity, and forest type maps. A remote sensing index [11] 

classifies recovery status, supporting restoration planning. 

3.2.5. Active Fire Monitoring  

This module detects active fires in near real-time using 

thermal-infrared satellite data and EO analytics. It tracks fire 

fronts and hotspots, helping emergency services optimize 

suppression strategies and protect critical infrastructure. 

3.2.6. Fire Spread and Intensity Forecasting  

This service uses the WRF-SFIRE model [12] to predict 

wildfire spread and intensity, simulating fire-atmosphere 

interactions. It integrates inputs like fuel moisture, weather 

forecasts, and terrain to guide suppression tactics and 

communication. 

3.3. Target Identification and Tracking  

3.3.1. Target Identification 

Machine learning models, primarily Detectron2 [13], detect 

and classify vessels, aircraft, vehicles, and infrastructure 

using SAR and optical imagery. Each object category uses 

dedicated models, with land and sea masks reducing false 

positives. Infrastructure detection uses only optical data due 

to SAR complexity. 

3.3.2. Tracking Target Identification  

Object tracking uses multi-frame spatial correlation and 

optical flow-based tracking [14]. Multi-SAR (e.g., AXIS 1.2 

dwell mode) and multi-optical (e.g., AXIS 2) inputs derive 

object trajectories. Outputs include LineString paths and 

velocity metrics for dynamic monitoring. 

4. DATA REQUIREMENTS AND INGESTION 

STRATEGY 

The Axis 3 Safety & Security Services ingest a 

comprehensive and diverse range of satellite and auxiliary 

datasets to support advanced Earth observation applications 

across flood risk, wildfire monitoring, and target 

identification domains. Inputs include multispectral and 

SAR imagery from Sentinel-1, Sentinel-2, Axis 1.2, Axis 

2.0, ICEYE, WorldView, and PlanetScope satellites, as well 

as terrain models like Copernicus DEM, land cover maps, 

meteorological time series, and thematic data such as fire 

hotspots or hydrological parameters.   

The Axis 3 Governmental Hub leverages a standardized and 

scalable data ingestion strategy based on the 

SpatioTemporal Asset Catalog (STAC) API [15], ensuring 

that all core datasets ingested into the Hub’s internal catalog 

are STAC-compliant. Conversely, external datasets not 

registered in the catalogue (e.g., real-time weather feeds, 

environmental models, hydrological boundaries, and 

auxiliary 

layers like 

CORINE or 

WorldPop) 

are accessed 

through 

dedicated 

interfaces or 

treated as 

static support 

layers used 

exclusively 

during 

processing 

workflows, 

without direct 

ingestion into 

the catalogue. 

 

5. SERVICES OPERATIONAL PROCESS  

The operational processes of Axis 

3 Safety & Security Services 

support both systematic 

monitoring and on-demand 

response. Core services like Flood 

Risk Prediction, Wildfire 

Forecasting, Burn Scar Mapping, 

and Active Fires operate 

systematically with predefined 

cycles (e.g., daily, monthly/ 

weekly). Services like Rapid 

Flood Delineation and Target 

Tracking are triggered on-demand 

for post-event monitoring or 

specific AOI operations. Services 

such as Fire Spread and Intensity 

Forecasts react to detected events, 

balancing continuous service with emergency response 

agility through tasking and dynamic data processing. 

Figure 4 Data Ingestion of various datasets 

Figure 5 Operational modes 

of all services  
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6. SERVICES CURATION FOR GREEK 

GOVERNMENTAL HUB PROCESSING BUILDING 

BLOCK  

Each service—flood mapping, wildfire monitoring, and 

target identification—is packaged in Docker containers for 

scalability across Kubernetes clusters. Common Workflow 

Language (CWL) is used for workflow orchestration, 

enabling integration and traceability. The application 

includes a container and a .cwl file defining inputs and 

execution, ensuring reproducibility across cloud or 

distributed infrastructures [16]. 

7. CONCLUSION 

The AXIS 3 Safety & Security Service demonstrates the 

effectiveness of a modular Earth Observation system in 

meeting national needs for disaster management, 

environmental monitoring and security. Its architecture 

enables systematic geospatial service delivery while 

adapting to time-sensitive and event-driven demands. 

Integrating national and international satellite data—such as 

the national space assets, Copernicus, and other sensors—

ensures broad spatial and temporal coverage. The service, 

based on standardized interfaces and harmonized processing 

chains, facilitates interoperability across data and system 

components. 

The successful deployment of thematic pipelines for flood, 

wildfire, and target identification confirms that a well-

structured EO system can support these applications. 

Implemented with containerized modules and orchestrated 

via CWL, these workflows offer a scalable framework for 

deployment within the EOEPCA ecosystem. 

The service also addresses Big Earth Observation Data 

challenges by using parallel processing, batch execution, 

and scalable cloud-native architectures, ensuring efficiency 

and performance under high-frequency data loads—critical 

for both systematic and real-time responses. 

Overall, the Safety & Security Service demonstrates how a 

structured EO system supports decision-making and 

enhances national readiness. 
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AN INTEGRATED APPROACH FOR ASTEROID IMPACT PREDICTION AND 

TRAJECTORY VISUALIZATION  

  

Emine Betul Erdogan, Gokhan Bakal  

Abdullah Gul University, Türkiye  

ABSTRACT  

Asteroid collision prediction plays a pivotal role in planetary 

defence by enabling proactive risk mitigation and informed 

strategic planning. To address this challenge, we developed a 

comprehensive framework that integrates historical fireball 

data and contemporary orbital parameters from NASA’s 

datasets. By deriving shared physical features and applying 

unsupervised clustering, our system identifies patterns in 

potential impact scenarios. We further incorporate supervised 

learning to categorize asteroids based on their threat level. To 

enhance accessibility and interpretation, the framework 

includes multi-dimensional visualizations of orbital dynamics 

and an interactive web application that represents asteroid 

trajectories in both two and three dimensions. This simulation 

platform serves both scientific and educational purposes, 

offering a rich interface for exploring asteroid behaviour. This 

study demonstrates the potential of combining machine 

learning, astrophysical modelling, and data visualization to 

support planetary safety initiatives.  

Index Terms— Asteroid prediction, planetary defence, 

K-means clustering, Random Forest classification, orbit 

visualization  

1. INTRODUCTION  

Asteroid monitoring plays a critical role in understanding and 

mitigating the risks posed by near-Earth objects. As interest 

in planetary defence continues to grow globally, space 

agencies and researchers face increasing demands for 

accurate forecasting systems that can assess potential 

collision threats in a timely manner. Similarly, Malakouti et 

al. (2023) highlighted the value of machine learning 

classification for hazardous asteroid identification [2]. The 

combination of expanding public datasets and the growing 

accessibility of computational tools provides new 

opportunities to model and predict celestial behaviour with 

greater precision.  

  

In recent years, As Chomette et al. (2024) demonstrated, 

machine learning significantly improved local asteroid 

damage prediction and as advancements in data-driven 

methodologies have enabled researchers to move beyond 

traditional orbit tracking by incorporating machine learning 

and simulation techniques into asteroid impact assessment 

frameworks [1]. Such approaches are essential not only for 

identifying potentially hazardous asteroids (PHAs) but also 

for supporting strategic decision-making processes in defence 

and space governance contexts.  

  

To respond to these emerging requirements, we developed a 

comprehensive framework that leverages both historical 

fireball data and real-time orbital records from NASA’s 

databases. The system integrates clustering, classification, 

and simulation methods to create a unified tool for detecting 

and visualizing asteroid threats. Section 2 outlines the input 

data sources, methodology, and machine-learning models 

employed. Section 3 introduces the simulation platform and 

technical implementation. Results, insights, and potential 

applications are presented in the concluding sections.  

2. DATA & METHODS  

This section presents the data sources, preprocessing 

strategies, and modelling architecture developed to detect 

potentially hazardous asteroids and simulate their future 

trajectories. The workflow combines historical impact 

records with real-time orbital datasets and integrates 

unsupervised and supervised machine learning methods for 

collision risk classification and spatial-temporal modelling.  

  

2.1. Input data  

  

The framework uses two complementary data sources. 

NASA’s CNEOS Fireball and Bolide Data provides an 

essential dataset for historical impact records [3], capturing 

prior atmospheric entries with parameters such as velocity, 

altitude, and total radiated energy. The second source includes 

orbital elements of currently tracked asteroids in low-Earth 

and near-Earth space, including semi-major axis, inclination, 

eccentricity, and close approach data.  

  

Due to limited overlap between these datasets, shared features 

were derived through transformation techniques. This 

includes estimated kinetic energy, projected impact 

probability, and derived velocity vectors. All entries were 

filtered and standardized to ensure compatibility and 

relevance to potential Earth-crossing objects. The resulting 
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unified dataset supports both exploratory clustering and 

model training.  

  

 

2.2. Feature engineering and clustering  

  

To reduce data dimensionality and improve model 

interpretability, a curated feature set was extracted and 

transformed. Notable variables include vectorized speed 

components,  altitude  normalization,  miss-distance 

thresholds, and inferred orbital behaviour based on similarity 

to past impactors. Recent multimodal anomaly detection 

methods such as those proposed by Mondal et al. (2025) 

inspire more advanced asteroid hazard prediction strategies 

[4].  

  

Initial unsupervised analysis was performed using K-means 

clustering, segmenting the dataset into distinct risk categories. 

This step enables a probabilistic view of impact likelihood 

based on shared physical characteristics. The clusters were 

later evaluated via visual and statistical methods, including 

scatter and box plots to validate separability between high and 

low-risk objects. Figures 1, 2, 3, 4 and 5 shows the results of 

the clustering mentioned above.  

  

Fig. 1. K-means clustering of historical fireball dataset. Cluster 

assignments are coloured by velocity and total energy.  

 

   

Fig. 2. K-means clustering results on current orbital dataset, 

visualizing energy vs. velocity with cluster separation.  

  

 

   

  

 

Fig. 3. Boxplot of velocity (km/s) by cluster.  

 

Fig. 4. Boxplot of altitude (km) by cluster.  

  

 

Fig. 5. Boxplot of total radiated energy (J) by cluster.  

  

 

2.3. Supervised classification  

  

The clustered dataset served as the basis for training a 

Random Forest classifier to generalize risk prediction to new, 

unlabelled asteroid entries. Sharma et al. (2024) successfully 

applied AI-based approaches for detecting hazardous 

asteroids, showing promise for real-time classification 

systems [6]. The model leveraged decision-tree ensembles 

with feature importance tracking, supporting the 

identification of dominant predictors such as vx, vy, and 

altitude.  

  

Model training followed a stratified data split and employed 

standard metrics (precision, recall, F1-score) for evaluation. 

This classification component was essential for real-time 

integration, allowing continuous assessment of updated 

asteroid catalogues.  

Risk, Disaster, and Hazard Management [Poster Session]

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

174 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


3  
  

3. SYSTEM ARCHITECTURE AND DEPLOYEMENT  

In addition to the core modelling pipeline, the proposed 

framework includes a modular, end-to-end architecture for 

data ingestion, simulation, visualization, and deployment. 

The system combines machine learning, astrophysics-based 

simulation, and web technologies to offer a fully integrated 

platform for asteroid collision risk assessment.  

  

The architecture is composed of three primary layers: a 

backend data processing layer, a simulation and modelling 

layer, and a frontend visualization and interaction layer. Each 

component communicates through lightweight serialized 

formats (e.g., JSON), ensuring scalability and modular 

deployment.  

  

  

  

3.1. Backend Processing and Modelling  

  

The backend layer, implemented in Python, handles data 

acquisition from the real-time integration leverages open 

NASA services such as the Fireball Data API and orbital 

datasets [5]. It also performs preprocessing steps such as 

feature extraction, normalization, clustering, and supervised 

classification. The feature engineering phase is crucial for 

ensuring consistent scale across heterogeneous datasets.  

  

The simulation engine uses libraries such as Matplotlib, 

Astropy, and NumPy to render 2D and 3D orbital plots. These 

plots depict Earth-centric orbits of both historical and 

predicted high-risk asteroids, enabling static analysis of their 

trajectories and proximity to Earth as shown in the Figure 6 

and 7. 

  

  

Fig. 6. 3D orbital visualization of near-Earth objects  

  

  

Fig. 7. Example 2D orbital paths of clustered asteroids around 

Earth.  

  

  

3.2. Interactive Simulation Frontend  

  

To enhance accessibility and real-time interactivity, a 

browser-based application was developed using Babylon.js. 

The simulation recreates a simplified solar system with 

dynamic asteroid motion, leveraging WebGL for high 

performance rendering. Each asteroid is plotted in motion 

based on its orbital parameters, and risk clusters are color-

coded for interpretability.  

  

Hover effects reveal detailed metadata (e.g., diameter, 

velocity, estimated miss distance), enabling users to interact 

with individual objects as in the Figure 7 and explore their 

behaviour. The interface is optimized for educational and 

scientific audiences, promoting transparency and 

engagement.  

 

  

  

Fig. 7. Interactive web-based asteroid simulation built with 

Babylon.js. The Earth-cantered view highlights asteroid motion 

in real-time, with orbital paths and planetary positions rendered 

in 3D for spatial awareness and educational exploration.  

  

[Poster Session] Risk, Disaster, and Hazard Management

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

175 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


4  
  

4. RESULTS  

This section presents several illustrative outcomes derived 

from the developed asteroid monitoring framework to 

showcase its applicability in real-world near-Earth object 

(NEO) risk analysis. Milani et al. (2005) introduced non-

linear impact monitoring techniques, which align with our 

clustering-based anomaly detection approach [7]. The 

framework was employed to cluster and analyse close-

approaching asteroids based on key physical and orbital 

parameters such as velocity, total radiated energy, and 

altitude.  

  

Figures 1 and 2 display the results of K-Means clustering 

performed on the dataset using velocity and energy as 

distinguishing features. This clustering helped identify 

objects with anomalously high energy levels and distinguish 

them from the bulk population. A second clustering result 

with a zoomed-in scale is presented in Figure 3, 4 & 5 to better 

highlight distribution variations among more typical asteroid 

groups.  

  

To further interpret the characteristics of each cluster, 

boxplots were generated for velocity (Figure 3), altitude 

(Figure 4), and total radiated energy (Figure 5). These 

visualizations provide insights into outlier detection and intra-

cluster variability across parameters.   

  

The framework was also applied to a case study involving 

asteroids with predicted close approaches to Earth between 

January 1–15, 2024. JSON-formatted data allowed extraction 

of key features such as object diameter, miss distance, and 

relative velocity. Among the results, an object named (2024 

AR2) was identified with an unusually close predicted miss 

distance of ~1.26 million kilometres, prompting further risk 

simulation. The predictions suggest that this methodology can 

help prioritize observational resources for potentially 

hazardous objects.  

  

These experiments demonstrate the utility of combining 

unsupervised clustering, statistical profiling, and feature 

driven analysis to derive interpretable insights from 

largescale asteroid datasets, ultimately supporting early 

warning and planetary defence initiatives.  

  

5. SUMMARY AND CONCLUSION  

Farnocchia et al. (2015) and Chodas (2002) emphasized the 

importance of systematic ranging for impact warning and 

probability calculation [6], [8]. Considering the significance 

of the issue we have presented a data-driven approach for 

assessing and visualizing asteroid collision risk to support 

planetary defence research and public scientific outreach. By 

integrating historical impact data with current orbital 

parameters, the methodology enables intelligent clustering 

and classification of potentially hazardous asteroids using 

well-established machine learning models.  

 

Combining statistical feature engineering with visual orbit 

simulations and interactive web technologies, the system 

offers an accessible and modular platform for both 

researchers and the public. The proposed approach supports 

multi-format visualization, ranging from static plots to fully 

immersive 3D simulations rendered in web browsers. 

 

The workflow is currently deployed in a simulated 

environment, enabling consistent monitoring and 

presentation of close-approaching objects. It is well positioned 

for integration with real-time data pipelines from 

external services such as NASA’s API, offering a robust, 

open-source foundation for future planetary defence systems 

and educational platforms targeting space hazard awareness. 
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PROCESSING AND DATA ACCESS OF THE GLOBAL FLOOD MONITORING SERVICE

Tobias Stachl, Christoph Reimer, Christian Briese

EODC Earth Observation Data Centre for Water Resource Monitoring GmbH

ABSTRACT

The Global Flood Monitoring (GFM) service, launched in
2021 as an independent component of the Copernicus Emer-
gency Management Service (CEMS), exemplifies the trans-
formative potential of space-based big data in addressing ur-
gent societal challenges, particularly in the context of climate
change. Operating continuously, GFM processes all incoming
Synthetic Aperture Radar (SAR) imagery from the Coperni-
cus Sentinel-1 satellites using a three-algorithm ensemble ap-
proach to generate binary flood masks and flood likelihood
layers, along with contextual data such as reference water
maps and flood impact indicators. Hosted on cloud infras-
tructure at the Earth Observation Data Centre (EODC), GFM
achieves end-to-end processing times of under 5 hours, with
best-case scenarios below 90 minutes. Data access is pro-
vided via integration with the Global Flood Awareness Sys-
tem (GloFAS) and the European Flood Awareness System
(EFAS), as well as through RESTful APIs, a dedicated web
portal, and a STAC-compliant, cloud-optimized catalog. This
contribution presents the operational framework, data dissem-
ination infrastructure, and outlines future directions to en-
hance data access and scalability for climate resilience ap-
plications.

Index Terms— Global Flood Monitoring, Sentinel-1, Big
Data, Earth Observation, SAR, Datacube, Cloud-optimized

1. INTRODUCTION

Flooding is a pervasive natural hazard that affects millions
of people worldwide, necessitating timely and accurate mon-
itoring to mitigate its impacts. Traditional flood mapping
methods often rely on manual interpretation of satellite im-
agery, which can be time-consuming and subject to delays.
To overcome these limitations, the Copernicus Emergency
Management Service (CEMS), one of the six services of
Copernicus, the Earth Observation component of the Euro-
pean Union’s space programme, launched the Global Flood
Monitoring (GFM) service in 2021. Leveraging Sentinel-1
Synthetic Aperture Radar (SAR) data, GFM operates as a
fully automated, 24/7 processing chain. It functions as an
independent component of CEMS, supporting both immedi-
ate emergency response and long-term disaster risk reduction
efforts [11].

All worldwide GFM flood data are freely available in
near-real-time (NRT), as well as the historic data from an
offline processed archive covering the complete Sentinel-1
observation period (from 2015 to present). As of the time
of writing, approximately 1,950,000 Sentinel-1 IW GRDH
scenes have been processed, highlighting the extensive cov-
erage and operational scale of the Global Flood Monitoring
service.

To support integration into automated workflows and im-
prove accessibility, the growing archive and near-real-time
(NRT) outputs of the GFM service have been published as an
open-access collection using the SpatioTemporal Asset Cata-
log (STAC) standard. This enables efficient, programmatic
search and filtering by region, time, and metadata such as
flood extent. The data is stored in cloud-optimized GeoTIFF
(COG) format to support scalable and efficient processing.

2. METHODOLOGY

The GFM service automatically processes all incoming
Sentinel-1 SAR images acquired over land in Interferometric
Wide (IW) swath mode, Ground Range Detected (GRD) and
VV polarization, leveraging a global backscatter datacube
that covers approximately 379 billion land surface pixels.
After the successful download of the Sentinel-1 IW GRD
images, geometrically and radiometrically corrected images
of the backscattering coefficient σ◦ are produced, which are
then ingested into a global Sentinel-1 datacube.

The subsequent flood detection is based on three comple-
mentary flood mapping algorithms, which outputs are com-
bined using ensemble approaches to produce the main output
of the GFM service: a binary flood map and a flood like-
lihood layer. To enhance interpretation and usability, addi-
tional contextual layers are also provided, including a refer-
ence water mask (identifying permanent and seasonal water
bodies), an exclusion mask, advisory flags, and flood impact
layers. The three flood mapping algorithms have been devel-
oped by the German Aerospace Centre (DLR), the Luxem-
bourg Institute of Science and Technology (LIST), and the
Vienna University of Technology (TU Wien). Further tech-
nical details on the flood mapping algorithms, the ensemble
methodology, and the contextual layers can be found in Wag-
ner et al. [13] as well as on the Wiki pages of the GFM service
(https://extwiki.eodc.eu/en/GFM).

[Poster Session] Risk, Disaster, and Hazard Management

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

177 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


Fig. 1. Overview of the step-by-step GFM NRT production
workflow [13].

2.1. Near-real-time workflow

The NRT workflow depicted in figure 1 consists of the acqui-
sition of the latest Sentinel-1 SAR images, its preprocessing
to σ◦ images, production of the flood mapping algorithms in-
cluding advisory flagging and ensemble approaches and the
final preparation and ingestion of the output products to be
picked up by the various dissemination systems. Additional
inputs that were derived offline by analysing the historic data
within the Sentinel-1 datacube along with high-resolution an-
cillary datasets, are picked up and prepared by the NRT work-
flow for each incoming Sentinel-1 image.

The entire data production workflow is deployed within
a fully independent resource tenant on EODC’s cloud in-
frastructure. This environment is powered by OpenStack,
a widely used open-source cloud computing platform that
enables flexible, scalable, and automated management of
compute, storage, and networking resources. By leveraging
OpenStack, we ensure high availability, resource isolation,
and efficient orchestration of our processing services, making
it ideally suited to the needs of GFM.

To streamline infrastructure management, we use Ansible
and Terraform to automate the provisioning, configuration,
and maintenance of our environment, ensuring consistency
and scalability across all deployments. The current setup in-
cludes 480 virtual CPUs (vCPUs) and 1.2 TB of memory of
latest processing hardware, distributed across multiple worker
units to maintain a service availability of greater than 99%.

Apache Airflow is used for task orchestration, enabling
the reliable scheduling, monitoring, and execution of all
processing chains including data acquisition, Sentinel-1
backscatter σ◦ pre-processing and flood mapping workflows
within the GFM data production pipeline. Finally, a mon-
itoring and alerting system powered by Grafana provides
real-time notifications to operations engineers, ensuring 24/7
service availability and rapid response to any system anoma-
lies.

2.2. Integration with Forecasting Systems

GFM’s outputs are integrated in the Global Flood Awareness
System (GloFAS) [8] and the European Flood Awareness

System (EFAS) [9], enhancing the predictive capabilities of
these systems. By combining real-time flood observations
with medium- and seasonal-range forecasts, GFM supports
proactive flood risk management, enabling authorities to is-
sue timely warnings and implement mitigation measures. The
map viewers of GloFAS and EFAS allow users to visualize
all GFM product layers.

2.3. Data Access

Alongside the aforementioned integration into GloFAS and
EFAS, GFM output products are accessible through a various
set of interfaces, following the assumptions of Mostafiz et al.
[10], to provide easy access of flood information to maximise
its usefulness for both the public and professionals.

A dedicated webportal [4] - which is also integrated in
the map viewer of GloFAS and EFAS - allows users to define
areas of interests (AOIs), display and download GFM data
for the AOIs and configure a notification service for any new
available data. Additionally, a set of application programming
interfaces (APIs) has been implemented to provide a more
flexible way of downloading data. The integration into Glo-
FAS and EFAS as well as the here described webportal and
APIs have been developed by GeoVille GmbH [3], member
of the GFM consortium.

2.3.1. Cloud-optimized Data Access

Given the continuously expanding volume of GFM output
data - including both the complete archive and NRT products
- ensuring easy discoverability and programmatic access is
essential for integrating GFM data into automated processing
workflows and applications [7]. To support this, in addition to
the previously mentioned access methods, the GFM data has
been published as an open-access collection using the Spa-
tioTemporal Asset Catalog (STAC) specification [5].

STAC is a standardized way to expose and interact with
collections of spatial temporal data, which enables users to ef-
ficiently search the entire GFM dataset by specifying regions
and time periods of interest. It also allows filtering based on
metadata attributes specific to the outputs, such as the number
of detected flooded pixels. The data is stored in the Cloud-
Optimized GeoTIFF (COG) format, which enhances read ef-
ficiency and supports scalable processing pipelines.

The GFM STAC catalogue currently comprises approxi-
mately 4,8 million STAC items. Each STAC item contains
links to all associated output files - specifically, COGs repre-
senting the results of the three individual flood mapping algo-
rithms as well as the ensemble product.

Numerous tutorials and example Jupyter notebooks show-
casing the benefits of using STAC in simple to complex use
cases can be found on EODC’s public GitHub repository [2].
The examples range from a simple visualisation of a single
GFM output to processing of the maximum flood extent for a
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specified AOI and time range using data proximate process-
ing on EODC cloud infrastructure utilizing the Python based
parallel computing library Dask [1].

2.4. Timeliness

A core requirement of the GFM service is to deliver its out-
put data as quickly as possible, with a maximum latency of
8 hours following each Sentinel-1 SAR acquisition. The per-
formance of the GFM production workflow is measured and
monitored using Key Performance Indicators (KPIs), which
are used for quarterly and annual reporting [12]. Figure 2 de-
picts an overview of the maximum processing durations un-
der regular conditions. In optimal conditions, the GFM sys-
tem can achieve end-to-end processing times - from sensing
to data dissemination - of under 90 minutes. On days when
the Sentinel-1 ground segment operates nominally, the total
latency typically remains below 5 hours, which can be seen in
figure 3.

Fig. 2. Timeliness of the GFM service, with maximum du-
rations under regular conditions between acquisition from
Copernicus, GFM main processing modules, and product
dissemination. NRT-3h and FAST-24h refer to Copernicus’
Sentinel-1 timeliness categories [13].

Fig. 3. Grafana dashboard showing the average, minimum
and maximum timeliness of a usual day (18. May 2025).

3. OUTLOOK

The Copernicus Sentinel-1 mission was developed as a con-
stellation of two satellites to ensure a repeat cycle of six days.
Sentinel-1A and Sentinel-1B were launched in April 2014
and April 2016, respectively. Following the premature loss
of Sentinel-1B in December 2021, the third satellite, Sentinel-
1C, was successfully launched in December 2024. At the time
of writing, integration of Sentinel-1C into the Global Flood
Monitoring (GFM) near-real-time (NRT) workflow is ongo-
ing. To maintain the performance and continuity of GFM, the
expansion of the Sentinel-1 constellation with the upcoming
Sentinel-1D is essential.

Additionally, enhancing and evolving data access meth-
ods is critical for enabling seamless integration of the exten-
sive GFM dataset into existing processing workflows. In line
with the principles of data-proximate processing, our objec-
tive is to improve data access and analytical capabilities, par-
ticularly for time series applications, by adopting Zarr [6], a
community-driven specification for chunked, compressed, N-
dimensional arrays that enables efficient I/O in parallel com-
puting environments. This approach will better support users
seeking to exploit the full potential of the nearly decade-long
dataset, whether for trend analysis, historical comparison, or
large-scale processing.

4. CONCLUSION

The Global Flood Monitoring (GFM) service represents a sig-
nificant leap forward in operational, near-real-time satellite-
based flood detection and monitoring. Leveraging Sentinel-1
SAR data, GFM delivers high-resolution flood maps globally
within hours of data acquisition in a fully-automated manner,
fulfilling a critical need for rapid and reliable flood informa-
tion. The service ensures accessibility and performant access
to its output data through a robust cloud-based infrastructure
and advanced data processing pipeline - featuring indepen-
dent flood detection algorithms, which outputs are combined
using ensemble approaches, integration in the forecasting sys-
tems of EFAS and GloFAS, and dissemination via multiple
access points including APIs, web portals, and STAC.

As flooding events become more frequent and severe due
to climate change, services like GFM are indispensable tools
in enhancing global preparedness and resilience. Future de-
velopments will focus on further improving algorithm perfor-
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mance, expanding data integrations, and refining accessibility
to maximize the service’s impact across scientific, humanitar-
ian, and operational domains.
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ABSTRACT
Urban flash floods are becoming increasingly frequent due to
climate change and land artificialization, posing serious risks
to human safety and infrastructure. To address this challenge,
the HORIZON-Europe ExtremeXP project [1] provides a
user-centric platform integrating explainable AI, visual ana-
lytics, and experimentation workflows. This paper presents
a use case focusing on flash flood prediction in the city of
Nı̂mes, France. A deep learning surrogate model, based on
a UNet architecture enhanced with temporal attention, is
trained using data generated by a hydrodynamic model. In-
put data include topographical information from LiDAR and
aerial imagery, as well as high-resolution rainfall data. The
ExtremeXP framework enables iterative experimentation,
model optimization, and interactive visualization, placing
the user at the center of the process. Results show promis-
ing predictive performance and highlight the relevance of
combining physical simulations and AI within a transparent
decision-support system for climate risk mitigation.

Index Terms— machine learning, surrogate model, flash
floods, hydrodynamical model

1. INTRODUCTION

In today’s data-driven world, machine learning models are in-
creasingly used to solve a wide range of problems. These new
methods face new challenges: the “black-box effect” of ma-
chine learning models leading to the lack of involvement of
user and visualization in the development of their models.

Developing accurate and trustworthy machine learning
models is a challenge well known to the scientific community.
The ExtremeXP framework (Fig. 1) provides accurate, fit-for-
purpose data-driven insights by evaluating different complex
analytic variants considering user intents, constraints and
feedback. Experimentation is the core concept for generating
accurate analytics. AI training pipelines are considered as
well as other types of workflows (data analytics, simulation
and visualization), including hybrid ones. The user is consid-
ered at the center of the process. Its participation takes place
at different phases of the experimentation in order to:

• specify intents, constraints and access control policies.

• manage the workflows during the execution of an ex-
periment.

• review the results and provide feedback.

ExtremeXP addresses key societal and industrial chal-
lenges through five application-driven use cases (UC): AI-
based flash flood forecasting, cybersecurity awareness, pre-
dictive maintenance, transport analysis, and disaster response.
This article focuses on the first UC: improving flash flood
forecasting with artificial intelligence.

Climate change is increasing the occurrence of urban flash
flood. Developing prediction models is an interesting tool to
reduce human and material damage caused by such events.
The data used to drive the models are of two types: topograph-
ical and meteorological, including data collected via satellite.

2. EXTREMEXP FRAMEWORK

Fig. 1 presents an overview of the ExtremeXP framework’s
modular architecture, which orchestrates different subsys-
tems/services. At the core lies the Experimentation Engine
responsible for designing, scheduling, executing and moni-
toring an experiment, i.e., the workflow of an AI pipeline that
the user wishes to evaluate. The surrounding five subsystems
offer additional modular features to the data scientist:

1. The Analysis-aware Data Integration module deals
with data-processing related challenges and provides
novel solutions to automatically select among datasets,
and deal with data quality issues such as missing,
incomplete, wrong, multilingual and duplicate data
points in user-driven reconfigurable workflows.

2. The User-driven AutoML offers functionalities for
simulation-based data augmentation for ML, constraint-
aware ML algorithms, algorithms for model selection
based on user preferences and constraints, continual
learning of model selection strategies and optimal de-
ployment of ML pipelines in heterogeneous environ-
ments.

3. The Transparent & Interactive Decision Making of-
fers explanations on the choice and configuration of a
ML/data analytics method and interactive visualization
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Fig. 1. ExtremeXP framework

and AR technologies to enhance monitoring and deci-
sion making.

4. The User-driven Optimization of Complex Analyt-
ics captures user intents, requirements and constraints
as well as user feedback for the optimization of experi-
ments.

5. The Extreme Data & Knowledge Management pro-
vides capabilities for secure and distributed manage-
ment of datasets and experimentation-based knowledge
assets and learning outcomes.

The framework has been used throughout the entire life-
cycle of the flash flooding prediction experiment setup de-
scribed in this paper, i.e., defining the AI workflow stages,
scheduling and evaluating models and hyperparameters that
fit the accuracy requirements, inspecting and refining the re-
sults through the interactive visualization dashboard. In this
UC the user interacts with the frameworks by giving some
feedbacks on the results produced by the experiment. This
data is then processed by the plateform to automatically im-
proved the experiment setup. With this UC a focus was made
on the visualization tools to improve the user experience and
to help actor for decision-making.

3. EXTREMEXP UC: FLASH FLOOD PREDICTION

Floodings are recurrent events due to global warming and ex-
cessive land artificialization. The damage caused by these
phenomena is both human and material, hence the urgent need
to develop models because they can be used to immediately
evacuate and secure the population, and over time to enable
us to better organize the territory.

3.1. Area of study

In this UC, the study focuses on Nı̂mes, a French city with
a special geographical situation, lying between the Mediter-
ranean Sea and the Cévennes mountains. The artificial nature
of the soil makes it impermeable, and as water is not absorbed,
water runoff is increased. As a result, this area experienced
some very serious flooding events in recent years (1988, 2002,
2005, 2014) caused by heavy rainfalls. The last three events
are studied here with a focus on the Camplanier catchment
(see Fig. 2).

Fig. 2. Camplanier catchment within Nı̂mes city

3.2. Methodology

The UC is responsible for modeling urban flooding phenom-
ena with machine learning tools. A physical model is devel-
oped to generate the data needed to train the deep-learning
model. Physical models are generally slow to infer and com-
plex to configure, hence the interest in developing surrogate
models based on deep-learning methods. The global approach
is based on two main steps:
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1. The physical model is configured and run once the in-
put data is set up.

2. The data generated by the HD model is recovered to
train the deep-learning model.

3. The surrogate model is validated against the physical
one.

3.3. Dataset and data processing

Various types of data are necessary to predict hazard events.
In the context of flood prediction, two classes of data are in-
teresting: topographical data providing information about the
terrain and its layout, and meteorological data.

3.3.1. Topographical data

The topographical data are open-source data from IGN: the
Digital Elevation Model (DEM) RGE ALTI [2] and a build-
ings mask [3]. In coastal areas, LiDAR is deployed, and, in
the mountains, radar is mostly used to acquire the data. For
the rest of the territory, aerial images correlation is used. In
the model data, the areas with buildings or outside the catch-
ment are marked with a No Data value.

3.3.2. Meteorological data

The city of Nı̂mes, one of our collaborators, provided rainfall
data used as meteorological inputs to characterize the flood-
ing event. They are obtained with the software CALAMAR
(CAlcul de LAMes d’eau radAR) [4], a service precipitation
at high resolution (0.25 km²) by a hydrometeorological radar.
Recovered data has two different types: radar images and plu-
viometry measurements intended to calibrate radar data.

3.3.3. Data processing

The input data (DEM, rainfall, buildings and catchment ge-
ometries), and the water-depth maps calculated by the phys-
ical model, are georeferenced in a single tile. In addition to
this data the water level situation is added as a 2D map, to
inform the model if area is already flooded before the predic-
tion or not. Normalization transformation is applied on the
DEM. During training the unique tile is split into small ones
and an overlapping can be applied according to the configura-
tion. Sub-tiles with more than 90% of No Data are removed
from the training.

3.4. Hydrodynamic model

The physical model, using a hydrodynamical (HD) model,
producing water depth maps for the 3 flash flood events in
Nı̂mes works in 3 steps. No benchmark has been done and
the in-situ water depth measurements are not used to validate
the physical model, yet.

3.4.1. Meshgrid generation

First, we prepare the input data needed by the HD model in a
specific format and we produce the calculation meshgrid. It is
a Delaunay grid obtained using the software Triangle [5][6].
We also need to process and simplify the buildings geometry
to avoid, in the meshgrid, cells with a very small angle which
would slow down the HD model tremendously or would pre-
vent the convergence of the results.

3.4.2. HD model

The second step consists of running the HD model, Dassflow-
2d [7], producing the water depth images in the form of VTK
files. Outflow boundaries are also manually defined, in the
south of the catchment, to simulate water escape route and
avoid unrealistic accumulation, though no accurate compar-
isons were performed with in-situ data yet.

3.4.3. Data post processing

Finally, we process those files and the input data, restructuring
the Delaunay grid into a cartesian grid, to provide a single
netCDF file for the AI model.

3.5. Surrogate Model

3.5.1. Model Architecture

The model’s prediction time is a parameter that is generally
specific to the city and can vary according to its characteris-
tics. In Nı̂mes, it is estimated that an event can have a strong
impact within 30 minutes. In that way, we are considering 6
rainfall data temporally spaced 5 minutes apparts. The model
architecture needs to deal with both spatial and temporal di-
mension.

The chosen architecture is a UNet associated with a tem-
poral attention layer [8]. It is composed of 3 steps: a spatial
encoder, a temporal encoder and a spatial decoder. The cho-
sen model outperforms the original UNet and several RNNs
by taking advantage of the attention layer [9]. In the case of
flood prediction with spatio-temporal information, attention
layer is efficient to recover the important spatio-temporal fea-
tures from the scene.

3.5.2. Model Training

The model is trained on the ExtremeXP platform through ex-
perimentation. The parameter space is browsed during train-
ing to find the optimum configuration. L2 loss is used during
training.

3.5.3. Results

During training, several metrics are used, as described in the
following table (see T. 1). Two types are used classification
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and regression metrics. To calculate some of them, such as
recall and precision, it is necessary to return to a classifica-
tion problem. To do this, we determine a height at which the
area is considered flooded. Then, the water depth map is con-
verted into a classification map with two classes : no flood
and flood. Here, the threshold is determined at 20 cm. Error
maps are generated to analyze the difference between the HD
model and AI model predictions. The evaluation of the met-
rics was made on the the 2005 events. Finally the accuracy is
the percentage of well predicted pixels with a certain margin
of error, defined at 5 cm.

Table 1. Metrics
Name Recall Precision MSE Accuracy
N256 0.86 0.91 0.03 0.94
N512 0.91 0.90 0.01 0.97

As the data is georeferenced, it can be projected onto a
map (see Fig. 3 (a)). This visualization enables users to iden-
tify the possible flooded areas. The water depth representation
indicates to the users the level of the flood over the catchment.

(a) Prediction (b) Ground Truth

(c) Error map

Fig. 3. (a) Water depth (in meter) prediction from AI model;
(b) Ground truth water depth (in meter) (HD model results);
(c) Error maps: the absolute difference between (a) and (b) in
meter.

4. CONCLUSION AND PERSPECTIVES

This work presented a flash flood prediction UC developed
within the HORIZON-Europe ExtremeXP platform, focusing
on the city of Nı̂mes. By combining hydrodynamic simula-
tions with a deep learning surrogate model, the system pre-
dicts water depth 30 minutes ahead, showing encouraging
performance in terms of MSE and accuracy.

The ExtremeXP platform has supported the full lifecycle
of the experimentation, from data integration to visualization,
emphasizing user involvement and explainability.

Future work includes the generalization to other cities
with diverse conditions, the addition of incertitude measure-
ment in the model to facilitate decision-making for the user
as well as enhanced explainability for better user trust and
understanding. ExtremeXP aims to elaborate a proof of con-
cept to demonstrate that a surrogate model is able to replace
a physical method once trained. For a better solution in an
operational context, it will be important to validate the model
against in-situ data. Those axes concerned the AI part of the
project, on the hydrological one, it will be interesting to add
other infrastructures (pavements, hydrological facilities, etc)
in the meshgrid for more realistic simulations.

These results demonstrate the potential of combining AI
and physical modeling for effective urban flood forecasting.
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BRINGING AI TO GEOHAZARD ANALYSIS: THE NEW MLOPS FRAMEWORK IN GEP 
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Terradue Srl, Rome, Italy 
 

ABSTRACT 

The Geohazards Exploitation Platform (GEP), developed by 
Terradue, is a cloud-native Earth Observation (EO) platform 
designed to support the geohazard community. With a user 
base exceeding 3,500, GEP provides a comprehensive suite 
of EO processing services that assist researchers and 
practitioners in monitoring geohazards and responding to 
disasters. These services include tools for change detection, 
terrain deformation analysis, and long-term ground motion 
monitoring. To address increasing demands for automation 
and scalability, GEP has integrated an end-to-end Machine 
Learning Operations (MLOps) framework. This 
enhancement enables users to develop, deploy, and monitor 
AI models for geospatial applications efficiently. By 
supporting data ingestion, training, deployment and 
performance monitoring, GEP facilitates the 
operationalisation of AI models in areas such as landslide 
detection, earthquake response, and environmental 
monitoring. The framework incorporates FAIR principles 
through the Machine Learning Model (MLM) 
SpatioTemporal Asset Catalog (STAC) Extension, 
promoting reproducibility and discoverability. This positions 
GEP as a robust, scalable solution for advancing geospatial 
intelligence in science, public safety, and infrastructure 
resilience. 

Index Terms— Geohazards, Thematic Exploitation 
Platform, GEP, Machine Learning, MLOps 

1.​ INTRODUCTION 

The Geohazards Exploitation Platform (GEP) is a 
cloud-based Earth Observation (EO) data processing 
platform developed and operated by Terradue to support 
geohazard monitoring, terrain motion analysis, and critical 
infrastructure assessment.  
    It serves a diverse user base of over 3,500 researchers, 
public authorities, and industry professionals, providing 
access to EO data archives, advanced processing services, 
and analytical tools.  
    These services range from systematic data processing 
workflows, such as generating interferometric deformation 
maps, to event-triggered processing for rapid response 
scenarios like earthquake damage assessments. They support 
a variety of data-driven applications, from data screening 

and area monitoring to the integration of multi-temporal data 
for long-term risk assessment. 
 

 

Fig. 1. GEP’s community portal. 

1.1.​ A platform purpose-built for geohazards 

GEP offers more than 25 specialised EO services, including 
visualisation services for full-resolution imagery, processing 
services for event response and change detection as well as 
advanced SAR and optical data processing dedicated to the 
analysis of long time series of optical imagery for long-term 
area monitoring.  
    The range of processing services dedicated to change 
detection and event response comprises services for the 
generation of Digital Surface Models (DSM) and 
orthoimages from stereo- and tri-stereo very high-resolution 
satellite imagery [1], as well as services for automatic 
landslide detection and inventory mapping [2][3]. The 
portfolio also includes services for the assessment of 
landslide source volumes and for the flow path assessment 
of gravitational hazards at the regional scale —including 
debris flows, rockfalls, rock and snow avalanches and 
shallow landslides [4]. The change detection service 
portfolio is further complemented by SAR-based services 
for generating coherence and intensity composites, and 
services for detecting changes in SAR amplitude. 
    Processing services devoted to area monitoring include 
classic and advanced InSAR for persistent scatterers (PS) 
and small baseline (SBAS), such as —respectively— the 
SNAPPING (Surface motioN mAPPING) [5] and the 
CNR-IREA P-SBAS [6] Sentinel-1 on-demand processing 
services. Others focus on horizontal ground motion 
detection from optical time series, such as the Ground  
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Deformation Monitoring with OPtical image Time series 
(GDP-OPT) [7] processing services, tailored to landslide 
monitoring, ice and glacier analysis and earthquake analysis. 
    The processing services integrated in GEP result from a 
collaborative effort between service providers, such as 
research institutions or private companies that develop the 
algorithm, and Terradue, who provide support for the 
development, deployment and maintenance of services on a 
cloud infrastructure. This reflects the collaborative nature of 
this scientific endeavour, supporting a broad community of 
practitioners involved in geohazards.     
    All services operate on cloud infrastructure and have 
access to over 400 TB of EO data, including from 
Sentinel-1, Sentinel-2, Sentinel-3, ERS, Envisat, Landsat-8, 
Spot and Pléiades. Figure 1 illustrates GEP’s community 
portal showcasing the results of a P-SBAS processing job. 

1.2  Uptake in the scientific community and typical case 
studies 

GEP caters to a variety of user needs. Service developers 
can deploy their own algorithms using the EO Application 
Package [8] model.  
    Researchers and scientists use GEP for pilot studies, 
validation campaigns and long-term monitoring. Processing 
services hosted on GEP have already supported a wide range 
of use cases and scientific publications, including volcanic 
activity tracking [9], subsidence analysis [10], earthquake 
response [11] and landslide detection [12].  
    The adoption of GEP in scientific research is underpinned 
by adherence to the FAIR (Findable, Accessible, 
Interoperable, Reusable) principles. The use of Persistent 
Identifiers (PIDs) for experiments, data and software ensures 
the reproducibility of scientific experiments. Each 
application is encapsulated with its execution environment 
and dependencies, thus promoting consistent outcomes. 
Adherence to these principles is further facilitated by 
providing structured documentation and standardised 
metadata. 
    Public authorities and civil protection agencies rely on 
GEP for hazard mapping and disaster response. Rapid 
response during disasters is supported in a multifold way, 
specifically through providing access to pre-processed EO 
datasets, automated services for event-triggered surface 
deformation mapping and visualisation tools for sharing 
results with stakeholders in real time. By allowing for 
systematic data screening and long-term ground motion 
monitoring, GEP contributes to the operational resilience of 
critical infrastructure planning.  
   GEP is in use across multiple continents, including 
Europe, Southeast Asia, Africa, and the Americas. Some 
examples of past use cases are summarised in Table 1. 
 
 
 

Table 1. Selection of GEP use cases 
Title Region Use Case Description 

Sulawesi 
Earthquake 

(2018) 

Indonesia GEP supported rapid mapping of 
ground deformation and 

landslides triggered by the 
earthquake and tsunami. [13] 

Central Chile 
Earthquake 

(2022) 

Chile GEP provided InSAR analysis 
to detect surface deformation 
and assess the earthquake’s 

impact on infrastructure. [14] 
Santorini 
Volcano 

Unrest Phase 
(2023) 

Greece GEP services were used to 
monitor another phase of 

volcanic unrest at Santorini, 
one of the most iconic 

volcanoes in the Aegean Sea. 
[15] 

Turkiye–Syri
a 

Earthquakes 
(2023) 

Turkey - 
Syria 

GEP facilitated the generation 
of interferograms and surface 
rupture mapping for the M7.8 

and M7.7 earthquakes, 
supporting disaster response. 

[16] 
Morocco 

Earthquake 
(2023) 

Morocco Radar interferogram generated 
using Sentinel-1 acquisitions to 
analyze the impact of the M6.8 

earthquake. [17] 

1.3  Expanding the portfolio of GEP with Artificial 
Intelligence (AI) 

To meet the growing demands of its users, GEP's key 
objective is to expand the portfolio of services that leverage 
artificial intelligence (AI) and machine learning (ML). The 
complexity of training, deploying and maintaining ML 
models at scale, however, poses significant challenges. 
  These include managing large and diverse EO datasets, 
ensuring reproducibility, and maintaining model 
performance over time in dynamic operational 
environments. Overcoming these obstacles is essential to 
unlocking the full potential of AI in geospatial applications 
and opening up GEP to a wider range of data processing 
services, users, and stakeholders. 
    The expansion of AI support within GEP was undertaken 
as part of the AI/ML Enhancement Project. The project's 
main goal was to integrate an AI/ML processing framework 
into GEP seamlessly, thereby enhancing its services and 
enabling service providers to develop and deploy AI/ML 
models to improve geohazard applications. 
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Fig. 2. Schematic representation of the MLOps workflow in GEP. 

2.​ THE NEW MLOPS FRAMEWORK IN GEP 

A comprehensive AI/ML processing framework has been 
integrated in GEP, encompassing the entire machine learning 
lifecycle. This includes data discovery, training data, model 
development, deployment, hosting, monitoring and 
visualisation. A critical aspect has been integrating Machine 
Learning Operations (MLOps) practices into the platforms' 
service offerings to ensure the smooth operation of 
AI-driven applications. 
    By integrating MLOps directly into its cloud-native 
architecture, GEP now offers scalable and flexible AI 
capabilities. This will enable users to deploy advanced 
geospatial AI applications specifically designed for terrain 
motion analysis, disaster risk reduction and environmental 
monitoring. 

2.1.​ The Machine Learning Model (MLM) STAC 
Extension 

 The GEP MLOps framework builds upon the work carried 
out in the context of the Machine Learning Model (MLM) 
extension [18] —a specification that extends the 
SpatioTemporal Asset Catalog (STAC) framework in order 
to catalogue machine learning models, thereby improving 
their searchability and reproducibility. Originally driven by 
the need to incorporate FAIR principles, the MLM extension 
has proven crucial in supporting the identification and 
documentation of ML models driven by the specific 
requirements of geospatial applications. The framework 
supports the development and deployment of ML solutions 
tailored to applications addressing pressing challenges such 
as environmental monitoring, agriculture, disaster response 
and urban planning by supporting effective search and 
discovery. 

2.2.​ End-to-end ML support 

Figure 2 illustrates GEP’s integrated MLOps workflow, 
showcasing data ingestion, model training, feature inference, 
and scalable deployment on cloud infrastructures. 
    The newly integrated MLOps framework within GEP 
provides users with advanced, cloud-native infrastructure, 
enabling them to manage the complexities of developing, 
deploying and maintaining AI models for geospatial analysis 
seamlessly. 
    Data preparation and management is streamlined through 
the efficient handling of large EO datasets, with automated 
splitting for training, testing and validation. 
  Model development and training are supported by tools and 
environments that not only facilitate the creation of new ML 
models but also provide tracking and management 
functionalities through frameworks such as MLflow. 
MLflow plays a key role in experiment management by 
recording key information such as code versions, datasets, 
and model hyperparameters, ensuring reproducibility and 
traceability. The MLflow dashboard offers a clear, 
interactive view of multiple runs side-by-side, enabling 
straightforward comparison and helping users identify the 
best-performing model with greater confidence. 
   GEP supports scalable deployment by enabling trained 
models to be deployed into operational environments as 
cloud-native microservices that are compatible with standard 
geospatial service interfaces, such as Open Geospatial 
Consortium (OGC) APIs. 
   Finally, automated pipelines enable continuous monitoring 
and adaptation: deployed models are monitored for issues 
such as data drift or performance degradation, triggering 
re-training processes to maintain optimal performance. 
    This enables GEP to provide comprehensive support for 
the creation and operationalisation of AI models. Users can 
ingest and curate datasets directly within the platform to 

[Poster Session] Risk, Disaster, and Hazard Management

Proc. of the 2025 conference on
Big Data from Space (BiDS'25) doi:10.2760/2119408

187 Sep. 29 � Oct. 10 2025

https://doi.org/10.2760/2119408


facilitate streamlined model development and training 
workflows. Once trained, AI models can be seamlessly 
deployed into operational scenarios using automated 
deployment pipelines. Continuous monitoring ensures that 
models maintain their performance, accuracy and reliability 
by detecting issues such as data drift or decreased accuracy 
and triggering automatic retraining when necessary.  

3.​ CONCLUSION AND PERSPECTIVES 

The field of EO research has advanced rapidly, driven by 
increasing demands for reproducibility, scalability, and 
adherence to FAIR principles. Yet, significant challenges 
remain in managing and disseminating EO data, especially 
within scalable, open science infrastructures.  
    The integration of ML into EO and geospatial analysis 
introduces further complexity. It requires effective handling 
of big data, processing near data sources, and rigorous 
reproducibility to ensure the reliability and scientific validity 
of results. Addressing these intertwined challenges, the GEP 
has expanded its capabilities through a comprehensive 
MLOps framework.  
    This framework supports the full ML lifecycle—from 
data ingestion to deployment and monitoring—tailored to 
the unique needs of users working in geohazard analysis. 
GEP’s MLOps infrastructure is designed to simplify access 
to ML models, provide scalable computing resources, and 
enable the development and operationalisation of advanced, 
AI-driven processing services. By doing so, GEP empowers 
researchers, practitioners, and public authorities to develop 
robust, scalable, and reproducible solutions for terrain 
motion monitoring, disaster response, and long-term 
environmental analysis. 
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ABSTRACT 

Hellenic Operational Integrated Service for Aquatic systems 

(HELOISA) is one of the projects of the Greek National SmallSat 

Programme which implements the Water Monitoring Service. The 

project builds upon three pillars; Water Quantity, Water Quality and 

Maritime Surveillance. This paper focuses on the Water Quality 

module and specifically on the core products and technical approach 

that encompasses. It utilizes Copernicus data, as well as sensors of 

the Greek SmallSat constellation that provide optical and thermal 

data. The module covers various water body types, offering maps of 

water quality proxy variables such as water temperature, 

chlorophyll-a and water pollutants. Validation and evaluation 

activities include exploitation of existing historical and newly 

acquired data ensuring generated product quality. Overall, the 

HELOISA system is scheduled to be operational in mid to end of 

2026, consistently providing water quality products in the Greek 

territory supporting authorities in informed decision-making and 

policy implementation. 

Index Terms— Earth Observation, Small Satellite, Artificial 

Intelligence, Water Quality, Copernicus, Environmental Monitoring 

1. INTRODUCTION 

Water resources are of vital importance to ecosystems, human 

health, and economic prosperity. In Greece, a country characterized 

by a complex network of inland, coastal and marine water bodies, 

effective water monitoring systems are essential for sustainable 

resource management and environmental protection. Inland waters 

are especially significant as they provide drinking water to large 

populations including Athens and Thessaloniki, Greece's largest 

cities, home to over half of the country's population, as well as they 

support irrigation in agriculture, hydropower generation, flood 

regulation and biodiversity conservation. In addition, coastal and 

marine waters in Greece are vital to the country's economy, 

environment and security, supporting tourism activity, sustaining 

rich marine biodiversity, and enabling key sectors like fisheries, 

aquaculture and maritime, among others. Recognizing those needs 

and also understanding that space is a key enabler for digital 

transformation, the Hellenic Ministry of Digital Governance and the 

Hellenic Space Center (HSC), with the assistance of the European 

Space Agency (ESA), have initiated the Greek National Satellite 

Space Project. This project is an important step for the 

materialisation of the strategy of Greece for the utilisation of space 

technologies and applications and their uptake in the National 

economy. It includes the development and launch of a small satellite 

constellation that will cater applications for inland, coastal and 

marine water monitoring, precision agriculture, land and forest 

monitoring, as well as border security. The project consists of three 

Axes. Axis 1 (1.1, 1.2) and Axis 2 comprise the space components 

responsible for the development and launch of the smallsats. Axis 

1.1 will provide thermal data with two spectral bands in about 200m 

spatial resolution. Axis 1.2 will provide SLC and GRD Synthetic 

Aperture Radar (SAR) data in various imaging modes (e.g., Scan, 

Strip, Spot etc.) and spatial resolutions ranging from 0.25m to 15m. 

Axis 2 is dedicated to multispectral and hyperspectral data in high 

and very high resolutions reaching about 0.9m (panchromatic band), 

18m (VNIR hyperspectral bands), and 3.3m and 19.3m for VNIR 

and SWIR bands for the multispectral sensor, respectively. On the 

other hand, Axis 3 is dedicated to the ground components that 

include the hardware and software facilities, as well as the end-user 

thematic applications of the different Earth Observation (EO) 

services that are expected to be delivered alongside the satellite 

constellations by mid 2026. The thematic applications are 

categorized in Land, Water, Forest, Agriculture and Security. 

2. APPROACH 

HELOISA is the project responsible for the delivery of the Water 

Monitoring Service which aims to develop an advanced monitoring 

system tailored to the specific needs and requirements of the Greek 

territory. The Water Monitoring Service builds upon the foundation 

laid by previous Earth observation initiatives such as the Copernicus 

program and leverages cutting-edge technology to enhance spatial, 

temporal, and thematic resolution. By integrating satellite imagery, 

advanced sensors, well-established established existing traditional 

and artificial intelligence algorithms, the system aims to provide 

comprehensive monitoring of water quantity, quality, and maritime 

surveillance. In this paper, we focus on the Water Quality module of 

the HELOISA project. The water quality module will be delivering 

Level-3 satellite products utilizing both Copernicus and the Greek 

SmallSat data. The areas of interest that will be covered include the 

majority of the Greek lakes and some lagoons (around 50), as well 

as all coastal and marine waters, that go beyond the 12 nautical 

miles. Some of the products that are associated with sudden natural 

or human-induced environmental changes will be delivered on a 

daily basis which is equivalent to about 250GB, while the rest will 

be delivered with higher latency on a weekly basis which is 

equivalent to about 220GB, covering a large part of the Greek 

territory depending on the satellite constellation swath. 

Technologies such as Docker, Xarray, Dask, GDAL multi-

threading, scatter/gather workflow pattern implemented in the 

Common Workflow Language, and Cloud-Optimized GeoTIFFs are 

utilized. The expected processing time of the applications is less 
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than 3 hours. Aligned with the objectives outlined by the Hellenic 

Ministry of Digital Governance and the HSC, HELOISA 

encompasses a multi-phase approach, encompassing system 

definition, technical specifications, component design, platform 

integration, testing, and operational implementation. Through close 

collaboration with stakeholders and adherence to stringent quality 

standards, the project seeks to address critical water management 

challenges while ensuring the sustainability and resilience of water 

resources in Greece both long- and short-term. 

3. APPLICATIONS 

3.1. Ocean Color and Temperature 

The first water quality application of HELOISA is the Ocean Colour 

and Temperature delivering products at 10-60m and about 200m 

nominal spatial resolution, respectively. In particular, chlorophyll-a 

and Sea Surface Temperature (SST) are retrieved for the coastal and 

marine waters of the Greek territory (Fig. 1). Chlorophyll-a retrieval 

is realized utilizing the Copernicus Sentinel-2 multispectral data 

corresponding to about 26 to 42 scenes per day (or 180 per week). 

They undergo an atmospheric correction that specifically treats the 

ubiquitous sunglint effects such as Polymer [1] that is adapted to 

Sentinel-2. Since Sentinel-2 is not specifically designed for marine 

water applications, several types of noise and various effects exist, 

such as striping/fixed-pattern effect, high frequency noise due to 

waves, and sporadic artifacts due to ships/ship wakes, among others. 

The cleaning of all these effects/artifacts is a non-trivial task, 

therefore special treatment is needed for those that can be cleaned, 

which is developed on a data-driven basis utilizing detector 

footprints, image statistics, and other chl-a data when possible (e.g., 

in situ and Copernicus). The products are foreseen to be delivered 

daily/weekly depending on the spatial resolution, including all open 

waters. On the other hand, the retrieval of the SST is realized 

utilizing the thermal sensor of the Greek SmallSat data from the 

Axis 1.1. The constellation is originally aimed for forest fire 

applications, however HELOISA takes advantage of the provided 

thermal channels (3.8μm, 11.45μm) to different extent each, and 

develops single and dual-channel [2] SST retrieval methods for day 

and nighttime. The top-of-atmosphere observations are translated 

from spectral radiances to brightness temperatures and, as a 

consequence, to SST. This is made possible by generating 

multilinear regression coefficients through atmospheric correction 

using the Libradtran Radiative Transfer Model (RTM) library [3] 

and atmospheric profiles and SSTs from CAMS and CMEMS, 

respectively. In addition, a dedicated algorithm will be offering 

cloud masks of different certainty levels. 

 

  

Fig. 1. Marine water quality preliminary products for the Greek 

territory with chlorophyll-a from Sentinel-2 (left) and 

preliminary SST from Forest-2 mission (right). 

3.2. Muddy Water and Industrial Waste 

The second water quality application of HELOISA is the Muddy 

water and Industrial waste mapping delivering products at a 10m 

and less than 5m nominal spatial resolution, for Sentinel-2 and Axis 

2 data, respectively. The covered territory is foreseen to be almost 

all of the Greek lakes, as well as coastal waters less than 12 nautical 

miles. Concerning muddy waters, there are a number of studies 

attempting to monitor turbid and sediment-laden waters based on 

satellite remote sensing. Traditionally, the focus has been put on 

parameter retrieval of turbidity and total suspended matter, but they 

are not associated with the potential source origin of the polluting 

sediment. The source could be natural or human-induced, such as 

industrial waste. The Muddy water and Industrial waste application 

of HELOISA aims to give semantic information to the sediment-

laden waters. The application builds upon Sentinel-2 data that are 

annotated based on an ensemble methodology as presented in the 

MUDDAT dataset [4]. An extension of it is implemented, which 

adds a list of regions presenting coloured waste waters due to 

industrial activities around the globe (Fig.  2). A custom deep 

learning framework based on U-Net is trained after performing data 

preparation such as augmentation and other techniques to adjust for 

the inherent class imbalance. During inference at least 10496 GPU 

CUDA cores are utilized. The products undergo post-processing 

steps such as land-sea masking using the Copernicus 10m Digital 

Elevation Model (DEM), and filtering to account for systematic and 

occasional noise effects. Finally, transfer learning is applied so as to 

generate products using Axis 2 as input data. This is made possible 

by exploiting the satellite specification similarities but also adjusting 

for the differences such as different number of spectral bands and 

pixel size. 

 

  

Fig. 2. Industrial waste mapping with a custom U-Net model 

with the True Color Composite (left) and binary mask (right). 

3.3. Oil spills and Surface formations 

The third water quality application of HELOISA is the Oil spills and 

Surface formations mapping, delivering products at a 10m nominal 

spatial resolution utilizing the Copernicus Sentinel-2 data. The 

covered territory consists of a list of the Greek lakes. In particular, 

oil spills are largely identified through radar data, which however 

present limitations when it comes to inland waters, since the latter 

demonstrate significant look-alikes due to lake morphology and 

topography, and low surface roughness due to inconsistent wind 

conditions. The application fills this gap by offering mapping of oil 

spill and other suspicious formations at the surface of inland water 

bodies utilizing multispectral data (Fig. 3). The technological 

foundation of the approach builds upon the only public multispectral 

dataset, i.e. Marine Debris and Oil Spill (MADOS) [5] that includes 
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oil spills, as well as an in-house oil spill Sentinel-2 dataset. A state-

of-the-art model (i.e., MariNeXt) which shows high performance is 

combined with a unique Hydro Foundation Model, which gives 

higher generalizing power. To make this happen, special 

modifications of the two models are necessary to adjust for the 

different number of bands and preprocessing specifications [6]. 

During inference at least 10496 GPU CUDA cores are utilized. 

Finally, the product comes with relevant quality flags and masks 

including sensor viewing and sun geometries to assist the user 

interpretation. 

 

  

Fig. 3. Oil spill mapping utilizing a custom hybrid deep learning 

framework with the True Color Composite (left) and the 

respective binary mask (right). 

3.4. Water Quality Features 

The fourth, and last, water quality application of HELOISA is the 

Water Quality Features delivering products at 10m nominal spatial 

resolution. In particular, the application generates essential water 

quality variables for inland waters comprising the majority of Greek 

lakes. This not only includes artificial and natural reservoirs, but also 

some lagoons. The focus has been put on variables that offer 

complementary information to the Muddy water and Industrial 

waste application, which are chlorophyll-a and turbidity (Fig. 4). 

The estimation of chlorophyll-a and turbidity concentrations in 

water bodies serves as a major indicator of algal blooms, agricultural 

practices and pollution. Their retrieval is realized utilizing the 

Copernicus Sentinel-2 multispectral data after employing water-

specific atmospheric correction such as the C2RCC [7] that has been 

proved to perform well in inland water applications, considering 

complex Case 2 waters, and also treats adjacency effects, among 

others. This is possible by using auxiliary information, such as land 

elevation (e.g., SRTM 30m DEM), water temperature and air 

pressure (e.g., ERA5), total ozone column, and water salinity. The 

chl-a retrieval is based on the incorporation of red-edge and near-

infrared spectral regions, as well as for turbidity [8]. In addition, 

auxiliary data will be delivered such as Trophic State Index [9], 

which indicates the eutrophic state of the waters. Finally, products 

undergo necessary post-processing and offer relevant quality flag 

layers. 

4. VALIDATION AND EVALUATION 

In order to ensure the high quality of the generated Level-3 products, 

HELOISA and the Water Quality module, in particular, at its core, 

adopts relevant validation and evaluation practices. To this end, the 

algorithms of the output products are first verified utilizing 

proxy/simulated data that are provided in the context of the Greek 

SmallSat Program, before the advent of the actual Axes data. For 

instance, in the case of SST, existing Forest-2 mission data ensure 

the validity of the proposed retrieval algorithm, while in the case of 

muddy waters, existing Very High Resolution multispectral data are 

utilized for transfer learning. Furthermore, concerning the marine 

and inland water quality variables such as chl-a, turbidity and SST, 

existing in situ historical data are being exploited (e.g., from ARGO 

[10], project’s partner EYATH S.A. and other available data), and 

new fieldwork campaigns are being conducted for inland, coastal 

and open waters. Additionally, a match-up analysis protocol has 

been determined and followed that ensures transparency and quality 

of outcomes. Finally, manual photointerpretation and quality control 

of products is conducted by remote sensing experts, and comparison 

with established existing open datasets from Copernicus and others. 

  

Fig. 4. Inland water quality products for the Greek territory 

with chlorophyll-a (left) and turbidity (right). 

5. IMPACT 

The use of EO technology for monitoring water quality brings a 

wave of positive change across societal, scientific-technical, and 

economic dimensions. HELOISA leverages national infrastructure 

and provides satellite-driven insights into inland, coastal and open 

waters thus addressing pressing environmental challenges while 

unlocking new opportunities for innovation and growth. 

5.1. Societal Impact 

Protecting public health stands at the forefront of societal benefits of 

this EO-driven approach on water quality, as early detection of 

harmful algal blooms, bacterial contamination, or chemical 

pollutants allows authorities to issue timely warnings and mitigate 

risks to drinking water supplies and recreational users. Beyond 

health, by leveraging national satellite infrastructure, it strengthens 

the country’s autonomy in environmental monitoring, ensuring that 

critical data for decision-making is generated domestically, thus 

enhancing national capacity and resilience. Moreover, access to 

high-quality EO data empowers water authorities to enforce 

regulations more effectively, supporting compliance with major 

frameworks such as the Water Framework Directive and the Marine 

Strategy Framework Directive and shifting governance from 

reactive crisis management toward proactive and evidence-based 

management. Furthermore, by integrating EO-derived insights into 

existing monitoring systems, the project improves the transparency 

and accountability of water management practices. 

5.2. Technical and Scientific Impact 

The integration of EO data into water quality monitoring offers 

critical technical and scientific advantages for both Regional Water 

Utility operators and National governance bodies. By providing 
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continuous, wide-scale, and standardized observations, the project 

enhances the ability of water utilities - who are directly responsible 

for distributing safe drinking water - to monitor the quality of their 

source waters more efficiently and with greater spatial and temporal 

coverage than traditional sampling alone. For Regional Water 

Utility operators, early identification of emerging threats such as 

algal blooms, turbidity spikes, or chemical pollutants enables faster, 

targeted responses that safeguard drinking water treatment processes 

and distribution networks. Instead of relying solely on periodic field 

sampling, Water utility operators gain access to near-real-time 

products, allowing for more proactive management of risks and 

better protection of public health. At the national level, the project 

strengthens the technical capacity of Regional Environmental 

Departments, the Ministry of Environment, and other governmental 

agencies. With systematic EO data streams, authorities can 

implement broader surveillance of inland and coastal waters, 

ensuring regulatory compliance, detecting environmental trends, 

and evaluating the effectiveness of water protection measures. It 

provides the scientific backbone for more strategic policymaking, 

supporting long-term planning for water security, climate 

adaptation, and biodiversity conservation. The use of national 

satellite infrastructure also ensures that data sovereignty is 

maintained, with critical environmental information produced and 

controlled within the country. This promotes scientific 

independence and builds national expertise in remote sensing and 

environmental monitoring technologies. Importantly, the project 

fosters an integrated approach where EO data is not a replacement 

for in-situ monitoring but a powerful complement, bridging gaps and 

optimizing resource allocation. This hybrid monitoring model raises 

the scientific standard of water quality assessments and offers a 

replicable framework for future environmental applications, 

ensuring that both operational needs and strategic priorities are met 

in a coordinated, technologically advanced manner. 

5.3. Economic Impact 

By utilizing EO data, the cost of continuous water monitoring is 

drastically reduced compared to traditional field-based methods, 

which are resource-demanding and geographically limited. For 

regional water utilities, this means that broader and more frequent 

assessments of source water bodies can be achieved without 

proportional increases in operational expenses. Early detection of 

potential risks - such as contamination events or seasonal 

degradation in water quality - allows them to plan interventions 

more efficiently, mitigating costly and disruptive emergency 

responses activities. This contributes to a more stable and 

predictable operational environment, protecting critical 

infrastructure and minimizing financial risks associated with 

treatment failures or public health incidents. On the national level, 

the availability of standardized, large-scale water quality data 

supports smarter investment planning. Environmental agencies and 

ministries can prioritize actions based on evidence-based 

assessments, ensuring that resources are allocated to the most critical 

areas. Moreover, the integration of national satellite capabilities into 

operational services can stimulate the growth of value-added 

industries such as geospatial analytics, environmental consulting, 

and digital platform development and strengthens the country’s 

positioning in the rapidly growing global market for EO 

applications. By enhancing water resource governance, the project 

supports sectors such as tourism, fisheries, and agriculture, ensuring 

their long-term economic viability, acting as a catalyst for economic 

modernization, resilience, and sustainable growth. 
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ABSTRACT 

The dependency on large labeled datasets significantly limits 

the practical applicability of supervised learning (SL) in 

remote sensing (RS) applications, particularly in agriculture, 

where obtaining labeled data is costly. Self-supervised 

learning (SSL) approaches, which require fewer labeled data, 

have emerged as viable alternatives. This study evaluates the 

performance of the VICReg SSL framework against 

traditional SL models using the Land Use/Cover Area Frame 

Survey (LUCAS) dataset for crop classification tasks. Our 

experiments reveal that SSL, particularly using a ResNeXt-

50 backbone, achieves superior classification accuracy and 

robustness, especially under limited data scenarios (5% 

labeled data), outperforming standard SL methods. We 

discuss the implications for RS and suggest directions for 

further research. 

Index Terms— Self-supervised learning, VICReg, crop 

classification, limited data, LUCAS dataset 

1. INTRODUCTION 

Artificial Intelligence (AI) methods, particularly 

Supervised Learning (SL), have advanced remote sensing 

(RS) tasks such as image classification, object detection, and 

segmentation, enabling precise satellite and aerial imagery 

analysis for applications like crop monitoring and forest 

inventory management. Convolutional Neural Networks 

(CNNs) are extensively employed due to their effectiveness 

in recognizing spatial patterns [1], [2], [3]. However, SL 

heavily depends on large labeled datasets, which are costly 

and difficult to obtain in agriculture, especially in regions 

facing data scarcity and high annotation costs. Models trained 

on extensive but region-specific datasets also struggle to 

generalize to new environments. Developing models that 

perform well with limited labeled data is crucial for enabling 

scalable and cost-effective agricultural monitoring, especially 

in regions where data collection is challenging. Such 

approaches support timely decision-making for sustainable 

crop management and food security. Consequently, 

alternative methods such as Self-Supervised Learning (SSL), 

Transfer Learning (TL), and semi-supervised learning have 

gained attention, aiming to leverage unlabeled data or transfer 

knowledge from related domains [4]. SSL, in particular, 

reduces labeling dependence by pre-training models on 

unlabeled data, making it highly suitable for scenarios with 

limited annotated samples, common in agricultural 

applications. Despite its potential, SSL remains under-

explored in crop classification tasks under small-sample 

conditions. 

This study compares SL and SSL performance for 

agricultural crop classification under limited data availability. 

We utilize the Land Use/Cover Area Frame Survey (LUCAS) 

dataset, consisting of 1,000 images per crop for 10 crop types 

(common wheat, barley, oats, maize, potatoes, sugar beet, 

sunflower, rape, soya, and grassland) [5]. Selected SL models 

(e.g., VGG16 [1], Inception [6], ResNet-18/50 [2], 

SqueezeNet [7], ResNeXt-50 [8], MobileNet-V2 [9], 

ShuffleNet [10], EfficientNet-V2 [3], ConvNeXt Tiny [11]) 

were trained using standard supervised training with cross-

entropy loss. For SSL, the same architectures were pretrained 

using Variance-Invariance-Covariance Regularization 

(VICReg) [12] and subsequently fine-tuned. Cross-validation 

(CV), TL, fine-tuning (FT), data augmentation (DA), and 

varying training ratios (TR) were employed to ensure robust 

comparisons. 

2. LUCAS DATASET 

The LUCAS dataset harmonizes land use and land cover 

information across all 28 EU countries [5]. It comprises 

approximately 1.35 million observations from 651,780 

locations and includes 5.4 million photos collected from 2006 

to 2022 (Fig. 1) [13], [14]. Each observation includes 

photographs taken from four cardinal directions (north, south, 

west, east), a point photo, and a cover photo, enabling clear 

crop identification. For this study, we selected ten crops with 

1,000 images each, to avoid class imbalance issues present in 

less represented crops [13]: common wheat (B11), barley 

(B13), oats (B15), maize (B16), potatoes (B21), sugar beet 

(B22), sunflower (B31), rape (B32), soya (B33), and 

grassland (B55) (Fig. 1). 

However, the dataset has inherent limitations. Variability 

arises from manual photo collection using different devices 

across varied times, dates, and crop stages, causing potential 

errors in crop labeling and image quality issues (blur, noise, 
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overexposure, rotations). Additionally, crops can be 

challenging to distinguish visually, particularly at early 

growth stages or post-harvest. Nevertheless, the dataset’s 

complexity and diverse perspectives often eliminate the need 

for data augmentation. 

 

 
Fig.1. Geographical distribution of 10 crops of the 

LUCAS dataset across the EU’s territory. 

3. METHODOLOGY 

3.1. Supervised learning 

We selected a diverse set of widely recognized neural 

network architectures, covering both high-capacity models 

(VGG16 [1], Inception [6], ResNet-18/50 [2], SqueezeNet 

[7], ResNeXt-50 [8], MobileNet-V2 [9], ShuffleNet [10], 

EfficientNet-V2 [3], ConvNeXt Tiny [11]).  

3.2. Self-supervised learning with VICReg 

SSL methods leverage unlabeled data for pre-training, 

valuable for scenarios with limited labeled data such as crop 

classification. We used VICReg, a non-contrastive SSL 

method, to pre-train visual representations from unlabeled 

LUCAS images [12]. VICReg consists of: (i) a CNN 

backbone that extracts morphological features; (ii) a projector 

network that maps features into an embedding space; and (iii) 

a classification head that is utilized exclusively during 

supervised fine-tuning. The VICReg loss combines three 

terms as: 

ℒ𝑉𝐼𝐶𝑅𝑒𝑔 = 𝜆 ⋅ 𝑠(𝑍, 𝑍′) + 𝜇 ⋅ [𝑣(𝑍) + 𝑣(𝑍′)] + 𝜈 ⋅ [𝑐(𝑍) + 𝑐(𝑍′)], 

where the invariance loss 𝑠(𝑍, 𝑍′) encourages similarity 

between embeddings of augmented views, the variance loss 

𝑣(𝑍) ensures diversity in features, and Covariance loss 𝑐(𝑍) 

penalizes redundancy across feature dimensions. 

During fine-tuning, the CNN backbone was frozen to 

preserve pre-trained embeddings, and a supervised 

classification head was trained. This head consists of a fully 

connected layer and a Softmax activation, optimized via 

cross-entropy loss, using the same augmentations as SSL. 

We separately optimized SSL and SL hyperparameters 

using Bayesian optimization and Optuna multi-objective 

tuning frameworks. Key VICReg hyperparameters included 

weight decay, cosine annealing schedules, and embedding 

dimensions. SL fine-tuning hyperparameters (learning rate, 

weight decay) targeted stable convergence and robust 

performance. 

4. EXPERIMENTAL RESULTS 

4.1. Supervised learning 

We trained several widely-adopted SL models (see Section 

3.1) with and without data augmentation (DA) such as 

random horizontal flipping, cropping, adjusting brightness 

and contrast, and randomly rotating. Table 1 summarizes 

their performance. 

Table 1. Comparing performance of selected SL models 

on the LUCAS dataset with and without DA. 

Model 

Without DA With DA 

Loss 
Train 

Acc 

Test 

Acc 
Loss 

Train 

Acc 

Test 

Acc 

VGG16 0.49 0.86 0.84 0.58 0.8 0.78 

Inception 0.8 0.78 0.76 0.69 0.78 0.76 

ResNet-18 0.05 0.98 0.76 0.36 0.88 0.86 

ResNet-50 0.43 0.88 0.63 0.38 0.84 0.84 

SqueeseNet 0.66 0.85 0.73 0.74 0.81 0.7 

ResNeXt-50 0.73 0.99 0.86 0.5 0.8 0.8 

MobileNet-V2 0.76 0.74 0.72 0.99 0.66 0.59 

ShuffleNet 0.99 0.99 0.82 0.97 0.86 0.73 

EfficientNet-V2 0.46 0.96 0.68 0.5 0.92 0.66 

ConvNeXt Tiny 0.95 0.76 0.66 0.97 0.76 0.65 

To further justify the choice of DA strategies, we conducted 

additional experiments quantifying its impact on model 

performance. These experiments confirmed that DA notably 

improves accuracy for deeper architectures but can be neutral 

or detrimental for lightweight models due to limited 

representational capacity. We found that (i) DA significantly 

improved test accuracy for deeper architectures such as 

ResNet-18 (from 76% to 86%) and ResNet-50 (from 63% to 

85%); (ii) Lightweight models (MobileNet-V2, ShuffleNet) 

performed worse with DA due to limited representational 

capacity; (iii) Models like ConvNeXt Tiny struggled 

regardless of DA, highlighting sensitivity to dataset size. 

Overall, ResNet models showed robust performance, 
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balancing accuracy and training efficiency. The strong 

accuracy was for dominant classes (maize, potatoes, 

sunflower, rape) but revealed confusion among similar 

classes (oats, barley, grassland). 

4.2. VICReg self-supervised learning 

VICReg SSL pretraining utilized unlabeled data (1000 

epochs). Embedding dimensions were set at 512 (ResNet-18) 

and 2048 (ResNet-50, ResNeXt-50). The training loss 

decreased steadily, indicating effective convergence. 

Embedding visualizations by UMAP (Fig. 2) demonstrated 

distinct, semantically meaningful clusters, particularly with 

ResNeXt-50. 

 

 
Fig.2. UMAP visualization of learned embeddings on the 

LUCAS test datasets after VICReg pre-training with 

ResNet-18 (A), ResNet-50 (B), and ResNeXt-50 (C) 

backbones.  

 

After fine-tuning (100 epochs, frozen backbone) 

ResNeXt-50 outperformed other models, achieving 91% 

accuracy and a macro F1-score of 0.91 (Table 2). 

Table 2. A comparison of the training and test 

performance of VICReg models on the LUCAS dataset 

without DA. 

Backbone Loss 
Acc F1-score 

Train Test Train Test 

ResNet-18 0.46 0.89 0.87 0.89 0.87 

ResNet-50 0.3 0.9 0.89 0.9 0.89 

ResNeXt-50 0.17 0.95 0.91 0.95 0.91 

4.3. Impact of Training Data Availability 

We evaluated SSL robustness using subsets of labeled data 

(1%-100%). Results (Fig. 3) demonstrated that VICReg SSL 

achieves competitive accuracy even at minimal supervision 

levels, surpassing fully supervised baselines at just 5% 

labeled data. This underscores SSL's effectiveness in limited-

data scenarios and suggests saturation of SSL benefits beyond 

5-10% training data. 

 

 
Fig.3. Performance of VICReg with ResNeXt-50 varying 

proportions of the LUCAS labeled training data 

compared to the best SL models accuracy.  

5. CONCLUSION AND OUTLOOK 

Our comparative study between SL and VICReg-based 

SSL for crop classification using the LUCAS dataset 

provided several key insights. SL models such as ResNet-18 

ResNet-50 demonstrated high accuracy trained on LUCAS 

dataset with DA. They benefited notably from data 

augmentation and TL strategies. Conversely, DA had a 

neutral or even negative effect on lightweight, efficiency-

focused models. MobileNet-V2 and ShuffleNet, designed for 

low-power environments, experienced drops in test accuracy 

with DA. 

In contrast, VICReg-based SSL models exhibited notable 

robustness under limited labeled data scenarios. Pre-trained 

SSL models effectively captured transferable features from 

unlabeled data, significantly enhancing performance even 

with minimal supervision. Particularly, the ResNeXt-50 

backbone consistently outperformed other architectures, 
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approaching SL model performance using only 5% of labeled 

data. Embedding visualizations via UMAP further 

corroborated these quantitative results, showcasing clear and 

structured crop-type clusters. 

However, this study has limitations: (i) the LUCAS 

dataset’s limited size, class imbalance, and geographic 

restriction to the European Union; (ii) presence of textual 

labels in images potentially biasing model performance; (iii) 

exclusive evaluation of VICReg among SSL methods; (iv) 

the use of frozen backbones during fine-tuning possibly 

limiting adaptation; and (v) the empirical rather than 

standardized approach to hyperparameter tuning, model 

selection, and early stopping. 

Future work should address these limitations by 

evaluating additional SSL frameworks, implementing 

adaptive fine-tuning strategies, expanding geographic 

coverage, mitigating textual bias within datasets, and 

incorporating uncertainty quantification methods to enhance 

robustness and interpretability. Overall, our findings affirm 

the significant potential of SSL, particularly VICReg, in 

efficiently addressing crop classification tasks, especially 

under conditions of limited annotated data. 
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ABSTRACT 

In this study, we present a two-stage, expert-validated 

labelling pipeline applied over 6,500 km² of southern 

Vietnam, including the Mekong Delta. We combine Sentinel-

2 multispectral time-series, high-resolution Planet NICFI 

mosaics and ancillary Google basemaps with local 

knowledge to generate an initial reference map (Label V1), 

which was systematically refined through targeted expert 

review to yield Label V2. To quantify the effect of label 

refinement, we trained and evaluated two LightGBM models 

on multispectral features, observing a +4.6 % gain in F1-

accuracy on the test set (from 87.3 % to 91.9 %). Our best 

map achieves 99.5 % overall accuracy and 99.7 % F1-score 

on an independent set of reference points provided by Global 

Mangrove Watch (GMW), outperforming the GMW baseline 

(~98.5 % F1), especially in challenging transition zones. In 

addition, we analyse spatial uncertainty and highlight areas 

for future SAR integration to support all-weather mapping..  

Index Terms—Mangrove ecosystems, Expert-validated 

labelling, Machine learning, Sentinel-2 MSI, Mekong Delta. 

1. INTRODUCTION 

Mangroves provide coastal protection, blue‐carbon storage, 

and fisheries habitat, but have declined by ~30 % globally 

since 1980 [1]. The Mekong Delta is among the hardest-hit 

regions, where intensive land-use change and accelerated 

sea-level rise have driven extensive mangrove loss and 

degradation [2]. Existing global products, e.g., Global 

Mangrove Watch (GMW) v4.0, report ~95.3 % overall 

accuracy but misclassify narrow fringing forests and creek 

edges, perhaps owing to their coarse resolution, causing 

commission/omission errors in complex transition zones [3], 

[4]. National‐level inventories, while often more detailed at 

a given point in time, use varying definitions of “mangrove 

extent” (for example, including all forestland managed by a 

single agency, regardless of actual canopy cover) and are 

updated irregularly (some areas every year, others only once 

every five years), resulting in spatial and temporal 

 
1* Corresponding author: quan.le@ucd.ie 

inconsistencies [5]. Recent advances in remote sensing and 

machine learning offer an opportunity to produce maps that 

are both more accurate and more frequently updated. High-

resolution Sentinel-2 imagery (10 m pixels, 5-day revisit) 

provides rich multispectral data ideal for distinguishing 

mangrove vegetation [6], while the Planet NICFI basemaps 

(~5 m) enable fine-scale canopy delineation even in often 

cloudy tropical regions [7]. However, automated ML 

approaches remain vulnerable to label noise and boundary 

uncertainty where training data lack rigorous, expert‐

validated labels [8]. 

To address these gaps, we propose an iterative, large-scale, 

local-knowledge-based annotation protocol coupled with 

applying LightGBM classifiers to map mangrove extent. Our 

pipeline (1) generates initial labels by integrating Sentinel-2 

multispectral time-series, high-resolution Planet NICFI 

mosaics and ancillary Google basemaps with local field and 

stakeholder inputs; (2) refines those labels through multi-

expert review to resolve ambiguous edges; and (3) trains a 

gradient-boosted model on multispectral features to produce 

high-accuracy, updatable mangrove maps.  

2. STUDY AREA 

Our study covers approximately 6,500 km2 spanning the 

coastal provinces of southern Vietnam, including the 

Vietnamese Mekong Delta, characterised by intertidal flats, 

tidal channels, and mixed aquaculture (Fig. 1). These areas 

experience high tidal amplitude and frequent cloud cover, 

which challenge optical-only satellite imagery mapping [5]. 

The regions include Can Gio (10.4758° N, 106.8650° E), Soc 

Trang (9.6025° N, 105.9739° E), and Ca Mau (9.1527° N, 

105.1961° E). The selection process considered various 

criteria, with a focus on ecological significance, spatial 

diversity, accessibility, local knowledge, stakeholder 

participation, and collaborative efforts between experts in 

mangrove ecology and artificial intelligence techniques. 

Can Gio, designated as a Mangrove Biosphere Reserve, 

serves as a noteworthy model for the harmonious coexistence 

of conservation efforts and community livelihoods [9]. 
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Notably, Can Gio is distinguished as its strategic location 

near the largest urban area of Vietnam (Ho Chi Minh City), 

estuary and coastal zone, coupled with unique biodiversity. 

In Soc Trang, mangroves play a crucial role along the 

coastlines, safeguarding them against waves, erosion, and 

storms [10]. Conversely, mangrove forests in semi-inland Ca 

Mau exhibit distinct spatial characteristics, distributed along 

shorelines in both accretion and erosion areas, within a 

national park, and in production areas marked by intricate 

patterns and dynamic changes [1], [11]. 

 
Fig. 1. Study-area map showing the locations of Can Gio (10.4758° N, 

106.8650° E), Soc Trang (9.6025° N, 105.9739° E) and Ca Mau (9.1527° 

N, 105.1961° E) in southern Vietnam (coordinates in decimal degrees, 

WGS84). 

3. DATA & METHODS 

3.1. Input Data 

Sentinel-2 MSI (L2A): We developed an end-to-end pipeline 

that automatically ingests all available Sentinel-2 MSI scenes 

from Google Earth Engine (GEE) for each study tile, applied 

cloud and cloud-shadow masking using QA60 and scene-

classification bands. Then, we computed two key vegetative 

indices, Normalized Difference Vegetation Index (NDVI) 

from the 10 m B4 (red) and B8 (NIR) bands, and a Mangrove 

Vegetation Index (MVI) by incorporating the 20 m B11 

(SWIR-1) band alongside B4 and B8. 

Planet NICFI Basemaps: Planet NICFI basemaps consist 

of monthly 4.77 m resolution tropical mosaics, which we 

used to enhance fine‐scale detection of fringing mangroves 

during our labelling period (2020). 

Google Basemaps: High-resolution RGB and street 

imagery for contextual reference via QGIS 

QuickMapServices were used to locate each mangrove extent 

polygon. 

3.2. Two-stage Labelling Pipeline 

Label Version 1 (V1): Twenty-four trained local annotators 

delineate mangrove polygons in QGIS using a standardized 

protocol integrating true-colour composites, NDVI, MVI, 

mangrove extent maps created by the local government, and 

local expert notes. 

We identified multiple deficiencies in Label V1 that 

necessitated systematic refinement. Specifically, V1 

exhibited omission and commission errors—namely, missing 

mangrove patches and misclassification of mangrove as 

adjacent land-cover types—as well as spatial inaccuracies 

manifested as displaced or imprecise mangrove-extent 

boundaries; these shortcomings motivated the development 

of the corrected Label V2. 

Label Version 2 (V2): We recruited a team of eight domain 

experts to produce mangrove annotations across the study 

area. An independent four-member review panel then 

assessed the annotated mangrove-extent polygons, 

reconciled discrepancies, and corrected polygon geometry 

where required. Through this expert adjudication and 

polygon-correction workflow we produced the final 

mangrove extent label (Label V2). 

3.3. Feature Engineering & LightGBM Modelling 

Feature Set: We implemented an end-to-end, fully automated 

preprocessing pipeline that ingests Sentinel-2 MSI Level-2A 

(surface-reflectance) products and extracts ten spectral bands 

(B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12). The pipeline 

applies standard preprocessing operations (e.g., cloud and 

cloud-shadow masking), produces per-pixel median 
composites over the analysis period, and exports spatially 

tiled patches as model-ready inputs for downstream 

modelling, ensuring reproducibility and a complete audit trail 

of preprocessing steps 

Training Splits: For each label set (~62 million pixels of 

10x10 m2), we randomly divided its set of tiles into 

training/validation/test splits with the ratios70 % / 15 %  / 15 

% [12]. 

Classifier: LightGBM with 1,000 trees, max depth = 16, 

learning rate = 0.05. 

Model Variants: Model V1: Trained on Label V1 and 

Model V2: Trained on Label V2. 

3.4. Evaluation Protocol 

Pixel-Level Metrics: We evaluated model performance using 

standard classification metrics, including the macro-average 

F1-score, precision, and recall. 

Point-Based Validation: An independent set  of 19,688  

reference points provided by the Global Mangrove Watch 

(GMW) were used to compute the overall accuracy and F1-

score of the trained models. 

4. RESULTS 

4.1. Label Consistency & Model Performance 

4.2. Through a structured expert-review process, we 

enhanced the label quality, improving the F1-score on the test 

set from 87.3% for Label V1 to 91.9% for Label V2. The 

other improvement metrics are reported in Table 1. To be 
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specific, during the review process, we identified and 

corrected inconsistent mangrove polygons, particularly 

around complex creek boundaries. Figure 2 illustrates an 

example of an initial mislabel that was subsequently 

corrected, while Figure 3 shows a case of disagreement 

between trained local annotators and senior map experts. 

These discrepancies were systematically reviewed and 

resolved through multiple iterative rounds of expert 

validation. This two-stage refinement yielded our high-

confidence V2 dataset. 

 

Table 1. Performance on the test splits of the LightGBM model 

trained on Label V1 and Label V2.  

Metric (%) Model V1 Model V2 Δ (pp) 

Test F1-score 87.3 91.9 + 4.6 

Recall 86.1 90.8 + 4.7 

Precision 88.6 93.2 + 4.6 

 

   
(a) (b) (c) 

Fig. 2. This is an example of commission labels by the trained local 

annotators during the labelling process at this location (8.74090, 

104.99630): (a) Google high-resolution RGB basemaps, (b) Annotated 

label, and (c) NICFI basemaps used to detect mangrove extent during 

the labelling period (2020). 

   

(a) (b) (c) 
Fig. 3. This is an example of inconsistencies between trained local 

annotators and experts at this location (8.69533, 105.00572): (a) Google 

high-resolution RGB basemaps, (b) Labels (Green ~ mangrove labelled 

by both the trained local annotators and experts; Red ~ experts labelled 

mangrove while the trained local annotators missed it;  and Black ~ 

experts labelled non-mangrove while the trained local annotators 

labelled mangrove), and (c) NICFI basemaps used to detect mangrove 

at the labelling period (2020). 

4.3. Validation on the independent reference set 

Table 2 shows the accuracy of our map (Model V2) and the 

GMW 4.0 map validated by a reference set of 19,688 GMW  

reference points. Model V2 achieved an overall accuracy of 

99.5% (F1-score = 99.7%) and GMW’s published 95.3 % 

global accuracy (F1-score of 98.5% for the reference set) [4], 

[7]. Based on local expert knowledge, our map outperforms 

the GMW map in narrow-fringe, changeable (plantation or 

productivity mangrove forests), or mixed-substrate regions 

(Fig. 4).  

Table 2. Comparison of our map and the GMW 4.0 map 

validated by the GMW independent reference points (19,688 

points [4], [7]).  

Metric (%) GMW 4.0 Our map 

Accuracy 98.6 99.5 

F1-score 98.5 99.7 

 

  
(a) (b) 

Fig. 4. An example to compare our map and the GMW v4.0 map in 2020 

at (8.74465, 104.87913): (a) Google high-resolution RGB basemaps and 

(b) Overlap of our map and the GMW v4.0 map (Green ~ mangrove 

agreed by both our map and the GMW v4.0 map; Red ~ non-mangrove 

in our map but mangrove in the GMW v4.0 map, and Black ~ mangrove 

in our map but non-mangrove in the GMW v4.0 map), and (c) NICFI 

basemaps used to detect mangrove at the labelling period. 

5. DISCUSSION 

Applying a mutual, iterative labelling workflow to generate 

our mangrove training dataset yielded a 4.6 pp gain in F1-

score, underscoring the efficacy of repeated local-expert 

refinement in reducing ambiguous labels [13]. In our 

approach, initial labels were systematically reviewed and 

corrected by trained local annotators, particularly along 

habitat edges and in mixed aquaculture zones, thereby 

eliminating small but systematic misclassifications before 

retraining. These successive expert feedback loops translated 

directly into more accurate segmentation outputs, 

demonstrating that targeted correction of difficult examples 

is critical for maximizing accuracy in remote-sensing habitat 

mapping. 

When compared with the Global Mangrove Watch 

(GMW) v4.0 product, our map exhibits both lower omission 

and commission errors across heterogeneous landscapes. 

GMW v4.0 is an improved version of v3.0, which is 

documented to have global commission and omission rates 

of ~10–15 % and ~14–16 %, respectively, in its 1996–2020 

change assessment [4], and regional error rates can exceed 10 

% commission and 20 % omission in fragmented zones [7]. 

We do not find such detailed documented information in the 

GMW v4.0. Its overall accuracy reaches 95.3 % compared 

with 93.1 % of the v3.0 [3], [4]. Interestingly, our model 

reliably captures small, isolated mangrove patches in 

aquaculture mangrove mosaics, features that GMW v4.0 

often omits and avoids the slight over-prediction in dense 

cores observed in the baseline product (Fig. 3b) [3]. 

Accurately defining mangrove patch perimeters remains 

difficult for several primary geospatial reasons. First, 

Sentinel-2 L2A products have documented geolocation 
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accuracies of up to 12 m (95 % conf.) [14] and NICFI 

basemaps up to 10 m (90 % conf.) [15], leading to co-

registration shifts of several pixels along shorelines. Second, 

even when higher-accuracy co-registration methods are 

applied, residual misalignments of 2–10 m between Sentinel-

1 SAR and Sentinel-2 optical imagery persist, particularly in 

complex estuarine zones [16]. These small offsets 

accumulate along convoluted boundaries, inflating 

mislabelled areas and depressing the mapping accuracy. 

Although our map attains 99.5 % overall accuracy against 

19,688 GMW reference points, the is still a gap (Fig. 3b) in 

tackling pervasive, small-scale boundary misalignments. The 

GMW point samples might tend to cluster in easily 

recognized core areas and under-sample transitional pixels at 

complex edges, yielding overly optimistic accuracy estimates 

[17]. Moreover, misregistration in the GMW v4.0 dataset 

contributes random errors that inflate confidence intervals for 

change estimate errors in both omission and commission [4], 

but these point-based metrics fail to capture systematic 

boundary drift in fragmented stands. 

To further refine boundary precision, we recommend 

integrating high-resolution, co-registered datasets such as 

UAV-based data, which has been shown to improve 

segmentation accuracy of individual mangrove trees beyond 

canopy-height models [18]. Combined optical–LiDAR 
approaches, for example, using UAV LiDAR with very-high-

resolution WorldView-2 imagery, reduce geolocation 

uncertainty and enhance delineation of small patches and 

narrow fringing zones [19]. Additionally, targeted collection 

of dense boundary-point samples, or the adoption of 

segmentation masks derived from UAV imagery, will yield 

more representative validation of edge performance. Above 

all, maintaining an iterative expert-labelling framework will 

remain helpful for capturing subtle, site-specific nuances in 

complex and anthropogenically altered mangrove habitats. 

6. CONCLUSIONS & FUTURE WORK 

We demonstrate that large-scale, expert-validated labelling 

combined with LightGBM yields highly accurate mangrove 

extent maps for the Mekong Delta, surpassing global 

baselines, especially in critical zones. Future work will (i) 

scale to the entire Vietnam, (ii) fuse Sentinel-1 SAR for all-

weather mapping & test the label datasets with advanced 

deep learning models, and (iii) operationalize an active-

learning loop for continual label refinement. 
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ABSTRACT 

The quality of data is important for building reliable 

Machine Learning (ML) models in Digital Soil Mapping 

(DSM). Insufficient or unrepresentative training data 

often limits the ML model's accuracy. This study 

introduces a dissimilarity-driven sampling framework, 

which integrates Area of Applicability (AOA) and 

Iterative Dissimilarity-Driven Sample Selection (IDDSS) 

methods to enhance the reliability of predictions for key 

soil properties, such as Soil Organic Carbon (SOC). The 

framework identifies targeted sampling locations that are 

environmentally distinct from the current training data 

and underrepresented in the covariate space. Using 

Estonia as a case study, we determined that approximately 

25% of the country lies outside AOA, which indicates 

where predictions are unreliable. A total of 41,930 

targeted sampling locations were identified within these 

areas. This proposed framework provides a robust data-

driven strategy for optimising future fieldwork, which 

ensures that new samples most effectively enhance the 

reliability of ML models in DSM.  

Index Terms— Machine Learning, Soil Organic 

Carbon, Digital Soil Mapping, Area of Applicability, 

Dissimilarity Index.  

1. INTRODUCTION 

The representativeness and volume of training data 

influence the performance of Machine Learning (ML) 

models in Digital Soil Mapping (DSM) [1]. However, the 

soil legacy data used for training are often sparse and 

contain spatial biases due to conventional sampling 

limitations and accessibility constraints [2, 3]. ML models 

trained on these biased datasets may produce inaccurate 

predictions when applied to areas with unrepresented 

environmental conditions [4].  

To address current sampling limitations, we proposed 

a novel dissimilarity-driven sampling framework to 

optimise the soil fieldwork. Our proposed framework 

integrates two methods: the Area of Applicability (AOA) 

method, which identifies areas where ML-based 

predictions are reliable [4], and the Iterative Dissimilarity-

Driven Sample Selection (IDDSS) method, which 

iteratively selects the most dissimilar locations from 

underrepresented areas while ensuring they are not too 

similar to each other in the multivariate feature space. 

This approach provides a systematic and data-driven 

method for identifying and addressing the critical gaps in 

current training datasets. By optimising the selection of 

new soil samples in this way, our study presents a 

replicable sampling strategy designed to enhance the 

reliability of ML predictions.  

2. DATA AND METHODS 

2.1. Data and Preprocessing 

In the study, we used 924 Soil Organic Carbon (SOC) 

observations from across Estonia (Figure 1), which were 

derived from 3 data sources [5, 6, 7]. These data, along 

with 11 environmental covariates (Table 1), served as the 

basis for predictive Random Forest (RF) modelling.   

 
Fig. 1. The distribution of training samples across 

Estonia.  

Our framework identifies targeted sampling locations 

at the scale of individual soil mapping units from the 

EstSoil-EH dataset [5]. To prepare the data, we first 

harmonised all environmental covariates into a single 

unified dataset to ensure consistency. Using the zonal 

statistics method from the rasterstats Python package [8], 

we aggregated raster-formatted covariates (e.g., 

vegetation dynamics, topographic attributes, land use) to 

these vector soil units. This process calculated the mean 

values for continuous covariates (vegetation and 
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topography) and the majority class for the categorical land 

use covariate. Subsequently, a spatial join function in 

GeoPandas [9] combined the harmonised covariates with 

SOC observations based on geographic coordinates, 

which created the final modelling dataset for the study.  

Table 1. Environmental Covariates used in the study. 

Category Covariates Type 

Vegetation 

Dynamics [10] 

▪ Normalised 

Difference 

Vegetation Index 

(NDVI) 

Raster 

Soil Texture [5] 

▪ Clay 

▪ Silt  

▪ Sand 

▪ Rock 

Vector 

Topographic 

Attributes [11] 

▪ Slope 

▪ LS-factor 

▪ Terrain Roughness 

Index (TRI) 

▪ Topographic 

Wetness Index 

(TWI) 

Raster 

Hydrological 

Features [12] 
▪ Drainage ditches Vector 

Land Use [13] ▪ Land use types Raster  

2.2. Framework Overview 

Our methodological framework is implemented through 

the two-phase workflow summarised in Figure 2. The first 

phase identifies regions where our baseline RF model is 

likely to be unreliable through an AOA analysis. The 

second phase uses that information to determine targeted 

sampling locations within those regions, which can guide 

future soil fieldwork to enhance the representativeness of 

training data. 

 
Fig. 2. Methodological framework for the targeted soil 

sampling design. 

2.2.1. Baseline model 

The workflow starts with building a baseline RF model 

using Python’s scikit-learn package [14]. This initial 

model was trained on the current 924 SOC observations 

and optimised using a 5-fold cross-validation grid search. 

The determined hyperparameters are shown in Table 2. 

Based on this model, the SHapley Additive exPlanations 

(SHAP) values were calculated and subsequently utilised 

for the AOA computation [15].  

Table 2. Hyperparameters of RF. 

Hyperparameter Value 

bootstrap False 

criterion squared_error 

max_depth 10 

max_features sqrt 

min_samples_leaf 2 

min_samples_split 5 

n_estimators 100 

random_state 25 

2.2.2. AOA analysis 

Next, we identified underrepresented regions using the 

AOA methodology. The AOA is defined by a 

Dissimilarity Index (DI), which measures the degree of 

difference between a new location and the training data 

used for ML modelling in terms of its environmental 

covariates. A DI threshold is then derived through a cross-

validation, which determines the boundary of reliable ML 

model application. A location with a DI value above this 

threshold is considered outside the AOA (unreliable 

predictions), making it inappropriate to use the trained RF 

model in that location.   

2.2.3. Targeted site selection 

Following the identification of underrepresented regions, 

the IDDSS method was applied to select targeted 

sampling locations (Figure 3). The selection process is 

based on the AOA results, which selects the candidate 

with the highest DI value at the start of each iteration. 

Then, a filtering step uses this newly selected site to trim 

the candidate pool; its multivariate distance to all other 

remaining locations is calculated, and any found to be too 

similar are permanently discarded. This iterative process 

ensures that targeted sampling locations are both highly 

informative relative to the current training data and 

distinct from one another.  
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Fig. 3. A workflow for targeted sample selection. 

3. RESULTS 

Figure 4 shows the spatial distribution of DI values across 

Estonia. Colours closer to red indicate higher dissimilarity 

relative to the current training dataset. We found that 

approximately 25% of Estonia lies beyond the AOA 

threshold, with a DI greater than 0.11. This result suggests 

that a substantial part of the country would be unreliable 

using the RF model trained on the current training data 

(Figure 5).  

 
Fig. 4. DI of the SOC prediction model across Estonia. 

 
Fig. 5. AOA of the SOC prediction model across 

Estonia. 

Based on the AOA result, we applied the IDDSS 

method to identify 41,930 targeted sampling locations 

situated exclusively within these high-uncertainty regions 

(Figure 6). This analysis highlights the usefulness of the 

AOA and IDDS frameworks in guiding strategic data 

acquisition, as they help target underrepresented and 

environmentally distinct regions not well captured in the 

current training data.  

 
Fig. 6. All Targeted Sampling Locations for SOC 

across Estonia. 

4. DISCUSSION AND CONCLUSION 

In this study, we introduced a novel dissimilarity-driven 

sampling framework to optimise soil sampling design. 

The proposed framework successfully integrates AOA 

analysis with an IDDSS method to create a targeted data-

driven sampling plan. The application in Estonia shows 

the usefulness of this approach, which identified that a 

significant portion of the country (~25%) lies in regions 

where the current SOC prediction model could be 

unreliable. These areas are primarily located in southern 

Estonia alongside the northern coast. 
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Although conventional sampling strategies like grid 

sampling or random sampling ensure spatial coverage of 

the study area, they may inefficiently place new samples 

in the multivariate feature space that are already well-

represented by the current training data. Our proposed 

framework is designed to be more efficient by directly 

targeting areas of high ML model uncertainty, thereby 

improving the predictive reliability of the model. The 

integration of AOA and IDDSS refines the process of 

sampling location selection by ensuring that the selected 

locations are both informative relative to the current 

training data and distinct enough from one another. We 

determined a total of 41,930 targeted sampling locations, 

which represent the full candidate pool for enhancing the 

quality of the current training data. From this candidate 

pool, researchers could narrow down a smaller number of 

sampling locations based on their practical constraints, 

such as budget, accessibility, and the needed sample size 

for their research.  

The main contribution of this study is the 

demonstration of this complete methodological 

framework for soil sampling from the initial RF model 

training to the final selection of targeted sampling 

locations. Although a comprehensive validation of the 

generated sampling plan through a dedicated fieldwork is 

beyond the scope of this study, the work presented here 

provides a robust and replicable strategy to guide such an 

effort. To support reproducibility in research, the Python 

codes used for the proposed sampling selection approach 

will be made publicly available after the publication of the 

related work.  
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ABSTRACT

The application of Deep Learning (DL) to Earth Observa-
tion (EO) has yielded remarkable advancements across di-
verse tasks, including land cover classification and biophys-
ical variable regression. However, a significant gap persists
between the development of sophisticated DL models and
their routine deployment in operational settings. This dis-
connect largely stems from the technical expertise needed to
handle complex DL workflows, which differs from standard
geospatial practices. To address this challenge, we introduce
xinfereo, a Python package designed to bridge the divide
between xarray Datasets, a common data structure for geospa-
tial data handling, and spatio-temporal DL models. We show-
case the package’s potential through a tree cover percentage
mapping application using Sentinel-2 data, emphasizing its
capacity for flexible analysis and scalable processing. Our re-
sults underscore the promise of xinfereo in democratizing
DL for EO, paving the way for wider adoption and operational
integration of these powerful techniques.

Index Terms— deep learning, Earth Observation, xarray,
Sentinel-2, scalability, remote sensing

1. INTRODUCTION

The past decade has witnessed extraordinary progress in the
application of Deep Learning (DL) methodologies to a broad
spectrum of EO tasks [2, 9]. From precise mapping down to
tree level to retrieval of drivers of deforestation, DL models
have demonstrated a capacity to extract valuable information
from complex remote sensing data [1, 5]. Despite these suc-
cesses, a critical bottleneck impedes the transition of these
models from experimental tools to operational assets. The
technical expertise demanded by DL, particularly in manag-
ing specific data structures and intricate pre-processing steps,
presents a substantial barrier. DL models often require data
to be structured in specific formats (e.g., torch or tensorflow
tensors with strict dimensions and various kind of preparation
steps such as positional encoding, padding or normalization),
and the absence of user-friendly tools to automate these trans-

∗Consultant for the Joint Research Center

formations limits wider adoption. Consequently, DL for EO
remains, to a large extent, the domain of specialists.

However, this challenge is not insurmountable. Innova-
tive technical solutions can effectively bridge the gap be-
tween cutting-edge DL techniques and the practical needs of
geospatial scientists. In this paper, we present xinfereo,
a Python package developed to facilitate the integration of
xarray Datasets, a fundamental data structure in geospatial
analysis, with spatio-temporal DL models. Xarray Datasets
provide a robust framework for representing multidimen-
sional data as data cubes with clearly defined dimensions
and coordinates. Furthermore, the xarray ecosystem offers
seamless interoperability with other essential components of
the geospatial toolkit, such as Spatio Temporal Asset Catalog
(STAC) via odc-stac, the Geospatial Data Abstraction Library
(GDAL) via rioxarray, and dask.

The xinfereo package, in its current prototype form,
simplifies the application of DL models to EO data. Users
can generate model outputs by executing a single function on
a Sentinel-2 data cube encapsulated within an xarray Dataset.
The package handles the complexities of model execution,
including retrieving model parameters (which can be stored
on an online platform such as Zenodo), verifying data com-
patibility, and performing necessary transformations such as
normalization, padding and positional encoding. The model’s
prediction is then returned to the user as a NumPy array.

To illustrate the capabilities of xinfereo, we focus on
the task of mapping tree cover percentage. While our primary
objective is to demonstrate the package’s functionality and
ease of use, we provide an overview of the model architecture
and training strategy for context. The core emphasis remains
on enabling accessible and scalable model deployment. We
highlight the package’s flexibility in accommodating various
data scenarios and its ability to scale to large-area processing.

Section 2 describes the model, data, and scalability exper-
iment, section 3 presents and discusses results, and section 4
summarizes findings and future work.
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2. MATERIAL AND METHODS

2.1. xinfereo package

The xinfereo package is designed to streamline the inte-
gration of DL models into typical geospatial workflows. It
provides a user-friendly interface that simplifies the applica-
tion of pre-trained DL models to xarray Datasets. The core
functionality of xinfereo is encapsulated in a single func-
tion. This function accepts an xarray Dataset as input and
produces the model’s prediction as a NumPy array. Impor-
tantly, this function abstracts away much of the complexity
associated with preparing data for DL models. It handles the
following critical steps:

• Data conformance: The function begins by validating that
the input Dataset conforms to the model’s requirements,
checking for necessary variables and dimensions.

• Normalization: Any required normalization or scaling of
the input data is performed automatically.

• Temporal encoding: If the model requires it, temporal in-
formation (e.g., positional encoding) is generated and in-
corporated into the input data.

• Padding: Necessary padding of time or channel dimen-
sions is applied to ensure compatibility with the model’s
input shape requirements.

• Model execution: Finally, the pre-trained DL model is
loaded and executed on the prepared input data.
To ensure portability and ease of use, pre-trained DL

models and their associated parameters are stored in the
Open Neural Network Exchange (ONNX) standardized for-
mat. xinfereo handles the retrieval of these models and
parameters from their online location, relieving the user of
the burden of manual management. The core inference func-
tion supports xarray Datasets backed by either NumPy arrays
for in-memory computation or Dask arrays, thereby offering
both flexibility in execution and inherent scalability for large
data volumes.

Model-specific requirements, such as expected input vari-
ables and dimensions, are documented using a JSON-based
metadata schema. This metadata model is currently an evolv-
ing aspect of the package and is designed to align closely with
the STAC Machine Learning Model (mlm) extension. How-
ever, STAC mlm had limitations (e.g., temporal restriction or
optional bands), so our implementation, while inspired by it,
retains flexibility and doesn’t strictly adhere yet.

2.2. Tree Cover Percentage Mapping Model

To demonstrate the practical application of xinfereo, we
developed a DL model designed to map tree cover percentage
from Sentinel-2 time series data. This model aims to pre-
dict the proportion of tree cover within each pixel, generating
valuable information for forest monitoring and management
activities.

The training dataset for our model was derived from the
Copernicus 2018 Tree Cover Density (TCD) layer [4]. To
create this dataset, we randomly selected 4800 bounding box
locations, each 1280 m x 1280 m in size, across the Euro-
pean continent. For each of these locations, we extracted the
corresponding TCD layer and resampled it to a 20 m resolu-
tion to align with the spatial resolution of the Sentinel-2 data.
The resulting dataset was then partitioned into training (3200
patches), validation (800 patches), and testing (800 patches)
subsets.

It is crucial to acknowledge the inherent limitations of this
training data generation approach. The Copernicus TCD layer
is already the result of a model and represents an estimate of
tree cover with potential innacuracies. However, we reiterate
that the primary focus of this study lies in demonstrating the
xinfereo package’s ability to simplify the application of
DL models in a streamlined and scalable manner, rather than
producing a definitive tree cover percentage product. In real-
world scenarios, users frequently need to generate custom for-
est masks or tree cover estimates tailored to specific regions,
timeframes, or input data characteristics. For instance, Near
Real-Time monitoring systems often rely on up-to-date forest
masks, which may not always be readily available [3]. While
alternative methods, such as rule-based forest mask genera-
tion, exist, they may not be optimal in all situations [10].

In addition to the TCD data, we extracted one year (from
January 1st to December 31st 2018) of Sentinel-2 data at a
20m resolution for each of our selected bounding box loca-
tions. We retained the following spectral bands, relevant for
land surface analysis: B02 (blue), B03 (green), B04 (red),
B05 (red edge 1), B06 (red edge 2), B07 (red edge 3), B08A
(Near InfraRed), B11 (Short-Wave InfraRed (SWIR) 1), and
B12 (SWIR 2), as well as the Scene Classification Layer
(SCL) to allow the masking of clouds and shadows during
training and testing.

Our model architecture for tree cover percentage re-
trieval from Sentinel-2 time series is based on a simple 1D
Convolutional Neural Network (CNN), complemented by
a temporal attention mechanism [6, 7], and is remarkably
compact (42KB in ONNX format). The 1D CNN processes
each pixel’s time series independently, extracting spectral-
temporal features directly from raw input sequences. This
approach effectively handles irregular observation patterns
and heterogeneous data (e.g., varying observation counts
or residual clouds) without requiring prior temporal bin-
ning or interpolation. The temporal attention mechanism
complements the CNN feature extraction by weighing the
contribution of each time step, enabling the model to focus
on the most informative segments for accurate retrieval. This
combination offers significant flexibility and robustness to
varying data conditions.

To enhance the model’s versatility and robustness, we im-
plemented a range of data augmentation techniques during
the training process. These techniques simulate potential data
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availability scenarios that users may encounter in practice, in-
cluding:

• Cloud and shadow contamination: Randomly leaving por-
tions of the input data unmasked to mimic the presence of
residual clouds and shadows.

• Missing spectral bands: Randomly omitting spectral
bands to train the model to handle situations where certain
bands are unavailable.

• Partial temporal extent: Training the model on random
subsets of the one-year time series, enabling it to work
effectively with incomplete time series data.
This data augmentation strategy aims to improve the

model’s flexibility and adaptability to diverse data condi-
tions. While we anticipate the model to perform optimally
when provided with the full complement of Sentinel-2 bands,
properly masked for clouds and shadows, and the complete
one-year time series, it is also designed to provide reasonable
predictions even when faced with degraded data availability.

2.3. Scalability Experiment

To assess xinfereo’s scalability, we applied the tree cover
density (TCD) mapping model to the entirety of the 31TFK
MGRS tile, utilizing Sentinel-2 data from the year 2024. The
input dataset consisted of 7 months of observations, encom-
passing 44 Sentinel-2 acquisitions and amounting to approxi-
mately 16 GB of uncompressed data. This task was executed
using a Dask-based workflow on a 10 workers local clus-
ter within xinfereo, which processed the data in spatial
chunks of 244x244 pixels. Identical workflow can easily be
deployed on High Throughput Computing clusters, such as
the one available on the Big Data Analytic Platform (BDAP)
of the Joint Research Center [8], anticipating near-linear scal-
ing.

3. RESULTS AND DISCUSSION

3.1. Model Performance

The model’s predictive accuracy was assessed using the 800
patches designated for the test split, with the Root Mean
Square Error (RMSE) calculated across a matrix of varying
input data scenarios. As anticipated, the model performed
optimally when provided with a full year of Sentinel-2 data,
encompassing all specified spectral bands and with clouds
and shadows masked, achieving an RMSE of 11.14 % (Figure
1). Notably, many alternative scenarios involving degraded
input data such as omission of certain spectral bands, reduced
temporal coverage, or the absence of cloud masking, resulted
in only marginal reductions in performance. This observation
underscores the model’s versatility and robustness to vari-
ations in data availability and quality. For instance, these
results suggest that in practical applications, users may not
need to strictly adhere to the maximum data requirements;

(a)

(b)

Fig. 1: Model performance on the dataset’s test split: (a) Root Mean
Square Error (RMSE) of predicted tree cover percentage for various
input data modalities. (b) Scatter plot of predicted versus reference
tree cover percentages for the best-performing input modality.

an acceptable tree cover density layer could potentially be
generated for a given year using as few as six spectral bands
and seven months of data. The most significant performance
degradation was observed when the input data was limited to
only three months, even if these were the summer months.
This finding suggests that observations from outside the peak
growing season are beneficial for accurately assessing tree
cover and unambiguously discriminating trees from other
land cover types.

3.2. Scalability

Processing the 16 GB 31TFK MGRS tile on the 10-worker
local Dask cluster took approximately 5 minutes (including
approximately 2 minutes for data loading from the EOS dis-
tributed file system). While tile-specific timing may vary, this
initial benchmark indicates the approach’s inherent scalabil-
ity. Consequently, mapping an EEA38-sized area (5.8 million
km²) is projected in hours on an HTC infrastructure, confirm-
ing xinfereo’s suitability for large-scale operational tasks.

3.3. Discussion

The findings of this study underscore the potential of the
xinfereo package to democratize DL for EO analysis. By
offering a user-friendly interface that seamlessly connects
xarray Datasets with diverse DL models, including emerging
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foundation models, xinfereo lowers the barrier to entry
for geoscientists who may not possess specialized expertise
in DL. This can foster wider adoption of these powerful
techniques across a range of EO applications.

Furthermore, the modular design of xinfereo facili-
tates its integration into various geospatial processing work-
flows. This adaptability allows users to deploy xinfereo-
based inference across diverse execution environments, from
local Dask clusters to large-scale cloud platforms. Emerging
infrastructures like the Copernicus Data Space Ecosystem
(CDSE), which provide extensive access to Copernicus data
and associated processing capabilities, represent one such
type of environment where xinfereo could be effectively
utilized by users for their specific analysis needs.

The demonstrated scalability highlights xinfereo’s po-
tential for generating EO products over extensive areas in a
timely and efficient manner, a capability relevant for vari-
ous large-scale monitoring applications. While the tree cover
map produced in this study serves as an illustration of the
package’s technical capabilities, it is important to distinguish
it from officially validated data products. Operational ser-
vices, such as the Copernicus Land Monitoring Service, rely
on products that undergo rigorous accuracy assessment and
validation processes, typically overseen by entities like the
European Environment Agency (EEA), to ensure their fitness
for designated applications. The approach demonstrated here
has not been subjected to such extensive validation. Nev-
ertheless, xinfereo can empower users to generate cus-
tom/interim products when up-to-date outputs are needed, of-
ficial versions are unavailable, or existing products don’t meet
specific needs.

Importantly, xinfereo challenges the notion that ease
of use and scalability must be mutually exclusive. Our pack-
age demonstrates that it is indeed possible to provide a user-
friendly experience without compromising performance or
the ability to handle large datasets. This approach has the
potential to transform the way high-level EO products are
generated and delivered, perhaps even leading to the develop-
ment of new Copernicus services.

4. CONCLUSION

In this paper, we introduced xinfereo, a Python package
designed to democratize the use of DL in EO analysis by
effectively bridging the gap between xarray Datasets and
spatio-temporal DL models. We showcased the package’s
utility through a tree cover percentage mapping application
using Sentinel-2 data, highlighting its flexibility and scala-
bility. Our results indicate that xinfereo can significantly
simplify the integration of DL models into standard geospatial
workflows, thereby promoting broader adoption and opera-
tional implementation of these powerful techniques.

Future research will focus on expanding the capabilities
of xinfereo by developing a wider range of modular build-

ing blocks for data preparation and pre-processing, enabling
it to accommodate a greater variety of models and EO appli-
cations. We also plan to explore tighter integration with the
STAC mlm extension to facilitate more comprehensive model
documentation and metadata management.
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ABSTRACT 

The AXIS 3 Governmental Hub is part of Greece's National 

Satellite Space Project, which aims to enhance the country's 

capabilities in satellite technologies and applications. 

Specifically, AXIS 3 focuses on developing geospatial 

services tailored to meet the needs of the Greek public 

sector. The AXIS 3 Governmental Hub is a modular, cloud-

native Earth Observation (EO) infrastructure supporting the 

delivery of five thematic services: Land, Forest, Water, 

Agriculture, and Safety & Security. Developed under the 

Greek National Earth Observation (GNEO) mission, the 

Hub hosts and integrates data from GNEO AXIS 1.1, 1.2, 

and 2 satellite missions, along with Copernicus and Landsat 

products.  Its architecture combines EO Exploitation 

Platform Common Architecture (EOEPCA) components and 

Kubernetes orchestration to enable scalable data ingestion, 

metadata harmonization (via a SpatioTemporal Asset 

Catalog (STAC) -compliant catalogue), user-triggered 

tasking, and automated processing. The Hub’s microservices 

architecture supports federated access, metadata-driven 

workflows, and asynchronous orchestration of EO services. 

This paper presents the Hub’s infrastructure, highlighting 

innovations in service orchestration, interoperability, and 

modular processing pipelines. 

Index Terms— GNEO, AXIS 3 Governmental HUB, 

Earth Observation, Cloud-native architecture, STAC, 

EOEPCA, Kubernetes, ARD 

1. INTRODUCTION 

The Greek National Satellite Space Project strengthens 

national EO capabilities, equipping the public sector with 

advanced tools for monitoring, analysis, and decision 

support. At its core, it delivers geospatial services in five 

domains, Land, Forest, Water, Agriculture, and Safety & 

Security, through standardized processes ensuring reliability 

and operational impact (Figure 1). 

Recent EO platforms increasingly rely on cloud 

infrastructures, data cubes, standardized APIs, and AI-

driven methods. Representative examples include Google 

Earth Engine, Sentinel Hub, Open Data Cube, SEPAL, 

openEO, JEODPP, pipsCloud, EarthDataMiner, GeoCube, 

and the DestinE Platform [1–10]. These solutions 

demonstrate advances in scalability, interoperability, and 

real-time access, but most focus either on global analytics or 

single domains, with limited integration of heterogeneous 

data and end-to-end orchestration. 

 

Figure 1 High-level overview of the AXIS 3 Hub 

The management and analysis of big Earth observation (EO) 

data increasingly rely on cloud infrastructures, data cubes, 

standardized APIs, and AI-driven methods. Key platforms 

include Google Earth Engine, Sentinel Hub, Open Data 

Cube, SEPAL, openEO, JEODPP, pipsCloud, 

EarthDataMiner, GeoCube, and the DestinE Platform. 

Google Earth Engine (GEE) enables petabyte-scale cloud 

access, APIs, and machine learning for large-scale analysis 

[1]–[4]. Sentinel Hub offers real-time streaming and GIS 

integration [1], while the Open Data Cube (ODC) provides 

an open-source spatio-temporal model for national ARD 

systems [1], [5], [6]. SEPAL supports land and forest 

monitoring [1], and openEO ensures interoperability 

through standardized APIs [1], [7]. JEODPP and pipsCloud 

deliver high-performance EO processing [1], [6]. Emerging 

platforms such as EarthDataMiner apply AI analytics [8], 

GeoCube enables raster–vector fusion [5], and the ESA 

DestinE Platform provides access to Earth-system digital 

twins for climate and environmental monitoring [9], [10]. 

The Governmental Hub draws upon these advances by 

combining EOEPCA-based modules with Kubernetes 

orchestration, custom developed components, STAC-

compliant cataloguing, and dedicated hardware 

infrastructure, enabling interoperable and operational 

services tailored to governmental needs. 
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2. GOVERNMENTAL HUB SYSTEM 

ARCHITECTURE & DESIGN PRINCIPLES 

The Hub’s architecture is cloud-native, using EOEPCA [11] 

components and Kubernetes orchestration for scalable data 

ingestion, metadata harmonization through a STAC [12]-

compliant catalogue, user-triggered tasking, and automated 

processing. This enables efficient handling of large data 

volumes with high performance and reliability. The AXIS 3 

Hub adopts a microservices architecture supporting 

federated access, metadata-driven workflows, and 

asynchronous orchestration of EO services. Its modular 

design ensures flexibility to tailor pipelines for each 

thematic domain, while providing analysis-ready data 

(ARD) for efficient and accurate EO analysis. 

2.1. Cloud-Native & Microservices Architecture 

The Hub uses a containerized, microservices-based 

architecture, allowing independent deployment and scaling 

of components (Figure 2). Each component (e.g., ingestion, 

processing, cataloguing) communicates through APIs and 

runs in Kubernetes-managed containers. This approach 

ensures high availability and dynamic scaling based on 

processing demands.  

 

 
Figure 2 High-Level System Architecture of the AXIS 3 

Governmental Hub 

2.2. AXIS 3 Hub Core Components 

The AXIS 3 Hub leverages the open-source EOEPCA, 

which provides a reference framework for EO data 

management and exploitation services. The core EOEPCA 

modules integrated into the Hub include: 

• Resource Catalogue (STAC-compliant) for product 

discovery and metadata indexing; 

• Processing Component for Common Workflow 

Language (CWL)-based scalable job execution; 

• Data Access providing standardized interfaces for 

accessing geospatial data assets stored within the 

platform, supporting both human users and 

machine users. 

Beyond the EOEPCA integration, the AXIS 3 Hub 

introduces a set of core components that enable the 

operational delivery of governmental thematic services. 

These include: 

• Data Ingestion and ARD Processor, responsible for 

harmonizing external and mission-specific data streams 

(e.g. Copernicus, Landsat, AXIS missions) into 

Analysis Ready Data (ARD) formats. 

• Services Orchestrator, which manages the sequencing 

and execution of workflows across multiple processing 

modules. 

• Tasking Orchestrator, which extends Hub functionality 

to manage satellite tasking requests with external Data 

Hubs. 

• API Gateway, providing unified access to Hub 

functionalities, ensuring secure interaction between 

internal services and external applications. 

• Monitoring, Accounting, and Dashboards, which 

support operational control, usage tracking, and 

visualization for both administrators and end-users. 

• Axis 3 Service Processes, that include the thematic 

service algorithms (land, water, forest, agriculture, and 

safety & security services). 

2.3. Hardware Infrastructure and High-Performance 

Resources 

The AXIS 3 Governmental Hub is powered by a high-

performance compute and storage backbone tailored to the 

demands of large-scale Earth Observation data management 

and processing. The compute infrastructure combines 

general-purpose servers with GPU-accelerated nodes, 

enabling both standard processing and advanced AI/ML 

workflows. The storage layer is based on an all-flash 

enterprise system complemented by high-capacity disks, 

providing more than 2 petabytes of raw storage and over 

500 TB of NVMe flash for rapid data access and intensive 

analytics. Cybersecurity is ensured through firewalls and 

centralized monitoring, while the networking layer delivers 

high-bandwidth switching with 100/400G uplinks and 

10/25G access, ensuring low-latency, resilient 

interconnectivity across the system. Together, these 

resources provide the foundation required for the Hub’s 

services. 

3. DATA INTEGRATION & HARMONIZATION 

3.1. Data Integration and Management 

The AXIS 3 Governmental Hub manages EO data from both 

national and international missions to support operational 

workflows. Key sources include open datasets from the 

Copernicus Data Space Ecosystem (CDSE) and Landsat, 

accessed via ESA and USGS services, with open data 

retained under a rolling one-year policy. National data 

includes AXIS 1.1 (thermal, nominal and tasking), AXIS 1.2 

(SAR, tasking-based), and AXIS 2.0 (optical, high-

acquisition rate across HR, VHR, hyperspectral, IoT, and 

AIS sensors). Each mission provides multiple processing 

levels (L0, L1C, L2A) (Figure 3). 
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Data is ingested via STAC-compliant APIs for seamless 

integration and cataloguing. 

While open data follows a 

limited retention policy, AXIS 

mission data is archived for the 

full operational lifecycle. This 

supports scalable, timely 

access for downstream 

processing and thematic 

services. 

The Hub uses a dual-mode 

strategy to manage both 

systematic and on-demand 

data. Automated pipelines 

ingest continuous streams from 

open sources and nominal 

GNEO missions. Tasking 

workflows for GNEO missions 

allow users to request data by 

area, time, or priority. 

Ingested data are routed to 

mission-specific storage, and 

metadata is automatically 

generated with 

spatial/temporal tags, sensor 

info, and asset links. Once validated, products are indexed 

and published in the Governmental Hub Catalogue (Section 

3.4) for immediate discovery and use across all thematic 

domains. 

3.2. Analysis-Ready Data (ARD) 

The AXIS 3 Governmental Hub adopts a standardized ARD 

strategy to ensure all ingested datasets are preprocessed, 

harmonized, and immediately usable across its thematic 

services. ARD products serve as the primary input for 

downstream processing.  

The ARD generation 

workflows, inspired by 

CEOS-aligned 

specifications include 

radiometric calibration, 

geometric and terrain 

corrections, and 

atmospheric corrections 

where applicable. 

To support integration with 

national datasets, all ARD 

products are transformed 

into the Greek Grid 

(EPSG:2100). The output 

formats follow open 

standards such as Cloud-Optimized GeoTIFF (COG) to 

enable efficient access and cloud-native storage. Priority is 

given to open Copernicus data, including Sentinel-1, 

Sentinel-2, and Sentinel-3, to maintain continuity with 

AXIS 1 and AXIS 2 products. Across all EO sources—

optical, SAR, thermal, and hyperspectral—the ARD 

workflow ensures that data inputs are consistently 

transformed into standardized, analysis-ready outputs that 

are both operationally reliable and scientifically robust 

(Figure 4). 

The AXIS 3 Governmental Hub generates and manages 

ARD products across a range of sensor types to ensure 

standardized processing and interoperability. For optical 

imagery, the Hub processes Sentinel-2 Level 2A products, 

AXIS 2.0 high-resolution and very-high-resolution 

multispectral data, and Harmonized Landsat Sentinel (HLS) 

products from Landsat. For Synthetic Aperture Radar 

(SAR), it includes Sentinel-1 GRD products and various 

imaging modes from AXIS 1.2, such as Scan, Strip, Spot 

High-Resolution, Spot Fine, and Spot Extended. In the 

domain of thermal and hyperspectral data, ARD is produced 

from Sentinel-3 SLSTR, AXIS 1.1 thermal infrared and 

AXIS 2.0 hyperspectral.  

3.3. STAC Strategy 

To ensure consistent and interoperable metadata 

management, the AXIS 3 Governmental Hub adopts a 

STAC (SpatioTemporal Asset Catalog) compliant strategy 

across all EO products. As data from GNEO missions, 

Copernicus, and Landsat is ingested, metadata records are 

automatically generated with standardized spatial, temporal, 

and sensor attributes, and references to data assets and 

processing levels. All EO data—from raw satellite inputs to 

products generated by AXIS 3 Thematic Services—are 

mapped to STAC Collections, Items, and Assets (Figure 5). 

This approach provides uniform cataloguing and exposure 

of datasets to internal and external users, ensuring 

discoverability, accessibility, and compliance with emerging 

EO standards. STAC Items and Collections are validated 

before indexing into the Hub Catalogue, enabling federated 

access and scalable, cloud-native discovery and processing 

across all services. 

 

Figure 5 STAC Catalogue Structure Strategy 

3.4. GOVERNMENTAL HUB Catalogue 

The Governmental HUB Catalogue will serve as the central 

metadata repository for all datasets within the AXIS 3 Hub, 

supporting comprehensive discovery and access. It will 

cover both internally generated and externally sourced EO 

datasets. Internally, this includes raw and processed data 

from national missions—AXIS 1.1 thermal, AXIS 1.2 SAR, 

and AXIS 2.0 optical and hyperspectral imagery—along 

with value-added products from thematic services and 

standardized ARD. Externally, it will index datasets from 

Copernicus, USGS (Landsat), and other open-access 

providers (Figure 6). 

Figure 3 Daily Percentage 

Distribution of EO Data 

Volume Integrated into the 

AXIS 3 Governmental Hub 

Figure 4 ARD Harmonization 

Workflow 
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Designed as a centralized interface, the 

catalogue provides metadata-driven 

access to multi-source datasets with 

federated querying across thematic 

domains via STAC-based APIs. All 

metadata will follow STAC 

specifications, ensuring machine-

readability, integration with external 

platforms, and interoperability across 

the wider EO ecosystem. 

4. THEMATIC SERVICES AND 

ADDED VALUE PRODUCTS 

The AXIS 3 Governmental Hub 

operates five thematic services—Land, 

Forest, Water, Agriculture, and Safety 

& Security—each built on standardized 

EO pipelines aligned with public-

sector priorities. Outputs are published 

through the Hub Catalogue with 

STAC-compliant metadata, ensuring 

traceability, discoverability, and 

integration with national geospatial infrastructures. 

The Land Service supports land cover classification, change 

detection, InSAR deformation (PSI, SBAS), and urban 

analytics including heat island effects, air quality, and health 

indicators. The Forest Service covers national forests and 

NATURA 2000 areas through forest type and fuel mapping, 

health monitoring, biodiversity analysis, and threat 

detection, delivering outputs such as fuel maps, tree cover 

density, and biodiversity hotspot maps. 

The Water Service includes Water Quantity, Water Quality, 

and Maritime Surveillance modules, producing inland and 

coastal water maps, indicators like chlorophyll-a, SST, 

turbidity, oil spill detection, and maritime object 

identification. The Agriculture Service provides crop type 

prediction, vegetation indices (NDVI, SAVI, PSRI), radar 

and texture metrics, growth estimates (LAI, Ccc, Cdmc), 

and soil moisture analysis through optical–SAR fusion. 

The Safety & Security Service addresses floods and 

wildfires, generating high-resolution flood maps, depth and 

risk assessments, wildfire danger forecasts, burn scar 

mapping, fire spread predictions, and object tracking with 

bounding boxes and trajectories. 

5. INNOVATIONS AND CHALLENGES 

The AXIS 3 Governmental Hub adopts a forward-looking 

strategy based on open standards, modular architecture, and 

cloud-native design. By integrating EOEPCA components 

and leveraging Kubernetes, it ensures scalability, resilience, 

and interoperability across EO data ecosystems. Metadata-

driven workflows, federated access, and microservices-

based automation enable seamless end-to-end service 

delivery—from ingestion to analysis and visualization. 

Strategically, the Hub acts as a national anchor for secure 

EO operations while interoperating with European and 

global platforms, supporting cross-border collaboration, 

rapid thematic service deployment, and long-term 

adaptability to new missions, sensors, and user needs. 

6. CONCLUSION 

The AXIS 3 Governmental Hub establishes a scalable, 

secure, and interoperable EO service delivery model, 

demonstrating how cloud-native systems can support 

strategic decision-making, environmental resilience, and 

digital transformation. Supporting both national priorities 

and European cooperation, it provides future-ready 

infrastructure that turns EO data into actionable insights. 

With its modular, standards-based design, the Hub enables 

rapid deployment of thematic services while fostering 

continuous innovation in data exploitation. 
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ABSTRACT 

The rapid growth of data from Earth Observation (EO) and 
models presents significant challenges and opportunities for 
the scientific community, emphasizing the need for scalable, 
interoperable, and flexible analytical infrastructures. ESA’s 
ongoing support for cloud-native Data Processing-as-a-
Service (DPaaS) platforms and standardization efforts (such 
as EO Exploitation Platform Common Architecture project 
(EOEPCA), openEO, and Application Propagation 
Environments (APEx)) has substantially streamlined access 
to these datasets. At the same time, Python’s data science 
ecosystem, particularly the Pangeo stack (based around 
xarray, Dask, and Zarr), has gained popularity due to its 
flexibility, transparency, accessibility, and extensive 
analytic capabilities. The xcube toolkit integrates seamlessly 
into both ecosystems, offering powerful tools for uniform 
data access and harmonization, and analysis-ready EO data 
cubes and other gridded datasets. The xcube datastore 
framework has recently been enhanced with plugins for the 
new Earth Observation Processing Framework (EOPF) Zarr 
format, integration of STAC-compliant collections such as 
those from the Copernicus Data Space Ecosystem (CDSE), 
and dataset harmonization and combination via xcube-
multistore. These additions, together with advanced 
visualization features in the xcube viewer and its new 
chartlets extension, significantly enrich the framework. 
Further advances include the xcengine processing tool and 
integration into the EarthCODE project, particularly the 
deep-code initiative, emphasizing reproducibility and 
computational efficiency. This paper describes the features, 
datastore architecture, recent developments and integration 
capabilities of xcube, and highlights its role in enhancing 
interoperability, flexibility, and analytical effectiveness 
within the EO community. 

Index Terms— EO Data Cubes, Cloud Computing, 
Interoperability, Python Data Science, Gridded data, xcube  

1. INTRODUCTION 

The exponential growth of EO data volumes driven by 

programs such as Copernicus requires sophisticated and 

scalable solutions for effective data processing and analysis. 

ESA has fostered various initiatives supporting a DPaaS 

approach, such as EOEPCA [1], openEO [2], and APEx 1, to 

facilitate setting-up and operation of a processing service as 

well as to improve standardization and interoperability of 

platforms. While these services substantially simplify EO 

and gridded data processing and provide convenient access 

to scalable cloud processing capabilities, many users, 

particularly those with sufficient programming background, 

appreciate the benefits of the long-established, flexible, 

transparent, and reproducible programming environment 

offered by Python’s data science ecosystem. Tools like 

xarray, Dask, and Zarr, and the large collection of 

associated packages that make up the Pangeo stack, are 

particularly favoured for their capacity to handle large EO 

and gridded datasets effectively across a wide range of 

computing environments, from individual workstations to 

large-scale clusters, all with the same code base. Moreover, 

the wide adoption of the Pangeo stack in many user 

communities has turned it into a quasi-standard with 

minimum risk for lock-in with a specific service provider or 

computational environment. 

 
The xcube framework is fully integrated with the Pangeo 
ecosystem2, offering powerful functionalities along the 
entire workflow chain from data access to publication and 
dissemination of data and workflows. Particularly, several 
xcube tools effectively bridge the Python ecosystem and 
ESA’s growing world of cloud services and applications.   

2. PYTHON DATA SCIENCE ECOSYSTEM FOR EO 

AND GRIDDED DATA 

Python has emerged as a leading language for EO and 
gridded data analysis, driven by libraries like xarray for 
handling multidimensional arrays and Zarr for efficient, 
cloud-friendly storage of large datasets. This ecosystem 
offers considerable advantages in flexibility, reproducibility, 
and transparency, making it very attractive for scientific 
researchers, data scientists, and developers of EO-related 
software. A key success factor has been the Dask package 
for distributed computing, which allows for working with 
data sets that are larger than available memory and 
effectively abstracts away from users the burden of scaling 

 
1 https://apex.esa.int/ 

2 https://pangeo.io/#ecosystem 
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workflows to multiple parallel compute nodes. It enables 
users to seamlessly process very large, cloud-based datasets 
from any machine running a Python environment. 
 
Despite these strengths, users often encounter significant 
challenges when attempting to integrate and harmonize 
diverse EO and gridded datasets from various sources, 
formats, and access methods, make their workflows 
reproducible and shareable, disseminate their results through 
standard services, or visualize them. While technically 
feasible, each of the above steps may entail substantial 
effort, leading to inefficiencies and raising barriers to rapid, 
iterative, and collaborative progress in EO research.  

3. THE XCUBE FRAMEWORK 

The xcube3 framework addresses these typical integration 
challenges directly, providing structured methods for 
creating harmonized, analysis-ready data cubes from 
multiple sources through its robust datastore framework and 
rich functionalities, which offers seamless integration of 
multiple services and platforms offering EO and gridded 
data and by this means facilitates their integration into 
Python data science workflows. 
 

xcube is a Python toolkit designed for generating, 

analyzing, and publishing EO data cubes. It leverages the 

xarray library for handling multi-dimensional data arrays, 

dask for parallel computing, and zarr for efficient storage. 

Foundational libraries like rioxarray extend xarray to 

handle geospatial raster data (utilizing rasterio for reading 

and writing GeoTIFFs and managing coordinate reference 

systems), while Pangeo provides a cloud-native ecosystem 

for scalable data analysis with xarray and dask. Building 

upon these tools, xcube offers higher-level abstractions for 

data processing, including spatial rectification, resampling, 

rechunking, subsetting, optimizing data cubes etc. all while 

maintaining compatibility with existing xarray workflows. 

A core strength of xcube is its robust datastore framework, 

which integrates multiple EO and gridded data sources and 

services seamlessly into Python workflows, allowing users 

to abstract data retrieval and harmonization through simple, 

reusable components. For dissemination and publication, 

xcube includes fully integrated xcube server and xcube 

viewer capabilities, supporting standard APIs for 

interoperability and offering powerful visualization and 

interactive analysis tools directly within Python 

environments as well as Jupyter Notebooks. This 

comprehensive integration enables users to transition 

smoothly from satellite products to analysis-ready data 

cubes, facilitating efficient spatio-temporal analysis and 

visualization. 

 

 
3 https://xcube.readthedocs.io/en/latest/ 

To make Python user workflows reproducible and 

integrate them with ESA’s EarthCODE4 initiative, two 

recently developed packages, deepcode5 and xcengine6, 

enable users to add their Python workflows to ESA’s Open 

Science Catalogue, either as plain Jupyter Notebooks or 

after turning them into an EO Application Package [3]. The 

xcengine component can then run such packages and 

provide them as a service.  

4. ADVANCED DATASTORE FRAMEWORK AND 

INTEGRATION CAPABILITIES 

xcube’s datastore framework facilitates integration through a 
continually growing set of specialized datastore plugins. 
Any new datastore can be created as a plugin following the 
design pattern shown in Fig. 1. 

 

Fig 1: xcube datastore design. 

 
 Recent developments include the following: 
 
The STAC7 Store plugin8 allows dynamic discovery and 
retrieval of datasets from STAC-compliant catalogues like 
that of the CDSE [4]. It streamlines the creation of analysis-
ready data cubes by implementing a standardized and 
efficient method for querying available data and metadata 
and includes stitching and mosaicking of individual 
products as shown in Fig. 2.  
 

 
4 https://earthcode.esa.int 

5 https://github.com/deepesdl/deep-code 

6 https://github.com/xcube-dev/xcengine 

7 https://stacspec.org/en 

8 https://github.com/xcube-dev/xcube-stac 
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Fig 2: Sentinel-2 L2A analysis-ready datacube from 

CDSE [5] SAFE-Format. 

 
The EOPF Store plugin9 supports the new EOPF10,11 

format, optimized for cloud environments. Leveraging the 

Zarr storage format, this plugin provides rapid, efficient 

access to large Sentinel data collections directly within 

Python, significantly simplifying pre-processing and cube 

generation. The datastore builds upon the recently released 

EOPF engine for xarray12. 

  
The newly developed Multi-Source Data Store13 enables 
users to federate datasets from multiple heterogeneous 
sources into a unified source. This capability eliminates 
intermediate steps typically required in manual 
harmonization, enabling cross-source analyses with minimal 
effort. 
 
The new datastores complement the long list of existing 
stores e.g., for Copernicus Marine Service (CMEMS)14, 
Copernicus Land Monitoring Service (CLMS)15, Climate 
Change Initiative (CCI) Open Data Portal16, Zenodo17, and 
others as listed in the documentation18.  

 
   9 https://github.com/EOPF-Sample-Service/xcube-eopf/ 

10 https://zarr.eopf.copernicus.eu/ 

11 https://eopf.copernicus.eu/eopf/ 

12 https://eopf-sample-service.github.io/xarray-eopf/ 

13 https://xcube-dev.github.io/xcube-multistore/ 

14 https://github.com/xcube-dev/xcube-cmems 
15 https://github.com/xcube-dev/xcube-clms 

16 https://github.com/esa-cci/xcube-cci/tree/main 

5. VISUALIZATION AND INTERACTIVE ANALYSIS 

Beyond data integration and processing, visualization 

plays a key role in analyzing EO and gridded data and in 

communicating results to others. xcube addresses this 

demand through its interactive Viewer19 component as 

shown in Fig. 3 — a powerful and intuitive visualization 

tool connected directly to the backend xcube Server. It may 

be run as a stand-alone webpage but is also available as part 

of the Python package for interactive development within 

Jupyter Notebooks. With only three lines of code, users can 

start a new Server instance, add an xarray dataset to it, and 

launch a new Viewer instance, which can then be explored 

interactively inline or in a new tab, with the full set of 

functionalities of the app. 

 

 

Fig 3: xcube Viewer. 

The Viewer recently introduced the chartlets20 extension, 
enhancing analytical functionality. Chartlets are interactive, 
customizable widgets allowing users to create specialized 
visual analyses — such as histograms, scatter plots, and 
time-series — directly within the Viewer. This significantly 
enhances user experience, providing immediate insights 
without additional external analysis and visualization tools. 
 
Beyond its role as the Viewer’s back end, xcube Server is a 
robust tool with an extensible architecture that enables low-
cost development of plugins for additional interfaces.  It 
currently supports the following API endpoints shown in 
Table 1. 
 

Table 1: xcube Server APIs 

Endpoint  Purpose 

/viewer 
Providing the viewer application and 

configurations. 

/meta 
Server information and maintenance 

operations  

/places Places API providing vector and feature data 

/datasets Datasets API for accessing data cubes 

/tiles XYZ tiles API for retrieving tiles as PNG 

 
17 https://github.com/xcube-dev/xcube-zenodo 

18 https://earthsystemdatalab.net/data/#available-data-sources 

19 https://xcube-dev.github.io/xcube-viewer 

20 https://github.com/bcdev/chartlets 
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from image pyramids 

/timeseries 
Timeseries API for getting time-series data 

from data cubes 

/stats 
Statistics API for computing statistics from 

given coverages 

/volumes 
Volumes API for getting a 3D volume from a 

data cube 

/ows/stac OGC STAC API for the configured datasets 

/ows/coverages 
OGC Coverages API for the configured 

datasets 

/ows/wmts 
OGC WMTS API (an OGC wrapper of the 

more flexible XYZ /tiles endpoint) 

/s3 
AWS S3 compliant API for directly accessing 
the configured datasets as lazily loaded Zarr 

datasets 

6. COMPUTATIONAL BACKEND: XCENGINE 

xcengine is a recent addition to the xcube ecosystem, 
providing tools to convert Python Jupyter Notebooks to 
containerized, standalone ‘compute engines’. These engines 
can be run both in interactive mode (providing an xcube 
Server instance supporting a wide range of standard and 
specialized APIs and an interactive xcube viewer instance) 
and in batch mode as a standardized EO Application 
Package, suitable for integration into larger cloud-based 
processing workflows. xcengine thus helps to bridge the 
local, interactive and cloud-based, workflow-controlled 
processing models with minimal additional effort required 
from the user.  

7. EARTHCODE INTEGRATION 

The EarthCODE initiative seeks to ensure that EO 
workflows created by researchers on ESA platforms are 
persistent, findable, and reproducible as shown in Fig. 4. A 
key element for Python workflows developed in Jupyter 
Notebooks is the deep-code package, part of the Deep Earth 
System Data Laboratory (DeepESDL)21 project, which 
leverages xcengine and xcube to facilitate efficient, 
reproducible processing workflows on EO datasets. deep-
code enables detailed versioning, tracking, and publication 
of workflows encoded in Jupyter notebooks as well as EO 
datasets in the ESA Open Science catalogue. The software 
also supports converting a Jupyter Notebook into an 
interoperable, and reproducible EO Application Package, 
which can then be executed on other compatible platforms. 
   

 
21 https://earthsystemdatalab.net/ 

 

Fig 4: Simplified EarthCODE publication workflow. 

8. CONCLUSION 

The xcube framework significantly advances interoperable, 
federated gridded data processing and dissemination tasks, 
directly addressing diverse scientific community needs not 
covered by the other standard packages of Python’s data 
science ecosystem. It particularly facilitates working with 
Earth Observation data in ESA’s growing ecosystem of 
platforms and services and enables Python users to comply 
with the emerging and challenging requirements for 
reproducibility and interoperability.  
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ABSTRACT 

color33 is a cloud-based service that enables semantic 
enrichment of optical Earth observation (EO) images such as 
from Sentinel-2. It does not require training samples, is 
worldwide applicable, explainable, and transferrable. The 
service uses the SIAM software to categorizing reflectance 
values into colour names (spectral categories). Thus, color33 
supports general-purpose and sensor-agnostic downstream 
applications. The service is based on a modular, containerized 
architecture and facilitates automated EO workflows through 
standards-based APIs using OGC API – Processes and 
STAC. As a foundational component and building block for 
workflows, color33 enables downstream applications and 
offers a fast, flexible alternative to end-to-end classification 
approaches. 

Index Terms— Sentinel-2, Copernicus, semantic 
enrichment, OGC-API Processes, STAC, automatic 
workflows 

1. INTRODUCTION 

 
The Copernicus Sentinel-2 mission is now operational for ten 
years with a continuous data delivery. To date, there are more 
than 105 Mio. Images with 51 PB of data in volume. The 
main goal has been since then to create information and, in 
turn, maps that can be used to make decisions. 

In the efforts to create workflows that suit different end-
user needs a multitude of different approaches have been 
proposed. Today, many of them use deep learing (DL) 
artificial intelligence (AI), requiring training samples and -
time. Several limitations and challenges exist and are 
documented [1]. Notable limitations and challenges that we 
want to address are the following four: (1) fixed legends, (2) 
end-to-end workflows, (3) limited transferability, (4) 
explainability. 

(1) Due to relying on training, the legend, i.e., the output 
classes, is dependent on the available training samples. Users 
requiring different or extended sets of target classes face the 
tedious work of creating new training samples. 

(2) AI models are typically trained directly on the 
reflectance values and do not provide reusable, intermediate 

layers that can be used as building blocks for ad-hoc 
combinations and analysis. All start with the original 
reflectance values from scratch, although the work on 
analysis-ready-data (ARD) removes some of the burden of 
repeated processing steps on the user side [2]. 

(3) Training samples typically cover local areas. AI 
models for worldwide use are limited by specific domain, e.g. 
clouds [3] or a huge undertaking with very few examples, 
such as the Dynamic World (DW) dataset [4]. 

(4) Operational AI models are not explainable. To 
overcome this, explainable artificial intelligence (XAI) is an 
active research field. However, end users requiring 
explainability today are still facing challenges. 

We present a cloud-based service, called color33, that can 
be used without Earth observation (EO) knowledge and 
parameters to perform a semantic enrichment of optical 
satellite images worldwide. This service is called color33 
because the main output is a scene classification map (SCM) 
with a pixel-based categorization of reflectance values into 
33 color names (spectral categories). It is a general-purpose 
shared legend, that can be generated from other images such 
as Landsat, Sentinel-2, or Sentinel-3. 

2. BACKGROUND 

Semantic enrichment (SE) is known from the Semantic Web 
with the aim of meaningfully annotating documents to create 
a larger framework to link them. Thus, a knowledge graph is 
created, that can be queried and information that is only 
implicitly available can be produced. In the context of EO 
imagery we refer with SE to interpreted content of EO 
imagery (i.e., mapping data to symbols that represent stable 
concepts). In contrast to SE providing textual descriptions of 
EO image content, we refer to dense SE on a per-pixel level. 

It is noteworthy that SE should provide general levels of 
semantic granularity to allow interoperability and 
transferability. For example, users requiring specific legends, 
e.g., a specific vegetation type, can start with general 
vegetation categories. This approach is also known from land 
cover classification frameworks such as the FAO LCCS [5]. 
Here, a dichotomous phase precedes a modular-hierarchical 
phase, stepwise approaching more specific target classes 
from general ones. It supports reusable components and 
significantly reduces processing time and workflow 
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complexity as well as transferability to larger areas or at even 
the entire Earth, given that terms such as 
“water”/“vegetation” are sufficiently generalized. 

In color33 we use the satellite image automated mapper 
(SIAM) software [6], which generates low-level, generic, 
data-derived SE that is application-independent. SIAM 
encodes a per-pixel-, spectral-, and physical-model-based 
decision tree (DT) that can be applied to any EO imagery that 
is calibrated to at least top-of-atmosphere (TOA) reflectance. 
Thus, no training samples or user-defined parameter are 
required. Instead, SIAM uses a priori knowledge encoded 
into the DT, mapping each calibrated observation to one 
stable, sensor-agnostic multi-spectral colour name (i.e., 
category) based on its location in a multi-spectral reflectance 
hypercube. The result is a discrete and finite vocabulary for 
observations. This vocabulary (i.e., colour names/categories) 
is mutually exclusive (i.e., every observation belongs to one 
single partition) and totally exhaustive (i.e., the entire multi-
spectral reflectance hypercube is partitioned).  

SIAM can produce different granularities (i.e. number of 
colour names) from coarse (i.e., 18 colour names) to fine (i.e., 
96 colour names), as well as additional data-derived 
information layers (e.g., multi-spectral greenness index, 
brightness). The 33 colour names are shared across different 
sensors and, therefore, transferrable. 

 
Fig. 1. Examples of SE for Sentinel-2 images 

worldwide: Cloud & cloud shadow in Austria, Oasis in the 
Sahara Desert, Volga river delta, Venice lagoon. 
 

Consequently, like the SE for the Semantic Web, the 
semantic enrichment of EO images does not aim to create 
specific land cover classes, but is a first necessary, not 
sufficient step within a larger modular processing chain that 
is in contrast to the limited end-to-end classification. 

3. ARCHITECTURE 

This vision of a modular, hierarchical EO analytics workflow 
can be translated into a scalable architecture based on several 
independent cloud services of which color33 is the first of its 
kind. This architecture is modern, exchangeable, and 
scalable. Fig. 2. illustrates how color33 can be used in a 
broader workflow. It is noteworthy that the direct usage of 
color33 outputs themselves is limited if the analysis goal is 
beyond very simple categorisation, e.g., a vegetation mask. 
Thus, users can run both Jupyter notebooks on-premise after 
obtaining the semantically enriched images or connect to 
external cloud-based processes, although they are currently 
limited.  

color33 employs a cloud-native, scalable, container-based 
architecture. While users can interact with a graphical user 
interface (GUI) or a command-line-interface (CLI) for 

automated usage and batch processing as a frontend, the 
backend consists of several interconnected steps that require 
internal synchronization between them (Fig. 3). 

 
Fig. 2. Conceptual view on the usage of color33. It is a 

building block of a service-based architecture. 
 

The service is offered through a standardized OGC API 
– Processes endpoint and users only specify the area-of-
interest (AOI) and the time interval as well as optional 
settings, e.g., the coordinate reference system (CRS). The 
API is implemented in a Python-based Django backend and 
uses a PostgreSQL database system with the PostGIS spatial 
extension for persistent storage. 

color33 automatically obtains the accessible links to the 
images that matches the search parameter. Several archive 
connectors allow flexible use of different archives, specified 
through administrative settings during the deployment. 
However, for big data processing, the use of an archive in 
close proximity to the processing deployment is preferred. In 
European environments examples are the Earth Observation 
Data Centre (EODC), CREODIAS, or the Open Telekom 
Cloud (OTC). 

The processing includes pre-processing (PP), the SE and 
an output phase. The PP includes format conversions, 
potentially re-projection, and stacking the bands to a six-band 
composite, which constitutes the spectral signature as input 
to SIAM. SIAM is scaled through OpenMP in a multi-CPU 
setting. The parameter of the number of CPUs is tuned by the 
administrator based on the available CPUs and the number of 
images that are supposed to be processed in parallel. Using 
elastic cloud virtual machines (VMs) this parameter can be 
adjusted during re-sizing. The final steps include the 
generation of cloud-optimized geotiffs (COG) and creating a 
STAC catalogue. 

The entire process is managed using Prefect as a 
workflow orchestration tool. We chose Prefect because it is 
developed in Python like the color33 service (except SIAM) 
and uses annotations as an easy approach to elevate Python 
scripts into managed workflows without extensive 
reprogramming. This is ideal for projects that start small but 
require a managed workflow at a later stage. In color33, 
Prefect manages the described tasks in a job with subflows 
that can be individually controlled. In situations with more 
requests than available resources, the jobs are queued and 
sequentially processed. Priority queues allow bypassing in 
case of important jobs. Like the SIAM task, the number of 
concurrent subflows is a tuning parameter that scales with the 
available resources. Experiences did not reveal problems 
scaling to common cloud flavours ranging from xlarge to 
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8xlarge and did not require anything else than scaling the VM 
and updating the tuning parameters. 

The output is made available to the users as COGs within 
a spatio-temporal asset catalogue (STAC). Each user has their 
own STAC and the images of one job (typically a complete 
AOI and a time interval) are added to a new collection, while 
the job name presented to the user through the GUI or CLI is 
the collection name. Thus, users’ STACs are growing over 
time allowing a very flexible downstream use using standard 
tools, e.g. STAC clients in different programming languages 
or GIS such as ArcGIS or QGIS. The users’ STAC are 
protected through token-based access, which they can obtain 
using their username and password, for a better security in 
programming-based usage. 

For stable operation of the color33 service, Keycloak is 
used for identity management providing standard OAuth 
authentication services. Authorization is accomplished using 
the Django backend. System and performance metrics are 
collected via Grafana. Several test jobs a day ensure 
consistency in the operation and detecting errors rapidly. 

 
Fig 2. Architecture overview of the color33 service. 

4. USE-CASE EXAMPLES 

Application for SE-based analysis are as varied as the 
questions they are meant to address and range from ad-hoc 
analysis to dedicated processing pipelines. They include 
application scenarios such as producing tailored land cover 
classifications, automated asset monitoring, multi-temporal 
change-detection and emergency response activities. As a 
use-case example, analysing the spread of forest fires based 
on color33 outputs allows for both continuous monitoring as 
well as historical analysis and can be easily automated by 
simple computation of SE categories (Fig 3). A major benefit 
is the full automation including cloud-free image selection 
and worldwide transferability without changes. 

Fig 3. Detail view of the change map of the forest fire in 
Teneriffe, Spain, on 15.08.2023 obtained using the 
example workflow and color33's semantic enrichment. 

Monitoring damages of vegetation and crops due to 
droughts is another use-case where fully automated 
categorical time series analysis can be beneficial. Questions 
such as how long, how large can be answered with countable 
observations. The automation and transferability of color33 
is again a major advantage and facilitates production of masks 
and layers that can serve as the basis for such efforts (Fig 4) 
In contrast to approaches based on continuous variables, e.g 
NDVI, the vegetation duration can be analysed providing 
useful complementary information (Fig 5).  

 
Fig 4. Comparison of a Sentinel-2 scene and overlayed 
with a mask produced from vegetation categories. 
 

 
Fig 5: 2021 vegetation mask for Almeria (Spain) 
produced via color33. Note: Values represent the 
number of vegetation observations aggregated over the 
whole year. 

5. DISCUSSION 

Cloud-based approaches are a now common and typical, but 
typically offer locked-in processing chains, e.g. Google Earth 
Engine, or specific applications, e.g. Sen4CAP. 

color33 provides a building block for a multi-service-
based architecture that can consume cloud services, e.g. 
image archives, but also be consumed by cloud services, e.g., 
for downstream applications. This is accomplished by 
standards-based interfaces. color33 is operationally available 
at https://color33.io and operated by the company Spatial 
Services GmbH. As color33 is a new service, only few 
downstream applications were developed so far but it has 
been commercialized in selected use cases with very 
promising results.  
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The decentralized system goes beyond technical 
considerations of a federated service-based architecture: The 
SE provided by color33 is not the final output. Instead, it is a 
building block of a larger environment, avoiding the typical 
end-to-end classification, similar to the FAO LCCS. 
Primitives, i.e. spectral categories, are intermediate products 
for easy reuse to generate final products, e.g., a specific land 
cover map with a tailored legend. The DW is meant to be used 
similarly [4]. A main difference is that the DW lacks a generic 
approach using spectral categories, which is a colour naming 
and not land cover classes. Indicated by the number of classed 
in the DW (nine, without cloud) in comparison to at least 33 
spectral categories (including cloud) of color33, the need for 
a dynamic worldwide classification is evident. 

In current, ongoing discussions of energy consumption, 
lack of explainability, transferability, and reusability of DL 
approaches, more approaches that overcome these limitations 
will be developed. Although color33 does not yet provide 
land cover classes, as they can be generated downstream, it is 
a step to overcome these limitations. The algorithm is 
explainable, does not require training samples or energy-
consuming training, is worldwide applicable, and can be used 
for different EO, e.g. Landsat, Sentinel-2, Sentinel-3, or very-
high-resolution (VHR) [6]. 

The highest impact and usability of color33 is achieved 
with dense, long time series of EO images. A major 
advantage is that a categorical sequence is very informative 
about the Earth’s surface dynamics and leverages the fully 
automated approach, shown by the two use-cases. Other use-
cases for agricultural monitoring [7] or vegetation dynamics 
[8] demonstrated potential.  

color33 was developed with scalability in mind, uses 
OpenMP and Prefect for parallelization at different levels. 
Scaling up and down works seamlessly. The algorithm itself 
has been verified [9], although validation of downstream 
applications needs to be done in case-by-case on user side.  

There are also limitations, e.g., operationalization of 
downstream applications needs to be tackled to leverage full 
potential. Categorical variables, although very small (e.g. 
approx. 30 Mb / Sentinel-2 image) are limited in their re-
usability in different CRS. Reprojection is limited (e.g. 
nearest neighbour) as it may have a strong effect on spatial 
accuracy. Reprojection is required prior to SE and needs to 
be repeated for different CRS. However, only few CRSs are 
usually required, e.g. UTM or a national grid. 

6. CONCLUSION 

color33 is a cloud-based service for SE of optical EO images, 
in the first development for Sentinel-2. In contrast to 
approaches based on DL, SE provided through color33 is on 
a lower semantic granularity supporting reusability and 
transferability. Users can include the results in cloud-based or 
local workflows to refine the semantics towards their target 
classes using spatial and temporal neighbourhoods or series, 
or by additional geodata such as a digital elevation model and 

derivatives such as height, slope, or aspect. This approach is 
similar to the FAO LCCS concept and is different from 
approaches that create target classes from reflectance values. 
Still, if color33 is considered as a building block, it can be 
included in DL-based workflows. 

We showed the usability and potential in use-cases 
focusing on automation, stepwise refining the target legend, 
transferability, and explainability. Since color33 is applicable 
worldwide, any application can be instantiated by users on 
their own. 

Future work will include an extension to additional EO 
satellite images (e.g. Landsat or Sentinel-3) and providing 
additional analysis capabilities. 
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ABSTRACT 

The Earth Observation Processor Framework (EOPF) 
Toolkit is a community-driven set of resources that 
facilitates the adoption of the Zarr data format for 
Copernicus Sentinel data users, specifically targeting users 
who are new to cloud computing. The Sentinels EOPF 
Toolkit is developed by Development Seed, thriveGEO and 
Sparkgeo, with a group of champion users. The main 
resource that has been developed is EOPF 101, a 
user-friendly online book consisting of documentation, 
Jupyter Notebooks and open-source libraries and plug-ins 
that showcase the use of Zarr format Sentinel data for 
applications across multiple domains. In addition, 
community engagement activities such as a notebook 
competition helpsSentinel users to explore the new data 
format while getting community support. 

Index Terms— cloud-native data formats, Zarr, EOPF, 
Sentinels, user engagement, earth observation 

1.​ INTRODUCTION 

Over the last few years, cloud-native tools like STAC for 
data discovery and access and cloud-optimized data formats 
such as Zarr and COGs have emerged and are currently 
revolutionising how scientific communities work with 
large-scale geospatial data. The European Space Agency 
(ESA), through the Earth Observation Processor Framework 
(EOPF), is currently reprocessing Sentinel-1, -2, and 3 data 
into cloud-optimized data formats. Through the EOPF 
Sentinel Zarr Samples Service, Copernicus Sentinel data 
users get early access to “live” sample data from the 
Copernicus Sentinel missions -1, -2 and -3 in the new Zarr 
data format. 
 
The EOPF Toolkit [1,2] engages the Sentinels user 
community to facilitate the adoption of the new Zarr data 
format, starting with the data published by the EOPF 
Sentinel Zarr Samples Service [3]. The Toolkit team acts as 
test users of the Samples Service data. In addition, the 

resources being developed complement existing user 
engagement efforts by specifically targeting users who are 
new to cloud computing. 

2.​ ABOUT EOPF 

The Earth Observation Processor Framework (EOPF) is an 
initiative led by the European Space Agency (ESA) 
designed to modernise and harmonise data from the 
Copernicus Sentinel Missions. With the upcoming 
Copernicus Expansion missions in 2028, the amount of data 
produced daily will significantly increase. EOPF is ESA’s 
solution to organise Sentinel data in a way that works 
seamlessly with modern cloud technology. This will make it 
easier to find, access, and process the information needed. 
The new approach provides user-friendly access, simplifies 
maintenance, and helps keep costs down, guaranteeing 
reliable access to Sentinel data in the long run. 
 
Under the EOPF Sentinel Zarr Sample service, ESA 
provides access to re-engineered EOPF Zarr products. The 
Sentinel-1, Sentinel-2, and Sentinel-3 missions are the first 
to be re-processed and have been made available under the 
EOPF Sentinel Zarr Samples STAC catalog [6]. 

3.​ ABOUT ZARR 

Zarr is an open-source, cloud-native protocol for storing 
multi-dimensional arrays. It is specifically designed to work 
well with cloud storage and larger-scale computing systems 
and can be seen as a cloud-native alternative to older 
formats like HDF5 or NetCDF. A key advantage to 
traditional formats is that the Zarr specification stores large 
multi-dimensional arrays in chunks, which are smaller 
pieces of the larger array. Chunks can be accessed 
individually, or multiple chunks can be read and written in 
parallel, making data access highly efficient. 
 
Zarr works across different storage systems, including local 
file systems, cloud object storage, as well as distributed file 
systems, offering a greater flexibility compared to traditional 
file formats. 
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In addition, Zarr embeds metadata directly alongside the 
data. This makes Zarr self-descriptive, as each data array 
contains descriptive information about itself, such as data 
type, dimensions or additional attributes. 

4.​ EOPF RESOURCES 

The EOPF Toolkit contains several useful resources to help 
Sentinel data users get started with using the Zarr data 
format. These resources include: an online book, open 
source integrations and plug-ins, case studies that showcase 
the use of Zarr format Sentinel data for applications across 
multiple domains and a notebook competition. All materials 
are open source and freely accessible online on Github [4]. 

The resources that have been developed under the 
EOPF toolkit are addressing common questions that users 
are asking around data access and use resulting in a 
comprehensive resource about accessing and processing 
Sentinel Zarr data. The toolkit highlights example 
workflows by champion users and gives the user community 
the chance to try it out themselves via a notebook 
competition. 

4.1.​ EOPF 101 

The EOPF 101 online book [5]  is a community resource 
where data users learn how to discover, access and process 
data from the EOPF Sentinel Zarr Samples Service by ESA.  
 
The book is divided into five chapters: (i) Introduction to 
EOPF, (ii) Introduction to Zarr, (iii) Introduction to EOPF 
STAC, (iv) Tools to work with Zarr and (v) EOPF in Action. 
 
Chapter 1 - ‘Introduction to EOPF’ provides a high-level 
easy-to-understand overview of the EOPF project by ESA. 
Chapter 2 - ‘Introduction to Zarr’ provides a practical 
introduction to the cloud-optimized Zarr data format. It 
shows the advantages of the format, gives an overview of 
the data structure and includes performance comparisons 
with other formats, too. Chapter 3 - ‘Introduction to EOPF 
STAC’ gives easy-to-understand practical examples on how 
to discover and access data with the EOPF STAC catalog. 
Chapter 4 - ‘Tools to work with Zarr’provides a collection 
of practical examples of libraries and plug-ins that support 
users in working with data from the EOPF Samples Service. 
Chapter 5 - ‘EOPF in Action’ is a collection of hands-on 
practical end-to-end workflows featuring the use of Sentinel 
Zarr data in different application areas. Part of these case 
studies are co-developed with a set of early adopters, also 
referred to as champion users. 

4.2.​ Open source integrations and plugins 

As part of toolkit a series of open-source integrations and 
plugins for using the EOPF Sentinel Zarr Samples Service 
(Table 1). These libraries and plugins will make it easier for 
users to use the Samples Service data together with their 

favourite programming languages and software. Table 1 
provides an overview of integrations and libraries the EOPF 
toolkit team is currently working on. 

Table 1. Name and description of plugins and 
integrations 

Plugin / Library Description 
STAC + Zarr EOPF Zarr Access from STAC 
GDAL Zarr Driver Enhanced GDAL driver for 

EOPF Zarr 
QGIS Plugin Native QGIS integration for 

EOPF Zarr 
R Integration R libraries for EOPF Zarr access 
Julia Integration Julia packages for EOPF Zarr 
TiTiler Multidim Multidimensional data support 

for TiTiler 
Stackstac Optimizations Enhanced Stackstac for EOPF 
 

4.3.​ Case studies 

A set of applied case studies along with Jupyter Notebooks 
will be developed by a set of champion users. These 
champion users bring specific domain expertise and will 
provide example workflows for a variety of applications. 
Each Champion User will also share their experience 
working with Zarr as well as the advantages and 
disadvantages they see using the new data format for 
relevant workflows. The Jupyter Notebooks will serve as 
easily modifiable templates for Sentinel data users to 
develop their own workflows. 

The case studies can be categorised as thematic and 
technical case studies. Technical case studies demonstrate 
workflows such as Zarr with QGIS, Zarr with R, multi-scale 
Zarr and dataset screening with rio-tiler and lonboard. On 
the other hand, thematic case studies demonstrate workflows 
from different application areas such as wildfire assessment 
with Sentinel-3 and Sentinel-2 data or monitoring coastal 
dynamics in cloud-prone regions using Sentinel-1, or 
flooding analysis in Valencia with Sentinel-1.  

4.4.​ Notebook competition 

To engage with Sentinel data users interested in working 
with data from the EOPF Samples Service, a notebook 
competition will take place between October 2025 and 
January 2026. During this competition, the Sentinel data 
user community is invited to try out the new Zarr data 
format for themselves by creating workflows in Jupyter 
Notebooks. A set of judges will decide at the end on the top 
ten notebooks based on published evaluation criteria. The 
top ten notebooks will be published on Github and the 
winning notebook authors will be announced in an online 
webinar. 
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5.​ CONCLUSION 

The resources from the EOPF Toolkit help Sentinel data 
users who are new to cloud computing become familiar with 
working with the Zarr data format in general and 
reprocessed Sentinel Zarr data from the EOPF Zarr Samples 
Service in particular. The additional development of 
open-source integrations and plugins enable users to explore 
the reprocessed sample data in their preferred programming 
languages and tools.  
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ABSTRACT 

A new data format will be introduced for all Copernicus 
Sentinel mission data. This marks a significant change in the 
distribution and access of Sentinel data for users and data 
providers. The EOPF Sentinel Zarr Samples service 
provides early access to the new Zarr data format with the 
objective to ensure user adoption. Jupyter notebooks and 
open-source libraries are developed to support users on their 
journey with the new format. Benchmarks of the EOPF Zarr 
data format in comparison to the legacy SAFE format are 
presented. Various benchmarking scenarios are defined to 
give an objective comparison and to highlight potential 
challenges and opportunities inherent to this data format 
change for users and data providers. 
 

Index Terms— Sentinel, Zarr, Cloud-native, Data 
formats 

1. INTRODUCTION 

Over the past decade, the operational data processors for 
Copernicus Sentinel missions have produced vast amounts 
of Earth observation data, supporting a wide range of 
scientific research and commercial applications. However, 
the current data format used by ESA, known as SAFE 
(Standard Archive Format for Europe), has become 
increasingly outdated. In response, ESA initiated the 
transition to a modern, cloud-native format based on Zarr. 
This fundamental change is supported by the EOPF Sentinel 
Zarr Samples service, offering early access to the new data 
format and relevant documentation to guide users through 
this transition. 

This evolution is key to enabling a cloud-friendly, 
interoperable data ecosystem that enhances accessibility and 
integration with today’s data processing platforms. The 
overarching goal is to harmonize data formats across all 
Copernicus Sentinel missions, facilitate scalable cloud-
based processing, and ensure seamless compatibility with 
modern data science tools. The initiative is designed to 
minimize disruption while maintaining continuity for 
existing users, applications, and services. 

 

2. SERVICE COMPONENTS 

The EOPF Sample Service consists of several core 
components. The EOPF Core Platform transforms incoming 
SAFE-format data into the new cloud-optimized EOPF Zarr 
format and offers access through STAC and S3 APIs. The 
EOPF Analytical Hub provides additional services for users, 
including JupyterHub, Dask, and a STAC Browser. This 
toolset was selected with the objective to lower the barrier to 
cloud-based applications and to enhance data discovery 
capabilities. Furthermore, a strong focus of the service is on 
user support and engagement. High quality Jupyter 
notebooks are provided complementing and demonstrating 
the use of open-source software libraries exploiting the new 
data format. User engagement is carried out through regular 
user interactions via webinars, newsletters and moderation 
of a community support forum. 
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Fig. 1: EOPF Sentinel Zarr Samples Service components 

2.1. EOPF Core Platform 

The EOPF Core Platform is deployed on a robust and 
scalable infrastructure hosted and operated by EODC. The 
re-formatting system is part of the EOPF Core Platform, 
responsible for converting existing data from the Copernicus 
Data Space Ecosystem (CDSE) in the current SAFE format 
into the new Zarr-based EOPF format. At the core of this 
system is the workflow engine, powered by Argo 
Workflows and related projects (Argo CD, Argo Events). 
Argo Workflows is an open-source container-native 
workflow engine for orchestrating parallel jobs on 
Kubernetes. The Object Storage Service is realized via 
CEPH, an open-source storage platform, exposing a S3 
compatible interface (S3 API). The STAC API, based on 
eoAPI, enables interactive exploration of the EOPF Zarr 
data offering. The STAC and S3 API is behind an API 
Gateway to enforce security policies as required. 

2.2. EOPF Analytical Hub 

The EOPF Analytical Hub is a central component of the 
service offering with the objective to facilitate user adoption 
activities by providing a robust framework for data analysis 
and computation. It includes the services JupyterHub, Dask 
(Dask Gateway) and STAC Browser, all orchestrated on 
Kubernetes to guarantee scalability. The EOPF Analytical 
Hub is a fully managed service providing pre-configured 
cloud environments to interact with the new EOPF Zarr 
data. 
 

 
Fig. 2. STAC Browser 

2.3. User Support and Engagement 

A suite of Jupyter Notebooks has been developed by 
consortium experts, including members of the Pangeo 
community to support user adoption. These notebooks 
demonstrate the practical use of the new format and are 
regularly refined based on user feedback. Notebooks are 
complemented by a set of open-source libraries and plug-ins 
such as the xarray-eopf backend1. Development 
contributions to standard libraries, such as GDAL, are 
carried out to further enhance the user adoption in other 
communities. Community engagement will be done via 
various channels. The centerpiece of the activity is the 
website, holding and linking all relevant resources for users. 
Users can subscribe to the EOPF Zarr Newsletter to get all 
the latest information. In total, 9 webinars are planned about 
the EOPF Zarr format and to showcase dedicated use cases 
demonstrations. Furthermore, a community support forum is 
actively maintained and managed for direct interaction with 
users and to collect feedback. 

3. QUALITY ASSURANCE 

Quality assurance procedures are implemented to ensure the 
service operates according to functional and non-functional 
requirements. GitHub and GitHub Actions are utilized to 
implement these quality assurance procedures as depicted in 
Fig. 3. Test cases are executed regularly via GitHub Actions 
against the various user facing components of the EOPF 
Sentinel Zarr Samples service. 
 

 
1 https://github.com/EOPF-Sample-Service/xarray-eopf 
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Fig. 3. Quality assurance approach 

One important aspect of the quality assurance is to 
guarantee the EOPF Zarr standard and its specifications. 
The conformance of the products is verified in respect to its 
metadata properties, the structure of the Zarr product and the 
STAC related entities. The underlying testing framework 
used will be presented in the final paper. Moreover, 
benchmarking tests of the EOPF Zarr products are 
conducted. 

4. PRODUCT BENCHMARKS 

The EOPF Zarr product benchmarks will focus on data 
access performance in comparison to the legacy format 
SAFE and potentially other data formats. Objective 
benchmark tests will be developed considering the 
fundamental differences in data format and access between 
the formats. Furthermore, the performance of the EOPF Zarr 
data format on different cloud object storage solutions will 
be presented. A set of scenarios will be developed for all 
benchmarks, considering the various options provided by 
Zarr to organize data. These options will represent typical 
access patterns and use case scenarios resulting in different 
data chunking and compression approaches of the data. The 
performed benchmarks will analyze the resulting storage 
requirements and access speeds compared to the SAFE 
format and others. 

5. CONCLUSION 

Introducing a new data format for all Copernicus Sentinel 
data products represents a significant change in how data get 
consumed. The present paper outlines the challenges and 
opportunities inherent to this data format change for data 
providers and users. 
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ABSTRACT 

Remote sensing applications focused on hyperspectral 
imaging have proven to be able to produce detailed and 
comprehensive results in Earth Observation applications 
compared to multispectral data. All recent implementations 
of hyperspectral data, particularly those integrating machine 
learning tools, suffer from relatively small datasets. 
PRISMA mission, launched in 2019 by Italian Space 
Agency (ASI), in specific, provides significant data through 
its high spectral resolution, but it faces low revisit time. In 
light of this, the production of synthetic hyperspectral 
PRISMA images starting from multispectral data, becomes 
all the more important. This work has explored different 
Neural Network (NN) models, such as  Multi Layer 
Perceptron (MLP) and Generative Adversarial Networks 
(GANs)  to generate synthetic PRISMA data and further 
proposes a number of new technologies or combinations 
thereof,  in the endeavor to optimally generate synthetic 
hyperspectral data from multispectral ones, acceptable for 
the purposes of training learning models. 

Index Terms— PRISMA, synthetic data,  hyperspectral 
data generation, neural network, MLP, GAN 

1.​ INTRODUCTION 

Demand for high volumes of hyperspectral data is 
continuously growing due to their usefulness in a variety of 
fields ranging from fields like agricultural studies, 
climatology, environmental science, land classification, 
mineral recognition and mapping, lithologic mapping, 
mineral resource prospecting, mining environment 
monitoring, and leakage monitoring of oil and gas [1, 2]. 
Remote sensing technologies have seen remarkable 
advancements over the past few decades, offering 
unprecedented capabilities in environmental monitoring, 
resource management, and scientific research [3]. Among 
these technologies, hyperspectral imaging has emerged as a 
powerful tool for capturing detailed spectral information by 
having very narrow bands available across the entire VNIR 
range of wavelengths, providing insights that go far beyond 
the capabilities of traditional multispectral imaging. 

However, despite the promise of hyperspectral imaging, 
several challenges remain, particularly when it comes to the 
collection of the acquisition and the utilization of robust data 
for these applications.  

A key challenge in remote sensing, especially with 
hyperspectral imagery, lies in the availability of large, 
high-quality datasets. The application of machine learning 
methods often requires vast amounts of annotated data to 
build effective predictive models. Unfortunately, 
hyperspectral datasets, especially those derived from 
specific platforms such as the PRISMA (PRecursore 
IperSpettrale della Missione Applicativa) satellite by Italian 
Space Agency (ASI), are typically limited in both size and 
accessibility. While the PRISMA satellite provides 
hyperspectral data with high spectral resolution, its data 
acquisition is both costly and challenging. This makes it 
difficult to rely solely on real-world data for training 
machine learning algorithms, which depend on large 
volumes of labeled examples. 

In light of these limitations, the generation of synthetic 
hyperspectral images has become a crucial area of research 
[4, 5]. Synthetic data can offer a solution to the scarcity of 
real-world data by providing an accessible and controlled 
environment in which to generate large, diverse datasets. 
Specifically, the focus of this work is on developing 
synthetic PRISMA-like images that can be used for training 
machine learning models. While the concept of synthetic 
data generation has been explored in other areas of remote 
sensing, the production of high-quality synthetic PRISMA 
images remains a relatively unexplored domain. Currently, 
there are little to no existing metrics or benchmarks for 
entirely synthetic PRISMA data due to such generation not 
having been previously attempted in full.  

This paper investigates various technologies and 
approaches for generating synthetic hyperspectral images 
that closely mimic the characteristics of PRISMA data, 
produced from multispectral Landsat 8/9 data. These two 
missions share the same ground spatial resolution with pixel 
size of 30 m, which is convenient to avoid and limit 
discrepancies in the production of synthetic data. The 
acquisitions of the two satellite sensors were chosen in the 
same area and on the same day, ensuring matching pairs.  
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The primary objective is to explore the usage of Feed 
Forward Networks (FFNs) to generate synthetic imagery 
with particular focus on Multi Layer Perceptrons (MLPs) 
and Generative Adversarial Networks (GANs) that can 
produce synthetic data that is not only computationally 
efficient to generate but also sufficiently representative of 
the original data.[11] The remainder of this paper is 
structured as follows: Chapter 2 provides a review of the 
different methods that can be used to synthetically generate 
image data, focused in particular on deep-learning based 
approaches to synthetic generation. Chapter 3 discusses the 
experimental results as a proof of concept of PRISMA-data 
generation. Chapter 4 presents a few proposals regarding 
other techniques that are explored and compared with what 
has already been done. 

2.​ MATERIALS AND METHODS 

PRISMA data were chosen, specifically examining the 
VNIR range [1]. Attempts at synthesizing hyperspectral data 
have already been made for various applications: of 
particular note is pansharpening [6]. However, wholesale 
generation of hyperspectral PRISMA data out of a 
multispectral source is still a largely unexplored direction.  

Several approaches can be taken to the generation of 
hyperspectral data, for example methods that employ band 
interpolation between the multispectral and hyperspectral 
bands [6, 7]. However these standard approaches fail when 
met with more complex band relationships that do not 
directly correlate. This necessitates the usage of more 
powerful modes of simulation: in particular, deep learning 
techniques [8].  

The first technique used in this study is that of a deep 
feed-forward network (FNN), specifically a Multi Layer 
Perceptron (MLP), which is used for simulating the 
relationships between multispectral and hyperspectral bands. 
In this study we also discuss two potential alternatives to 
feed-forward networks.  

The second technique used in this study is a Generative 
Adversarial Network (GAN) which supports the necessary 
structures for learning complex relations between input and 
output features [8, 9]. GANs have a history of being used in 
the field of remote sensing for similar applications [10-12].  

However, few attempts have been made to generate 
PRISMA data specifically and the production of synthetic 
PRISMA images remains a mostly unexplored field, with 
room for further experimentation [8]. 

This study relies on two primary data sources: 
hyperspectral PRISMA and multispectral Landsat 8/9 
imagery. The PRISMA data consists of 63 bands spectrum 
in the VNIR with reflectance values expressed in the form of 
digital numbers (DN) scaled to a [0,1] range. The Landsat 
8/9 data brings a total of 5 bands in the VNIR range of the 
spectrum.  

Part of preliminary preprocessing operations includes the 
corregistration of the acquisitions from the two sensors, to 

ensure precision in the estimation of the synthetic spectra. 
Extraction of reflectance values for each channel present in 
the VNIR range is then conducted for both satellite datasets. 
A deep learning approach was employed to predict the 
synthetic hyperspectral PRISMA data based on multispectral 
Landsat 8/9 input. The model architecture is a FFN with 
parameters optimized over multiple trials. It consists of a 
traditional multi-layer fully connected neural network, 
implemented using the Keras deep learning framework with 
TensorFlow backend. An optimization library (Optuna) is 
used and repeated trials are performed to check for the 
optimization of layer count, neuron count, epoch and batch 
size and especially activation function choices, selected 
from a pool of the following: ReLU, Sigmoid, ELU, SeLu, 
Softplus, Tanh, Leaky ReLU, SiLU, ReLU6, GELU and 
lastly, Linear.  

2.1.​ Training Procedure 

The training procedure involved making use of a dataset of 4 
pairs of images, of 3548 data points, augmented with an 
additional 1787 simulated points and then splitting the 
dataset into training and validation subsets. The training 
subset contained 70% of the available Landsat 8/9 and 
PRISMA image pairs, while the validation subset contained 
the remaining 30%. Data augmentation techniques such as 
random rotation, scaling, and flipping were applied to the 
training set to improve model generalization.  
The architecture for the MLP consists of two layers of 52 
and 22 neurons respectively, as well as GELU and ReLU6 
activation functions, followed by a dropout layer (float = 
0.1163) and a Linear activation function. 
  The training architecture for the GAN consists of a 
generator with three processing branches. The first branch is 
a dense 64-neuron layer, followed by batch normalization, 
while the second branch is a skip connection branch based 
on the concept initially presented in ResNet architecture 
[13]. This is followed by a secondary dense layer of 32 
neurons. Lastly, the Noise Processing branch which 
processes noise input through a minimal 16-neuron dense 
layer with ReLU activation and batch normalization. These 
three branches are concatenated to form a coherent pipeline 
that feeds into a progressive expansion architecture with 
three layers. Based on 30 total experiments (each containing 
200 trials) with parameter variation  and the optimal values 
for the network parameters were derived. .  
Figure 1 and Figure 2 show the behaviours of the Model 
Loss for MLP and GAN models during the training phase 
according to the number of epochs.  
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Fig. 1. Plot of  model loss for the MLP model during 
training phases

 

Fig. 2. Plot of  model loss for the GAN model during 
training phases 

 

3.​ RESULTS 

Following the above training procedure, from both models 
63 synthetic hyperspectral bands were simulated starting 
from 5 multispectral Landsat 8/9 acquisition.  

Model performances were assessed by evaluating the 
synthetic PRISMA reflectances obtained against the original 
ones from the validation set. Metrics were compared across 
the whole spectra. These include Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), Pearson Coefficient 
and Coefficient of Determination (R²) and were used to 
quantify the accuracy of the model’s predictions.  

Table 1. Results of quality metrics of the MLP NN 
training from the original and synthetic PRISMA 

images.  

Set R2 RMSE MAE Pearson 

Train  0.479 0.016 0.01 0.692 

Test 0.447 0.017 0.011 0.668 

Validatio
n 0.441 0.017 0.011 0.664 

 

Table 2. Results of quality metrics of the GAN NN 
training from the original and synthetic PRISMA 

images.  

Set. R2 RMSE MAE Pearson 

Train 0.843 0.097 0.069 0.91 

Test 0.844 0.097 0.068 0.918 

Validatio
n 0.842 0.098 0.069 0.918 

 
While the RMSE and MAE for the GAN approach is worse 
than the MLP network, keeping in mind that the generator 
has to compete against a robust discriminator architecture, 
the R2 score is significantly better, indicating a much 
stronger correlation. Synthetic MLP samples and synthetic 
GAN samples in RGB representation are provided in Figure 
2 and Figure 3. 
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Fig.3. Visual comparison in RGB composite of the 
original multispectral Landsat 8/9, original 

hyperspectral PRISMA and synthetic PRISMA 
generated with the GAN model.  

 

Fig.4. Visual comparison in RGB composite of the 
original multispectral Landsat 8/9, original 

hyperspectral PRISMA and synthetic PRISMA 
generated with the MLP  model.  

4.​ CONCLUSIONS AND FUTURE RESEARCH 

The results obtained from the two NN models are promising 
for the application of simulating hyperspectral bands starting 
from multispectral ones. The MLP approach certainly yields 
promising results, but the GAN approach has proven to be 
significantly better at synthesizing images. The GAN 
network presented in this study currently simulates images 
at a higher similarity than the known benchmarks, reaching 
values of R2 of 0.84 [8].  
Future alternatives for research include exploration of 
alternative network architectures within the MLP or GAN 
umbrella. The implementation of CNNs, Variational 
Autoencoders (VAEs) and diffusion techniques could also 
prove promising outcomes. ​
This study was carried out in the framework of 
AIOBSERVER project (https://ai-observer.eu/) titled 
”Enhancing Earth Observation capabilities of the 
Eratosthenes Centre of Excellence on Disaster Risk 
Reduction through Artificial Intelligence”, that has received 
funding from the European Union’s Horizon Europe 
Framework Programme HORIZON- WIDERA- 2021- 
ACCESS-03 (Twinning) under the Grant Agreement No. 
101079468. 
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ABSTRACT 

Multi-temporal geospatial data measuring the evolution of 
transportation networks is scarce, impeding our quantitative 
knowledge on the dynamics of highway and other 
transportation networks at global scale. To tackle this issue, 
we developed a framework that integrates contemporary road 
network data with road presence probabilities extracted from 
historical, multispectral Landsat data (1990-2024), enabling 
the measurement of highway network growth from 1990 
onwards. The framework also supports earlier Landsat data, 
other geohistorical data such as historical maps or pre-
Landsat aerial imagery. First experiments conducted for a 
study area in the United States yield promising results, 
achieving Area-under-the-Curve values of up to 0.88. 

Index Terms— Road network, symbolic machine 
learning, historical transportation networks, accessibility. 

1. INTRODUCTION 

Transportation networks are the backbone of economic 
activity, enabling the shipping of goods, work-related 
commuting, and transportation in general. The evolution of 
such networks reflects patterns of economic development, 
technological changes, or effects of transportation-related 
policies, and is linked to issues of accessibility, often 
reflecting social and economic inequalities [1]. 
While data on present-date transportation networks such as 
roads and railroads are abundant, due to volunteered 
geographic information (e.g., OpenStreetMap - OSM), 
industry-fueled data harmonization efforts (e.g., Overture, 
TomTom Traffic Stats, Microsoft MLRoads), or cartographic 
products of national mapping agencies, digital geospatial data 
on past states of transportation networks are scarce, and 
typically involve considerable manual labor (e.g., [2]). The 
evolution of local roads within settlements (i.e., cities, towns, 
and villages) can often be inferred from construction year 
information of buildings and properties, or neighborhood-

level development information [3]. In contrast, the evolution 
of roads connecting settlements (e.g., highways, federal and 
regional roads) cannot be easily inferred by measurable proxy 
variables. 
Hence, researchers have manually digitized such road 
network geometries from road atlases and similar resources 
[2], or developed automated methods to extract road network 
data from historical maps [4]. However, these efforts are 
typically regionally constraint. Thus, to our knowledge, no 
harmonized, multitemporal dataset on highway networks at 
global scale is available. 
Herein, we describe a framework that aims to account for this 
shortcoming. Specifically, we integrate present-day highway 
network vector data from OpenStreetMap with multispectral 
Earth observation data from the Landsat archive (1990-2024).  
We first convert the historical Landsat data into probabilistic 
estimates of road presence. Then, we measure differences in 
road presence probability over time, and attribute these 
change signals to vector representations of the highway 
network. This way, contemporary highway network data can 
be enriched with an age estimate. The proposed framework is 
modular and extendible to other data sources, e.g., using 
different supervised or unsupervised statistical methods, 
incorporate other remote sensing data, or scanned and 
georeferenced historical maps. 
The resulting, enriched road network data will enable the 
measurement of highway network growth, and aim to provide 
a data source for modelling accessibility and the interactions 
of connectivity and economic indicators over extended time 
periods. This includes the multi-temporal modelling of travel-
time based commuting zones to better represent the dynamics 
of functional urban and rural areas [5,6], supported by the 
Global Human Settlement Layer (GHSL) project [7]. 
We test our method using manually digitized, as well as 
authoritative historical highway network data for Interstate 
highways covering the conterminous United States. While the 
experiment presented herein focuses on a relatively small 
area and uses Landsat data, the method is scalable to global 
level, and can be used with heterogeneous input data. 
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2. DATA 

The choice of study area is mainly driven by the availability 
of reference data and the occurrence of change in the highway 
network. Herein, we focus on an area of approximately 720 
km × 380 km covering the region around the Atlanta 
metropolitan area (United States), see Figure 1. 
We use contemporary highway network data from OSM, 
reflecting the state in 2024. We filtered the OSM database to 
get only major roads such as interstates, national and state 
highways1 using the Overpass API. Moreover, we acquired 
cloud-free, top-of-atmosphere reflectance from multispectral 
data from the Landsat 8 sensor (OLI) for 2024 
(“contemporary” data), and from Landsat 4 and 5 (MSS, TM) 
for the year 1992 (“historical” data), using the USGS Landsat 
Collection 2, Level 1 data available via Amazon Web 
Services (s3://usgs-landsat/collection02/level-1). 
We use two sources of reference data: (a) manually digitized 
highway network data [8]: These data have been curated from 
contemporary road network data overlaid with historical road 
atlases. Road segments not existing in a given year were 
manually deleted from the set of contemporary roads to 
produce historical depictions of the interstate, US highway, 
and state highway networks. (b) We use authoritative, 
multitemporal highway network data from the TIGER/Line 
dataset, for the earliest available epoch 1992 and for 2020 [9] 
(Figure 1). 

  
Fig. 1. Example of multi-temporal road network 
reference data, including changes in the highway 
network, shown for a subset of the Greater Atlanta study 
area (USA) near Winder, Georgia: Authoritative 
TIGER/Line roads in (a) 1992 and (b) 2020. The full study 
area (white box in inset map) covers 720 km × 380 km. 

3. METHODS 

3.1. Definition of the “highway” domain 

The proposed framework assumes that the highway network 
grows, and does not shrink over time. Thus, we constrain our 

 
1 We used the following query: tag = 'highway' and values IN ('motorway', 'motorway_link', 'primary', 'primary_link', 'secondary', 
'secondary_link', 'trunk', 'trunk_link') 
 

analysis to the contemporary highway network as obtained 
from OSM, buffered by a given distance (e.g., 200m) to 
account for positional uncertainty in the data involved in the 
analysis and potential resulting offsets. This domain contains 
samples of stationarity (i.e., road presence in contemporary 
and historical data) as well as samples of change (i.e., road 
presence in contemporary, but not in historical data).   This 
makes the framework computationally efficient, as only 
Landsat data within this highway domain need to be 
considered. 

3.2. Symbolic machine learning (SML) 

For the areas within the defined “highway domain”, we first 
create training labels, by rasterizing the contemporary OSM 
highway vector data in a spatial grid. This grid can be user-
defined, or can be dictated by the Landsat scenes to be 
analyzed. Grid cells intersecting with the OSM highway lines 
(buffered by a distance reflecting approximate road width) 
are considered “positive” labels, i.e., containing relevant road 
signals. Grid cells within the highway domain, but not 
intersecting the buffered OSM highway lines, are considered 
“negative” labels, containing signals of non-highway objects 
(e.g., vegetation, buildings, other). Next, “contemporary” 
Landsat data (i.e., temporally close to the date of the OSM 
highway data) are used to learn the relationship between 
highway presence / absence and multispectral Landsat data. 
In our first tests, we use R,G,B, and Near Infrared bands only, 
but the flexible framework allows for derivation of further 
features (e.g., band ratios, directional or morphological 
features, or more complex representations). 
For the experiment described herein, we use the Symbolic 
Machine Learning method (SML; [10]), a weakly supervised, 
frequentist classification method. SML has been proven 
successful for global extraction of information related to 
human settlements from multi-temporal stacks of 
multispectral remote sensing data, in the context of the GHSL 
project [7]. The SML method yields class-specific probability 
surfaces, and these probabilities are denoted as ΦPOS for road 
presence, and ΦNEG for road absence. As the SML method has 
been proven to be highly invariant to label noise, the method 
can also be applied to historical Landsat scenes, despite 
potential discrepancies between contemporary labels and 
historical multispectral information due to occurred changes. 
Thus, for a given pair of contemporary and historical Landsat 
scenes, the SML method yields probability surfaces of road 
presence and absence in the contemporary and historical 
epochs, denoted as ΦPOS_CONTEMP, ΦNEG_CONTEMP, ΦPOS_HIST, 
and ΦNEG_HIST.  
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3.3. Vector-raster data integration 

In order to link the raster-based road presence and absence 
probability surfaces with the highway network vector data, 
we developed an efficient vector-raster integration approach 
(Figure 2). This method is based on the contemporary OSM 
highway network data, which is typically very detailed, 
including individual lanes, ramps, frontage roads, etc. (Figure 
2a). We first buffer these polylines, using a defined buffer 
distance, and create the union of all buffered surfaces (Figure 
2b). We then create the center line of the resulting polygons 
using a skeletonization method, representing a generalized 
depiction of the highway network (Figure 3c). The skeleton 
line is then segmented into chunks of equal length (as defined 
by the user; Figure 3d), and these segments are then buffered 
by a given distance (Figure 3e). The resulting squares are 
called buffered road segments (BRS) and represent the 

analytical unit for any subsequent analyses. We then calculate 
zonal statistics such as mean and median road presence 
probability for each BRS based on the Landsat-derived 
probability surfaces for contemporary and historical epochs 
(Figure 2f,g). For evaluation purposes, the reference labels 
are also attached to the BRS based on intersection with 
reference road network data (Figure 2h). 

3.4. Calculation of change indicators and evaluation 

We calculate and test highway network change indicators, 
including the absolute difference of probabilities ΔΦ between 
historical and contemporary epoch (ΦH and ΦC, respectively), 
and the normalized difference index 
NDI  = (ΦC – ΦH) / (ΦC + ΦH) [11]. Moreover, differences 
can be calculated pixel-wise before calculating zonal 

 
Fig. 2. Illustrating the vector-raster data integration concept for highway network change detection. (a) 
Contemporary OSM highway data, (b) union of buffer areas (distance to (a) = 100m), (c) skeleton line (yellow) of the 
union of buffered lines, (d) segmented skeleton line (i.e., separated into equal-length chunks of 100m, (e) buffered 
road segments (BRS) based on the skeleton line segments (buffer distance 150m), overlaid with (a); (f) BRS overlaid 
with a road absence probability raster surface derived from Landsat data in proximity of the contemporary major 
road network. Panel (g) shows the historical road change probability after conducting zonal statistics (i.e., zonal 
mean) for each BRS. The BRS constitute an abstract representation of the contemporary highway network. Panel 
(h) shows the reference label for each BRS obtained from spatial overlay of the BRS with the reference data. 
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statistics, or after, by subtracting the BRS-level zonal 
aggregates. In the pilot experiment presented herein, we use 
Receiver Operating Characteristic (ROC) analysis (i.e., the 
area-under-the-curve - AUC metric) to test the 
responsiveness of these change indicators to the changes 
observed in the reference data. The data processing pipeline 
and experiments are implemented in Python, using scikit-
learn, numpy, rasterio, geopandas, rasterstats, pygeoops, and 
shapely python packages. 

4. RESULTS 

Based on the (continuous) change indicators and the binary 
change / no change reference labels at the BRS level (e.g., 
Figure 2g,h) we observe considerably high AUC values, for 
all tested change indicators, indicating that Landsat data in 
combination with the SML-based probability surfaces and 
derived change metrics are responsive to the change reported 
in the reference data (Table 1). Notably, there are differences 
between the two reference datasets used. For the manually 
digitized reference data AUC values are all >0.85, while for 
the TIGER/Line comparison, AUC values range between 
0.65 and 0.77. This is possibly due to discrepancies in the 
definition of highways between TIGER/Line and OSM data, 
or potentially due to effects of road reclassification not 
captured by the Landsat signals. Moreover, higher levels of 
positional uncertainty in the 1992 TIGER/Line data could 
contribute to the observed lower levels of AUC values.  

5. CONCLUSIONS AND OUTLOOK 

Herein, we described a framework to detect changes in 
highway networks over extended time periods (1990 to 
2024). First results show promising performance. 
Importantly, these results are specific to the analysed study 
area, and may not be generalizable to other regions where 
land cover and spectral signatures of roads are different. 
Thus, in future work, we will test the method at national and 
global scale. The geographic non-stationarity of road 
presence/absence signatures in multi-temporal, multispectral 
imagery will likely require geographically adaptive models. 
We will also test more complex, Landsat-derived spectral and 
morphological features. We are currently experimenting with 

cloud-based remote sensing data and processing 
infrastructure to scale the method up. The use of spatio-
temporal asset catalogues (STAC) will facilitate the use of 
annual composites, to reduce the effects of cloud cover, and 
cloud-based processing will increase the efficiency of the 
method. We will incorporate refined change indicators, as 
well as earlier Landsat data (1975-1990) and historical maps 
or historical aerial imagery to further extend the temporal 
coverage of highway network changes measured within this 
framework. 
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  Table 1. ROC analysis results (i.e., area-under-the-curve; AUC) of highway network change indicators using manually   
  digitized reference data (1990) and TIGER/Line road network data from 1992. 

Zonal statistics of 
cell-level 

differences 

AUC 
Digitized 
ref. data 

1990 

AUC 
TIGER/

Line 
1992 

Differences of 
zonal statistics 

AUC 
Digitized 
ref. data 

1990 

AUC 
TIGER/

Line 
1992 

Normalized 
differences of zonal 

statistics 

AUC 
Digitized 
ref. data 

1990 

AUC 
TIGER/

Line 
1992 

Mean(ΔΦPOS) 0.872 0.662 Δ(Mean(ΦPOS)) 0.872 0.662 NDI(Mean(ΦPOS)) 0.852 0.651 

Median(ΔΦPOS) 0.875 0.672 Δ(Median(ΦPOS)) 0.873 0.673 NDI(Median(ΦPOS)) 0.856 0.684 

Mean(ΔΦNEG) 0.880 0.770 Δ(Mean(ΦNEG)) 0.880 0.770 NDI(Mean(ΦNEG)) 0.874 0.770 

Median(ΔΦNEG) 0.876 0.764 Δ(Median(ΦNEG)) 0.879 0.761 NDI(Median(ΦNEG)) 0.871 0.762 
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ABSTRACT

Synthetic Aperture Radar (SAR) data enables large-scale
surveillance of maritime vessels. However, near-real-time
monitoring is currently constrained by the need to down-
link all raw data, perform image focusing, and subsequently
analyze it on the ground. On-board processing to generate
higher-level products could reduce the data volume that needs
to be downlinked, alleviating bandwidth constraints and min-
imizing latency. However, traditional image focusing and
processing algorithms face challenges due to the satellite’s
limited memory, processing power, and computational re-
sources. This work proposes and evaluates neural networks
designed for real-time inference on unfocused SAR data ac-
quired in Stripmap and Interferometric Wide (IW) modes
captured with Sentinel-1. Our results demonstrate the fea-
sibility of using one of our models for on-board processing
and deployment on an FPGA. Additionally, by investigating
a binary classification task between ships and windmills, we
demonstrate that target classification is possible.

Index Terms— Deep Learning, raw echo data, ship de-
tection, synthetic aperture radar (SAR), Field-Programmable-
Gate Array (FPGA)

1. INTRODUCTION

Synthetic Aperture Radar (SAR) satellite data enables all-
weather maritime monitoring. Traditional, on-ground Con-
stant False Alarm Rate (CFAR) [2] detection on focused SAR
images entails a costly downlink, focus, analyze pipeline,
incurring latency and limited contact windows. Processing
the data directly on the satellite significantly reduces the vol-
ume of data that needs to be downlinked by generating higher
abstraction level outputs (e.g., pixel coordinates of detected
ships) instead of raw data. Deep learning models have shown
promising results in this context [11, 12, 13, 4, 17], offer-
ing the opportunity to optimize for inference on embedded
devices straightforwardly. Yet, obtaining fully focused SAR

F. Kresse and G. Pilikos performed this work while at ESA and are no
longer affiliated with the agency.
Correspondence: Nicolas.Floury@esa.int

images on satellite is computationally and memory inten-
sive, prompting research into onboard ship detection using
the intermediate raw [3, 10] or range-compressed data prod-
ucts [16, 9, 8]. Overall, an effective onboard SAR ship detec-
tion algorithm must process small data segments to accom-
modate limited on-board memory, maintain a compact model
suitable for Field-Programmable-gate Arrays (FPGAs), di-
rectly output ship coordinates to reduce downlink and storage
requirements, and still achieve high accuracy. While prior
work addresses individual elements of this pipeline, none
achieve real-time, accurate detection on unfocused or range-
compressed data under embedded FPGA constraints.

In this work, we propose a range of lightweight deep-
learning models designed for Stripmap and Interferometric
Wide (IW) SAR data obtained with Sentinel-1, addressing the
requirements for on-board data processing. Our model con-
figurations, processing raw and range-compressed data, are
one-stage detectors built on ResNet blocks [5], allowing for
flexible model sizing. They employ a single-stage detection
layer as the final step, which performs coordinate predictions
and target classification following the grid-based approach of
the YOLO architecture [14]. Our smallest model operating
on Stripmap mode data delivers near-perfect ship detection
results in our evaluation scenes. Additionally, we demon-
strate that this model can be successfully deployed on a Xilinx
Zynq UltraScale+ MPSoC ZCU104 FPGA, achieving suffi-
cient throughput for real-time processing. For IW data, we
evaluate the performance of multiple model sizes, achieving
competitive results in open water scenes and offering valuable
insights for future research. We also show that our model can
perform binary target classification, distinguishing between
windmills and ships in the IW dataset we employ.

2. PROPOSED DEEP LEARNING ALGORITHM

Fig. 1 shows the processing pipeline for both the traditional
method, including range and azimuth compression, and the
approach adopted by us. Similar to previous work [3], for
Stripmap mode, we operate directly on raw data, while for
IW data, we perform range-compression.

Stripmap Preprocessing: We shift the raw data by half
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Fig. 1. The traditional pipeline (black box) focuses data before detection. Our approach bypasses this: we detect directly on
raw Stripmap echoes [3] and on range-compressed IW data.

the chirp length in the range dimension so that the feature
response aligns with the Single-Look Complex (SLC) labels,
accounting for mode- and chirp-specific acquisition offsets.

IW Preprocessing: Range-compressed IW features and
SLC labels are misaligned, so we apply a locally consistent
mapping between their pixel spaces. We compute the offset
from the center pixel of each range-compressed crop and use
it to shift the corresponding label crop.

Model: We employ a YOLO-style architecture for its
efficient single-stage design, enabling fast inference without
the overhead of region proposals [14]. The backbone consists
of four layers of ResNet blocks, preceded by a 7 × 7 con-
volution with 64 kernels. As in previous work, we treat the
complex-valued SAR data as two separate input channels [3].
We apply the network to crops of the original SAR image.
The network outputs predictions on a YOLO-style grid, where
each grid cell predicts the coordinates (x, y) and an objectness
score indicating the presence of a target. Since ships in our
datasets occupy a narrow range of sizes, we omit multi-scale
anchor-based detection typical in YOLO. We also perform bi-
nary classification between ships and windmills for IW data,
adding two additional outputs. Our output grid has size S×S,
with each cell corresponding to a 32 × 32 pixel region in the
input data. For example, an input crop size of 128 × 128 re-
sults in an output grid of size 4×4. The model configurations
evaluated in our experiments are listed in Table 1.

Table 1. Each Resnet-block contains two convolutions with
kernels of size 3× 3, Batchnorm and ReLU activation.

Param. (Size) Blocks per Layer Channels
96800 (S) 1, 2, 2, 1 16, 16, 32, 32

1222368 (M) 3, 4, 6, 3 64, 64, 64, 64
11222880 (L) 2, 2, 2, 2 64, 128, 256, 512

Loss Function: We adopt the standard YOLO loss, omit-
ting only the bounding-box size regression term while retain-
ing all other components unchanged.

Prediction of Ship Locations: After obtaining predic-
tions, we assign a fixed 50-pixel bounding box to each de-
tected ship. As in the YOLO pipeline [14], we apply non-
maximum suppression (NMS) to remove overlapping boxes,

keeping the one with the highest confidence. The acceptance
threshold is set as the lower of the Youden J threshold [15]
and the minimum distance threshold from validation data,
rounded down to two decimals. We compute a distance-based
F1 score F130 counting a prediction as correct if it lies within
30 pixels of a ground-truth label; unmatched predictions and
labels are false positives and negatives, respectively. Given
SAR resolutions (5 m × 5 m for Stripmap, 5 m × 20 m for
IW), this tolerance equals 150 m in range and up to 600 m
in azimuth, accommodating minor localization errors while
remaining well below the fixed box size.

3. EXPERIMENTS

We evaluate our proposed model using two different datasets.
The first dataset consists of raw SAR Sentinel-1 Stripmap
mode (S6) VV polarization data, as previously utilized by [3].
We show that the model trained on this dataset can be de-
ployed on an FPGA, achieving real-time throughput. We then
investigate an IW dataset from the Shanghai port. For this
dataset, we show good off-shore detection performance and
the ability of our model to distinguish between windmills and
ships. Both our datasets where originally obtained from the
Copernicus Data Space Ecosystem [1]. All experiments with
standard deviations given were performed with three seeds.

3.1. Sentinel-1 Stripmap Mode

The dataset from [3], consist of a total of 12 SAR images from
the São Paulo port, with one image used for validation (84
ships), two for testing (155 ships), and the remaining for train-
ing (726 ships). We investigate the performance of the small-
est model outlined in Section 2 with a crop size of 128× 128,
achieving an F130 score of 0.98 ± 0.00 and 0.97 ± 0.01 on
our first and second test image (see Fig. 2 for qualitative re-
sults). After manually inspecting the few erroneous predic-
tions, these can be attributed to double detections of ships,
the NMS not being aggressive enough, and label ambiguities.
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Ship Locations True Positives
False Positives
False Negatives

Fig. 2. Left: real part of raw Stripmap SAR data, shifted by half-chirp to align SLC labels; Right: manually labeled SLC image
overlaid with the network’s post-processed detections (contains modified Copernicus Sentinel Data [1]).

Ship Locations
Windmill Locations

True Positives
False Positives
False Negatives
Ship
Windmill

Fig. 3. Left: range-compressed IW SAR crop (input to the network) with center-based offset correction (Sec. 2); Right: post-
processed detections overlaid on the labeled SLC image for the (M) model (contains modified Copernicus Sentinel Data [1]).

3.2. Embedded Inference for Sentinel-1 Stripmap Mode

We deployed our 8-bit AdaQuant-quantized [6] model (via
Vitis AI 3.0 [7]) on a Zynq UltraScale+ MPSoC ZCU104
FPGA with no accuracy loss. Real-time operation requires
≥ 2027 FPS (PRF = 1664 lines/s × 19950 samples/line);
DPU inference (excluding preprocessing & NMS), achieved
3527± 23 FPS with four CPU threads, exceeding the target.

3.3. Sentinel-1 Interferometric Wide Mode

Our hand-labeled IW dataset from the Shanghai port com-
prises 10 bursts of size 20760 × 1617 at 5 × 20 m resolu-
tion. We split 8/1/1 bursts for training/validation/test sets.
The training set contains 1163 ships and 460 windmills; af-
ter excluding near-shore ships, the test set contains 66 ships
and 19 windmills. Preliminary experiments with ships located
close to shore showed significant performance degradation,
possibly due to the complex and ambiguous backscatter in
these areas. Therefore, we exclude them from our final eval-
uation. The IW data presents additional challenges due to
the continuous antenna pattern steering in azimuth during the
acquisition and the more complex nature of the scenes inves-
tigated. Initial attempts using our models with small input
sizes on raw IW data did not yield adequate performance. As
a result, we utilized range-compressed data.

Table 2 reports detection metrics and class-wise F130
(see Fig. 3 for quantitative results); class scores exclude the
other class’s labels to isolate per-class performance. Our
smallest model already performs well, and increasing crop
size and parameter count further boosts F130, though gains
plateau—likely due to overfitting. After manual inspection,
a large number of remaining errors arise from closely spaced
ships, due to NMS limitations, and ambiguous labels.

Table 2. Comparison of Models: Results on Interferometric
Wide data for off-shore ships on our test image (Range Com-
pressed Input Data). Input denotes the crop size.

Size Input F130 Ship F130 Wind. F130
L 256 0.87± 0.01 0.77± 0.01 0.71± 0.04
M 256 0.87± 0.05 0.78± 0.05 0.78± 0.02
S 256 0.79± 0.01 0.56± 0.07 0.54± 0.06
S 128 0.72± 0.04 0.52± 0.02 0.51± 0.03

4. DISCUSSION

We conduct experiments on raw Stripmap and range-compressed
IW data. For Stripmap, excellent results are achieved by
shifting the raw input by half the chirp size, bypassing the
computationally expensive image-focusing step and enabling
direct predictions on small crops of raw SAR data. The
model remains compact in both parameters and forward-pass
complexity, and we deploy it on a Zynq UltraScale+ MPSoC
ZCU104 FPGA, demonstrating suitability for real-time em-
bedded processing. However, the Stripmap scenes used here
are relatively simple with similar backscatter, so future work
should test robustness under more complex sea conditions
and diverse environments.

In our evaluation of IW data, we find that raw data alone,
in contrast to Stripmap data, does not yield satisfactory re-
sults. As a result, we perform range-compression, resulting
in improved performance. We attribute this improvement to
the target energy being more concentrated and, hence be-
ing easier to identify with the small Field-of-View of our
neural network. By increasing both the input crop size and
the network complexity compared to our Stripmap model,
we achieve good performance on IW data. Additionally,
we demonstrate successful target classification, performing
binary classification between ships and windmills.
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A main limitation of our method is that it struggles to de-
tect ships very close to shore, so we exclude these cases from
the final evaluation. This low performance is likely due to
strong backscatter from surrounding structures and vessels,
and may be mitigated with more diverse training data.

Both the limitations observed in Stripmap and IW data
can be largely attributed to the availability and quality of the
datasets. A key challenge is the lack of sufficiently large and
diverse labeled raw SAR datasets, particularly with varying
sea conditions. The upcoming Sentinel-1 satellites, equipped
with AIS tracking antennas, holds promise for addressing this
gap by potentially enabling automated labeling through AIS
data correlation. Additionally, since numerous algorithms al-
ready exist for processing SLC images, future work could
leverage these methods to generate large-scale datasets by
aligning SLC-based detections with raw SAR data, further ex-
panding the pool of labeled data for training and evaluation.

5. CONTRIBUTIONS

We demonstrated the feasibility of real-time ship detection
using deep-learning models applied to raw Stripmap data.
Furthermore, we deploy our Stripmap model on a Zynq Ultra-
Scale+ MPSoC ZCU104 FPGA, demonstrating its practical
use for real-time, onboard processing in resource-constrained
environments. For IW data, we show that using range-
compressed data and larger input sizes improves detection
and classification performance, enabling binary classification
of ships and windmills.
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ABSTRACT 

Developing CubeSat for educational purposes is an 

excellent way to engage students in hands-on learning about 

space, engineering, and science. It offers experience across 

various fields, including physics, computer science, 

mechanical engineering, and electronics. 

Educational goals define the specific learning 

outcomes you aim to achieve for students involved in the 

project. Key educational goals could include Technical and 

Engineering Skills: 

Understanding Satellite Design: Teach students 

how satellites are designed and how systems integrate into a 

small form factor like a CubeSat. This includes knowledge 

of structural design, subsystem integration, and component 

selection.  

Subsystem Design and Function:  

Provide experience with designing or working with power, 

communication, attitude control, and payload subsystems. 

Students can learn the specifics of each system, such as how 

solar panels provide power or how the attitude control 

system stabilizes the satellite. 

 Programming and Software Development: Involve students 

in programming the onboard computer (OBC) to perform 

data acquisition, communication protocols, and mission 

control functions. This also includes developing ground 

station software for data retrieval and command sending. 

Scientific and Analytical Skills: 

Data Analysis and Interpretation: Teach students how to 

analyze and interpret data from sensors on the CubeSat, 

including any scientific or Earth observation data. For 

example, students could analyze temperature variations in 

orbit or assess radiation levels at different altitudes. 

Research Skills: Introduce students to the scientific method 

by having them define hypotheses, design experiments (for 

experimental missions), collect data, and analyze results. 

System Engineering and Integration: Educate students on 

how complex systems are integrated into a single mission,  

covering concepts like interface requirements, modularity, 

and systems testing. In this publication, the real 

implementation of the 1U CubeSat is represented. It was 

developed in 3 months, in joint team from Riga Technical 

College (4 students) and Riga Technical University (2 

students) and 2 mentors. The result was represented on the 

vocational education competition in the ZRKAC (Jelgava) 

by MASOC on 11.04.2025. 

1. INTRODUCTION 

Educational goals define the specific learning outcomes you 

aim to achieve for students involved in the project. These 

goals are based on the mission’s complexity, the students’ 

skill level, and the depth of knowledge the project can 

provide. Key educational goals could include: 

Technical and Engineering Skills: 

        Understanding Satellite Design: Teach students how 

satellites are designed and how systems integrate into a 

small form factor like a CubeSat. This includes knowledge 

of structural design, subsystem integration, and component 

selection. 

        Subsystem Design and Function: Provide experience 

with designing or working with power, communication, 

attitude control, and payload subsystems. Students can learn 

the specifics of each system, such as how solar panels 

provide power or how the attitude control system stabilizes 

the satellite. 

        Programming and Software Development: Involve 

students in programming the onboard computer (OBC) to 

perform data acquisition, communication protocols, and 

mission control functions. This also includes developing 

ground station software for data retrieval and command 

sending. 

Scientific and Analytical Skills: 

        Data Analysis and Interpretation: Teach students how 

to analyze and interpret data from sensors on the CubeSat, 

including any scientific or Earth observation data. For 

example, students could analyze temperature variations in 

orbit or assess radiation levels at different altitudes. 

        Research Skills: Introduce students to the scientific 

method by having them define hypotheses, design 

experiments (for experimental missions), collect data, and 

analyze results. 

Project Management and Teamwork: 

        Project Planning: Guide students through the stages of 

project planning, budgeting, and scheduling. This includes 

understanding timelines, deliverables, and deadlines, which 

are essential in real-world engineering projects. 

        System Engineering and Integration: Educate students 

on how complex systems are integrated into a single 

mission, covering concepts like interface requirements, 

modularity, and systems testing. 

        Collaboration and Communication: Encourage 

teamwork and collaboration across different roles (e.g., 
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engineering, software development, testing), as well as 

communication with external stakeholders like sponsors, 

school officials, or industry advisors. 

Hands-On Practical Skills, which were in this work: 

        Construction and Assembly: Allowed students to 

participate in assembling and testing the CubeSat, teaching 

theoretical and practical content about handling sensitive 

electronic and mechanical assembly. 

        Testing and Troubleshooting: Gave students experience 

with testing protocols, including vibration, thermal, and 

vacuum tests. This teaches them about the importance of 

testing in space missions and how to troubleshoot issues that 

arise. 

        Operation and Maintenance: Teach students how to 

operate and monitor the CubeSat once deployed in desktop 

mode, including interpreting telemetry data and responding 

to potential issues in orbit/ or in practice on the table. 

  STEM Engagement and Outreach: 

        Inspire Interest in Space and Engineering: using the 

CubeSat as a vehicle to engage broader student interest in 

STEM fields.  

        Documenting and Sharing Findings: students are 

encouraged to document the project and share their findings 

through presentations, reports, or outreach events. This  

inspired other students and schools to pursue similar 

educational projects. 

        Collaborations with Other Schools or Institutions: 

Partner with other schools or universities are impressed by  

project’s impact and allow students to engage in a 

collaborative, multi-institutional project. 

2. EXAMPLE OF EDUCATIONAL MISSION 

OBJECTIVES AND GOALS 

Mission Objective: 

Deploy a 1U CubeSat as a desktop model to collect 

temperature, humidity, GPS location and images for 

analysis. 

Educational Goals: 

1.Teach students the fundamentals of satellite systems, 

including power, communication, and payload subsystems. 

 2. Develop skills in programming the onboard computer to 

collect and transmit data. 

 3. Engage students in data analysis and presentation of 

findings, providing hands-on experience with real-world 

satellite data. 

 4.   Inspire students to pursue careers in aerospace, science, 

and engineering through public outreach and project 

showcases. 

 

 

 

3. DEVELOPING A 1U CUBESAT USING ARDUINO 

AND RASPBERY PI  

In this work, a 1U CubeSat educational model was created. 

The frame was created using moder CAD, 3D printed, and 

CNC milled on the Hardford CNC mill. The internal 

structure could be seen on the figure 1. 

 

 

 

Fig. 1. CubeSat structure design graph 

 

The Arduino, Raspberry Pi and sensors connection process 

can be seen on figure 2 and 3. Figure 4 represents the result 

model of the developed CubeSat. Figures 5 and 6 represent 

the result presentation of the CubeSat educational model in 

local competitions and conferences. 

 

 
 

Fig. 2. Basic electronics connections and testing 
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Fig. 3. Assembly process of the electronic 

connection process. 

 

 
 

Fig. 4. The result model of the developed 

CubeSat. 

 

 

 
 

Fig. 5. 3D printed prototype, CNC milled parts and 

ready-to-use for educational process CubeSat model 

(represented in the vocational skills competition, 

ZRKAC, April 2025, Latvia, Jelgava). 

 

 
 

Fig. 6. Visual representation of CubeSat possibilities 

(represented on 15.-16.05.2025., DEEP TECH 

ATTELIER 2025, Latvia, Riga). 

 

4. CONCLUSIONS 

1. Establishing clear mission objectives and 

educational goals is critical to creating an impactful 

educational CubeSat project. This gave us an 

opportunity to design, produce and to program the 

1U Cubesat. 
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2. The mission objectives focus on achievable, 

educationally rich space activities, while the 

educational goals align with students’ learning 

needs. When combined, these objectives create a 

practical, exciting, and informative experience that 

can have lasting benefits on students’ 

understanding of space technology and inspire their 

future careers. 

3. Creating a CubeSat for educational purposes 

involves assembling a team with a variety of skills 

and securing funding to support the project. Below 

are the steps and considerations for forming an 

effective team and securing necessary funding. 

4. 1U educational CubeSat was created, represented 

in this work. The process took a lot of time from 

developing CAD frame files and Mastercam CNC 

design. Arduino and Raspberry Pi asked for skillful 

students work. In total the result is very impressive. 
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ABSTRACT

The article presents the findings of a quality evaluation exer-
cise between the most recent releases of two planetary-wide
built-up basemaps; the Atlas of Human Settlements or AHS
of Atlas AI and the Global Human Settlement Layer or GHSL
of the Joint Research Center of the European Commission.
The exercise was split in two parts; a qualitative and a quanti-
tative analysis, both powered by data collected over 8 regions
across the world. The comparison yields an overwhelming
lead of the AHS over the GHSL.

Index Terms— ahs, ghsl, built-up, regression, evaluation

1. INTRODUCTION

The Atlas of Human Settlements or AHS [10] is a built-up
basemap of global extent, delivered at a nominal spatial res-
olution of 10m and updated annually, with historical records
dating back to 2016. The primary data layer, referred to as the
Built-up Index or BuI, reports the percentage of built surface
within a spatial unit of 100 square meters in size. The equiv-
alent term in GHSL [3, 8] is called the Built-up Fraction or
BUFRAC - Fig. 1. The BuI layer is generated using a state-
of-the-art deep-learning model implemented on a U-Net-like,
multi-scale convolutional attention encoder to transformer-
decoder architecture using multi-scale attention. Further to
the BuI, the AHS delivers the Built-up Confidence or BuC;
a raster image that reports the confidence of the regressor in
producing the BuI value for each input pixel.

The AHS is generated from two different models, one that
reports built-up (BuI) in the developed world, and a second
one tailored for built-up in the developing countries, capturing
residential buildings and structures in places where housing
and living conditions are poor. It uses a set of model weights
that shift the focus on smaller, more dense and radiometrically
more diverse patterns of built-up. This analysis is focused on
the former model due to limited reference data availability.

Reporting the built-up systematically, and in a globally
consistent manner allows for accurate change detection, free
of parallax-related artifacts, which in turn delivers actionable

(a) Google Maps basemap view of a residential neighborhood

(b) The AHS-BuI layer (c) The GHSL-BUFRAC

Fig. 1. AHS and GHSL views of the S-E Corridor, GA, USA.

data on the growth, regression, or stagnation patterns wit-
nessed in various human settlements across the world. This
wide area monitoring (WAM) service [1] is geography, scale,
climate, living standards and prior data agnostic and powers
a wide range of applications in key industry verticals. Fig. 2
shows an example of the state of built-up in the South-East
Corridor, Georgia, USA in early 2024 and built-up change
detection between the years 2021 and 2023.

The only known alternative to the AHS, i.e. being of
global coverage and delivering the same semantics, is the
Global Human Settlement Layer offered by the JRC of the
EC. GHSL-BUFRAC is available at 10m resolution for a
single year, 2018. The GHSL underwent several model im-
provements to enhance BUFRAC quality, each one referred
to as a Release for the 2018 epoch. All references to the
GHSL in this article point to the R2023 release/ 2018 epoch.
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(a) Google Maps basemap view (b) WAM-AHS

(c) AHS BuI @ 2021 (d) AHS BuI @ 2024

Fig. 2. Change detection using WAM-AHS. The building
color coding for (b) is green: new, blue: unchanged.

(a) AHS - BuI (b) GHSL - BUFRAC

Fig. 3. Example of big building extraction consistency be-
tween the two layers

Having only two layers of the kind available in the market
today, this article attempts to identify the strengths and weak-
nesses of each through a qualitative and a quantitative exer-
cise presented in Sections 2 and 3 respectively. A summary
of findings and discussion of results is given in Section 4.

2. QUALITATIVE ANALYSIS

To evaluate qualitatively the two layers, we attempted to
capture the data scientist user-experience when confronted
with both layers as analysis ready data. We consulted four
geospatial-data analysts to identify key features that best de-
scribe their engagement with the data layers and recorded
their experiences when re-visiting each one separately. The
findings are discussed in Section 4. The features are:
- built-up surface completeness: empirical estimate of com-
pleteness of the binary built-up surface,
- noise in-between built-up: false BU positives inside the
studied settlements,
- noise outside settlements: false BU positives outside the
studied settlements,
- visual clarity of built-up: overall appreciation of the visual
scene - Fig. 1 (b, c),
- big building segmentation: suitability for segmenting

AHS BuI

GHSL BUFRAC
reproject to 

AHS BuI 
CRS (UTM)

crop to 
reference 
data AOI

crop to 
reference 
data AOI

comparison 
ready AHS BuI

comparison 
ready GHSL 

BUFRAC

compute 
metrics

Building 
Footprints 
vector-​file

reproject to 
AHS BuI 

CRS (UTM)

generate 
reference 

BuI
reference BuI

Fig. 4. Evaluation workflow.

clearly distinguishable big buildings- Fig. 3,
- built-up statistics: suitability for computing statistics,
- change detection: suitability for change detection, Fig. 2.

3. QUANTITATIVE ANALYSIS

The quantitative analysis of both layers was orchestrated as
a comparison against reference data. The latter was assem-
bled from 8 areas of interest (AOIs) in 6 different countries:
China - Jinxiang, Japan - Hamamatsu, Japan - Kyoto, Japan -
Maebashi, Poland - Warsaw, South Africa - Cape Town, UK
- Southampton, USA - Worcester (MA). They are referred to
as AOI 1 through 8, [5, 2, 4, 6, 9, 7].

Manually delineated building footprints were collected
for each AOI and translated into test BuI surfaces, i.e. the
same material consumed by both AHS and GHSL models
during training. The term test BuI is referred to as reference
data instead of ground truth, as the quality of the building
footprints is subject to human interpretation and skill. Each
set of building footprints differs from the others in two ways,
the date of production and in the clarity/resolution of the
underlying image used to produce them. The reference data
used was selected based on the production date being as close
to the end of the year 2018 as possible.

To make this a fair comparison we computed the AHS-
BuI of each AOI for the year 2018. The quality figures
reported do not necessary reflect the true quality of the AHS
(underestimation) but allow for a one-to-one comparison
against the GHSL. The results are biased by the fact that we
compare findings computed on annual median composites
(AHS and GHSL) against the reference data generated for a
certain time stamp later in time; t > 2018. This propagates the
same error to both layers thus does not impact the outcome
of the comparison. A further, very minor bias in favor of the
AHS comes from the fact that both the reference data and the
GHSL layers used, were re-projected to the AHS CRS (UTM)
- Fig. 4. The latter was selected over the World-Mollweide of
the GHSL for its iso-tropic pixel representation, appreciated
in both ML model training and deployment.
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To compute the ‘closeness’ of each layer to the reference
data we utilized two sets of metrics; one for segmentation
and one for regression. The former set was used to evalu-
ate the completeness of the built-up surface, and the latter for
the evaluation of the pixel content accuracy. In the following
P , N , TP , TN , FP and FN stand for the number of pix-
els that are positive (BuI>0), negative (BuI=0), true positive,
true negative, false positive, false negative respectively. The
segmentation metrics used are as follows:

Binary Accuracy :
TP + TN

P +N
, (1)

Precision :
TP

TP + FP
, Recall :

TP

TP + FN
(2)

F1 Score :
2× PR×RE

RP +RE
=

2× TP

2× TP + FP + FN
(3)

Matthew’s Correlation Coefficient:

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4)

The regression metrics used are as follows:

Round Mean Square Error :

√√√√ 1

n

n∑

i=1

(X̂i −Xi)2 (5)

Mean Average Error :
1

n

n∑

i=1

|X̂i −Xi| (6)

and were computed for each inference image as a whole, and
for the BuI>0 and BuI=0 pixel sets separately.

4. DISCUSSION OF RESULTS

Qualitative analysis findings: Responses on the Built-up
Surface Completeness suggested that both layers, if treated
as binary surfaces, deliver a satisfactory IoU with reference
data, i.e. they do not miss and do not over-represent built-up.
Some in-between built-up noise appears in both, examples of
which are due to highly reflecting road segments, construc-
tion materials, aggregation of metal sheets that are not parts
of roofs (containers, trucks), parking lots, etc. The GHSL
slightly under performs due to increased sensitivity to parking
lots/loading bays. Some minor false positives appear outside
settlements and are primarily attributed to highly reflecting
rocks and in some instances to minor water bodies.

The visual clarity of built-up is the highest discriminator
between the two layers. While built-up is mostly captured
accurately in both, the GHSL delivers a blurry view making it
hard to trace individual buildings. By contrast to the GHSL,

the AHS presents clearly distinguishable buildings, even the
smallest ones, in cases they are further than 10m apart, i.e. 1
spatial unit separation. An example is shown in Fig. 1.

Big buildings can be extracted from both layers as stand-
alone structures that are useful and in-demand for supply-
chain and real-estate management applications. While gen-
erally highlighted well in both layers, in the GHSL big build-
ings appear with textural noise running through their extent
that makes it harder for simple/fast computer vision scripts to
return a single segment per building, Fig. 3.

Built-up statistics can be computed from both layers, of-
fering insights such as how much of a settlement surface area
is built, how dense is the built-up, etc. A limitation that re-
lates to the earlier observation on big buildings is that in the
case of the GHSL the built-up cannot be trivially binned to
size histograms reporting how many buildings are there for
specific size ranges. In case of very dense built-up both lay-
ers cannot discriminate between individual buildings and this
is primarily due to the spatial resolution of the input data.

Lastly, the GHSL being a single-year release cannot be
utilized directly in change detection, where as AHS-WAM de-
tects change robustly and among any two BuI instances from
the present date back to 2016. Change detection can be com-
puted by ML models on multispectral image pairs, but at the
cost of model retraining for each AOI to prevent drift, and in-
creased sensitivity to local built-up patterns. The unavailabil-
ity of historical GHSL data weakens its adoption by what ap-
pears to be one of the highest priority commercial use-cases.

Quantitative analysis findings: An initial observation
from Table 1 is that the GHSL has a major imbalance between
precision and recall. Low precision and high recall means that
the model is good at finding all the actual positives (BuI>0)
but among the instances the model predicts as built-up, many
are actually false positives. The lack of model sophistication
leads to poor generalization erring on the side of predicting
positive BuI and pretty much ‘catches everything’ but inac-
curately. The AHS maintains a far better balance between
the two metrics. Looking at the F1 and MCC scores (holistic
view of model performance), the AHS leads by 14% and 13%
respectively and this is consistent throughout all 8 AOIs.

Table 2 lists the regression metrics’ scores related to the
BuI values. The AHS layers on average and across all pixels
show a relative reduction of about 30% in regards to RMSE
and about 35% in regards to MAE when compared to the
GHSL layer values. These relative reductions persist in empty
(BuI=0) and non-empty (BuI>0) pixel sets too.

5. CONCLUSIONS

In this paper we evaluated the AHS on selected global AOIs,
comparing it to the GHSL. Both qualitative and quantitative
results show AHS has a competitive edge. As a continually
evolving product, further improvements are expected.
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Table 1. Segmentation Metrics
metric layer AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 average

Binary Accuracy GHSL 0.95449 0.95114 0.87118 0.81972 0.78339 0.94021 0.92876 0.85596 0.88810
AHS 0.97388 0.98036 0.92371 0.93487 0.93890 0.96911 0.96635 0.94827 0.95443

Precision GHSL 0.46971 0.45751 0.67842 0.43199 0.37874 0.55974 0.45056 0.37651 0.47539
AHS 0.63336 0.71959 0.81203 0.72438 0.75916 0.74474 0.68024 0.68203 0.71944

Recall GHSL 0.96417 0.96787 0.98799 0.98565 0.97163 0.98625 0.92083 0.95821 0.96782
AHS 0.84213 0.86114 0.93088 0.85008 0.79426 0.90091 0.81496 0.77707 0.84642

F1 Score GHSL 0.63169 0.62132 0.80445 0.60071 0.54503 0.71416 0.60506 0.54060 0.63287
AHS 0.72297 0.78403 0.86740 0.78221 0.77631 0.81541 0.74153 0.72646 0.77704

MCC Score GHSL 0.65567 0.64714 0.74130 0.57813 0.52037 0.71788 0.61520 0.54678 0.62780
AHS 0.71753 0.77725 0.81794 0.74751 0.74121 0.80304 0.72707 0.69984 0.75392

Table 2. Regression Metrics
metric layer AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 average
RMSE GHSL 0.10310 0.09340 0.21453 0.17004 0.18895 0.12891 0.10707 0.11957 0.14069

AHS 0.09198 0.06411 0.17369 0.11263 0.12570 0.09689 0.07332 0.09188 0.10377
MAE GHSL 0.02259 0.02074 0.10674 0.07090 0.08300 0.03612 0.02743 0.04053 0.05100

AHS 0.01846 0.01217 0.08121 0.03771 0.03909 0.02454 0.01638 0.02450 0.03175
RMSE - non empty GHSL 0.40256 0.33715 0.33785 0.33721 0.35086 0.38365 0.33130 0.30600 0.34832

AHS 0.37423 0.27614 0.31414 0.28217 0.30835 0.30553 0.26902 0.26250 0.29901
MAE - non empty GHSL 0.31843 0.26816 0.27299 0.26933 0.27451 0.30701 0.26004 0.23602 0.27581

AHS 0.29383 0.21599 0.25382 0.21822 0.23220 0.24036 0.20739 0.19934 0.23264
RMSE - empty GHSL 0.06654 0.06691 0.14866 0.12764 0.15276 0.08033 0.07613 0.08580 0.10059

AHS 0.05542 0.03452 0.07821 0.05219 0.06771 0.05342 0.03892 0.05622 0.05457
MAE - empty GHSL 0.01047 0.01073 0.04835 0.04136 0.05590 0.01504 0.01401 0.02345 0.02741

AHS 0.00718 0.00393 0.02060 0.01080 0.01180 0.00775 0.00538 0.00924 0.00958
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ABSTRACT

Remote Imaging Support for Emergencies (RISE) is a novel
web application democratizing access to actionable geospa-
tial intelligence from Earth Observation (EO) data. Built
on the WASDI cloud platform, RISE transforms complex
EO workflows into user-friendly products for rapid crisis
response. It automates data ingestion, processing, and dis-
semination, enabling near real-time monitoring and impact
assessments. With capabilities from flood mapping to drought
monitoring, RISE delivers critical intelligence quickly and
cost-effectively. Successful field validation, coupled with
positive beta feedback, underscores RISE’s potential to revo-
lutionize emergency management.

Index Terms— Humanitarian, Geospatial Intelligence,
Emergency, RISE

1. INTRODUCTION

Timely geospatial intelligence from EO data (optical, SAR,
thermal) is vital for humanitarian crisis response, damage
assessment, and risk reduction. The foundational engine,
WASDI [1, 2], is a powerful cloud platform for large-scale
EO processing, with a proven record in high-impact events:
(i) Pakistan Floods (2022): Rapid preliminary damage assess-
ment for the Asian Development Bank; (ii) Cyclone Amphan,
Bangladesh (2020): Flood assessment support for WFP; (iii)
Typhoon Kammuri, Philippines (2019): Damage monitoring
for WFP; (iv) Ukraine Wildfires (2020): Monitoring support
for ESA.

∗cristiano.nattero@wasdi.cloud
Thanks to the WFP’s Humanitarian Innovation Accelerator Program for

having funded the development of RISE.

While WASDI demonstrated significant capabilities, its
technical complexity limited direct use by many humanitar-
ians. This firsthand experience highlighted the need for a
more accessible solution. Data latency and the ”human-in-
the-loop” are key bottlenecks; lengthy map production times
limit utility to post-event analysis or preparedness, whereas
rapid intelligence is crucial for in-emergency intervention.

RISE addresses this by leveraging WASDI’s power through
an intuitive interface. Developed by WASDI with LIST and
AICRL-SRU, and funded by WFP’s Humanitarian Innova-
tion Accelerator, RISE automates EO workflows. Its core
mission is to provide humanitarians with direct, timely, and
cost-effective geospatial intelligence, specifically to guide
interventions during acute emergency phases. Beta feedback
and the results from the final validation exercise are highly
positive.

2. RISE: CAPABILITIES ENABLED BY WASDI

Fig. 1. The UI of RISE.
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RISE offers a diverse suite of geospatial products, oper-
ationalized on WASDI’s cloud platform. While initial wide-
area screening for events like floods is supported by data from
providers like NOAA (e.g., VIIRS), feedback from our hu-
manitarian partners during the validation exercise confirmed
that these lower-resolution products were insufficient for their
operational needs. This finding validated our strategic deci-
sion to build the core of RISE’s high-resolution analytical ca-
pabilities upon the Copernicus programme. Our primary data
source for detailed, actionable flood mapping, urban analy-
sis, and impact assessment is Sentinel-1 SAR, complemented
by Sentinel-2 optical and Sentinel-3 thermal data. This focus
on the Copernicus suite ensures operational continuity, aligns
with European data infrastructure, and most importantly, de-
livers the high-quality intelligence our users require, thereby
mitigating dependencies on other data sources for our most
critical products.

A cornerstone of RISE is daily automated monitoring and
event identification, orchestrated by WASDI, with options to
upload ancillary data for contextualization.

Figure 1 shows the UI of RISE, with a flood and impact
analysis.

2.1. Flood Management and Monitoring:

Low-Resolution Daily Flood Maps: Derived from NOAA’s
VIIRS (Visible Infrared Imaging Radiometer Suite) data (typ-
ically 375m resolution for flood products), providing consis-
tent, wide-area screening using thresholding on specific spec-
tral bands and indices. Processing and dissemination are man-
aged via WASDI.

High-Resolution Flood Maps: Generated on WASDI
using LIST’s HASARD algorithm suite [3, 4, 5, 6, 7].
HASARD applies advanced change detection and SAR
backscatter analysis techniques to Sentinel-1 data to delin-
eate floodwater extent with high accuracy. The execution of
HASARD at scale is a key WASDI capability.

Urban Flood Maps: A specialized HASARD module
for urban environments, utilizing multitemporal interferomet-
ric SAR coherence analysis from Sentinel-1 to detect subtle
changes indicative of flooding amidst complex urban struc-
tures. This computationally intensive analysis is performed
on WASDI.

Composite Flood Map: An integrated flood product pro-
duced on WASDI, potentially employing rule-based integra-
tion or weighted fusion of different flood layers (e.g., VIIRS
and HASARD) to provide a more comprehensive overview.

Flood Relative Frequency Maps: Constructed on WASDI
through the systematic reprocessing of historical Sentinel-1
archives using HASARD, enabling the identification of areas
with high recurrent flood probability. This relies on WASDI’s
capacity for large-volume data processing.

Flood Depth Maps: Estimated on WASDI by integrat-
ing SAR-derived flood extent with Digital Elevation Models

(DEMs), using hydraulic principles or calibrated empirical re-
lationships.

Historical Flood Archives: RISE can reconstruct histor-
ical flood events using the HASARD algorithm, providing
valuable long-term data for risk assessment, trend analysis,
and planning, all stored and processed within WASDI.

2.2. Rain Observation

IMERG Rain Observation: Accumulated rainfall data from
NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG)
product, offering precipitation estimates at approximately
0.1° x 0.1° resolution with near real-time latency (latency of
a few hours for late run products). Data is ingested and made
available through WASDI.

2.3. Impact Assessment

Flood Impact Maps: Detailed assessments of flood impacts
on buildings, road networks, agricultural land (crops), and es-
timated population affected. Produced on WASDI by integrat-
ing flood extent/depth maps with exposure data layers (e.g.,
building footprints from CityWatch, global road datasets, land
cover classifications, and population density grids like World-
Pop or GHSL) using CIMA Research Foundation’s RASOR
(Rapid Analysis and SOlutions for Response) methodology.
This geospatial analysis is orchestrated by WASDI.

2.4. Drought Monitoring

Land Surface Temperature (LST): Derived from thermal
infrared data from Sentinel-3.

Drought Monitoring: RISE incorporates LIST’s innova-
tive Radiative Thermal Inertia (RTI) index [8], a physically-
based model for monitoring soil moisture and vegetation wa-
ter stress. The RTI model integrates LST and other EO data
(e.g., albedo, solar radiation) and has demonstrated a strong
correlation (coefficient of 0.62) with in-situ soil moisture
measurements across multiple sites—outperforming conven-
tional drought indicators such as the Keetch-Byram Drought
Index (KBDI) [9] and Apparent Thermal Inertia (ATI) [10].
These models are run on the WASDI platform.

2.5. Urban and Settlement Analysis

Settlements and Urban Area Maps (CityWatch): Leveraging
LIST’s CityWatch algorithm [11], RISE provides regularly
updated maps of urban areas and settlements, with process-
ing hosted on WASDI.

CityWatch Baseline: Global mapping of built-up ar-
eas at 10-meter resolution using a synergistic approach with
Sentinel-1 SAR and Sentinel-2 optical data. This involves
automated training data sampling and a label-noise robust
cross-fusion neural network.
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CityWatch Premium: Higher detail by incorporating
commercial Very High-Resolution (VHR) optical imagery.
This solution employs advanced AI techniques, potentially
involving transfer learning or weakly supervised learning,
to classify VHR images using lower-resolution labels from
CityWatch Baseline as a training source.

3. TECHNICAL ARCHITECTURE

RISE features an intuitive UI presenting key indicators upon
entry: estimated people affected, ongoing events, and alerts.
All processing occurs on WASDI, a PaaS optimized for EO,
offering (i) Scalable Distributed Computing; (ii) Co-location
of Data and Processing; (iii) Interoperability via standards;
(iv) Robust Data Management.

RISE’s architecture uses containerized plugins deployed
on WASDI, interacting via APIs. RISE is an intelligent or-
chestrator and user-friendly front-end to WASDI’s specialized
EO processing.

The decision to build RISE on the WASDI cloud plat-
form was a strategic one, driven by efficiency and cost-
effectiveness. As the developers of both RISE and the
underlying WASDI platform, our team was able to ensure
rapid development and a robust, seamlessly integrated user
experience. While this provides a strong foundation, we
recognize the importance of interoperability for wider adop-
tion. The WASDI platform is inherently designed to offer
this ”off the shelf,” as it supports approximately 90 different
standards across file formats, protocols, languages, and ar-
chitecture. These capabilities facilitate the rapid integration
of new functionalities from third-party providers through its
compliance with established standards integral to the Euro-
pean EO cloud ecosystem, including OGC WxS, OpenEO,
and the Earth Observation Exploitation Platform Common
Architecture (EOEPCA). This is demonstrated by our current
infrastructure; WASDI already operates several nodes on the
CloudFerro cloud, and exploits CREODIAS as one of its data
providers. Building on this, our future roadmap includes de-
veloping interfaces with other major European platforms and
services, including the Copernicus Data Space Ecosystem
(CDSE), WEkEO, the Copernicus Emergency Management
Service (CEMS), and the Destination Earth initiative, as well
as UN services, such as those by UN SPIDER, FAO, and
World Bank, to name but a few. This expansion is not only
a priority but also a streamlined process, allowing RISE ser-
vices to be discovered, accessed, and chained within a more
open and collaborative ecosystem.

4. MITIGATING LATENCY AND ENHANCING
EFFICIENCY FOR EMERGENCY INTERVENTION:

RISE significantly reduces latency to maximize EO data util-
ity for active emergency intervention with (i) End-to-End
Automation: From image retrieval (e.g., Copernicus Hubs)

through WASDI processing to RISE display, and (ii) Proac-
tive, Request-Free Product Generation: Core products
(e.g., daily flood maps) are generated proactively by sched-
uled WASDI processes, ensuring readiness.

Computational gains are substantial: LIST’s HASARD,
traditionally taking days, runs in hours on WASDI. The 2022
Pakistan flood assessment, manually requiring a 4+ person
team, is now automatable in hours. The primary speed im-
provement is removing the human-in-the-loop from critical
processing, transforming EO data from a retrospective tool
into a vital asset for immediate emergency decision-making –
RISE’s core purpose.

5. VALIDATION IN REAL-WORLD SCENARIOS

RISE is undergoing rigorous validation. Beta user feedback
(WFP, Red Cross) is highly encouraging. The field validation,
initially planned for Niger, was redirected to Madagascar (a
region with Red Cross presence and relevant flood/drought
events) due to security. It simulates response to the Cheneso
Cyclone (Jan 2023), focusing on Maroantsetra, selected for (i)
Humanitarian Data Availability, (ii) Optimal Sentinel-1 Cov-
erage, (iii) Local Red Cross team presence.

5.1. Validation Methodology

The exercise employed a comparative methodology designed
to establish a clear baseline for RISE’s impact. It is impor-
tant to note that this comparison was structured for analyti-
cal purposes; in a real-world scenario, RISE is intended to
be a complementary tool that enhances, rather than replaces,
traditional methods. For this validation, however, the two
approaches were deliberately separated to measure the plat-
form’s standalone contribution:

Team 1 (Standard), conducted the assessment using tra-
ditional methods, including field surveys, secondary data re-
view, and key informant interviews. This required 26 person-
nel and took 8 hours to complete.

Team 2 (RISE-Equipped), used only RISE’s analytical
products to guide their strategy. This required just 2 staff
members and was completed in 1 hour and 40 minutes.

The results of this baseline comparison were extraordi-
nary and demonstrate significant operational gains:

Quantitative Gains: The data shows that the RISE-
Equipped team was able to produce its initial assessment with
an 85% reduction in time and an 90% reduction in associated
costs (personnel and transport) compared to the team using
standard methods.

Accuracy and Effectiveness: The final report from the
exercise concluded that RISE provides ”much more accu-
racy of data, when compared to standard methods, especially
linked to historical data... and no or hard to access areas.”
This is critical in humanitarian contexts where access can be
limited or dangerous.
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User Feedback: Qualitative feedback was highly posi-
tive, with the final report concluding that RISE could make
needs assessments ”more accurate, time, cost-effective and
safe.” A key advantage noted was the increased safety for hu-
manitarian workers, as the platform allows for rapid assess-
ment without deploying personnel to potentially unsafe areas.

These findings provide tangible evidence of RISE’s ca-
pacity to significantly enhance the speed, efficiency, and ef-
fectiveness of humanitarian response. Comprehensive results
will be presented at the BIDS 2025 conference.

6. THE FUTURE OF RISE: EXPANDING
CAPABILITIES AND TRANSFORMING

EMERGENCY MANAGEMENT

RISE’s plugin-based architecture on WASDI allows agile
expansion. Roadmap includes (i) Deforestation Monitoring:
Sentinel-1/2 and Landsat time-series; (ii) Active Fires and
Burned Area Mapping; (iii) Landslide Detection; (iv) Earth-
quake Impact Assessment. Enhancements will cover impact
assessment (socio-economic data, vulnerability models), data
fusion, and predictive analytics within the WASDI-RISE
ecosystem.

7. BROADER IMPACT AND RECOGNITION

RISE’s potential was showcased at the 2024 STI Forum, re-
flecting demand for automated, cloud EO solutions. Its adapt-
ability is proven by the validation redirection.

The successful validation in Madagascar, coupled with
positive feedback from the beta program, provided strong ev-
idence of RISE’s operational benefits.

8. CONCLUSIONS

RISE significantly advances the delivery of sophisticated EO
data in an accessible, actionable format for humanitarians. By
synergizing advanced algorithms, the scalable WASDI cloud
platform (its core processing engine), and a user-centric de-
sign with immediate key indicators, RISE empowers timely,
data-driven emergency decisions. Its architecture addresses
latency and efficiency through automation and optimized
cloud processing, transforming EO maps from historical
records into vital tools for in-emergency intervention.

The conclusive results from the Madagascar validation,
alongside positive beta feedback, have provided robust evi-
dence of RISE’s significant operational benefits. RISE is set
to establish a new standard in operational geospatial intelli-
gence, catalyzing change by effectively leveraging powerful
backend platforms like WASDI through user-focused appli-
cations for a more agile and effective global humanitarian re-
sponse.
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