

Multiple introductions of invasive alien species on a Mediterranean Island predicted by horizon scanning

Angeliki F. Martinou · Jakovos Demetriou · Ioanna Angelidou ·
Nicolaos Kassinis · Anthemis Melifronidou · Jodey M. Peyton ·
Helen E. Roy · Alexander N. G. Kirschel

Received: 30 July 2025 / Accepted: 3 December 2025
© The Author(s) 2026

Abstract In 2017 and 2019 two horizon scan workshops were undertaken for the island of Cyprus, which focused on making predictions about the invasive alien species (IAS) most likely to arrive and impact biodiversity, human health and the economy. Herein, we assess the species lists derived from these two horizon scans and consider the accuracy of the predictions so far. In less than ten years, 26 new IAS were found in Cyprus, 10 out of which were

predicted to arrive by the horizon scans. Eight introduced IAS were ranked as high risk during the horizon scanning process. Horizon scanning helped raise awareness amongst the authorities, scientists and the public, leading in some cases to a rapid response by the competent authorities to control the arrival. We conclude that horizon scanning is a useful process that can inform contingency planning and action. Furthermore, it facilitates communication between IAS experts, policy makers and society, encouraging active engagement and raising awareness regarding the importance of early warning, rapid response

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1007/s10530-025-03729-8>.

A. F. Martinou · J. Demetriou · I. Angelidou
Laboratory of Vector Ecology and Applied Entomology,
Joint Services Health Unit Cyprus, BFC RAF Akrotiri,
BFPO 57, Akrotiri, Cyprus

A. F. Martinou · J. Demetriou · I. Angelidou
Enalia Physis Environmental Research Centre, Acropoleos
2, 2101 Aglantzia, Nicosia, Cyprus

A. F. Martinou
Climate and Atmosphere Research Centre/Care-C, The
Cyprus Institute, Athalassa Campus, 20 Konstantinou 59
Kavafi Street, 2121 Aglantzia, Nicosia, Cyprus

J. Demetriou
Department of Ecology and Systematics, Faculty
of Biology, National and Kapodistrian University
of Athens, Athens, Greece

I. Angelidou
Department of Environment, School of Environment,
Ionian University, 29100 Zakynthos, Greece

N. Kassinis
Game and Fauna Service, Ministry of Interior,
1453 Nicosia, Cyprus

A. Melifronidou
Department of Agriculture, Ministry of Agriculture,
Rural Development and Environment, Plant Health
and Marketing Standards of Agricultural Products, Sector,
Louki Akrita Avenue, 1412 Nicosia, Cyprus

J. Peyton · H. E. Roy
UK Centre for Ecology & Hydrology, Wallingford,
England OX10 8BB, UK

J. Peyton
UKOTs Conservation Forum, 110 Nottingham Road,
Stapleford, Nottingham NG9 8AR, UK

J. Peyton
Biodiversity, Ecology, and Conservation Group, IIASA,
Laxenburg, Austria

and management of IAS. We propose that the horizon scanning process for the island of Cyprus is repeated regularly, recognizing the ongoing increase in the number of new IAS arriving year on year.

Περίληψη Το 2017 και το 2019 πραγματοποιήθηκαν δύο εργαστήρια σάρωσης ορίζοντα (horizon scanning – μια μέθοδος ανίχνευσης μελλοντικών τάσεων) για την Κύπρο, τα οποία επικεντρώθηκαν στην πρόβλεψη των χωροκατακτητικών ξένων ειδών (ΧΞΕ) που είναι πιο πιθανό να φτάσουν, να εγκατασταθούν και να επηρεάσουν τη βιοποικιλότητα, την αιθρώπινη υγεία και την οικονομία. Στην παρούσα εργασία, αξιολογούμε τους καταλόγους ειδών που προέκυψαν από αυτές τις δύο ανιχνεύσεις μελλοντικών τάσεων και εξετάζουμε την ακρίβεια των μέχρι στιγμής προβλέψεων. Σε λιγότερο από δέκα χρόνια, εντοπίστηκαν 26 νέα ΧΞΕ στην Κύπρο, 10 από τα οποία είχαν προβλεφθεί ότι θα φτάσουν από τις πιο πάνω ανιχνεύσεις. Οκτώ εισαχθέντα ΧΞΕ κατατάχθηκαν ως υψηλού κινδύνου κατά τη διαδικασία ανίχνευσης μελλοντικών τάσεων. Η σάρωση ορίζοντα συνέβαλε στην εναισθητοποίηση των αρχών, των επιστημόνων και των πολιτών, οδηγώντας σε ορισμένες περιπτώσεις σε ταχεία αντίδραση των αρμόδιων αρχών για τον έλεγχο της άφιξης των ειδών. Εν κατακλείδι, η σάρωση ορίζοντα είναι μια χρήσιμη διαδικασία που βοηθά στον προγραμματισμό και την προετοιμασία σχεδίων δράσης. Επιπρόσθετα, διευκολύνει την επικοινωνία μεταξύ των εμπειρογνωμόνων για τα ΧΞΕ, των υπευθύνων χάραξης πολιτικής και της κοινωνίας, ενθαρρύνοντας την ενεργό συμμετοχή και αυξάνοντας την εναισθητοποίηση σχετικά με τη σημασία της έγκαιρης προειδοποίησης, της ταχείας αντίδρασης και της διαχείρισης των ΧΞΕ. Προτείνουμε όπως η σάρωση ορίζοντα για το ησί της Κύπρου επαναλαμβάνεται τακτικά,

H. E. Roy
Centre for Ecology and Conservation, University of Exeter,
Penryn, Cornwall, England TR10 9FE, UK

A. N. G. Kirschel (✉)
Department of Biological Sciences, University of Cyprus,
PO Box 20537, 1678 Nicosia, Cyprus
e-mail: kirschel@ucy.ac.cy

αναγνωρίζοντας τη συνεχή αύξηση του αριθμού των νέων ΧΞΕ που φτάνουν κάθε χρόνο.

Keywords Alien species · Cyprus · Horizon scanning · Invasive species · Non-native · Early warning · Detection · Management · Public engagement

Introduction

Invasive alien species (IAS) are primary drivers of biodiversity loss globally, alongside land and sea-use change, direct exploitation of organisms, climate change, and pollution (IPBES 2019). Reports on IAS global economic costs over the last 50 years estimate that they are responsible for a minimum of US\$1.288 trillion in losses, a number that is steadily rising over time (Diagne et al. 2021; Roy et al. 2024a). Prevention is the most cost-effective approach to managing IAS and can be achieved through pathway management, including effective import controls, border biosecurity and quarantine services and facilities, but this requires long-term resourcing and capacity-building at national and international level (Roy et al. 2024a). When prevention fails, eradication or containment can work in specific contexts (IPBES 2023).

Preventing the arrival of new IAS underpins the EU Regulation 1143/2014 (hereafter EU Regulation), which obliges Member States to ensure there are measures to prevent or manage the introduction and spread of IAS species of Union Concern (the Union list). The EU Regulation includes a list of IAS of Union Concern but also encourages the development of IAS lists of regional and national concern. Moreover, it provides a legal basis for Member States to undertake action (i.e., emergency measures) on any new IAS. For preventive measures to be effective, targeted early warning and rapid response systems are needed, informed by predictions about which species are likely to arrive at a new location at a local, regional or national scale (Arianoutsou et al. 2023; Carboneras et al. 2018; de Groot 2020). The use of horizon scanning approaches based on data-driven expert knowledge is a method used to predict IAS that are likely to arrive, establish, spread and negatively impact nature and people (Roy et al. 2014). Horizon scans targeting IAS have been conducted under different geographical contexts e.g. at the European level

(Nunes et al. 2025; Roy et al. 2019a) or country level [Great Britain (Roy et al. 2014), Cyprus (Peyton et al. 2019), Greece (Martinou et al. unpublished data), Ireland (Lucy et al. 2020); Italy (Bertolino et al. 2020); Spain (Cano-Barbacil et al. 2023), United Kingdom Overseas Territories (Roy et al. 2019b; Dawson et al. 2023) and Antarctica (Hughes et al. 2020)]. Horizon scanning approaches have been used to consider impacts of IAS on plant health (Kenis et al. 2022; Mulema et al. 2022) or human health and the economy (Peyton et al. 2020). They also focus on different realms, for example, the marine realm (Tsiamis et al. 2020), inland waters (Oficialdegui et al. 2023) and protected areas (Adriaens et al. 2022).

The implementation of the EU IAS Regulation (EU 1143/2014) within the Republic of Cyprus in 2019 [N. 120(I)/2019], as well as concerns over IAS by different research groups called for action. Two horizon scanning exercises were undertaken in 2017 and 2019 (Peyton et al. 2019, 2020). Peyton et al. (2019) focused on IAS that are likely to arrive and impact biodiversity and Peyton et al. (2020) on IAS that are likely to arrive within a decade and impact human health and the economy. Here, we revisit the outcomes of these horizon scans and specifically document the IAS that have recently arrived in Cyprus.

Materials and methods

Data on biological invasions in Cyprus were obtained from the Cyprus Database of Alien Species (CyDAS—<https://ris-ky.info/cydas>) (Demetriou et al. 2025) as well as from published (literature and press releases) and unpublished records (including consultation with experts) to locate any species' records that had been published after the completion of the two horizon scanning exercises in 2017. For this, we catalogued the publication years of first detection for all species recorded during the timeframe 2017–2023 (Suppl. File 1).

Subsequently, we cross-checked species on the database with other datasets and publications on IAS checking the arrival of species listed in the 100 world's worst invasive species (GISD 2024), IAS of EU Concern (EU 2016/1141; EU 2017/1263; EU 2019/1262; EU 2022/1203), species in the European

and Mediterranean Plant Protection Organization (EPPO) lists A1, A2 and alert list (EPPO 2024), species denoted as having some unnamed "Impact" in the European Alien Species Information Network (EASIN) (EASIN 2024), species for which fact sheets are available on the European Centre for Disease Prevention and Control (ECDC) website, as well as whether the listed species were predicted to arrive, establish and have a negative impact on the biodiversity, human health and economy of Cyprus (Peyton et al. 2019, 2020). In addition, we examined the complete datasets of species assessed during the horizon scanning exercises (Peyton et al. 2019, 2020 – suppl. files) to assess species that were detected during the timeframe 2017–2023 as well as species included in the horizon scanning datasets for which prior knowledge of introductions was missing/overlooked.

Results

Our literature search showed that 183 alien species were detected in Cyprus from 2017–2023. Out of these species, a total of 31 alien species were included in any list of invasive alien species and/or were predicted by the horizon scanning exercises amongst the top 100, top 20, and top 50 to affect biodiversity, human-health and the economy (Suppl. File 1). Crosschecking these 31 taxa with databases on impacts, 26 alien species are classified as IAS, due to their negative impacts on biodiversity and in some cases also human health or economic sectors such as agriculture (Table 1) (i.e. excluding *Dorvillea similis*, *Heliotropium curassavicum*, *Matuta vitor*, *Myra subgranulata*, *Synanceia verrucosa*—no impacts on any checked database but predicted during horizon-scans). These 26 IAS are included on the European Plant Protection Organization (EPPO) pest lists (6), lists of the world's worst IAS (3), IAS of EU Concern (4), species with "Impact" according to the European Alien Species Information Network (EASIN) (23), and European Centre for Disease Prevention and Control (ECDC) factsheets (2) for their negative impacts (Table 1). Ten of these 26 IAS species were predicted to arrive, establish and impact biodiversity, human-health and the economy in Cyprus according to Peyton et al. (2019, 2020), scoring amongst the top 100, 20, 50 to affect biodiversity, human-health and

Table 1 Introduction of 26 IAS to Cyprus from 2017–2023 included in one or more lists for their negative impacts on biodiversity, human health or economic sectors i.e. the list of IAS of Union Concern, the world's worst 100 IAS list, the European Plant Protection Organization (EPPO) A1 and A2 lists, the European Centre for Disease Prevention and Control (ECDC) factsheets as well as those indicated by the European

Alien Species Information Network (EASIN) database as having some “impact” (devoid of further data). Their inclusion in Peyton et al. (2019, 2020—suppl. files) within the top 100, 20 and 50 alien species with the potential to threaten biodiversity, human health and the economy, respectively, is denoted alongside a link to their species profile on the Cyprus Database of Alien Species (CyDAS)

Species	IAS of Union Concern	World's worst 100 IAS	EPPO A1 list	EPPO A2 list	ECDC factsheets	“Impact – YES” EASIN	Predicted by Peyton et al. (2019, 2020)	CyDAS info
			4	3	2	4	2	23
<i>Acridotheres tristis</i>	Yes	Yes				Yes	Yes	https://ris-ky.info/species/acridotheres-tristis
<i>Aedes aegypti</i>					Yes		Yes	https://ris-ky.info/species/aedes-aegypti
<i>Aedes albopictus</i>		Yes			Yes	Yes	Yes	https://ris-ky.info/species/aedes-albopictus
<i>Amathia verticillata</i>					Yes	Yes	Yes	https://ris-ky.info/species/amathia-verticillata
<i>Austrocylindropuntia subulata</i>					Yes		Yes	https://ris-ky.info/species/austrocylindropuntia-subulata
<i>Bursatella leachii</i>					Yes			https://ris-ky.info/species/bursatella-leachii
<i>Cenchrus setaceus</i>	Yes				Yes			https://ris-ky.info/species/cenchrus-setaceus
<i>Chasmanthe aethiopica</i>					Yes			https://ris-ky.info/species/chasmanthe-aethiopica
<i>Clavelina oblonga</i>					Yes			https://ris-ky.info/species/clavelina-oblonga
<i>Diaphorina citri</i>		Yes						https://ris-ky.info/species/diaphorina-citri
<i>Drosophila suzukii</i>				Yes		Yes		https://ris-ky.info/species/drosophila-suzukii

Table 1 (continued)

Species	IAS of Union Concern	World's worst 100 IAS	EPPO A1 list	EPPO A2 list	ECDC factsheets	“Impact – YES” EASIN	Predicted by Peyton et al. (2019, 2020)	CyDAS info
<i>Hylocereus undatus</i>						Yes		https://ris-ky.info/species/hylocereus-undatus
<i>Leonotis nepetifolia</i>						Yes		https://ris-ky.info/species/leonotis-nepetifolia
<i>Leptoglossus occidentalis</i>						Yes	Yes	https://ris-ky.info/species/leptoglossus-occidentalis
<i>Myoporum laetum</i>						Yes		https://ris-ky.info/species/myoporum-laetum
<i>Opogona sacchari</i>				Yes		Yes		https://ris-ky.info/species/opogona-sacchari
<i>Paratrechina longicornis</i>						Yes		https://ris-ky.info/species/paratrechina-longicornis
<i>Phyllorhiza punctata</i>						Yes	Yes	https://ris-ky.info/species/phyllorhiza-punctata
<i>Plotosus lineatus</i>	Yes					Yes	Yes	https://ris-ky.info/species/plotosus-lineatus
<i>Spartium junceum</i>						Yes		https://ris-ky.info/species/spartium-junceum
<i>Spodoptera frugiperda</i>				Yes				https://ris-ky.info/species/spodoptera-frugiperda
<i>Spodoptera litura</i>			Yes			Yes		https://ris-ky.info/species/spodoptera-litura
<i>Styela plicata</i>						Yes		https://ris-ky.info/species/styela-plicata

Table 1 (continued)

Species	IAS of Union Concern	World's worst 100 IAS	EPPO A1 list	EPPO A2 list	ECDC factsheets	“Impact – YES” EASIN	Predicted by Peyton et al. (2019, 2020)	CyDAS info
<i>Tradescantia fluminensis</i>						Yes	Yes	https://ris-ky.info/species/tradescantia-fluminensis
<i>Tropaeolum majus</i>						Yes		https://ris-ky.info/species/tropaeolum-majus
<i>Wasemannia auropunctata</i>	Yes	Yes				Yes	Yes	https://ris-ky.info/species/wasemannia-auropunctata

the economy, respectively (Peyton et al. 2019, 2020—suppl. files).

Regarding the nine plant species in Table 1, these are common within the plant trade and were most certainly present on Cyprus yet horizon scanning exercises also dealt with their establishment and impacts. Nevertheless, at the time of the horizon scanning exercises (prior to 2017), there was no knowledge of their escape from cultivation but reports of casual, escaped or naturalized plants appear later in the scientific literature (Suppl. File 1). Thus, it is possible that at the time of the original horizon scans, these plants were already present in the wild, either as casual records (and therefore eligible for inclusion on the horizon scan list) or established species but it is also possible they have escaped since the scans.

Of these 10 IAS that arrived (Table 1—predicted by Peyton et al. 2019, 2020), seven (i.e. *Acridoheres tristis*, *Aedes aegypti*, *Aedes albopictus*, *Amathina verticillata*, *Plotosus lineatus*, *Phyllorhiza punctata*, and *Wasemannia auropunctata*) scored high during the horizon scanning exercises. We then added to the list of IAS the venomous stonefish *Synanceia verrucosa* due to its high score and invasiveness, despite not being included in any of the aforementioned impact lists in Table 1. These eight taxa were predicted within the top 20 IAS to arrive, establish and impact the island during horizon scanning exercises assessing 225 (Peyton et al. 2019) and 352 (Peyton et al. 2020) species, respectively (Table 2).

A further 10 species (including *Austrocylindropuntia subulata*, *Leptoglossus occidentalis* and *Tradescantia fluminensis* from Table 1) were detected but received lower scores during the horizon scans for their potential impact on biodiversity, human health and socioeconomic impacts (Table 3), and consequently were not included on the high priority lists of the horizon scans (Table 2, Peyton et al. 2019, 2020). Although, *Austrocylindropuntia subulata*, *Dorvillea similis*, *Leptoglossus occidentalis*, *Matuta victor*, *Myra subgranulata*, and *Tradescantia fluminensis* scored within the top 100 species to arrive, establish and impact native biodiversity (Peyton et al. 2019), these species received lower scores, ranking them between 50th—100th position (Peyton et al. 2019—suppl. file). *Heliotropium curassavicum* scored highly during the horizon scanning exercises due to its potential impacts on native biodiversity, i.e. competition with other species (Peyton et al. 2019—suppl. file). The species is widespread in the Mediterranean and was first reported from Cyprus in 2018 (Charilaou 2018). According to Charilaou (2018) “the population [...] is very small (about 50 plants), but seems to be well established”, while “it is likely to occur in other coastal places and saline ground in Cyprus” recommending further monitoring (Fig. 1). Nevertheless, the plant is classified in the Flora of Cyprus website (Hand et al. 2011) as a naturalized non-invasive species and no data on its impacts were retrieved. Thus, it was not included in the priority IAS list of species that were correctly predicted to arrive (Table 2).

Table 2 Details regarding the establishment status, the year of detection, sources of information and whether they are included in the EU IAS regulation (Union list) for the eight

species that received the highest scores (i.e. in top 20) during the Horizon Scanning Exercises and subsequently arrived on the island (Peyton et al. 2019, 2020)

	Species	Common name	Status	Year of Detection	Source of Information	Predicted to arrive by Peyton et al. (2019) or Peyton et al. (2020)	EU IAS Regulation (Yes or No)	CyDAS info
1	<i>Acridootheres tristis</i> (Linnaeus, 1766)	Common myna	Extirpation measures in progress	2022	Magory Cohen et al. (2022)	Peyton et al. (2019)	Y	https://ris-ky.info/species/acridootheres-tristis
2	<i>Aedes aegypti</i> Linnaeus, 1762	Yellow Fever mosquito	Unknown	2022	CNA/Ministry of Health (2022)	Peyton et al. (2020)	N	https://ris-ky.info/species/aedes-aegypti
3	<i>Aedes albopictus</i> (Skuse, 1894)	Asian tiger mosquito	Established	2022	Christou et al. (2023); Martinou et al. (2023)	Peyton et al. (2020)	N	https://ris-ky.info/species/aedes-albopictus
4	<i>Amathia verticillata</i> (Delle Chiaje, 1822)	Spaghetti Bryozoan	Unknown	2016	Ulman et al. (2017)	Peyton et al. (2019)	N	https://ris-ky.info/species/amathia-verticillata
5	<i>Phyllorhiza punctata</i> von Lendenfeld, 1884	Australian spotted jellyfish	Unknown	2022	Kaminas et al. (2022)	Peyton et al. (2020)	N	https://ris-ky.info/species/phyllorhiza-punctata
6	<i>Plotosus lineatus</i> (Thunberg, 1787)	Striped eel fish	Not established	2022	Beton and Huseyinoglu (2022)	Peyton et al. (2019), (2020)	Y	https://ris-ky.info/species/plotosus-lineatus
7	<i>Synanceia verrucosa</i> Bloch & Schneider, 1801	Reef Stonefish	Not established	2020	Akbora et al. (2021)	Peyton et al. (2020)	N	https://ris-ky.info/species/synanceia-verrucosa
8	<i>Wasmannia auropunctata</i> (Roger, 1863)	Little fire ant	Established	2022	Demetriou et al. (2022), (2023a)	Peyton et al. (2020)	Y	https://ris-ky.info/species/wasmannia-auropunctata

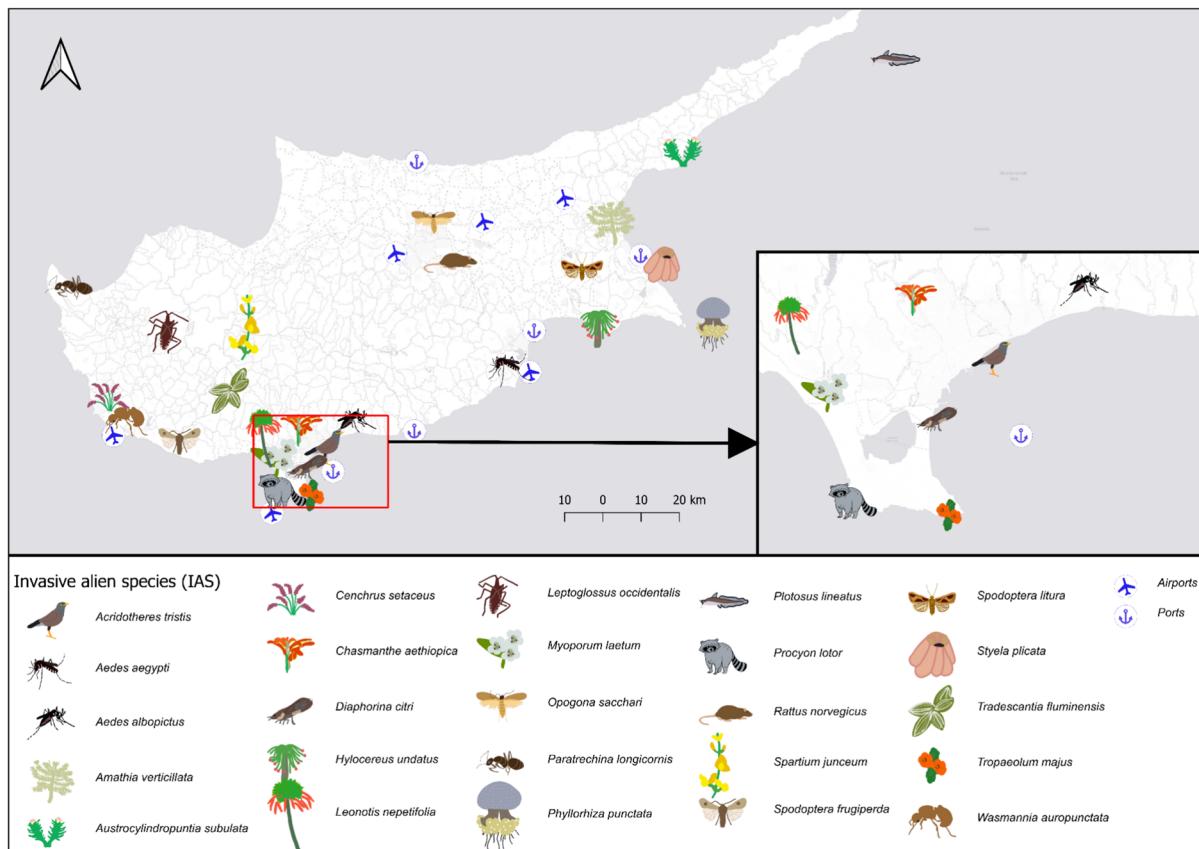
An additional 17 species had occurred in Cyprus prior to the horizon scanning exercises but were still assessed in them because knowledge of their arrival had not been disseminated and checklists of non-native species on the island were not fully up to date at the time (Table 4).

Discussion

Prevention is the least costly and most effective option for reducing the threats from biological invasions (Roy et al. 2024b). From 2017 to 2023, there were publications on 183 novel alien species reported from Cyprus out of which 26 were categorised as IAS because of evidence of their negative impacts

Table 3 Additional alien species detected in the last seven years that were assessed by Peyton et al. (2019, 2020) but were not included on the priority lists of species because they received lower scores for their potential impact

No	Species	Received impact score			Assessed by:	Reference(s)
		Biodiversity	Human health	Economy		
1	<i>Heliotropium curassavicum</i>	100	–	–	Peyton et al. (2019)	https://ris-ky.info/species/heliotropium-curassavicum
2	<i>Tradescantia fluminensis</i>	60	–	–	Peyton et al. (2019)	https://ris-ky.info/species/tradescantia-fluminensis
3	<i>Leptoglossus occidentalis</i>	75	–	–	Peyton et al. (2019)	https://ris-ky.info/species/leptoglossus-occidentalis
4	<i>Matuta victor</i>	64	–	–	Peyton et al. (2019)	https://ris-ky.info/species/matuta-victor
5	<i>Austrocylindropuntia subulata</i>	60	20	–	Peyton et al. (2019, 2020)	https://ris-ky.info/species/austrocylindropuntia-subulata
6	<i>Dorvillea assimilis</i>	75	25	25	Peyton et al. (2019, 2020)	https://ris-ky.info/species/dorvillea-similis
7	<i>Myra subgranulata</i>	75	25	25	Peyton et al. (2019, 2020)	https://ris-ky.info/species/myra-subgranulata
8	<i>Spodoptera frugiperda</i>	–	9	27	Peyton et al. (2020)	https://ris-ky.info/species/spodoptera-frugiperda
9	<i>Thaumastocoris peregrinus</i>	–	12	36	Peyton et al. (2020)	https://ris-ky.info/species/thaumastocoris-peregrinus
10	<i>Zelus renardii</i>	–	16	16	Peyton et al. (2020)	https://ris-ky.info/species/zelus-renardii


on biodiversity, socioeconomic sectors, human- and plant health. The two horizon scans performed in Cyprus predicted 10 of these 26 species denoted as IAS through various databases (Table 1), that subsequently arrived and are known to have major impacts on biodiversity, human health and the economy such as common myna, two *Aedes* invasive mosquitoes, striped eel fish and little fire ant. Nevertheless, upon the addition of the stone fish *Synanceia verrucosa* and removal of *Austrocylindropuntia subulata*, *Heliotropium curassavicum*, *Leptoglossus occidentalis*, and *Tradescantia fluminensis*, eight highly-scoring priority IAS were effectively predicted and subsequently arrived (Table 2). The circumstances of their arrival, discovery and mitigation measures are discussed below.

The eight top-listing IAS correctly predicted to arrive in Cyprus by horizon scanning, their impacts and actions taken.

Of the terrestrial IAS predicted to arrive, the common myna (*Acridotheres tristis*) is one of the most important avian IAS globally with negative impacts

on biodiversity and agriculture (Peyton et al. 2019; Magory Cohen et al. 2022). In Cyprus, the common myna was first observed in January 2022, with 11 individuals observed on the Akrotiri peninsula and close to Limassol port (Magory Cohen et al. 2022). Eradication measures were undertaken by SBAA Environment Department Wardens and the Game and Fauna Service, and 21 individuals had been culled by December 2024 (Nathanael 2024). The proximity of sightings to Limassol port, and the observation of groups of birds in the same area close to the port, following culling events are consistent with multiple biological invasions (Nathanael 2024), suggesting introduction has been ship mediated. The risks of repeated introductions of this species are thus extremely high.

Two of the predicted IAS were mosquitoes. The yellow fever mosquito, *Aedes aegypti*, previously eradicated from Cyprus in the 1930s (Aziz 1934, reported in Violaris et al. 2009), was discovered at Dromolaxia close to Larnaca international airport in 2022 (CNA/Ministry of Health 2022). A pilot

Fig. 1 Map of Cyprus illustrating where IAS in the legend were first located and recorded, with the inset focusing in on the Akrotiri peninsula and Limassol port area

project in 2023 to eradicate it used the Sterile Insect Technique (SIT) releasing batches of 100,000 sterile male yellow fever mosquitoes weekly in a test area roughly 0.5 km² in Kiti, close to the airport (IAEA 2023), but information on the success of this approach is lacking at this time. The Asian tiger mosquito *Aedes albopictus*, was the second invasive mosquito species recorded in Cyprus in 2022 (Christou et al. 2023). Citizen scientists provided regular feedback from six *Ae. albopictus*-positive locations in Limassol, revealing its rapid spread into new locations in the suburbs of Limassol and in Nicosia (A. Martinou unpublished data). Like *Ae. aegypti*, *Ae. albopictus* can cause diseases such as dengue, chikungunya, and Zika and suggests its potential impact on native biodiversity i.e. the native *Aedes cretinus* (Giatropoulos et al. 2024), a species also known to exist in Cyprus (Martinou et al. 2016; Martinou et al. 2021). To date proposed

interventions have proved unsuccessful (Vasquez et al. 2023), possibly due to control efforts focusing on public land and not private properties where *Ae. albopictus* breeds. As a result, *Ae. albopictus* continues to spread (Piccinno et al. 2025).

The little fire ant *Wasmannia auropunctata*, which is native to the Neotropics, but has invaded the Mediterranean, known from Israel, Spain and France (Vonshak and Ionescu-Hirsch 2009; Vonshak et al. 2010; Espadaler et al. 2018, 2020; Blight et al. 2024; Arcos et al. 2025; Pérez-Delgado et al. 2025). The little fire ant was first detected in Cyprus in 2022, likely unintentionally introduced through the plant trade, and since then its distribution on the island has increased based on extensive surveys (Demetriou et al. 2022, 2023a, unpubl. data). It is renowned for its adverse impacts on native biodiversity, human and animal health as well as the economy, amongst others displacing native arthropods from invaded areas, causing

Table 4 Species occurring in Cyprus prior to the horizon scanning that were assessed by Peyton et al. (2019) and Peyton et al. (2020). Column on establishment status follows the Cyprus Database of Alien Species (CyDAS) terminology

No	Species	Establishment status	Notes
1	<i>Atriplex nummularia</i>	Not Established	https://ris-ky.info/species/triplex-nummularia
2	<i>Caulerpa taxifolia</i>	Established	https://ris-ky.info/species/caulerpa-taxifolia-var-distichophylla
3	<i>Corvus splendens</i>	Not Established	https://ris-ky.info/species/corvus-splendens
4	<i>Mustela nivalis</i>	Extinct	https://ris-ky.info/species/mustela-nivalis
5	<i>Parthenocissus quinquefolia</i>	Not Established	https://ris-ky.info/species/parthenocissus-quinquefolia
6	<i>Paulownia tomentosa</i>	Unknown	https://ris-ky.info/species/paulownia-tomentosa
7	<i>Penaeus semisulcatus</i>	Not Established	https://ris-ky.info/species/penaeus-semisulcatus
8	<i>Procyon lotor</i>	Not Established	https://ris-ky.info/species/procyon-lotor
9	<i>Prosopis juliflora</i>	Not Established	https://ris-ky.info/species/prosopis-juliflora
10	<i>Oreochromis niloticus</i>	Not Established	https://ris-ky.info/species/oreochromis-niloticus
11	<i>Oxyura jamaicensis</i>	Not Established	https://ris-ky.info/species/oxyura-jamaicensis
12	<i>Rattus norvegicus</i>	Established	https://ris-ky.info/species/rattus-norvegicus
13	<i>Solanum linnaeanum</i>	Established	https://ris-ky.info/species/solanum-linnaeanum
14	<i>Solenopsis geminata</i>	Not Established (doubtful record)	https://ris-ky.info/species/solenopsis-geminata
15	<i>Sus scrofa</i>	Exterminated	https://ris-ky.info/species/sus-scrofa
16	<i>Testudo graeca</i>	Established	https://ris-ky.info/species/testudo-graeca-ibera
17	<i>Trichomyrmex destructor</i>	Established	https://ris-ky.info/species/trichomyrmex-destructor

anaphylactic shocks, skin and eye problems, with management and eradication efforts being both challenging and costly (Lubin 1984; Wetterer and Porter 2003; Mbenoun-Masse et al. 2017; Rosselli and Wetterer 2017; Angulo et al. 2022; Kidon et al. 2022; Blight et al. 2024).

Several IAS found were marine organisms, including the Australian spotted jellyfish (*Phyllorhiza punctata*), native to the western Pacific Ocean, which has caused significant ecological and economic damage globally (Kaminas et al. 2022). It was first reported in February 2022 by a recreational diver through the citizen science platform “Is it alien to you? Share it!!!” (Kaminas et al. 2022). The striped eel catfish *Plotosus lineatus* is an Indo-Pacific reef-associated marine fish, inhabiting shallow coastal waters (FishBase 2025a). It was first recorded in the Mediterranean invading the Israeli coast (Edelist et al. 2012) and in Cyprus, ~ 17 specimens were caught by a fisherman off Rizokarpasso Peninsula in April 2022 (Beton et al. 2022). The reef stonefish *Synanceia verrucosa* Bloch & Schneider, 1801 is an alien stonefish caught and photographed in May 2020 by harpooners in Kumyali in the north of Cyprus (Akbora et al. 2021). It primarily inhabits shallow rocky areas and is characterized as one of the

world’s most venomous fish (FishBase 2025b). This species was not included in the IAS of EU Concern or the EASIN database as having any negative impact on native species and thus, was included in the horizon scan for its threat to human health only. Lastly, *Amathia verticillata*, a cryptogenic bryozoan thought native to the Caribbean Sea (Galil and Gevili 2014; Marchini et al. 2015; Nascimento et al. 2021), was recorded just before the first horizon scan. It was first recorded in Cyprus in 2016 by Ulman et al. (2017) but published after the first horizon scanning workshop, thus included therein. Although we could not trace further records from Cyprus, the species is expected to have spread since it is widely distributed within the Mediterranean Basin (Ferrario et al. 2018; Nascimento et al. 2021).

Importance of horizon-scanning and species inventories

A total of 17 species were already present in or reported from Cyprus prior to the horizon scanning exercises (Table 4), but knowledge of those occurrences had not been disseminated widely or had been overlooked at the time of the horizon scans. Amongst these, was the brown rat *Rattus*

norvegicus. Although thought to have originated from Eastern Asia, it now has a cosmopolitan distribution and its impacts on the global economy are estimated at around 156.6 million US dollars during the last century (Diagne et al. 2023), with severe effects on native island biotas, including extinction of animals through predation and competition (Amori and Clout 2003; St Clair 2011; Harper and Bunbury 2015). Human health impacts of brown rats include spreading disease through the transmission of zoonotic bacteria, protozoa and viruses (Ryll et al. 2017; Galán-Puchades et al. 2021; Sabour et al. 2022). In Cyprus, its prior presence was not known to the wider community at the time of the first horizon scan (Peyton et al. 2019), and a record from 2019 in Nicosia had been described as the first occurrence (Hadjisterkotis et al. 2019, 2020). However, records as far back as 1985 have been uncovered (Hoppe 1985), with captures as part of studies performed in the early 2000s showing *R. norvegicus* to be common and widespread by then (Antoniou et al. 2010; Psaroulaki et al. 2010) and known by the time of the second horizon scan (Peyton et al. 2020). Similarly, horizon scanning prioritized the raccoon *Procyon lotor*, which is native to North America, but that has spread in Europe after escaping from fur farms, pet owners, and from introductions into the wild in the former Soviet Union in the early twentieth century (Bartoszewicz 2006). It is one of the most successful alien carnivores in Europe due to its high reproductive capacity, feeding habits and adaptive behaviour, preying on native species such as waterfowl, amphibians, rodents, reptiles and insects (Bartoszewicz 2006), and is a vector of parasites and diseases that risk native wildlife and humans alike. Again, a record of the raccoon was documented prior to the horizon scanning, in March 2011 in the Akrotiri peninsula in Cyprus, observed on a camera trap. The animal was captured by the Game and Fauna Service. Raccoons have also been captured from inland sites from the villages of Prodromos and Pareklissia in Limassol district, but also from within Nicosia municipality. These animals were likely kept as pets and then intentionally released or escaped from captivity. Furthermore, tortoises such as the assessed *Testudo graeca*, or its relative species *T. marginata*, were already reported during the 1980s (Demetropoulos and Lambert 1986; Hadjisterkotis and Reese 1994) but to-date

records are rare. Data on year of first reporting of *Corvus splendens* (in 2011) and *Oxyura jamaicensis* (in 2011) had not been made publicly available and were obtained upon communication with BirdLife Cyprus, while both mammals *Mustela nivalis* and *Sus scrofa* were rightfully assessed as these species have gone extinct on the island (Hadjisterkotis 2000; Hadjisterkotis and Heise-Pavlov 2006; Rodrigues et al. 2016). Alien ant species *Solenopsis geminata* and *Trichomyrmex destructor* were first reported for Cyprus in 1997 and 1956 (Georghiou 1977; Collingwood et al. 1997), nevertheless, their presence was questioned by Salata et al. (2019) and knowledge of the absence of *S. geminata* and presence of *T. destructor* was widely disseminated after the horizon scanning exercises (Demetriou et al. 2023a). A number of alien plants e.g. *Atriplex nummularia*, *Parthenocissus quinquefolia*, *Paulownia tomentosa*, *Prosopis juliflora*, *Solanum linnaeanum* and marine organisms *Caulerpa taxifolia* and *Penaeus semisulcatus* had also been reported, with records not being widely disseminated.

These findings showcase the importance of the horizon scanning exercises in predicting the introduction of IAS and informing contingency planning as well as the importance of up-to-date species inventories of alien and IAS such as the CyDAS. Even in the case of the species that had already occurred unbeknownst to the participants of the horizon scanning exercises, the scans and resultant publications raised awareness of these IAS more widely, potentially aiding in their identification for appropriate mitigation. In addition to the IAS highlighted in the horizon scans, a further ten IAS species that had received lower scores in Peyton et al. (2019, 2020) were detected from 2017 to 2023 (Table 3). Three out of these 10 species are IAS according to EASIN, i.e. *Tradescantia fluminensis*, which was established prior to the second horizon scan thus not included therein (Peyton et al. 2020), *Leptoglossus occidentalis*, and *Austrocylindropuntia subulata*, while *Spodoptera frugiperda* is included in the EPPO A2 list. Of those, according to the National Plant Protection Organisation (NPPO) of Cyprus, *S. frugiperda* is being eradicated (<https://gd.eppo.int/reporting/article-7667>), however, citizen-science and data from biodiversity experts show a wide distribution on the island (iNaturalist 2025; Lepiforum 2025).

Further cases of note in relation to species predicted to arrive and impact the island's economy were the brown marmorated stink bug (*Halyomorpha halys*) and the Colorado potato beetle (*Leptinotarsa decemlineata*) that were ranked amongst the top 50 (Peyton et al. 2020). *Halyomorpha halys* was reported in Cyprus in May 2022, when a citizen scientist through the 'Bug Alert Cyprus' (<https://martinoulab.weebly.com/bug-alert-cyprus.html>) awareness raising campaign (Vétek et al. 2021) reported that they found a dead specimen in their luggage. Similarly, the Colorado potato beetle (*L. decemlineata*) was detected in 2010 by inspectors of the Department of Agriculture in a consignment of ware potatoes from Bulgaria, which immediately proceeded with its destruction, thus preventing its release into circulation, and maintaining the status of Cyprus as a protected zone in accordance with EU regulations. To this end, *Solanum tuberosum* L., i.e. the main host plant of *L. decemlineata*, may only enter Cyprus subject to special phytosanitary requirements for protected zones. As the first event (*H. halys*) concerned a dead individual and the second (*L. decemlineata*) a border interception, these species were not considered to have arrived and established. Nevertheless, these constitute important findings necessitating stronger control, participation of citizens in the scientific research of biological invasions as well as increased reporting and data-dissemination.

Communication, citizen science and management of IAS

The detection of IAS in many cases involves transportation through airports and seaports. Yet, none of the introduced IAS were reported at border crossings across the 'Green Line', the United Nations controlled buffer zone that extends 180 km across the island. The lack of records from the Green Line highlights the need for reporting, importance of cross-community collaboration across the island and a need to raise awareness to better inform border control staff and customs officers regarding IAS. Data on IAS detected during border controls and phytosanitary inspections could be shared to inform action and specifically raise awareness of potential introductions of IAS. Border inspections and pathway monitoring could be supported by local experts offering identification services for a variety of taxa. The horticultural

industry is a major pathway for the introduction of alien plants (Hinsley et al. 2025), insects such as ants, including the invasive alien little fire ant (Demetriou et al. 2023a) that are often missed by border interceptions (Wong et al. 2023). Eradication and control actions across borders can also be a major challenge for invasive vertebrates, such as the common myna (Magory Cohen et al. 2022).

Communication is also essential among the various institutions and authorities discovering IAS and taking action. The horizon scans involved researchers as well as experts from government departments and thus these relevant authorities were informed on which species would potentially arrive on the island within a 10-year time frame. Communicating the outcomes of the horizon scanning beyond researchers and policy makers to professionals such as customs officers, fishers, ship crews, pet shop owners, and school teachers can aid the early detection of IAS.

Furthermore, early warning and rapid responses towards IAS increasingly depend on the commitment of citizen scientists to report observations of IAS of concern (Vanderhoeven et al. 2015; Price-Jones et al. 2022; Pocock et al. 2023). There are examples of several successful citizen science initiatives e.g. the Asian Hornet Watch (Hassall et al. 2025), EASIN and Mosquito Alert (Palmer et al. 2017) that run at national or European level. Best practice guides and courses for specific target groups such as school teachers (AlienCSI 2023; academy.europa.eu/courses/have-you-seen-an-alien) can aid those who wish to initiate citizen science projects focusing on IAS. In Cyprus, six IAS identified in the horizon scans were reported by citizen scientists. Through public participation, IAS records can be generated for species affecting biodiversity, such as the common myna (Nathanael 2024) and for those that affect human health e.g. the Asian tiger and yellow fever mosquitoes (Yetismis et al. 2022; Lühken et al. 2023). Indeed, artificial intelligence, computer vision or deep learning models could be used to automatically identify IAS from photographs collected by citizen scientists on platforms such as iNaturalist (Cardoso et al. 2024). Through such platforms, information could rapidly be conveyed to decision-makers who can take appropriate action (Roy et al. 2024b). Other tools such as environmental DNA (eDNA) can help detect introduced IAS that are difficult to detect otherwise, including freshwater or marine taxa (Holman

et al. 2019; Rishan et al. 2023). Environmental DNA sampling could be adopted during school field study programs run by environment centers within protected areas in Cyprus. Provided that authorities can leverage these data, IAS early detection and response could be significantly enhanced.

Further benefits of the two horizon scan workshops were the networking opportunities and the sharing of information on IAS at the national and international level. This included updates to the [CyDAS](#) online database and the development of [CyDAS species alert cards](#) (Demetriou et al. 2025) and the ACE database (Alien to Cyprus Entomofauna) (Demetriou et al. 2023b). The two databases can assist monitoring and research, risk assessments, prioritization of IAS, management strategies and the establishment of rapid response/early warning systems. Future horizon scans will benefit from information on the most recent IAS horizon scanning in support of implementation of Regulation 1143/2014 prepared for the European Commission (Nunes et al. 2025), as well as impacts of IAS through the Global Impacts Dataset of Invasive Alien Species (GIDIAS) dataset compiled for the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Assessment on IAS (Bacher et al. 2025). GIDIAS provides information on the impacts of IAS on biodiversity but also on nature's contributions, economy and health. It can greatly assist experts who need to identify the highest risk species during horizon scans or prioritize actions and management plans for IAS at the early stage of introduction.

Conclusion

Overall, the horizon scanning was an important process to prioritize the emerging and most threatening IAS with the highest risk of introduction in Cyprus. As new IAS are continuously introduced it is important that horizon scanning is a dynamic process and that it is repeated within set time frames of 5–10 years. Pathway management plans and contingency planning at national level are a useful next step following horizon scanning. These plans could be shared widely at a local level with all stakeholders and authorities to allocate roles and responsibilities efficiently. Preparedness is key and it is essential that competent authorities should be made aware in a

timely manner of the results of horizon scans, to build capacity and engage in further contingency planning. Furthermore, the active engagement of the communities through citizen science initiatives can greatly help scientists and the authorities towards the early detection of introduced IAS as well as on reporting the spread or the impacts of IAS.

Acknowledgements We thank the Akrotiri Environment Education Centre for hosting the horizon scans and the follow-up workshop. We thank all the participants of the workshop. The workshops were funded by the UK government through Darwin Plus DPLUS056, DPLUS088 and Darwin Plus Local DPLUS0014, and updating the Cyprus Database of Alien Species through Darwin Plus DPLUS124. DPLUS175 has been useful in providing a forum for exchange of information. We would also like to thank Eloise Springate for the IAS illustrations. Lastly, we would like the editor Deah Lieurance, Belinda Gallardo and one anonymous reviewer for their constructive comments, changes and suggestions for improving the overall quality of the manuscript.

Author contributions ANGK conceived the study and designed it with AFM and JD. AFM and JD performed analyses with the help of information provided by all authors. AFM and JD prepared the first draft of the manuscript with contributions, comments and editing from all authors.

Funding Open access funding provided by the Cyprus Libraries Consortium (CLC). The workshops were funded by the UK government through Darwin Plus DPLUS056, DPLUS088 and Darwin Plus Local DPLUS0014, and updating the Cyprus Database of Alien Species through Darwin Plus DPLUS124. DPLUS175 also helped in providing a forum for exchange of information.

Data availability The study has not generated new data. All records referred to in the text are found in tables in the text or the supplement, with citations provided to sources of information.

Declarations

Conflict of interest The authors have no relevant financial or non-financial competing interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Adriaens T, D'hondt B, Carael S, Deconinck D, Devisscher S, Hillaert J, Jacobs I, Janssen J, Oosterlynck P, Strubbe R, Van Gompel W, Van Landuyt W, Vercruyse E, Paredis R, Westra T, Provoost S (2022) Assessment of current and future invasive plants in protected dune habitats of the Atlantic coastal region - Including management accounts of selected species for the LIFE DUNIAS project (LIFE20 NAT/BE/001442). Reports of the Research Institute for Nature and Forest 2022 (29). Research Institute for Nature and Forest, Brussels. <https://doi.org/10.21436/inbor.86703335>

Akbora HD, Çiçek BA, Ayas D (2021) The first record of *Synanceia verrucosa* Bloch & Schneider, 1801 and *Pagrus auriga* Valenciennes, 1843 from Cyprus. J Black Sea/medit Environ 27:109–116

AlienCSI (2023) Using citizen science with alien species: a practical guide for project initiators. <https://doi.org/10.5281/zenodo.7521429>. Accessed 04 February 2025

Amori G, Clout M (2003) Rodents on islands: a conservation challenge. In: Singleton GR, Hinds LA, Krebs CJ, Spratt DM (eds) Rats, mice and people: rodent biology and management, Australian Centre for International Agricultural Research, Canberra, pp 63–68

Angulo E, Hoffmann BD, Ballesteros-Mejia L, Taheri A, Balzani P, Bang A, Renault D, Cordonnier M, Bellard C, Diagne C, Ahmed DA, Watari Y, Courchamp F (2022) Economic costs of invasive alien ants worldwide. Biol Invasions 24:2041–2060. <https://doi.org/10.1007/s10530-022-02791-w>

Antoniou M, Psaroulaki A, Toumazos P, Mazeris A, Ioannou I, Papaprodromou M, Georgiou K, Hristofi N, Patsias A, Loucaides F, Moschandreas J, Tsatsaris A, Tselentis Y (2010) Rats as indicators of the presence and dispersal of pathogens in Cyprus: ectoparasites, parasitic helminths, enteric bacteria and encephalomyocarditis virus. Vector Borne Zoonotic Dis 10:9. <https://doi.org/10.1089/vbz.2009.0123>

Arcos J, Amorós E, Ángel R, Alarcón P (2025) Beyond urban boundaries: the invasive ant *Wasmannia auropunctata* (Roger, 1863) (Hymenoptera, Formicidae) now reaching Iberian coastal habitats. Contrib Entomol 75(1):183–189. <https://doi.org/10.3897/contrib.entomol.75.e142567>

Arianoutsou M, Adamopoulou C, Andriopoulos P, Bazos I, Christopoulou A, Galanidis A, Kalogianni E, Karachle PK, Kokkoris Y, Martinou AF, Zenetos A, Zikos A (2023) HELLAS-ALIENS. The invasive alien species of Greece: time trends, origin and pathways. NeoBiota 86:45–79. <https://doi.org/10.3897/neobiota.86.101778>

Bacher S, Ryan-Colton E, Coiro M, Cassey P, Galil BS, Nuñez MA, Ansong M, Dehnen-Schmutz K, Fayvush G, Fernandez RD, Hiremath AJ, Ikegami M, Martinou AF, McDermott SM, Preda C, Vilà M, Weyl OLF, Ananthram Aravind N, Angelidou I, Athanasiou K, Atkore V, Barney JN, Blackburn TM, Brockerhoff EG, Carbutt C, Carisio L, Castro-Díez P, Céspedes V, Christopoulou A, Cisneros-Heredia DF, Cooling M, de Groot M, Demetriou J, Dickey JWE, Duboscq-Carra VG, Early R, Evans TE, Flores-Males PT, Gallardo B, Gruber M, Hui C, Jeschke JM, Joelson NZ, Khan MA, Kumschick S, Lach L, Lapin K, Lioy S, Liu C, MacMullen ZJ, Mazzitelli MA, Measey J, Mrugała-Koese AA, Musseau CL, Nahrung HF, Pepori A, Pertierra LR, Pienaar EF, Pyšek P, Rivas Torres G, Rojas Martinez HA, Rojas-Sandoval J, Ryan-Schofield NL, Sánchez RM, Santini A, Santoro D, Scalera R, Schmidt L, Shivambu TC, Sohrabi S, Tricarico E, Trillo A, van't Hof P, Volery L, Zengeya TA, (2025) Global impacts dataset of invasive alien species (GIDIAS). Sci Data 12:832. <https://doi.org/10.1038/s41597-025-05184-5>

Bartoszewicz M (2006) NOBANIS – Invasive Alien Species Fact Sheet – *Procyon lotor* –. Online Database of the North European and Baltic Network on Invasive Alien Species – NOBANIS www.nobanis.org. Accessed 04 February 2025

Bertolino S, Ancillotto L, Bartolommei P, Benassi G, Capizzi D, Gasperini S, Lucchesi M, Mori E, Scillitani L, Sozio G, Falaschi M, Ficetola GF, Cerri J, Genovesi P, Carnovali L, Loy A, Monaco A, Wilson JR, Bacher S, Daehler CC, Groom QJ, Kumschick S, Lockwood JL, Robinson TB, Zengeya TA, Richardson DM (2020) A framework for prioritising present and potentially invasive mammal species for a national list. NeoBiota 62:31–54. <https://doi.org/10.3897/neobiota.62.52934>

Beton D, Huseyinoglu MF, Tiralongo F, Akyol O, Al Mabruk SA, Battaglia P, Beton D, Bitlis B, Borg JA, Bouchoucha M, Cinar ME, Crocetta F, Dragicevic B, Jdlcic JD, Evangelopoulos A, Jevans J, Fortic A, Gauff RP, Georgiadis CG, Gokoglu M, Grech D, Guy-Haim T, Huseyinoglu MF, Lombardo A, Marletta G, Mastrototaro F, Montesano F, Nunes F, Ozgul A, Ozturk B, Rammou D-L, Scuderi D, Terbiyik Kurt T, Trainito E, Trkov D, Ulman A, Unal V, Velasquez X (2022) First record of *Plotosus lineatus* (Thunberg, 1787) from Cyprus. Mediterr Mar Sci 23:725–747. <https://doi.org/10.12681/mms.31228>

Blight O, Thomas T, Jourdan H, Bichatton J-Y, Colindre L, Galkowski C (2024) Detection and early impacts of France's first established population of the little fire ant, *Wasmannia auropunctata*. Biol Invasions 26:627–631. <https://doi.org/10.1007/s10530-023-03218-w>

Cano-Barbacil C, Carrete M, Castro-Díez P, Delibes-Mateos M, Jaques JA, López-Darias M, Nogales M, Pino J, Ros M, Traveset A, Turon X, Vilà M, Altamirano M, Álvarez I, Arias A, Boix D, Cabido C, Cacabelos E, Cobo F, Cruz J, Cuesta JA, Dáder B, del Estal P, Gallardo B, Gómez Laporta M, González-Moreno P, Hernández JC, Jiménez-Alfaro B, Lázaro Lobo A, Leza M, Montserrat M, Oliva-Paterna FJ, Piñeiro L, Ponce C, Pons P, Rotchés-Ribalta R, Roura-Pascual N, Sánchez M, Trillo A, Viñuela E, García-Berthou E (2023) Identification of potential invasive alien species in Spain through horizon scanning. J Environ Manage 345:118696. <https://doi.org/10.1016/j.jenvman.2023.118696>

Carboneras C, Genovesi P, Vilà M, Blackburn TM, Carrete M, Clavero M, D'hondt B, Orueta JF, Gallardo B, Geraldes

P, González-Moreno P, Gregory RD, Nentwig W, Paquet J-Y, Pyšek P, Rabitsch W, Ramírez I, Scalera R, Tella JL, Walton P, Wynde R (2018) A prioritised list of invasive alien species to assist the effective implementation of EU legislation. *J Appl Ecol* 55:539–547. <https://doi.org/10.1111/1365-2664.12997>

Cardoso AS, Malta-Pinto E, Tabik S, August T, Roy HE, Correia R, Vicente JR, Vaz AS (2024) Can citizen science and social media images support the detection of new invasion sites? A deep learning test case with *Cortaderia selloana*. *Ecol Inform* 81:102602. <https://doi.org/10.1016/j.ecoinf.2024.102602>

Charilaou P (2018) *Heliotropium curassavicum* L. (Boraginaceae), a new alien species collected in Cyprus. *Cypricola* 10:1–4

Christou M, Lippert S, Weigand A, Angelidou I, Athanassiou KC, Demetriou J, Schaffner F, Martinou AF (2023) First record of the invasive Asian tiger mosquito *Aedes albopictus* in Cyprus based on information collected by citizen scientists. *JEMCA* 41(2):55–61. <https://doi.org/10.52004/JEMCA2022.0008>

Collingwood CA, Tigar BJ, Agosti D (1997) Introduced ants in the United Arab Emirates. *J Arid Environ* 37(3):505–512

Dawson W, Peyton JM, Pescott OL, Adriaens T, Cottier-Cook EJ, Frohlich DS, Key G, Malumphy C, Martinou AF, Minchin D, Moore N, Rabitsch W, Rorke SL, Tricarico E, Turvey KMA, Winfield II, Barnes DKA, Baum D, Bensusan K, Burton FJ, Carr P, Convey P, Copeland AI, Fa DA, Fowler L, García-Berthou E, Gonzalez A, González-Moreno P, Gray A, Griffiths RW, Guillem R, Guzman AN, Haakonsson J, Hughes KA, James R, Linares L, Maczey N, Mailer S, Naqqi Manco B, Martin S, Monaco A, Moverley DG, Rose-Smyth C, Shanklin J, Stevens N, Stewart AJ, Vaux AGC, Warr SJ, Werenkraut V, Roy HE (2023) Horizon scanning for potential invasive non-native species across the United Kingdom Overseas Territories. *Conserv Lett* 16:e12928. <https://doi.org/10.1111/conl.12928>

de Groot M, O'Hanlon R, Bullas Appleton E, Csóka G, Csiszár Á, Faccoli M, Gervasini E, Kirichenko N, Korda M, Marinšek A, Robinson N, Shuttleworth C, Sweeney J, Tricarico E, Verbrugge L, Williams D, Zidar S, Kus Veenvliet J (2020) Challenges and solutions in early detection, rapid response and communication about potential invasive alien species in forests. *Manag Biol Invasions* 11:637–660. <https://doi.org/10.3391/mbi.2020.11.4.02>

Demetriou J, Georgiadis C, Roy HE, Martinou AF, Borowiec L, Salata S (2022) One of the world's worst invasive alien species *Wasmannia auropunctata* (Hymenoptera: Formicidae) detected in Cyprus. *Sociobiology* 69:e8536. <https://doi.org/10.13102/sociobiology.v69i4.8536>

Demetriou J, Georgiadis C, Martinou AF, Roy HE, Wetterer JK, Borowiec L, Economo EP, Triantis KA, Salata S (2023a) Running rampant: the alien ants (Hymenoptera, Formicidae) of Cyprus. *NeoBiota* 88:17–73. <https://doi.org/10.3897/neobiota.88.106750>

Demetriou J, Radea C, Peyton JM, Groom Q, Roques A, Rabitsch W, Seraphides N, Arianoutsou M, Roy HE, Martinou AF (2023b) The alien to Cyprus entomofauna (ACE) database: a review of the current status of alien insects (Arthropoda, Insecta) including an updated species checklist, discussion on impacts and recommendations for informing management. *NeoBiota* 83:11–42. <https://doi.org/10.3897/neobiota.83.96823>

Demetriou J, Martinou AF, Bowler D, Peyton J, Pescott OL, Michailidis N, Mountford O, Onete M, Stoumboudi M, Rathod B, van Breda J, Roy HE, Zenetos A (2025) The Cyprus Database of Alien Species (CyDAS). *Scientific Data* 12:1881

Demetropoulos A, Lambert M (1986) Herpetology in Cyprus. *Br Herpetol Soc Bull* 17:22–27

Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021) High and rising economic costs of biological invasions worldwide. *Nature* 592:571–576. <https://doi.org/10.1038/s41586-021-03405-6>

Diagne C, Ballesteros-Mejía L, Cuthbert RN, Bodey TW, Fantle-Lepczyk J, Angulo E, Bang A, Dobigny G, Courchamp F (2023) Economic costs of invasive rodents worldwide: the tip of the iceberg. *PeerJ* 11:e14935. <https://doi.org/10.7717/peerj.14935>

EASIN (2024) European Alien Species Information Network. <https://easin.jrc.ec.europa.eu/easin>. Accessed 18 June 2024

Edelist D, Golani D, Rilov G, Spanier E (2012) The invasive venomous striped eel catfish *Plotosus lineatus* in the Levant: possible mechanisms facilitating its rapid invasional success. *Mar Biol* 159:283–290

EPPO (2024) European and Mediterranean Plant Protection Organization. <https://www.eppo.int/index>. Accessed 18 June 2024

Espadaler X, Pradera C, Santana JA (2018) The first outdoor-nesting population of *Wasmannia auropunctata* in continental Europe (Hymenoptera, Formicidae). *Iberomyrmex* 10:5–12

Espadaler X, Pradera C, Santana JA, Ríos Reyes A (2020) Dos nuevas poblaciones europeas de la pequeña hormiga de fuego, *Wasmannia auropunctata* (Roger, 1863) (Hymenoptera: Formicidae) en Andalucía (España). *Boletín SAE* 30:189–192

Ferrario J, Rosso A, Marchini A, Occhipinti-Ambrogi A (2018) Mediterranean non-indigenous bryozoans: an update and knowledge gaps. *Biodivers Conserv* 27:2783–2794. <https://doi.org/10.1007/s10531-018-1566-2>

FishBase (2025a) *Plotosus lineatus* (Thunberg, 1787). <https://www.fishbase.se/summary/4706>. Accessed 14 February 2025

FishBase (2025b) *Synanceia verrucosa* Bloch & Schneider, 1801. <https://www.fishbase.se/summary/5825>. Accessed 14 February 2025

Galán-Puchades MT, Treliš M, Sáez-Durán S, Cifre S, Gosalvez C, Sanxís-Furió J, Pascual J, Bueno-Marí R, Franco S, Perachó V, Montalvo T, Fuentes MV (2021) One Health approach to zoonotic parasites: molecular detection of intestinal protozoans in an urban population of Norway rats, *Rattus norvegicus*, in Barcelona, Spain. *Pathogens* 10(3):311. <https://doi.org/10.3390/pathogens10030311>

Galil BS, Gevili R (2014) *Zoobotryon verticillatum* (Bryozoa: Ctenostomatida: Vesiculariidae), a new occurrence on

the Mediterranean coast of Israel. *Mar Biodivers Rec* 7:1–4. <https://doi.org/10.1017/S1755267214000086>

Georghiou GP (1977) The insects and mites of Cyprus. With emphasis on species of economic importance to agriculture, forestry, man and domestic animals. Benaki Phytopathological Institute. Kiphissia, Athens, Greece, p 347

Giatropoulos A, Balatsos G, Lytra I, Karras V, Koliopoulos G, Papachristos D, Michaelakis A (2024) Records of *Aedes (Stegomyia) cretinus* in Greece before and after the invasion of *Aedes (Stegomyia) albopictus* (Diptera: Culicidae). *Eur J Entomol* 121:199–205. <https://doi.org/10.14411/eje.2024.022>

GISD (2024) Global Invasive Species Database. http://www.iucngisd.org/gisd/100_worst.php. Accessed 18 June 2024.

Hadjisterkotis E (2000) The introduction of wild boar *Sus scrofa* in Cyprus: an alien species in a highly endemic area. *Biogeographia—J Integ Biogeo* 21(1):625–646

Hadjisterkotis E, Heise-Pavlov PM (2006) The failure of the introduction of wild boar *Sus scrofa* in the island of Cyprus: a case study. *Eur J Wildl Res* 52(3):213–215. <https://doi.org/10.1007/s10344-006-0037-3>

Hadjisterkotis E, Reese DS (1994) Palaeontological and archaeological evidence for turtles on Cyprus, with new information on living tortoises. *Br Herpetol Soc Bull* 49:16–18

Hadjisterkotis E, Konstantinou G, Sanna D, Pirastru M, Mereu P (2020) First mtDNA sequences and body measurements for *Rattus norvegicus* from the Mediterranean island of Cyprus. *Life* 10:136. <https://doi.org/10.3390/life10080136>

Hadjisterkotis E, Konstantinou G, Sanna D, Pirastru M, Mereu P (2019) The first record of *Rattus norvegicus* on the island of Cyprus and the expected effect on agriculture and local biota. X International Agriculture Symposium, Agrosym 2019, Jahorina, Bosnia and Herzegovina, 3–6 October 2019. Proceedings 2019 pp.236–241 ref.26.

Hand R, Hadjikyriakou GN, Christodoulou CS (2011) Flora of Cyprus – a dynamic checklist. Published at <http://www.flora-of-cyprus.eu/>. Accessed 27 January 2026

Harper GA, Bunbury N (2015) Invasive rats on tropical islands: Their population biology and impacts on native species. *Glob Ecol Conserv* 3:607–627. <https://doi.org/10.1016/j.gecco.2015.02.010>

Hassall RMJ, Purse BV, Barwell L, Booy O, Lioy S, Rorke S, Smith K, Scalera R, Roy HE (2025) Predicting the spatio-temporal dynamics of biological invasions: have rapid responses in Europe limited the spread of the yellow-legged hornet (*Vespa velutina nigrithorax*)? *J Appl Ecol* 62:106–118. <https://doi.org/10.1111/1365-2664.14829>

Hinsley A, Hughes AC, van Valkenburg J, Stark T, van Delft J, Sutherland W, Petrovan SO (2025) Understanding the environmental and social risks from the international trade in ornamental plants. *Bioscience* 75(3):222–239. <https://doi.org/10.1093/biosci/biae124>

Holman LE, de Bruyn M, Creer S, Carvalho G, Robidart J, Rius M (2019) Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. *Sci Rep* 9:11559. <https://doi.org/10.1038/s41598-019-47899-7>

Hoppe AH (1985) Intensification of rat control in Cyprus. Final report. Nicosia: GTZ Project.

Hughes KA, Pescott OL, Peyton J, Adriaens T, Cottier-Cook EJ, Key G, Rabitsch W, Tricarico E, Barnes DKA, Baxter N, Belchier M, Blake D, Convey P, Dawson W, Frohlich E, Gardiner LM, González-Moreno P, James R, Malumphy C, Martin S, Martinou AF, Minchin D, Monaco A, Moore N, Morley SA, Ross K, Shanklin J, Turvey K, Vaughan D, Vaux AGC, Werenkraut V, Winfield IJ, Roy HE (2020) Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region. *Glob Change Biol* 26:2702–2716. <https://doi.org/10.1111/gcb.14938>

IAEA (2023) Nuclear Technique Used in Europe for First time to Battle Yellow Fever Mosquito Found in Cyprus. <https://www.iaea.org/newscenter/pressreleases/nuclear-technique-used-in-europe-for-first-time-to-battle-yellow-fever-mosquito-found-in-cyprus>. Accessed 10 October 2024

iNaturalist (2025) Available at: https://www.inaturalist.org/observations?place_id=10289&subview=map&taxon_id=132468. Accessed 24 September 2025

IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Brondizio ES, Settele J, Diaz S, Ngo HT (eds) IPBES secretariat, Bonn, Germany. <https://doi.org/10.5281/zenodo.3831673>

IPBES (2023) Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Roy, HE, Pauchard A, Stoett P, Renard Truong T (eds) IPBES secretariat, Bonn, Germany. <https://doi.org/10.5281/zenodo.11629357>

Kaminas A, Shokouros-Oskarsson M, Minasidis V, Lange-neck J, Kleitou P, Tiralongo F, Crocetta F (2022) Filling gaps via citizen science: *Phyllospadix punctata* von Lendenfeld, 1884 (Cnidaria: Scyphozoa: Mastigiidae) in Cyprus (eastern Mediterranean Sea). *Bioinvasions Rec* 11(3):667–675. <https://doi.org/10.3391/bir.2022.11.3.09>

Kenis M, Agboyi LK, Adu-Acheampong R, Ansorg M, Arthur S, Attipoe PT, Baba A-SM, Beseh P, Clottey VA, Combey R, Dzomeku I, Eddy-Doh MA, Fening KO, Frimpong-Anin K, Hevi W, Lekete-Lawson E, Nboyne JA, Ohene-Mensah G, Oppong-Mensah B, Nuamah HSA, van der Puije G, Mulema J (2022) Horizon scanning for prioritising invasive alien species with potential to threaten agriculture and biodiversity in Ghana. *NeoBiota* 71:129–148. <https://doi.org/10.3897/neobiota.71.72577>

Kidon M, Klein Y, Weinberg T (2022) Little fire ant (*Wasmannia auropunctata*) in Israel – from nuisance to life-threatening. *Harefuah* 161(4):207–209

Lepiforum (2025) *Spodoptera frugiperda* (Smith, 1797). Available at: https://lepiforum.org/wiki/page/Spodoptera_frugiperda. Accessed 24 September 2025.

Lubin Y (1984) Changes in the native fauna of the Galapagos Islands following invasion by the little fire ant *Wasmannia auropunctata*. *Biol J Linn Soc* 21(1–2):229–242. <https://doi.org/10.1111/j.1095-8312.1984.tb02064.x>

Lucy FE, Davis E, Anderson R, Booy O, Bradley K, Britton JR, Byrne C, Caffrey JM, Coughlan NE, Crane K, Cuthbert RN, Dick JTA, Dickey JWE, Fisher J, Gallagher C, Harrison S, Jebb M, Johnson M, Lawton C, Lyons D, Mackie T, Maggs C, Marnell F, McLoughlin T, Minchin D, Monaghan O, Montgomery I, Moore N, Morrison L, Muir R, Nelson B, Niven A, O'Flynn C, Osborne B, O'Riordan RM, Reid N, Roy H, Sheehan R, Stewart D, Sullivan M, Tierney P, Treacy P, Tricarico E, Trodd W (2020) Horizon scan of invasive alien species for the island of Ireland. *Manag Biol Invasions* 11:155–177. <https://doi.org/10.3391/mbi.2020.11.2.01>

Lühken R, Brattig N, Becker N (2023) Introduction of invasive mosquito species into Europe and prospects for arbovirus transmission and vector control in an era of globalization. *Infect Dis Poverty* 12:109. <https://doi.org/10.1186/s40249-023-01167-z>

Magory Cohen T, Hauber ME, Akriotis T, Crochet P-A, Karassis G, Kirschel ANG, Khoury F, Menchetti M, Mori E, Per E, Reino L, Saavedra S, Santana J, Dor R (2022) Accelerated avian invasion into the Mediterranean region endangers biodiversity and mandates international collaboration. *J Appl Ecol* 59:1440–1455. <https://doi.org/10.1111/1365-2664.14150>

Marchini A, Ferrario J, Minchin D (2015) Marinas may act as hubs for the spread of the pseudo-indigenous bryozoan *Amathia verticillata* (Delle Chiaje, 1822) and its associates. *Sci Mar* 79:355–365. <https://doi.org/10.3989/scimar.04238.03A>

Martinou AF, Vaux AGC, Bullivant G, Charilaou P, Hadjistyllis H, Shawcross K, Violaris M, Medlock J (2016) Rediscovery of *Aedes cretinus* (Edwards, 1921) (Diptera; Culicidae) in Cyprus, 66 years after the first and unique report. *JEMCA* 34:10–13

Martinou AF, Fawcett JM, Georgiou M, Angelidou I, Philippou M, Schaffner F (2021) Occurrence of *Aedes cretinus* in Cyprus based on information collected by citizen scientists. *J Eur Mosq Control Assoc* 39(1):31–38. <https://doi.org/10.52004/JEMCA2021.0002>

Martinou AF, Athanasiou K, Angelidou I, Demetriou J, Christou M, Georgiou M, Dillen M (2023) *Aedes albopictus* recordings in Cyprus based on information provided by citizens and experts. Version 1.7. Meise Botanic Garden. Occurrence dataset <https://doi.org/10.15468/sperfd> Accessed via GBIF.org on 2023-08-08.

Mbenoun-Masse PS, Tindo M, Kenne M, Tadu Z, Mony R, Djieto-Lordon C (2017) Impact of the invasive ant *Wasmannia auropunctata* (Formicidae: Myrmicinae) on local ant diversity in southern Cameroon. *Afr J Ecol* 55(4):423–432. <https://doi.org/10.1111/aje.12366>

Mulema J, Day R, Nunda W, Akutse KS, Bruce AY, Gachamba S, Haukeland S, Kahuthia-Gathu R, Kibet S, Koech A, Kosiom T (2022) Prioritization of invasive alien species with the potential to threaten agriculture and biodiversity in Kenya through horizon scanning. *Biol Invasions* 24(9):2933–2949. <https://doi.org/10.1007/s10530-022-02824-4>

Nascimento KB, Migotto AE, Fehlauer-Ale KH (2021) Molecular data suggest the worldwide introduction of the bryozoan *Amathia verticillata* (Ctenostomata, Vesiculariidae). *Mar Biol* 168:1–9. <https://doi.org/10.1007/s00227-021-03837-8>

Nathanael A (2024) Common Myna (*Acridotheres tristis*) in Cyprus: mapping spread, control methods and impacts on birds globally. Master Thesis, University of Cyprus, Faculty of Pure and Applied Sciences, Cyprus

Nunes AL, Venter TS, Adriaens T, Bond GM, Costello KE, Delva S, Gospodinov K, Novoa A, Peyton J, Pyšek P, Rabitsch W, Roy HE, Scalera R, Smith KE, Tricarico E, Aldridge D, Altamirano M, Bellotto V, Bertolino S, Brundu G, Cardoso AC, Cavadino I, Dawson W, Demetriou J, Devisscher S, D'hondt B, Essl F, Evans T, Everts T, Gallardo B, García-Berthou E, Groom Q, Hillaert J, Jacobs A, Katsanevakis S, Marchante E, Marchini A, Oficialdegui FJ, Olenin S, O'Riordan RM, Pattison Z, Petersen F, Preda C, Rebelo R, Reniers J, Scheers K, Skuhrovec J, Solarz W, Steen F, Strubbe D, Van Landuyt W, van Valkenburg J, Verell V, Verhelst P, Verreycken H (2025) Invasive Alien Species Horizon Scanning in support of implementation of Regulation 1143/2014 - Final Study Report. Prepared under Service contract 09.0201/2023/907919/SER/ENV.D2 for the European Commission. <https://doi.org/10.2779/7146677>

Oficialdegui FI, Zamora-Marín JM, Guareschi S, Anastácio PM, García-Murillo P, Ribeiro F, Miranda R, Cobo F, Gallardo B, García-Berthou E, Boix D, Arias A, Cuesta JA, Medina L, Almeida D, Banha F, Barca S, Biurrun I, Pilar Cabezas M, Calero S, Campos JA, Capdevila-Argüelles L, Capinha C, Casals F, Clavero M, Encarnação J, Fernández-Delgado C, Franco J, Guillén A, Hermoso V, Machordom A, Martelo J, Mellado-Díaz A, Morcillo F, Oscoz J, Perdices A, Pou-Rovira Q, Rodríguez-Merino A, Ros M, Ruiz-Navarro A, Sánchez MI, Sánchez-Fernández D, Sánchez-González JR, Sánchez-Gullón E, Teodósio MA, Torralva M, Vieira-Lanero R, Oliva-Paterna FJ (2023) A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. *Sci Total Environ* 869:161798. <https://doi.org/10.1016/j.scitotenv.2023.161798>

Palmer JRB, Oltra A, Collantes F, Delgado JA, Lucientes J, Delacour-Estrella S, Bengoa M, Eritja R, Bartumeus F (2017) Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes. *Nat Commun* 8:916. <https://doi.org/10.1038/s41467-017-00914-9>

Pérez-Delgado AJ, Santos-Perdomo I, Jiménez-García E, Lugo D, Suárez D (2025) Is the spread of *Wasmannia auropunctata* (Hymenoptera, Formicidae) through the western Palearctic inevitable? First evidence of presence in the Canary Islands. *J Hymenopt Res* 98:419–433. <https://doi.org/10.3897/jhr.98.144997>

Peyton J, Martinou AF, Pescott OL, Demetriou M, Adriaens T, Arianoutsou M, Bazos I, Bean CW, Booy O, Botham M, Britton JR, Cervia JL, Charilaou P, Chartosia N, Dean HJ, Delipetrou P, Dimitriou AC, Dörflinger G, Fawcett J, Fytis G, Galanidis A, Galil B, Hadjikyriakou T, Hadjistylli M, Ieronymidou C, Jimenez C, Karachle P, Kassinis N, Kerametsidis G, Kirschel ANG, Kleitou P, Kleitou D, Manolaki P, Michailidis N, Mountford JO, Nikolaou C, Papatheodoulou A, Payiatis G, Ribeiro F, Rorke SL, Samuel Y, Savvides P, Schafer SM, Tarakan AS, Silva-Rocha I, Top N, Tricarico E, Turvey

K, Tziortzis I, Tzirkalli E, Verreycken H, Winfield IJ, Zenotos A, Roy HE (2019) Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. *Biol Invasions* 21(6):2107–2125. <https://doi.org/10.1007/s10530-019-01961-7>

Peyton JM, Martinou AF, Adriaens T, Chartosia N, Karachle PK, Rabitsch W, Tricarico E, Arianoutsou M, Bacher S, Bazos I, Brundu G, Bruno-McClung E, Charalambidou I, Demetriou M, Galanidi M, Galil B, Guillem R, Hadjiafxentis K, Hadjioannou L, Hadjistylli M, Hall-Spencer JM, Jimenez C, Johnstone G, Kleitou P, Kletou D, Koukkourlidou D, Leontiou S, Maczey N, Michailidis N, Mountford JO, Papatheodoulou A, Pescott OL, Phanis C, Preda C, Rorke S, Shaw R, Solarz W, Taylor CD, Trajanovski S, Tziortzis I, Tzirkalli E, Uludag A, Vimercati G, Zdraveski K, Zenotos A, Roy HE (2020) Horizon scanning to predict and prioritize invasive alien species with the potential to threaten human health and economies on Cyprus. *Front Ecol Evol* 8:1–15. <https://doi.org/10.3389/fevo.2020.566281>

Piccinno R, Fiorenza G, Vasquez MI, Bouyer J, Notarides G, Gomulsk LM, Meletiou S, Akiner M, Michaelakis A, Forneris F, Maga G, Gasperi G, Malacrida AR (2025) On the tracks of an uninvited guest, the Asian tiger mosquito, *Aedes albopictus* in Cyprus. *Parasit Vectors* 18:39. <https://doi.org/10.1186/s13071-024-06651-5>

Pocock MJO, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M (2023) Citizen science is a vital partnership for invasive alien species management and research. *iScience* 27(1):108623. <https://doi.org/10.1016/j.isci.2023.108623>

Price-Jones V, Brown PMJ, Adriaens T, Tricarico E, Farrow RA, Cardoso AC, Gervasini E, Groom Q, Reyserhove L, Schade S, Tsinaraki C, Marchante E (2022) Eyes on the aliens: citizen science contributes to research, policy and management of biological invasions in Europe. *NeoBiota* 78:1–24. <https://doi.org/10.3897/neobiota.78.81476>

Psaroulaki A, Antoniou M, Toumazos P, Mazeris A, Ioannou I, Chochlakis D, Christophi N, Loucaides P, Patsias A, Moschandrea I, Tselentis Y (2010) Rats as indicators of the presence and dispersal of six zoonotic microbial agents in Cyprus, an island ecosystem: a seroepidemiological study. *Trans R Soc Trop Med Hyg* 104:733–739. <https://doi.org/10.1016/j.trstmh.2010.08.005>

Rishan ST, Kline RJ, Rahman S (2023) Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: a critical review on the challenges and limitations of eDNA metabarcoding. *Environ Adv* 12:100370. <https://doi.org/10.1016/j.envadv.2023.100370>

Rodrigues M, Bos AR, Schembri PJ, de Lima RF, Lymberakis P, Perpal L, Cento M, Ruette S, Ozkurt SO, Santos-Reis M, Merila J, Fernandes C (2016) Origin and introduction history of the least weasel (*Mustela nivalis*) on Mediterranean and Atlantic islands inferred from genetic data. *Biol Invasions* 19(1):399–421. <https://doi.org/10.1007/s10530-016-1287-y>

Rosselli D, Wetterer JK (2017) Stings of the ant *Wasmannia auropunctata* (Hymenoptera: Formicidae) as cause of punctate corneal lesions in humans and other animals. *J Med Entomol* 54(6): 1783–1785. <https://doi.org/10.1093/jme/tjx167>

Roy HE, Peyton J, Aldridge DC, Bantock T, Blackburn TM, Britton R, Clark P, Cook E, Dehnen-Schmutz K, Dines T, Dobson M, Edwards F, Harrower C, Harvey MC, Minchin D, Noble DG, Parrott D, Pocock MJO, Preston CD, Roy S, Salisbury A, Schönrogge K, Sewell J, Shaw RH, Stebbing P, Stewart AJA, Walker KJ (2014) Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. *Glob Change Biol* 20:3859–3871. <https://doi.org/10.1111/gcb.12603>

Roy HE, Bacher S, Essl F, Adriaens T, Aldridge DC, Bishop JDD, Blackburn TM, Branquart E, Brodie J, Carboneras C, Cottier-Cook EJ, Copp GH, Dean HJ, Eilenberg J, Gallardo B, Garcia M, García-Berthou E, Genovesi P, Hulme PE, Kenis M, Kerckhof F, Kettunen M, Minchin D, Nentwig W, Nieto A, Pergl J, Pescott OL, Peyton JM, Preda C, Roques A, Rorke SL, Scalera R, Schindler S, Schönrogge K, Sewell J, Solarz W, Stewart AJA, Tricarico E, Vanderhoeven S, van der Velde G, Vilà M, Wood CS, Zenotos A, Rabitsch W (2019a) Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. *Glob Change Biol* 25:1032–1048. <https://doi.org/10.1111/gcb.14527>

Roy HE, Pauchard A, Stoett PJ, Renard Truong T, Meyerson LA, Bacher S, Galil BS, Hulme PE, Ikeda T, Kavileveetil S, McGeoch MA, Nuñez MA, Ordóñez A, Rahla SJ, Schwindt E, Seebens H, Sheppard AW, Vandvik V, Aleksanyan A, Ansong M, August T, Blanchard R, Brugnoli E, Bokombe JK, Bwalya B, Byun C, Camacho-Cervantes M, Cassey P, Castillo ML, Courchamp F, Dehnen-Schmutz K, Zenni RD, Egawa C, Essl F, Fayvush G, Fernandez RD, Fernandez M, Foxcroft LC, Genovesi P, Groom QJ, González AI, Helm A, Herrera I, HIREMATH AJ, Howard PL, Hui C, Ikegami M, Keskin E, Koyama A, Ksenofontov S, Lenzner B, Lipinskaya T, Lockwood JL, Mangwa DC, Martinou AF, McDermott SM, Morales CL, Müllerová J, Mungi NA, Munishi LK, Ojaveer H, Pagad SN, Pallewatta NPKTS, Peacock LR, Per E, Pergl J, Preda C, Pyšek P, Rai RK, Ricciardi A, Richardson DM, Riley S, Rono BJ, Ryan-Colton E, Saeedi H, Shrestha BB, Simberloff D, Tawake A, Tricarico E, Vanderhoeven S, Vicente J, Vilà M, Wanzala W, Werenkraut V, Weyl OLF, Wilson JRU, Xavier RO, Ziller SR (2024a) Curbing the major and growing threats from invasive alien species is urgent and achievable. *Nat Ecol Evol* 8:1216–1223. <https://doi.org/10.1038/s41559-024-02412-w>

Roy HE, Martinou AF, Pocock MJO, Werenkraut V, Roy DB (2024b) The global reach of citizen science for monitoring insects. *One Earth* 7:552–557. <https://doi.org/10.1016/j.oneear.2024.03.009>

Roy HE, Peyton JM, Pescott OL, Rorke SL (2019b) Prioritising Invasive Non-Native Species through Horizon Scanning on the UK Overseas Territories, Centre for Ecology & Hydrology, <http://www.nonnativespecies.org/>

Ryll R, Bernstein S, Heuser E, Schlegel M, Dremsek P, Zumpe M, Wolf S, Pépin M, Bajomi D, Müller G, Heiberg A-C SC, Lang J, Groschup M, Ansorge H, Freise J, Guenther S, Baert K, Ruiz-Fons F, Pikula J, Knap N, Tsakmakidis I, Dovas C, Zanet S, Imholt C, Heckel G, Johne R, Ulrich

RG (2017) Detection of rat hepatitis E virus in wild Norway rats (*Rattus norvegicus*) and Black rats (*Rattus rattus*) from 11 European countries. *Vet Microbiol* 208:58–68. <https://doi.org/10.1016/j.vetmic.2017.07.001>

Sabour S, Azimi T, Nasser A, Hadi N, Mohsenzadeh A, Sharifi A (2022) A global overview of the most important zoonotic bacteria pathogens transmitted from *Rattus norvegicus* to humans in urban environments. *Infect Med* 1(3):192–207. <https://doi.org/10.1016/j.imj.2022.07.002>

Salata S, Georgiadis C, Borowiec L (2019) Invasive ant species (Hymenoptera: Formicidae) of Greece and Cyprus. *North-West J Zool* 15(1):13–23

St Clair JJH (2011) The impacts of invasive rodents on island invertebrates. *Biol Conserv* 144(1):68–81. <https://doi.org/10.1016/j.biocon.2010.10.006>

Tsiamis K, Azzurro E, Bariche M, ECinari M, Crocetta F, De Clerck O, Galil B, Gomez F, Hoffman R, Jensen K, Kamburska L, Langeneck J, Langer M, Levitt-Barmats Y, Lezzi M, Marchini A, Occhipinti-Ambrogi A, Ojaveer H, Piraino S, Shenkar N, Yankova M, Zenetos A, Žuljević A, Cardoso AC (2020) Prioritizing marine invasive alien species in the European Union through horizon scanning. *Aquat Conserv Mar Freshw* 30:794–845. <https://doi.org/10.1002/aqc.3267>

Ulman A, Ferrario J, Occhipinti-Ambrogi A, Arvanitidis C, Bandi A, Bertolino M, Bogi C, Chatzigeorgiou G, Cicek BA, Deidun A, Ramos-Espala A, Kocak C, Lorenti M, Martinez-Laiz G, Merlo G, Princisgh E, Scribano G, Marchini A (2017) A massive update of non-indigenous species records in Mediterranean marinas. *PeerJ* 5:e3954. <https://doi.org/10.7717/peerj.3954>

Vanderhoeven S, Adriaens T, D'hondt B, Van Gossum H, Vandegheuchte M, Verreycken H, Cigar J, Branquart E (2015) A science-based approach to tackle invasive alien species in Belgium – the role of the ISEIA protocol and the *Harmonia* information system as decision support tools. *Manag Biol Invasions* 6:197–208. <https://doi.org/10.3391/mbi.2015.6.2.10>

Vasquez MI, Notarides G, Meletiou S, Patsoula E, Kavran M, Michaelakis A, Bellini R, Toumazi T, Bouyer J, Petrić D (2023) Two invasions at once: update on the introduction of the invasive species *Aedes aegypti* and *Aedes albopictus* in Cyprus - a call for action in Europe. *Parasite* 30:41. <https://doi.org/10.1051/parasite/2023043>

Vétek G, Melifronidou-Pantelidou A, Koukkouridou D, Martinou A (2021) Initiation of a monitoring programme for early detection of *Halyomorpha halys* in Cyprus by using pheromone-baited traps and involving citizen science. *Manag Biol Invasion* 12(2):331–343. <https://doi.org/10.3391/mbi.2021.12.2.08>

Vonshak M, Ionescu-Hirsch A (2009) A checklist of the ants of Israel (Hymenoptera: Formicidae). *Isr J Entomol* 39:33–55

Vonshak M, Dayan T, Ionescu-Hirsh A, Freidberg A, Hefetz A (2010) The little fire ant *Wasmannia auropunctata*: a new invasive species in the Middle East and its impact on the local arthropod fauna. *Biol Invasions* 12:1825–1837. <https://doi.org/10.1007/s10530-009-9593-2>

Wetterer JK, Porter SD (2003) The little fire ant, *Wasmannia auropunctata*: distribution, impact and control. *Sociobiology* 44:1–41

Wong MKL, Economo EP, Guénard B (2023) The global spread and invasion capacities of alien ants. *Curr Biol* 33:1–6. <https://doi.org/10.1016/j.cub.2022.12.020>

Yetismis K, Erguler K, Angelidou I, Yetismis S, Fawcett J, Foroma E, Jarraud N, Ozbel Y, Martinou AF (2022) Establishing the *Aedes* watch out network, the first island-wide mosquito citizen science initiative in Cyprus within the framework of the Mosquitoes Without Borders project. *Manag Biol Invasions* 13:798–808. <https://doi.org/10.3391/mbi.2022.13.4.14>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.