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A B S T R A C T

Human management of water resources has profoundly altered the water cycle, creating complex and difficult- 
to-simulate human-water interactions. Traditional hydrological models, which have commonly focused solely on 
natural processes, struggle to accurately represent these changes especially in large basins with intensive human 
water use, highlighting an urgent need for more effective modeling methods to improve this challenge. This 
study proposed a hierarchical parameterization and bias-integrated calibration method to enhance modeling in 
those basins, and identified the optimal configuration through a comparative analysis of calibration scenarios 
based on the hydrological modeling of the Pearl River Basin (PRB) using the Community Water Model (CWatM). 
The key findings include: (a) Hierarchical calibration significantly improved simulation performance compared 
to non-regionalized methods, with average modified Kling-Gupta Efficiency (KGE) and NSE (Nash-Sutcliffe Ef
ficiency) values increasing by over 0.5, and the third level of Water Resource Zones (WRZ3) was identified as the 
optimal calibration scale. (b) Integrating irrigation simulation bias into a single-objective function enabled the 
simultaneous optimization of both streamflow and irrigation simulations, which reduced irrigation bias from 
327 % to 51 % with only a minor decrease in streamflow accuracy (KGE from 0.81 to 0.75), and the effective 
irrigation weighting coefficient was found to align with the basin's overall irrigation-to-total-runoff ratio. (c) The 
CWatM was confirmed as suitable for regional applications, although its performance is sensitive to meteoro
logical and inflow boundary data, and it's important to customize the model's parameters to accurately reflect 
specific regional characteristics. The reproducible technical pathway presented in this paper could facilitate more 
precise hydrological modeling in similar basins.

1. Introduction

Over recent decades, accelerating global population growth and 
intensified human activities have profoundly altered the water cycle and 
hydrological fluxes (e.g., discharge) at various scales, from local 

watersheds to the global extent [1,2]. Consequently, the explicit repre
sentation of human intervention has become essential for the realistic 
simulation of global and regional hydrological processes. For example, 
accurately accounting for human water demands from sectors such as 
agriculture, industry, and domestic use is crucial, as these demands can 
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significantly influence estimated hydrological storage and fluxes [3,4]. 
In intensively managed large river basins, such as those in populous 
regions like India and China, human activities have substantially altered 
natural hydrological processes [5–7]. Specifically, water use, particu
larly for irrigation, has become a primary driver within the hydrological 
cycle, exerting complex interaction mechanisms on both natural hy
drological processes and anthropogenic dynamics [8,9]. However, many 
conventional hydrological models, while considering the impact of 
human activities to some extent, still prioritize rainfall-runoff simulation 
and apply a simplified, conceptualized approach to anthropogenic in
fluences [10]. This limited representation often results in poor perfor
mance for hydrological simulations, which in turn hinders the provision 
of reliable insights critical for effective water resource management 
[11]. This highlights an urgent need to enhance hydrological modeling 
capabilities in large basins experiencing intensive human water use.

Calibration is an essential step in hydrological modeling that directly 
determines the successful application of a model [12]. However, for 
large basins with significant spatial heterogeneity in geomorphology 
and hydraulics, using identical parameters for the entire basin is prob
lematic [13,14]. A single, unified parameter set cannot adequately 
represent the diverse hydrological responses across the whole basin [15,
16], thus necessitating regional parameterization for accurate hydro
logical simulations [17]. To address this, regional parameterization has 
been widely adopted, which involves dividing the basin into multiple 
calibration units, such as Hydrologic Response Units (HRUs) in models 
like SWAT [18–20]. Additionally, a novel hierarchical 
upstream-downstream calibration strategy has been developed, whose 
scheme divides a basin into independent sub-basins based on hydro
logical station locations and flow direction, allowing for the progressive 
calibration of model parameters from upstream to downstream [21,22]. 
This strategy has been successfully applied in major basins, including the 
Mississippi River [23], Lancang-Mekong River [13,24], and Yangtze 
River [25]. Nevertheless, the delineation of sub-basins or calibration 
units is often subjective, typically based on pre-defined subbasin di
visions. Water Resource Zones (WRZ) are fundamental units for hydro
logical and water resource research, which are defined based on 
hydrological zones while also considering the unique characteristics of 
water resources [26]. In China, these divisions usually have one to three 
levels, commonly referred to as WRZ1, WRZ2, and WRZ3 [27]. There is 
limited research, however, on which level of WRZ should be chosen as 
the hydrological calibration unit for large river basins. Consequently, a 
systematic evaluation of optimal calibration unit scales remains 
insufficient.

Some of the currently used large scale hydrological models, such as 
Community Water Model (CWatM) [28], LISFLOOD [29], PCR-GLOBWB 
[30] and H08 [4,31], have integrated irrigation–soil moisture dynamics 
as a core module to enhance their simulation of water use management 
[32]. These models dynamically link the irrigation process with the 
water balance of soil water storage, surface water, and evapotranspi
ration over irrigated areas [10,28,30], thereby recognize irrigation as a 
key hydrological component that influences runoff. Although numerous 
studies have incorporated multi-variable calibration, including hydro
logical components like soil moisture, terrestrial water storage (TWS), 
and evapotranspiration [24,33,34], there is a lack of research that 
explicitly integrates irrigation water into the calibration process. To 
improve a model's ability to synergistically simulate multiple hydro
logical components, there is an urgent need to develop a coupled irri
gation and streamflow calibration method. Furthermore, input data 
uncertainty is widely recognized as the dominant source of hydrological 
modeling uncertainty [35], with meteorological data uncertainty being 
particularly significant [36,37]. However, research assessing the specific 
impact of this input data uncertainty remains relatively scarce when 
global models are applied for regional modeling using a hierarchical 
parameterization strategy.

Based on the aforementioned literature review, three key research 
gaps persist: a) the influence of calibration unit scales on the simulation 

performance on hierarchical calibration strategies, b) the integration of 
irrigation water into the calibration framework, and c) the regional 
applicability of large-scale models and the impact of input data uncer
tainty. To investigate these questions, the CWatM was selected as the 
modeling framework due to its advanced grid-based structure, which 
systematically considers direct feedbacks between human water use and 
other terrestrial water fluxes [28]. It also possesses unique global and 
regional spatial representations and has been successfully applied at 
both scales [7,38–40]. The Pearl River Basin (PRB), which includes one 
WRZ1, seven WRZ2, and fifteen WRZ3 units, was selected as the study 
area, a region characterized by high population density and intensive 
water use [34]. Utilizing a scenario comparison method based on the 
established hydrological and water resources model, this study set up 
four groups of 11 calibration scenarios. The first group was designed to 
identify the optimal parameter set, while the second was designed to 
evaluate the impact of calibration unit scales on hierarchical parame
terization. The third group aimed to optimize coupled irrigation and 
streamflow simulations, and the fourth was used to evaluate the effect of 
different meteorological datasets and inflow data on a hierarchical 
calibration strategy.

This paper attempted to enhance hydrological modeling in large, 
human-dominated basins by using a hierarchical parameterization and 
bias-integrated calibration approach, and validated the adaptability of a 
large-scale model for regional applications. The paper is structured as 
follows. Section 1 provides the introduction and background. Section 2
describes the study area, data preparation, a brief overview of CWatM, 
and the setup of the calibration scenarios. Section 3 presents the results 
and discusses the relevant research questions. Finally, Section 4 provides 
the conclusions.

2. Materials and methods

2.1. Modeling framework

To investigate how hierarchical parameterization and bias- 
integrated calibration can enhance hydrological modeling in basins 
with intensive human water use, a comprehensive modeling framework 
was proposed (Fig. 1). The framework began with the hydrological 
modeling of the PRB using CWatM, including the reconstruction of high- 
resolution water use data for model input. This was followed by a 
sensitivity analysis to identify sensitive parameters. Subsequently, four 
sets of calibration experiments were designed. The first group further 
screened parameters. The second group, which aimed to assess how 
calibration unit scales affect performance using the hierarchical 
parameterization approach, involved discretizing the basin into four 
distinct unit types: WRZ1-3 and site-specific catchments. The third 
group optimized coupled irrigation and streamflow simulations using a 
composite objective function. The fourth group assessed the impact of 
input data uncertainty (including meteorological and inflow data) on 
modeling robustness. Finally, the accuracy of the hydrological simula
tions was evaluated using the optimal calibration units and irrigation 
weighting coefficients identified from the previous steps.

2.2. Study area and data sources

2.2.1. Study area
The Pearl River Basin (PRB) (Fig. 2), situated in southern China 

(102◦E− 116◦E and 21◦N–27◦N), is a vast hydrological system with a 
total drainage area of 4.5 × 105 km2 [41]. Its river network is charac
terized by a maximum Strahler stream order of 7 (Fig. S1). The basin is 
conventionally divided into WRZ2, including Nan-bei Pan Jiang (NPJ), 
Hongliu Jiang (HJ), Yu Jiang (YJ), Xi Jiang (XJ), Bei Jiang (BJ), Dong 
Jiang (DJ), and the Pearl River Delta (PRD) basins [42]. Topographi
cally, the basin exhibits significant elevation gradients, transitioning 
from high altitudes of up to 2852 m in the northwest to sea level in the 
southeast. The climate of the basin is a tropical and subtropical monsoon 
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regime, characterized by concentrated precipitation primarily during 
the wet season (April to September), with annual precipitation ranging 
from 1200 to 2200 mm and average annual temperatures typically 
falling between 14 ◦C and 22 ◦C [43,44].

As illustrated in Fig. S2, the land cover composition within the study 
area is dominated by forests (61 %) and grasslands (12 %). Croplands 
account for 20 % of the area, with an even distribution between paddy 
and non-paddy irrigation. Minor land use types, including sealed areas 
(4 %) and water bodies (1.8 %), constitute a smaller proportion of the 
total area. The PRB ranked second among China's ten major river basins 
in total water resources, with an average of 3.4 × 1011 m3/a from 2000 
to 2020 (Fig. 2c). The midstream section holds the largest proportion of 
these resources at 58.7 %, followed by the downstream at 31.6 % and the 
upstream at 9.7 % (Table S1). The water withdrawal within the basin 
amounts to 6.05 × 1011 m3/a, with the midstream and downstream 
sections accounting for the majority of the withdrawal at 45.6 % and 
46.6 %, respectively, while the upstream section accounts for a much 
smaller portion (7.7 %) (Fig. 2c–Table S1). Agricultural irrigation rep
resents the largest component of water withdrawal (55.3 %), followed 
by the industrial (26.6 %) and domestic (17.4 %) sectors. Although the 
PRB comprises only 5 % of China's land area, it supported 16.3 % of the 
national population and contributed 15.6 % to the national GDP in 
2020, and its water withdrawal constitutes 13.3 % of the national total 
[45].

2.2.2. Basic data
For the modeling, a substantial amount of spatially distributed cli

matic and physiographic data were required. The local drainage direc
tion map was adapted from HydroSHEDS (https://www.hydrosheds. 
org), and land use data were derived from the Global Resources Data 
Cloud (http://www.gis5g.com). Irrigation efficiency and water demand 
data were obtained from the Water Resources Bulletin (WRB) of PRB 
(https://www.pearlwater.gov.cn/zwgkcs/lygb/szygb/). Meteorological 
data were the critical input for hydrological models, and the specific 
climate indicators needed depend on the method used to calculate po
tential evapotranspiration [28]. In this study, the CWatM default Pen
man–Monteith method was employed, which required inputs for 
precipitation, average, maximum, and minimum 2 m temperatures, 
near-surface pressure, humidity, 10m wind speed, and long- and 
short-wave downward surface radiation fluxes. Additionally, tempera
ture data were also used to determine if precipitation is snow or rain. 
The climate data were obtained from CMFD v2.0 (https://cstr.cn/1 
8406.11.Atmos.tpdc.302088). To quantify the impact of meteorolog
ical uncertainty on model calibration, the GSWP3-W5E5 (ISIMIP3a) 
(https://www.isimip.org/gettingstarted/input-data-bias-adjustment/ 
details/110/) data were also employed. All forcing data were spatially 
downscaled to 0.1◦ resolution using bilinear interpolation and then 
bias-corrected [46]. More details on the spatio-temporal resolution and 
sources of all input data can be found in Table S3.

Moreover, twenty-nine representative hydrological stations across 
the PRB were selected for model parameter sensitivity analysis and 

Fig. 1. Methodology framework. (Groups A-D represent the four sets of calibration experiments).
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estimation (Fig. 2b). It was determined with three key criteria: stations 
were located on mainstream (third-to fourth-order Strahler streams), 
exhibited low reservoir disturbance (by removing stations within 50 km 
downstream of large dams, verified using Google Earth Pro), and 
possessed data adequacy (requiring at least 10 years of daily streamflow 
records from 2006 to 2019 for both calibration and validation). The 
daily streamflow data were compiled from the National Hydrological 
Yearbooks of the PRB.

2.2.3. Water demand data
For the period 2000–2019, gridded (0.1◦) water demand data, 

encompassing both water withdrawal and consumption for three sec
tors, were reconstructed using sector-specific methodologies [47,48] 
(Fig. 3). For the domestic sector, gridded withdrawal was estimated by 
downscaling WRZ2 level water withdrawal data from the WRB of PRB to 
0.1◦ resolution, leveraging the spatial distribution from gridded popu
lation data WorldPop (https://hub.worldpop.org/). Domestic water 
consumption was subsequently calculated by multiplying this with
drawal by the corresponding WRZ2 level domestic water consumption 
rate. Similarly, for the industrial sector, WRZ2-level industrial water 
withdrawal from the WRB of PRB was downscaled to 0.1◦ using the 
China Industrial Water Withdrawal (CIWW) dataset's spatial distribution 
[49], with the industrial water consumption rate calculated similarly to 
that of the domestic sector. Livestock water demand was determined by 
multiplying livestock density (heads per 0.1◦ grid) by the 
temperature-dependent Livestock-specific Water Demand Intensity 

(LWDI) [47]. Livestock density for nine categories was derived by 
downscaling prefecture-level livestock numbers, sourced from the CNKI 
Chinese Economic and Social Big Data Research Platform (https://data. 
cnki.net/), to 0.1◦ using Gridded Livestock of the World distributions 
(GLW3 for 2000–2010; GLW4 for 2010–2019) [50,51]. LWDI for each 
category was dynamically adjusted based on three daily CMFD tem
perature ranges (≤15 ◦C, 15–35 ◦C, and ≥35 ◦C) [52,53], and the 
species-specific LWDI values are detailed in Table S4. Notably, livestock 
water consumption was assumed 100 % consumptive (no return flow) 
[3,28].

2.3. Hydrological model and setup for PRB

The CWatM developed by International Institute for the Applied 
Systems Analysis (IIASA) is a comprehensive hydrological and water 
resources model. Built upon established models such as PCR-GLOBWB 
and LISFLOOD, CWatM is capable of simulating water resource avail
ability, human water demand, and the crucial role of water infrastruc
ture (e.g., reservoirs) in water management [47,54]. Its reservoir routine 
is similar to that of LISFLOOD, effectively simulating dams as points 
within the channel network. Notably, CWatM internally embeds irri
gation as a hydrological flux, while water demands for the livestock, 
industrial, and domestic sectors are provided as external model inputs 
[28]. A key advantage of CWatM is its modular design (Fig. S3) and fully 
open-source Python code, which enable easy integration and 
co-development with models from other sectors, such as energy and 

Fig. 2. The study area and water resource utilization. (a) and (b) show the study area and its location. Yellow circles represent hydrological stations for calibration, 
while black triangles indicate stations for sensitivity analysis. See Table S2 in the supporting information for details. (c) Shows the annual average population, 
precipitation, total water resources, and water withdrawal for the PRB.
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agriculture.
This study employed version 1.08 of CWatM for its modeling efforts, 

utilizing a spatial resolution of 0.1◦. CWatM's operational requires Py
thon along with essential packages such as NumPy, SciPy, netCDF4, and 
pandas. Given the substantial computational demands inherent in the 
calibration experiments, the model was executed on a high-performance 
computing platform equipped with a 32-core processor. All input data 
were pre-processed into the required 0.1◦ netCDF format. While pri
marily sourced from the global dataset provided by IIASA [28], several 
critical input datasets were updated. Specifically, water demand data for 
the industrial, domestic, and livestock sectors were reconstructed and 
served as crucial model inputs, as detailed in Section 2.2.3. Additionally, 
the map of irrigation efficiency at the sub-basin level within the PRB was 
updated, a step crucial for accurately simulating irrigation water 
consumption.

2.4. Parameter sensitivity analysis

Due to its thousands of spatially distributed parameters, a parameter 
sensitivity analysis of the CWatM is a necessary and crucial step to limit 
equifinality and reduce computational costs [23,28]. Based on our un
derstanding of the CWatM model's mechanisms and a review of relevant 
calibration literature [7,28,39,55], this paper selected twenty parame
ters for the sensitivity analysis (Table S5). Parameter sensitivity varies 
across different regions, especially within large river basins [17,56,57]. 
To identify parameters that are important for characterizing different 
regional features, a sensitivity analysis was conducted at eight hydro
logical stations located at the outlets of WRZ2 (Fig. 2b). Moreover, this 
study designed a set of comparative scenarios to identify the most 
influential parameters for subsequent calibration. This study employed 
the variance-based Sobol method, as implemented by the SALib Python 

library [58]. Employing the Saltelli sampling method, 5376 parameter 
sets were generated per station, resulting in a comprehensive total of 43, 
008 sets. Simulations were conducted in parallel in batches of 32 runs. 
Each batch took approximately 12 min to complete the simulation 
period (01/01/2006-12/31/2008). Consequently, the total computa
tional time for all parameter sets was approximately 269 h (about 11.2 
days).

2.5. Calibration setting and performance matrix

The model was calibrated using the NSGA-II genetic algorithm, as 
implemented with the DEAP Python package. The algorithm was 
configured with an initial population (μ) of 256, a recombination pool 
size (λ) of 32, and a maximum of 30 generations. The parameters for 
calibration were selected based on the results of the sensitivity analysis. 
The number of parameters used for each calibration scenario can be 
found in Table 1. Simulations spanned a 19-year period (2001–2019), 
which was segmented into a 5-year spin-up (2001–2005), a 10-year 
calibration (2006–2015), and a 4-year validation (2016–2019). To 
accelerate the calibration process, we used parallel computing across 32 
CPU cores with Python's multiprocessing library. This reduced the 
computational time per CDA unit to approximately 11 h when cali
brating 7 parameters and 15 h when calibrating 11 parameters. 
Computational time for each calibration scenario varied depending on 
the number of CDA units, with specific details presented in Table 1. 
Model performance was evaluated using four metrics: the modified 
Kling-Gupta Efficiency (KGE) [59], the correlation coefficient (R), 
Nash-Sutcliffe Efficiency (NSE) [60], and Percent Bias (PBIAS) (Eqs. (1)– 
(4)). These metrics quantify the goodness-of-fit between simulated (Qs) 
and observed (Qo) streamflow. 

Fig. 3. Methods for calculating water demand in the livestock, domestic and industrial sectors. (WW: water withdrawal; WC: water consumption).
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KGE = 1 −
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(R − 1)2
+ (Qm/QO − 1)2

+
( (

σQm

/
Qm

)/(
σQm

/
QO

)
− 1

)2
√

(1) 

R = cov(Qm,QO)
/(

σQm ⋅σQm

)
(2) 

NSE = 1 −

[
∑n

i=1
(Qoi − Qmi)

2

/
∑n

i=1
(Qoi − Qo)

2

]

(3) 

PBIAS =
∑n

i=1
(Qmi − Qoi)

/

Qoi × 100% (4) 

2.6. Experimental setup

In this study, four experimental groups comprising 11 calibration 
scenarios were designed to achieve four key objectives: identifying the 
most influential parameters for calibration, determining the optimal 
calibration scale for hierarchical parameterization, optimizing coupled 
irrigation and streamflow simulations, and evaluating the impact of 
different meteorological and inflow datasets on both model performance 
and the hierarchical calibration strategy. The specific configurations for 
each scenario are detailed in Table 1.

Group A: to identify the most representative parameters for whole- 
basin calibration, this group explored two selection methods. The first 
involved using the union of the five most sensitive parameters identified 
at each of the eight sites, resulting in a total of 11 parameters. However, 
this approach risked over-parameterization, potentially increasing 
computational demand and exacerbating issues of equifinality [61]. To 
mitigate this, a second, more constrained screening method was applied. 
This method selected only those parameters that were sensitive at over 
50 % of the sites, yielding a unified set of 7 parameters. These two 
distinct sets of parameters were used to establish two calibration sce
narios at the WRZ3 level, named ″11_param″ and ″7_param″, 
respectively.

Group B: to evaluate the effectiveness of hierarchical parameteriza
tion and determine the optimal scale for calibration, the basin was 
partitioned into four calibration unit configurations. Based on the water 
resource zones levels 1–3 boundaries and site-specific watershed 
boundaries, the basin was partitioned into a 1-unit (WRZ1 level), 7-unit 
(WRZ2 level), 15-unit (WRZ3 level), and 29-unit (site-specific level) 

configuration (as shown in Fig. 4). These configurations correspond to 
the ″WRZ1_level″, ″WRZ2_level″, ″WRZ3_level″, and ″Site_level″ scenarios, 
respectively. To effectively represent the process of hierarchical 
parameterization within the modeling framework, we referenced the 
definition of Calibration Data Assimilation (CDA) units [23], in which 
parameters are uniformly adjusted. The partitioning of the study area 
and the establishment of confluence relationships were performed using 
PCRaster and Python 3.12 (see Text S1 and Fig. S4).

Group C: to optimize coupled irrigation and streamflow simulations, 
a bias-integrated calibration method for irrigation was developed, which 
employed a composite objective function (Eq. (5)). To determine the 
optimal weighting coefficient for irrigation, this group established five 
distinct scenarios— ″wgt_0″, ″wgt_005″, ″wgt_01″, ″wgt_02″, and 
″wgt_03″— corresponding to irrigation weighting coefficients of 0, 0.05, 
0.1, 0.2, and 0.3, respectively. This range of values allowed us to explore 
the full spectrum of calibration objectives, from prioritizing pure 
streamflow optimization (″wgt_0″) to placing a strong emphasis on irri
gation water reliability (″wgt_03″). 

OF = (1 − wgt) × KGEQ + wgt ×
(
1 −

⃒
⃒PbiasIrrigation

⃒
⃒
)

(5) 

where, OF represents the single objective function of the genetic algo
rithm, KGEQ is the daily streamflow KGE value, 

⃒
⃒PbiasIrrigation

⃒
⃒ denotes the 

absolute value of the annual simulated irrigation water bias, and wgt is 
the assigned weight for irrigation.

Group D: to evaluate the comprehensive impact of both meteoro
logical input data and upstream inflow boundary data on model per
formance, a dedicated experimental design was developed. First, the 
model's sensitivity to meteorological forcing data was assessed by 
setting up two distinct scenarios: the "CMFD" scenario, which utilized 
CMFD v2.0 data, and the ″GS_W5″ scenario, which used global-scale 
GSWP3-W5E5 data. Furthermore, to investigate the propagation ef
fects of upstream errors during hierarchical parameterization, two 
inflow scenarios were established: the ″Inflow_sim″ scenario, which used 
optimal simulated values from upstream CDAs, and the ″Inflow_obs″ 
scenario, which employed observed daily streamflow data as boundary 
conditions.

Table 1 
Configurations of the 11 calibration scenarios. (N is the number of hydrological stations in each CDA).

Group Design for Scenarios Level Number of 
CDAs

Number of 
parameters

time (h) Objective Function Inflow Climate

A Sensitive parameter 
identification

11_param WRZ3 15 11 15 × 15 1/N
∑N

i
KGE(Q)i

Simulation CMFD 2.0
7_param WRZ3 15 7 15 × 11

B Performance of the 
hierarchical calibration

WRZ1_level WRZ1 1 7 1 × 11 1/N
∑N

i
KGE(Q)i

– CMFD 2.0
WRZ2_level WRZ2 7 7 × 11 Simulation
WRZ3_level WRZ3 15 15 × 11
Site_level site- 

specific
29 29 × 11 KGE(Q)i

C Optimizing Coupled 
irrigation and Streamflow 
Simulations

wgt_0 WRZ3 15 7 15 × 11 1
N
∑

KGE(Q)i
Simulation CMFD 2.0

wgt_005 (1 − 0.05)× 1/N
∑(

KGE(Q)i +

0.05 ×
(
1 − |PbiasIrrigation

⃒
⃒
)

i

)

wgt_01 (1 − 0.1) × 1/N
∑(

KGE(Q)i +

0.1 ×
(
1 − |PbiasIrrigation

⃒
⃒
)

i

)

wgt_02 (1 − 0.2) × 1/N
∑(

KGE(Q)i +

0.2 ×
(
1 − |PbiasIrrigation

⃒
⃒
)

i

)

wgt_03 (1 − 0.3) × 1/N
∑(

KGE(Q)i +

0.3 ×
(
1 − |PbiasIrrigation

⃒
⃒
)

i

)

D Impact of input data 
uncertainty on model 
calibration

CMFD site- 
specific

29 7 29 × 11 KGE(Q)i – CMFD 2.0
GS_W5 GSWP3- 

W5E5
Inflow_sim WRZ3 15 7 15 × 11 1

N
∑N

i
KGE(Q)i

Simulation CMFD 2.0
Inflow_obs Observation CMFD 2.0
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3. Results and discussions

3.1. Identification of sensitive parameters through multi-site and multi- 
metric analysis

The parameter sensitivity analysis was conducted across eight 
distinct sites, utilizing four evaluation metrics: KGE, NSE, MAE, and 
RMSE (Fig. 5). The results showed strong consistency across the diverse 
evaluation metrics in identifying the most sensitive model parameters. 
Across all eight locations, a common set of highly sensitive parameters 
was consistently identified, including: crop_correct (a factor adjusting 
crop evapotranspiration), preferentialFlowConstant (an empirical shape 
parameter for the preferential flow relation), and factor_interflow (a 

factor adjusting the amount of interflow that percolates to ground
water). Beyond these common sensitivities, the choice of evaluation 
metric did influence the identification of sensitive parameters. For 
instance, soildepth_factor (a factor for the overall soil depth of soil layers 
1 and 2) was consistently among the top five sensitive parameters only 
when evaluated using MAE. Furthermore, certain parameters exhibited 
marked sensitivity only at specific sites. For instance, the parameter 
normalStorageLimit, representing the normal storage volume of a 
reservoir, showed particular sensitivity in the NPJ and HJ basins. This 
localized sensitivity might be attributable to the substantial reservoir 
storage, which collectively hold 22 % and 35 % of the entire basin's total 
capacity, thereby significantly influencing their local hydrological pro
cesses. This finding also highlighted the spatial variability of sensitive 
parameters in a large basin, which aligned with existing research [17,56,
57], and underscored the necessity of synthesizing sensitive parameters 
from multiple sites to derive basin-wide sensitive parameters.

A comparison of the daily streamflow simulation results from the two 
sensitive parameter selection methods at 29 hydrological stations at 
WRZ3 levels revealed that the 11-parameter set showed a slightly better 

Fig. 4. (a) Calibration unit configurations. (a)–(d) respectively show four CDA units' configurations: 1-unit (WRZ1 level), 7-unit (WRZ2 level), 15-unit (WRZ3 level), 
and 29-unit (site-specific catchments level). Yellow circles represent hydrological stations for calibration.

Fig. 5. The most influential parameters at the 8 stations based on the sensi
tivity of daily streamflow. The size of each box represents the magnitude of the 
total-order indices of a parameter. Two distinct methods for selecting basin- 
wide calibration parameters are illustrated on the right: the union of all site- 
specific sensitive parameters (orange check circles) and a more constrained 
set of parameters sensitive at over 50 % of the sites (blue check circles).

Table 2 
Benchmark Statistics for daily streamflow simulation from two sensitive 
parameter selection methods at 29 hydrological stations at WRZ3 levels. 
(calibration/validation).

Types Matrix Median Mean Maximum Minimum

11_param (11 
parameters)

KGE 0.86/ 
0.79

0.83/ 
0.72

0.96/0.94 0.58/0.34

NSE 0.73/ 
0.66

0.68/ 
0.52

0.92/0.86 0.19/-0.28

R 0.89/ 
0.86

0.85/ 
0.81

0.96/0.95 0.66/0.42

Pbias 
(%)

0.1/2.7 − 0.4/ 
1.6

19.2/29.9 − 22.2/ 
21.5

7_param (7 
parameters)

KGE 0.84/ 
0.80

0.81/ 
0.75

0.95/0.93 0.54/0.35

NSE 0.71/ 
0.65

0.67/ 
0.54

0.90/0.88 0.11/-0.52

R 0.88/ 
0.85

0.85/ 
0.81

0.95/0.95 0.62/0.41

Pbias 
(%)

0.2/3.2 − 0.6/ 
2.8

24.7/35.8 − 24.7/ 
23.6
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performance during the calibration period but no significant improve
ment or even a slight decrease during the validation period (Table 2). At 
the same time, the Mann-Whitney U test showed that there was no 
statistically significant difference between the two groups (p < 0.05, 
Table S6). This result suggested that calibrating parameters sensitive at 
over 50 % of the sites is a reasonable and effective approach to avoid the 
issue of equifinality. Since both methods produced comparable simula
tion results (Table 2), the more parsimonious set of 7 parameters was 
compiled for comprehensive basin-wide calibration (Table 3). This 
demonstrates the need for a multi-site and multi-metric analysis for a 
distributed and gridded model to capture the varied hydrological pro
cesses driven by spatially heterogeneous geohydrological properties. 
Future research could focus on developing a criterion for determining 
the optimal number of parameters for calibration, considering the 
spatial heterogeneity of parameters, particularly in large basins.

3.2. Impact of CDA unit scales on the performances of hierarchical 
parameterization

An ideal CDA unit delineation that fully captures watershed char
acteristics is essential for accurate basin modeling. This study investi
gated the impact of CDA unit scales on regional calibration performance 
across four distinct CDA unit scales (Fig. 4). When the entire basin was 
treated as a single CDA unit (the WRZ1-level scenario) and a single 
parameter set was employed, the average KGE and NSE values for the 29 
stations were notably low (0.19 and − 0.04, respectively). Conversely, 
significant improvements were observed when the basin was discretized 
into smaller units of 7, 15, and 29 CDAs (corresponding to the WRZ2- 
level, WRZ3-level, and Site-level scenarios, respectively). This resulted 
in improved mean KGE and NSE values by over 0.5, and PBIAS shifted 
from approximately − 70 % to within ±5 % (Fig. 6). These results 
strongly indicated that a single parameter set was insufficient to 
adequately capture the complex hydrological processes of the PRB, 
underscoring the crucial role of spatial parameter discretization for ac
curate modeling within the basin [15].

Fig. 6 clearly demonstrated that using the finer scale of the CDA units 
or increasing the number of CDA units significantly improved perfor
mance across all four metrics. At the smallest CDA unit scale, the average 
daily streamflow simulation achieved a high KGE of 0.83 during the 
calibration period. However, this did not imply that the smallest scales 
were universally optimal, as they could introduce excessive spatial 
heterogeneity in parameter values, potentially leading to over- 
parameterization issues [62], and significantly increased computa
tional demands (Table 1). In comparison to the Site-level scenario, the 
WRZ3-level scenario achieved a substantial reduction in the number of 
CDAs by nearly 50 %, which concurrently halved computational costs 
(from 319 to 165 h). Crucially, this significant gain in efficiency was 

realized while maintaining comparable performance across all four 
metrics (e.g., the mean KGE decreased by only 0.02). There is no sta
tistically significant difference between the WRZ3-level and the 
WRZ2-level or Site-level, while a statistically significant difference was 
found between the WRZ3-level and WRZ1-level parameter sets (Man
n-Whitney U test, p < 0.05, Table S6). Furthermore, a comparison of 
parameter set values across different CDA sizes (Fig. S5) revealed that 
some parameter sets within the Site-level scenario exhibited highly 
similar values. This suggested the potential for over-parameterization at 
finer scales, indicating that certain corresponding CDAs could poten
tially utilize the same parameter set. Therefore, considering simulation 
accuracy, computational efficiency, and parameterization effectiveness, 
the third-order (WRZ3) level was identified as the optimal scale for hi
erarchical parameterization in the PRB.

While previous studies have evaluated the impacts of sub-watershed 
or HRU delineation schemes on simulation results using the SWAT 
model [19,20,63], research on the delineation of CDA units for gridded 
models was scarce. This result not only demonstrated the improved 
simulation performance of hierarchical calibration compared to a single 
basin-wide parameter set, but also identified the optimal CDA unit scale 
for modeling in PRB. The computational cost of hierarchical calibration 
was high (one CDA unit took about 11 h on a 32-core high-performance 
computing platform, Table 1). To reduce computational costs and 
improve efficiency, one approach is to use a parallelization scheme [64] 
and set a condition to terminate the calibration process upon parameter 
convergence, which would significantly reduce the required computa
tion time. Another approach is to leverage parameter regionalization 
methods for ungauged basins, such as using clustering analysis or 
Random Forest algorithms to classify calibration units by similarity or 
establish a relationship between basin attributes and model parameters 
[65–67]. This would provide reference parameters values for uncali
brated units, reduce the parameter search space, and decrease the 
number of genetic algorithm iterations. In summary, the delineation of 
CDA units should be based on watershed characteristics, data avail
ability, and available computational resources. This finding would 
provide a valuable reference for obtaining comprehensive, calibrated 
parameters for modeling in other basins.

3.3. Optimizing irrigation and streamflow simulations

The optimization of balanced annual irrigation and daily streamflow 
simulations within a single-objective calibration framework at WRZ3 
levels was investigated (Fig. 7). It was observed that even a minimal 
irrigation weight (e.g., 0.05) significantly reduced irrigation simulation 
bias from 327 % to 120 %, accompanied by only a marginal decrease in 
streamflow accuracy (from 0.81 to 0.79 mean KGE). Conversely, an 
excessively high weighting (e.g., 0.3) led to an unacceptable degrada
tion of streamflow accuracy (mean KGE dropped to 0.39), despite 
achieving high-precision irrigation estimates (bias <10 %). These results 
suggested that a moderate irrigation weighting striked an optimal bal
ance between streamflow and agricultural water simulation. However, 
the determination of optimal irrigation weighting factors remains 
challenging due to the lack of universal criteria. A Mann-Whitney U test 
indicated that the "wgt_01" group was statistically significantly different 
from the "wgt_0", "wgt_02", and "wgt_03" groups (p < 0.05, Table S6). 
Further evaluation indicated that a weighting coefficient of wgt ≈0.1 
achieved an optimal performance balance (Fig. 7a). Specifically, 
streamflow accuracy decreased moderately (from 0.81 to 0.75 mean 
KGE), while irrigation simulation bias substantially decreased from 327 
% to 51 %. Notably, this empirical weighting aligned closely with the 
observed irrigation-to-discharge ratio (0.096) derived from the PRB's 
long-term water budget analysis, where mean annual irrigation water 
withdrawal (28.4 billion m3) represents 9.6 % of the total river 
discharge (298.1 billion m3). This finding provided a novel criterion that 
the regional irrigation-to-discharge ratio can serve as an informed basis 
for selecting the weighting factor in coupled single-objective calibration 

Table 3 
CWatM pre-calibration parameters. (ET: evapotranspiration, SL: soil, GW: 
groundwater, RT: routing, RL: reservoir and lakes, WD: waterdemand.)

Parameter Module Description range

crop_correct ET adjustment to crop 
evapotranspiration

[0.8, 
1.8]

soildepth_factor SL a factor for the overall soil depth 
of soil layers 1 and 2

[0.8, 
1.8]

preferentialFlowConstant SL empirical shape parameter of the 
preferential flow relation

[0.5, 
8]

manningsN RT a factor roughness in channel 
routing

[0.1, 
10]

chanBeta RT kinematic wave parameter [0.5, 
0.7]

factor_interflow GW a factor to adjust the amount 
which percolates from interflow 
to groundwater

[0.33, 
3]

irrigation_returnfraction WD the fraction of non-efficient 
water

[0, 1]
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Fig. 6. Cumulative distributions of KGE, NSE, R and PBIAS coefficient over the 29 stations in calibration (left column) and validation (right column) period for 4 
different scales of CDAs.
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frameworks.
The importance of accurately representing human water demand 

during model parameterization has been highlighted [10]. However, 
existing studies have predominantly focused on runoff calibration, with 
limited research dedicated to the calibration of water use. Given the 
dynamic interplay between water use and hydrological processes, it is 
crucial to incorporate irrigation water use into the calibration frame
work. While some studies have included human water use within model 
validation schemes, such as those in the Yangtze River Basin [9], Yellow 
River Basin [68], and Huaihe River Basin [10], these efforts were pri
marily for verifying model reliability rather than active calibration, but 
they failed to achieve the joint optimization of runoff and irrigation. Our 
study addressed this gap by proposing a novel bias-integrated calibra
tion framework that jointly optimizes both irrigation and streamflow. In 

this framework, the choice of the irrigation weighting coefficient is 
particularly important. While the regional irrigation-to-discharge ratio 
in the PRB approximates the optimal weighting coefficient, this ratio is 
likely not be universally applicable to other basins. However, the ratio 
can be used as a reference initial value for the irrigation weighting co
efficient, which can then be further refined to identify the optimal value, 
thereby effectively reducing computational costs.

3.4. Impact of input data uncertainty on model calibration

3.4.1. Impact of meteorological input data uncertainty on calibration
This study demonstrated that the use of high-spatial-resolution (10 

km) CMFD v2.0 meteorological data significantly improved streamflow 
simulation performance compared to lower-resolution (0.5◦) GSWP3- 

Fig. 7. Optimizing Coupled irrigation and Streamflow Simulations. (a) Daily streamflow and annual irrigation water simulation performance during the calibration 
period at WRZ3 levels. (b) Simulated annual irrigation water consumption in the PRB from 2000 to 2019. Results for both panels are presented under different 
irrigation weighting values (0, 0.05, 0.1, 0.2, 0.3).

Fig. 8. Impact of meteorological forcing datasets (GSWP3-W5E5 (ISIMIP3a) vs. CMFD v2.0) at three different sizes of CDAs during the calibration period. (a)–(d) 
show the KGE, NSE, R, and PBIAS values, respectively, for daily streamflow simulations at 29 stations. The "x" markers represent the ensemble means, while the 
scattered data points illustrate the simulation performance for each of the 29 stations.

K. Cai et al.                                                                                                                                                                                                                                      Water Cycle 7 (2026) 219–233 

228 



W5E5 inputs (Fig. 8). During the calibration period, although a Mann- 
Whitney U test showed no statistically significant difference between 
the two datasets (p > 0.05, Table S6), over 60 % of stations exhibited 
enhanced KGE, NSE, R, and PBIAS across three different CDA unit scales. 
Specifically, a detailed analysis of 29 stations revealed notable im
provements at the WRZ3 level: mean KGE increased from 0.77 to 0.81, 
mean NSE improved from 0.60 to 0.67, and mean absolute PBIAS 
decreased by 25 %. Similar improvements were observed during the 
validation period (Fig. S6). These results underscore the potential un
suitability of global meteorological datasets for regional hydrological 
modeling, as they could lead to biased hydrological parameter estimates 
and propagate these biases into water resource simulations [69]. This 
finding corroborated prior research, which has shown that 
high-resolution meteorological data provide more reliable results than 
global datasets, emphasizing the critical need for high-quality 

meteorological forcing data for hydrological models [70].
The availability of high-quality meteorological datasets for China has 

increased in recent years. In addition to the CMFD dataset used in this 
study, other available datasets include the China Daily Meteorological 
Dataset (CDMet) [71], the CMA Land Data Assimilation System (CLDAS) 
[71], and station data from the China Meteorological Data Service 
Center (CMDC) (https://data.cma.cn/). Given the expanding availabil
ity, it is recommended that researchers comprehensively compare and 
evaluate various meteorological datasets before modeling to select the 
most appropriate data for their specific region. Furthermore, hydro
logical models are highly sensitive to biases in meteorological forcing 
data [72], and this study used observed near-surface meteorological 
data from approximately 700 weather stations in China as a reference 
for bias correction. In conclusion, regional hydrological modeling 
should prioritize meteorological data with high spatiotemporal 

Fig. 9. Impact of simulated versus observed inflow on downstream CDA performance in a cascaded hierarchical calibration strategy at site-specific catchments level. 
(a) Illustrates the improvement in daily streamflow KGE when observed inflow is used compared to simulated inflow, while (b)–(g) show the improvement for six 
specific stations.
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resolution and integrate bias correction using reliable reference data, 
such as station observation data.

3.4.2. Impact of inflow uncertainty on hierarchical parameterization
The uncertainty introduced by inflow in hierarchical parameteriza

tion was assessed using two distinct inflow scenarios, namely 
"Inflow_sim" (simulated inflow) and "Inflow_obs" (observed inflow). The 
analysis focused on sixteen CDA units that receive inflow at the site- 
specific catchments level. Although a Mann-Whitney U test showed no 
statistically significant difference between the two datasets (p > 0.05, 
Table S6), it was found that utilizing observed daily streamflow data as 
boundary inputs significantly improved performance in all sixteen CDA 
units compared to simulations based on simulated inflow (Fig. 9). This 
resulted in an average increase of 0.04 in the KGE across all sixteen CDA 
units. Specifically, six CDA units exhibited a KGE improvement 
exceeding 5 % for daily streamflow. The most significant improvement 
was observed at Duan Station on the Hongshui River, where the KGE 
rose from 0.79 to 0.92, representing a 16.8 % increase. Qianjiang Station 
showed the second highest improvement, with its KGE increasing from 
0.86 to 0.98, a 14.4 % rise. This substantial improvement could be 
attributed to the correction of prior simulation inaccuracies at the up
stream Tiane Station (KGE = 0.66) (Fig. 9b–d). When simulated values 
from Tiane Station were used as inflow, the inherent simulation error 
directly compromised the performance at Duan Station, subsequently 
affecting the downstream Qianjiang Station. A similar pattern was 
observed with the inaccurate simulation at Longan Station (KGE = 0.78) 
on the Yujiang River, which directly impacted the downstream Nanning 
and Guigang Stations (Fig. 9e–g).

The analysis highlighted that the performance of downstream CDA 
units was critically dependent on the accuracy of upstream simulation 
performance, as model biases were sequentially propagated through 
nested CDA units. It revealed a cascading effect where simulation biases 

in the hierarchical calibration method propagate from upstream to 
downstream. This illustrated a limitation of the hierarchical calibration 
method, as the strategy involved estimating parameters following a step- 
by-step process, and once upstream area was calibrated and its param
eters were fixed, the resulting simulations were then used to calibrate 
the downstream areas [13,22]. Overall, this calibration strategy offerd 
the significant advantage of calibrating all grid parameters for an entire 
basin, making it a particularly useful method for large basins with 
abundant hydrological stations. However, it is essential to consider the 
upstream-to-downstream uncertainty propagation caused by inflow 
data.

3.5. Streamflow simulation accuracy of regional calibrated CWatM

This study assessed the accuracy of streamflow simulations from the 
regionally calibrated CWatM, and evaluated its performance for regional 
use by comparing it against several global data. The discharge from the 
regionally calibrated CWatM was simulated using the calibration find
ings from Sections 3.1-3.3. Specifically, it utilized seven parameters 
calibrated at the WRZ3 level, with upstream and downstream areas 
calibrated hierarchically, and the irrigation weight coefficient was set to 
0.1. This was then compared to global discharge datasets from uncali
brated global hydrological models (CWatM, WaterGAP2-2e, H08) 
sourced from ISIMIP3a [62], as well as from calibrated models 
(PCR-GLOBWB and LISFLOOD). Firstly, compared to data from the un
calibrated global models, the regionally calibrated CWatM demon
strated superior daily streamflow simulations at three hydrological 
stations along the PRB's main tributaries (Fig. 10). The improvements 
were significant, the daily flow's KGE value consistently exceeded 0.85 
(compared to 0.02–0.74 for uncalibrated models), and biases were 
constrained within ±1 %. The calibrated model more effectively 
captured seasonal flow variability and accurately replicated peak flow 

Fig. 10. Comparison of Daily Streamflow Simulation Performance between the regional calibrated CWatM and three uncalibrated global models (CWatM, 
WaterGAP2-2e, H08). 
(a)–(c) show the performance at the three hydrological stations located on the three main stems, respectively.
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magnitude and timing when compared to observed data. These results 
underscore the critical need for basin-specific modeling to ensure reli
able streamflow simulations [73]. This indicates that a straightforward 
application of a global model with standard settings to a specific 
regional case study is often inadequate, necessitating careful consider
ation of how to configure global models for regional-scale investigations 
[2,25]. Increasing their spatial resolution was an advanced and effective 
approach to enhance the utility of global models for specific regional or 
catchment-scale applications [74]. For instance, applying global models 
at a finer resolution could lead to improved water level estimates by 
enhancing the precision of reach lengths and DEMs [75]. In summary, 
ongoing efforts are crucial to improve how global hydrological models 
can be applied regionally. This will ultimately advance both global 
models and regional simulations, leading to greater consistency between 
regional and global modeling approaches.

Secondly, to further assess the spatial consistency of the simulated 
monthly streamflow, it was compared with two datasets from calibrated 
global models of similar resolutions: DynWat (derived from PCR- 
GLOBWB) [76] and GloFAS-ERA5 (based on LISFLOOD) [77] 
(Fig. 11). The simulations showed strong agreement with DynWat, 
evidenced by a high R2 value of 0.82. In contrast, the agreement with 
GloFAS-ERA5 was considerably weaker, with an R2 of 0.41. This dif
ference in alignment could be attributed to the structural similarities 
between CWatM and PCR-GLOBWB. Additionally, both DynWat and 
GloFAS-ERA5 were found to consistently overestimate streamflow in 
areas significantly impacted by human activities, such as the PRD basin 
and densely agricultural regions (Fig. S2). These overestimations might 
be due to the incorporation of more spatially accurate sectoral water use 
data into this study's modeling framework. The suboptimal performance 
of global datasets within the PRB was primarily attributed to limited 

regional parameterization in global models. For example, while 
GloFAS-ERA5 uses 1287 hydrological stations globally for calibration, 
fewer than 1 % are in China, with only a single station in the PRB [78,
79]. A similar issue affects the spatial distribution of stations used for 
calibrating DynWat, with only one station situated within the PRB [80]. 
The performance of globally-calibrated models is suboptimal at the 
basin scale, failing to satisfy the requirements for regional hydrological 
simulations. Conversely, this study's approach to parameterizing the 
CWatM according to the regional characteristics of the PRB could pro
vide a technical reference for parameterization in other basins.

4. Conclusion

This study demonstrated that a hierarchical parameterization and 
bias-integrated calibration approach is an effective method for 
enhancing hydrological modeling in large basins with intensive human 
water use. The findings offer a reliable technical pathway for achieving 
more precise simulations, which could lead to better-informed water 
resource management. The specific conclusions are as follows: 

(a) Hierarchical calibration significantly improved simulation per
formance compared to non-regionalized methods, with average 
KGE and NSE values increasing by over 0.5. And the Water 
Resource Zones of level 3 (WRZ3) was identified as the optimal 
scales for calibration units.

(b) Integrating irrigation simulation bias into the single-objective 
function could enable the simultaneous optimization of both 
streamflow and irrigation simulations. And the effective irriga
tion weighting coefficient aligns with the basin's overall 
irrigation-to-total-runoff ratio.

Fig. 11. Comparison of monthly Streamflow Simulation between the regional calibrated CWatM and two calibrated global models. (a,c) The spatial distribution of 
variation rate in multi-year mean streamflow between DynWat/GloFAS-ERA5 v4.0 and this study, respectively; (b,d) Temporal correlation of monthly streamflow 
across all grid cells for DynWat/GloFAS-ERA5 v4.0 versus this study, respectively.

K. Cai et al.                                                                                                                                                                                                                                      Water Cycle 7 (2026) 219–233 

231 



(c) The CWatM is suitable for regional applications, but regional 
parameterization according to the regional characteristics for 
specific basins is vital. Additionally, the model's performance is 
sensitive to input data quality.
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