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ARTICLE INFO ABSTRACT
Keywords: Human management of water resources has profoundly altered the water cycle, creating complex and difficult-
Hydrological modeling to-simulate human-water interactions. Traditional hydrological models, which have commonly focused solely on

Hierarchical parameterization

rarE e natural processes, struggle to accurately represent these changes especially in large basins with intensive human
Regionalized calibration

Water use water use, highlighting an urgent need for more effective modeling methods to improve this challenge. This

Community water model study proposed a hierarchical parameterization and bias-integrated calibration method to enhance modeling in

Pearl river basin those basins, and identified the optimal configuration through a comparative analysis of calibration scenarios
based on the hydrological modeling of the Pearl River Basin (PRB) using the Community Water Model (CWatM).
The key findings include: (a) Hierarchical calibration significantly improved simulation performance compared
to non-regionalized methods, with average modified Kling-Gupta Efficiency (KGE) and NSE (Nash-Sutcliffe Ef-
ficiency) values increasing by over 0.5, and the third level of Water Resource Zones (WRZ3) was identified as the
optimal calibration scale. (b) Integrating irrigation simulation bias into a single-objective function enabled the
simultaneous optimization of both streamflow and irrigation simulations, which reduced irrigation bias from
327 % to 51 % with only a minor decrease in streamflow accuracy (KGE from 0.81 to 0.75), and the effective
irrigation weighting coefficient was found to align with the basin's overall irrigation-to-total-runoff ratio. (c) The
CWatM was confirmed as suitable for regional applications, although its performance is sensitive to meteoro-
logical and inflow boundary data, and it's important to customize the model's parameters to accurately reflect
specific regional characteristics. The reproducible technical pathway presented in this paper could facilitate more
precise hydrological modeling in similar basins.

1. Introduction watersheds to the global extent [1,2]. Consequently, the explicit repre-
sentation of human intervention has become essential for the realistic

Over recent decades, accelerating global population growth and simulation of global and regional hydrological processes. For example,
intensified human activities have profoundly altered the water cycle and accurately accounting for human water demands from sectors such as
hydrological fluxes (e.g., discharge) at various scales, from local agriculture, industry, and domestic use is crucial, as these demands can
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significantly influence estimated hydrological storage and fluxes [3,4].
In intensively managed large river basins, such as those in populous
regions like India and China, human activities have substantially altered
natural hydrological processes [5-7]. Specifically, water use, particu-
larly for irrigation, has become a primary driver within the hydrological
cycle, exerting complex interaction mechanisms on both natural hy-
drological processes and anthropogenic dynamics [8,9]. However, many
conventional hydrological models, while considering the impact of
human activities to some extent, still prioritize rainfall-runoff simulation
and apply a simplified, conceptualized approach to anthropogenic in-
fluences [10]. This limited representation often results in poor perfor-
mance for hydrological simulations, which in turn hinders the provision
of reliable insights critical for effective water resource management
[11]. This highlights an urgent need to enhance hydrological modeling
capabilities in large basins experiencing intensive human water use.

Calibration is an essential step in hydrological modeling that directly
determines the successful application of a model [12]. However, for
large basins with significant spatial heterogeneity in geomorphology
and hydraulics, using identical parameters for the entire basin is prob-
lematic [13,14]. A single, unified parameter set cannot adequately
represent the diverse hydrological responses across the whole basin [15,
16], thus necessitating regional parameterization for accurate hydro-
logical simulations [17]. To address this, regional parameterization has
been widely adopted, which involves dividing the basin into multiple
calibration units, such as Hydrologic Response Units (HRUs) in models
like SWAT [18-20]. Additionally, a novel hierarchical
upstream-downstream calibration strategy has been developed, whose
scheme divides a basin into independent sub-basins based on hydro-
logical station locations and flow direction, allowing for the progressive
calibration of model parameters from upstream to downstream [21,22].
This strategy has been successfully applied in major basins, including the
Mississippi River [23], Lancang-Mekong River [13,24], and Yangtze
River [25]. Nevertheless, the delineation of sub-basins or calibration
units is often subjective, typically based on pre-defined subbasin di-
visions. Water Resource Zones (WRZ) are fundamental units for hydro-
logical and water resource research, which are defined based on
hydrological zones while also considering the unique characteristics of
water resources [26]. In China, these divisions usually have one to three
levels, commonly referred to as WRZ1, WRZ2, and WRZ3 [27]. There is
limited research, however, on which level of WRZ should be chosen as
the hydrological calibration unit for large river basins. Consequently, a
systematic evaluation of optimal calibration unit scales remains
insufficient.

Some of the currently used large scale hydrological models, such as
Community Water Model (CWatM) [28], LISFLOOD [29], PCR-GLOBWB
[30] and HO8 [4,31], have integrated irrigation-soil moisture dynamics
as a core module to enhance their simulation of water use management
[32]. These models dynamically link the irrigation process with the
water balance of soil water storage, surface water, and evapotranspi-
ration over irrigated areas [10,28,30], thereby recognize irrigation as a
key hydrological component that influences runoff. Although numerous
studies have incorporated multi-variable calibration, including hydro-
logical components like soil moisture, terrestrial water storage (TWS),
and evapotranspiration [24,33,34], there is a lack of research that
explicitly integrates irrigation water into the calibration process. To
improve a model's ability to synergistically simulate multiple hydro-
logical components, there is an urgent need to develop a coupled irri-
gation and streamflow calibration method. Furthermore, input data
uncertainty is widely recognized as the dominant source of hydrological
modeling uncertainty [35], with meteorological data uncertainty being
particularly significant [36,37]. However, research assessing the specific
impact of this input data uncertainty remains relatively scarce when
global models are applied for regional modeling using a hierarchical
parameterization strategy.

Based on the aforementioned literature review, three key research
gaps persist: a) the influence of calibration unit scales on the simulation
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performance on hierarchical calibration strategies, b) the integration of
irrigation water into the calibration framework, and c) the regional
applicability of large-scale models and the impact of input data uncer-
tainty. To investigate these questions, the CWatM was selected as the
modeling framework due to its advanced grid-based structure, which
systematically considers direct feedbacks between human water use and
other terrestrial water fluxes [28]. It also possesses unique global and
regional spatial representations and has been successfully applied at
both scales [7,38-40]. The Pearl River Basin (PRB), which includes one
WRZ1, seven WRZ2, and fifteen WRZ3 units, was selected as the study
area, a region characterized by high population density and intensive
water use [34]. Utilizing a scenario comparison method based on the
established hydrological and water resources model, this study set up
four groups of 11 calibration scenarios. The first group was designed to
identify the optimal parameter set, while the second was designed to
evaluate the impact of calibration unit scales on hierarchical parame-
terization. The third group aimed to optimize coupled irrigation and
streamflow simulations, and the fourth was used to evaluate the effect of
different meteorological datasets and inflow data on a hierarchical
calibration strategy.

This paper attempted to enhance hydrological modeling in large,
human-dominated basins by using a hierarchical parameterization and
bias-integrated calibration approach, and validated the adaptability of a
large-scale model for regional applications. The paper is structured as
follows. Section 1 provides the introduction and background. Section 2
describes the study area, data preparation, a brief overview of CWatM,
and the setup of the calibration scenarios. Section 3 presents the results
and discusses the relevant research questions. Finally, Section 4 provides
the conclusions.

2. Materials and methods
2.1. Modeling framework

To investigate how hierarchical parameterization and bias-
integrated calibration can enhance hydrological modeling in basins
with intensive human water use, a comprehensive modeling framework
was proposed (Fig. 1). The framework began with the hydrological
modeling of the PRB using CWatM, including the reconstruction of high-
resolution water use data for model input. This was followed by a
sensitivity analysis to identify sensitive parameters. Subsequently, four
sets of calibration experiments were designed. The first group further
screened parameters. The second group, which aimed to assess how
calibration unit scales affect performance using the hierarchical
parameterization approach, involved discretizing the basin into four
distinct unit types: WRZ1-3 and site-specific catchments. The third
group optimized coupled irrigation and streamflow simulations using a
composite objective function. The fourth group assessed the impact of
input data uncertainty (including meteorological and inflow data) on
modeling robustness. Finally, the accuracy of the hydrological simula-
tions was evaluated using the optimal calibration units and irrigation
weighting coefficients identified from the previous steps.

2.2. Study area and data sources

2.2.1. Study area

The Pearl River Basin (PRB) (Fig. 2), situated in southern China
(102°E—116°E and 21°N-27°N), is a vast hydrological system with a
total drainage area of 4.5 x 10° km? [41]. Its river network is charac-
terized by a maximum Strahler stream order of 7 (Fig. S1). The basin is
conventionally divided into WRZ2, including Nan-bei Pan Jiang (NPJ),
Hongliu Jiang (HJ), Yu Jiang (YJ), Xi Jiang (XJ), Bei Jiang (BJ), Dong
Jiang (DJ), and the Pearl River Delta (PRD) basins [42]. Topographi-
cally, the basin exhibits significant elevation gradients, transitioning
from high altitudes of up to 2852 m in the northwest to sea level in the
southeast. The climate of the basin is a tropical and subtropical monsoon
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Fig. 1. Methodology framework. (Groups A-D represent the four sets of calibration experiments).

regime, characterized by concentrated precipitation primarily during
the wet season (April to September), with annual precipitation ranging
from 1200 to 2200 mm and average annual temperatures typically
falling between 14 °C and 22 °C [43,44].

As illustrated in Fig. S2, the land cover composition within the study
area is dominated by forests (61 %) and grasslands (12 %). Croplands
account for 20 % of the area, with an even distribution between paddy
and non-paddy irrigation. Minor land use types, including sealed areas
(4 %) and water bodies (1.8 %), constitute a smaller proportion of the
total area. The PRB ranked second among China's ten major river basins
in total water resources, with an average of 3.4 x 10'! m%/a from 2000
to 2020 (Fig. 2¢). The midstream section holds the largest proportion of
these resources at 58.7 %, followed by the downstream at 31.6 % and the
upstream at 9.7 % (Table S1). The water withdrawal within the basin
amounts to 6.05 x 10'! m%/a, with the midstream and downstream
sections accounting for the majority of the withdrawal at 45.6 % and
46.6 %, respectively, while the upstream section accounts for a much
smaller portion (7.7 %) (Fig. 2c-Table S1). Agricultural irrigation rep-
resents the largest component of water withdrawal (55.3 %), followed
by the industrial (26.6 %) and domestic (17.4 %) sectors. Although the
PRB comprises only 5 % of China's land area, it supported 16.3 % of the
national population and contributed 15.6 % to the national GDP in
2020, and its water withdrawal constitutes 13.3 % of the national total
[45].
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2.2.2. Basic data

For the modeling, a substantial amount of spatially distributed cli-
matic and physiographic data were required. The local drainage direc-
tion map was adapted from HydroSHEDS (https://www.hydrosheds.
org), and land use data were derived from the Global Resources Data
Cloud (http://www.gis5g.com). Irrigation efficiency and water demand
data were obtained from the Water Resources Bulletin (WRB) of PRB
(https://www.pearlwater.gov.cn/zwgkes/lygb/szygb/). Meteorological
data were the critical input for hydrological models, and the specific
climate indicators needed depend on the method used to calculate po-
tential evapotranspiration [28]. In this study, the CWatM default Pen-
man-Monteith method was employed, which required inputs for
precipitation, average, maximum, and minimum 2 m temperatures,
near-surface pressure, humidity, 10m wind speed, and long- and
short-wave downward surface radiation fluxes. Additionally, tempera-
ture data were also used to determine if precipitation is snow or rain.
The climate data were obtained from CMFD v2.0 (https://cstr.cn/1
8406.11.Atmos.tpdc.302088). To quantify the impact of meteorolog-
ical uncertainty on model calibration, the GSWP3-W5E5 (ISIMIP3a)
(https://www.isimip.org/gettingstarted/input-data-bias-adjustment/
details/110/) data were also employed. All forcing data were spatially
downscaled to 0.1° resolution using bilinear interpolation and then
bias-corrected [46]. More details on the spatio-temporal resolution and
sources of all input data can be found in Table S3.

Moreover, twenty-nine representative hydrological stations across
the PRB were selected for model parameter sensitivity analysis and
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Fig. 2. The study area and water resource utilization. (a) and (b) show the study area and its location. Yellow circles represent hydrological stations for calibration,
while black triangles indicate stations for sensitivity analysis. See Table S2 in the supporting information for details. (¢) Shows the annual average population,

precipitation, total water resources, and water withdrawal for the PRB.

estimation (Fig. 2b). It was determined with three key criteria: stations
were located on mainstream (third-to fourth-order Strahler streams),
exhibited low reservoir disturbance (by removing stations within 50 km
downstream of large dams, verified using Google Earth Pro), and
possessed data adequacy (requiring at least 10 years of daily streamflow
records from 2006 to 2019 for both calibration and validation). The
daily streamflow data were compiled from the National Hydrological
Yearbooks of the PRB.

2.2.3. Water demand data

For the period 2000-2019, gridded (0.1°) water demand data,
encompassing both water withdrawal and consumption for three sec-
tors, were reconstructed using sector-specific methodologies [47,48]
(Fig. 3). For the domestic sector, gridded withdrawal was estimated by
downscaling WRZ2 level water withdrawal data from the WRB of PRB to
0.1° resolution, leveraging the spatial distribution from gridded popu-
lation data WorldPop (https://hub.worldpop.org/). Domestic water
consumption was subsequently calculated by multiplying this with-
drawal by the corresponding WRZ2 level domestic water consumption
rate. Similarly, for the industrial sector, WRZ2-level industrial water
withdrawal from the WRB of PRB was downscaled to 0.1° using the
China Industrial Water Withdrawal (CIWW) dataset's spatial distribution
[49], with the industrial water consumption rate calculated similarly to
that of the domestic sector. Livestock water demand was determined by
multiplying livestock density (heads per 0.1° grid) by the
temperature-dependent Livestock-specific Water Demand Intensity

222

(LWDI) [47]. Livestock density for nine categories was derived by
downscaling prefecture-level livestock numbers, sourced from the CNKI
Chinese Economic and Social Big Data Research Platform (https://data.
cnki.net/), to 0.1° using Gridded Livestock of the World distributions
(GLW3 for 2000-2010; GLW4 for 2010-2019) [50,51]. LWDI for each
category was dynamically adjusted based on three daily CMFD tem-
perature ranges (<15 °C, 15-35 °C, and >35 °C) [52,53], and the
species-specific LWDI values are detailed in Table S4. Notably, livestock
water consumption was assumed 100 % consumptive (no return flow)
[3,28].

2.3. Hydrological model and setup for PRB

The CWatM developed by International Institute for the Applied
Systems Analysis (IIASA) is a comprehensive hydrological and water
resources model. Built upon established models such as PCR-GLOBWB
and LISFLOOD, CWatM is capable of simulating water resource avail-
ability, human water demand, and the crucial role of water infrastruc-
ture (e.g., reservoirs) in water management [47,54]. Its reservoir routine
is similar to that of LISFLOOD, effectively simulating dams as points
within the channel network. Notably, CWatM internally embeds irri-
gation as a hydrological flux, while water demands for the livestock,
industrial, and domestic sectors are provided as external model inputs
[28]. A key advantage of CWatM is its modular design (Fig. S3) and fully
open-source Python code, which enable easy integration and
co-development with models from other sectors, such as energy and
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agriculture.

This study employed version 1.08 of CWatM for its modeling efforts,
utilizing a spatial resolution of 0.1°. CWatM's operational requires Py-
thon along with essential packages such as NumPy, SciPy, netCDF4, and
pandas. Given the substantial computational demands inherent in the
calibration experiments, the model was executed on a high-performance
computing platform equipped with a 32-core processor. All input data
were pre-processed into the required 0.1° netCDF format. While pri-
marily sourced from the global dataset provided by IIASA [28], several
critical input datasets were updated. Specifically, water demand data for
the industrial, domestic, and livestock sectors were reconstructed and
served as crucial model inputs, as detailed in Section 2.2.3. Additionally,
the map of irrigation efficiency at the sub-basin level within the PRB was
updated, a step crucial for accurately simulating irrigation water
consumption.

2.4. Parameter sensitivity analysis

Due to its thousands of spatially distributed parameters, a parameter
sensitivity analysis of the CWatM is a necessary and crucial step to limit
equifinality and reduce computational costs [23,28]. Based on our un-
derstanding of the CWatM model's mechanisms and a review of relevant
calibration literature [7,28,39,55], this paper selected twenty parame-
ters for the sensitivity analysis (Table S5). Parameter sensitivity varies
across different regions, especially within large river basins [17,56,57].
To identify parameters that are important for characterizing different
regional features, a sensitivity analysis was conducted at eight hydro-
logical stations located at the outlets of WRZ2 (Fig. 2b). Moreover, this
study designed a set of comparative scenarios to identify the most
influential parameters for subsequent calibration. This study employed
the variance-based Sobol method, as implemented by the SALib Python

223

library [58]. Employing the Saltelli sampling method, 5376 parameter
sets were generated per station, resulting in a comprehensive total of 43,
008 sets. Simulations were conducted in parallel in batches of 32 runs.
Each batch took approximately 12 min to complete the simulation
period (01/01/2006-12/31/2008). Consequently, the total computa-
tional time for all parameter sets was approximately 269 h (about 11.2
days).

2.5. Calibration setting and performance matrix

The model was calibrated using the NSGA-II genetic algorithm, as
implemented with the DEAP Python package. The algorithm was
configured with an initial population (u) of 256, a recombination pool
size (A) of 32, and a maximum of 30 generations. The parameters for
calibration were selected based on the results of the sensitivity analysis.
The number of parameters used for each calibration scenario can be
found in Table 1. Simulations spanned a 19-year period (2001-2019),
which was segmented into a 5-year spin-up (2001-2005), a 10-year
calibration (2006-2015), and a 4-year validation (2016-2019). To
accelerate the calibration process, we used parallel computing across 32
CPU cores with Python's multiprocessing library. This reduced the
computational time per CDA unit to approximately 11 h when cali-
brating 7 parameters and 15 h when calibrating 11 parameters.
Computational time for each calibration scenario varied depending on
the number of CDA units, with specific details presented in Table 1.
Model performance was evaluated using four metrics: the modified
Kling-Gupta Efficiency (KGE) [59], the correlation coefficient (R),
Nash-Sutcliffe Efficiency (NSE) [60], and Percent Bias (PBIAS) (Egs. (1)—
(4)). These metrics quantify the goodness-of-fit between simulated (Qs)
and observed (Q,) streamflow.
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Table 1
Configurations of the 11 calibration scenarios. (N is the number of hydrological stations in each CDA).
Group Design for Scenarios Level Number of Number of time (h) Objective Function Inflow Climate
CDAs parameters

A Sensitive parameter 11_param WRZ3 15 11 15 x 15 1/N ZN KGE(Q); Simulation CMFD 2.0
identification 7_param WRZ3 15 7 15 x 11 ! '

B Performance of the WRZ1 level  WRZ1 1 7 1x11 1 /NZN KGE(Q); - CMFD 2.0
hierarchical calibration WRZ2 level WRZ2 7 7 x 11 ! ! Simulation

WRZ3 _level WRZ3 15 15 x 11
Site_level site- 29 29 x 11 KGE(Q);
specific
C Optimizing Coupled wgt 0 WRZ3 15 7 15 x 11 1 Simulation CMFD 2.0
il E(Q).
irrigation and Streamflow N EKG (@
Simulations wgt_005 (1 -0.05)x 1/NZ (KGE(Q); +
0.05 x (1 — |PbiaSirigation| );)
wgt_ 01 (1-01)x 1/NY_ (KGE(Q); +
0.1 x (1 — |PbidSyrrigation|);)
wgt_02 (1-02)x 1/NY_ (KGE(Q); +
0.2 x (1 — |PbiSirigation ) ;)
wgt 03 (1-03)x 1/NY_ (KGE(Q); +
0.3 x (1 — |PbiaSirigation|);)

D Impact of input data CMFD site- 29 7 29 x 11 KGE(Q); - CMFD 2.0
uncertainty on model GS_W5 specific GSWP3-
calibration W5E5S

Inflow_sim WRZ3 15 7 15 x 11 1 N Simulation CMFD 2.0
S — KGE(Q);
Inflow_obs N Zi @ Observation ~ CMFD 2.0

KGE=1— \/(Rf 1)’ + (Qn/Qo — 1)* + ((60,/Qmn) / (60,/Q0) —1)°

e8]
R = cov(Qm,Qo)/ (0q,0qy) @
NSE=1 - {Z (Qoi = Qmi)* [ D (Qoi— @)2} 3)
i=1 i=1
PBIAS = Z (Qmi — Qm-)/Qoi x 100% (O]
i=1

2.6. Experimental setup

In this study, four experimental groups comprising 11 calibration
scenarios were designed to achieve four key objectives: identifying the
most influential parameters for calibration, determining the optimal
calibration scale for hierarchical parameterization, optimizing coupled
irrigation and streamflow simulations, and evaluating the impact of
different meteorological and inflow datasets on both model performance
and the hierarchical calibration strategy. The specific configurations for
each scenario are detailed in Table 1.

Group A: to identify the most representative parameters for whole-
basin calibration, this group explored two selection methods. The first
involved using the union of the five most sensitive parameters identified
at each of the eight sites, resulting in a total of 11 parameters. However,
this approach risked over-parameterization, potentially increasing
computational demand and exacerbating issues of equifinality [61]. To
mitigate this, a second, more constrained screening method was applied.
This method selected only those parameters that were sensitive at over
50 % of the sites, yielding a unified set of 7 parameters. These two
distinct sets of parameters were used to establish two calibration sce-
narios at the WRZ3 level, named "11_param” and "7_param’,
respectively.

Group B: to evaluate the effectiveness of hierarchical parameteriza-
tion and determine the optimal scale for calibration, the basin was
partitioned into four calibration unit configurations. Based on the water
resource zones levels 1-3 boundaries and site-specific watershed
boundaries, the basin was partitioned into a 1-unit (WRZ1 level), 7-unit
(WRZ2 level), 15-unit (WRZ3 level), and 29-unit (site-specific level)
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configuration (as shown in Fig. 4). These configurations correspond to
the "WRZ1 level”, "WRZ2_level”, "WRZ3_level”, and "Site_level” scenarios,
respectively. To effectively represent the process of hierarchical
parameterization within the modeling framework, we referenced the
definition of Calibration Data Assimilation (CDA) units [23], in which
parameters are uniformly adjusted. The partitioning of the study area
and the establishment of confluence relationships were performed using
PCRaster and Python 3.12 (see Text S1 and Fig. S4).

Group C: to optimize coupled irrigation and streamflow simulations,
a bias-integrated calibration method for irrigation was developed, which
employed a composite objective function (Eq. (5)). To determine the
optimal weighting coefficient for irrigation, this group established five
distinct scenarios— "wgt 0", "wgt 005", "wgt 01", "wgt 02", and
"wgt_03"— corresponding to irrigation weighting coefficients of 0, 0.05,
0.1, 0.2, and 0.3, respectively. This range of values allowed us to explore
the full spectrum of calibration objectives, from prioritizing pure
streamflow optimization ("wgt_0") to placing a strong emphasis on irri-
gation water reliability ("'wgt_03").

OF = (1 — wgt) x KGEq + wgt x (1 — |PbiaSyrigasion| ) (5)
where, OF represents the single objective function of the genetic algo-
rithm, KGE, is the daily streamflow KGE value, Pbias,,,igaﬁon\ denotes the
absolute value of the annual simulated irrigation water bias, and wgt is
the assigned weight for irrigation.

Group D: to evaluate the comprehensive impact of both meteoro-
logical input data and upstream inflow boundary data on model per-
formance, a dedicated experimental design was developed. First, the
model's sensitivity to meteorological forcing data was assessed by
setting up two distinct scenarios: the "CMFD" scenario, which utilized
CMFD v2.0 data, and the "GS_W5" scenario, which used global-scale
GSWP3-W5E5 data. Furthermore, to investigate the propagation ef-
fects of upstream errors during hierarchical parameterization, two
inflow scenarios were established: the "Inflow_sim” scenario, which used
optimal simulated values from upstream CDAs, and the "Inflow_obs”
scenario, which employed observed daily streamflow data as boundary
conditions.
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WRZ2 level -

(b)

Fig. 4. (a) Calibration unit configurations. (a)-(d) respectively show four CDA units' configurations: 1-unit (WRZ1 level), 7-unit (WRZ2 level), 15-unit (WRZ3 level),
and 29-unit (site-specific catchments level). Yellow circles represent hydrological stations for calibration.

3. Results and discussions

3.1. Identification of sensitive parameters through multi-site and multi-

metric analysis

The parameter sensitivity analysis was conducted across eight
distinct sites, utilizing four evaluation metrics: KGE, NSE, MAE, and
RMSE (Fig. 5). The results showed strong consistency across the diverse
evaluation metrics in identifying the most sensitive model parameters.
Across all eight locations, a common set of highly sensitive parameters
was consistently identified, including: crop_correct (a factor adjusting
crop evapotranspiration), preferentialFlowConstant (an empirical shape
parameter for the preferential flow relation), and factor_interflow (a
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Fig. 5. The most influential parameters at the 8 stations based on the sensi-
tivity of daily streamflow. The size of each box represents the magnitude of the
total-order indices of a parameter. Two distinct methods for selecting basin-
wide calibration parameters are illustrated on the right: the union of all site-
specific sensitive parameters (orange check circles) and a more constrained
set of parameters sensitive at over 50 % of the sites (blue check circles).
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factor adjusting the amount of interflow that percolates to ground-
water). Beyond these common sensitivities, the choice of evaluation
metric did influence the identification of sensitive parameters. For
instance, soildepth_factor (a factor for the overall soil depth of soil layers
1 and 2) was consistently among the top five sensitive parameters only
when evaluated using MAE. Furthermore, certain parameters exhibited
marked sensitivity only at specific sites. For instance, the parameter
normalStorageLimit, representing the normal storage volume of a
reservoir, showed particular sensitivity in the NPJ and HJ basins. This
localized sensitivity might be attributable to the substantial reservoir
storage, which collectively hold 22 % and 35 % of the entire basin's total
capacity, thereby significantly influencing their local hydrological pro-
cesses. This finding also highlighted the spatial variability of sensitive
parameters in a large basin, which aligned with existing research [17,56,
571, and underscored the necessity of synthesizing sensitive parameters
from multiple sites to derive basin-wide sensitive parameters.

A comparison of the daily streamflow simulation results from the two
sensitive parameter selection methods at 29 hydrological stations at
WRZ3 levels revealed that the 11-parameter set showed a slightly better

Table 2

Benchmark Statistics for daily streamflow simulation from two sensitive
parameter selection methods at 29 hydrological stations at WRZ3 levels.
(calibration/validation).

Types Matrix Median Mean Maximum  Minimum
11_param (11 KGE 0.86/ 0.83/ 0.96/0.94  0.58/0.34
parameters) 0.79 0.72
NSE 0.73/ 0.68/ 0.92/0.86 0.19/-0.28
0.66 0.52
R 0.89/ 0.85/ 0.96/0.95  0.66/0.42
0.86 0.81
Pbias 0.1/2.7 —0.4/ 19.2/29.9  -22.2/
(%) 1.6 21.5
7_param (7 KGE 0.84/ 0.81/ 0.95/0.93  0.54/0.35
parameters) 0.80 0.75
NSE 0.71/ 0.67/ 0.90/0.88  0.11/-0.52
0.65 0.54
R 0.88/ 0.85/ 0.95/0.95 0.62/0.41
0.85 0.81
Pbias 0.2/3.2 —0.6/ 24.7/35.8 247/
(%) 2.8 23.6
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performance during the calibration period but no significant improve-
ment or even a slight decrease during the validation period (Table 2). At
the same time, the Mann-Whitney U test showed that there was no
statistically significant difference between the two groups (p < 0.05,
Table S6). This result suggested that calibrating parameters sensitive at
over 50 % of the sites is a reasonable and effective approach to avoid the
issue of equifinality. Since both methods produced comparable simula-
tion results (Table 2), the more parsimonious set of 7 parameters was
compiled for comprehensive basin-wide calibration (Table 3). This
demonstrates the need for a multi-site and multi-metric analysis for a
distributed and gridded model to capture the varied hydrological pro-
cesses driven by spatially heterogeneous geohydrological properties.
Future research could focus on developing a criterion for determining
the optimal number of parameters for calibration, considering the
spatial heterogeneity of parameters, particularly in large basins.

3.2. Impact of CDA unit scales on the performances of hierarchical
parameterization

An ideal CDA unit delineation that fully captures watershed char-
acteristics is essential for accurate basin modeling. This study investi-
gated the impact of CDA unit scales on regional calibration performance
across four distinct CDA unit scales (Fig. 4). When the entire basin was
treated as a single CDA unit (the WRZ1-level scenario) and a single
parameter set was employed, the average KGE and NSE values for the 29
stations were notably low (0.19 and —0.04, respectively). Conversely,
significant improvements were observed when the basin was discretized
into smaller units of 7, 15, and 29 CDAs (corresponding to the WRZ2-
level, WRZ3-level, and Site-level scenarios, respectively). This resulted
in improved mean KGE and NSE values by over 0.5, and PBIAS shifted
from approximately —70 % to within +5 % (Fig. 6). These results
strongly indicated that a single parameter set was insufficient to
adequately capture the complex hydrological processes of the PRB,
underscoring the crucial role of spatial parameter discretization for ac-
curate modeling within the basin [15].

Fig. 6 clearly demonstrated that using the finer scale of the CDA units
or increasing the number of CDA units significantly improved perfor-
mance across all four metrics. At the smallest CDA unit scale, the average
daily streamflow simulation achieved a high KGE of 0.83 during the
calibration period. However, this did not imply that the smallest scales
were universally optimal, as they could introduce excessive spatial
heterogeneity in parameter values, potentially leading to over-
parameterization issues [62], and significantly increased computa-
tional demands (Table 1). In comparison to the Site-level scenario, the
WRZ3-level scenario achieved a substantial reduction in the number of
CDAs by nearly 50 %, which concurrently halved computational costs
(from 319 to 165 h). Crucially, this significant gain in efficiency was

Table 3
CWatM pre-calibration parameters. (ET: evapotranspiration, SL: soil, GW:
groundwater, RT: routing, RL: reservoir and lakes, WD: waterdemand.)

Parameter Module  Description range
crop_correct ET adjustment to crop [0.8,
evapotranspiration 1.8]
soildepth_factor SL a factor for the overall soil depth [0.8,
of soil layers 1 and 2 1.8]
preferentialFlowConstant ~ SL empirical shape parameter of the  [0.5,
preferential flow relation 8]
manningsN RT a factor roughness in channel [0.1,
routing 10]
chanBeta RT kinematic wave parameter [0.5,
0.7]
factor_interflow GW a factor to adjust the amount [0.33,
which percolates from interflow 3]
to groundwater
irrigation_returnfraction WD the fraction of non-efficient [0, 1]
water
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realized while maintaining comparable performance across all four
metrics (e.g., the mean KGE decreased by only 0.02). There is no sta-
tistically significant difference between the WRZ3-level and the
WRZ2-level or Site-level, while a statistically significant difference was
found between the WRZ3-level and WRZ1-level parameter sets (Man-
n-Whitney U test, p < 0.05, Table S6). Furthermore, a comparison of
parameter set values across different CDA sizes (Fig. S5) revealed that
some parameter sets within the Site-level scenario exhibited highly
similar values. This suggested the potential for over-parameterization at
finer scales, indicating that certain corresponding CDAs could poten-
tially utilize the same parameter set. Therefore, considering simulation
accuracy, computational efficiency, and parameterization effectiveness,
the third-order (WRZ3) level was identified as the optimal scale for hi-
erarchical parameterization in the PRB.

While previous studies have evaluated the impacts of sub-watershed
or HRU delineation schemes on simulation results using the SWAT
model [19,20,63], research on the delineation of CDA units for gridded
models was scarce. This result not only demonstrated the improved
simulation performance of hierarchical calibration compared to a single
basin-wide parameter set, but also identified the optimal CDA unit scale
for modeling in PRB. The computational cost of hierarchical calibration
was high (one CDA unit took about 11 h on a 32-core high-performance
computing platform, Table 1). To reduce computational costs and
improve efficiency, one approach is to use a parallelization scheme [64]
and set a condition to terminate the calibration process upon parameter
convergence, which would significantly reduce the required computa-
tion time. Another approach is to leverage parameter regionalization
methods for ungauged basins, such as using clustering analysis or
Random Forest algorithms to classify calibration units by similarity or
establish a relationship between basin attributes and model parameters
[65-67]. This would provide reference parameters values for uncali-
brated units, reduce the parameter search space, and decrease the
number of genetic algorithm iterations. In summary, the delineation of
CDA units should be based on watershed characteristics, data avail-
ability, and available computational resources. This finding would
provide a valuable reference for obtaining comprehensive, calibrated
parameters for modeling in other basins.

3.3. Optimizing irrigation and streamflow simulations

The optimization of balanced annual irrigation and daily streamflow
simulations within a single-objective calibration framework at WRZ3
levels was investigated (Fig. 7). It was observed that even a minimal
irrigation weight (e.g., 0.05) significantly reduced irrigation simulation
bias from 327 % to 120 %, accompanied by only a marginal decrease in
streamflow accuracy (from 0.81 to 0.79 mean KGE). Conversely, an
excessively high weighting (e.g., 0.3) led to an unacceptable degrada-
tion of streamflow accuracy (mean KGE dropped to 0.39), despite
achieving high-precision irrigation estimates (bias <10 %). These results
suggested that a moderate irrigation weighting striked an optimal bal-
ance between streamflow and agricultural water simulation. However,
the determination of optimal irrigation weighting factors remains
challenging due to the lack of universal criteria. A Mann-Whitney U test
indicated that the "wgt_01" group was statistically significantly different
from the "wgt_ 0", "wgt_02", and "wgt_03" groups (p < 0.05, Table S6).
Further evaluation indicated that a weighting coefficient of wgt ~0.1
achieved an optimal performance balance (Fig. 7a). Specifically,
streamflow accuracy decreased moderately (from 0.81 to 0.75 mean
KGE), while irrigation simulation bias substantially decreased from 327
% to 51 %. Notably, this empirical weighting aligned closely with the
observed irrigation-to-discharge ratio (0.096) derived from the PRB's
long-term water budget analysis, where mean annual irrigation water
withdrawal (28.4 billion m®) represents 9.6 % of the total river
discharge (298.1 billion m®). This finding provided a novel criterion that
the regional irrigation-to-discharge ratio can serve as an informed basis
for selecting the weighting factor in coupled single-objective calibration
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frameworks.

The importance of accurately representing human water demand
during model parameterization has been highlighted [10]. However,
existing studies have predominantly focused on runoff calibration, with
limited research dedicated to the calibration of water use. Given the
dynamic interplay between water use and hydrological processes, it is
crucial to incorporate irrigation water use into the calibration frame-
work. While some studies have included human water use within model
validation schemes, such as those in the Yangtze River Basin [9], Yellow
River Basin [68], and Huaihe River Basin [10], these efforts were pri-
marily for verifying model reliability rather than active calibration, but
they failed to achieve the joint optimization of runoff and irrigation. Our
study addressed this gap by proposing a novel bias-integrated calibra-
tion framework that jointly optimizes both irrigation and streamflow. In
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this framework, the choice of the irrigation weighting coefficient is
particularly important. While the regional irrigation-to-discharge ratio
in the PRB approximates the optimal weighting coefficient, this ratio is
likely not be universally applicable to other basins. However, the ratio
can be used as a reference initial value for the irrigation weighting co-
efficient, which can then be further refined to identify the optimal value,
thereby effectively reducing computational costs.

3.4. Impact of input data uncertainty on model calibration

3.4.1. Impact of meteorological input data uncertainty on calibration
This study demonstrated that the use of high-spatial-resolution (10

km) CMFD v2.0 meteorological data significantly improved streamflow

simulation performance compared to lower-resolution (0.5°) GSWP3-

N N ¥
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Fig. 8. Impact of meteorological forcing datasets (GSWP3-W5E5 (ISIMIP3a) vs. CMFD v2.0) at three different sizes of CDAs during the calibration period. (a)-(d)
show the KGE, NSE, R, and PBIAS values, respectively, for daily streamflow simulations at 29 stations. The "x" markers represent the ensemble means, while the
scattered data points illustrate the simulation performance for each of the 29 stations.
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WHS5ES inputs (Fig. 8). During the calibration period, although a Mann-
Whitney U test showed no statistically significant difference between
the two datasets (p > 0.05, Table S6), over 60 % of stations exhibited
enhanced KGE, NSE, R, and PBIAS across three different CDA unit scales.
Specifically, a detailed analysis of 29 stations revealed notable im-
provements at the WRZ3 level: mean KGE increased from 0.77 to 0.81,
mean NSE improved from 0.60 to 0.67, and mean absolute PBIAS
decreased by 25 %. Similar improvements were observed during the
validation period (Fig. S6). These results underscore the potential un-
suitability of global meteorological datasets for regional hydrological
modeling, as they could lead to biased hydrological parameter estimates
and propagate these biases into water resource simulations [69]. This
finding corroborated prior research, which has shown that
high-resolution meteorological data provide more reliable results than
global datasets, emphasizing the critical need for high-quality

Water Cycle 7 (2026) 219-233

meteorological forcing data for hydrological models [70].

The availability of high-quality meteorological datasets for China has
increased in recent years. In addition to the CMFD dataset used in this
study, other available datasets include the China Daily Meteorological
Dataset (CDMet) [71], the CMA Land Data Assimilation System (CLDAS)
[71], and station data from the China Meteorological Data Service
Center (CMDCQ) (https://data.cma.cn/). Given the expanding availabil-
ity, it is recommended that researchers comprehensively compare and
evaluate various meteorological datasets before modeling to select the
most appropriate data for their specific region. Furthermore, hydro-
logical models are highly sensitive to biases in meteorological forcing
data [72], and this study used observed near-surface meteorological
data from approximately 700 weather stations in China as a reference
for bias correction. In conclusion, regional hydrological modeling
should prioritize meteorological data with high spatiotemporal
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resolution and integrate bias correction using reliable reference data,
such as station observation data.

3.4.2. Impact of inflow uncertainty on hierarchical parameterization

The uncertainty introduced by inflow in hierarchical parameteriza-
tion was assessed using two distinct inflow scenarios, namely
"Inflow_sim" (simulated inflow) and "Inflow_obs" (observed inflow). The
analysis focused on sixteen CDA units that receive inflow at the site-
specific catchments level. Although a Mann-Whitney U test showed no
statistically significant difference between the two datasets (p > 0.05,
Table S6), it was found that utilizing observed daily streamflow data as
boundary inputs significantly improved performance in all sixteen CDA
units compared to simulations based on simulated inflow (Fig. 9). This
resulted in an average increase of 0.04 in the KGE across all sixteen CDA
units. Specifically, six CDA units exhibited a KGE improvement
exceeding 5 % for daily streamflow. The most significant improvement
was observed at Duan Station on the Hongshui River, where the KGE
rose from 0.79 to 0.92, representing a 16.8 % increase. Qianjiang Station
showed the second highest improvement, with its KGE increasing from
0.86 to 0.98, a 14.4 % rise. This substantial improvement could be
attributed to the correction of prior simulation inaccuracies at the up-
stream Tiane Station (KGE = 0.66) (Fig. 9b-d). When simulated values
from Tiane Station were used as inflow, the inherent simulation error
directly compromised the performance at Duan Station, subsequently
affecting the downstream Qianjiang Station. A similar pattern was
observed with the inaccurate simulation at Longan Station (KGE = 0.78)
on the Yujiang River, which directly impacted the downstream Nanning
and Guigang Stations (Fig. 9e-g).

The analysis highlighted that the performance of downstream CDA
units was critically dependent on the accuracy of upstream simulation
performance, as model biases were sequentially propagated through
nested CDA units. It revealed a cascading effect where simulation biases
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in the hierarchical calibration method propagate from upstream to
downstream. This illustrated a limitation of the hierarchical calibration
method, as the strategy involved estimating parameters following a step-
by-step process, and once upstream area was calibrated and its param-
eters were fixed, the resulting simulations were then used to calibrate
the downstream areas [13,22]. Overall, this calibration strategy offerd
the significant advantage of calibrating all grid parameters for an entire
basin, making it a particularly useful method for large basins with
abundant hydrological stations. However, it is essential to consider the
upstream-to-downstream uncertainty propagation caused by inflow
data.

3.5. Streamflow simulation accuracy of regional calibrated CWatM

This study assessed the accuracy of streamflow simulations from the
regionally calibrated CWatM, and evaluated its performance for regional
use by comparing it against several global data. The discharge from the
regionally calibrated CWatM was simulated using the calibration find-
ings from Sections 3.1-3.3. Specifically, it utilized seven parameters
calibrated at the WRZ3 level, with upstream and downstream areas
calibrated hierarchically, and the irrigation weight coefficient was set to
0.1. This was then compared to global discharge datasets from uncali-
brated global hydrological models (CWatM, WaterGAP2-2e, H08)
sourced from ISIMIP3a [62], as well as from calibrated models
(PCR-GLOBWB and LISFLOOD). Firstly, compared to data from the un-
calibrated global models, the regionally calibrated CWatM demon-
strated superior daily streamflow simulations at three hydrological
stations along the PRB's main tributaries (Fig. 10). The improvements
were significant, the daily flow's KGE value consistently exceeded 0.85
(compared to 0.02-0.74 for uncalibrated models), and biases were
constrained within +1 %. The calibrated model more effectively
captured seasonal flow variability and accurately replicated peak flow
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(a)-(c) show the performance at the three hydrological stations located on the three main stems, respectively.
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magnitude and timing when compared to observed data. These results
underscore the critical need for basin-specific modeling to ensure reli-
able streamflow simulations [73]. This indicates that a straightforward
application of a global model with standard settings to a specific
regional case study is often inadequate, necessitating careful consider-
ation of how to configure global models for regional-scale investigations
[2,25]. Increasing their spatial resolution was an advanced and effective
approach to enhance the utility of global models for specific regional or
catchment-scale applications [74]. For instance, applying global models
at a finer resolution could lead to improved water level estimates by
enhancing the precision of reach lengths and DEMs [75]. In summary,
ongoing efforts are crucial to improve how global hydrological models
can be applied regionally. This will ultimately advance both global
models and regional simulations, leading to greater consistency between
regional and global modeling approaches.

Secondly, to further assess the spatial consistency of the simulated
monthly streamflow, it was compared with two datasets from calibrated
global models of similar resolutions: DynWat (derived from PCR-
GLOBWB) [76] and GloFAS-ERA5 (based on LISFLOOD) [77]
(Fig. 11). The simulations showed strong agreement with DynWat,
evidenced by a high R? value of 0.82. In contrast, the agreement with
GloFAS-ERA5 was considerably weaker, with an R? of 0.41. This dif-
ference in alignment could be attributed to the structural similarities
between CWatM and PCR-GLOBWB. Additionally, both DynWat and
GloFAS-ERA5 were found to consistently overestimate streamflow in
areas significantly impacted by human activities, such as the PRD basin
and densely agricultural regions (Fig. S2). These overestimations might
be due to the incorporation of more spatially accurate sectoral water use
data into this study's modeling framework. The suboptimal performance
of global datasets within the PRB was primarily attributed to limited

(@)
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regional parameterization in global models. For example, while
GloFAS-ERA5 uses 1287 hydrological stations globally for calibration,
fewer than 1 % are in China, with only a single station in the PRB [78,
79]. A similar issue affects the spatial distribution of stations used for
calibrating DynWat, with only one station situated within the PRB [80].
The performance of globally-calibrated models is suboptimal at the
basin scale, failing to satisfy the requirements for regional hydrological
simulations. Conversely, this study's approach to parameterizing the
CWatM according to the regional characteristics of the PRB could pro-
vide a technical reference for parameterization in other basins.

4. Conclusion

This study demonstrated that a hierarchical parameterization and
bias-integrated calibration approach is an effective method for
enhancing hydrological modeling in large basins with intensive human
water use. The findings offer a reliable technical pathway for achieving
more precise simulations, which could lead to better-informed water
resource management. The specific conclusions are as follows:

(a) Hierarchical calibration significantly improved simulation per-
formance compared to non-regionalized methods, with average
KGE and NSE values increasing by over 0.5. And the Water
Resource Zones of level 3 (WRZ3) was identified as the optimal
scales for calibration units.

Integrating irrigation simulation bias into the single-objective
function could enable the simultaneous optimization of both
streamflow and irrigation simulations. And the effective irriga-
tion weighting coefficient aligns with the basin's overall
irrigation-to-total-runoff ratio.
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Fig. 11. Comparison of monthly Streamflow Simulation between the regional calibrated CWatM and two calibrated global models. (a,c) The spatial distribution of
variation rate in multi-year mean streamflow between DynWat/GloFAS-ERA5 v4.0 and this study, respectively; (b,d) Temporal correlation of monthly streamflow

0.8

across all grid cells for DynWat/GloFAS-ERAS v4.0 versus this study, respectively.
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(c) The CWatM is suitable for regional applications, but regional
parameterization according to the regional characteristics for
specific basins is vital. Additionally, the model's performance is
sensitive to input data quality.
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