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FOREWORD 

One of the main themes of the Adaptive Resource Policies Project is to study the 
problem of identification of aspects of natural resource systems useful for policy design 
and management. In this article, John Casti investigates the problem of the information 
needed to construct appropriate feedback policies for forest harvesting. Both the deter­
ministic and the stochastic versions of state identification are considered, as well as the 
problem of how often measurements of the forest need to be taken in order to determine 
its state. The article concludes with an appendix discussing some general system-theoretic 
aspects of measurement and control. 

CARL J. WALTERS 
Leader 

Adaptive Resource Policies Project 
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ABSTRACT 

This paper considers the problem of what information must be measured in a forest 
management model in order to generate optimal feedback harvesting policies. To­
gether with this question, the paper also addresses the issue of how LP-based models 
can be embedded within a dynamic programming framework, so that feedback rather 
than open-loop decisions can be determined. 

The appendix to the paper presents a more general system-theoretic framework 
within which forest management may be studied. Issues of surprise, response to 
unknown disturbances, and robustness of policies are examined and a program for 
systematically investigating such management questions is outlined. 

I. INTRODUCTION 

Current forest management policies are often based upon large-scale 
mathematical models of the linear or nonlinear programming type. While 
there is considerable merit in structuring the complexities of the decisionmak­
ing process in such a fashion, there are nontrivial difficulties as well, difficul­
ties which are not related to the issues of parameter accuracy, linearity versus 
nonlinearity, measurement data, etc., but which stem from the basic system­
theoretic structure of the model. In particular, we cite the problem of 
monitoring and feedback decisionmaking. Mathematical programming models 
are inherently unsuitable for situations in which the initial assumptions 
regarding the relationship between variables, values of parameters, effect of 

*Work partially supported by U.S. Dept. of Agriculture, Forest Service, under Contract 43-82FT­
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decisions, and validity of objectives are subject to modification based upon 
the actual behavior of the system as the process unfolds. For such updating 
we need a model which naturally incorporates a feedback mechanism coupled 
with a monitoring scheme to provide information about the system's behavior 
to the decisionmaker. In this report, we shall discuss various approaches to the 
monitoring and control problem which enable one to retain the computa­
tional advantages of the mathematical programming formulation without 
sacrificing the adaptive advantages of feedback control. 

As prototypical examples of the two model classes which we shall consider, 
let us briefly review the so-called Models I and II of Johnson and Scheurman 
[13] and the LQG model of Dixon and Howitt [11]. These two modeling 
efforts are of particular interest for us for at least two reasons. First of all, a 
number of forests are currently being managed according to the schema of 
Model I or II, so it is clearly not just a textbook issue to address the 
methodological questions raised by such models. And secondly, the compari­
son of LQG with Models I and II brings the basic system-theoretic issues 
surrounding open-loop versus feedback decisionmaking into sharp focus within 
the context of specific forest models. 

Model I has the mathematical form 

U R1 

max ~ ~ D 1qxlq• 
i=lq=l 

under the area constraint 

l=I, ... ,U, 

where 

x1q=number of hectares of management unit l assigned to regeneration 
harvest sequence q, 

A 1 =number of hectares in management unit l, 
U =number of management units (i.e., number of age classes present in 

period 1), 
R 1 =number of possible regeneration harvest sequences over the planning 

horizon for management unit l, 
D1q= discounted net value per hectare of management unit l over the 

planning horizon, if assigned to regeneration harvest sequence q. 

It is further assumed that x Iq ~ 0. It should be noted here that a particular 
regeneration harvest sequence has its own built-in constraints involving the 



Forest Monitoring and Harvesting Policies 21 

time that must elapse between the harvesting of a certain unit and when it 
can be reharvested. Since it is not important for our subsequent discussion, 
we shall not elaborate upon the details of Model I here, but refer to [13] for 
full details and examples. 

In contrast to Model I, where it is assumed that hectares that form any 
management unit (age class) at the beginning are preserved intact throughout 
the process, Model II allows hectares from beginning age classes to be broken 
up and combined with hectares from other age classes when only part of the 
beginning age class is regeneration harvested in a given period. Thus, in 
Model II hectares are placed in a new management unit each time they are 
regeneration harvested. 

Mathematically, Model II takes a form very similar to that of Model I, with 
the only real difference being the introduction of additional variables to 
account for hectares regeneration harvested in a given period and left as 
inventory at the end of the process. 

For our mathematical needs in this paper, the important point to observe 
about both Models I and II is that they are of a standard linear programming 
form with equality constraints, i.e., abstractly both Models I and II can be 
cast in the form 

subject to the constraints 

N 

N 

max~ cixi, 
i=l 

~ ll;;X;=bi, 
;= l 

i=l,2,. .. ,M. 

Assuming that the problem data (the numbers a;;• b;, c;) are known, de­
termination of the maximizing {xi} is a straightforward computation utilizing 
any of a number efficient LP packages. 

A well-known difficulty associated with such a setup is that the optimal 
policy (i.e., the sequence of optimal xrvalues) is inherently "open-loop." In 
other words, if the problem data are inaccurate or change unexpectedly 
during the course of the process, there is no way to modify the values of the xi 

to account for such changes. The basic assumption is that the data are given 
once and for all, in advance, and the associated sequence { xj} is computed 
which is optimal for those given data (and generally no others). Thus, if we 
change our mind about any part of the problem as circumstances or knowl­
edge change, in principle we must start all over again with the new data set 
and recompute the new optimal decision sequence. 
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Another difficulty with the standard LP setup is that it is rather awkward 
to account for stochastic variation in the problem data. Since the decision rule 
is determined throughout the evolution of the process by the initial specifica­
tion of the data, there is no natural mechanism whereby the decisions can be 
modified to take advantage of the way the data happen to "come out" as the 
process unfolds. 

To offset the above analytic disadvantages of the mathematical program­
ming formulation, we have the advantage of computational tractability. 
Problems involving thousands of variables can be rather routinely dealt with 
by current algorithms. So, in situations of low uncertainty about the basic 
problem relations and with accurate data, it is reasonable to expect that the 
mathematical programming models will yield very satisfactory results for 
forest harvest planning. 

Now let us consider the LQG forest model of Dixon and Howitt [ll], 
which is specifically designed to allow for feedback decisions in the face of 
uncertainty. The general form of an LQG optimization process is as follows. 
We wish to minimize (over u) the expected value of the quadratic form 

T-1 

J= ~ [(x(t),Q(t)x(t))+(u(t),R(t)u(t))]+(x(T),Mx(T)), 
t=O 

where the matrices Q( t) ;;;;.: 0, R( t) > 0, and M ;;;;.: 0. The n-vector x and 
m-vector u are related through the linear dynamics 

x( t + 1) = F( t )x( t) + G( t )u( t) + v( t), 

where F( · ) and G( · ) are matrix functions of appropriate sizes and v( · ) is a 
zercrmean gaussian random vector with known covariance. In addition, we 
usually cannot observe the state x( t) directly, but instead observe 

z(t) = H(t )x(t )+ w(t ), 

where H( ·) is a matrix of size p X n and w( ·) is a zercrmean gaussian 
observation noise with known convariance. Further, it is assumed that the 
noise processes v( · ) and w( · ) are uncorrelated. 

The solution of the LQG problem is well known and is given in many 
books (see [14), [6]). Basically, the solution proceeds in two steps: 

( 1) Obtain the unbiased least-squares estimate of the state using the 
observations z. This estimate-call it £(t )-is obtained from the celebrated 
Kalman filter. 
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(2) Pretend £( t) is the true state and apply standard deterministic linear­
quadratic control theory to obtain the optimal control u*( t) = - K( t )£( t ), 
where K( t) is obtained from the solution of a matrix Riccati equation. 

The entire procedure is depicted in Figure 1. The details of the computation 
can be found in the books cited above. The important point to note about the 
above procedure for our purposes is the need to estimate the state of the 
system before the controlling action can be computed. Fortunately, in 
the LQG setting the Kalman filter provides exactly the needed estimate. In 
more general settings the situation is far more complicated and no such 
separation of estimation and control is possible. 

In the model of Dixon and Howitt [ 11 ], the state variables x( t) are taken to 
be the volume and basal area, and the decision vector u( t) is the timber 
removal actions. The matrices F( · ) involve various aspects of the growth of 
both basal area and volume from one period to the next, while the matrices 
G( ·) relate the removal of timber volume and basal area to decisions 
involving either thinning or regeneration harvesting. Finally, the stochastic 
vectors v( ·) represent the effect of omitted variables such as weather, 
mortality, and insect infestation. In the quadratic objective function, the 
matrices Q( · ), R( · ), and M represent the costs of having the system state and 
controls deviate from some prescribed desired levels. Finally, the observation 
system is such that the matrices H( ·) specify which elements of the state can 
be directly observed, while the noise vector w( ·) accounts for uncertainty in 
the observing process. 

It is important to note that the optimal controlling action (harvesting or 
thinning) is determined as a (linear) function of the current state of the 
system, i.e., u*( t) = - K( t )x( t ). Thus, in order to calculate the control we 
must first measure the state x( t ) . However, the observation process produces 
only the element z( t) = H( t )x( t) + w( t ). Thus, a central feature of the 
monitoring problem is the construction of a good estimate of x( t ), given z( t ). 
For the LQG situation, this estimate is provided by the Kalman filter. In the 

~ 

Noisy linear system 

Control law from xltl +--.___ 
deterministic problem ~ 

Optimal estimator 

FIG. l. Schematic diagram for solution of LQG problem. 
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absence of noise or in situations where the assumptions of the Kalman filter 
are not valid (the usual case in real problems), other types of state estimators 
or observers must be used to obtain x(t). We shall present some of the more 
effective approaches below. 

Before closing this section, it is worthwhile to point out that the determin­
istic version of the LQG problem [where v( t) and w( t) are identically zero] 
can easily be formulated in mathematical programming terms and considered 
as a quadratic programming problem [5]. In that event, a more or less direct 
comparison between Models I and II and the LQG model could be made. But 
such a comparison would miss the main point, namely, the difference 
between making decisions as a function of how the process actually unfolds, 
which enables one to see how the noise factors v( t) and w( t) actually are 
realized, and having to assume the realizations of v( t) and w( t) in advance 
for the entire duration of the process. Since it is an easily established result in 
optimal-control theory that, for a given problem, the optimal feedback control 
law is always at least as good as the optimal open-loop law, it is immediately 
clear that if computational constraints were not an issue, we would always 
prefer the feedback law. However, since the National Forests are constrained 
to utilize a model similar to Model I or II in their planning, the question arises 
whether or not a feedback decisionmaking scheme can be superimposed upon 
the LP model in order to more adequately account for ignorance, uncertainty, 
and/ or unexpected developments during the course of the process. The 
consideration of this question forms the basis for the remainder of this paper. 

II. BASIC MONITORING PROBLEM 

As indicated above, if we lived in a perfect world in which there were no 
uncertainties, surprises, or unexpected developments, the LP planning model 
exemplified by Models I and II would be the perfect vehicle for forestry 
management. Decisions could be made with complete confidence, the plan 
would always be precisely on target, and there would be no need to worry 
about events such as forest fires, drought, disease, insect defoliation, and so 
forth, as these factors would already be perfectly accounted for in the model. 
Obviously, such a world is sheer fiction, and the uncertainties of the real 
forest environment force us to continually monitor the forest and to occasion­
ally revise the preprogrammed harvesting decisions when reality begins to 
depart too greatly from our model. 

Faced with the real-world uncertainties surrounding forest management, 
we are immediately led to the following monitoring problem: what is it we 
need to know about the forest in order to decide when the current plan needs 
revision, and, if a revision is called for, how should it be carried out in order 
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to bring the overall forest plan back on target? Clearly, this is a very vague, 
general statement and must be translated into more formal mathematical 
terms before system and control methodology can hope to shed light on the 
situation. 

For the sake of definiteness, let us assume that our forest model is of the 
LQG type. Furthermore, we assume that a forest plan u( t) is given which, in 
the absence of uncertainty, generates a corresponding system trajectory x( t ). 
We are concerned about deviations of the real system from the programmed 
state x( t) and changes in the plan needed to return the system to the desired 
level x( t ). Introducing the variables x( t) = x*( t )- x( t ), u( t) = u*( t )- u( t ), 
where x*(t), u*(t) represent the actual decisions implemented and the corre­
sponding trajectory, the LQG problem is to minimize 

T-1 

~ [ ( x ( t), Q( t) x ( t)) + ( u ( t), R ( t ) u ( t )) ] + ( x ( T), Mx ( T)), 
t=O 

subject to 

x(t +l) = F(t)x(t)+G(t)u(t), x(O) = x0 • 

Here the matrices Q, R, F, G, M are as described in the Dixon-Howitt .model 
discussed earlier. Clearly, the entries of Q( ·)represent the weights we attach 
to keeping the various components of x*(t) near x(t), while those of R( ·)are 
the weights attached to deviations of the plan from its preprogrammed levels. 
In most forest environments, it can be expected that the costs in R are greater 
than those represented by Q. Under the assumption that x( t) can be 
measured exactly, the foregoing linear-quadratic problem has the known 
solution 

u(t)= -K(t)x(t), 

where 

K(t) = [R(t )+ G'(t )P(t + l)G(t )]- 1G'(t )P(t + l)F(t ), 

with P( t) satisfying the Riccati difference equation 

P(t) = Q(t )+ F'(t )P(t + l)F(t )- F'(t )P(t + l)G(t) 

X [ G'(t )P(t + l)G(t )+ R- 1(t )G'(t )P(t + l)F(t )] 

P(T) = M. 
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1. Monitoring Problem (Deterministic Version) 
Since, in general we cannot measure x( t) directly, a more precise state­

ment of the monitoring problem is as follows: Given the measurements 
y( t) = H( t )x( t) and the decisions 0 ..:;;; t ..:;;; t *, is it possible to uniquely recon­
struct the system state x( t *)? 

The solution to the monitoring problem is given by the following basic 
result from linear system theory. Assume that the matrix pair (F(- ),H(- )) is 
campletely constructible, i.e., the matrix 

i
t* 

M( s, t*) = <I>~( a, t*)H'( a )H( a )<l>F( a, t*) da 
s 

has rank n for all s ..:;;; t * (here we shift over to continuous time to avoid 
notational complexity). Let L(t) be any matrix function such that F(t)­
L(t )H( t) is a stable matrix function, i.e., the equation 

w(t) = [F(t )- L(t )H(t )] w(t ), 

is such that w(t)-'>O as t-+oo. Note also that <l>F{-,·) is the fundamental 
matrix for the function F(-), i.e., o<l>/oa=F(a)<I>, <l>(t*,t*)=I. Then the 
system given by 

~: =F(t)x(t)+L(t)[y(t)-H(t)x(t)]+G(t)u(t), 

O(t)=x(t) 

is an asymptotic state estimator of x( t ). That is, x( t )- x( t)-+ 0 as t -+ oo, 
with the rate of approach depending upon the rate at which w( t) -'> 0. 

Thus, after a sufficient period of time [determined by the arbitrarily 
selected matrix L(t)], x(t) is as close as desired to the unknown state x(t). 
The point of the constructibility requirement on (F( · ),H( ·))is to guarantee 
that a matrix function L( t) exists with the desired stability properties. If L( t) 
is selected so that x( t) -+ x( t) rapidly, we can expect that use of the estimated 
state x( t) for computing the feedback law u( t) will provide results close to 
those obtained if we knew the exact state x( t ). Of course, x( t) is not exactly 
equal to x( t ), so that the control actually applied, u( t) = - K( t )x( t ), is not 
equal to the theoretical optimal control u(t)= -K(t)x(t). However, it can 
be shown that if the original system is completely controllable, then the error 
made in applying the wrong control does not become magnified in later 
stages, but rather the "wrong" control u( t) asymptotically approaches the 
"correct" control u( t ). 
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The preceding result also provides a basis for the solution of an important 
variant of the monitoring problem which arises when the measurement 
process y(t) [i.e., the matrices H( ·)]is not prescribed in advance, but is to be 
selected by the forest manager. Since the matrix function H( ·) determines 
exactly what components (or linear combinations of components) of the forest 
can be measured, the system designer would like to have H( ·) be as simple as 
possible, consistent with the ability to use the measurements generated to 
reconstruct x( t ). From the preceding development, it is clear that the 
simplest such H( ·)would satisfy the following requirements. 

(1) the pair (F( · ), H( · )) is constructible (needed to guarantee the ex­
istence of a matrix L( ·) generating a stable state estimator]; 

(2) the matrix H( ·) has as few rows as possible consistent with the 
constructibility requirements [the number of rows of H( ·) determines how 
many system outputs are actually measured]. 

Clearly, the generation of efficient and simple monitoring schemes will 
depend upon precisely which combination of components of x( t) can be 
measured directly. The simplest case would be if the sum ~? = 1 ai xi( t) could 
be measured for some set of {a;}. Then we would have only a single output, 
and it can be shown that almost every nonzero choice of coefficients { ai} 
would satisfy the constructibility requirement above. Basically, the foregoing 
discussion answers the question of. what variables we should measure in order 
to generate a suitable feedback controller. 

2. Monitoring Problem (Stochastic Version) 
The above development assumed that the system output y( t) was mea­

sured without error. Furthermore, it was tacitly assumed that the system 
dynamics were known exactly. If we relax these assumptions to the extent of 
letting uncorrelated additive gaussian noise processes corrupt the observation 
and account for uncertainty in the dynamics, then we are faced with the 
stochastic control problem outlined earlier and depicted in Figure 1. Let us 
now consider this situation in a bit more detail. 

Let the system dynamics be given by 

~; = Fx(t )+ Gu(t )+ v(t) 

with the observations 

y(t) = Hx(t )+ w(t ). 

We assume that the noise processes v( ·) and w( · ) are uncorrelated, zero-mean, 
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white gaussian processes with known covariances 

E[ v(t )v'( 'T )] = Q(t )8(t - 'T ), 

E[ w(t )w'( 'T )] = R(t )8(t - 'T ). 

J. CASTI 

If we want to minimize the expected value of the quadratic criterion 

foT[(x,Qx)+(u, Ru)] dt, Q~O, R>O, 

the problem is to express the optimal control u*(t) as a function of the 
observations y( s ), 0 ~ s ~ t. 

The well-known solution of the problem is to estimate the system state by 
computing a minimum-variance estimator x( t) according to the equation 

~~ = F(t )x + G(t )u + P(t )H'(t )R - 1(t )[y(t )- H(t )x]' 

x(to) = 0, 

where P( · ) satisfies 

~~ = F(t )P + PF'(t )- PH'(t )R- 1(t )H(t )P + Q(t ), 

P(O) = P0 = E[x0 x~]. 

The control u*( t) is then given by u*( t) = - K( t )x( t ), where K( t) is 
generated exactly as in the deterministic case. This is an application of the 
so-called "separation theorem" of LQG theory, enabling us to separate the 
problem into two phases: estimation of x and control by standard determinis­
tic means. 

For forestry management and monitoring, the interesting problem here is 
the generation of the estimate x( t ). The information needed to implement the 
foregoing scheme is the covariance matrices Q, R, and P0 • A discussion of 
how to determine these matrices under a specified observation process is 
given in [11]. The matrix P(t) represents the covariance of the error made in 
estimating x( t) by x( t) and , as a consequence, we see that the magnitude of 
the entries in P( t) tells us how accurately x( t) approximates x( t ). Since Q 
and R determine P( t ), we have a definite prescription for determining how 
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accurate our measurements of both the system and its output must be in order 
to achieve a given estimator accuracy. 

From a measurement-design point of view, the problem is composed of 
two parts: (1) what observations to take and (2) how accurate the observa­
tions need to be. The first part has exactly the same answer as in the 
deterministic case. Namely, choose the observation matrix H( t) as simple as 
possible (minimal number of rows), consistent with the constructibility re­
quirement of the pair (F, H). The accuracy question is answered by de­
termining how small the covariances P0 , Q, and R must be in order to make 
P( t) small. From the equation for P we see that there is clearly some tradeoff 
in this regard, since a large uncertainty in the dynamics could be at least 
partially compensated for by very accurate measurements of the output. 
Detailed treatment of these and many other issues of sensitivity and error 
estimates may be found in any of a number of standard works on stochastic 
control and Kalman filtering (see [l], [4]). 

III. MONITORING, FEEDBACK, AND OPEN-LOOP MODELS 

The discussion of the preceding sections makes it evident that there is a 
basic practical conflict in forestry modeling: On the one hand, the LP-type 
models such as Models I and II have the capability of dealing with large 
numbers of variables in a small amount of computing time provided that the 
variables and constraints satisfy certain linear relationships. However, such 
models are inherently incapable of adapting to changes in the problem 
relationships, parameter values, or constraints, and generally must be entirely 
rerun when such changes occur. On the other hand, feedback-control struc­
tures such as the Dixon-Howitt LQG model are inherently well adapted to 
responding to problem changes, but generally require substantial computing 
resources unless the linear-quadratic-gaussian structure is present as in the 
Dixon-Howitt situation. In the case of general nonlinear dynamics, to obtain a 
feedback control law one would have to employ a dynamic-programming-type 
scheme with its well-known attendant dimensionality difficulties. In this 
section, we shall explore various avenues for combining the two approaches to 
take advantage of the computational virtues of the open-loop models without 
sacrificing the adaptive capability of the feedback schemes. 

To begin with we consider deterministic models of the LP type. To 
facilitate the discussion, we shall take the canonical LP model as our proto­
type. Thus, our basic model is 

max{c,x), 
{x} 
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subject to the constraints 

Axo;;;b, 

x~O, 

where x and c are n-dimensional vectors, b is an m-vector, A is an m X n 
matrix and ( · , · ) denotes the vector inner product. Both Model I and II are of 
the above form with suitable choice of A, b, and c. 

Similarly, as our prototypical feedback model we wish to maximize (over 
the { u;}) 

N 

f = ~ g;(X;. uJ, 
i = l 

where x and u are connected by the relation 

x0 =a, 

X;ER", u;ERm. If the functions g;(-, ·) andf;(-,·) are linear, then it is an 
easy exercise to see that this problem can be formulated as a canonical LP 
problem by introducing the new ( N + 1 )( n + m )-dimensional vector 

-( 1 2 n 1 N n 1 m) z- Xo, Xo, . .. ,Xo, X1, ... ,X1 , . . . ,XN, U1, .. . , UN 

into the LP format, and choosing A, b, and c appropriately. (Remark: It may 
also be necessary to augment z if X; and/ or u; can take on negative values. 
We omit this technicality here for ease of exposition.) 

In the usual situation, the function gi and/ or f; are nonlinear and the 
above problem is solved by some variant of dynamic programming. If we 
introduce the new function 

cp N( a) = minimum value of f when there are N stages remaining, the system is 
in state a, and an optimal policy is used, 

then an easy application of the principle of optimality [15] yields the 
recurrence relation 



Forest Monitoring and Harvesting Policies 31 

(Here we assume the functions f and g are independent of the stage. If not, 
the above reference should be consulted for the necessary modifications to the 
dynamic-programming algorithm). For now, the important feature of the 
above DP scheme is that the optimal decision ui is determined sequentially as 
a function of the current state, i.e., ui = ui( a). The computational problems 
arise from the need to know the function <P N - i< ·) for all values of its 
argument in order to calculate <f>N( · ). If the state vector is quantized to, say, k 
levels in each component, then we must store kn numbers in high-speed 
memory. Since it may commonly occur that k ~ 102 and n ~ 10-20, we see 
that the amount of storage required for a straightforward application of DP 
can be astronomical. This is a manifestation of Bellman's "curse of dimen­
sionality." Before discussing ways to lift this curse, in Table 1 we briefly 
compare LP and DP with regard to practical implementation in a forest 
management environment. 

From Table 1 we conclude that LP and DP are complementary in the 
sense that the strengths of each are the weaknesses of the other. In the 
procedures sketched below, we indicate various means for combining the two 
methods to provide a solution procedure which is superior to each taken 
separately. 

1. Reformulation of LP Model as DP Model 
We have outlined above how the prototypical control problem can be 

considered as an LP problem if the objective function and dynamics are 
linear. Now let us see how to formulate the canonical LP model as a dynamic 
program. 

TABLE 1 
LP VERSUS DP 

Linear programming 
(Models I and II) 

Can handle high-dimensional state 

Linear objective and linear side con -
straints only 

Open-loop solution 

Stochastic features difficult to incor­
porate 

Very efficient algorithms available for 
large problems 

Dynamic programming 
(Dixon and Howitt) 

Restricted to low-dimensional state 

General nonlinear functions can be 
used 

Closed-loop (feedback) solution 

Easy to include stochastic and adap­
tive aspects 

Substantial computational require­
ments for moderate-size problems 
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Consider the objective function 

n 

J= ~ cixi 
i=l 

and constraints Ax~ b, x;;;;. 0. Let 

J. CAST! 

c/>0 (b1, b2 , • .• ,bm) =value of I when there are n stages remammg, the 
constraint resource available is b = ( b 1, • •. , bm ), and an optimal policy is 
used. 

In [15] it is shown that c/>n satisfies the relation 

where z 0 = min;(bi / ai 0 ). The initial function is 

The above formulation shows quite clearly that the resource constraints bi 
play the role of state variables in the DP version of the LP problem. The 
decision variables are then determined as a function of the amount of resource 
remaining to be allocated. The computational tractability of the foregoing 
scheme is determined by the number of resource constraints m. If m is small, 
say ~ 10, we can expect a more or less routine solution. For m large, the curse 
of dimensionality arises and dimensionality-reduction procedures must be 
employed. 

In the forestry Model I, the number m equals the number of age classes 
which contain hectares in the initial period. In Model II, m equals the number 
of periods before zero in which the oldest age class present was regenerated 
plus the total number of periods. While in both these cases m is likely to be 
larger than is comfortable for routine computation, it should be noted that the 
side constraint Ax~ bis strict equality, i.e., Ax= bin both Models I and II. 
Thus, the additional structure this fact provides, coupled with the fact that we 
know cf>( b) must be a linear function of b, may be enough to reduce the 
computation to digestible proportions. If so, then the above formulation will 
yield a solution x* = x*( b ), i.e., the optimal harvest plan as a function of the 
number of hectares of each age class present. 

2. LP/ DP Successive Approximations 
The most natural procedure for generating a feedback control from the LP 

model is to use the solution to the LP model as the initial approximation in 
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some sort of successive-approximation scheme. We have already seen that the 
standard control problem can be formulated as a mathematical-programming 
problem by partitioning the variables in the programming problem into two 
classes: states and controls at each time period. Thus, when we solve the 
programming problem we generate a nominal control law u0( t) and a 
corresponding nominal state trajectory x0

( t ). The question is how to use 
u0

( t) and x 0( t) to generate a feedback control u( x( t )). 
Since the one class of high-dimensional control problems for which it is 

possible to routinely calculate feedback controls is the LQ case, the most 
sensible approach is to linearize the system dynamics and quadraticize the 
costs, using the nominal state and control x 0 and u0

. Thus, if the actual 
problem is to minimize 

N 

~ g(x;, U;) 
i =l 

with 

Xo = Xo, 

then we calculate the quantities 

F(i) = ( af) ax x=x0 ,u=u0 
G(i)=(af) , au x=xo,u=uo 

. ( a2f) Q(i)= -2 , 
ax x=x0 ,u=u0 

S(i)=(B_) axau x=xo,u=uo' 

R(i)= ____]_ ( 
az ) 
au2 

x=x0 u=u0 

and solve the LQ problem 

N 

min~ ((z;,Q(i)z;)+2(z;,S(i)v;)+(v;,R(i)v;)], 
i = 1 

Z;+i = F(i)z; + G(i)vi' Zo = Zo, 

where Z; = X; - x?, V; = U; - u?. That is, the states and controls of the LQ 
problem represent the deviations (or corrections) from the nominal state and 
control generated by the mathematical-programming solution. Obviously, 
once the controls { v;} and states { z;} are computed, the process can be 
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repeated with the V; and z; taking the roles of u 0 and x 0
• In this way, we 

could hope to converge to the optimal feedback control ut(x;) and corre­
sponding trajectory. 

As in all successive-approximation schemes, the utility of the method 
hinges critically upon the initial approximation. In the forestry situation, 
however, this should be a lesser problem, since the outputs from either Model 
I or II should provide a reasonably good approximation to the true solution. 
Thereafter, the computed feedback controls { v;( z)} represent the deviations 
from the original plan needed in order to account for new information that 
becomes available. This new information is represented by the quantity { z;}, 
which measures the deviation of the system state from its planned level. 
Furthermore, the cost matrices { Q( i ), S( i ), R( i)} account for the importance 
which one attaches to deviations in various aspects of either the plan or the 
state. So, by introduction of a suitable measure (or norm) into the control 
space, we could use the quantity II V; II as an indicator as to whether or not it is 
necessary to revise the plan. If this number is above a certain threshold, then 
the plan would be revised and we would begin the process over again with a 
new nominal u 0 and x 0

• If not, then minor changes to the current plan would 
be made as dictated by the control law v;(z;). 

3. LP within DP 
Often it may not be feasible to employ the LQ successive-approximation 

scheme outlined above due to discontinuities of one sort or another in the 
cost and/ or dynamics. However, even in these cases the standard dynamic­
programming algorithm will produce the desired feedback control if the 
dimensionality difficulties referred to earlier do not arise. In other cases, there 
may be sufficient linear structure present to effectively employ an LP 
algorithm within the overall dynamic-programming framework in the follow­
ing manner. 

Assume that the problem we want to solve is that of minimizing 

n 

~ g(x;,uJ, 
i=l 

x0 =a. 

We know that the principle of optimality yields the recurrence relations 

<Pn (a) = min [ g( a, Un)+ <Pn - 1 ( f( a, Un))], 
Un 

</> 1 (a) = min [ g ( a, u 1 ) ] . 
U1 
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So, in the calculation of <f>n (a), for fixed a, we must search over all admissible 
values of un and compare the quantities g(a, un)+ <f>n - i(f(a, un)). If the 
functions g(x, u) and f(x, u) are linear in u, for fixed x, then the above 
minimization is a simple LP problem over the variables comprising the vector 
u. Thus, instead of doing a brute-force search over the components of u, we 
can employ the vastly more efficient simplex-based LP algorithms. 

Fortunately, in some cases of interest g and f do possess the requisite 
linearity. In fact, it is often this linearity which makes it impossible to use the 
LQ approach sketched earlier. If g and fare nonlinear, then we would employ 
a multiple linear regression scheme for each fixed a in order to replace f and g 
by their best linear approximation. Since such regression packages are readily 
available, there is no major obstacle to carrying out such a computation, and, 
as such operations involve only linear algebraic equations, the computing 
burden is not too onerous as long as it is not necessary to redo the regression 
too frequently. This will be dependent upon the degree of nonlinearity of the 
functions f and g. In the forestry problems f and g are only .mildly nonlinear, 
in general, so the above procedure may be expected to meet with some 
success. 

4. Stochastic Effects and Adaptive Policies 
The methods outlined above have been developed under the assumption 

that no uncertainty exists in the system objective, dynamics, or constraints. If 
this is not the case, then a qualitatively different set of circumstances arises 
under which some of the preceding ideas either do not apply or require 
substantial modification. 

Consider the case in which the performance criterion is known, but the 
system dynamics contain a stochastic component, i.e., the evolution of the 
system takes place according to the dynamics 

where ri is a random variable subject to a known probability density function 
(pdf) p(r;)· For simplicity, assume all {r;} obey the same probability law. In 
this case, the DP successive-approximation procedure is of no obvious value, 
since the system trajectory is not uniquely specified by the choice of control. 
Thus, the state-control pair ( x;, u i) needed to generate the next approximate 
control cannot be calculated in a well-defined way. On the other hand, the 
LP-within-DP idea carries over to this setting without changes other than 
minor modifications to the DP recurrence relation to account for the stochas­
tic vector r;. 

Another way in which stochastic factors can enter the forest model is 
exhibited in Dixon and Howitt' s work, where an originally deterministic 
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nonlinear model is replaced by a stochastic linear model, with the random 
variables introduced to account for the loss of information due to the 
approximation. Such an approach leads to the stochastic LQG control prob­
lem discussed above. It should be clear that randomness of this sort is of a 
quite different character than that entering into the original dynamics them­
selves. Here, the randomness is injected into the model as an attempt to 
compensate for an approximation process and has nothing directly to do with 
one's ignorance of the system. Thus, such randomness is a consequence of the 
methodological approach and must be carefully distinguished from that which 
arises from basic measurement and conceptual uncertainties about the dy­
namics and/or objectives of the system. 

With additional computational complications, whatever procedures are 
used to deal with stochastic control when the pdf of r is known, can be 
"souped up" to handle the so-called adaptive control situation in which the 
pdf of r is unknown and must be inferred as the process unfolds through a 
combination of probing to learn about the system and control of its behavior. 

Method 

Reformulate LP 
as DP 

LP / DP successive 
approximation 

LP within DP 

TABLE2 
COMPARISONS OF OPEN-LOOP-> FEEDBACK METHODS 

Strengths 

Can deal with stochastic/ 
adaptive situation with re­
spect to parameter values 
and/or constraints. Pro­
vides feedback law as a 
function of resources 
available, i.e., solves a 
family of forest problems. 

Good, quick algorithms 
available. 

Reduces DP computing 
time substantially through 
efficient search. 

Weaknesses 

Computational burden 
quite high, especially if the 
forest contains many age 
classes. 

Needs good initial ap­
proximation. Requires 
sufficient degree of 
nonlinearity in costs and 
dynamics. Difficult to 
handle stochastic/ adap­
tive situations. 

Most effective only if sys­
tem dynamics are " almost 
linear." 
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Since it would take us too far afield to go into the details of these matters 
here, we refer to [3, 16] for a complete discussion with many worked 
examples. 

In Table 2 we summarize the strengths and weaknesses of the various 
approaches sketched above for generating feedback policies from open-loop 
models. 

IV. MONITORING THEORY AND FOREST MANAGEMENT 

The preceding discussion has centered upon the problem of reformulating 
standard forest-management models in closed-loop form, in order to admit the 
possibility of feedback decisionmaking. In this section, we take up another 
aspect of the monitoring problem having to do with the stability of a given 
policy under variations in the problem environment-in other words, under 
what circumstances we can adhere to a given plan without serious degrada­
tion of overall system performance, and what aspects of system behavior 
provide the signal to indicate that a change of plan is required. In addition, 
we shall also examine the question of how to control the system when the 
measurements are interrupted. 

If we are using either Model I or II to determine our management policy, 
then it is possible to make use of more or less standard routines to analyze the 
stability of the computed plan with respect to changes in either the criterion 
function or the resource constraints. Given the LP model 

max(c, x ), 
:r;;;>Q 

Ax.;;;b, 

the type of questions that arise are of the following sort: 

(1) How much can the vector c be changed before the optimal solution 
(plan) will no longer be optimal? 

(2) For a given change in c, how do we proceed to calculate a new optimal 
plan? 

(3) How much change in the resource constraint b can be allowed before 
the computed plan is no longer optimal? 

(4) If a given change in resources b results in the plan no longer being 
optimal, how can we determine the new optimal plan fn~m the previous one? 

(5) How can we handle the addition of a new variable Xn + l without 
having to restart the entire solution procedure? 

(6) How can the insertion of a new constraint be incorporated into the 
system? 
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All of these questions form the basis of more or less standard sensitivity 
analysis in mathematical programming, and for the most part their resolution 
is part of the output of modem LP computer packages. For this reason, we 
shall not waste space in describing the results here, referring to standard 
references [10, 12] for details. We only note that it is reasonable to suspect 
that in the forest models we would be somewhat more likely to encounter 
situations in which the cost function changes rather than the resources 
available, although the latter situation may arise from shifting political or 
economic factors. 

As a technical aside, it is worthwhile to note that the dynamic­
programming formulation of the LP problem explicitly exhibits the optimal 
cost as a function of the "natural" state variables, the components of the 
resource vector b. Thus, it is reasonable to think about deriving an expression 
for how the costs change with changes in b, i.e., the quantity 

a<Pn ( ) . ab. h' t=l,2,. .. ,m. 
I 

Explicit computation of this quantity for various choices of i then tells us what 
components of b must be "monitored" in order to calculate the costs of 
projected changes in the plan. 

The preceding sensitivity questions also suggest an intriguing type of 
"inverse" problem, namely, if a given plan is suggested, to characterize all 
cost vectors c for which that plan is optimal. This amounts to picking one 
vertex of the convex polytope formed by the constraints and finding all 
separating hyperplanes containing this vertex. This problem is particularly 
interesting for forest planning, since there is usually considerable uncertainty 
in what the actual cost vector c should be. Thus, for a given projected plan 
one could compute upper and lower bounds for all components of c which 
would be optimal for that plan. In this case, a change of plan would be 
warranted only if it could be shown that some component of the cost was 
outside the range allowable for that plan. Hence, the monitoring problem in 
this case would revolve about accurate assessments of the cost vector c, rather 
than the constraint vector b. 

If our basic model is of the closed-loop type, then we have a quite different 
array of mathematical machinery with which to study how the plan (control) 
changes if various aspects of the system change. For example, in the LQ case 
we have already seen that the optimal closed-loop plan is given by 

u*(t)= -K(t)x(t), 
where 

K(t) = [R(t) + G'(t )P(t + l)G(t )r 1c'(t )P(t + l)F(t ), 
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with 

P(t) = Q(t )+ F'(t )P(t + l)F(t )- F'(t )P(t + l)G(t) 

X ( G'(t )P(t + l)G(t) + R- 1(t )G'(t )P(t + l)F(t )], 

P(T) = M. 

39 

The above expressions make it quite evident how to account for any changes 
in the system costs (Q, R, M) or dynamics (F, G). We simply put in the 
appropriate values for the current time period and compute the quantity K. 
Furthermore, the above expressions can be used to derive explicit analytic 
representations for the sensitivity functions aK/ aF;;,aK; aci;• etc. [2). 

A considerably more general type of situation arises when we allow the 
possibility of generating a feedback control u( t, x) for the system 

x=f(x,u,A.), 

in order to insure that the trajectory which minimizes 

is as insensitive as possible to changes in the parameter vector A.. More 
specifically, assume that the optimal state trajectory is x0( t) when the 
parameters are at some nominal value A. 0 . Associated with the states x0( t) 
there is an optimal open-loop control u0( t ). Now assume the parameter values 
change to some new, unknown value A.. Then we would like to find a 
closed-loop control u( x, t) such that x( t) remains "close" to x 0( t) for all 
variations A. in the parameters. 

For this problem, it can be shown that the minimum-sensitivity feedback 
compensator is similar in structure to classical input compensators and that 
the closed-loop system error is related to the transfer function for measure­
ment noise, which is the limiting factor for classical sensitivity-reduction 
techniques. Under the assumption of small parameter variations and quadratic 
sensitivity cost terms, the general problem reduces to one for which an 
explicit solution can be obtained for a linear feedback gain function. The 
conditions developed for the minimum sensitivity gain effectively extend 
the LQ theory to include unknown disturbances in the system parameters. 
The details of these results, along with many examples and comparisons with 
dynamic parameter estimators (Kalman filters or Luenberger observers), are 
given in [9]. 
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All of the preceding development has been based on the assumption that at 
each moment some measurement could be made of the system output. The 
problem has been to decide what measurement to take and/or how to process 
the measurement. Now we want to consider briefly the situation in which at 
any given moment, there is a definite probability that no measurement at all 
can be taken. In this case, we must make the "best" current decision on the 
basis of the information available, information which may or may not include 
a current measured output. 

Since there may be several successive stages for which the state of the 
system is unknown, we specify the state of the system by three quantities- m, 
n, and c. Here n is the number of stages remaining in the process, m is the 
number of stages in the past at which the controller last had perfect 
information, and c is the physical state of the system at that time. For 
simplicity, assume we wish to minimize the expected value of some function 1/; 
of the terminal state of the process, i.e., 

the system dynamics are 

x(k + 1) = f[x(k ), u(k ) , r(k )] , x(O) = c; 

and the { r( i)} constitute a set of independent random vectors with common 
distribution function. Furthermore, assume that at any stage there is a fixed 
probability p that we shall not be able to observe the actual physical state of 
the system. 

Let 

zm( c) =the random variable designating the observed physical state of the 
system after m stages have passed without observation of the system, 
given that the state m stages back was c. 

Note that zm(c) will depend upon the random vectors r(O), r(l),. . .,r(m -1) 
and the control vectors u(O), u(l ), . .. , u( m - 1 ). 

We note that with n stages remaining, with probability 1 - p we may be 
able to observe the physical state, thereby obtaining a physical state denoted 
by the quantity zm+ 1( c ), conditioned on the random elements r(O), . . . , r( m + 
l); then the number of remaining stages becomes n -1, and the number of 
stages in the past at which we last had perfect information becomes 0. ·If, on 
the other hand, we cannot observe the system, then the number of remaining 
stages still becomes n -1, m is transformed to m + 1, and the last perfect 
observation is unchanged. Let I ( m, n, c) denote the value of the criterion 
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when m, n, and care as above and we use an optimal policy. Then using the 
principle of optimality and forward dynamic programming, we obtain 

I ( m, n, c) = min { p [I( m - I, n - I, c)] 
u 

+(I-p)E(I(O,n-1,zm+l(c))J}. 
r 

The minimizing u is a function of m, n, and c, i.e., umin = u( m, n, c ). 
To make use of the equation for I we must determine the conditional 

expected value of I(O, n -I, zm+ 1(c)), given the information that form+ I 
successive stages the actual state of the system could not be observed and that 
the last known state was c. At the first stage, the control vector u(O, m + n, c) 
(even though m = 0 here, it is convenient to adopt this notation for a 
moment) was used, resulting in the new state 

x(l) = f[c, u(O, m + n, c ), r(O)]. 

At this stage, with no information on the actual state, the control u(l, 
m + n - I, c) was used. This led to the stochastic state 

x(2) = f[x(l), u(l, m + n - I, c ), r(l)]. 

We see that the random variable zm + 1( c) depends upon the control vectors 
u( k, m + n - k, c) for k = 0, I, ... , m. Thus, the equation for I determines 
functions I(m,n,c), u(k,m+I-k , c) for Oo;;;;m+n+Io;;;;N,k=O,I, .. . , 
m + I+ n. It is an implicit system with no straightforward way of determin­
ing the functions one at a time. For computational purposes, a method of 
successive approximations would most likely be used. 

"Interrupted" control processes of the foregoing type are quite likely to 
occlir in many forestry management environments when budgetary cuts, 
climatic disturbances, political changes, and other factors cause the measure­
ment system to fail over some period of time. These ideas are also of obvious 
relevance to the situation in which decisions must be made on the basis of 
incomplete data about the past, i.e., when the data have gaps. Unfortunately, 
the analytic and computational study of interrupted control processes has not 
progressed beyond the functional equation given above for I. In view of the 
substantial advances in computing power in recent years, it would seem 
appropriate to reexamine the practical feasibility of using the equation for I in 
a real decisionmaking environment. 

Finally, we observe that in some instances it is more important to insure 
that the system trajectory x( t) remains within some admissible or desired 
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region of state space, than it is to optimize some economic criterion. In other 
words, we may be willing to sacrifice economic efficiency for an enhanced 
ability of the system to respond to unknown (and perhaps unknowable) 
disturbances in its dynamics. Such a criterion of system performance is 
outside the bounds of optimal-control theory and requires the development of 
a theory of system resilience. Some work along these lines, together with the 
connections between resilience and catastrophe theory, is reported in [7]. 

In a related direction, we may be interested in determining all, or at least 
one, policy which will transfer the forest from its current state into some 
desired region of state space at the end of some prescribed period. This is a 
problem of reachability and has been fairly extensively studied, especially for 
linear systems. For instance, if the system dynamics are given by 

x(t + 1) = Fx(t )+ Gu(t ), x(O) = 0, 

with x ER", u E Rm, then it can be shown that a given state x* is reachable 
after at most n time periods if and only if x* is contained in the vector space 
generated by the set 

where g; is the ith column of G. If the dynamics are nonlinear, the situation is 
considerably more complicated, depending upon the exact type of nonlinear­
ity present. Full details of these matters may be found in (6, 8]. 

V. CONCLUSIONS AND RECOMMENDATIONS 

Our main conclusion from investigation of the forestry management mod­
els currently in use is an almost self-evident one: the models contain no 
capability to adapt to either unanticipated changes in the internal sociopoliti­
cal structure or surprises in the operating physical environment. To truly 
account for such phenomena, of course, one would need a well-developed 
nonprobabilistic "theory of surprises," as well as a reasonably complete 
theory of "anticipatory" systems. Neither of these system-theoretic desiderata 
is, as yet, a reality, so we must conclude that the only short-term remedy that 
can be offered for forestry management is to include some type of feedback 
loop in the system model. The uncertainty present in all aspects of the forest 
system makes it quite evident that the open-loop Models I and II and their 
successors will be inherently incapable of accommodating themselves to the 
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changes in the operating environment of the forest manager. Some type of 
feedback model measuring critical system variables and adjusting the open-loop 
policy (plan) must be injected into the forest-planning process if there is to be 
any hope of making the system responsive to unpredictable outside changes. 

Operationally, there are several paths that such a feedback modeling 
process could follow, depending upon the nature of the uncertainty faced by a 
particular forest, the resources available to cope with the uncertainty (i.e., 
money, manpower, computer power, time, measuring equipment, etc.), the 
accuracy needed in the final result, and so forth. Consequently, we have 
sketched several alternative routes above but can recommend no one ap­
proach which is uniformly most powerful. Each situation must be examined 
before an appropriate recommendation can be made. The principal consola­
tion her~ is that we definitely feel that all of the procedures mentioned are 
computationally feasible, given the current and projected state of computer 
resources. 

By way of a future research program based upon the foregoing ideas, we 
feel that the most important problem is to actually start working with some 
specific forest model and to examine all of the preceding questions within the 
context of the given system. There is probably very little of lasting value that 
can be accomplished by examination of an "abstract" forest. The joy, as 
always, is in the details, and the details can only come from a real forest­
management situation. 

On the other hand, a valid case couUl be made for instituting a research 
program on the topic of surprise and anticipation. Such a· program would 
obviously have implications far beyond the narrow confines of forest manage­
ment. However, even such an abstract system study needs a basis in reality 
upon which to focus the research, and we feel that the forestry area would be 
particularly promising, since there is a substantial body of data available on 
past surprises, historical management reactions, and the results of trying to 
make decisions on the basis of the projected future of the system. 

APPENDIX. SOME GENERAL SYSTEM-THEORETIC ISSUES IN 
FOREST MODELING 

1. Observables 
In a fairly general sense, we can say that the basic forestry monitoring 

problem reduces to the following: given a system state space X and a 
collection of observables f;: X--. R, what can we know about the true state of 
the system by measuring the real numbers given by the observables? 

Let us assume, for a moment, that we have only a single observable f. 
Then it is clear that if f is one-to-one, given a measured value r E R, a unique 
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state x( r) can be inferred. This is a general version of our notion of 
observability described earlier in this report. Most of the time, though, the 
observable f is not one-t0-0ne, which means that several physically distinct 
states appear to be the same from the standpoint of the observer (modeler). In 
other words, we can define a relation F on the state set X by saying that x 1 is 
F-related to x2 if /(xi)= f(x 2 ). It is trivial to verify that Fis an equivalence 
relation, thereby enabling one to partition the state space X into equivalence 
classes of states. A crucial question now arises for the decisionmaking process: 
are states which are equivalent under the observable f also equivalent with 
respect to the purposes of control? This question is tantamount to defining a 
second equivalence relation on X -call it C -determined by saying that x 1 is 
C-related to x 2 if the result of using a feedback control law u( x) is invariant 
with respect to the substitution x1 ~ x2 • Such a relation also implicitly defines 
a new observable which we can term g. Note that this does not require 
u(x1 ) = u(x2 ), although such equality is clearly sufficient. In fact, the answer 
to the question is provided by the notion of the linkage of two observables. 

We have the following definition of linkage between observables f and g. 

DEFINITION Al. Let X be a set of states, and let 7Tf: X ~ X/F, 7Tg: X ~ 
X / C be the natural mapping of states to their respective equivalence classes 
under /and g. Given a class [x]fE X/F, consider the collection of C-classes 
which intersect [ x] f' i.e., the set 

We say that 

(1) g is totally linked to fat [ x] f if Z = (a single C-class ). 
(2) g is partially linked to fat [ x] f if Z = (more than one C-class) C X / C. 
(3) g is unlinked to fat [x]f if Z = X/ C. 

Intuitively, the idea of linkage tells us to what degree the observable g 
splits the classes of X / F, i.e., to what degree g can distinguish between states 
of X which appear the same under f. Thus, the more unlinked g is to fat [ x] f' 
the greater the extent to which g can "split" the class [ x] f· 

Now we can see that the answer to the above control question is quite 
clear. The information provided by the observable f is sufficient for feedback 
control if and only if the observable g is totally linked to fat each F-class [ x] r· 
Basically what this means is that g is a function of f in the precise sense in 
which the term "function" is used in mathematics. The problem of de­
termining when f and g are totally linked can abstractly be settled by the 
following result. 
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THEOREM. g is totally linked to f if and only if F refines C. 

Here we use the notion that F refines C if (x1 ,x2 )E F = (x1 ,x 2)EC. 
Thus, g is totally linked to f if and only if any two states which are equivalent 
under F are also equivalent under C. When stated in these terms it becomes 
evident that total linkage of g to f is, in general, not to be expected, which 
leads to the question of whether or not it is possible to devise some 
monitoring scheme which will provide suitable information for proper control. 

Within the above framework, there exist only three possibilities for generat­
ing the proper linkage between observables for feedback control: ( 1) change 
the control relation C, which induces a change of the observable g; (2) change 
the state set X; (3) change the monitoring scheme f by introducing new 
observables {f;} and/or changing the nature of the single observable f (e.g., 
by new instrumentation to measure more accurately). Which of these ap­
proaches should be followed in any particular forestry situation depends upon 
many factors surrounding the individual forest, the measurement systems 
available, the desires of the decisionmakers, and so on and forms the basis for 
an important research program in forestry modeling and management. 

2. Bifurcations and Surprises 
The above abstract formalism also enables us to investigate the general 

question of bifurcation, i.e., when one description (model) of a forest essen­
tially departs (bifurcates) from another. For the sake of exposition, let us 
consider the case when we have two descriptions f: X"""' R, g: X """' R of a 
given forest (here we are defining a description to be an observable). Let the 
associated equivalence relations on the set X be denoted by R1 and Rg, 
respectively. To speak of the /-description of the forest bifurcating from the 
g-description intuitively means that two elements [x] 1, [x'] 1 which are 
"close" in X/R1 are not close in X/Rg. To formalize this notion we make 

DEFINITION A2. If [ x] / is such that given e > 0, there is a 8 > 0 such that 

then we call [ x] / a stable point of X / R / with respect to X / R g· The 
complement of the set of stable points is called the bifurcation set of X / R / 
relative to X / R g· 

It is an easy exercise to verify that the stable points of X / R 1 constitute an 
open set, while the bifurcation set is closed. Also, note that the concept of 
bifurcation relates to a pair of descriptions of the system and can be changed 
by changing either description. 
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As illustration of the above ideas, consider the case of describing the root 
structure of the set of all cubic equations x 3 +ax+ b = 0. Here we can take 

X = { x 3 +ax + b = 0: a, b real numbers}. 

For one description we take 

f: X-+RXR, 

x 3 +ax+ b ..... (a, b), 

while for a second description we can take the number of real roots, i.e., 

g:X-+{1,2,3}, 

x 3 +ax+ b ..... {number of real roots}. 

It is clear that the bifurcation points of the f-description from the g-descrip­
tion consists of the set B = { (a, b) : 4 a 3 + 27 b2 = 0}, since it is precisely on 
this cusp curve in R 2 that the root structure of X changes character. In other 
words, in the euclidean topology on R 2

, two equations which are "close" in 
the f-description will also be "close" in the discrete topology on the set 
{ 1, 2, 3} except on the set B. This example will be recognized as the famous 
cusp catastrophe of the Thom theory and shows how our bifurcation defini­
tion subsumes the usual catastrophe-theory setup. 

The foregoing development provides a basis for a discussion of the question 
of when one model can be said to "improve" upon another. The point of 
using an alternate description of a system is to gain new information. Thus, a 
criterion for the equivalence of f and g is that the bifurcation sets in X /Rf, 
X / Rg induced by the pairs (g, f) and (f, g), respectively, shall be empty. In 
general, given the descriptions f and g, the stable points of X / Rf and X / R g 

represent elements of X for which the two descriptions coincide (i.e., yield the 
same information). On the other hand, on the bifurcation points the two 
descriptions differ and we gain information about the corresponding elements 
of X by employing both descriptions. 

To summarize the above discussion, we have the following 

IMPROVEMENT THEOREM. The description f is an improvement upon the 
description g if and only if every point of X / Rf is stable relative to the 
topology imposed upon X / Rrby g, while the bifurcation set in X / Rg arising 
from the topology imposed by f is not empty. 
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The concept of a bifurcation also enables us to speak more precisely about 
the occurrence of "surprises" in a system's behavior. Intuitively, a surprise 
occurs whenever reality departs significantly from our concepts of reality. In 
the above context, we may regard our concept of reality as being specified by 
some model f, while reality is characterized by another description g. By the 
above development, a departure of f from g occurs on the bifurcation set of 
points where states are close in the g-description but far apart in the 
/-description. As soon as we specify how far apart is far enough to constitute a 
surprise, we have a reasonably clear-cut approach to the general issue of 
surprises. It is of special interest to note that this is a nonprobabilistic attack 
on the question of surprise and does not rely upon any statistical analysis of 
past behavior in order to be effectively employed. 

3. General Systems Research for Forestry Models 
Within the above formalism, a considerable number of questions involving 

forestry management immediately suggest themselves: 

(1) What is the basic state space and what are the observables for the 
principal forest models (e.g., Models I and II, Dixon and Howitt's model, 
etc.)? 

(2) What are the bifurcation sets associated with the pairwise comparison 
of these models? 

(3) How can we meaningfully combine various models to obtain improve­
ments upon each model taken separately? 

( 4) What is the intrinsic information content in any forest model? 
(5) Are there "surprises" inherent in the models which the manager 

should be alert for? 
(6) If potential surprises are present, can we devise management schemes 

to avoid them (or perhaps induce them to happen)? 

These are clearly not easy questions and require a substantial research 
effort to get a handle on. However, even partial answers would provide a 
much more solid understanding of the foundations of forest modeling, which 
in turn can be expected to lead to simpler, more effective management 
policies. 
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