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FOREWORD 

The analysis of time series is a very important element in much of the sys- 
tems work carried out at  IRSA and elsewhere. The basic principles of time 
series analysis were laid down by Box and Jenkins in 1970 in an approach which 
divided model building into three stages: model identification, parameter esti- 
mation and model validation. However, while there are many formal 
approaches to parameter estimation and several formal methods for model 
validation, the only available tool for model identification is currently visual 
inspection of the time series plot and autocorrelation function. Ths  is evi- 
dently the weakest point of the Box-Jenkins methodology. 

In an attempt to remedy this, Andrzej Lewandowski proposes here a new 
approach to Box-Jenkins model identification. In contrast to the existlng 
tools, t h s  approach is based on spectral methods and involves frequency 
analysis of ARMA models. It differs from the standard spectral approach 
presented in textbooks on time series analysis, although it is based on a princi- 
ple well known in control engineering and circuit theory. This method provides 
a means of analyzing time series in some depth using only a pencil, a piece of 
paper, and a pocket calculator. 

ANDRZEJ WIERZBICKl 
Chairman 

System and Decision Sciences 
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SPECTRAL METHODS M THE lDENTIFICATION 
OF TIME SE3UES 

A. Lewandowski 

1. INTRODUCTION 

Over 10 years have now passed since the publication of a book by Box and 

Jenkins (Box and Jenkins, 1970) describing the basic principles of time series 

analysis. During t b s  period, the methodology developed by these authors has 

been applied to hundreds of practical problems with great success; new tools 

have been developed and many theoretical investigations have been performed. 

However, it should be pointed out that Box and Jenkins were not the first scien- 

tists working in this field -time series analysis actually began much earlier in 

this century (for a bibliography see Anderson, 1971). The most important 

feature of the Box-Jenkins approach (and, in the author's opinion, the main 

reason for its popularity) is the general methodology  of mode l  bu i l d ing .  Box 

and Jenkins divided t h e  p roces s  of mode l  bui lding into three steps: 



1. Model identification, during whch preliminary analysis is performed and 

an  initial version (structure) of the model is determined. 

2. Parameter estimation, during whch exact values of model parameters are 

computed. 

3. Model validation, during which the quality of the resulting model is exam- 

ined. 

According to Box and Jenkins, modeling is a process which is repeated 

until the model attains the desired form and accuracy. It is difficult to make 

m y  formal evaluation of the importance of each of the above stages in this pro- 

cess; however, it is generally accepted that the second stage is the most irnpor- 

tant and interesting of the three. The reason for this is obvious: parameter 

estimation provides excellent opportunities for new mathematical work, for 

developing computer programs and for publishing papers. The other two 

stages (especially model identification) are somewhat more diffuse in nature. 

While there are a limited number of formal approaches that can be used for 

model validation, model identification is almost entirely unformalized. The 

only available tool for model identification is "visual inspection" of the time 

series plot and autocorrelation function. This is evidently the weakest point of 

the Box-Jenkins methodology. 

In the author's opinion, the role of the model identification process is fre- 

quently underestimated. Model identification is not simply a procedure for 

determining the structure of a model; it is a scientific process which leads to a 

deeper understanding of the phenomena being investigated. In many practical 

cases this increased knowledge of the system is more important than the 

resulting model. For these reasons, the author proposes a new approach for 

Box-Jenkins model identification. In contrast to  the existing methods, this 

approach is based on spectral methods and involves frequency analysis of 



ARMA models. However, it differs from the standard spectral approach 

presented in textbooks on time series analysis. The principle behind this 

method is well-known in control engineering and circuit theory, and has been 

applied successfully in these fields. The author has simply adopted this metho- 

dology for use in time series identification; it is nothing more than a way of 

understanding and interpreting the spectrum and hence the model itself. In 

the author's (admittedly subjective) opinion, spectral methods are in general 

more useful than time-domain methods. Spectral responses are easier to 

interpret, analyze and understand than time-domain responses. Moreover, 

spectral responses can immediately tell the experienced analyst almost every- 

thing there is to know about system dynamics - t h s  is not the case with time- 

domain analysis. 

I t  is rather difficult to explain why spectral methods play such a marginal 

role in time series analysis. According to Makridakis (1976): 

"...engineers, on the other hand, insist that the spectrum is a more 

natural quantity to compute because it expresses a time series in 

terms of its frequency response, whch must be known for design pur- 

poses. They say that  statisticians play down the value of spectral 

analysis mainly because they cannot t h n k  in frequency terms. What- 

ever the truth,  the fact is that spectral analysis has found little use in 

the social sciences in general, mainly because it is troublesome to 

calculate and interpret. .." 

There is really only one work whch extensively uses the spectral approach 

for model building and analysis - t h s  is the book by Nerlowe, Grander and Car- 

valho (Nerlowe e t  al., 1979). 



2. LINEARIZED TRANSFER F'UNCTIONS OF AFtMA MODELS 

We will use here some basic concepts from z transform theory (see Koop- 

mans, 1974 or Nerlowe e t  al., 1979). Let 

be a real sequence. The z transform of t h s  sequence is the complex function 

and this is denoted by 

Under certain conditions t h s  transformation is invertible, and X(z)  uniquely 

characterizes the zt (see, e.g., Cadzow, 1973). 

Let us consider two time series fzt { and fut { connected by the linear rela- 

tionship (operator) G: 

By transfer f u n c t i o n  we mean the complex function 

It is easy to calculate the transfer function for ARMA-type models. Taking (2) 

and rnultiplylng both sides by z we obtain 

Thus, if 

then 



It follows from the above that the complex variable z can be f o rmal l y  

interpreted as the shift operator B used by Box and Jenkins; in order to obtain 

the transfer function for t h s  model it is sufficient to replace operator B by 

complex variable z . We should emphasise that this operation is f o rmal  - the 

rational functions involving B and z have the same form, but must be inter- 

preted differently. 

We shall use the term spec tra l  or f r equency  t r a n s f e r  f u n c t i o n  to describe 

the following formula: 

where P and Q are respectively the numerator and denominator of the opera- 

tor transfer function (from now on we will consider only rational operator 

transfer functions). The spectrum of the output signal lztj (which is actually 

the time series being analyzed) is proportional to the modulus of the transfer 

function 

Formula (10) shows where most of the basic difficulties in interpreting spectra 

arise -although the structure of the transfer function itself is rather simple, 

the spectrum is a u h l y  nonlinear function of frequency. It is important to 

note that the spectrum is the modulus of the transfer function evaluated on 

the unit circle. 

This leads to an important question - does t h e  m o d u l u s  of t h e  c o m p l e z  

f u n c t i o n  eva lua ted  on t h e  unit circle charac te r i ze  this f u n c t i o n  u n i q u e l y ?  The 

answer is generally n o .  If we have a function G ( z )  such that its modulus 

evaluated on the unit circle is 



then the function 

will have the same modulus. But if the function G(z) has the minimum phase 

property (i.e.,  has no poles or zeros inside the unit disc), the modulus 

evaluated on the unit circle will characterize the function uniquely. This is one 

of the most important problems in the theory of signal processing, electrical 

circuit theory and automatic control. Some discussion of t h s  issue can be 

found in Robinson (1981). 

We could also ask ourselves another question -is it possible to evaluate 

the modulus of G(z) on another line to produce a simpler f (w) ? 

The real and imaginary axes appear especially attractive for this purpose. 

In t h s  case a similar result can be obtained -if G(z) has the minimum phase 

property, (i.e., it has no zeros or poles in the right half-plane), it is sufficient to 

know the modulus of G(z) evaluated for z = j w  to determine this function 

uniquely. Moreover, 1 G ( j  w) 1 has a much simpler structure than I ~(e-j":)  I (it 

contains no trigonometric functions). However, this is of little immediate use 

to us since it is unreasonable to expect that the transfer function of the time 

series under study will have no poles or zeros in the rlght half-plane. But there 

is a very simple way to avoid t h s  difficulty - to transform the region outside 

the unit circle into the left half-plane and to evaluate the modulus of the 

resulting function on the imaginary axis. Let us consider the transformation 

Ths  transformation has the following properties: 



1. I t  is invertible, i.e., 

2. It transforms the region outside the unit circle in the complex plane z 

into the left half of the complex plane A; the unit circle is transformed into 

the imaginary axis (see Silverman, 1975). 

3. If we apply t h s  transformation to the rational transfer function then the 

resulting function will also be rational; if the ARMA model is stable and 

invertible, all of the poles and zeros of the resulting rational function will 

be in the left half of the A complex plane. l h s  means that  the resulting 

transfer function has the minimum phase property (Robinson, 198 1). 

The minimum phase property is very important here - as pointed out 

above, it allows us to work with the modulus of the function rather than with 

the function itself. The rational function 

will be called the l inearized Cransfer function ; analogously, 

will be called the l inearized frequency t ransfer  function, and 

?(4 = l g ( j 4 l  (1 5) 

the Linearized spectral  densi ty  function (LSDF). We now have to investigate 

the relationship between the standard spectrum and the linearized spectrum. 

Note that ,  instead of calculating the spectrum by making the substitution 

= e - j ~  (1 6) 



we can use 

whch is the Pade approximation (or linearization) of exponential function (16). 

Ths is the source of the name " l i n e a r i z e d  s p e c t r u m " .  It is not difficult to find 

the exponential form of ( 17): 

= =-2j arc tan o 
l+jw 

Comparing t h s  result with (16), we conclude immediately that the linear- 

ized spectrum can be interpreted as a s t a n d a r d  s p e c t m m  w i t h  a d i s t o r t e d  f r e -  

q u e n c y  s c a l e .  It follows from t h s  that we do not need special tools to calculate 

the linearized spectrum - it is necessary only to have a special chart with a 

suitably chosen frequency axis. Note also that, in contrast to the standard fre- 

quency transfer function, (14) is a rational function of frequency; this is the 

basic reason why the approach simplifies spectral analysis. (It should be 

pointed out that t h s  transformation has also been used in control engineering 

for the design and analysis of sampled data control systems, see, e.g., Bishop, 

i ~ 7 5 ) .  

3. ASYMPTOTIC FREQUENCY RESPONSES OF AFUA MODELS 

We will now consider how to plot the linearized spectrum of a given 

transfer function. I t  will be shown that this is relatively easy, even for hgh-  

order models with a complex structure. Ths  is not the case for autocorrelation 

function (ACFs) - in order to calculate the theoretical ACF it is generally 

necessary to use a computer. Only in very simple cases is it possible to calcu- 

late t h s  function analytically. In the author's opinion, the basic advantage of 

the method lies in this property of the linearized spectrum, which makes it 



possible to u n d e r s t a n d  a n d  i n t e r p r e t  spectra for even the most complex 

models. We shall demonstrate the use of the linearized spectrum by analyzing 

the basic components of an  ARMA model. 

3.1. Linearized Spectrum of an MA Model 

In this section we will consider the moving average  MA(^) model 

G ( z )  = 1 - dz . 

After applying the transformation (11) we obtain 

and, analogously , 

where 

K =  1 - ? S  , 

Let us consider the logarithm of the modulus of (21). The frequency 

transfer function (21) can be expressed as the ratio of two polynomials: 

q(jw) = 1 + j w  . 

The logarithm of the modulus of (24) has the form 

1 
log lp ( j  0) 1 = $og(l + d'202) . 

For very low frequencies o , i.e., when 



we have 

In the opposite situation, i .e. ,  for very h g h  frequencies, we have 

log Ip ( j  w) I ' logd' + logw 

This function is e qua1 to zero for 

It follows from (28)-(30) that, if we choose suitable axes, the function 

under consideration can be approximated using two lines (which are in fact the 

asymptotes) -a line of zero slope below 5, and a line of slope +1 for w > B (see 

Fgure  1). 

FIGURE 1 Bode plot for a t ransfer  function with a single zero. 

Flgure 1 also shows that this is a reasonably good approximation of (26). 

T h s  construction (the asymptotes of the frequency response function) is 

known .as a Bode plot; t h s  method of analyzing the frequency response func- 

tion is one of the basic tools in electronics and control engineering (see D'Azzo 

and Houpis, 1975; Lago and Benningfield, 1979; Sage, 1981). It is now very easy 



to construct the Bode plot for a n  M A ( 1 )  model. I t  is only necessary to bear in 

mind tha t  

and perform a very simple graphical operation (see Figure 2). The shape of the 

FIGURE 2 Graphical procedure for constructing the Bode plot for a n  MA(1) model. 

Bode plot depends on the value of d - one important conclusion is that the 

Bode plot of a n  MA( 1) model aLways has apoLe at w = 1 .  Possible Bode plots for 

an MA(1)  model are presented in Figure 3. Both asymptotic plots and exact 

values of (21) are displayed, showing tha t  the Bode plot represents a reason- 

ably good approximation. 



FIGURE 3 Possible Bode plots for a general moving average MA(1) model. 

3.2. Linearized Spectrum of an AR(1) Model 

The transfer function of a n  autoregressive AR(1) model has the  following 

form: 

After transformation we obtain 

and, analogously , 



We will not repeat all the arguments from the previous section - the same 

methodology can be used directly to construct a Bode plot for an AR(1) model. 

The only difference is that the frequency response of an AR(1) model always 

has a zero for w = 1 .  Possible Bode plots for an AR(1) model are presented in 

FTCURE 4 Possible Bode plots for an autoregressive AR(1) model 

3.3. Linearized Spectrum of an ARMA(l.1) Model 

Using the methodology described in the previous sections, it is now very 

easy to construct the Bode plot for a simple autoregressive moving average 

ARMA(1,l) model. All we have to do is write its transfer function 

and transformed transfer function 



This function has one pole and one zero. The corresponding Bode plot can be 

derived immediately - the  basic steps of t h s  procedure are presented in Fig- 

ure 5. 

- ~ x ~ r m m  

- E x n  

FIGURE 5 Possible Bode plots for an  autoregressive moving average ARMA(1,l) model 



3.4. Linearized Spectrum of an AR(2) Model with Complex Roots 

Ths situation is more complicated than those dealt with previously. We 

introduce the transfer function in a form commonly used in textbooks on time 

series analysis: 

After transformation t h s  becomes 

where 

For several reasons it is more convenient to use the canon ica l  f o r m  of the 

denominator of (38): 

The value 

is kn.own as the resonance f r e q u e n c y ,  while the parameter 

is the so-called damping f a c t o r .  These two factors determine the resonance 



properties of the transfer function . If [ > 1 the quadratic polynomial has real 

roots and can be represented as the product of two first-order factors; for 

0 < [ < 1 the roots are complex and more careful analysis is necessary. Figure 

6 presents the frequency responses for different values of [; this figure shows 

that, for small values of 6 (low damping) and for frequencies close to the reso- 

nance frequency, asymptotic approximation will not be very accurate. 

FIGURE 6 Bode plot for a second-order autoregressive model for which the  transfer 
function has a pair of conjugate complex roots. 

However, practical experience has shown that asymptotic analysis can be very 

useful even in thls case; we shall therefore investigate the asymptotic behavior 

of (38). Maklng the substitution 

A =  j w  

and considering the canonical form (42), we obtain 



The logarithm of the modulus of this function is as  follows: 

log l g  ( j  U) 1 = logK + log(l  +02) - 2.1~~ (1 1 - [$J~]'+Y 
The first two terms of this formula are quite familiar and hence it is very 

easy to perform the asymptotic analysis. We can once again make direct use of 

the results obtained previously; the only difference from the MA(1) model is the 

slope of the asymptote of the second term, which is +2 in this case. Analysis of 

the t h r d  term is also straightforward -for low frequencies o we have 

while for w sufficiently large the term ( o /  is dominant and 

Comparing this result with (46) we observe that the third term of (46) has 

two asymptotes -for low frequencies the slope is equal to zero, while for h g h  

frequencies it is -2. The asymptotes cross a t  the vertex corresponding to fre- 

quency o = or (see Figure 6). 

The following component of the frequency response (46) 

generates a peak for small [. The amplitude and frequency at  which t h s  peak 

occurs are given by (see Figure 7): 



FIGURe 7 Peak height as a function of in the Bode plot of the autoregressive model 
considered in Figure 6. 

It follows from (50) that t h s  peak exists only for sufficiently small values 

of the damping factor, namely for 

It is now not difficult to construct the Bode plot for (45). The possible patterns 

are presented in Flgure 8. 

The only difference between the asymptotic frequency response given in 

Flgure 8 and the frequency response of the AR(1) model is that the slope of the 

asymptote is equal to -2. Like the AR(1) model, a n  A R ( ~ )  model with complex 

roots always has a double zero at w = 1 ;  there is also a double pole at  w = or . 

3.5. Linearized Spectrum of a Simple Difference Operator 

One of the basic operations in Box-Jenkins methodology is the "detrend- 

ing" of time series using simple differenc~ng. Differencing is in fact a filtering 

process in whch  the transfer function of the filter has the following form: 

After transformation we obtain 



FIGURE 8 Possible Bode plots for a general autoregressive second-order model for which 
the transfer function has a pair of conjugate complex roots. 

The resulting transfer function has a pole at w = 0. It is not difficult to 

plot the Bode diagram for t h s  case: the asymptotic Bode plot for 1+A has been 

described in previous sections, and we will not describe it again here. Consider 

the transfer function 

Substituting h = j w  and calculating the modulus, we obtain 



It is clear from (55)  that in this case the Bode plot is a line with slope -1 

for every value of the frequency w .  Combining the plots for the numerator and 

denominator of ( 53 ) ,  we obtain the pattern presented in Figure 9. The plot is 

similar to that obtained for the simple AR(1) model, except that the left vertex 

of the plot corresponding to the value of I? is shfted to minus infinity 

FIGURE 9 Bode plot for a simple difference operator 

3.6. Linearized Spectrum of a Seasonal Dif€erence Operator 

Another important operation in the Box-Jenkins approach is seasonal 

differencing. The linear filter corresponding to this operation has the following 

transfer function: 

where n is the periohcity of the time series. After transformation we obtain 

and, consequently, 



Rearranging the above equation we obtain 

(1+ j  w)" 
s ( j 4  = 

( l + j w ) "  - $(I-jw)" ' 

We shall now analyze the denominator of the above formula. Since 

1 - j o  = f i r>e- jp  , p = a r c  tanw (61)  

we deduce that 

The modulus of t h s  function has the form 

and consequently 

For low frequencies we have 

For h g h  frequencies the situation is more complicated: 

for n = 1,3,5,  . . .  

for n = 2,4 ,6 ,  ... 

It is clear that, for d > 0,  l g ( j o ) l  has a maximum for those frequencies for 

whichcos 2np = 1 , i.e., 



n = t a n  for o < k < - 2 

For these frequencies the height of the peak is 

Analogously, for Q > 0, ( g t j w )  1 takes its minimum value for those frequencies 

for which cos 2np = -1 , i.e., 

For Q < 0 the positions of the maximum and minimum are reversed, i.e., 

J g  ( j  w) ( has a maximum for G given by ( 6 9 )  and a minimum for G given by 

( 6 7 ) .  It is also important to  know the position of the zeros and poles of the 

transfer function under investigation. There is a zero of multiplicity n a t  

w = 1; the position of the poles can also be determined very easily. Consider 

the poles of (56). I t  is obvious that for Q > 0 t h s  transfer function has a real 

pole 

and tha t  for even n 

is also a pole 

Making our transformation, we conclude that the corresponding poles in 

the  X complex plane are  as follows : 

and for even n 



For 6 < 0 and odd n we still have the pole determined by (70); for even n there 

are no real poles. The general expression for the poles of (56) is very simple 

(for 'LF > 0): 

After transformation, each pair of conjugate roots in the z complex plane 

is transformed into a pair of coqugate roots in the X complex plane; thus, for 

each such pair there will be a corresponding quadratic factor in the denomina- 

tor of g (A): 

Comparing this formula with the results of our analysis for a simple AR(2) 

model with complex roots, we deduce immediately that the resonance fre- 

quency is 

Simple algebraic transformations lead to 

1 -- 
where T = Q  and up is the frequency corresponding to a peak on the fre- 

quency response plot. I t  is easy to see that for 29 r 1 (whch is usually the case) 

we have 



A similar result can be obtained for 29 < 0.  Now we have enough information to 

construct the Bode plot for the transfer function under investigation. The 

basic steps of the procedure are presented in Figure 1 0 .  It is important to 

note that the pure seasonal differencing operator (with 29 = 1)  will generate 

infinite peaks in its frequency response, and thus cannot be interpreted using 

this technique. 

3.7. Linearized Spectrum of a General ARMA Model 

Using the results of the previous sections we can construct a Bode plot for 

a general ARMA model. This model can be given in terms of transfer functions 

as a product of the simple factors considered in the previous sections. On cal- 

culating the transformed transfer function, the frequency response and its log- 

arithm, we conclude that the Bode plot of a general ARMA model can be 

obtained as the sum of the Bode plots of its component factors. l l u s  is true for 

both asymptotic and exact plots. The asymptotic plots can be constructed 

without any problem; it is sufficient to know where the zeros and poles of the 

transfer function occur. This is usually the first step of the procedure; in the 

next, the exact function is plotted. This is also quite straghtforward, requiring 

only a pocket calculator (see F~gure 1 I ) ,  

4. YODEL IDENTIFICATION USING BODE PLOTS 

In this section we will investigate the inverse procedure -given the fre- 

quency response function, to find the generating transfer function G(z). 

This is precisely the problem of model identification; however, we shall use 

the spectrum instead of the autocorrelation function as in the Box-Jenkins 

approach. We will not consider the possible ways of calculating the spectrum 

here; there are many methods that could be used (see Appendix A). We shall 

simply assume that  the spectrum can be calculated for the time series being 



( a )  

1 - @ - l h  

Pole lor w = 

1 - @ - l / 7  

Pde for w = 

FIG- 10 Bode plots for a seasonal difference operator (periodicity 7): (a) 19=0.55; (b) 
6=0.95; (c) 5P=-0.55. 



FIGURE 10 (continued) Bode plots for a seasonal difference operator (periodicity 7): (d) 
+=-0.95; (e) I9= -0JS. 

investgated. According to Fgure 2, if we replace frequency o by 2 arc tan w 

we will obtain the spectrum of the modified transfer function; a standard chart 

has been designed especially to aid in t h s  task (see Figure 12). The basic steps 

of the identification procedure are as follows : 

1. Calculate the spectral density function and plot it on the special chart 

2. Try to make a piecewise-linear approximation of this function, bearing in 

mind the results obtained in Section 3 (i.e., the slopes of the lines can be 

*1 ,* 2...). The peaks on the plot should be treated with special care, as 



Bode DIOI for \ ;{'I:,:$;;! o.az) 

FIGURE 11 Construction of a Bode plot for a general ARMA model. 
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FIGURE 12 A standard chart for plotting the linearized spectral density function 



should possible seasonal patterns 

3. Using the asymptotic decomposition obtained in the previous step, deter- 

mine the positions of the zeros and poles of the modified transfer function 

9 (A). 

4. Transform every zero and pole from the A complex plane to the z plane; 

this gives us the transfer function G(z). 

We should point out that, in principle, t h s  procedure gives us parameter values 

for a model of any complexity. Experiments have also shown that this method 

is surprisingly accurate - the typical error in parameter determination is 

about 10-20%. It is almost impossible to obtain results of the same accuracy 

from analysis of the autocorrelation function. 

Of course, to use this procedure requires some feeling for what the fre- 

quency response means, and t h s  can only be gained through experience. The 

appropriate approximation must be found by trial and error; in many cases the 

solution is not unique and in others the method does not work. But the funda- 

mental idea b e h d  this approach is that time series can be analyzed in some 

depth using only a pencil, a piece of paper and a pocket calculator. 

To clarify t h s  approach further, and to illustrate its possibilities and limi- 

tations, we will now present a number of examples together with a detailed 

description of the correspondmg analyses. 

4.1. Simulated Time Series 

Three experiments were performed in each case. The length of the time 

series generated in each run was 200; the standard deviation of the noise was 

1%. Three methods of spectrum estimation were used: the maximum entropy 

method (ARSPEC) (Beamish and Priestley, 1981), the G-transform approach 

(GSPEC) (Gray, Houston and Morgan, 1978), and the standard Bartlett window 



method (BT) (Jenkins and Watts, 1968). 

Ezample 2 (Figure 13). In this case we tried to identify an hriA(1) model 

with -8 = 0.95. The ARSPEC estimate gives a very clear result - it is obvious 

that the piecewise-linear approximation is very accurate. The estimated value 

of the parameter is 0.881, whch leads to an error of approximately 8% . 

The situation is not so good for the GSPEC estimate - the spectrum 

behaves quite randomly a t  low frequencies. For t h s  reason it is virtually 

impossible to determine the exact value of the coefficient, although it seems 

almost certain that there is a pole for w = 1, and therefore t h s  model must 

contain an MA(1) component. 

Ezample 2. In this example we generated time series using an MA(1) model 

with -8 = -0.95. On looking a t  the spectral density function it is possible to con- 

clude that the investgated time series has MA(1) structure with parameter 19 

between -0.881 and -0.923 (see Figure 14), which is rather a good result. The 

behavior of the ARSPEC estimate was not very good a t  low frequencies, 

although it was still possible to plot the horizontal asymptote. The accuracy of 

the coefficient was also acceptable - we obtained a value of approximately 

-0.85. 

However, more accurate analysis of the Bode plot shows that the transfer 

function has a pole not for w = 1 but for w 2 1.25, and thus the time series was 

generated by an  ARMA(~ ,~ )  model with parameters -0.893 and -0.06. The 

small value of the AR parameter suggests that it can be neglected. It is not yet 

known how to formulate and verify t h s  hypothesis statistically, but an  analysis 

of the confidence limits of the spectrum may be helpful (see Figure 15). This 

analysis was performed for the BT spectrum estimate illustrated in Figure 

14(b). Ths  figure suggests that the  MA(^) model should be accepted. It is 

quite clear why the AR part was detected -the sample ACF corresponds to an 
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FIGURE 13 Bode plot for simulated MA(1) time series with 19 = 0.95: (a) ARSPEC esti- 
mate; (b) BT estimate; (c) GSPEC estimate. 
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FIGURE 14 Bode plots for simulated MA(1) time series with 19=-0.95: (a) ARSPEC esti- 
mate; (b) BT estimate with confidence intervals; (c) GSPEC estimate. 



ARMA rather than to an MA model (Figure 16) 

u= 1 
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FIGURE 15 Possible parameter values for an MA(1)  model -analysis of confidence inter- 
vals. 
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FIGURE 16 Sample ACF for simulated MA(1) time series (length of time series = 200). 

Ezample 3. In this example the situation is more complicated. Our first 

conclusion is that there is a peak on the frequency response plot. Is it reason- 

able to expect complex roots? The answer is yes -we can assume that there is 

w a complex root for w, - 0.05. However, to compensate for the slope which is 

generated by such a root we must add an additional zero for 0 ' 0.5. In order 

to ensure that the frequency response has the proper shape for large values of 

w we must also add a zero for 0 ' 10. Using formula (49), we can estimate the 

value of the damping factor -this is approximately 0.9. We now try to plot the 

exact frequency response, as shown in Figure 17(a). The identified model has 
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FTGURE 17 Bode plots for simulated MA(2) time series: (a) Investigation of the 
hypothesis that for 0= 0.5 the transfer function of the model has a pair of conjugate 
complex roots, ARSPEC estimate; (b) Investigation of the hypothesis that for 0.5 the 
transfer function of the model has a pair of double real roots, ARSPEC estimate; (c) BT 
estimate. 



F'IGURE 17 (continued) Bode plots for simulated MA(2) time series: (d) GSPEC estimate. 

the following form: 

A similar result can be obtained from the GSPEC estimate (Figure 17d), the 

only difference lying in the value of one of the coefficients (0.95 instead of 

We should point out that another hypothesis can be put forward - t ha t  

there is one double real root for w = 0.794 rather than a pair of complex roots. 

Figure 17(b) shows that this hypothesis can also be accepted; the resulting 

model has the following transfer function: 

When we apply the same procedure to BT and GSPEC estimates we obtain 

an MA(2) model (Figure 17c). Because of the rather poor behavior of the sam- 

ple spectral density function (SDF) for frequencies around zero, it is difficult to 

determine which model gives us the best fit. As in the previous example, the 

sample ACF corresponds to  the ARMA rather than to the second-order MA 



model with parameters dl = 0.3 and d2 = -0.6 

Example 4. The Bode plot for this case is presented in Figure 18 (only the 

ARSPEC estimate is shown). It may be observed that thls is similar to the Bode 

plot analyzed in the previous example, except that the peak is more pro- 

nounced in t h s  case. Reasoning similar to that used m the previous example 

shows that the best fit will be obtained if we assume a double root for w = 1. 

This leads to the transfer function 

which corresponds very well to the exact model with = 0.6 and d2 = -0.95. 

The structure of the model is the same as in the previous example, but the 

accuracy of the identification is better in this case. 
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F'IGURE 18 Bode plot for simulated MA(2) time series, ARSPEC estimate (Example 4). 

The reason for t h s  increased accuracy is obvious - the method works 

better when the distance between roots (or poles) is large. For t h s  reason we 

should not expect the method to give good results when the coefficients have 

almost equal values, say 0.6 and 0.8. However, even in this situation the results 

are not bad. T h s  is illustrated in the next example. 



EzampLe 5. In t h s  example we analyze the time series generated by the 

MA(2) model 

I t  follows immediately that we will obtain a reasonable fit for the following 

transfer function: 

I t  is impossible to detect that in t h s  case the transfer function has two 

different roots - the theoretical and estimated Bode plots practically coincide 

(Flgure 19). The ACF is more informative in t h s  case. Ths  seems to be gen- 

erally true for pure MA processes; for more complex cases in which the pattern 

of the ACF is not so obvious the spectral method should work better. This 

situation is considered in the next example. 
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FIGURE 19 Bode plot for simulated MA(2) time series, ARSPEC estimate (Example 5). 

EzampLe 6.  Ths  is Example 1 from Gray, Kelley and Mclntire (1978). The 

shape of the Bode plot is similar to that considered in previous examples, but 



the whole plot is shifted to the left. Reasoning as in Example 3, we obtain the 

results presented in Figure 20. We observe the strong influence of the factor 

with complex roots. The identified model has the following transfer function: 

This is not a bad result when compared with the exact model 

In t h s  case the ACF pattern is very complicated and it is not easy to identify 

the model on the basis of this information alone. 

rm! 

A 

FIGURE 20 Bode plot for simulated ARMA(2,l) time series, ARSPEC estimate (Example 
6). 
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Ezample 7. In this example it is again not very easy to identify the model 
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by analyzing the ACF (Figure 21). The ACF oscillates; it is not possible to detect 

-- 
( I I I , , l , I  

W 

I ,  I I I I  I -  

-- * 4 & ~ A A A 4 . . *  . * * .  * . . . *  B 

the presence of an MA term. However, the situation is clearer in the frequency 

domain -after simple analysis we obtain 



This is a good approximation of the real model 

The Bode plots for t b s  example a re  presented in Figure 21(b) 
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FIGURE 21 (a) Sample ACF for time series from Example 7; (b) Bode plot for simulated 
ARMA(2,l) time series, ARSPEC estimate (Example 7). 



4.2. Box-Jenkins Time Series 

Ezample 8. Let us analyze series A from Box and Jenkins (1970). Figure 

22(a-f) presents the results of spectral analysis, i.e., frequency responses and 

asymptotic approximations for the orlginal and differenced time series. Three 

methods were used for estimating the spectrum -ARSPEC, GSPEC and BT. The 

results are summarized in Table 1. 

TABLE 1. Identification of series A from Box and Jenkins (1970) using different spec- 
trum estimation methods. 

Ezample 9. In this example we analyze series B from Box and Jenkins 

(1970). The same runs were performed as in Example 8; the results are given in 

Table 2 and Flgure 23. 

In t h s  case the GSPEC estimate evidently gives the wrong result; the rea- 

son probably lies in the trend in the data. The results are compared with the 

model estimated using the MINITAB package because there seems to be a mis- 

take in the Box-Jenkins book. 

Spectrum estimation method 

ARSPEC 

ARSPEC (differenced) 

GSPEC 

GSPEC (differenced) 

BT 

BT (differenced) 

Box- Jenkins 

T 

Model 

1-0.3122 
1-0.7852 

1-0.732 
(1-0.1 16~) (1-2)  
1-0.432 

1-0.8652 
1-0.772 

1-2 
1-0.7982 
1-0.332 

1-0.6542 
1-2 

1-0.582 
1-0.922 
1-0.722 

1-2 



Boa-Junkins 

1 - 0.7882 
Estimated 1-0.331 

FIGURE 22 Bode plots for time series A from Box and Jenkins: (a) ARSPEC estimate; (b) 
BT estimate; (c) GSPEC estimate. 
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FIGURE 22 (continued) Bode plots for time series A from Box and Jenkins: (d) ARSPEC 
estimate, differenced data; (e) BT estimate, differenced data; ( f )  GSPEC estimate, 
differenced data. 



TABLE 2. Identification of series B from Box and Jenkins (1970) using different spec- 
trum estimation methods. 

* Unacceptable result. **Using MINITAB package. 

1 

Ezample 10. Here we look a t  series C from Box and Jenkins (1970). The 

results obtained using our standard procedure are presented in F g u r e  24 and 

Spectrum estimation method 

ARSPEC 

ARSPEC (differenced) 

GSPEC* 

GSPEC (differenced) 

BT* 

BT (differenced) 

Estimated model** 

Table 3. 

Model 

1-0.5862 
1-2 

1-0.62 
1-2 

? 

1-0.5982 
1-2 

? 

1-0.5 192 
(1-0.092~)(1-2) 
1-0.6 1% 

1-2 

TABLE 3. Identification of series C from Box and Jenkins (1970) using different spec- 
trum estimation methods. 

7 

Spectrum estimation method 

ARSPEC 

ARSPEC (differenced) 

GSPEC 

GSPEC (differenced) 

BT 

BT (differenced) 

Box-Jenkins 

Model 

1+0.2262 

1 
(1-0.772)(1-2) 

11-0.252)' 
(1-0.852)' 

1 
(1-0.7982)(1-2) 
(1-0.2482)' 
(1-0.7762)' 

1 
(1 -0.7262)(1-2) 

1 
(1-0.822)(1-2) 
11-0.417~)(1+0.287~) 

(1-%I2 
t 
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FIGURE 23 Bode plots for time series B from Box and Jenkins: (a) ARSPEC estimate; (b) 
GSPEC estimate; (c) ARSPEC estimate, differenced data. 
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FIGURE 29 (continued) Bode plots for time series B from Box and Jenkins: (d) BT esti- 
mate, differenced data; (e) GSPEC estimate, differenced data. 

The results obtained for the AR model with single differenced data are very 

good. The only major discrepancy arises for the MA model with double 

differenced data. I t  is rather difficult to explain the source of t h s  problem -it 

is probably caused by a trend in the non-differenced time series. 

Ezample 11. This is concerned with series D from Box and Jenkins (1970). 

The results are presented in Flgure 25(a-f) and Table 4. 
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FIGURE 24 Bode plots for time series C from Box and Jenkins: (a) ARSPEC estimate; ( b )  
BT estimate; (c) GSPEC estimate. 



FIGURE 24 (continued) Bode plots for time series C from Box and Jenkins: (d) ARSPEC 
estimate, differenced data; ( e )  BT estimate, differenced data; (f) GSPEC estimate, 
differenced data. 



TABLE 4. Identification of series D from Box and Jenkins (1970) using different spec- 
trum estimation methods. 

Once again we obtained uninterpretable results for GSPEC. Note also that 

it is quite difficult to interpret the spectrum for differenced data, the main rea- 

son being the small value of the zero (or pole). However, the spectral 

responses of the identified model and the second Box-Jenkins model are 

almost the same. It is impossible to conclude from Figure 25(d) whether the 

frequency response has a zero or pole for w = 1; in the author's opinion it is a 

zero, but because of possible inaccuracies in the estimation of the spectrum 

not too much confidence should be placed in t h s  conclusion. 

Ezample 12. Ths is based on series E from Box and Jenkins (1970), the 

Wolfer sunspot number series. The frequency response of t h s  famous time 

series is presented in Figure 26(a) (ARSPEC estimate). Using the approxima- 

tion shown in t h s  diagram we obtain the following model: 

Spectrum estimation method 

ARSPEC 

ARSPEC (differenced) 

GSPEC 

GSPEC (differenced) 

BT 

BT (differenced) 

Box- Jenkins 

T 

A similar result can be obtained using the BT estimate: 

Model 

1 
1-0.8912 

1 
(1+0.04~)(1-2) 

1 
1-0.8532 

? 

1 
1-0.812 

1-0.6672 
(1-0.552~)(1-2) 

1 
1-0.872 
1-0.062 

1-2 
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FIGURE 25 Bode plots for time series D from Box and Jenkins: (a) ARSPEC estimate; (b) 
BT estimate; (c) GSPEC estimate. 
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FIGURE 25 (continued) Bode plots for time series D from Box and Jenkins: (d) ARSPEC 
estimate, differenced data; (e) BT estimate, differenced data; ( f )  GSPEC estimate, 
differenced data. 
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FIGURE 26 Bode plots for time series E from Box and Jenkins: (a) ARSPEC estimate; (b) 
BT estimate; (c) GSPEC estimate. 



As usual, the GSPEC estimator gave rather bad results, no peak occurring 

on the frequency response plot. With differenced data we again obtained 

results whch could not be interpreted in any reasonable way. 

I t  is interesting to compare the models identified here with the 

Box-Jenkins solutions. The Box-Jenkins models have the following transfer 

functions: 

The Bode plots for the above models are presented in Figure 27(a,b). A 

number of other models of this series have also been investigated - Ozaki 

(1977) tested some high-order models, and two new models have been proposed 

by Woodward and Gray (1978). Again, it would be interesting to analyze these 

models using the technique presented here. 

Both Box-Jenkins models give rather a bad fit. The amplitude of the peak 

is too small, and for low frequencies the frequency response does not 

correspond to the SDF a t  all. The Ozaki ARMA(3,6) model produces some 

interesting results (see Figure 28): it gives a perfect fit for h q h  frequencies but 

for low frequencies its behavior is extremely bad -an unnecessary peak can be 

observed for w ' 0.03. This suggests that the model is overparametrized. 

This additional peak is generated by a double complex pole a t  w = 0.04; a 

single pole would actually give the Bode plot a reasonable shape a t  lowT frequen- 

cies. It can also be seen that the slope of the asymptote for w ' 0.04-0.1 is -3. 

This means that  there is a single real root in t h s  region, Removing this root 
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FIGURE 27 Bode plots for (a) Box and Jenkins' AR(2) model and (b) Box and Jenkins' 
AR(3) model of time series E (Wolfer's sunspot numbers), compared with the ARSPEC es- 
timate of the spectral density function. 

should give a frequency response of the required shape. The behavior of the 

two models proposed by Woodward and Gray is very good; the ARMA(2,6) model 

gives a better  fit at  low frequencies than the alternative ARMA(6,l) model (see 

Figure 29)). 

Ezample 13. Now we shall try to apply our methodology to seasonal time 

series. Consider series G from Box and Jenkins (1970). The linearized spec- 

trum of t h s  time series is presented in F ~ u r e  30(a). Theoretical investigations 



FIGURE 28 Bode plot for Ozaki's model of time series E (Wolfer's sunspot numbers) 
compared with the ARSPEC estimate of the spectral density function. 

show that t h s  plot should have 5 peaks (if the period of the time series is 12). 

These peaks are easily identified on the plot. Analyzing the height of these 

peaks, we conclude that the transfer function of the seasonal factor is 

Thus the estimated frequency response function reproduces the theoretical 

response very well for o >> 1. However, the differences observed a t  lower fre- 

quencies are quite significant - to  analyze these in more depth t h s  part of the 

plot is displayed in Figure 30(b). The suggested form of the transfer function is 

as follows: 

where h (2)  should be chosen such that it 

(i) does not destroy the good fit for h g h  frequencies, i.e., l o g / h ( j  w )  I = 0 for 

o > 1: 
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FIGURE 29 Bode plots for (a) Woodward and Gray's ARMA(6.1) model and (b) Woodward 
and Gray's ARMA (2,6) model of time series E (Wolfer's sunspot numbers) compared with 
the ARSPEC estimate of the spectral density function. 

(ii) corrects the low-frequency part of the frequency response. 

On analyzing Figure 30(b), we conclude that the most important thmg is to 

cancel the pole at w = 0.001; for t h s  reason the "correcting filter" must have a 

zero at  t h s  frequency. The rest  of the h ( z )  frequency response is determined 

by the first requirement, which means that the transfer function should have 

two poles and one zero. The suggested form of the Bode plot is presented in 

Figure 30(b) (solid line); the theoretical frequency response function is also 
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ing" filter. 

given. We see that the fit is very good. This leads to the following model: 

This procedure was repeated using differenced data; the results are 

displayed in Figure 31. In this case the situation is not so complicated and con- 



sequently the structure of the correcting filter is very simple. The final model 

has the following form: 

It would be interestmg to compare this model with those obtained by Box and 

Jenkins; however, t h s  cannot be done in the frequency domain because the 

seasonal differencing procedure proposed by Box and Jenkins causes infinite 

peaks in the frequency response. To check the accuracy of the identification 

procedure we estimated the parameters of a number of models &ffering in 

structure using the MINITAB system. 

The results are collected in Table 5. It can be observed that model 4 

corresponds very well to (95) and model 5 to (94). I t  should be noted that the 

estimation was carried out following identification using the method proposed 

in t h s  paper. 

4.3. Gas Consumption Data 

Ezample 14. Ths  time series was analyzed by the author during research 

on the control of a natural gas transmission system. One of the basic problems 

was to develop an algorithm predicting gas consumption. The time series 

analyzed in t h s  section is the consumption of gas at the same hour each day, 

over a one-year period. The frequency responses of this time series (rough and 

differenced) are presented in Figure 32(a,b). The situation is in general similar 

to that described in Example 13, except that the amplitude of the peaks is 

smaller. The amplitude of the last peak can be used to determine the value of 

the parameter 6 in the seasonal AR term -after simple analysis a value of 0.25 

was obtained. Next, we use our standard approach to plot the theoretical fre- 

quency response of the seasonal factor. Ths  is illustrated in Flgure 33. The 

situation is again similar to that described in Example 13 -the fit is good for 
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FIGURE 31 (a) Spectral density function for dzffemnced time series G from Box and Jen- 
kins compared with the theoretical frequency response plot for seasonal model 

1 (b) expansion of the low-frequency part of (a) together with the Bode plot 
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of the "correcting" filter. 

h g h  frequencies. We now have to design a low-frequency filter which will 

modify the low-frequency part of the characteristics. To do this we carry out 

"deseasonal filtering" . Ths is a very simple graphcal procedure in whch it is 

only necessary to subtract from the estimated response function the following 

theore tic a1 response function: 



TABLE 5. Identification of time series G from Box and Jenkins (1970) using the MINITAB 
package. 

w h c h  corresponds to the seasonal factor transfer function. The result is 

Model 
no. 

1 

2 

3 

4 

5 

T 

presented in Figure 33; the next step is to fit the non-seasonal model. A peak 

can now be observed a t  w ' 0.2; the question is whether this peak is caused by 

Model description 

11+0.098~'~)(1-0.182) 
(1-2)(1-2'2) 

(1+0.09~'~)(1-6.8782) 
(1-~)(1-~'~)(1-0.07ll~) 

(14.8762) 
(1-~)(1-~'~)(1-0.096~~~)(1-0.71~) 

(1 -0.9932) 
(1-z)(1-0.8452)(1-0.99~'~) 

(1-0.?752)(1-0.072) 
(1-0.7252)(1-0.906~)(1-0.9932") 

the pair of complex roots or not. These two possibilities are analyzed in Fig- 

Sum of squared errors 

367 

36 1 

36 1 

328 

326 

ures 34 and 35. I t  can be seen that  the model with complex roots gives a 

be t te r  fit; however, its transfer function is rather complicated: 

The other hypothesis leads to  the following result: 

The same procedure could be followed using the rough (non-differenced) 

data;  the major difference is tha t  instead of the AR factor (1-2) we obtain 

1-0.998z, w h c h  suggests the need to dBerentiate the time series. 



It is interesting to note that a simpler model can be proposed, i .e. ,  one in 

whch the non-seasonal component has A R ( ~ ,  1) structure: 

The frequency response of this model is presented in Figure 36. 

FIGURE 32 Spectral density functions of some (a) rough and (b) differenced gas con- 
sumption data, ARSPEC estimates. 
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FIGURE 93 The "deseasonal filtering" of some differenced gas consumption data. 
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FIGURE 34 Bode plot of the non-seasonal part  of the gas consumption data  considered 
above. Complex pole assumed a t  o= 0 .2 .  



FIGURE 35 Bode plot of the non-seasonal part of the gas consumption data considered 
above. No complex poles a r e  assumed. 
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5. CONCLUSIONS 

It should be emphasized that the method presented in this paper is not 

proposed as a universal solution of the identification problem. The author does 

not agree with Anderson (1980) that 

"it is understandable for innovators to be enthusiastic whilst others 

are conservatively (perhaps, enviously) less optimistic". 

The author does not overestimate the role of the method -he believes 

that it simply bridges the gap between the rich collection of methods for 

e s t ima t ing  s p e c t r a  and methods for a n a l y z i n g  a n d  u n d e r s t a n d i n g  them. 

Moreover, t h s  method cannot be used in isolation. Parzen (1980) tells us that: 

"...it seems critical that a successful approach to time series model- 

ing employ simultaneously both the spectral domain and the time 

domain." 

The importance of this statement can be deduced from the examples 

presented in this paper. There are many situations in which analysis of the 

ACF gives more information than analysis of the frequency response function. 

This is mainly the case for pure MA processes, where the structure of the ACF 

is often very clear and the properties of the spectral estimates relatively bad. 

However, on the other hand there are also many cases in which it can be diffi- 

cult to interpret the ACF, and analysis of the spectral density function can be 

of considerable use. 
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APPENDIX A: METHODS FDR ESTIMATING SPECTRAL DENSITY FUNCTIONS 

I t  is obvious that the use of the methods described in t h s  paper is depen- 

dent on having sufficiently efficient algorithms for spectrum estimation. For- 

tunately, there are currently at least three groups of such algorithms. A 

review of existing techniques has recently been carried out by Priestley (1981). 

We shall provide here only a brief outline of the various methods of spectrum 

estimation. 

ACF Fourier Transformation 

This is the best-known method for estimating a spectral density function. 

In this formulation the spectrum is computed using the following equation: 

where cp is the value of the ACF for lag p . Ths  formula can be used directly 

for density function estimation; the only difficulty is caused by the fact that we 

can estimate the ACF only for a finite number of lags. This causes certain dis- 

tortions in the spectrum; to avoid this i t  is necessary to  use a window q p .  The 

corresponding formula for estimating the spectral density is as follows: 

One of the possible windows is the B a ~ t l e t t  window : 

11-le~ N tor M< N 1 

%J = otherwise * 



Many other types of windows have been proposed. The statistical properties of 

(A.2) have been analyzed in a number of publications, the best-known of whch 

is the classic textbook by Jenkins and Watts (1968); others include Koopmans 

(1974), Hannan (1960), Anderson (1971) and Priestley (1981). 

I t  should be noted that the parameter N in (A.2) determines the proper- 

ties of the spectral estimator (the so-called resolution or bandwidth) and also 

the standard error of the estimate. In general, large N ensures high resolu- 

tion, so that we can detect the narrow peaks in the spectrum. On the other 

hand, a high value of N also causes a large variance in the estimator. Small N 

ensures a small variance but increases the bias and causes more distortion of 

the spectrum, since the "spectral window" is wider. For these reasons i t  is 

necessary to  find a compromise value of N. The usual procedure is to calculate 

density functions for different values of N and then compare the results. 

GTransform Estimator (GSPEC Estimator) 

This method is an extension of the previous one. The basic principle is to 

use the algorithm for accelerated summation of infinite series to calculate 

(A.1). This special class of algorithms was introduced and investigated by Gray, 

Houston and Morgan (1978). Under the assumption that the time series has 

ARMA structure, they showed that the proposed estimator converges; however, 

not- is known about its statistical properties. The corresponding computer 

program has also been published (Gray e t  al., 1978). The developers of this 

method are enthusiastic about it; however, the experience of the present 

author is that  the method does not always work. I t  appears that  the GSPEC 

estimator works properly only for time series whlch are low-order ARMA; it 

does not work a t  all for pure MA or seasonal time series. For these reasons 

this approach cannot be recommended. 



Direct Data Transformation 

A number of new techniques based on Fast Fourier Transform (FFT) have 

been developed. These involve direct Fourier transformation of the data. In 

order to avoid &stortion of the spectrum an operation similar to windowing 

must be performed, but in the time domain. Because of the h g h  efficiency of 

FFT, these methods are especially suitable for long time series. An excellent 

review of FFT methods and related algorithms is given by Otnes and Enochson 

(1978) and various associated computer programs have been prepared by the 

Digital Signal Processing Committee under the title "Programs for Digital Slg- 

nal Processing" (1979). From a statistical point of view, these methods are 

equivalent to ACF-based estimators (see, for example, de Jong, 1977). 

Autoregressive Estimator (ARSPEC) 

This is a new class of very efficient spectral estimators whch are almost as 

easy to compute as ACF-based estimators but in general have better proper- 

ties. The basic idea of t h s  method is simple - h d  the autoregressive model of 

the process under study 

and using this model calculate the spectrum 

The basic assumption is that the investigated process has hgh-order or 

inkite-order AR representation. The conditions under which this representa- 

tion exists have been investigated, e.g.,  by Koopmans (1974). However, i t  is not 

very difficult to construct a time series for wbch such a representation does 

not exist, e.g., 



The possible nonexistence of an AR representation is potentially one of the 

most important problems with t h s  method, although in the author's experi- 

ence such situations rarely occur in the analysis of real time series data. 

In order to use this technique it is necessary to: 

-choose the appropriate technique for AR model estimation; 

-determine the order of the AR model. 

There are several ways of doing t h s ,  most of which have been discussed in 

detail by ULrych (1975); his paper also contains two efficient Fortran subrou- 

tines. In general there are two methods of estimation -one is based on a sam- 

ple autocorrelation function and the Yule-Walker equations, whle the other 

involves direct estimation from the data using a mo&fied prediction-error algo- 

rithm. The best known method of order determination is the Akaike criterion 

(Akaike, 1974). According to  this criterion, the best model is that which minim- 

izes the function 

where n is the length of the time series. Sp is an estimate of u2 (one-step- 

ahead prediction variance), and N is the order of the AR model. 

This procedure has been examined empirically by Ozaki (1977). The 

theory and properties of the Akaike procedure have also been investigated by 

many other authors; a selected bibliography can be found in Appendix C .  A 

method based on the prediction error approach was adopted in this paper; the 

computer program was taken from Jones (1978). 



Related Topics 

Another important aspect of spectrum estimation concerns the sensi- 

tivity of the estimator. There are two possible sources of error: missing data 

and measurement errors ("outliers"). Empirical investigation shows that even 

small deviations can cause significant distortion of the estimated spectrum, 

especially at high frequencies. Ths problem has recently been analyzed in 

great detail; the basic results are presented in Kleiner et  al., (1979) and Martin 

(1979, 1980) . Of especial interest is the recent paper by Martin (1980), which 

presents robust methods for AR model estimation, together with an Akaike- 

type approach for order determination. However, the author has no experi- 

ence with these methods as yet. 



APPENDIX B: ALTERNATIVE APPROACHES IN T I N  SElUES IDENTIFICATION 

There are a number of alternative approaches for time series 

identification. That proposed by Box and Jenhns (1970) based on the "visual 

inspection" of the ACF is undoubtedly the simplest. However, in practice it is 

often difficult to interpret the sample ACF (or even the theoretical ACF); still, 

the experienced analyst can usually extract some useful information from the 

ACF. It has been suggested that  a "catalogue" of possible ACFs should be 

created or that the set of possible models should be structured in some way. 

An ACF catalogue would be a kind of handbook for the analyst. Ths  idea was 

explored by Polasek, who has investigated and classified the possible struc- 

tures of seasonal MA models (Polasek, 1980). Using this taxonomy, a catalogue 

of possible ACF patterns has been prepared (Polasek, 1979). The only thmg the 

analyst has to do is to compute the ACF and then search through the catalogue 

to 6nd the most similar ACF pattern. This method has two main disadvantages 

-the number of possible patterns may be large (over 100 in Polasek's catalo- 

gue) and determining the degree of similarity can be difficult. It should be 

quite possible to  automate the procedure using a pattern recognition approach 

- however, t h s  has not yet been done. 

The other approaches utilize the known fact that if a time series has 

ARMA(p ,q)  structure, then the theoretical ACF for lags greater than q satisfies 

a linear difference equation of order p (e.g.,  Anderson, 1971). Thus, the idea is 

to check whether a subsequence of the ACF satisfies a linear dmerence equa- 



tion. This can be done by several methods, all of whch have a very strong con- 

nection with Kalman realization theory (Kalman et al., 1969). This theory is 

based on testing the rank of a matrix derived from the ACF (Henkel matrix). 

An algorithm for testing t h s  rank has been proposed by Beguin et al. (1980). 

Another indicator of the rank of a Henkel matrix has been introduced by Gray, 

Kelley and McIntire (1978); t h s  approach has been discussed by Anderson 

(1980). The basic difficulty in applying these methods (and whch can even 

prevent them from being used) is connected with the fact that the computation 

of rank is an ill-defined problem. The source of this trouble is the binary char- 

acter of rank testing -a matrix either has rank K or it does not. Thus, it takes 

only a small distortion of one matrix element to change its rank. There is a 

well-known statement that "every matrix in a computer is of full r a n k .  The 

experiments performed by the author with realization algorithms have shown 

that they are almost useless for sample ACFs and must be applied and inter- 

preted with the greatest care. The main disadvantage of these methods, how- 

ever, is caused by the fact that instead of "visual inspection" of the ACF the 

analyst must use the same visual inspection procedure to analyze the columns 

of' two matrices. The author's experience has shown that t h s  can be extremely 

difficult. A recent analysis of this approach by De Goojier and Hents (1981) has 

shown that this method has limited applicability. 
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