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FOREWORD

The analysis of time series is a very important element in much of the sys-
tems work carried out at IIASA and elsewhere. The basic principles of time
series analysis were laid down by Box and Jenkins in 1970 in an approach which
divided model building inte three stages: model identification, parameter esti-
mation and model validation. However, while there are many formal
approaches to parameter estimation and several formal methods for model
validation, the only available tool for model identification is currently visual
inspection of the time series plot and autocorrelation function. This is evi-
dently the weakest point of the Box—Jenkins methodology.

In an attempt to remedy this, Andrzej Lewandowski proposes here a new
approach to Box-Jenkins model identification. In contrast to the existing
tools, this approach is based on spectral methods and involves frequency
analysis of ARMA meodels. It differs from the standard spectral approach
presented in textbooks on time series analysis, although it is based on a princi-
ple well known in control engineering and circuit theory. This method provides
a means of analyzing time series in some depth using only a pencil, a piece of
paper, and a pocket calculator.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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SPECTRAL METHODS IN THE IDENTIFICATION
OF TIME SERIES

A. LLewandowski

1. INTRODUCTION

Over 10 years have now passed since the publication of a book by Box and
Jenkins (Box and Jenkins, 1970) describing the basic principles of time series
analysis. During this period, the methodology developed by these authors has
been applied to hundreds of practical problems with great success; new tools
have been developed and many theoretical investigations have been performed.
However, it should be pointed out that Box and Jenkins were not the first scien-
tists working in this field — time series analysis actually began much earlier in
this century (for a bibliography see Anderson, 1971). The most important
feature of the Box—Jenkins approach (and, in the author's opinion, the main
reason for its popularity) is the general methodology of model building. Box

and Jenkins divided the process of model building into three steps:
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1.  Model identification, during which preliminary analysis is performed and

an initial version (structure) of the model is determined.

2. Parameter estimation, during which exact values of model parameters are

computed.

3. Model validation, during which the quality of the resulting model is exam-

ined.

According to Box and Jenkins, modeling is a process which is repeated
until the model attains the desired form and accuracy. It is difficult to make
any formal evaluation of the importance of each of the above stages in this pro-
cess; however, it is generally accepted that the second stage is the most impor-
tant and interesting of the three. The reason for this is obvious: parameter
estimation provides excellent opportunities for new mathematical work, for
developing computer programs and for publishing papers. The other two
stages (especially model identification) are somewhat more diffuse in nature.
While there are a limited number of formal approaches that can be used for
model validation, model identification is almost entirely unformalized. The
only available tool for model identification is “visual inspection” of the time
series plot and autocorrelation function. This is evidently the weakest point of

the Box—Jenkins methodology.

In the author’s opinion, the role of the model identification process is fre-
quently underestimated. Model identification is not simply a procedure for
determining the structure of a model; it is a scientific process which leads to a
deeper understanding of the phenomena being investigated. In many practical
cases this increased knowledge of the system is more important than the
resulting model. For these reasons, the author proposes a new approach for
Box—-Jenkins model identification. In contrast to the existing methods, this

approach is based on spectral methods and involves frequency analysis of
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ARMA models. However, it differs from the standard spectral approach
presented in textbooks on time series analysis. The principle behind this
methoed is well-known in control engineering and circuit theory, and has been
applied successfully in these fields. The author has simply adopted this metho-
dology for use in time series identification; it is nothing more than a way of
understanding and interpreting the spectrum and hence the model itself. In
the author's (admittedly subjective) opinion, spectral methods are in general
more useful than time-domain methods. Spectral responses are easier to
interpret, analyze and understand than time-domain responses. Moreover,
spectral responses can immediately tell the experienced analyst almost every-
thing there is to know about system dynamics — this is not the case with time-

domain analysis.

It is rather difficult to explain why spectral methods play such a marginal

role in time series analysis. According to Makridakis (1978):

"...engineers, on the other hand, insist that the spectrum is a more
natural quantity to compute because it expresses a time series in
terms of its frequency response, which must be known for design pur-
poses. They say that statisticians play down the value of spectral
analysis mainly because they cannot think in frequency terms. What-
ever the truth, the fact is that spectral analysis has found little use in
the social sciences in general, mainly because it is troublesome to

calculate and interpret...”

There is really only one work which extensively uses the spectral approach
for model building and analysis —this is the book by Nerlowe, Grander and Car-

valho (Nerlowe et al., 1979).
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2. LINEARIZED TRANSFER FUNCTIONS OF ARMA MODELS

We will use here some basic concepts from z transform theory (see Koop-

mans, 1974 or Nerlowe et al., 1979). Let
fz;3, t € (—e,+e) (1)

be a real sequence. The z transform of this sequence is the complex function

X(z) = f z;2* ()

{=—oo
and this is denoted by
X(z) ==z . (3)

Under certain conditions this transformation is invertible, and X(z) uniquely

characterizes the z; (see, e.g., Cadzow, 1973).

Let us consider two time series {z;} and {u;} connected by the linear rela-

tionship (operator) G:
tz,d = Gl ). (4)

By transfer function we mean the complex function

()

It is easy to calculate the transfer function for ARMA-type models. Taking (R)

and multiplying both sides by z we obtain

4no . +o0 i
zX(z)= Y z;2'*1= Y z,_,2% . (6)
g ==—00 {=—00
Thus, if
X(2) =z (7)
then
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It follows from the above that the complex variable z can be formally
interpreted as the shift operator B used by Box and Jenkins; in order to obtain
the transfer function for this model it is sufficient to replace operator B by
complex variable z. We should emphasise that this operation is formal —the
rational functions involving B and 2z have the same form, but must be inter-

preted differently.

We shall use the term spectral or frequency transfer function to describe

the following formula:

_y_ PleT79)
G0 = ooy

(9)
where P and @ are respectively the numerator and denominator of the opera-
tor transfer function (from now on we will consider only rational operator
transfer functions). The spectrum of the output signal {z;} (which is actually

the time series being analyzed) is proportional to the modulus of the transfer

function

@)= GG . (10)

Formula (10) shows where most of the basic difficulties in interpreting spectra
arise — although the structure of the transfer function itself is rather simple,
the spectrum is a highly nonlinear function of frequency. It is important to
note that the spectrum is the modulus of the transfer function evaluated on

the unit circle,

This leads to an important question — does the modulus of the complex
Junction evaluated on the unit circle characterize this function unigquely? The
answer is generally no. If we have a function G(z) such that its modulus

evaluated on the unit circle is

F (@) = |Gle7¥)|



then the function

will have the same modulus. But if the function G(z) has the minimum phase
property (i.e., has no poles or zeros inside the unit disc), the modulus
evaluated on the unit circle will characterize the function uniquely. This is one
of the most important problems in the theory of signal processing, electrical
circuit theory and automatic control. Some discussion of this issue can be

found in Robinson (1981).

We could also ask ourselves another gquestion — is it possible to evaluate

the modulus of G(z) on another line to produce a simpler f () ?

The real and imaginary axes appear especially attractive for this purpose.
In this case a similar result can be obtained —if G{z) has the minimum phase
property, (i.e., it has no zeros or poles in the right half-plane), it is sufficient to
know the modulus of G(z) evaluated for z = jw to determine this function
uniquely. Moreover, |G(jw)| has a much simpler structure than |G{e™7%)| (it
contains no trigonometric functions)., However, this is of little immediate use
to us since it is unreasonable to expect that the transfer function of the time
series under study will have no poles or zeros in the right half-plane. But there
is a very simple way to avoid this difficulty — to transform the region outside
the unit circle into the left half-plane and to evaluate the modulus of the

resulting function on the imaginary axis. Let us consider the transformation

_ 1~z
A= 1+2 (10

This transformation has the following properties:



1. It is invertible, i.e.,

1A
ET T (12)

2. It transforms the region outside the unit circle in the complex plane 2z
into the left half of the complex plane A, the unit circle is transformed into

the imaginary axis (see Silverman, 1975).

3. If we apply this transformation to the rational transfer function then the
resulting function will also be rational; if the ARMA model is stable and
invertible, all of the poles and zeros of the resulting rational function will
be in the left half of the A complex plane. This means that the resulting

transfer function has the minimum phase property (Robinson, 1981).

The minimum phase property is very important here — as pointed out
above, it allows us to work with the modulus of the function rather than with

the function itself. The rational function

P 14]
_ Ay
@ 1+A

will be called the linearized transfer function ; analogously,

gy = BUL) (14)

g(jeo
will be called the linearized frequency transfer function, and
F(w)=lge) (15)

the linearized spectral density function (LSDF). We now have to investigate

the relationship between the standard spectrum and the linearized spectrum.

Note that, instead of calculating the spectrum by making the substitution

z =779, (16)



we can use

= 17jw
1+ ' (17)

which is the Pade approximation (or linearization) of exponential function (16).

This is the source of the name "linearized spectrum”. It is not difficult to find

the exponential form of (17):

1:2:0 = g~ arctanw (18)
Jw

Comparing this result with (168), we conclude immediately that the linear-
ized spectrum can be interpreted as a standard spectrum with a distorted fre-
guency scale. It follows from this that we do not need special tools to calculate
the linearized spectrum — it is necessary only to have a special chart with a
suitably chosen frequency axis. Note also that, in contrast to the standard fre-
quency transfer function, (14) is a rational function of frequency; this is the
basic reason why the approach simplifies spectral analysis. (It should be
pointed out that this transformation has also been used in control engineering
for the design and analysis of sampled data control systems, see, e.g., Bishop,

1975).

3. ASYMPTOTIC FREQUENCY RESPONSES OF ARMA MODELS

We will now consider how to plot the linearized spectrum of a given
transfer function. It will be shown that this is relatively easy, even for high-
order models with a complex structure. This is not the case for autocorrelation
function (ACFs) — in order to calculate the theoretical ACF it is generally
necessary to use a computer. Only in very simple cases is it possible to calcu-
late this function analytically. In the author’'s opinion, the basic advantage of

the method lies in this property of the linearized spectrum, which makes it
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possible to understand and interpret spectra for even the most complex
models. We shall demonstrate the use of the linearized spectrum by analyzing

the basic components of an ARMA model.

3.1. Linearized Spectrum of an MA Model

In this section we will consider the moving average MA(1) model
Glz) =1 -0z . (19)

After applying the transformation (11) we obtain

] o )
g = 1"ﬂ[i:;) = T (20)

and, analogously,

_ A1+g
'K{ 1+jww (1)

where
K=1-%, (2R)
f_ 1+0
§' = T8 (R3)

Let us consider the logarithm of the modulus of (21). The frequency

transfer function (21) can be expressed as the ratio of two polynomials:

piw)=1+j%w, (24)

gijw)y=1+jow . (25)

The logarithm of the modulus of (24) has the form
loglp (jw)| = —lOg(l + W27 (28)

For very low frequencies w , i.e., when



-10 -

v K1, (27)
we have
log|p(jw)| =0 . (8)

In the opposite situation, i.e., for very high frequencies, we have
log |p(jw)| = logd + logw . (29)

This function is equal to zero for

&=

1
- 0
,d’ (3 )
It follows from (28)—(30) that, if we choose suitable axes, the function
under consideration can be approximated using two lines (which are in fact the

asymptotes) —a line of zero slope below &, and a line of slope +1 for & > & (see

Figure 1).

A
log IG (jwH

Gliw = 1+jwé

— ADDIOXIMIT
— Exact

iog w

@) =

FIGURE 1 Bode plot for a transfer function with a single zero.

Figure 1 also shows that this is a reasonably good approximation of (26).
This construction (the asymptotes of the frequency response function) is
known as a BHode plot; this method of analyzing the frequency response func-
tion is one of the basic tools in electronics and control engineering (see D'Azzo

and Houpis, 1975, Lago and Benningfield, 1979; Sage, 1981). It is now very easy
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to construct the Bode plot for an MA(1) model. 1t is only necessary to bear in
mind that
log|g (jw)| = logK +log|p(jw)| — loglg (jw)| (31)

and perform a very simple graphical operation (see Figure 2). The shape of the

Siope — 1

Tbolcliw)l
Gljw=1+jwf
Stope + 1
g >
,.""9 log w
1+6
'
I
I
|
¢ '
tog 4G (jwM Gliwy=1+jw |
)
]
= 1
] | i
| log w
|
)
) }
| ope
| !
|
| |
I
|
)
I |
Ttwla(iw)l : I
| ’ |
I
: A‘ . 1—8
b= 1@y
t —
] log w
|
|
|

FIGURE 2 Graphical procedure for constructing the Bode plot for an MA(1) model.

Bode plot depends on the value of ¥ — one important conclusion is that the
Bode plot of an MA(1) model always has a pole at w = 1. Possible Bode plots for
an MA(1) model are presented in Figure 3. Both asymptotic plots and exact
values of (21) are displayed, showing that the Bode plot représents a reason-

ably good approximation.
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? 1Gijw)l 0 =0818
I log Always pole
l ‘ for w=1
]
|
i 1—6 log (1+4)
! w=ive
— 5
Il b »
T i —>
w=1 log w
— ADOrOXimate
Exact
log (1—8)
I
log 1G (W)l
; Alwsys pole 6 = —0.818
} forws=1
!
L logl1+8) 1—8
wEive
0 1
1 ! >
T T -
w=1 log w

og (1 —0)

FIGURE 3 Possible Bode plots for a general moving average MA(1) model.

3.2. Linearized Spectrum of an AR(1) Model

The transfer function of an autoregressive AR(1) model has the following

form:

1

G(z) = 1-v2

After transformation we obtain

1 14+
g(\) = =

1-A
1= 2 _ +1+‘6

and, analogously,

1450

9U9) = Frisio)

(32)

(33)

(34)
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We will not repeat all the arguments from the previous section — the same
methodology can be used directly to construct a Bode plot for an AR{1) model.
The only difference is that the frequency response of an AR({1) model always

has a zero for = 1. Possible Bode plots for an AR(1) model are presented in

Figure 4.
§=—-0818
A
log IG {j w)! —log {1 + 8}
Always zero
; forw=1
1—-6
W= —
o i+6
! !
T T >
w=1 1 log w
=
—log (1—6)
log IG {jw)| & = 0818
F's
—log (1+8)

Always zero

; forw=1

—iog (1—4)

— APProXmaT
— Exact

FIGURE 4 Possible Bode plots for an autoregressive AR{1) model.

8.3. Linearized Spectrum of an ARMA(1,1) Model

Using the methodology described in the previous sections, it is now very
easy to construct the Bode plot for a simple autoregressive moving average

ARMA(1,1) model. All we have to do is write its transfer function

_ 112z
6(z) = {22 (35)

and transformed transfer function
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(1-9)[1+—A

1-2

1478 ]

g\ = (36)

(1—¢)

1+li¢;?\
l—p

This function has one pole and one zero. The corresponding Bode plot can be

derived immediately — the basic steps of this procedure are presented in Fig-

ure 5.
A 0

; 1=6 1+ jwé
tog (G {iw Gliw) = 0 1YY
1=p 1+ jwy

t+46

Zero generated (—)

‘ by MA part log 1+y

erua-n-m-df
by MA part

FIGURE 5 Possible Bode plots for an autoregressive moving average ARMA(1,1) model.
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3.4. Linearized Spectrum of an AR(2) Model with Complex Roots

This situation is more complicated than those dealt with previously. We
introduce the transfer function in a form commonly used in textbooks on time

series analysis:

1
Glz) = ———— . 37
(=) 1-8,2 8,22 (87)

After transformation this becomes

1 (1+A)°

A) = = K0 38
g0 N N T EE N R R (38)
Hi+a 2lT+x
where
K= —3t— | (39)
-8,
, 2(1+35)
R o
. 148,38
=12 (41)
1—5, -3,

For several reasons it is more convenient to use the canonical form of the

denominator of (38):

A B, 2
q(>\)=1+—1=1+2€)\+)\—, (42)

1 \/5 ' W, w]?
! 2
V5, i

The value
w, = —— (43)
V5,
is known as the resonance frequency, while the parameter
9
€= (44)

N

is the so-called damping factor. These two factors determine the resonance
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properties of the transfer function . If £ > 1 the quadratic polynomial has real

roots and can be represented as the product of two first-order factors; for

0 < £ < 1 the roots are complex and more careful analysis is necessary. Figure

6 presents the frequency responses for different values of ¢; this figure shows

that, for small values of ¢ (low damping) and for frequencies close to the reso-

nance frequency, asymptotic approximation will not be very accurate.

Tlog 1G{jwl

1
Gliw =

2% jw)?
SN

|
f
1
\
l E=00
# E=01
' =03
e — >
og w
E=q8 — ApDroximate
—— Exact
Slope — 2

FIGURE 6 Bode plot for a second-order autoregressive model for which the transfer
function has a pair of conjugate complex roots.

However, practical experience has shown that asymptotic analysis can be very

useful even in this case; we shall therefore investigate the asymptotic behavior

of (38). Making the substitution

A=jw

and considering the canonical form {42), we obtain

(45)
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The logarithm of the modulus of this function is as follows:

2
W
Wy

The first two terms of this formula are quite familiar and hence it is very

2 2
+ 2 (46)
c')I'

[
log g (jw)| = logk + log(1+w?) — ;—bghl—

easy to perform the asymptotic analysis. We can once again make direct use of
the results obtained previously; the only difference from the MA(1) model is the
slope of the asymptote of the second term, which is +® in this case. Analysis of

the third term is also straightforward —for low frequencies w we have

212
logﬂl—lﬂ + ﬁf% %0, (47)
T W

while for w sufficiently large the term (w/ w.)* is dominant and

212 2 .
log{|1 v + & > glog| 2 (48)
@r C-)rz Dy

Comparing this result with (46) we observe that the third term of (48) has

two asymptotes — for low frequencies the slope is equal to zero, while for high
frequencies it is —2. The asymptotes cross at the vertex corresponding to fre-

quency » = w, (see Figure 6).

The following component of the frequency response (46)

212 2,.2
1 W 4£%0
z—‘°gﬂ1‘|z] ¥ {ﬂ

generates a peak for small ¢. The amplitude and frequency at which this peak

occurs are given by (see Figure 7):

1
=1 — 49
M =log TP (49)
Wy = w0, V122 (50)
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]
x
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o

7

! ] | I ! —_
T T t T T >

-+
62 03 04 05 06 07 08 £

4

°

FIGURE 7 Peak height as a function of ¢ in the Bode plot of the autoregressive model
considered in Figure 8.

It follows from (50) that this peak exists only for sufficiently small values

of the damping factor, namely for

£ <0.707 . (51)
It is now not difficult to construct the Bode plot for (45). The possible patterns
are presented in Figure B.

The only difference between the asymptotic frequency response given in
Figure B and the frequency response of the AR(1) model is that the slope of the
asymptote is equal to —2. Like the AR(1) model, an AR(2) model with complex

roots always has a double zero at w = 1; there is also a double pole at @ = w,. .

3.5. linearized Spectrum of a Simple Difference Operator

One of the basic operations in Box~—Jenkins methodology is the "detrend-
ing" of time series using simple differencing. Differencing is in fact a filtering

process in which the transfer function of the filter has the following form:

G(z) = . (52)

After transformation we obtain

- 1 _ 14+

BETSY
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T log IG {jwhi — ADDTOXiMmEtS
— Exact § = 0.3

v

Doubie poie
rated

gena Siope — 2
by AR(1) term

&
log 1G {fwH

Stops — 2

(=5,

FIGURE B Possible Bode plots for a general autoregressive second-order model for which
the transfer function has a pair of conjugate complex roots.

The resulting transfer function has a pole at w = 0. It is not difficult to
plot the Bode diagram for this case: the asymptotic Bode plot for 1+A has been
described in previous sections, and we will not describe it again here. Consider

the transfer function
_ 1
g =+ (54)
Substituting A = jw and calculating the modulus, we obtain

log|g (jw)| = —logw . (65)
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It is clear from (55) that in this case the Bode plot is a line with slope —1
for every value of the frequency w. Combining the plots for the numerator and
denominator of (53), we obtain the pattern presented in Figure 9. The plot is
similar to that obtained for the simple AR(1) model, except that the left vertex

of the plot corresponding to the value of ¥ is shifted to minus infinity.

s
log IG {jwh

Slope — 1

v

|
1
Q:w=1 log W

— ADDroXimets
— Exact

FIGURE 9 Bode plot for a simple difference operator.

3.6. Linearized Spectrum of a Seasonal Difference Operator

Another important operation in the Box—Jenkins approach is seasonal
differencing. The linear filter corresponding to this operation has the following

transfer function:

_ 1
G(z) = —— (56)

where n is the periodicity of the time series. After transformation we obtain
1

1-A
14+A

g(\) =
1—8

m (57)

and, consequently,
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1

1zjw
l+jw

gliw) =

n

1—3

Rearranging the above equation we obtain

(1+je)"™
(1+je)™ - 8(1—jw)"

gljw) =

We shall now analyze the denominator of the above formula. Since

1+ jw=VitwRel? | g=arctanw

1 —jw=VitwRe™ ¥ | p=arctanw
we deduce that

7L

(1+j)* = ¥(1—jw)" = (1+w2)?{(1—1‘3)cos ng —j(1+¥)sinng

The modulus of this function has the form
[(1+j @)™ — 8(1=jw)* |® = (1+wR)" [1+9% -1 cos Rng]

and consequently

1
6)) 2 =
lg (7o)l 1+92-21 cos 2ny¢
For low frequencies we have

1

lg(Gw)|? = 197

For high frequencies the situation is more complicated:

1
(1_'_19)2 forn = 1,3,5,...

|g(_7w)| = 1
(1_—1”2 forn = 2,4,8,...

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(686)

It is clear that, for 4 >0, |g(jw)| has a maximum for those frequencies for

whichcos2ng =1 ,i.e.,
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km n
ﬂ for0<}c<2. (67)

For these frequencies the height of the peak is

9 &%= (1—_11”2— (68)

Analogously, for ¥ > 0, |g(jw)| takes its minimum value for those frequencies

for which cos 2ng = -1 | ie.,
E)=-§%%mfor0s}c<ngl : (69)

For ¥ < 0 the positions of the maximum and minimum are reversed, i.e.,
|lg (jw)| has a maximum for & given by (69) and a minimum for @ given by
(67). It is also important to know the position of the zeros and poles of the
transfer function under investigation. There is a zero of multiplicity n at
w = 1; the position of the poles can also be determined very easily. Consider
the poles of (56). It is obvious that for ¥ > O this transfer function has a real

pole

z,=9% " (70)
and that for even n

Z5= ~2, (71)
is also a pole,

Making our transformation, we conclude that the corresponding poles in

the A complex plane are as follows:

1-9 "
>\1 = -1 (72)

1+ﬂ_"

and for evenn
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1

1+8 ™
= T (78)

1-8 ™

For ¥ < 0 and odd n we still have the pole determined by (70); for even n there
are no real poles. The general expression for the poles of (58) is very simple

(for ¥ > 0):

_ig
2, =8 ™lcos KT 4 jsin KT k=01,.n-1. (74)
k n n

After transformation, each pair of conjugate roots in the z complex plane

1s transformed into a pair of conjugate roots in the A complex plane; thus, for
each such pair there will be a corresponding quadratic factor in the denomina-

tor of g (A):

AN AN = RBADL+AL) + AeAp (75)

Comparing this formula with the results of our analysis for a simple AR(2)
model with complex roots, we deduce immediately that the resonance fre-

quency is
&)1? = )\k)\k ; (76)
Simmple algebraic transformations lead to

(1-7)% + (1+7)%0?
(1+7)% + (1-7)%0f
1

where =0 " and wp is the frequency corresponding to a peak on the fre-

f"rz = (77)

quency response plot. It is easy to see that for ¥ = 1 (which is usually the case)

we have

(78)
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A similar result can be obtained for 4 < 0. Now we have enough information to
construct the Bode plot for the transfer function under investigation. The
basic steps of the procedure are presented in Figure 10. It is important to
note that the pure seasonal differencing operator (with ¥ = 1) will generate
infinite peaks in its frequency response, and thus cannot be interpreted using

this technique.

3.7. Linearized Spectrum of a General ARMA Model

Using the results of the previous sections we can construct a Bode plot for
a general ARMA model. This model can be given in terms of transfer functions
as a product of the simple factors considered in the previous sections. On cal-
culating the transformed transfer function, the frequency response and its log-
arithm, we conclude that the Bode plot of a general ARMA model can be
obtained as the sum of the Bode plots of its component factors. This is true for
both asymptotic and exact plots. The asymptotic plots can be constructed
without any problem; it is sufficient to know where the zeros and poles of the
transfer function occur. This is usually the first step of the procedure; in the
next, the exact function is plotted. This is also quite straightforward, requiring

only a pocket calculator (see Figure 11).

4. MODEL IDENTIFICATION USING BODE PLOTS

In this section we will investigate the inverse procedure — given the fre-

quency response function, to find the generating transfer function G(z).

This is precisely the problem of model identification; however, we shall use
the spectrum instead of the autocorrelation function as in the Box—Jenkins
approach. We will not consider the possible ways of calculating the spectrum
here; there are many methods that could be used (see Appendix A). We shall

simply assume that the spectrum can be calculated for the time series being
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FIGURE 10 (continued) Bode plots for a seasonal diflerence operator (periodicity 7): (d)
¥=-0.95; (e) ¥=-0.55,

investigated. According to Figure 2, if we replace frequency « by 2 arc tan
we will obtain the spectrum of the modified transfer function; a standard chart
has been designed especially to aid in this task (see Figure 12). The basic steps

of the identification procedure are as follows :
1. Calculate the spectral density function and plot it on the special chart.

2. Try to make a piecewise-linear approximation of this function, bearing in
mind the results obtained in Section 3 (i.e., the slopes of the lines can be

+1,+2...). The peaks on the plot should be treated with special care, as
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should possible seasonal patterns.

3. Using the asymptotic decomposition obtained in the previous step, deter-
mine the positions of the zeros and poles of the modified transfer function
g ().

4. Transform every zero and pole from the A complex plane to the z plane;

this gives us the transfer function G(z).

We should point cut that, in principle, this procedure gives us parameter values
for a model of any complexity. Experiments have also shown that this method
is surprisingly accurate — the typical error in parameter determination is
about 10-20%. It is almost impossible to obtain results of the same accuracy

from analysis of the autocorrelation function.

Of course, to use this procedure requires some feeling for what the fre-
quency response means, and this can only be gained through experience. The
appropriate approximation must be found by trial and error; in many cases the
solution is not unique and in others the method does not work. But the funda-
mental idea behind this approach is that time series can be analyzed in some

depth using only a pencil, a piece of paper and a pocket calculator.

To clarify this approach further, and to illustrate its possibilities and limi-
tations, we will now present a number of examples together with a detailed

description of the corresponding analyses.

4.1. Simulated Time Series

Three experiments were performed in each case. The length of the time
series generated in each run was 200; the standard deviation of the noise was
1%. Three methods of spectrum estimation were used: the maximum entropy
method (ARSPEC) (Beamish and Priestley, 1981), the G-transform approach

(GSPEC) (Gray, Houston and Morgan, 1978), and the standard Bartlett window
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method (BT) (Jenkins and Watts, 1968).

Ezample ! (Figure 13). In this case we tried to identify an MA(1) model
with ¥ = 0.95. The ARSPEC estimate gives a very clear result — it is obvious
that the piecewise-linear approximation is very accurate. The estimated value

of the parameter is 0.881, which leads to an error of approximately 8% .

The situation is not so good for the GSPLEC estimate — the spectrum
behaves quite randomly at low frequencies. For this reason it is virtually
impossible to determine the exact value of the coefficient, although it seems
almost certain that there is a pole for w = 1, and therefore this model must

contain an MA(1) component.

Ezample 2. In this example we generated time series using an MA(1) model
with ¥ = —0.95. On looking at the spectral density function it is possible to con-
clude that the investigated time series has MA(1) structure with parameter 8
between —0.881 and -0.923 (see Figure 14), which is rather a good result. The
behavior of the ARSPEC estimate was not very good at low frequencies,
although it was still possible to plot the horizontal asymptote. The accuracy of
the coefficient was also acceptable — we obtained a value of approximately

—0.85.

However, more accurate analysis of the Bode plot shows that the transfer
function has a pole not for w = 1 but for w = 1.25, and thus the time series was
generated by an ARMA(1,1) model with parameters —0.893 and -0.06. The
small value of the AR parameter suggests that it can be neglected. It is not yet
known how to formulate and verify this hypothesis statistically, but an analysis
of the confidence limits of the spectrum may be helpful (see Figure 15). This
analysis was performed for the BT spectrum estimate illustrated in Figure
14(b). This figure suggests that the MA(1) model should be accepted. It is

quite clear why the AR part was detected —the sample ACF corresponds to an
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ARMA rather than to an MA model (Figure 16).

T Possibie parsmeter values
of MA(1) term

O-+—0

Possibie parameter vaiues
of AR(1) werm

FIGURE 15 Possible parameter values for an MA(1) model — analysis of confidence inter-
vals.

» Sempie ACF for
Glz) =1+ 095z
4 ¥ Theorstical ACF for
1+0.737
Gu) = 5082

FIGURE 18 Sample ACF for simulated MA(1) time series (length of time series = 200).

Erample 3. In this example the situation is more complicated. Our first
conclusion is that there is a peak on the frequency response plot. ls it reason-
able to expect complex roots? The answer is yes —we can assume that there is
a complex root for w, = 0.05. However, to compensate for the slope which is
generated by such a root we must add an additional zero for w = 0.5. In order
to ensure that the frequency response has the proper shape for large values of
w we must also add a zero for w = 10. Using formula {49), we can estimate the
value of the damping factor —this is approximately 0.9. We now try to plot the

exact frequency response, as shown in Figure 17(a). The identified model has
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FIGURE 17 (continued) Bode plots for simulated MA(2) time series: (d) GSPEC estimate.

the following form:

(1-0.4672)(14+0.8532)

G(z) =
(2) (1-0.2412 +0.06622)

(79)

A similar result can be obtained from the GSPEC estimate (Figure 17d), the

only difference lying in the value of one of the coefficients (0.95 instead of

0.85).

We should point out that another hypothesis can be put forward — that
there is one double real root for w = 0.794 rather than a pair of complex roots.
Figure 17(b) shows that this hypothesis can also be accepted; the resulting

model has the following transfer function:

_ (1-0.4672)(1+0.858z2)
Glz) = (1-0.1152 )?

(80)

When we apply the same procedure to BT and GSPEC estimates we obtain
an MA(R) model (Figure 17c). Because of the rather poor behavior of the sam-
ple spectral density function (SDF) for frequencies around zero, it is difficult to
determine which model gives us the best fit. As in the previous example, the

sample ACF corresponds to the ARMA rather than to the second-order MA
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model with parameters ¥, = 0.3 and ¥, = —0.6.

Ezample 4. The Bode plot for this case is presented in Figure 18 (only the
ARSPEC estimate is shown). It may be observed that this is similar to the Bode
plot analyzed in the previous example, except that the peak is more pro-
nounced in this case. Reasoning similar to that used in the previous example
shows that the best fit will be obtained if we assume a double root for w = 1.

This leads to the transfer function
G{z) = (1-0.62)(1+0.812) , (81)

which corresponds very well to the exact model with ¥, = 0.6 and ¥, = —0.95.
The structure of the model is the same as in the previous example, but the

accuracy of the identification is better in this case.
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FIGURE 18 Bode plot for simulated MA(2) time series, ARSPEC estimate (Example 4).

The reason for this increased accuracy is obvious — the method works
better when the distance between roots (or poles) is large. For this reason we
should not expect the method to give good results when the coefficients have
almost equal values, say 0.6 and 0.8. However, even in this situation the results

are not bad. This is illustrated in the next example.
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Ezample 5. In this example we analyze the time series generated by the

MA(2) model
G(z) =(1-062)(1~-0.82) . (82)

It follows immediately that we will obtain a reasonable fit for the following

transfer function:
G(z) = (1 - 0.7152)% . (83)

It is impossible to detect that in this case the transfer function has two
different roots — the theoretical and estimated Bode plots practically coincide
(Figure 19). The ACF is more informative in this case. This seems to be gen-
erally true for pure MA processes; for more complex cases in which the pattern
of the ACF is not so obvious the spectral method should work better. This

situation is considered in the next example.

4
T Exact (1 —0.82)(1 —0.8z)
Estimated (1 — 0.71521*
14
T EZ 3 o [ 2 A
P 4
4 LT e’
[} @ = o & & - © 4
T g E82gg 1088 2B v
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FIGURE 19 Bode plot for simulated MA(2) time series, ARSPEC estimate (Example 5).

Ezample 6. This is Example 1 from Gray, Kelley and Mclntire (1978). The

shape of the Bode plot is similar to that considered in previous examples, but
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the whole plot is shifted to the left. Reasoning as in Example 3, we obtain the
results presented in Figure 20. We observe the strong influence of the factor

with complex roots. The identified model has the following transfer function:

(1-0.7152)(1-0.1152)

G(z) = B4
=) = T 127 +0.60227 (84)
This is not a bad result when compared with the exact model

G(Z) - 1-0.82 ‘ (85)

1—1.362 +0.6Bz%

In this case the ACF pattern is very complicated and it is not easy to identify

the model on the basis of this information alone.

4 V087
Exsct 73367 4 08857 . Estirmared SDF
11— 1.362 + 0.882 Bode plot
L (1=0.71621 —0.1152) b Aol
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FIGURE 20 Bode plot for simulated ARMA(2,1) time series, ARSPEC estimate {Example
6).

FEzample 7. In this example it is again not very easy to identify the model
by analyzing the ACF (Figure 21). The ACF oscillates; it is not possible to detect
the presence of an MA term. However, the situation is clearer in the frequency

domain —after simple analysis we obtain

G(z) = M ) (88)

1+0.632
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This is a good approximation of the real model

(1-082)(1-032) (87)

G(z) = 1+0.62

The Bode plots for this example are presented in Figure 21(b).

(a)

1.0+ Sampie ACF tor
(1 —-0.82)(1-03z)
Gl = 1706z

—1od
4
_k (b) (1 —0.821 — 0.32)
EBxect G = —3og;
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FIGURE 21 (a) Sample ACF for time series from Example 7; (b) Bode plot for simulated
ARMA(2,1) time series, ARSPEC estimate {(Example 7).
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4 2. Box—Jenkins Time Series

Ezample 8. Let us analyze series A from Box and Jenkins (1970). Figure
22(a-f) presents the results of spectral analysis, i.e., frequency responses and
asymptotic approximations for the original and differenced time series. Three
methods were used for estimating the spectrum —ARSPEC, GSPEC and BT. The

results are summarized in Table 1.

TABLE 1. Identification of series A from Box and Jenkins (1970) using different spec-
trum estimation methods.

Spectrum estimation method Model
1-0.3122
ARSPEC 1-0.7852
i 1—-0.73z
d d
ARSPEC (differenced) R ET oy
1—0.43z2
GSPEC 1-0.8652
GSPEC (differenced) 1—10_.’;7z
1-0.7982
BT 1-0.332
BT (differenced) 1—2:_6:42
i 1-0.582
Box—Jenkins e
1—-0.722
1-2

Ezample 9. In this example we analyze series B from Box and Jenkins
(1970). The same runs were performed as in Example 8; the results are given in

Table 2 and Figure 23.

In this case the GSPEC estimate evidently gives the wrong result; the rea-
son probably lies in the trend in the data. The results are compared with the
model estimated using the MINITAB package because there seems to be a mis-

take in the Box—Jenkins book.
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FIGURE 22 Bode plots for time series A from Box and Jenkins: {a) ARSPEC estimate; (b)

BT estimate; {¢) GSPEC estimate.
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FIGURE 22 (continued) Bode plots for time series A from Box and Jenkins: (d) ARSPEC
differenced data.



TABLE 2. Identification of series B from Box and

trum estimation methods.
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Jenkins (1970) using different spec-

Spectrum estimation method Model
ARSPEC 1-0.5862
1-z
ARSPEC (differenced) 1:S-z6z
GSPEC* °
GSPEC (differenced) l—ClJ._ﬁzQBz
BT+ o
BT (differenced) (1-(;1,585521)??_2)
Estimated model** 1"10_212

* Unacceptable result. **Using MINITAB package.

Ezample 10. Here we look at series C from Box and Jenkins (1970). The

results obtained using our standard procedure are presented in Figure 24 and

Table 3.

TABLE 8. Identification of series C from Box and Jenkins (1970) using different spec-

trum estimation methods.

ARSPEC (differenced)
GSPEC

GSPEC (differenced)
BT

BT (differenced)

Box-Jenkins

Spectrum estimation method Model
ARSPEC 1+O.22€2Sz
(1-2)

1
(1-0.772)(1—-2)
(1-0.852)*

1
(1-0.798z)(1-2)
(1-0.2482 )
(1-0.7762 )

1
(1-0.726z)(1—2)

1
(1-0.82z)(1-2)
(1-0.4172)(1+0.2872)

(1~z)?
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FIGURE 23 (continued) Bode plots for time series B from Box and Jenkins: (d) BT esti-
mate, differenced data; (e) GSPEC estimate, differenced data.

The results obtained for the AR model with single differenced data are very
good. The only major discrepancy arises for the MA model with double
differenced data. It is rather difficult to explain the source of this problem —it

is probably caused by a trend in the non-differenced time series.

Ezample 11. This is concerned with series D from Box and Jenkins (1970).

The results are presented in Figure 25(a—f) and Table 4.
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FIGURE 24 Bode plots for time series C from Box and Jenkins: (a) ARSPEC estimate; (b)

BT estimate; (¢) GSPEC estimate.
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TABLE 4. Identification of series D from Box and Jenkins (1970) using different spec-
trum estimation methods.

Spectrum estimation method Model
1
ARSPEC 1 0.8912
. 1
ARSPEC (differenced) (170,042 )(1=2)
1
GSPEC 1-0.8532
GSPEC (differenced) ?
1
BT 1-0.812
. 1-0.6672
diff d
BT (differenced) (1=0.5622)(1-2)
. 1
Box—Jenkins T 087z
1-0.06z
1—2z

Once again we obtained uninterpretable results for GSPEC. Note also that
it is quite difficult to interpret the spectrum for differenced data, the main rea-
son being the small value of the zero (or pole). However, the spectral
responses of the identified model and the second Box—Jenkins model are
almost the same. It is impossible to conclude from Figure 25(d) whether the
frequency response has a zero or pole for @ = 1; in the author's opinion it is a
zero, but because of possible inaccuracies in the estimation of the spectrum

not too much confidence should be placed in this conclusion.

FEzxample 12 This is based on series E from Box and Jenkins (1970), the
Wolfer sunspot number series. The frequency response of this famous time
series is presented in Figure R6(a) (ARSPEC estimate). Using the approxima-

tion shown in this diagram we obtain the following model:

(1—0.682)*(1+0.4312)
(1-0.932)(1-1.532 +0.872%)

G(z) = (88)

A similar result can be obtained using the BT estimate:
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