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PREFACE

Nowadays it is a quite common feature in ecology to use
models to analyze, correct and reduce ecological data, to study
detailed ecological processes, to integrate ecological, i.e.
multidisciplinary, research and to assist managers in their deci-
sion making process. Although the first three objectives per-
haps are, or at least promise to be, very fruitful, in this
paper we will focus on the last one, namely on water gquality
models meant to simulate the future behaviour of a river or lake
system. Our contribution will not be another simple or comprehen-
sive model. Attention will be paid to the issue maybe best
described as sensitivity analysis. That is to say the analysis
of the propagation of uncertainties in the field data (partly
because of natural variability), in the forcing functions and
in the model equations with their parameters. These uncertainties

result in an error in the model prediction.

- iii -



As a matter of fact, many modelers pay little attention to
error analysis, in spite of many recent publications on this
topic. A decent calibration procedure is often skipped for the
sake of convenience or for so-called practical reasons. As a
result any meaningful sensitivity analysis is impossible and the
confidence that can be placed in their model output is unknown.
One objective of this paper is to illustrate the practical pos-
sibility and practical necessity of sensitivity analysis in water
qguality modelling. Sooner or later it must strike the model
user that models which predict only one trajectory, always predict
the wrong one even without providing any information about the
degree of wrongness.

This report has been written and all the work involved has
been done during a part of a three month summer visit of the writer
to IIASA. He was a participant in the young scientists summer
program 1982. He owes special thanks to Kurt Fedra for putting
him on the track and letting him use one of his water quality
models. Perhaps the results presented here will influence the

further development and application of this model.
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ABSTRACT

Two methodologies to cope with uncertainties in water gquality
data and models are considered, namely Monte Carlo simulation and
first order error analysis.

To illustrate the methods, results of applications on a water
guality model, which in fact is an 8 state variable, 14 parameter
submodel of a comprehensive model for lake Neusiedl, are pre-
sented.

Monte Carlo simulation based methods are shown to be useful
for calculating valuable model predictions based on an adequate

calibration.
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1. INTRODUCTION

In this paper we deal with some aspects of water quality
models, meant to be used as a tool for management purposes.
Usually these models are time dependent, non linear and consist
of differential equations based on mass conservation and para-
meterized processes. In spite of uncertainties in initial condi-
tions, forcing functions, parameters and model equations, they are
often applied in order to provide a unique trajectory, being the
future behaviour of the water quality. Although this seems to
be a statement a manager can handle, the real confidence that
can be placed in the output is unknown. Considering the pos-
sible impact of management decisions, both financially and
ecologically, as well as the costs of model-development and
application, surprisingly little effort is usually made to
determine the value of the model output. The argument that the
problem is solved when models are only used to simulate different
scenarios 1in order to compare their relative results, is not

sound. One should not compare two probability density



functions by means of two realizations. So one of the main
properties of water quality models should be their ability to deal
with the propagation of uncertainties. In fact it would not be
surprising if in the iong term confidence in models were to be
affected by lack of a decent sensitivity analysis.

Presenting a model output as a probability densitv function
(e.g. Fedra et. al., 1981) or together with its wvariance (e.g.

Di Toro and van Straten, 1979) will reveal its uncertainty. Thus
a model result is not a number without value. On the other hand,
the stochastic model output might appear to be too uncertain to
be valuable for management purposes. In that case, the modeler
should be able to indicate the best way to reduce the uncertainty,
when possible, by revealing the major sources of error. 1In fact,
it always will be desirable to have the uncertainty as small as
possible. Thus, the model also becomes useful as a tool for
suggesting research needs.

As already stated, the uncertainties in the model predic-
tions originate from errors in initial conditions, inputs, para-
meters and model equations. It is often possible to quantify
the errors in the first two. The last two are determined in
the process of calibration and model testing. Hence, Chapter 1
will deal with calibration. Chapter 2 will continue with the
propagation of errors. Finally, some attention is paid to the
detection of the most troublesome parameter(s). Every chapter
will be illustrated by exercises on the lake Neusiedl model of
Kurt Fedra. This model is explained in the Appendix. A full

description will be given in Fedra (a).



2. CALIBRATION AND MODEL TESTING

2.1 Uncertain Parameters

Calibration basically requires knowledge about the system's
behaviour in a former period of time. Since field data always
reflect measurement errors and the stochastic variability of
the system itself, it would be unwise to try for a perfect
fit on these data as a result of calibration and model testing.
Nevertheless, in order to test the model, criteria are required
to decide whether the model output is in accordance with the field
data or not. Usable criteria are proposed in Fedra et al. (1981).
From the field data, constraints are deduced, defining the
so-called behaviour space. Model equations and parameters have
to be found in such a way that the model results lie within the
behaviour space. Given tﬁe uncertainty in the data only an uncertain
description of the system is possible. Most likely more than
one model is capable of satisfying the behaviour conditions. So,
accepting only one model structure - it seems justifiable to
choose the simplest one, which is able to provide the required
level of detail in the output, taking into account the inputs of
interest; see, e.g. Fedra (1982) - it is obviously insufficient

to consider one unique parameter vector.

2.2 Monte Carlo Method

In Fedra et al. (1981) a generally applicable method is
described to perform the calibration procedure. The method is partly
based on the work of Spear and Hornberger (1980). First ranges of
model parameters are specified for the particular model structure

based on empirical evidence and previously quoted values. Then these



ranges are randomly sampled by a Monte Carlo technique. The sample
parameter vectors giving rise to a model response, which is found
to satisfy the behaviour constraints (see 2.1), are considered

to be acceptable. Their relatons and interdependencies can be
analyzed and the vectors can be used for computations under
changed conditions. 1In fact, the acceptable parameter vectors
define a multidimensional probability density function. Of

course it is possible to extend the method by including, apart

from the parameters, the forcing functions and initial conditions.

2.3 Minimizing a Loss Function

A more common way to calibrate is to accept the parameter
vector, which minimizes some loss function, describing the.discre—
pancy between behaviour and model output. Some of these methods
allow the estimation of the.covariance structure of the parameters.
Di Toro and van Straten (1979) showed it to be of the utmost
importance to have this information in order to perform an ade-
quate sensitivity analysis. Their method, using a weighted
squared error loss function, provides a parameter vector and its
Covariance-matrix. In contrast with the Monte Carlo based method,
with this method it is necessary to assume a certain error struc-
ture (Gaussian, independences, etc.), as well as the applicability
of the asymptotic properties of maximum likelihood estimators and
the covariances for the number of observations available. Apart
from that, the presentation of only one parameter vector might lead
to misinterpretations. Finally, note that after the estimation
of the parameter vector the model test still has to be performed

as well as a check on the credibility of the vector.



2.4 Other Methods

The most common way to calibrate a model is by "tuning".
Apart from benefits during model development, this method does
not provide enough information to support a sensitivity analysis.
It has additional disadvantages in being irreproducable, based
on the subjective perception of the analyst and probably
expensive both in computer time and in man hours.

In recent years the Kalman Filter algorithm has been used
for calibration purposes. See e.g. Beck (1979) and Scavia (1980).
This method is beyond the scope of this study. Also the proper-
ties of probabilistic model structures, involving direct a priori

use of probability density functions are not considered.

2.5 Calibrating the Illustrative Model

To illustrate the theory, gome exercises were performed,
using the lake Neusiedl model of Kurt Fedra (Fedra (a) ). A sub-
model of his model, called the lake submodel, serves throughout
this study as an example of a water quality model on which the
theory is applied. So, e.g. in this section the calibration
of the lake submodel is described. (Further explanation about
the Neusiedl model and the lake submodel is given in the Appendix.
Note that the lake submodel is only a small part of the Neusiedl
model. Note further that empirical data up to and including 1979
have been incorporated in the Neusiedl model). The rest of this
model has only been used in this study to generate input sets -
climatic records (temperature, radiation, eddy diffusion coeffi-
cient, flow) and records of loads (soluble and particulate phos-
phorus loads) - and initial conditions for the submodel. For one

year different input sets may be generated, due to the



stochastic perturbations in the Neusiedl model, which represent
uncertainties and natural fluctuations. In this paper we will
concentrate on the years 1976 and 1980. The Neusiedl model has
been fed with data up to and including 1979, Therefore, the
perturbations are larger after 1979, and the variance
between the input sets of 1976 is less than between those of 1980,
In order to calibrate the submodel with its 14 parameters
(see Appendix and Table 1) with 1976 data, according to the method
using Monte Carlo simulations, first 10 input sets were generated
by the Neusiedl model. These sets reflect empirical observations,
within the way the Neusiedl model operates. One of these 10 sets
was assumed to be measured without errors. The choice was done in
such a way as to avoid the selection of an exceptional set. Also
the initial conditions, generated by the Neusiedl model were
assumed to be without error. 1In other words, 1976 is considered
to.be a year in which the error in both input data and initial
conditions is zero due to very extensive measurements. So, in
the calibration procedure only parameters were sampled, input set
and initial conditions have been fixed. The parameter ranges were
defined as shown in Table 1. They are based on "best knowledge"
rather than on an extensive literature search or experiments. The
behaviour constraints for the 1976 results were mainly based on
the initial conditions generated by the Neusiedl model for 1977.
These constraints apply to the state variables at the end of 1976.
Additional constraints were based on the very scarce field
measurements of 1976. They apply to the average values of some
of the state variables (see Table 2). The constraints, based
on the initial conditions of 1977, were more or less arbitrarily

chosen in such a way that a 2 percent chance was created for a



Table 1.

The parameters of the lake submodel,

sedimentation rate in reeds
mineralization rate in reeds
reed production rate

reed carrying capacity

reed mortality rate

fraction of reed nutrients
obtained from water

sedimentation rate in lake
mineralization rate in lake
algal mortality rate
algal production rate

Michaelis Menten constant
for P

immobilization rate of
organic P in sediment

mineralization rate of
detritus in sediments

eddy diffusion coefficient
for reed sediment/water
interface

Unit
(month).1

(month * OC)-
(month * 0c)~

mg P * m_2

(month)-1

(month)_1

(month * OC)_
(month)_1

(month * OC)-
mg P * m—3

-1
(month)

(month * OC)_

1

1

1

1

1

Range

0.3

|+

0.018

|+

0.012

|+

18000

|+

0.01

|+

o

.

[ 8]

wn
|+

o
.
o
w
w
|+

0.025

|+

0.5

|+

0.12

|+

10

|+

0.0033+

0.0025+

0.0022+

50%
50%
50%
10%
50%

50%
50%
50%
50%

50%

10%

50%

50%

50%



Table 2. The behaviour constraints for calibration of the
lake submodel on 1976. The 8 state variables of
the lake submodel are defined in the Appendix.

A) Based on the initial conditions of 1977, the
values of the state variables at theend of

1976 are constrained by:

14000 < 'Y1 < 16000 50000 < Y5 < 15000
70 < Y2 < 100 50 < Y6 < 120
50 < Y3 < 450 20 < Y7 < 75
10000 < Yu < 20000 5 « Y8 < 15

B) In addition, based on field measurements, the average

1976 values are constrained by:

60 < ?6 < 100

10 < Y7 < 30

10 < YS < 20
sampled parameter vector to be acceptable. Fairly loose constraints
appeared to be necessary. So, in fact we adjusted the behaviour
constraints. Otherwise the chance that a parameter vector would
be acceptable was too small to create an interesting example. In
other words we a priori accepted the model. Normally however,
one should start with defining the behaviour space. After that
the model testing can take place. One hundred acceptable para-
meter vectors were generated. Their correlation matrix is shown
in Table 3. Some typical marginal distributions are presented

in Figure 1.
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0.0016 0.005 Immobilization Rate (month)—"

Figure 1A. !Marginal distribution of parameter 12, immobilization
rate of organic P in sediment.
Mean = 0.0032 (monthly)~]1

Relative
Frequency

XX
0.9,
:’:’o?o. .

0.06 0.18 Algae Production Rate (month+°C)~"

Figure 1B. Marginal distribution of parameter 10, algae
production rate. -1
Mean = 0.13 (month*°C)



Table 3. Correlation matrix of the acceptable parameters.
Only significant correlations (o < 0.05) are shown.

2 |-0.36

6 -0.24

7 |-0.22 ~0.25

8 -0.23 0.22

10 0.26 0.44 0.96

12 0.25

13 -0.26 | -0.20

14 -0.25 0.36

A program SIMUL was written to perform several kinds of
simulations with the lake submodel. SIMUL is able to read input
sets, initial conditions and parameter vectors, and to run the
lake submodel. SIMUL was used for the first time to check whether
or not the acceptable parameter vectors were giving rise to highly
inacceptable values of the model state variables, running the year
1976 one hundred times, the initial conditions of each run being
the final results of the run before. The state variables were

stabilizing on an acceptable level.
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3 ERROR PROPAGATION
3.1 Biased Model Output

One important feature to note is the bias in the values pre-
dicted by a deterministic model. See e.g.Gardner and O'Neill
(1979). Letting fi (p,u) - throughout this paper - represent the
dependency of model result i from parameter vector p and input set

u, this bias results from the fact that in general:

E{fi(p,u)} # fi(E{p,u}) (1)

Only when fi is a linear function of p and u, equality holds.
This however is not the case even in the most simple water quality
model. To analyze this feature for the model under consideration,
the model output for 1976, based on the mean parameter vector, as
well as the mean output, based on all one hundred acceptable para-
meter vectors, was calculated. The results are tabulated in Table 4.
The analysis was restricted to the calculation of the maximum
yearly algal biomass (algmax), the yearly average algal biomass
(algav) and the yearly average detritus (detav). These are con-
sidered to be representative for the water quality. The resulted
bias, expressed as a percentage of the model output's standard
deviation is:
- 30% for algmax

25% for algav

3% for detav

These results are in good agreement with those of Gardner

and O0'Neill (1979). Their subsequent conclusion is that the bias

will not lead to serious problems. We would rather not a priori



neglect the bias in the output of a model under considera-

tion. The more so as a possible reduction of the standard devia-

tion, e.g. after model improvements, does not necessarily imply a

proportional reduction of the bias.

3.2 Variance of the Model Results

Using all of the one hundred parameter vectors, the model
results for 1976 are probability density functions. Figure 2
shows the functions for algmax and detav. The variance of the

results is easy to calculate (Table 4). Accepting biased model

results, one may confine oneself to only one calculation, using

Table 4. Simulation results (see 3.1),

mean andrstandard deviation

result of one simulation of the simulation results

using the mean parameter using the acceptable

vector | parameter vectors

m s

alg max 48.1 45.5 8.0
algav 16.0 15.4 2.5
detav 74.8 75.0 6.9

the mean parameter vector. In fact, as stated, this is mostly
done, using a single parameter vector, which is not necessarily
the mean. As is easily verified, in this case a first order
approximation of the variance can be obtained from:

N N O9f, of.

var{f, (p)} = I I (=== (5==) cov (p.,py) (2)
* j=1 k=1 °P3 Pk 17Tk

N is the number of parameters involved.
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Relative
Frequency

3

Algmax mg(P)*m™

Figure 2A. Probability density function of algmax.
Mean equals 45.4 mg*m~3; standard deviation
equals 8 mg*m—3

Relative
Frequency

60 90  Detav mg(P)em >

Figure 2B. Probability density function of detav.
Mean equals 75 mg*m~3; standard deviation
equals 7 mg*m—3



Equation (2) can be rewritten as:

var{fi(P)} Z (—ET) var(p )+

j=1 %5

N N af Of;
) T )(3—)cov(p ,pk) (3)
j=1 k= 1 Px

j#k

Since often the cross covariances between parameters are being

neglected, it is worthwhile to compare the model result variances

using:

N5,
* var(£,) = & (—&)var(p.), method A.
1 j=1 3Pj ]
* equation (2) method B,

Table 5 shows the results, presenting also as a reference the

standard deviations based on the Monte Carlo method.

Table 5. Standard deviations of model outputs, based on
aifferent methods (see 3.2).

s s s
Monte Carlo Method B method A
algmax 8 9 32
algav 3 | 3 , 12
detav 7 7 13
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The deviations based on equation (2) and those based on the
Monte Carlo method, appear to be in very good agreement. As also
found by Di Toro and van Straten (1979), neglecting the cross

covariances leads to enormously inflated results.

3.3. Predictions

When simulating the future behaviour of a system, one has
to cope with uncertainties in the parameter vector, but also in
the input sets or forcing functions. If the uncertainties in the
parameter vector are independent of those in the input set, the

variance of the model output will be approximated by:

of; of.
var{f. (p,u)} = I L —& cov(p.,p,) +
it jk °P3 °Py P3Pk

of. 9f.
+ Tx L w—d cov(u.,u,) (4)
Ju. oJu 377k
5k ouy duy

To return to our example for the lake submodel, input sets for
1980, reflecting uncertain input values, are available (see 2.5).
Some characteristics of the sets are shown in Table 6. Three dif-

ferent Monte Carlo simulation series were performed resulting in

stochastic model output for 1980. In the first series only the para-
meter vectors were sampled, holding the input set fixed. 1In the second
series input sets were sampled, holding the parameter vector fixed

at its mean. In the third series both the parameter vectors and the

input sets were sampled. Of course only the stochastic model results,

based on the third series, represent the predictions for 1980.
For all three series the initial conditions are assumed to be
perfectly known. But it is useful to compare these predictions

with the results of the two other series in order to estimate
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the relative impact of the two lumped sources of error. The
standard deyiation of a model result, produced by the third series,
is called the total error of the result, PFigure 3 shows the model

results algmax and detav, based on series 1 and 3. As can bhe

Table 6. Input statistics for April.

A) Coefficients of variation (%).

s/m *100
1 temp 11
2 rad 6
3 flow 160
4 eddy 6
5 pprin 7
6 psrin 6
7 pplin 5
8 pslin 6

B) Correlation matrix. Only significant

correlations (a < 0.05) are shown.

5 6 7
pPpPrin psrin pplin
6 0.96
7 0.74 0.84
8 0.38 0.58 0.8¢€




Figure 3A.

Figure 3B.
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Algmax mg(P)em=3

The probability density functions of algmax. The
solid line is a Gaussian approximation, reflecting
uncertainties in parameters and input. The dashed
line is tne approximation with fixed input and
uncertain parameters.

Detav mg(P)‘mvs

The probability density functions of detav. The
solid line is a Gaussian approximation, reflecting
uncertainties in parameters and input. The dashed
line is the approximation with fixed input and
uncertain parameters.
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deduced from Table 7, the standard deviation of the model results
roughly doubles whén the uncertainties in the input set are taken
into account in addition to those in the parameter set. From the
data of the same table it can be verified that eguation (4) holds
for algmax and algav. For detav presumably nonlinearities cause

the approximation not to be valid.

Based on additional simulation series, Table 7 also shows the
impact of the uncertainties in the climatic record. The uncer-
tainties in temperatureand flow are not only mainly responsible
for the additional error caused by the uncertainties in the input
set, but also for the total error in the model results! The
effect of the uncertainties in the record of loads is small,

With the exception of temperature and flow, the reduction of the
uncertainty of a single input variable does not significantly

affect the total error in the model results.

Table 7. Simulation results (see 3.3). Shown are the
standard deviations.

Sampled Sampled Only | Only
parameters, input, temp and climatic
fixed fixed Both flow record
input parameters sampled fixed fixed
algmax 7 11 13 8 7
algav 2 3 4y 3 2
detav 8 14 14 13 11
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Calculations further showed that an increase of 50% in the
average loads will only cause a change in the means of the model pre-
dictions (algmax, algav or detav) of about 1.5 times the prediction's
total error. A 10% increase in the average loads will cause a change
of 0.3*%S. On the other hand, comparing two years, using one

and the same climatic record, a 50% increase in loads will give

rise to roughly a change of 3*S.

4., PARAMETERS AND MODEL EQUATIONS
4.1 Reducing Parameter Ranges

In this chapter the uncertainty of the parameter vector is
considered to be the only source of errors for predictions. It
is assumed to be impossible to formulate more restrictive behav-
iour constraints. Clearly a complete reduction of the a priori
uncertainty of the parameter vector then will lead to a ﬁnique
trajectory. It is not immediately clear, however, whether a par-
ticular reduction of the a priori uncertainty of a subset of the
parameters will have any real effect. Often enough the effect

of the variance of a parameter pj on fi is estimated - based on

method A of chapter 3 - by:

(-:f,—;) “var (p,) (4)
The resulting impressive reductions in the variance of fi’ based
on this method, are for the lake submodel example listed in
Table 8. But Monte Carlo simulations showed that no significant
reduction of the model output error is achievable by decreasing
the variance of any single parameter, thereby contradicting the

values in Table 8. Although this result is due in part to the
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Table 8. Reductions in % based on method A.

parameter reductions
algmax algav detav
7 0.1 0.1 2
8 0.6 0.3 27
9 39 be 19
10 60 53 51
11 0.5 0.4 0.4

limited number of runs possible, clearly e.g.»a reduction of the
variance of parameter 10 (algal production rate) alone will be
useless in view of the high correlation with parameter 9 (algal
mortality rate).

A better way of dealing with clearly cross-correlated
parameters is based on method B of Chapter 3., The variance of

fi can be rewritten as:

8
var (f,) = IV ( )( )cov(p yPy) =
i ik pJ k
OF , Of .
= (3 l) C (3 l)

* with C being the parameters covariance matrix.
Because C is a hermitian matrix there exists a matrix A such

that:
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of. of,
_ 1 T 1, _ T
var (fl) = (a—p) TA A A (—a—p- = Bl A Bl
var(f.) = ¢ A b2 (5)
i 3713

¥ with A being a diagonal matrix with the eigen
values of C.

¥ with A being the matrix of eigen vectors.

The equations above show the possibility to remove the cross
correlations by a transformation. The uncorrelated combinations
i aijpi have variances Aj. When a few terms of equation 5 happen
to account for a large part of the total variance and for each
term the corresponding combination reveals only a small subset of
the parameters to contribute to the variance Aj' application of the
method provides much insight. 1In our example for each of the
model outputs considered (algﬁax, algav, detav), only two terms of
-equation (5) turned out to contribute 85% of their total variance.
Further énalysis showed the parameters 9 and 10 together to be
;esponsible for more than 90% of the variances Aj corresponding
to the two terms of algmax and algav. At the same time it showed
the senselessness of reducing only the variance of one. As far
as detav is concerned the parameters 8 and 7 contribute more than
80% of the variances Xj corresponding to the two terms of detav.
The possible use of a Monte Carlo based method to show the impact
of the simultaneous reduction of variances of parameters could
not be considered because of the limited number (100) of accept-
able parameter vectors. After reduction a too small subset of
the acceptable vectors would remain to sample from. However,

this method is considered in principle to be most fruitful.
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4.2 Altering Model Equations

The effect of alterations in model equations (and consequently
model parameters) on the variance of the model output is poorly
understood. Gardner et al. (1980) states that more complex models
often generate greater uncertainty in the output. However, their
statement is based on dubious reasoning. As they themselves make
clear, a smaller uncertainty in a model prediction variable may
require a more complex term in the model. And in fact, in their
case, one of the two model prediction variables does. Scavia et
el. (1981) point out a similar dilemma: sometimes aggregation
of model state variables will pay off in reduction of variance
of the output, sometimes disaggregation will pay off. Intuitively
others advocate the simplest model possible (Fedra, Somlyody
(pers. comm.)). On the other hand, incorporation of extra know-
ledge of biological, chemical and physical processes, derived '
from laboratory and field experiments, should be fruitful (see
Scavia et al., 1980; see also Beck, 1981, for an interesting
discussion on this topic and related topics). The above discus-
sion suggests the following conjecture:

Without adding essential knowledge of processes any increase

in the complexity of a model improves the possible fit on

field data, but enlarges the uncertainty of predictions.

So the conjecture includes the warning to be careful with

the incorporation of more detail just to improve the fit

on field data. The value of adding new knowledge of proces-

ses to the model presumably only emerges, when its incorpora-

tion leads to predictions with less uncertainty. The concept
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of extra process knowledge may be illustrated by the following
example, which in fact is a continuation of an example given
in Fedra (1982, pp 11-14).

Let y(t) = a t + b be model 1

The original parameter ranges are given by:

0.5 < a < 2.5 0<b<2

The behaviour space is defined as:
2.5 < y(2) < 5 7<y(8)< 9

Calibration, based on 1000 Monte Carlo runs, of

model 1 results in:

mean var
a|0.85]|0.008

cov(a,b) = -0.026

b|]1]1.33]0.165

0.85t +1.33

0.009t2 -0.052t +0.165

Consequently: mean (y)

var (y)
Let y(t) = at + ¢ sin(t) + 1 be model 2.

The parameter ranges are given by:

0.5 < a < 2.5 0.8<c<1
("process b" is now better known)
The behaviour space is identical to the one of model 1.
Calibration of model 2 results in:

mean var
alo0.77 | 0.005

cov{(a,c) = - 0.0003
c|0.90 [0.003
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Consequently:
mean (y) = 0.77 t + 0.90 sin(t) + 1
var (y) = 0.055 t2 + 0.003 sin(t) - 0.0006 t sin(t)

The conclusion is clear. Model 2 gives a marginally larger
or a much smaller variance for y. For instance, the predic-

tion for t = 12 is:

model 1 model 2

y (12) 11.5 9.8

s 0.92 0.85

It should be stated that the reduction of the uncertainty
in the output may not be worth the trouble of adjusting the model.
Fortunately, in case of extra process knowledge (including para-

meter ranges) the effects of model adjustments are calculable.

5. CONCLUSIONS AND DISCUSSION

Monte-Carlo methods provide a possibility to deal with the
impact of uncertainties on the predictions of a water quality
model, meant to be used as a management tocl. In spite of their
huge demand for computer time these methods are considered to be
of practical importance, partly because they are efficient in
terms of modelers time and because computer time is becoming
cheaper and cheaper. Some basic rules for more efficient use of
Monte Carlo methods are given in Fedra (1982). Nevertheless,
together with the tentative character of this study and its short
time span, the computer time required was a reason to keep the
number of simulation runs rather small. Particularly the gquality
of Chapter 4 would have been improved, if this number had been

larger.
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The conclusions with respect to the lake submodel, serving
as an example throughout the paper, are not surprising. The
prediction of next vyear's water quality is to a certain extent
similar to the prediction of next year's weather, since e.g.,
temperature plays a dominant role. The standard deviations of
the outputs from predictive model considered amount up to 30%
of their means. So the most successful application will be the
comparison of the stochastic simulation results for different
(long term) scenarios. Perhaps some simplifications in that
part of the lake Neusiedl model calculating the phosphorus loads,
are possible, since only major changes in the loads have any
effects. However, cumulative effects of sequential years with
high loads have not been considered. Some curious discrepancies
have been found between the lakes state at the year end and the
following year's initial conditions. Therefore, some of the
behaviour constraints had to be fairly loose. Apart from that,
the simplicity of the lake submodel is justifiable. It was
shown how bizarre it is from the point of view of predicting,
to pay extra attention to the algal production‘aspect, given
the obscure mortality aspect.

The impact of the quality of the calibration procedure is
evident. To deal with error propagation, the use of a method,
based on Monte Carlo simulations, is certainly successful and
avoids a biased output. Linear approximation of the variance
of the model results has to take the cross-covariances into
account. To identify the weakest parts of a model it is useful
to find the parameter subset, giving rise to a large part of

the total variance. Again cross-covariances should not be
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neglected and the method based on Monte Carlo simulations gives
straightforward results.

Because ultimately a predictive model should be part of
an interactive computer aided planning program, i.e. an inter-
active graphics supported tool to assist manacers in their
decision making process (see Loucks et al, 1982), the model
should be as simple as possible. Otherwise the interactive
process of simulating logically sequent scenarios is impossible.
A reason for starting, at any rate, with a simple model has been
given in Chapter 4. More complex models certainly do not guaran-
tee models with a higher predictive value. It would therefore he
recommendable to accept a more complex management model only

after its higher predictive value has been shown.
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APPFNDIX: THE LAKE NEUSIEDL MODEL

The appendix is mainly based on a draft version of Fedra (a).

A.1 The Approach

Lake Neusiedl is an extremely shallow (1.5m) lake of about
150 km2 surface, embedded in a belt of dense reeds (Phragmites),
covering approximately 150 km2. It is situated south-east of
the Austrian capital Vienna, in the province of Burgenland. The
lake's catchment extends over approximately 1300 kmz.

Since the early seventies, a conspicuous deterioration of
the lake's water quality has been observed, resulting in a dé—
creasing attractivity for recreation. Tourism however, is one
of the most important elements in the economy.of the region.

The specific management problems of the lake systeh arise

from three major conflicting objectives in the development of

the region, namely:

a) The development of tourism (affecting landscape and

increase of waste and sewage production);
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b) intensification of industrial and agricultural produc-

tion (involving direct and indirect forms of pollution);

c) the preservation of environmental quality.

For the analysis of lake Neusiedl, Kurt Fedra extended the
"classical" approach of load-response modeling of lakes, which
requires the loading to be specified as an input, towards a more
comprehensive examination of the lake as an integrated element
within its physical as well as its socio-economic watershed.

The pollution affecting the lake is treated explicitly. Therefore,
this approach implies, besides the use of a classical water quality
submodel for the lake and the surrounding reed belt, a group of
additional sub-programs to simulate the system. The additional
programs generate and transport nutrients to the lake as a func-
tion of land use, agricultural and industrial activities, waste-
water treatment and tourism, the last of which in turn influenced
by the lake water quality.

The model is operating on a monthly time step: after initia-
lization and optional interactive parameter editing, the program
for each month generates a climatic record. The program then
generates a record of loads, calling a series of subroutines which
estimates different sources of pollution, taking phosphorus as
a proxy for pollution affecting water quality. These two can be
considered to be the mbnthly input for the lake subprogram,
evaluating the lake's water quality. It is important to note
that experimental data up to and including 1979 underlie the
records and that the two records are affected by stochastic per-
turbation on most of the estimates, used in the model, in an

attempt to account for uncertainties and natural fluctuations.
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The program provides a spatial resolution on the community and
treatment plant level, and has been set up within an interactive
dialogue oriented framework. This allows for interactive design
of management policies. For each month economic indicators
(revenues from tourism, costs of reed management and wastewater
treatment) and a detailed listing of the lake's and reed system's
status can be displayed. The model system has been designed as
one step towards an intelligent and friendly decision support

system.

A.2 The Lake Submodel

A simple approach was chosen to model the overall nutrient
dynamics of the lake/reed system. The conceptualization of the
system is given by two coupled elements, namely the reed and the
open lake. Each of the two subsystems receives input of soluble
and particulate nutrients and they are coupled by a small net
flow from the reed system to the open lake, balancing the lakes
outflow under the assumption of a stable volume, and eddy dif-
fusivity along their common borderline.

To be more specific, the lake submodel calculates for every
month t the state of the lake/reed system y(t). From this state
a qualitative water quality indicator, like "good, "bad" or
"disgusting" - based on the algal biomass, detritus and temperature -
is determined. The monthly calculations regquire:

a) the climatic record for month t:

* temp (temperature)
* rad (radiation)
¥ flow (inflow = outflow of water)

* eddy (eddy diffusion coefficient, based on wind)
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b) the record of loads for month t:
¥ pprin (load of particulate phosphorus into the reed)
¥ psrin (load of soluble phosphorus into the reed)
* pplin (load of particulate phosphorus into the lake)
¥ pslin (load of soluble phosphorus into the lake)
c) the state of the previous month, y(t-1)
d) the amount of reed harvested and constants like the
lake volume.
The submodel's calculation of the next state is entirely deter-
ministic, except for the determination of a turbidity value in
£, (see below).
The state vector y consists of 8 elements, satisfying the

following differential equations, containing 14 parameters (pi).

dy
reed biomass in p: TE} = rprod - rmort - harv.
. day
detritus p in reed el pprin - rmin - rsed - ppexch *-C1
- pptran
dy3

available p in reed: . ro psrin + rmin + sedexc * C,

- ruptk = psexch ¥ Cq — pstran

dy
detritus p in reed sediment: 75? = rsed * Cy - rsmin - sloss
+ rmort

dy
interstitial available p: 75? = rsmin - rest -~ sedexc * Cy

dy
detritus p in lake: 75? = pplin + ppexch * C, + amort - sedl +
- dmin - ppexp

dy
available » in lake=75§ = pslin + psexch * C, + dmin - aprod +

- psexp - prec

dy
algal biomass in p: 75? = aprod - amort - aexp.
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The description of the processes

rprod =
rmort = y, * Pg
rmin = temp ¥ Yo * P,

rsed = Yo * P,
ppexch = - eddy ¥

psexch = - eddy * (y; - vy3)

pptran = y, ¥ flow * Cg
= * *
pstran Y3 flow Ce

psexp =y, ¥ flow * C6

aexp = Vg ¥ flow * Ce

Ci are constants, e.qg. C1 is the ratio

(when temp > 0):

£1(yq/¥3/¥5,P3,P,,temp,rad) sedexc = (yg-¥3) * Py,

ruptk = C, * rprod * P

1
rest = rprod * (1 - p6)
rsmin = temp * y, * Pq3

amort = yg * Pg

sedl

Y¢ * Py
dmin = temp * y, * Pg
ppexp = Yy, ¥ flow * C6

aprod = Yg ¥ temp * rad ¥

Y

* 0%
p
Yq * Pqq 10

prec = f,(y)

volume lake
volume reed

The parameters, p;, are presented in Table 1.

A New Framework for the Lake Submodel

In view of the objectives of this paper the lake Neusiedl

model was considered to be what it essentially is, namely an

input cgenerator for the lake submodel, and the lake submodel

itself.

The complete lake Neusiedl model was used to generate

input, both for 1976 and 1980, consisting of:

a) the initial conditions

b) input sets.

and the records of loads for 12 months.

Each set consists of the climatic records

On behalf of

the 1980 simulations 100 different (because of the

' stochastic perturbances) sets were generated, on behalf

of 1976 ten sets.
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A simulation program SIMUL was written to perform the
simulations, described in this paper. SIMUL is a controller
able to read input from the input sets, which runs the lake
submodel. Compared to the original model two changes were made:

a) the random disturbance of the turbidity value was

skipped;

b) the amount of reed harvested each month was put at zero.
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