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Analytical Studies of the Hurst Effect:

A Survey of the Present Position”™

A. A. Anis™™ and E. H. Lloyd*

The Hydrological Significance of Hurst's Law

Two of the most striking statistical features of hydro-
logy are 1) the general rarity of data, and 2) the complexity
required of even moderately realistic models. (In particular,
whilst in many branches of engineering practical use can be
made of simple stochastic models involving mutually inde-
pendent random variables, this is almost never the case in
hydrology; the variables concerned usually exhibiting complex
cross and auto-correlation structures.)

These factors amongst others have led to the widespread
use of numerical simulation methods, in which "synthetic data"
are generated in large guantities and subjected to numerical
manipulation. The generating process must reproduce data as
good as the data from what are regarded as the most important
features of the historical record. 1In the twenties of this
century these were taken to be the seasonal averages and
the daily, monthly, quarterly or annual fluctuations. Later,
this list was supplemented by imposing a simple serial cor-
relation structure on the inflows in accordance with what
has become standard practice in statistical time-series ana-
lysis. More recently the situation has been further trans-
formed by the discovery of the Hurst effect, and research in
simulated data generation is now concentrated on methods of

producing number sequences showing Hurst-like behaviour

*This report forms an expanded version of a seminar pre-
sented by the authors at IIASA in May 1975.

*k . . .
Ain Shams University, Cairo, Egypt.

*okok .
University of Lancaster, UK.



It is therefore a matter of interest in hydrology to attempt
to understand what the Hurst effect is, and to construct
mathematical models for data-generation that are compatible
with Hurst's law.

In the work reported on in this paper, we reconsider the
interpretation of Hurst's data and the formulation of Hurst's
law, propose a theoretical model whose statistical properties
can in principle be derived analytically, summarise such ana-
lytical results as are available, and indicate a direction of

of possible progress.

1. The Adjusted Range

Denote the consecutive annual flows into a reservoir over

a period by

KprXogreeesX
the initial contents by a, and the consecutive annual abstrac-

tions over the same period by

Wi rWore oo W
The reservoir and its initial contents being supposed suf-
ficiently large, the successive net annual contents at the
end of each water year will be

a, a + x

—w1,a+x + X, - w

1 1 2

T X, F e X - W, = ees W .
1 n 1 n

Denote the largest of these quantitites by a + m (where

m 2 0) and the smallest by a + &n (where &n > 0). Thn

if we neglect fluctuations of levels within each water year
and consider only the levels at the end of each year, namely,
the quantities (1), the critical conditions on the reservoir
to avoid a) spilling and b) completely emptying, for this
set of data, are



a) reservoir capacity = a +m

b a+ n =20 ;

that is, the required reservoir capacity is

m. - Qn = max(a,a + X, - w,,a + X4 + Xo = Wi = Woseeny
a+ x, t o+ x -wWy oottt wn)
=-min(a,a + X, = wWi,2 + X, + Xy = Wi = Wopeeny
® & » — — ® ® 0 - 2
a + X, + + X w4 wn) (2)
= max(O,x1 WXy + X, - W, T W ,
X1+"'+X _W1_ ..-_wn)
=—min(O,x1 - WX, + Xy = Wy T Vigseeey
X1+ cee 4 ¥ —w‘l - o..—wn)
where the notation "max(-..)" denotes the largest of the quanti-
ties in parentheses, and "min(--*)" the smallest. The
gantity m. - defined in (2) in the range of the accumulated

sums of the numbers

0, x1 - Wi X, — W

2 2,---, n n

In hydrological contexts of this kind the explicit reference
to accumulated sums is usually omitted, and one speaks simply
of the range.

The ways in which the statistical properties of this
range depend on the duration of the record are, clearly, re-
levant to the design capacity of the reservoir. This is
especially true of the mean valu of m, - Qn as a function of
n. In studies of this subject the simplification is often

made of taking the abstracted quantitites Wir Woreeo,W

n
to have a common value w, so that

m_ - Qn = max(O,x1 - w, X, t Xy - 2W, o0 ey X, teemt X - nw)

-min(0,x; - W, X; t X, - 2Wyaees Xq o0 + X - nw)



this being the range of accumulated sums of the quantities

o, x1 - w, x2 - w,...,xn - W

Finally, it is useful to consider the special case when the
final contents of the reservoir, at the end of the n-year

period, exactly equal the initial contents. 1In this case

X, + x2 + see + X - n =0 ,
so that
w = (x1 + eee -+ xn)/n
= in ; say.

The range m, - ln for this case is called the adjusted range,

r;, to distinguish it from other cases. Thus the adjusted

range is
* = -
r mn Qn
= max (0, x1 - xn, xl + x2 - 2xn, R
Xg ottt x40 (n - 1)x_,
+ * o 0 — <
X, + X nxn)
-min (O, X, - in' x1 + x2 - 2xn, ’
X + e + xn e (n - Nx_,
+ LI Y —
X, + x nxn)
= max (0, x, - in’ X, + Xy - 2§n,.. ,
. + o o0 -_ — <
X, + X (n - 1)x)
-min (0, x, - in’ X, + X, - 2X_yee.,



since

Xy + oo # X, — X, T nx = o . (3)

2, Scaling: The Hurst Range and the Hurst Phenomenon

The magnitude of the adjusted range of an n-year record
as defined in (3) is, clearly, related to the inherent
variability of the data. Highly variable data will usually
possess a large adjusted range, whilst relatively invariable
data will possess only a small adjusted range. In order to
allow for comparisons between different runs of data from a
given river, or between sets of data from different rivers,
Hurst introduced the idea of scaling the adjusted range
m - ln of a given set of data by dividing by the sample
standard deviation dn of the n inflows XgrXoreeerX . The

n
resulting ration

¥k = p*
r¥ rn/dn ()
where n
2 -, 2
. = ) (xj -x )7/ (5)
j=1

is called the rescaled adjusted range, or the Hurst range.

The Hurst range is of course a non-dimensional quantity,

and its numerical value is not affected by the units used
in measuring the flows xj.

The scaling procedure also has a stabilizing effect:
some dn is positively correlated with r;, the ratio
r;* = r;‘l/dn and has a smaller sampling variability than the
unscaled range. (Possible variants in the interpretation of
Hurst's range are discussed in Section 3,)

On the basis of an exceptionally large body of data ob-
tained from a wide variety of rivers {(and other sources of

geophysically equivalent data) Hurst announced in 1954 that



the way in which r;* increased with n was not proportional

%

to n*, as elementary theory would lead one to expect, but
to no'72, or rather to nh, where h was near to 0.72 in all
cases, with relatively small fluctuations from one set of
data to another. Explicitly, his formulation was equivalent

to:

r¥¢ = (4n)° (6)

where h had a mean value of about 0.72 and a standard
deviation of about 0.09. (Our notation differs from Hurst's
for reasons which will be explained in a subsequent paper.)
In this paper we refer to the exponent h as the Hurst
exponent, the discrepancy between the empirical value of

h(=0.7), and the value to be expected on elementarv theory
(=0.5) as the Hurst effect or the Hurst phenomenon, and

the formulation (6) as a version of Hurst's law. (This

nomenclature has been created by hydrologists and probabilists,

and not by Hurst himself,)

3. Some Possible Ambigquieties in Hurst's Data

and lis Treatment of It
3.1 The Data

The following table is a brief extract from some of Hurst's
data as summarized in Hurst [12]. The summary consists of
single rows of data for certain rivers (e.g. the Mississippi
in our excerpt, Table 1.) and several rows, corresponding to
different but possibly overlapping intervals, in the case of
other rivers (such as the Nile at Aswan in our excerpt). Each
run is, however, too concise a summary to enable one to see the
details. Some light is thrown on these by graphs (given in

the same publication), such as the following Figure 1,



Table 1. Accumulated departures, river discharges.

River Period Duration Std. Adj. Hurst Hurst
Devn. range range exponent
n d r¥* rk¥ h
n n n
Missis~- 1874/1936 63 13 190 14.6 0.77
sippi
Nile 1870/1975 21 13.4 98 7.3 0.74
(Aswan) 1899/1957 59 12.2 70 5.7 0.50
1870/1913 4y 19.3 292 15.1 0.88
1914/1957 4y 11.0 82 7.5 0.65
1870/1957 88 17.5 500 34.2 0.88
’ 4
O
b 4
X c 1
| -
(o)}
°
0
0 1 2 logn
1 10 100 n

FIGURE 1



3.2 An Ambiguity

It is clear that Hurst's method was to plot values of
log r;* against log n, for a variety of values of n, for
each of his sets of river data. 1In all cases the points ap-
peared to lie on a straight line of slope h (where h is
about 0.7), and pass through or near the point (r;* =1, n = 2_h).
What is not clear is the relation of a graph of this kind,
involving perhaps five or six plotted points, to a single run
of data in the summary Table 1. 1In our interpretation, we have
assumed that the individual annual flow XqsXgrees,X, COrres=
ponding to a typical run in the summary table here have been

broken up into segments

x1,x2,...,xn(1) ’
*n(+17°° " *n(2) -

(7)
Xn(s)+1’xn(s)+2""’xn '

of convenient lengths, and then analyzed as follows.

1) For the first segment, with n(1) entries, compute
the sample mean in(1)’ the accumulated deviations X9+ .0+ x -
rxn(1) , r=1,2,...,n(1), the max(mn(1)) and the m1n(£n<1)) of

iati : * = -
these deviations, the adjusted range rn(1) mn(1) 1n(1)'
where
n(1)
2 _ - 2
a_ N {x] xn(1)} /n(1)



ond the rescaled adjusted range

* % = r*
T T T
This value of r;?1) is then plotted against n(1), giving a

single point on the log-log graph.

2) This first segment

RpeXoreeorX, (1)

is then enlarged by including the flows

Xn () +17%n(1)+27 *** %0 (2)

which form the second row of (7) thus creating an extended segment

KprXgreeerXn 1y *n(1y+17° = *n(2) ,

containing n(2) flow values (which include the n(1) flow values
considered in the first segment). The extended segment is then
analyzed in exactly the same way as was the first segment; that

is we compute the sample mean x of the extended segment

n(2)
and consider the appropriate accumulated deviations

for
r=1,2,...,n(2)

We compute their max mn(2) and min Rn(Z)' their standard

deviation dn(2)’ where

2 G -5 P /m2)
dnz) 1 x5 7 X ’
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and their rescaled adjusted range

2y = Th2)/%n(2) -

This computation provides a second point to be plotted at
{n(2),r372)} on the log-log graph.

3) The enlarged segment is now further enlarged by adjoining
the third segment, to become

X1,X2,...,Xn(z)Xn(2)+1,...Xn(3) ’

and this is treated in the same way, etc. In this way one

obtains a number of points,

{n(1),r;71)} , {n(2),r;72)} , {n(3),r;73)} , etc.
(where

n(1) < n(2) < n(3) , etc.)

perhaps five or six in number, to which a reasonable looking

straight line may be fitted in log-log graph paper.

(Our model, to be described in a subsequent section, would
also be consistent with an alternative interpretation, namely
that each of the "segments" corresponding to the rows of Table 1
has been separately analyzed by method 1) above, that is to
say by working with non-overlapping segments, for each of which
its own mean, its own max and min of accumulated deviations, its
own standard deviation, etc. is computed. However, this does not
seem to be the method that Hurst actually employed. There is
another possible interpretation of Hurst's arithmetic, which is
this. One computes the adjusted ranges r;(1),r;(2),..., of
this first segment of n(1) items, the augmented segment counting
of the first n(2) items, and so on, as described above, but
rescales them all by dividing by a common divisor dn' the
standard deviation of the entire record of n flows. The relation
of this interpretation to our model is discussed at the end of
Section 5.)
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3.3 Another Ambiguity

As we have explained, Hurst plotted his computed re-
scaled adjusted ranges r;* against n on log-log paper. The
published graphs leave no doubt that a straight line plot
is appropriate. The natural procedure would be to take the

equation of the line as

log r;* = long ¢ + h logn , (8)

corresponding to the exponential curve

¥ = ¢cn . (9)

Here ¢, as well as h, would be estimated from the data.

Hurst, however, appears to have convinced himself that the
value of ¢ ought to be taken as o~ , (i.e. log ¢ = h log 2),
so that in his formulation (8) became

log r;* = h log (n/2) , (10)

and (9)

r;* = (n/2)h . (11)

Even if ¢ is in fact near to 2-h this procedure introduces a

risk of producing a biased estimate of h, as exemplified in Figure 2.
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UNCONSTRAINED LINE.
h ESTIMATED AS
SLOPE OF LINE,

c ESTIMATED AS
INTERCEPT.

HURST'S PROCEDURE:

h ESTIMATED AS SLOPE OF LINE
CONSTRAINED TO PASS THROUGH
FIXED POINT A.

-

FIGURE 2
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4, Hurst's Law: A Reformulation of the Empirical

Version, and a Proposed Theoretical Model

In our view it is necessary to restrict the values of
n for which validity is claimed for Hurst's law: the data on
which the relationship rests belong to intervals of duration
not less than about thirty years, and (with one or two
doubtful exceptions) not more than about 1,000 years. There
does not seem to be any scientific justification for assuming
that the same rather simple relation should continue to hold
for substantially longer intervals. The appropriate ex-
pression of Hurst's empirical law is therefore

rix g n' (ca. 30 < n< ca. 1,000) , (12)

where h is approximately equal to 0.72. With the added phrase
defining the relevant values of n (12) is a version of (9).

We prefer to express r;* as being proportional to nh, since

we regard the essence of Hurst's discovery as lying in the
value of h, the value of the constant ¢ of (9) being of minor
importance.

Before turning to an attempted formulation of a mathe-
mathical model it might be as well to note that such a model
might reasonably reproduce the Hurst effect without having any
pretensions to reflecting the "real" structure of the geo-
physical stochastic processes involved. 1Indeed it is far
from clear what the "real" underlying structure is. For
example, is it stationary? Is such a question meaningful? 1In
the authors' view the mathematical concept of stationarity is
a convenient simplification which is probably applicable, as
a fair approximation, over a limited period, e.g. over a
period of the same order of magnitude as the duration of the
historical record; one would certainly not be justified
without further evidence in postulating a continuation of
stationarity into the indefinite future.

If this view is accepted, it would lead us to seek models

for our data generation which would be valid for predictions
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over a period of the order of some hundreds of years but not
necessarily beyond that time. Such models ought to re-
produce the Hurst effect, but we do not believe that we

would be justified in requiring of them that they continue to
reproduce the Hurst effect for values of n of the order of
1.0q or larger, since, as we have already emphasized, the
historical evidence does not necessarily imply such a time
horizon.

Thus, in contrast with some of our distinguished col-
leagues (including Mandelbrot and his co-workers) who have
interpreted the Hurst effect as implying the existence of
an extremely long-term persistence in geophysical data, we
have been concerned rather with the investigation of relatively
simple models which might display Hurst-like behaviour over a
period of up to about 1,000 years. If for such models the
Hurst effect as we know it ceased to be manifested, or showed
itself only in an attenuated form, for time intervals ex-
ceeding 1,000 years, this fact would not in our view in-
validate the model.

Our aim has been to investigate analytically the sta-
tistical properties of the rescaled adjusted range of
identically distributed random variables. We would of course
like them to be autocorrelated, but so far (with one
exception) we have been successful only with mutually inde-
pendent variables. This work will be outlined in Section 5.

For reasons of space we must allow ourselves only the
briefest mention of the large body of numerical work earried
out in the field of simulation by various researchers, in-
cluding Yevjevich (working with seasonally varying auto-
regressive processes), Mandelbrot and his co-workers (using
"fractional Gaussian noise"), 0'Connell (using "ARIMA"
models involving a combination of autoregression and moving
average) and Klemes (using a variety of distributions both

independent and autocorrelated).
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5. Our Interpretation of Hurst's Results

All of Hurst't data exhibited variability (which data
do not?). For each river we may regard the data as a sample
from a population of values, It is therefore appropriate to

regard Hurst's values of r;* as the observed values of a

random variable R;*. We define this random variable as

follows: Let X1X2,...,

random variables (the consecutive annual flows), and let

Xn represents n identically distributed

n
X = .g Xj/n. Let
j=1
Mn = maX {X1 - Xn, X1 + X2 - 2Xn'.--'
_ (13)
Xy + e+ X 4 - (n-MNx, 0}
and
L, = min {x1 - X, X, X, - 2K ,...,
e e s - - e 14
X; + + X 4 (n - DX, o} (14)
Then
kk = -
Rn (Mn Ln)/Dn !
where n
2 _ 5,2
D, = y (xj X)/n .
j=1

We interpret Hurst's law in the empirical form (12) as meaning

E(R** ) q nh
n

M -L
E(_!}___n> o3 nh

or ca. 30 <n <ca. 1,000 , (15)

D
n

(where "E(+)" denotes "expectation" in the statistical sense).
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It is important to recognize that this is not the same as

E(Mn - Ln) h

—E®Gy M (16)

or

h
E(Mn - Ln) & n . (17)

The fact that Hurst used the symbol "O0" to represent the
scaling divisor Dn should not mislead us into regarding this
as a known constant: it is an observed value dn of a
random variable Dn' and is subject to sampling variability
in exactly the same way as is the numerator Mn - Ln in (15).

The importance of this point can hardly be over-
emphasized. 1In attempting to build a theoretical model for
the Hurst effect we would postulate some distributional
form for the set (X1,X2,...,Xn), and then examine the
probability distribution of the random variable (Mn - Ln)/Dn.
It might be said at this point that investigations of this
kind have not gone very far, but at least something is known
about the expected value E {(mn - Ln)/Dn} = E(R¥*).

Even for the expectations, however, results have only
recently become available (Anis and Lloyd [3]). Earlier
workers, including ourselves, either found this random variable
to be intractable or failed to appreciate the role of Hurst's
scaling procedure. In the next section we shall outline some
of this earlier work, which is largely restricted to evalu-
ation of the expectation of the unscaled adjusted range
R; = Mn - Ln’ standardized by division by the assume population
value o of the standard deviation of the inflow Xj (which
we may conveniently take to be unity) or even of the unscaled

(and unadjusted) crude range Rn’ similarly standardized, where

Rn = max{(0,X, - u,X1 + X, - 2y, X1 + eee + Xn - my)

1 2

~min(0,X, - u,X, + X, = 2u, X, + eer £ X -mu)

1 1 2
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the population value ¢ of the common expectation of the
common expectation of the Xj replacing the sample mean in
used in the adjusted range.

The real "justification" for using the unscaled ad-
justed range is that it is more amenable to mathematical
treatment than is the true Hurst range. A more respectable
but somewhat fallacious justification would be the argument
that

M -1 EM_ =~ L) E(MM - L)
E( n n) ~ n n’ o n n
Dn EiDn) a
where ¢ denotes the population value of the inflow standard
deviation. Since Dn is positively correlated with Mn - Ln
this approximation can lead to possibly substantial errors.

The effect of the positive correlation between the
adjusted range Mn - Ln and the sample standard deviation Dn
is shown in an exaggerated form in the case where n = 2. 1In

this case

<
Il
=<
il

n 2

Xy = X, = 5(X; - X)) = -(X, - X,)
and

2 .2 _ 2 _ 2 _ _ 2

nDn = 2D2 = (x1 x2) + (x2 x2) %(x1 x2) ,
whence

D, = 5|X; - X,]
Thus

M, - L, = max {O,%(x1 - xz)} - min {o,lz—(x1 - x2)}
and

R¥* = max {O,sign (X = X,)} - min {0,sign (X, - XZ)} !
since

X, - X +1 , 1if X, > X

2
|x1 - x2| -1, if X, <X,
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(We may neglect the case X, =X, as having zero probability.)

Considering the possible cases, we have

Case 1): X1 > X2 ' sign (X1 - Xz) =+1 ,
RE* = max (0,1) - min (0,1) =1 -0
= 1
Case 2): X1 < X2 ’ sign (X1 - X2) = -1 ,
R;* = max (0, -1) - min (O, -1) =0 - (-1)

Thus in both cases the random variable RE* reduces to a
constant, whatever the distribution of the X.

In contrast to this, the unrescaled adjusted range 1is

2 2 2
= x - - i 3 -
max {0,2(X1 X2)} min {0,2(X1 XZ)}

a random variable whose expectation is necessarily sensitive
to the distribution of the Xj.

(The "other possible interpretation” of Hurst's work mentioned
at the end of Section 3.2 does not lend itself to a clear

theoretical formulation, producing a "range" of the form

{Mn(r) - Ln(r)}/Dn , r=1,2,...,s ,

where

n(1) < n{2) < e+se _(_ n

14
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and where the process relation of the n(r) to n would have to
be taken into account. Perhaps the best way to deal with this
would be to regard it as an intermediate case between our (14)

and a new range

R¥** = -
n (Mn Ln)/Dm

where Mn - Ln is defined as in (14) and

D2 = Z {X; - >_(I;1}2/m '
=1

the variables X1,X2,...,Xm representing a set of m flows
which are independent of the n flows and used in defining
M - Ln' This is a well-defined random variable, whose

n
properties, however, have not been investigated.)

6. A Brief Summary of Stochastic Models

Sums of independent random varibles have long been ob-
jects of interest to probabilists, and it is well-known
that, for the crude range Rn of sums of independent and
identically distributed random variables having finite
variance, the expectation satisfies

E(Rn)fv n1/2
for sufficiently large n. An approximate value of E(R;) for
binomial increments was obtained by Hurst.

The exact value of E(Rn) for finite values of n with
independent Normal X's obtained by Anis and Lloyd. Subse-
quent investigations of the unscaled adjusted range R; (for
sums of independent increments Xi) were carried out by
Feller (Brownian motion) [10], Solari and Anis (Normal
increments) [17], Moran ("stable" increments-crude range
only) [16], Boes and Salas-La Curz ("stable")[7] and other
increments, adjusted range), Moran (gamma distributed-crude

range only) [16] and Anis and Lloyd (gamma-adjusted range)[2].
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Recently the expectation of the rescaled adjusted range
(15) has been obtained for the case of independent normal
increments and also for a special case of increments having
a multivariate, normally correlated distribution. The re-

sults of these investigations may be summarized as in Table 2.
The only known theoretical basis for comparison between

analytical results on the crude, the adjusted, and the Hurst
range rests on the cases of independent normal inflows.
The formulae given in Table 2 yield functions whose graphs

are qualitatively of the following form:

{

SLOPE =1/2

e

/" / TT=SLOPE > 1/2
L

d

log OF EXPECTED RANGE

log n
FIGURE 3
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Quantitative results are given in Table 3, in which we give
also the corresponding results for the unrescaled adjusted
range E(Rﬁ). The slope at a given value of n may be re-

garded as the "local Hurst exponent" h(n).

Table 3. Adjusted range E(Rﬁ*), with corresponding
values of local Hurst exponent h(n), for

independent Normal increments.

B Crude range Adjusted range Rescaled range
n E(Rn) h(n) E(R* ) h(n) E(R;*) h(n)

5 2.58 .67 1.62 .89 1.93 .68

10 4.01 .61 2.79 71 3.02 .63

20 6.06 .58 4.4y .63 4.61 .59

50 10.17 .55 7.70 .58 7.81 .56

100 14.83 .54 | 11.39 .55 | 11.45 .54
n-72 .5 .5 .5

It will be seen that the unscaled adjusted range over-
cestimates the local Hurst exponent. If it were established
that the relation between the unscaled adjusted range and
the Hurst range were similar to this for other distributional
forms such as the gamma (and by continuity arguments this must
be so for gamma distributions of small skewness) the results
obtained for the adjusted range of gamma and stable inflows,
tabulated in Table 2, could be regarded as relevant to our
discussion. For these the local Hurst exponents for the
rescaled adjusted range, without being too poor an approxima-

tion to the latter) are as follows in Table 4.
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Table 4. Value of the local Hurst exponent h(n) for

the unrescaled adjusted range of gamma (m)

inflows.
n h(n)
(length of m = .100 m = .010 m = .00T
record)
10 .89 1.07 1.11
20 .76 .97 1.04
50 .65 .86 1.00
100 .61 .78 .96
500 .54 .63 .84
1,000 .53 .59 .77

It will be seen by interrolation that mutually inde-
pendent gamma (m) inflows, with m ¥ 0.005, reproduce the
Hurst effect very well in the desired interval of say,
fifty to 1,000 years, and it is reasonable to suppose that
similar results would hold for the Hurst range of independent
gamma inflows having a shape parameter m not very different
from 0.005.

It must be admitted that this shape parameter rep-
resents an unrealistically high degree of skewness. It is
possible that similar results might be obtained with a more
acceptable skewness in terms of a more flexible inflow dis-
tribution family. Work is proceeding along these lines for

the log-Normal and the non-central chi-squared families.

7. The Effect of Correlation

It would of course be completely unrealistic to pretend
that the annual increments Xi are in fact mutually independent.
The independence assumption implied in the results of Sec-

tion 5 has been forced upon us by reasons of tractability:
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that is, workers who have assumed independence have done so
in the hope of developing methods which are capable of being
generalized to deal with correlation. So far it must be
admitted that only in one case has theory proved capable
of dealing with correlated flows, namely the situation when
the Normal increments Xi are "symmetrically correlated,"”
that is where for example corr (x1,x

2
) = **+ = corr (Xn-1'xn) = p.

) = corr (x1,x3) = s =

3
No conceivable geophysical system could behave in this

= Corr X X = Corr X X
( 1[ n) ( 2I

way. The results obtained are nevertheless not without
interest, since it turns out that for the unrescaled adjusted
range the expectation is proportional to (1 - p)%, whereas in
the rescaled adjusted case (the Hurst range) the expectation

does not depend on p at all.

That such an unexpected result could exist, albeit in an
unrealistically correlated situation, must point to a need
for caution in extrapolating from the unrescaled results to

the Hurst range.
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