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PREFACE

Analysis of problems concerned with the rational use of natural resources
almost invariably deals with uncertainties with regard to the future behavior
of the system in question and with multiple objectives reflecting conflicting
goals of the users of the resource. Although effective mathematical tools
have been made available during the last decades for solving such problems,
there have only been few applications, even in the field of water resources,
which is certainly the most developed one. The major reason for this is
probably due to the fact that such mathematical tools are often quite abstract
and sophisticated and are therefore of little help for the practitioners.

For these reasons, one of the issues addressed during the summer study
"Real-time Management of Hydrosystems" organized by the Resources and
Environment Area of IIASA in 1981, was the possibility of developing simple
and heuristic methods for reservoir management that could directly take into
account the experience and the preferences of the manager. The research was
mainly conducted with reference to the case of Lake Como, for which substantial
data were available. This paper describes a new approach towards operational
management of a multipurpose reservoir, which explicitly takes into account
the risk-adverse attitudes of the reservoir operator. An interesting com-
parison is made between operation rule developed this way and the other one
developed earlier based on some stochastic optimal control concepts.

Janusz Kindler

Acting Leader

Institutions and Environmental
Policies Program
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ABSTRACT

A deterministic approach which avoids extreme failures in the management
of a multipurpose reservoir is presented and discussed in the paper. The
main feature of the method is to suggest a whole range of possible decisions
which guarantee the efficient performance of the system. This allows the
manager to choose the release which better fits with the additional infor-
mations or forecasts he might have, as well as to accommodate for secondary
objectives which were not considered in the formulation of the problem. The
results of the application of this approach to the management of Lake Como
(Northern Italy) favourably compare with those obtained by a more traditional
stochastic optimal control formulation and with the historical data.
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A RISK-ADVERSE APPROACH FOR RESERVOIR MANAGEMENT
WITH APPLICATION TO LAKE COMO

G. Guariso, S. Orlovski, and S. Rinaldi

1. INTRODUCTION

Actual operation of multipurpose reservoirs seems to prove that in
most cases there is no great interest in optimizing the expected value
of the objectives, as usually proposed in the literature (e.qg. /1/,/4/,
/5/). On the contrary, reservoir operation is very often aimed to avoid
extreme and unacceptable failures of the objectives when the system is
under stress. This is why reference is often made to very specific situa-
tions like "the most dry (wet) year of the century", "the highest record-
ed flood" and so on. In fact, it seems that managers, when selecting an
operating rule, prefer to evaluate its performance by making reference
to a particularly severe episode (or sequence of episodes), they have di-
rectly or indirectly experienced in the past. Consistently, in order to
be safe, managers like to adopt that operating rule wnich best performs
during that particular reference episode even if this entails a reduction
of the average performance of the system.

Lake Como in Northern Italy is no exception. When the results of a de-
tailed optimization study /3/, based on stochastic optimal control, have
been presented to the manager, he recognized that he was not completely
satisfied witn the three objectives selected in that study (mean yearly
agricultural deficit, average number of days of flood per year, and mean
yearly hydroelectric production). Being risk-adverse, the manager showed
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a definite preference toward the possibility of avoiding failures of the
system during severe and extreme hydrological episodes, like those he has
experienced in the past.

This paper, which extends and applies some of the results illustrated
by Orlovski et al,/6/ for storage control problems, represents a first
attempt to define operating rules which better account for this facet of
the management attitude. The paper is organized in the following
way. Next section describes the main physical, economic,and institutional
features of Lake Como system. Sect. 3 introduces a deterministic (min-max)
formulation of the risk-adverse management problem, while Sect. & briefly
describes the application to Lake Como and compares the results with those
obtained using the stochastic apnroach. The main characteristics of the

min-max approach and some possible extensions are dealt with in the last
section.

2. THE ACTUAL OPERATION OF LAKE COMC

Lake Como is a natural lake which drains a basin of 4508 km2 in the
central part of the:Alps. It is opérated as a multipurpose reservoir since
the end of Wold War II and serves a number of downstream agricultural and
hydroelectric users. Theb1ake works as a seasonal reservoir with an annual
cycle. It is filled during the snow-melt season(late spring-early summer)
and emptied during the dry season (July-September) when water is needed for
the irrigation of downstream areas. Then , it is filled again with autumn
rains and slowly emptied during winter and spring for hydropower production.
One of the main reqgulation problems is to prevent floods at the lake sites,
particularly in the town of Como, which is the most densely popu-
lated area of the lake coast. At present the data necessary to develop a
reliable cost—behefit analysis for the determination of the best operating
rule are not available. Thus, the most natural approach is to model the pro-
blem as a multiobjective decision making procéssin which all benefits and
damages are expressed in simple but representative units. The physical in-
dicator selected to represent the satisfaction of the agricultural users
is the total annual water deficit D expressed in millions cubic meters. A

deficit situation occurs whenever the release from the lake during day t



falls below the crop water demand W_s which is periodic during the

year and obviously peaks in summer (see Fig. 1). The damages incurred
by the municipality of Como (interruption of public services) can be
indirectly quantified by the number F of days of flood per year, i.e.
by the number of days in which the level of the lake exceeds that of
the shore. Finally, as far as downstream hydropower production is con-

cerned, a previous analysis (performed by Guariso et al./3/)has shown that
it is rather insensitive to variations of the operating rule: for this
reason this aspect of the problem will not be considered in the follow-
ing.

When operating the regulation dam, the manager is constrained by a
license act issued by the Ministry of Public Works. This act, agreed
upon by all parties, states that the daily release r. can be freely selec-
ted whenever the lake Tevel x_ at the beginning of day t is between two
Timits x and X, which correspond respectively to -0.50m and 1.20m, as mea-
sured at the Fortilizio hydrometer. For this reason the interval (x,x)
will be called control range in the following. When the level of the lake

reaches the lower 1imit x of the control range, the release r. must be
equal to or smaller than the inflow a_ so that the level does not decrease
further (this constraint was imposed by the Ministry of Public Works to
guarantee navigation and prevent sanitary problems). When, on the contrary,
the level of the lake raises above x, the manager must progressively open
all the gates of the dam, in order to discharge as much water as possible,
thus preventing too large floods on the lake shores.

A detailed statistical analysis(carried out by Garofalo et al./2/)has
shown that the operation performed by the manager during the period 1946-78,
can be satisfactorily approximated by an operating rule of the type

i _ i i
re = r(r,xT,aT)
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where X
: T

represents the storage (level)of the lake at the béginning of day
t in year i, and riiand al are the release and the inflow in the same day.
The function r can be represented, for any particular day, as in Fig. 2
(for simplicity from now on the index i is omitted in the figures). The
actual operating rule is thus increasing and convex with réspéct to xl

in the control range, and is such that

where S(xi) is the so-called stage-discharge function of the lake. This
function gives, for any value of the level, the maximum amount of water
which can be released in one day by keéping all the gates of the dam per-
manently open.

3. A MIN-MAX APPROACH

3.1 Problem formulation

The risk-adverse management problem will be formulated in this section
as an optimal control problem, the solution of which guarantees a certain
performance in terms of the objectives. The optimal operating rules r(-)
will be selected by making explicit reference to their performance in par-
ticularly troublesome and specific situations formally defined by a set I
of n one-year long daily inflow sequences, i.e.

I = {{al} s £=0,...,366 3 i=1,....n}

This reference set may contain recorded or synthetic sequences of in-

flows that the manager considers as particularly critical. For instance,
in the case the reservoir is already in operation, one might consider as
sequences of the reférence set those corresponding to the most wet and dry
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Figure 2. Actual operating rule of Lake Como.



years experienced by the manager. In doing so, the proposed operating
rules may also be compared with the performance the manager was able to
achieve in practice. Let us now indicate with Di and Fi the water deficit
in agriculture and the number of days of flood obtained by applying an
operating rule r(-) during year i(i=1,...,n) of the reference set. The
value of D' is the sum over year i of the daily water deficits dl given
by

1>w
T —

0 if r

T

j
dt=gi i
W_-r ifr. <w
T T T T

Consistently, F' is the sum over year i of the flood indicators fl
given by

. i
; 0 if X i_xc

. i
>
1 if XL xC

where Xe is the level at which there are the first detectable flood

damages (in our case the level of the main square of Como). Thus the
problem can be formulated as a two-objective optimal control problem,
in which the highest water deficit (max Di) and the highest number of

days of flood (max F1) are minimized,ithat is
i

min max D’ max F'

{Xo,r‘(')} 1<i<n T<i<n

(1)



where XO is a set of initial storages with non-empty intersection with
the control range. The constraints of the problem are:

the continuity equation of the lake

l+1 = xl + al - rl t=0,...,364 1i=1, ...,n (2)

the physical constraint

0 < rl.s S (xy) t=0,...,364 i= 1, veuyn (3)

the legal constraints
i

Xg 2 X t=0,...,364 i=l,...,N (4a)
moasixdy aexdsx £0,...,364  i=1,...,n /)
t t t 590093 =l gas ey
and the terminal constraint

i .
X365 € XO i=1,...,n (5)

This last constraint is imposed in order to avoid that a good per-
formance in one year is followed by a very poor performance in the next

year.

A feasible solution of problem (1-5) is a set X_ (X N[x,x]# §) of ini-

tial storages and an operating rule r(.) satisfying constraints (2-5). In
general, the operating rule r(.) will be a function of the information

currently available, i.e.



i i i L1 i 6
rT - Y‘(T, XT, a't, DT, FT) ( )

. o=1 . _
where D! = Et dl is the current water deficit in agriculture, and
T
0
.i
ft _
,r(.)) is said to be efficient (or non dominated) if all other

3 T
FT N gt
tion (X

is the current number of days of flood. A feasible solu-

0

feasible solutions have at least one objective with a worse value.
In order to solve problem (1-5) we will first analyze two simpler

problems. The first one (see Sect. 3.2) is called satisfaction of demand

and consists of determining sets XO of initial storages, and operating
rules of the form

i i i A X

res r(t, x 1 8 DT ,» D7) (7)
which are such that constraints (2-5) are satisfied and all yearly
water deficits Di are bounded by a given value 5*, i.e.

' ¢ o i=1, ... (8)

The second problem (see Sect. 3.3) is called flood protection and con-
x

sists of finding sets Xg of initial storages, and operating rules of

the form
i i i i K
re=r{t,x_ ,a ., F,F) (9)

which can guarantee that the number of days of flood at the end of

all reference years will be at most equal to a given value F*, i.e.
Floe ¥ i1, eeuyn (10)
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The solutions of the two above problems will automatically point out
(see Sect. 3.4) operating rules of the more general form
ik

i i g ¢
r.= r{t, Xis A DT, FT, D™, F7) (171)

which can guarantee the satisfaction of both constraints (8) and

(10) at the §ame time. Aﬁong this set of operating rules, a very simple
procedure (see Sect. 3.5) will determine those which can guarantee the
minimum value of ?*(say FO) for any given value of 5* (say Do). These o-
perating rules obviously solve the multiobjective problem (1-5) and are
therefore efficient in the sense specified above. In general, these ef-

ficient operating rules are not unique. Thus, given the current value

i

T Dl, Fl) the solution algorithm suggests a

of information (t, xi, a
whole range of possible releases ri. This means that, in normal condi-
tions, the manager has still a certain freedom in making the final
decision. He might, for instance, take into account secondary objectives
which were neglected in the formal description of the problem. However,

we will see that when hydrological conditions become critical, i.e.

when the reservoir is almost empty or full, this freedom might disappear.

3.2 Satisfaction of demand

-— v e e e e = — ——— — -

Let us now consider the problem of demand satisfaction, namely the pro-

k X
blem of determining a set of initial storages Xg (XEI\[&,X]# p) and a set
of operating rules of the form (7) which can gaurantee the satisfaction

of constraint (8). Obviously, solutions to this problem exist at least
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for sufficiently high values of d*. One of these solutions is the so-

called minimum release policy which corresponds to discharge during

day T an amount of water which is as close as possible to the agricul-
tural water demand W Taking into account all physical and legal con-

strains, it is easy to check that such a policy is given by (see Fig.3)

- minfal,S(x) } if x] = x
X . . -1
S(xl) if x<xp< ST(w)
ce o1 i =
i i X < X 12
S R I if 57 (W) € x! (12)
min > % . ; ) sl
min{max(aT,wT),S(x)} if x =X
i P
S(xT) if X, > X

where S'] (+ ) denotes the inverse of the stage-discharge function.

Notice that the minimum release policy does not fully exploit the infor-

mation currently available since it does not depend upon Dl and D*
*

The set XS corresponding to the operating rule (12) can easily be de-

termined by recognizing that the yearly water deficit in agriculture ob-

tained by applying a given operating rule is a non increasing function
_ X
of the initial storage x,. Thus, the set XE will have the form

d*
Xy = {x, : xo(D ) ¢ x_ 1} (13)

where the Tower limit Xg (5*) is the solution of the following mathema-

tical programming problem.

Problem 0

xg (D*) = min x (14)



- 12 -

T
77
< stage-discharge function S(x,)
w
-
w
o
>-
=
<
o e
7~
e
7~
~
/——water demand _ ///
- r_.=w
W, L - / T T
- |
-7 Ae——— control rangeg ———— |
r.=a
T % |
X -

STORAGE (LEVEL) OF THE LAKE

Figure 3. The minimum release policy rmin(T’XT’aT)'



- 13 -

subject to
i - .
Xg = %S X i=1T1,...,n (15)
i i i i _ .
Xep1] = X¢ * 2 rmin(t’xt’ at) t=0,...,364 i=1,...,n
(16)
364 . * .
i .
Iy dp €D : i=1,...,n - (17)
0
i .
Xq € X36¢ i=1,...,n (18)

The solution of Problem 0 can simply be found by recursively simula-
1 .
t " rmin( )

the initial level Xqt If, at the end of a simulation, constraints (17) and/

ting the behaviour of the lake with r for different values of

or (18) are not satisfied,x0 must be increased before performing the
next simulation. If, on the contrary, Egs. (17) and (18) are Satisfied
with the strict inequality sign,xo must be decreased. Thus, a very simple

one-dimensional searching procedure (e.g. bisection) can be used to
determine XE(D*).

.i

Operating rules r(t, xl, al, DT, 5*) satisfying constraint (8) can

be found by noticing that the release during day t must guarantee that

the water deficit for the rest of .the year will not exceed (D’i Dl)

. x
and the terminal storage x;65 will fall within the set Xg . But this,

in turn, can be accomplished provided that the level of the lake at
the beginning of day t does not drop below a minimum value, denoted by
xE(D*; Dl), which can be computed by solving the following mathematical

programming problem.
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Problem t (t=1, ..., 364)

D, X i, _ . -
X (D™, DT) = min x_ (19)
subject to
x; = x_ i=1,...,0 (20)
i i, i i .
Xg =% rmin(t’xt’at) t=15...,364 i=1, >N (21)
364 .
1 X i _
zt dt <D DT i=1T,.0.5n0 (22)
D,-% i .
XO(U ) s X365 i=1, s N (23)

This problem can be solved by the same one-dimensional searching scheme
used for Problem 0. Note, however, that the solution of Probliemt requi-
res the knowledge of the value xg(d*) (see Eq. (23)). Thus, Problem 0
must be solved first, while all other Problems t (t=1,...,364) are

independent one from each other.

Finally, one can notice that a volume of water greater than the cur-
rent demand w_ocan be released without any consequence on the manage-
ment performance, provided the lake is sufficiently full and/or the inflow

is sufficiently high. In fact, if

i i D X i
X +ta_ =X (D7, DT) 2 W (24)
any release rl between W and xl + al - x2+1 (d*, Di) will leave

the current value of the water deficit unchanged (in fact if rlz_wT, then
T

DT+1— Dl). Moreover, if the release rl is Tower than or equal to
i, i D % i, . i, i D X i A
X+ a- xT+1(D ,DTl =X +a- xT+](D ,DT+]), it will generate a sto-
i i1 D G C e e
rage x_,q= X +fa. - r. z_xr+1(D R DT+1), which is indeed (by definition)
1

the minimum value of X141° which can guarantee the satisfaction of the

objectives (see Eqs.(19-23)). On the contrary, if the lake is so empty
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( i i
min'®’ X'r ’a‘r)

of water js discharged and the current value of the deficit is updated.

, i . .
that a release ro 2w is infeasible, then an amount r

A1l this can be summarized (see also Fig. 4) by saying that any release

rl such that

i i i : i i, i D
roin(TeX s aL) r.s min {S(x_),max [xT+aT-xT+](

A

(25)
will satisfy constraints (5) and (8). In other words, given the current
i

information (r,xl, al, DT ) and the required performance d*, all opera-

ting rules which satisfy Eq. (25) will guarantee that x;65 € Xg*and Dis D*
for all years i. Fig. 4 shows that for sufficiently high values of the sto-
rage xi this implies the existence of a whole interval of feasible releases
ri . On the contrary, if the lake is too emPty Eq. (25) suggests a unique

. 1
1
V UE 0 the e e Se, y m1n( ] T, T)

3.3 Flood protection

- aa, e s e —— —— ——

X
The problem of flood protection consists of finding a set XE of initial

storages and a set of operating rules of the form (9) satisfying constraint
(10) for a given value of F*.In order to solve this problem we follow the
same approach outlined in Sect. 3.2. Therefore, we first introduce the

maximum release policy

minfal, s(x)] it x

- =4 =
!
—
N
(o2}
~—

i iy, . . :
rmax(xr’ aT) - S(xl) if x
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which obviously minimizes the floods. Then, we notice that the number

of days of flood F' is a non decreasing function of the initial storage

X
Xqys SO that the set XE is of the form
X
F* [
Xy =1 X5 x5 g % (F) (27)
where the upper limit xg(F*) can be obtained by solving a mathematical

programming problem similar to the above Problem 0. Then, the value xg(F*)

is used to formulate Problem t ( 1= 1,...,364) which specifies the

maximum storage at time t, called xz(F*, Fl),for which there exist opera-

ting rules of the form (9) which can guarantee no more than (F*

;
- Fr)
days of flood during the rest of the year and the satisfaction of the

F, oK

terminal constraint x;65.e Xz . These storages xT(F s Fi) » T=1,...,364

T

allow to define a lower 1ihit to the daily release from the reservoir.
More precise]y,'one must notice that the release ri can be smaller than
rmax(x:, a:) provided the lake is sufficiently empty and/or the inflow
is sufficiently low. In fact, if

i i F x i i
x +a -x_ g (F%, F1) g S(x]) (28)
and
F x i
XT+1(F ? Fr) < X (29)

(recall that X, is the threshold level defining the flood), then any

release r'  between x| + a - xF (F*, F1) and S(x1) will not give rise to
T T T +] T T
. e e N .
a flood since x 1 S X (i.e. FT+] = FT). Moreover, the same release will

F x i
t+] ¢ Fos FT+1

is indeed the maximum value of xl+], that can guarantee the satisfaction of

generate a storage Xl+] smaller than or equal to x ), which

constraint (10). Conversely, whenever inequality (28) 1is not satisfied,
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the release is set to the maximum feasible value S(xl) and the value
of Fl+] is suitably updated. These observations can be summarized (see
also Fig. 5) by saying that any release rl such that

i F y G

N I 1' i
min{r, (x5 a ), max [x +a_-x_ (F, F), 0]}s ros o (x5 a) -(30)

will satisfy constraints (5) and (10).

Fig. 5 shows that for high values of the inflow al the straight
. i_ i, i JF X i . s .
11n? rT = xT+ a_ xr+1(F ,FT) may intercept the stage-discharge function
S(xl) at a point ir with §T<§. In such a case the manager would open
the gates of the dam even if he is not strictly obliged to do so by the
license act. This has been actually done by the manager of Lake Como

during the past few years.

3.4 Satisfaction of demand and flood protection

Let us now consider the case in which the manager wants to guarantee
specified values (ﬂ*, F*) of both the objectives (for example, D* and
?* could be a percentage of the worst recorded values). If solutions
to such problem exist, they will be constituted by the interceptions of the
sets of initial storages and operating rules which solve the problems of

demand satisfaction and flood protection. Thus, the set of the initial

storages is specified by (see Egs. (13) and (27)):

while the release rl is constrained by (see Egs. (25) and (30))
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. i i F ek i
min{r . (x_, a_),max [xT+aT-xT+](F , FT),O]}S r.
(32)
. i i i D v S i i
< min{ S(xT),max[ x tas=xz (07, Do),ros (Texo a_)]}

This means that very often there is the possibility of choosing the
release in a relatively wide range (shaded area in Fig. 6), but this
freedom vanishes whenever the reservoir is too empty or too full, namely
when the achievement of one of the two targets (d* or ?*) becomes cri-
tical. It is interesting to note that the operating rule shown in Fig.é
(which best interprets the data of the period 1946-1978) falls in each
day of the year within the shaded region shown in Fig. 6 or remarkably

close to it.

3.5 Efficient solutions

We can now point out a simple procedure for determining the efficient

(0]

solutions (DO, F”) of the two objective Problem (1-5).

For this, let us suppose that a value D° of water deficit in agri-
culture is fixed. Thus, the set of initial conditions and the set of

operating rules which can guarantee the satisfaction of the terminal
. 0 .
constraint X;65 e,X% and of the target D' < D° are given by Egs. (13)

0
and (25) with D*'= D°. The Towest storage within the set Xg and the highest

0

release satisfying Eq. (25) obviously minimize the number of days of flood.

Therefore, one can simulate the behaviour of the lake with initial sto-

rage xOD(DO) and operating rule
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i i i, i_.D 0 i i_i
yr = min {S(xT), max[xT+aT xT+](D s DT), rmin(r,xT,aT) ]}
for all the inflow sequences of the reference set. Thus, a certain num-
ber of days of flood F' is obtained for each sequence i and obviously
FO = max F'.

i

The efficient pairs (Do, Fo) could also be found by fixing the value
FO and searching for Do, which simply implies to simulate the behaviour

of the Take starting from xE(FO) with the operating rule given by the

lower bound of Eq. (30) with FX = F°.

Once an efficient pair (DO, FO) of the objectives has been found, the
efficient operating rules and the set of initial storages are simply

X R

determined by substituting D° and F° for O™ and FX in Egs. (31) and (32).

4. APPLICATION TO LAKE COMO

In the case of lake Como, the min-max approach outlined in the previous
section has been reduced to the following sequence of operations perfor-
med off-1ine. The seven most critical yearly inflow sequences of the
period 1946-1981 were chosen to define the referenze set I. Problem 0 was
solved for different values of D* by simulating the system behaviour for
different values of the initial storage X4 selected by a one-dimensional
search. It turned out that no solution existed for D* smaller than 600
million cubic metres and that xB(GOO) = X (obviously xg (D*) = x for all
D* > 600), which means that constraint (23) in Problem <t is a priori

satisfied. In other words, 1in the case of lake Como, xE (D
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is only a function of (D*
to determine xE(D*

- Di). This peculiar characteristic allows
, Di) in the following very simple way. For each
initial level X, in the control range, simulate over the rest of
the year the behaviour of the lake with the operating rule rmin(T’xi’ai)
for each inflow sequence i of the reference set, and store, as shown

in the table of Fig, 7, the maximum deficit obtained in this way.

This value corresponds to the smallest deficit (D*-Di) which can be gua-
ranteed from that day on. By inverting the table of Fig. 7, one can compu-
te the function xE(d*,Di) = xE(D*;Di), which in this case is shaped as in

Fig. 8.

In a very similar way one can determine the function xF('* Fi) needed
to solve the flood protection problem (see Sect, 3.3). In fact Problem O

showed that it is not possible to guarantee less than 18 days of flood

X
per year and that xE(]S) = X, which implies xg(F*)a x and [i,ilczxg for
any F* > 18. Since no flood ever happened in the history after November

15 neither one flood lasted more than ten days, the storage at the end
of any year always falls within the control range and thus the terminal

constraint is a priori satisfied also for the flood protection problem

and xg(ﬁk, Fl) F(F* F! ) One can thus simulate the behaviour of the
i
max(xt’ aT) for

each inflow sequence of the reference set, and determine the maximum number

system with initial level xTand maximum release policy r

of days of flood over the rest of the year as shown in the table of Fig.9.



INITIAL STORAGE x, [cm]
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120

100

Figure 7.

The maximum agricultural deficit obtained by simulating the
system behaviour in the period from t to the end of the year.
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This table represents a step-wise function since the number of days
of flood is an integer. It appears from Fig. 9 that there are large
areas of indifference in the space (t ,xT). For example, it is not
possible to guarantee less than 18 days of flood per year, but this
value can be obtained for all initial storages X, in January and Fe-
bruary. Lower storages should be used during the snow-melt season

to achieve the same performance, but again the maximum number of days
of flood is rather insensitive to the lake storage in June and July.
These seasonal variations are in perfect agreement with the historical
data. By inverting the table of Fig:. 9, one obtains the function

X F, ok i

xF(F, F'y = x"(F"-F!) which is shown in Fig. 10.
T T T T

Figs. 8 and 10 contain all the information necessary to find out the

efficient solutions (Do, FQ)

of the risk—adverse management problem
(1-5), provided the procedure outlined in Sect. 3.5 is used. The set

of these efficient solutions is shown in Fig. 11 in the space of the
objectives. In the same figure one can find the performance of the
historical management (point H corresponding to an agricultural deficit
of 750 million cubic metres and to 45 days of flood) and the "utopia"
point U, which represents the independent and hence infeasible optimum
of the two objectives (600 million cubic métres of deficit and 18 days
of flood). Finally, point P represents the performance of the opera-
ting rule obtained by means of a classical stochastic approach and discus-
sed in Guariso et al, /3/ (see below). Among all efficient solutions,
the closest to the segment HU ( see point X) has been suggested to the
manager, This solution is clearly superior to the historical mana-
gement, Indeed, improvements of 17% and 52% are npossible for the
maximum yearly agricultural deficit and the maximum yearly number

of days of flood, respectively. On the contrary, the difference
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Figure 11. Feasible solutions (horizontal lines) and efficient solutions
of the min-max approach: point X is the proposed solution and
point P is the solution of the stochastic approach.
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between point X and point P is only moderate. The stochastic approach
would have in fact caused an agricultural deficit of 623 million cubic
metres in the worst case, namely only 1% more than what achieved by the
suggested min-max efficient operating rule. The difference between the
deterministic and stochastic approach 1looks somehow greater when floods

are considered (see Fig.’11).

As already mentioned, the stochastic approach followed by Guariso et
al. /3/ models the decision making process as a multiobjective opti-
mal control problem, but this time the objectives are the mean values (E[-])
of the yearly water deficit in agriculture D and of the number F of days
of flood per year. More precisely,the problem is given the following for-
mulation

min |E[D] E[F] |
{P}
subject to the continuity equation
X = X

4] = Xp Fag 7 r(ts xgs 2, P

where the function r is a family of operating rules periodic over the
year, p is a vector of unknown parameters to be determined through opti-
mization, and{af}is a one-year ciclostationary stochastic process.
Clearly, the operating rules of the class r(t,xt,afp)satisfy all legal and

physical constraints of the problem.

The efficient solutions can be found by simulating for different values
of p the behaviour of the system for a sufficiently long real or synthetic
sequence of inflows: The parameter p is varied by means of a suitable cri-
terion til1 the minimum value of E[F]is achieved for any fixed value p°

of E[D]. Thus, the set of efficient solutions can be obtained by para-
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metrically varying D°. The results obtained by using the recorded se-
quence of inflows in the period 1946-1981 are summarized in Fig. 12,
which shows all the efficient solutions and the absolute (and inde-
pendent) minimum values of the objectives (utopia point U'). In this
figure points H and X represent the performance of the historical mana-
gement and of the suggested min-max operating rule in the same

period. Finally, point P corresponds to the efficient operating rule sug-
gested by Guariso et al. in /3/. It can be noticed that point P repre-
sents a substantial improvement with respect to the historical manage-
ment. On the average, the agricultural deficit is reduced by 55% while the
number of days of flood is 50% lower. On the contrary, the operating rule
suggested by the min-max approach produces, in the average, much smaller
improvements. In fact point-X falls about half way between point P and

point H.

Some interesting conclusions can be drawn from these comparisons. First,
despite the apparent risk-advérse attitude of the manager, the histo-
rical data show that the past management does not seem to be closer to
the solution suggested by the min-max analysis than to that of the
stochastic approach. Second the performance of the risk-adverse approach
is rather poor in terms of mean values of the objectives, while the
stochastic approach seems to guarantee a satisfactory performance even
when the system is under stress. For example, during the four most wet
years of the reference set we would have 20, 20, 20 and 19 days of flood
with the min-max operating rule, and 25,21, 19, and 10 days of flood with

the stochastic approach. However, it is worthwile to notice that the min-
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max approach is certainly more flexible than the other one, since it of-
ten allows to select the release within a specified range. This gives

the manager the possibility to accomodate for secondary objectives,a fact
that would require a complete reworking of the problem if the stochastic

approach is followed.

5. CONCLUDING REMARKS

A deterministic (min-max)approach for the daily operation of Lake Como
has been presented in this paper and Compared with the more classical
stochastic approach and with the historical data. The proposed operation,
which is defined with the perfect knowledge of one day ahead inflow, per-
forms much better than the historical one and about the same as the opera-

ting rule obtained through the stochastic apprcach.

The main characteristic of the deterministic methoua is that the daily
release it not completely specified by the algorithm. Only a lower and
an upper bound (see Fig. 6) are suggested to the manager who has still
the freedom to select the final value of the release depending upon his
judgement on the current and future situation of the system. Of course when
conditions become critical (i.e. when the lake is almost empty or almost
full) this slack disappears and the algorithm suggests a single value
for the release. This value is the only one that would guarantee the pre-

scribed performance if the future inflows would be one of the yearly se-
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quences of a specified reference set.

Qbviously, in the real application of the method future inflows can only be
forecasted, so that this "guarantee" has no precise meaning. Nevertheless,
the real performance of the system will strongly depend upon the repre-
sentativeness of the reference set. This does not necessarily mean, how- .
ever, that in order to improve the solution one should increase the num-
ber of inflow sequences in the reference set. This would in fact increase
the time required to compute all the necessary tables. A more interesting
suggestion to better the performance of the system is to use an "adaptive"
reference set, which simply contains the sequences which are considered
more significant for the current year. For example, if during a particular
year, the snow-melt is over by May 30, there is no interest in considering
after that date all those sequences in the reference set which have inflow
peaks 1in June. This would imply, however, the use of an on-line computer to

determine the feasible releases in real-time .

The final conclusion of the paper is that both the stochastic approach
and the min-méx approach seem to answer, in some way, to precise require-
ments of the manager. For this reason, it is probably useful to supply
the manager with both optimal solutions. Indeed, this is what has been
done in the case of Lake Como, where the optimal operating rules have
been programmed on a microcomputer, which is used since then by the ma-

nager as an important support for the final decision.



(1)

(2)

(3)

(4)

- 35 -

REFERENCES

Duckstein, L. 1979. Imbedding Uncertainties into Multi-Objective
Decision Models in Water Resources. In: Reliability in Water Resources
Management, edited by E.A. McBean, K.W. Hipel, and T.E. Hunny. Littleton,
Colorado: Water Resources Publication,

Garofalo, F., U. Raffa, and R. Soncini Sessa. 1980. Identification of
Lake Como Management Policy. In: Proceedings of the 17th Symposium of
Hydraulic Engineering, Palermo, Italy, October 27-29 (in Italian).

Guariso, G., S. Rinaldi, and R. Soncini Sessa. 1982. The Management
of Lake Como. WP-82-130. Laxenburg, Austria: International Institute
for Applied Systems Analysis.

Houck, M.H., J.L. Cohon, and C.S. ReVelle. 1980. Linear Decision Rule
in Reservoir Design and Management 6. Incorporation of Economic
Efficiency Benefits and Hydroelectric Power Generation. In: Water
Resources Research 16(1):196-200.

Loucks, D.P. 1976. Surface Water Quantity Management Models. In:
Systems Approach to Water Management, edited by A.K. Biswas. New York:
McGraw=-Hil1.

Orlovski, S., S. Rinaldi, and R. Soncini Sessa. 1982. A Min-Max Approach
to Storage Control Problems. In: Applied Mathematics and Computation
(in press).



