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PREFACE 

This paper reports on a project involving an international group of researchers. It 
continues recent trends in IIASA research which concern studies of hierarchical systems 
and optimization of stochastic systems and is a sequel to two earlier papers RR-84-4 and 
RR-84-5. 

The purpose of this sequence of reports is to demonstrate that the efficiency of 
hierarchical planning systems can be analyzed in a more rigorous fashion than has been 
customary so far. These systems are, after all, nothing more than appropriate heuristics to 
solve multistage stochastic programs. Given the obvious intractability of such problems, 
precise statements about the performance of approximation algorithms that mirror the 
top-down sequential nature of actual hierarchical decision making (i.e., based on averaging 
and aggregation until more refined data become available) are of immediate interest to 
researchers and practitioners. 

In this paper the author relates the earlier research to the latest results in parallel 
machine stochastic scheduling and stochastic programming and treats in detail some two­
level machine shop design/scheduling problems and a three-level distribution planning/ 
vehicle routing problem which is currently an object of study by the group. 

All the members of this group are active in the development of computer software 
for planning and operations management in various environments, so that in a very real 
sense this paper describes theoretical research stemming from practice. 

M.A.H. DEMPSTER 
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This paper surveys recent r e sults for stochastic discrete program­
ming models of hierarchical planning problems. Prac tical problems 
of this nature typically involve a sequence of decisions over time 
at an increasing level of detail and with increasingly accurate 
information. These may be modelled by multistage stochastic pro­
grammes whose lower levels (later stages) are stochastic versions 
of familiar NP-hard deterministic combinatorial optimization prob­
lems and hence require the use of approximations and heuristics 
for near-optimal solution. After a brief survey of distributional 
assumptions on processing times under which SEPT and LEPT policies 
remain optimal for m-machine scheduling problems, results are pre­
sented for various 2-level scheduling problems in which the first 
stage concerns the acquisition (or assignment) of machines. For 
example, heuristics which are asymptotically optimal in expectation 
as the number of jobs in the system increases are analyzed for· 
problems whose second stages are either identical or uniform m­
machine scheduling problems . A 3-level location, distribution and 
routing model in the plane is also discussed. 

1. INTRODUCTION 

Practical hierarchical planning problems typically involve a se­
quence of decisions over time at an increasing level of detail and 
with increasingly accurate information. For example, a 3-level 
hierarchy of planning decisions in terms of increasingly finer time 
units is often utilized for manufacturing operations (see Figure 
1). The first level concerns medium term planning, which works with 
projected quarterly or monthly averages and is primarily concerned 
with the acquisition of certain resources. The next level treats 
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start date horizon 
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Figure 1. 3-Level scheme for hierarchical production planning/ 
scheduling. 

weekly production scheduling, while the third level is concerned 
with the real-time sequencing of jobs through various machine cen­
tres on the shop floor. The first two levels can currently be 
handled adequately by respectively deterministic linear programming 
and combinatorial permutation procedures, but the third realisti­
cally invclves a network of stochastic m-machine scheduling problems 
whose natural setting is in continuous time. 

More generally, many hierarchical planning problems can be 
modelled by multistage stochastic programmes whose later stages 
(lower levels) are stochastic versions of familiar NP-hard deter­
ministic combinatorial optimization problems. Hence they usually 
require the use of approximations and heuristics for near-optimal 
solution. For these systems, in which at the higher levels - as in 
their practical counterparts - details are suppressed and instead 
replaced by approximate aggregates, one would hope to demonstrate 
that the instances of the data for which these higher level assump­
tions are severely violated occur with increasingly negligible 
probability as the number of tasks in the system becomes large. 
Asymptotic probabilistic analysis of heuristics has therefore an 
important role to play in the analysis of hierarchical stochastic 
programming models (cf. [Dempster et al. 1981A]). 

Recently, computer-based planning systems have become porular 
for practical multilevel decision problems in a variety of appli­
cations including manufacturing production planning and scheduling, 
trade training school planning and scheduling, distribution plan­
ning and vehicle scheduling, manpower planning, crew routing and 
scheduling and computer utilization and scheduling (see, for 
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example, LDempster et al. 1981A; Dempster & Whittington 1976; 
Dirickx & Jennergren 1979; Giannessi & Nicoletti 1979; Kao & 
Queyranne 1981; Kleinrock 1976]). In principle, the performance 
of such systems can be evaluated relative to optimality for the 
appropriate multistage stochastic programming model. 

This paper primarily reports on a programme of research con­
ducted jointly with M.L. Fisher, B.J. Lageweg, J.K. Lenstra, 
A.H.G. Rinnooy Kan and L. Stougie. 

Section 2 contains a brief survey of distributional assump­
tions on processing times under which shortest expected processing 
time (SEPT) and longest expected processing time (LEPT) policies 
remain optimal for m-machine scheduling problems with appropriate 
expected value criteria. Section 3 sets out various 2-level sched­
uling problems as 2-stage stochastic programmes with recourse in 
which the first stage concerns the acquisition (or assignment) of 
machines and the second stage is an m-machine scheduling problem. 
The difficulty of exact solution of such problems is also discussed 
in §3 and representative results are quoted. In §4 results are 
presented which analyze heuristics for the 2-level scheduling prob­
lems in §3. For example, heuristics which are almost surely asymp­
totically optimal as the number of jobs in the system increases 
are analyzed for problems whose second stages are either identical 
or uniform m-machine scheduling problems. A 3-level location, dis­
tribution and routing model in the plane is discussed in §5 and 
some conclusions drawn in §6. Open problems and directions for 
further research are indicated throughout the paper. 

2. RECENT ::IBSULTS IN PARALLEL MACHINE STOCHASTIC. SCHEDULING 

This section surveys recent results for the following basic m-ma­
chine scheduling problem. 

Problem 2.1. Schedule n jobs j E J := {1, ... ,n} with independent 
random processing requirements Ej on m uniform machines i E ~~ := 

{1, ... ,m} with speeds si, subject to the usual constraints that at 
any moment at most one job can be processed by any machine and at 
most one machine can process any job. 

We may think of the processing requirements as defined relative to 
standard time units so that if job j is assigned for processing 
solely to machine i it will be completed in the random (clock) 
time £j/Si· The machine set M will be assumed to be ordered in 
decreasing order of speed so that s 1 ~ s 2 ~ ... ~ sm ~ 0. When 
si = 1, we speak of m identical machines. 

In order to complete the definition of Problem 2.1 various 
alternative assumptions may be made. These concern the nature of 
the time set, the possibility of preemption of running jobs and 
the possibility and nature of release dates or arrivals of some of 
the jobs after time zero. 
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The time set for the problem may be either discrete ( lN ) or 
continuous (IB.+l. Scheduling problems are most naturally set in 
continuous time (CT); usually a discrete time (DT) setting is 
generated by a discrete time step, for the purposes of approximation 
or simplification. It is usually not an entirely trivial or even 
straightforward matter to extend discrete time results to their 
continuous time analogues. 

Although finer classifications are possible (see, e.g., [Pinedo 
& Schrage 1982]) we shall be interested simply in whether or not 
any job currently being processed may, at any point, be interrupted 
and set aside for later processing or immediate assignment to a 
different machine. In the affirmative situation we say preemption 
is allowed, and otherwise we say the problem allows no preemption. 

In case all n jobs are available for processing at time zero 
we say that no arrivals are allowed. If some, say£ (0 < £ $ n), 
of the n jobs are not available for processing at time zero and 
are released at subsequent random times !j according to some (possi­
bly labelled) stochastic point process independent of the process­
ing requirements we speak of a problem with arrivals. In this case 
we condition the problem on the occurrence of exactly £ events of 
the arrival process. 

We shall be interested in constructing schedules which are 
"optimal" in terms of two schedule measures. Let fj denote the 
(random) completion time of job j c J under a given scheduling 
policy. Then the schedule makespan fmax is the earliest time at 
which all jobs are completed, defined by 

C :=max. {C.}, 
"1!lax JcJ ~J 

while the schedule flowtime Lfj is the sum of the job completion 
times given by 

n 
LC. : = L. l C .. 
~J J= ~J 

In the deterministic case, minimization of makespan optimizes the 
completion time of the last job, while minimization of flowtime is 
equivalent to optimizing the completion time of the average job. 
In the stochastic case, a natural schedule minimization criterion 
is in terms of the expected value of makespan or flowtime. For 
these two measures we shall also be interested in minimality in 
distribution, i.e. the probability of achieving a given makespan 
or flowtime level y is, uniformly in y, at least as great for the 
schedule resulting from the optimal policy n° as for any other n. 
For example, for all y c ill.+, 

nO 
P{C 
~ax 

i.e. 

(2. 1) 

where F£max := 1-F£max denotes the survivor function of fmax under 
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the appropriate policy. If x and y are two random variables, then 
~ is_stochas~ically dominat;d by y, written ~ <0 Z• if, and only 
if, F~(t) 5 FX(t) for all t. It is easy to see that~ <0 ~implies 
Ex $ Ey (when the expectations exist), but not conversely. 

- Choosing one of the possibilities discussed above regarding 
the time set, preemption and job arrivals - and specifying an 
optimality criterion - generates from the basic Problem 2.1 a 
stochastic scheduling problem. Since we shall allow scheduling 
decisions at t = 0 and at the epochs of subsequent job arrivals 
and completions, the resulting stochastic scheduling problems can 
be formulated as semi-Markov decision problems over an infinite 
horizon (see, e.g., [Ross 1970, Ch.4]). In this section we are 
interested in conditions on the processing requirement distributions 
under which optimal scheduling policies for these problems can be 
specified in a simple form which utilizes dynamic priority indices 
(cf. Gittins' "dynamic allocation" indices [ Gittins 1979]). At any 
moment these policies assign to each unfinished job a number - its 
priority index - and at decision epochs unfinished jobs are assigned 
to (speed ordered) free machines in monotonic order of their current 
indices. (When preemptions are allowed all m machines are considered 
free at job completion epochs.) Policies of similar form have 
recently been found applicable to a large class of related Markov 
decision problems in discrete time including 1-machine scheduling, 
search problems and multiarmed bandit and superbandit processes 
(see [Presman & Sonin 1979; Gittins 1979; Whittle 1980; Nash 1980]). 

More formally, let Ut (c J) denote the set of unfinished jobs 
at time t 2 0. Then a priority policy TI defines for each decision 
epoch t a permutation of the elements of Ut, 

TI : U 
t t 

1-1 -u, j-> TI (j), 
t t 

and assigns jobs to free machines in (speed) order according to 
their permutation (priority) order. Let Pj(t) be the amount of 
processing already received at time t by job j E Ut with processing 
requirement £j and denote by µj(t) := E{£j1£j > Pj(t)} the expec­
tation of the processing requirement remaining at time t for job j. 
The longest expected processing time (LEPT) policy is the priority 
policy which at a decision epoch t reorders jobs in decreasing 
order of µj(t). The shortest expected processing time (SEPT) policy 
is the priority policy which at a decision epoch t reorders jobs 
in increasing order of µj (t). 

Table 1 sets out currently known results concerning the opti­
mality of LEPT and SEPT policies for the variants of Problem 2.1 
resulting from the possible alternatives cited above. Since, as 
previously mentioned, makespan criteria concern minimizing the 
completion time of the last job, it is intuitively obvious that 
potentially long jobs should be processed first and hence LEPT is 
a candidate for optimizing makespan. Similarly, since flowtime 
criteria require the minimization of the completion time of the 
average job, potentially short jobs should be processed first and 
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LEPT/Makespan C 
-max ISEPT/Flowtime [ C 

. -j 

Deterministic 

Plpmtnlc (LPT) (see text) 
max 

p 11 LC. 
J 

Exponential 

PllEC } fWeiss & PllEl:C. 
-max -J 

Q\pmtnlEC Pinedo 1980] QlpmtnlEl:C. 
-max -J 

Pl IFc ? Pl IFz.:c. 
-max -J 

rconway et al. 
(SPT) 

1967, Ch.4.4] 

} 
~Weiss & 

Pinedo 19801 

? 

? Plpmtn,~ I Fe ? Plpmtn,r. IF ~c . 
~~~~·-....__~--m_a_x~~~~~~~----'~~~~-~J'---~--~J'--~~~~~~~~~ 

Geometric 

PI IEC ? PI IEZ.:C. 
-max -) 

QlpmtnlEC 
-max 

? QlpmtnlE l. C. 
-) 

Pl I Fe 
-max PI IFz.:c. 

-J 
? 

P lpmtn, r. IFc 
-J -max 

Plpmtn,_r. IF i:f. ? 

Log Convex Similar 

PlpmtnlFc }OT [Weber 1979] 
_max PI I Fz.:c. 

Plpmtn,r. IFc CT rweber 1981] -J 
- _max 

ICR Similar 

P lpmtnlEC 
-max 

OT [Weber 1979] 

CT [Weber 1981] 
Pl IEZ.:C. 

-J 

Log Concave Similar 

Pl IFc }OT [Weber 1979] -
;:::;max PlpmtnlFz.:c. 

Plpmtn,r.IFc CT [Weber 1981] -J 
- -max 

OCR Similar 

PI IEC 
-max 

DT [Weher 1979] I 
PlpmtnlEZ.:C. 

CT [Weber 1981]1 -J 

!Gittins 1981] 

? 

? 

? 

OT I weber 1979 J 

CT [Weber 19811 

OT [Weber 1979] 

CT [Weber 1981] 

OT !Weber 1979] 

CT [Weber 1981] 

OT [Weber 1979] 

CT [Weber 1981] 

Table 1. Sununary of independent processing requirement distribu­
tions under which priority policies optimize makespan and flowtime 
criteria for multimachine scheduling. 
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SEPT is the obvious candidate for an optimal policy regarding 
flowtime. 
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Problems in Table 1 are specified by a natural modification 
for stochastic problems of the 3-field problem classification 
alBJy currently in use for deterministic scheduling problems. The 
fields a, B and y refer respectively to the machine environment, 
job characteristics and optimality criterion. (The reader is re­
ferred to [ Lawler et al. 1982] for more details.) As mentioned 
above, we are interested here only in identical (P) and uniform 
(Q) parallel machine environments. The job characteristics of in­
terest are whether preemption is permitted (pmtn) or not (blank 
field) and whether random release dates corresponding to an arrival 
process are specified for all jobs (Ejl or all jobs are available 
at t = 0 (blank field). Results for two stochastic optimality cri­
t e ria are reported for both makespan and flowtime, viz. minimiza­
tion in expec tation (e.g. EL£jl and in distribution, i.e. with 
Eespect to the partial ordering of stochastic dominance (e.g. 
F£max> (cf . (2.1)). Since the families of processing requirement 
distributions for which results have been obtained have fairly 
complex specifications for which no acronyms - or even terminology 
- have been generally agreed, distributional assumptions have not 
been incorporated in the symbolic problem c lassifications (for the 
opposite approach see [Pinedo & Schrage 1982 ] ). Table 1 reports 
only the best results obtained to date; no attempt has been made 
to supply complete r e ferences on a problem (but in this regard see 
[ We ber 198 1; Weiss 1982] ). In order to appreciate the information 
contained in Table 1, some remarks are in order. 

First notice that for the deterministic problem Pl JLCj the 
priority policy shortest processing time first (SPT) is actually a 
list scheduling policy - jobs may be placed in order (of increasing 
pro cessing requirement) at t = 0 and assigned to machines as they 
be c ome free in this order without subsequent permutation - and 
hence it may be implemented in O(n log n) running time. Since re­
maining processing requirements decrease linearly with processing, 
the SPT order of unfinished jobs never changes and hence reordering 
of Ut and preemption are never required to optimize flowtime. On 
the other hand, the largest processing time first (LPT) order of 
unfinished jobs will of course change with processing, and hence 
the LPT list scheduling policy is easily seen to be suboptimal for 
the NP-hard [Karp 1972] nonpreemptive problem PJ JCmax· 

The preemptive problem PlpmtnJCmax is usually solved by 
McNaughton's wrap-around rule (see, e.g., [Baker 1974, Ch.5.2.1]) 
which yields the optimal value 

where 

0 
C = max{P /m,p }, 

max n max 

p 
n 

n 
: = L. 1 p). I 

J= pmax 

(2.2) 

(2. 3) 
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in O(n) time. This algorithm gives only one of many optimal sched­
ules and, although it creates at most m-1 preemptions, makes no 
attempt to minimize this number. The problem of minimizing the 
number of preemptions is in fact NP-hard. Alternatively, an optimal 
schedule can be obtained by a simple preemptive LPT priority policy, 
which is based on processor sharing. The algorithm may be described 
as follows. Arrange the jobs such that Pl ~ ... ~ Pn· At time zero 
start processing jobs 1, ... ,m', where m' = max{j IPj =Pm}; if 
m' > m, a number of jobs with processing requirement Pm must equal­
ly share a (smaller) number of machines. The next decision epoch 
occurs when the remaining processing requirement of another job 
becomes equal to that of a job with initial processing requirement 
Pm· Then repeat, with remaining rather than original processing 
requirements. Apply McNaughton's rule in each of the intervals 
generated to resolve processor sharing. All this requires O(n 2 J 
time. 

In the case of deterministic uniform machine problems, QI ILCj 
and Qlpmtnl[Cj can be solved in polynomial time by appropriately 
modified SPT policies, and QlpmtnlCmax is still solvable in O(n) 
time given an LPT ordering of the jobs (see [Lawler et al. 1982]). 

By virtue of the memoryless property of the exponential dis­
tribution, for exponentially distributed processing requirements 
the expectation of the remaining processing requirement is always 
equal to the expectation of the original requirement. Hence pre­
emption may be expected to be irrelevant and, in the parallel 
machine case, jobs may be initially monotonically ordered in terms 
of expected processing requirement and both LEPT and SEPT imple­
mented as list scheduling (i.e. nondynamic priority) policies in 
O(n log n) time. This has been established in [Weiss & Pinedo 1980 ] . 
They have also given the only treatment to date of (optimal) sto­
chastic scheduling for uniform machine models. For exponential 
processing requirements, preemption will only be necessary in 
optimal LEPT and SEPT priority policies for these models to move 
running jobs to faster machines. Preemption and priority policies 
are required for all problems involving random release dates, since 
preemption and job reordering may be needed at job arrival epochs. 
Results involving optimality in distribution for problems with job 
arrival processes and exponential processing requirements are 
currently open, as (with the sole exception of the treatment of 
PJ JEL£j in [Gittins 1981]) are discrete time - i.e. geometric 
processing requirement distribution - analogues of the Weiss-Pinedo 
results. Nevertheless, sufficient is known about various stochastic 
scheduling problems with exponential processing requirements to 
begin the analysis of their computational complexity, see [Pinedo 
1982] where several apparently anomalous results are presented. 

Some definitions are in order to continue the discussion of 
Table 1. The completion rate hp of a job ~ith processing require­
ment £• density f£ and survivor function Fp is given by 
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{

f (tl /F (tl 
h (tl := £ E 
£ f (t+ll/F (tl if P 

£ £ 

if p is absolutely continuous, 
(2.4) 

is discrete. 

The distribution of p is increasing (decreasing) completion rate 
(ICR, respectively OCR) if, and only if, hp is a nondecreasing 
(nonincreasing) function on lR +· If p is absolutely continuous, 
its distribution is log(arithmically) convex (concave) if, and 
only if, log f£ is convex (concave). Alternatively, the distribu­
tion of p is said to be increasing (decreasing) likelihood ratio 
(ILR, respectively DLR). If pis discrete, its distribution is 
ILR (DLR) if, and only if, the function given by 

h (t+l)[l-h (t)]/h (t) (2. 5) 
£ £ £ 

is nonincreasing (nondecreasing). This allows a definition of log 
convexity (concavity) for discrete p. Since their completion rates 
are constant and the logarithm, respectively (2.5), of its density 
is linear, both the exponential and geometric distributions are 
simultaneously ICR, OCR, log convex and log concave. The uniform, 
hyperexponential, gamma, beta, Gaussian and folded-normal distri­
butions all have either log convex or log concave densities. 

Log convex and ICR processing requirement distributions cor­
respond to practical situations (such as are found , for example, 
in manufacturing) in which processing tends to accelerate job 
completion. Log concave and OCR distributions, on the other hand, 
correspond to situations in which work hardening of jobs occurs 
and processing tends to delay job completion (as, for example, 
with some types of faulty software running on a computer system). 
It may be shown (cf. [Weiss 1982]) that a log convex (concave) 
processing requirement distribution is necessarily !CR (OCR), but 
not conversely. (For more details on these concepts see [Barlow & 
Proschan 1975; Karlin 1968].) 

Counterexamples to the optimality of LEPT and SEPT priority 
policies for multimachine problems with arbitrary processing re­
quirement distributions are easily constructed, see, e.g., [Sevcik 
1974; Weber 1979; Weiss 1982]. What is needed to obtain the opti­
mality in expectation of these policies is that at any moment 
current processing requirements can be compared in terms of the 
stochastic ordering <0 introduced above and hence in terms of 
expectations (which generate a corresponding order). To obtain 
optimality in distribution (and entertain the possibility of job 
arrivals) current processing requirements must be comparable in 
terms of the stronger likelihood ratio ordering <LR· (If x and y 
are two random variables with densities f~ and f~ respectively,~ 
then x is likelihood ratio dominated by y, written x <LR y, if, 
and o~ly if, fx/f~ is a nondecreasing function.) This order will 
again correspond to expectation (and stochastic) order (both of 
which it implies). It follows that given the expectation functions 
of remaining processing requirements O(n2log n) running time is 
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needed to implement LEPT and SEPT as preemptive priority policies. 
For a processing requirement p, the processing requirement 

p(s) remaining after s units of processing has distribution function 
LF£(·+sl-Fe(s) l/Fp(s) and completion rate h£(•+s). The remaining 
processing requirements for !CR and OCR processing requirement 
distributions are always comparable in stochastic order, i.e. for 
all s,t either p(s) <o p(t) or p(s) >o p(t) (or both). A similar 
statement can be made with regard to the likelihood ratio order 
<LR for the remaining processing requirements generated by log 
convex (!LR) and log concave (DLR) distributions. 

The processing requirements of a set J of jobs are similar 
if, and only if, they are given by an independent collection p(sj), 
j E J, of the remaining processing requirements generated by a 
processing requirement p. Thus similar jobs have identical process­
ing requirements, but may have received differing amounts of pro­
cessing prior to the problem. 

Weiss [ Weiss 19821 has shown that when the completion rates 
hEj• j E J, are continuous, it is necessary for curre nt processing 
requirement comparability as discussed above to have either similar 
processing requirements, or processing requirement distributions 
whose completion ratio ho may be ordered in the sense of uniform 
pointwise order. Since these conditions are easily shown to be suf­
ficient for current processing requirement comparability, in order 
to obtain a best possible result (subsuming all previous ones and 
settling affirmatively the ope n problems in Table 1) a direct proof 
is needed which is based only on current requirement comparability 
in the appropriate sense and which is equally applicable mutatis 
mutandis to both continuous and discrete time. The most promising 
approach is through the Bellman-Hamilton-Jacob i sufficiency condi­
tion for o p timal stochastic control problems along the lines of the 
arguments rrom !weber 1981 ] for similar proc essing requirement 
problems in continuous time. (In fact, Weber defines current 
priority orderings in terms of completion rates rather than expec­
tations, but under the assumptions necessary for current processing 
requirement comparability, as we have seen, the two orderings are 
identical.) 

Notice that with similar log convex and !CR (log concave and 
OCR) processing requirement distributions and makespan (flowtime) 
criteria, preemption is necessary for LEPT (SEPT) priority policies 
to be optimal since - analogous to the situation for the determin­
istic PlpmtnlCmax problem - the remaining processing requirements 
of running jobs tend to diminish (increase) and at decision epochs 
LEPT (SEPT) reordering of the set of unfinished jobs may be re­
quired. For such problems processor sharing - as discussed above 
for the deterministic problem P ipmtnlCmax - is introduced in [Weber 
1981] for remaining processing requirements equal in priority. 
However, processor sharing may be resolved here - as in the pre­
emptive LPT priority algorithm for the deterministic problem - as 
a consequence of the fact that unfinished job reordering is only 
necessary at permitted decision (job arrival and completion) epochs. 
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Observe also that only the LEPT priority policy remains opti­
mal for problems with random release dates. Intuitively this is so 
because available jobs should be processed in LEPT order to mini­
mize makespan, regardless of job arrival events in the future, 
whereas SEPT order may need to be violated to minimize flowtime in 
order to take advantage of future job arrival events, cf. [Weber 
1979]. 

Finally, it should be mentioned that in [Weber 1979] a series 
of counterexamples is given to show that the discrete time results 
for similar processing requirement distributions in Table 1 are 
best possible. 

3. STOCHASTIC PROGRAMMING MODELS OF 2-LEVEL SCHEDULING 

In this section we shall consider some alternative (multistage) 
dynamic stochastic programming models of 2-level planning and 
scheduling in continuous time. In these models, the set of machines 
to be acquired or assigned must be decided at the first level 
(stage) before any processing begins at t = 0. This decision .must 
be made so as to minimize the sum of machine costs and the expected 
criterion value of an appropriate variant of the stochastic multi­
machine scheduling problem (Problem 2.1 treated in §2) which forms 
the second level (second and subsequent stages) of the problem. We 
consider second stage (dynamic stochastic) scheduling problems 
which are variants of QlpmtnlE£rnax and Q\pmtnlE Lfj· Even under 
distributional assumptions on processing requirements which guar­
antee the optimality of LEPT or SEPT preemptive priority policies 
for these problems, we shall see that a closed form expression of 
second stage cost - which is required to calculate the optimal 
first stage decision utilizing the usual dynamic programming method 
of backwards recursion - is not readily available. 

Let M denote a set of m uniform machines with ordered speeds 
Si (as in §2) and costs ci ~ 0, and suppose that the n jobs of the 
set J of jobs to be processed have independent processing require­
ments £j with means E£j· Denote by£:= (£1•·· ·•£nl the vector of 
nonnegative processing requirements and by c(~) := Li EM Ci the cost 
of employing the IMI machines in M c M. At the second level we 
shall permit (as before) preemptive scheduling policies TI with 
decision epochs at t = 0 and subsequent job completions. All jobs 
are assumed available at t = O. 

Consider the following planning decision problems. Choose a 
subset M c M of the available machines to be applied so as to: 

(P) min M{c(M) Mc 

(P') min M{c(M) MC 

+inf E{C (M,TI,p)}}; 
TI max -

+inf E{Ln l C.(M,TI,p)}}; 
TI J= J -

(P") min M{c(M) +inf E{(C (M,TI,p)-T) }}. 
Mc TI max - + 
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Here Cmax (M,n,p) and Lj=l Cj(M,n,p) denote respectively the make­
span and flowtime of the jobs in J with processing requirements p 
performed on the machines in Munder scheduling policy TT. Without 
loss of generality, total machine allocation cost c(M) may be as­
sumed to be expressed in terms of schedule delay costs in time 
units. In stochastic programming terminology (see, e.g., [Dempster 
1980]), these problems are multistage recourse problems and the 
second terms in their objective functions are the total expected 
costs of recourse to the first stage decision M through the sched­
uling policy n. The policy n is a complete recourse decision - i.e. 
its choice imposes only considerations of cost on the choice of M 
- and hence ordinary dynamic programming methods are applicable to 
the problems at hand. For the problem (P') the (total) recourse 
cost is linear, while for (P) and (P") it is piecewise linear, in 
job completion times. These costs are clearly monotonically decreas­
ing in IMI = k for (speed ordered) machine sets of the form 
{1, ... ,k}, but depend in a complicated nonlinear manner on the 
scheduling policy n. The more realistic recourse cost of problem 
(P" ) is a piecewise linear function of makespan which represents 
overtime cost incurred when the schedule makespan exceeds the 
scheduling horizon T (such as occurs, for example, when weekend 
working is necessary to finish work planned for a given week). 

The results from [ Weiss & Pinedo 1980] may be interpreted to 
show that when processing times are independently exponentially 
distributed the optimal recourse decisions for (P) and (P') are 
(preemptive) list scheduling policies. 

THEOREM 3.1. [Weiss & Pinedo 1980] Let £j ~ Aje-.\jt, j E J, and 
assume >-1 ~ >- 2 ~ ••. ~ '-n· Then the optimal recourse policies are: 

0 
TT ; j -> j (LEPT) for (P); 

n°: j-> n-j+l (SEPT) for (P'). 

Further, assume without loss of generality that m' := IMI ~ n (for 
otherwise machines of cost and speed 0 can be added to MJ • Then 
the optimal expected recourse cost E£gax = Gno(J,s) for (P) can be 
computed from the backwards recursion over unfinished job sets U 
(with initial value Gno(~,s) := 0) given by 

lu + L. u A.S.G o(U/{j},s) 
G (U ) J E J ) TT ( 3. 1) 

nO ' s = L . ,\ . s . 
) EU J J 

wheres := (s1, ..• ,sm•l is the vector of machine speeds and lu 
denotes the (binary) indicator function of U. Similarly, for (P'), 
EL£j Gno(J,s), with 

lul + E. U .\.s .G 0 (U/{j},s) 
JE J J TT 0 (3.2) 
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Thus even with independent exponential processing _requirements, 
although the optimal recourse policies for (P) and (P') are known 
explicitly, the optimal total expected recourse costs must be 
determined computationally. 

Algorithmic determination ot the optimal expected recou~se 
cost of {P) or (P') by means of (3.1) or (3.2) for a fixed machine 
set M is of course of exponential (time and space) complexity. 
Moreover, even if these expected recourse costs were known for 
each M, an argument similar to that from [ Dempster et al. 198-lB, 
Lemma 4], shows that the problem (P} of minimizing total expected 
costs over all M c M is NP-hard. The situation is even worse for 
the more realistic 2-level planning and scheduling problem {,P") in 
which all jobs have a common due date T and the problem is to min­
imize expected tardiness of the last job. Hence we turn in the 
next section to consideration of approximate solutions for these 
problems through the use of heuristics. 

4. PROBABILISTIC ANALYSIS OF HEURISTICS FOR 2-LEVEL SCHEDULING 

First notice, for example, that since makespan is nonnegative, 
problem (P) is value equivalent to 

min ,
1
{c(M) + E(min {C (M,n,p) }) }. Mc,, n max ~ 

( 4. 1) 

That is, given M, we may find the expected recourse cost corre­
sponding to an optimal stochastic scheduling policy n°(M) by £ind­
ing an optimal deterministic scheduling policy nO(M,p) for each 
realization p = p of the processing requirement data (actually for 
a set of realizations of the data which occurs with probability 
one). However, since we are considering stochastic scheduling 
policies which allow preemptions only at t = 0 and job completions, 
it folfows that we must solve an instance of QlpmtnlCmax in which 
preemptions are limited to moving running jobs to faster machines 
for each realization p = p of the data. But as is well known 
[Karp 1972] even Pl lc;ax is NP-hard form ~ 2. 

Therefore let us first consider a version of (4.1) involving 
identical machines with identical assignment cost Ci = c > 0, viz. 

0 0 
E~ (m ) := min {cm + E(min {C (m,n,p) } ) } 

mE :JN n max ~ 
(4 .2) 

0 
=: minmE lN {cm + ECmax (m, J2) } 

where ECgax(m,p) denotes the expectation of the minimum makespan for 
Pl !Cmax (a random variable) for a random data instance p. We have 
thus reduced our multistage problem (P) to the value eq~ivalent 
2-stage recourse problem (4.2) in which at the first level the 
number m of identical machines to be assigned must be chosen, 
before the processing requirement data p = p is realized at t 0, 
after which, at the second level, an instance of Pl !Cmax .must be 
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solved. At the second stage we are in the realm of probabilistic 
analysis of algorithms - or, in the terminology of stochastic 
programming, the distribution problem - for Pl ICmax· 

Similar to the situation in §3, however, manifold difficulties 
are attendant on solving (4 .. 2) for the optimal m by backwards 
recursion - i.e. by solving first the NP-hard lower level combina­
torial optimization problem for each m. Moreover, this is not the 
natural order of decisions in practice. Therefore, consider apply­
ing an idea fundamental to planning at the higher levels of a hier­
archy: namely, suppression of detailed lower level structure and 
its replacement by aggregates. Replace the optimal recourse cost 
cgax(m,p) by its obvious lower bound P/m := Lj=l Pj/m, cf. (2.3), 
and - in order to determine the approximately optimal higher level 
decision - solve the easy lower bounding problem to (4.2), 

:= min {cm + EP/m}. 
mE :JN ~ 

(4. 3) 

The solution oLB of (4.3) minimizes cm+EP/m subject to 
m r JN n{L lqic J, r/Ef/c l}. ~ 

In practice, the scheduling decisions corresponding to a fore­
man's dispatching task are also not explicitly optimally planned, 
but rather are handled ad hoc in real time through the use of 
heuristics. Consider the solution of the (deterministic) second 
stage problem of (4.2) using the list scheduling heuristic - i.e. 
place the n jobs in an arbitrary order and at each step assign the 
next job on the list to the earliest available machine. 

Let zLS(m) := cm+C~~x(m,p), where for given m and p C~~x(m,p) 
denotes the earliest time by which jobs are completed under this 
heuristic. The 2-stage heuristic procedure defined for problem 
(4.2) produces a total expected cost of 

LS( LB) LB LS LB 
E~ m := cm + ECmax(m ,~). (4 .4) 

Notice that in the more realistic dynamic stochastic situation 
of problem (P) in which the realization ~j = Pj becomes known only 
upon the completion of job j E J, list scheduling may be implemented 
in an on line manner. At t = 0 a job is assigned to each of the 
mLB machines in list (e.g. LEPT) order, as soon as a job is com­
pleted on a machine the next job on the list is assigned to that 
machine, and so on, until C~~x(mLB,p) is realized. Hence our 2-
stage heuristic procedure is also applicable to the version of the 
original multistage recourse problem (P) value equivalent to (4.2), 
viz. 

min {cm+ inf E{C (m,n,p)} } = Ez
0

(m
0

). 
IDE IN TI max ~ ~ 

(4. Sj 

We are thus in a position to study the stochastic performance of 
our 2-stage stochastic programming heuristic for this problem 
through the more familiar problem (4.2). (No notational distinction 
will be made in the sequel between the common optimal value of the 
two problems. ) 



A STOCHASTIC APPROACH TO 1111.RARCHICAL PLANNING AND SCHEDL LINl; 285 

Let us first briefly review known results on the performance 
ratio of list scheduling relative to the minimum makespan C~ax(m,p) 
for the deterministic problem PJ JCmax· An easy demonstration yields, 
for given m and p, 

o LS 
P/m s C (m,p) s C (m,p) s P/m + p 

max max max 
(4.6) 

It follows that for the performance ratio we have 

LS o pmax 
s C (m,p) /C (m,p) s 1 + --. 

max max P/ m 
(4. 7) 

Graham [Graham 1966, 1969] has obtained the data independent worst 
case bound 

LS o 1 
C (m,p)/C (m,p) s 2 - -

max max m 
(4.8) 

and has shown that for list scheduling in LPT order this bound can 
be considerably improved to 

LPT o 4 
C (m,p) /C (m,p) s -

3 
-

3
m. 

max max 
(4. 9) 

The bound (4.8) is tight for maximum processing r e quireme nt ratios 
Pmax/Pmin ~ 4 and in [Achugbue & Chin 1981] tight bounds are given 
for lower values of this ratio. Observe that (4.9) is of little use 
in analyzing list scheduling heuristics for the mu ltistage recourse 
problem (4.5) since LPT order requires full knowledge of the data 
realization p = p and cannot be implemented in an on line manner 
when the data is realized sequentially. Moreover, we shall see 
below (Proposition 4.7) that data independent bounds such as (4. 8 ) 
or (4.9) do not produce asymptotically tight bound s for the 2-stage 
heuristic as the number of jobs in the system becomes large. 

Although our proper concern is the distribution of the rela­
tive performance ratio ~LS(mLB)/~O(mO) of the 2-stage heuristic for 
a random data instance p, an easy consequence of (4.6) and the 
definitions yields a bound on the ratio of the expected value of 
this heuristic relative to the expected optimum [Dempster et al. 
19818]. 

LS LB o o ~ 
THEOREM 4.1. 1 s Ez (m )/Ez (m) s 1 + Ep /(2rcEP). u 

- - -max -

In order to study the asymptotic performance of the 2-stage 
heuristic for (4.5) as the number of jobs (and machines) in the 
system becomes large, the following assumption on the processing 
requirement data was made in [Dempster et al. 1981B]. 

Assumption A. The processing requirements £j• j E J, are indepen­
dent identically distributed random variables with two moments 
finite: µ := E£ and cr 2 := V£. 

Thus, from the modelling point of view, Assumption A only allows 
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consideration of random variations in the processing requirements 
of identical jobs. Under Assumption A, asymptotic extreme value 
theory may be invoked to conclude that 

Ep /.fn" - 0, 
~max 

(4. 10) 

and 

p 1rn~ o, 
~max 

( 4. 11) 

read Pmax/.fn" tends almost surely to 0 as the number n of jobs in 
the system tends to infinity (i.e. P{limn-+oo Pmax/I;° = O} = 1). 
Analogous results to those obtained in [Dempster et al. 1981B] 
under Assumption A follow from the observation that (4.11) and 
(4.10) continue to hold (by a slight extension of the arguments 
given in [Dempster et al. 19818, Appendix]) under the following 
weaker assumption. 

Assumption A'. The processing requirements £j• j E J, are inde~en­
dent random variables wiLh two moments finite: µj := Epj and OJ := 

VJ2j; µ := limn-+«> zj=l µj/n and o 2 := limn->= zj=l oj/n are finite. 

For fixed n, Assumption A' permits more realistic processing re­
quirement distributions, for example, as considered in §2. The 
asymptotic requirements on processing requirement means and vari­
ances ensure that no large (i.e. infinite) set of processing re­
quirements dominate. Put another way, Assumption A' ensures that 
the contributions of individual jobs to long run processing re­
quirement statistics are negligible - exactly the preconditions 
for aggregation in higher level planning. 

An immediate consequence of Theorem 4.1, (4.10) and the obser­
vation that under our assumption 

EE + nµ as n + oo, (4. 12) 

is the asymptotic optimality in expectation of the 2-stage heuristic. 

THEOREM 4.2. Under Assumption A', limn+oo E~LS(mLB)/E~0 (m0 ) = 1. 0 

To obtain the analogue for the performance ratio, two lemmas 
will be needed. Minor modifications of the arguments in [Dempster 
et al. 1981B] to accommodate the extra passage to the limit entailed 
in (4.12) yield the required common asymptotic characterizations 
of heuristic and optimal first stage decisions and expected recourse 
costs. 

LEMMA 4.3. Under Assumption A', 
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LEMMA 4.4. Under Assumption A', 

LS( LB )/( I LB) a.s. 1 Co (mo,p)/(n"/mo) ~ l. C m , p nµ m ------+ , max - ,. 

Proof. Use Kolmogorov's strong law of large numbers for nonidenti­
cal independent random variables (see, e.g. [Tucker 1967, Theorem 
1, p.124]) to conclude that (P-nµ)/n ~ 0 in the argument of 
[Dempster et al. 1981B, pp.8,lO]. D 

Combining the lemmas yields asymptotic optimality of the 2-stage 
heuristic (in terms of the performance ratio) with probability one, 
i.e. for almost every instance of the requirements data p. 

THEOREM 4.5. Under Assumption A', ~LS(mLB)/~O(mO) ~ 1. 0 

Theorem 4.5 constitutes a justification for hierarchical planning 
procedures - as represented by our 2-stage heuristic - in the 2-
level planning and scheduling situation modelled by (4.5). Indeed, 
it may be interpreted loosely to state that, for large parallel 
machine shops and many jobs with arbitrary processing requirements, 
aggregation and approximation at the higher level and ad hoc heu­
ristics at the lower level are approximately optimal. 

We note also that for the multistage problem (4.5) with a 
second stage stochastic scheduling problem involving identical 
machines this result comes about through a common asymptote for 
the optimal and heuristic value. 

COROLLARY 4.6. Under Assumption A' I 

LS LB r-- a. s . o o r--
~ (m )/(2vcnµ ) ------+ 1, ~ (m )/(2vcnµ ) a. s ·_. 1. 0 

Before considering problem (P) and its value equivalent (4.1) 
which involve uniform machine scheduling problems at the second 
level, it is worth noting that the above results are delicate, in 
that an attempt to use Graham's data independent bound (4.8) 
results in an asymptotic expectation ratio bound greater than one. 

PROPOSITION 4.7. Using (4.8) rather than (4.6) to bound cfu~x(mLB,p) 
yields only 1 s E~LS(mLB)/E~O(mO) s 3/2 as n + 

(4.8) and (4.6) shows that 

( 
1 \ IE~/c ( 1 )E£max 

+ 1-~-1~~- + 2-~- -~~. 
LB1 LB LB r-= 

' rr. • 2m m / 2 v cE~ 

Proof. A simple argwne nt using 

LS LB o o 
S E~ (m )/E~ (rr. ) S 

Lemma 4.3, (4.10) and (4.12) imply that the right hand side of the 
second inequality + 3/2 as n + 00 • n 

Analysis of 2-stage heuristics for the 2-level uniform machine 
problem (P} is more difficult than the analysis of the identical 
machine special case presented above. The first problem lies with 
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the obvious extension of the lower bounding problem (4. 3 ) to the 
general case, viz. 

LB LB 
E~ (M ) := minMr M{c(M) + Ef/s(M) }, (4. 13) 

where s(M) := LiEM Si. By a reduction from the NP-complete parti­
tion problem it is shown in [Dempster et al. 1981Bl that the lower 
bounding problem (4.13) is NP-hard~ To ensure polynomial time 
determination of an appropriate first level decision for (P) we 
shall therefore employ a heuristic for the approximate solution of 
(4.13). To this end, reorder Min increasing order of qi := Ci/Si 
and define Ci := E~=l ch, Si := E~=l sh and Wi := Ci+Ef/Si. The 
greedy heuristic chooses the machine set MG := {1, ... ,g} c M so 
that g is the largest index such that Wg-1 > Wg· 

Making the obvious definition of extreme machine costs, spee ds 
and q ratios, it may be shown [Dempster et al. 1981B] that the 
greedy decision MG satisfies 

W = min. M{W. } , 
g 1.E 1 

LB( G) LB( LB) 
E~ M S E~ M + c , 

max 

(4. 14) 

(4. 15) 

and that in the present case the analogue of Theorem 4.1 for the 
expectation ratio follows from (4.15) by a simple argument (cf. 
(4.6)). 

THEOREM 4.8. 1 S EwLS(MG)/Ew0 (M0
) S l+(c +Ep /s . )/(2/q . EP). 0 

- - max ~max min 1n1n -

In order to obtain the analogues of Theorems 4.2 and 4.5 in 
the uniform machine case, some reasonable assumptions are needed 
about the growth of the available machine set M as the number of 
jobs in the system tends to infinity. 

Assumption B. The bounds Cmin S Ci S cmax and smin s Si S smax 
(i E Ml are fixed constants. Moreover, there exist Ionstants 
D,D' > 0 and £' <: £ > 0 such that Dn~+£ s IM I s D'n2+£'. 

Assumption B allows an efficient implementation of the greedy 
heuristic (in O(n log n) time) in that the number of available 
machines remains polynomially bounded in n. We shall see that it 
ensures that the number of selected machines grows as /;, as in 
the identical machine case. 

Theorem 4.8, (4.10) and (4.12) yield immediately the asymptotic 
optimality in expectation of the 2-stage heuristic for (P) defined 
as the first stage greedy heuristic followed by arbitrary (on line) 
list scheduling for the uniform machine set MG chosen. (Recall 
that in the present context list scheduling is implemented so that 
at job completion epochs preemption may be applied to move running 
jobs to faster machines in list order, as described in §2). 



A STOCHASTIC APPROACH TO HIFRARCHICAL PLANNING AND SCHI DULING 289 

THEOREM 4. 9. Under Assumptions A I and B, lim EwLS (MG) /Ew0 (M
0

) = 1. 0 n->-oo ~ ~ 

Let g(n) = G(f(n)) denote the existence of constants C,C' > 0 
such that Cf(n) s lg(n) I s C'f(n) for all n sufficiently large. 
Then an easy extension of the argument given in [Dempster et al. 
1981B] (to account for the extra passage to the limit necessitated 
by Assumption A') yields the analogue of Lemma 4.3 for uniform 
machines. 

LEMMA 4.10. Under Assumptions A' and B, 

The extension of Theorem 4.5 to the performance ratio of the 
2-stage heuristic for the uniform machine case under Assumption A 
is due to [Stougie 1981]. He has given a direct proof which is 
(trivially) extended below to accommodate Assumption A'. 

4 11 d . ' and B, '!'.LS(MG)/'!J.o(Mo) THEOREM . . Un er Assumptions A ·- ·-

Proof. For every realization p = p of the data it may be shown 
(cf. [Dempster et al. 1981B, pp.15-16 ] ) that 

LS G o o n ( 1 1 \ ~ 
w (M) s w (M) + IP- Zi=ll\I s(MG) +s(Mo)j+cmax+smin (4.16) 

and 

(4. 17) 

The existence of an a > 0 such that wO(MO) ~ a ;;-, for sufficiently 
large n, follows from (4.17) and Lemma 4.10. Hence, combining 
(4.16) and (4.17) and observing that w0 (M0 ) s wLS(MG) for every 
realization p = p, we have that 

1 + 
1 

) cmax £max 
--- + ---,=- + 
s(M0 ), a vn Sminaln 

(4 .18) 

surely. But Assumptions A' and B imply that cmax/(a;;-) ~ 0 and 
Pmax/(sminarn) ~ 0. Moreover, Lemma 4.10 implies that there 
ire constants a' and a" for which, for sufficiently large n, 
1/s(MG) s a•;rn and 1/s(M0 ) s a"/rn. It follows that the second 
term of the right hand side of (4.18) tends almost surely to 0 
with l~/n - zr=l µi/nl. Applying Kolmogorov's strong law of large 
numbers (op. cit.) to this expression yields the desired result. 0 

It is perhaps worth observing that Assumption A' could be 
weakened to be necessary and sufficient through the use of canoni­
cally truncated processing requirements and Kolmogorov's three 
series theorem (see, e.g., [Tucker 1967, Theorem 4, p.113]). From 
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a modelling point of view however little would be gained but un­
necessary mathematical complexity. 

Also note that no analogue of Corollary 4.6 appears to be 
possible in the uniform machine case. The most precise statement 
about the asymptotic form of the optimal and heuristic values we 
can give is the existence of constants C,C' > 0 such that, for 
sufficiently large n, 

I 0 0 
Cvn ~ ~ (M ) 

almost surely. 

(4.19) 

Consider next the problem (P') of §3 involving a flowtime 
recourse cost. This problem is difficult for reasons which illumi­
nate the intricacies of hierarchical problems. As noticed in §2, 
the second stage problem QlpmtnlLCj for the value equivalent prob­
lem to (P') is easy~ In the identical machine case it can be 
solved (nonpreemptively) in O(n log n) running time by SPT, while 
in the uniform machine case it can be solved in O(n log n + mn) 
time by an extension of SPT due to Gonzalez, which only preempts 
running jobs to move them to faster machines (see [Lawler et al. 
1982]). An explicit expression for the optimal flowtime of the 
nonpreemptive problem QI ILCj is given [Conway et al. 1967, p.97] 
by 

(4.20) 

where ni is the number of jobs assigned to machine i E M by the 
optimal schedule and Pi[l], ... ,pi[ni] are their processing require­
ments in SPT order. This expression could be used to form an 
upper bound on the optimal flowtime of the preemptive problem 
QlpmtnlCmax· Although the asymptotic expectation of (4.20) could 
in principle be evaluated (under Assumption A) using the theory of 
order statistics, it appears to be of little use in developing a 
lower bounding problem for (P'). More generally (and unlike the 
situation for the NP-hard problem QI ICmaxl bounds for the crite­
rion value produced by suboptimal schedules for the easy problem 
QlpmtnlLCj useful in the analysis of heuristics for its stochastic 
counterpart QlpmtnlELfj - which forms the second stage of (P') -
are not readily apparent. 

The more realistic problem (P") of §3 involving a schedule 
tardiness recourse cost is also difficult. If, in the identical 
machine case, one uses the obvious lower bounding problem 

min lN {cm+ E(max{£/m-T,O})} 
mE 

(4.21) 

to determine the first stage heuristic decision mLB, then it can 
only be determined as a nearest integer to the solution of the 
integral equation 

0. (4. 22) 



A STOCHASTIC APPROACH TO HIERARCHICAL PLANNING AND SCHEDULING 291 

(If T = 0, (4.22) yields mLB as a nearest integer to /s~/c as 
before.) Under the realistic assumption that T = 0 (~) - which 
models the idea of many small jobs whose processing requirements 
are small relative to the schedule horizon T - asymptotic analysis 
of the performance ratio of the above first stage heuristic followed 
by list scheduling as the number of jobs in the system tends to 
infinity appears complicated. This is in no small measure because 
- unlike the above higher level heuristics based on expected values 
and aggregation - distributional information on the processing 
requirements must be taken into account at the higher level due to 
the nonnegativity restriction on the lower bound for the second 
stage cost. Unfortunately, a complete analysis of (P") is a pre­
requisite to the analysis of a realistic multiperiod planning ana 
scheduling model in which work is allowed either to overflow from 
one period to the next or to be finished in overtime at a higher 
recourse cost. 

In the presence of random nonnegative job release dates Ej in 
the 2-level models (P) and (P'), list scheduling will no longer 
suffice and priority policies become necessary (as noted in §2). 
Unfortunately, the list scheduling bounds (4.6) and its uniform 
machine extension fundamental to our asymptotic analysis then cease 
to hold and a more careful analysis is required. 

5. A 3-LEVEL DISTRIBUTION PLANNING MODEL 

To illustrate the complexities involved, this section briefly sets 
out a realistic 3-level hierarchical spatial planning and schedul­
ing model for which suitable heuristics are c urrently under inves­
tigation. The problem concerns the location of distribution facili­
ties and delivery vehicles in a region in order to ultimately route 
the vehicles at the facilities through the c ustomers in the region 
in a cost effective way. As in the 2-level stochastic machine 
scheduling problems treated in this paper, the random data is 
realized successively at each level after decisions are taken at 
the previous level. 

More precisely, suppose given a random natural number n of 
customers and a random finite sequence x(n) of the Cartesia~ coor­
dinates (~ll1~12l, (~21.~22l , ... , (~nl•~n2l-of their locations in a 
planar (simply connected) region n-of area A. Assume that n = n 
will be realized before ~(n) is known and consider the following 
3-level hierarchical distribution planning and vehicle routing 
problem. At level: 
1. 

2. 

Choose the number k and locations y(k) := ((y11,y12>, 
(Y2l•Y22l , ... ,(Ykl•Yk2ll of identical distribution facilities 
to be placed in the region n before ~ is realized. 
Observe ~ = n. At each facility i, choose the territory 
ni c n (ninnj = ~. i ~ j, uf=l ni = n) to be served and the 
number ii of identical vehicles of unlimited capacity to 
service customers in the territory before ~(n) is realized. 
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3. Observe z(n) = x(n). At each facility, allocate realized cus­
tomers to vehicles and route vehicles so as to minimize the 
length of the longest vehicle tour through the allocated cus­
tomer locations in Qi· 

If C denotes the cost of a distribution facility and c denotes the 
cost of a vehicle (in transportation cost units) , this problem may 
be given the following 3-stage complete recourse stochastic program­
ming formulation: 

infk,y(k) {Ck+ i:~=lE(infQ,i,Qi {cki + E(V
0

(ii,S"li;D•zl IQ)})} (5.1) 

where VO(Q,i, Qi;n,x) denotes the minimal longest vehicle tour length 
(in terms of Euclidean distance) for the Q,i vehicles servicing ter­
ritory Qi, i = l, .•. ,k, when then customers in Q have locations x. 

As in the machine scheduling models, it is prudent first to 
attempt to analyze very simple special cases of (5.1). Even these 
raise some intriguing and nontrivial questions. For example, sup­
pose Q is the unit disk {(x1,x2J E IR 2 : xf+x~ ~ l}, J:, is geometric 
on [N,oo) for some large N, i.e. f~{n) = p(l-p)i-N+l, i = N,N+l, 
N+2, ... (0 < p < 1), and z(n) is spatial Poisson on Q, i.e. then 
customer locations are distributed uniformly at random in S"l . It is 
an obvious advantage in analysis to have all s econd level problems 
identical. But is it even approximately optimal at the first level 
to choose and partition Q into pie shaped territories S"l i of equal 
area with the i-th facility located at, say, the centroid of S"l i, 
i = l, ... ,k? More generally, what is the effect of ignoring the 
partition constraints QinQj = 0, i ~ j, i,j = 1, ... ,k (whi le main­
taining Ui=l S"li = S"l) - cf. U.S. national oil distribution in 1975 
and 1979 - on the optimal choice of territories? Answers to these 
questions of course depend on the nature of the metric imposed on 
the higher level problems by the minimal longest vehicle tour cost 
measure, and results in random graph theory (see, e.g ., [Erdos & 
Spencer 1973]) can be expected to be helpful. 

A single second level problem has been analyzed for a fixed 
circular Qi of area TI in [Marchetti Spaccamela et al. 1982 ] build­
ing on earlier work reported in [Beardwood et al. 1959; Karp 1977; 
Steele 1980]. They observe that the length of the longest of the 
optimal tours of the vehicles through the customers assigned to 
them exceeds 1/Q,i times the length of an optimal travelling sales­
man tour. Using a theorem from [Steele 1980], which gives an almost 
sure asymptote for this tour involving a constant 6 , they define 
the lower bounding problem 

min 0 JN{d.+S&/ Q, ,} 
"'iE 1 1 

l 
to yield a second stage heuristic decision _Q,LB = O(n4) for suffi-
ciently large n. Their third level multivehicle routing heuristic 
is based on a modification appropriate to a circular region of 
Karp's [Karp 1977] "divide and conquer" polynomial time approxima­
tion algorithm for the NP-hard Euclidean travelling salesman 
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problem posed in a rectangle. (Such approximation algorithms - un­
fortunately sometimes termed probabilistic in the literature - have 
the property of arbitrary £-optimality for sufficiently large 
finite n with a probability which has a precisely known lower 
bound tending to 1 with n tending to 00 and hence are almost surely 
asymptotically optimal.) Marchetti Spaccamela et al. demonstrate 
that the expectation ratio of this 2-stage heuristic relative to 
the optimal value approaches 1 and that the heuristic is optimal 
in performance ratio almost surely for random data instances as 
the number n of customers in the system tends to infinity. They 
also obtain similar results for the case of random n and the real­
istic third level repetitive vehicle routing situation in which 
customers in given locations require a (Bernoulli) random delivery 
with probability p. 

The first level problem defined by (5.1) is essentially a 
non-Euclidean planar k-median problem. Thus there is some hope in 
extending the analysis of the Euclidean k-median problem given in 
[Fisher & Hochbaum 1980] to the metric defined on the n customers 
by the sum of the second and third stage costs of (5.1). These 
authors give an asymptotic probabilistic analysis of a polynomial 
time approximation algorithm for the NP-hard [Papadimitriou 1980] 
Euclidean problem in a planar region of area A (including the 
almost sure asymptote n/A/k for the sum of the minimal Euclidean 
distances to each point from the k centres) whose extension would 
provide a suitable first stage heuristic for (5.1). We are current­
ly working in this direction. 

Although it retains the essence of practical hierarchical 
planning in the distribution field, the simplified model set out 
here could be usefully extended in many directions to improve its 
realism. It is however already sufficiently difficult and, for 
example, addition of vehicle capacity constraints (as in determin­
istic models) would complicate matters even more. 

6. CONCLUSIONS 

Open problems and directions for further research have been indi­
cated throughout this paper. Rather than collect them here, some 
remarks on the nature of stochastic models for hierarchical plan­
ning and scheduling decisions seem more appropriate. 

First, it is worth observing that many of the parallel machine 
scheduling problems of §2 provide instances of NP-hard determinis­
tic problems for which simple suboptimal heuristics (e.g. LEPT) 
become optimal when the problem data is (more realistically) taken 
to be suitably random. The implication - a central thesis of this 
paper - is that in a practical situation suboptimality of relative­
ly simple heuristics can be the erroneous conclusion of the wrong 
model, which has been taken to be deterministic for analytic con­
venience rather than stochastic for realism. 

More generally, multistage recourse stochastic programming 



294 M.A. H. DEMl'STLR 

models appear to provide a realistic representation of hierarchical 
planning and scheduling decision problems in several fields of 
application. Heuristics for such problems are necessitated by 
their analytic and computational complexity and the sequential 
availability of data and can be made to mirror the top down se­
quential nature of actual hierarchical decision making based on 
averaging and aggregation until more refined data becomes available. 
Analyses which demonstrate the asymptotic optimality of these heur­
istics with the growth of random instances of the problem data 
tend to reinforce the long held views of practical persons faced 
with difficult decisions - in sufficiently complex environments 
suitable rules of thumb can be highly efficient. 

Finally, the project described in this paper can be seen as 
part of a current general trend in mathematical sciences. Driven 
by the exigencies of numerical computation, approximation methods 
are moving from applications to functions, equations and other 
relatively simple deterministic structures to the approximation of 
more and more complex stochastic problems. 
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