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PREFACE

Recent attempts to apply the results of martingale theory in proba-
bility theory have shown that it is first necessary to interpret this
abstract mathematical theory in more conventional terms. One example
of this is the need to obtain a representation of the dual predictable pro-
jections (compensators) used in martingale theory in terms of probabil-
ity distributions. However, up to now a representation of this type has
been derived only for one special case.

In this paper, the author gives probabilistic representations of the
dual predictable projection of integer-valued random measures that
correspond to jumps in a semimartingale with respect to the g-algebras
generated by this process. The results are of practical importance
because such dual predictable projections are usually interpreted as ran-
dom intensities or hazard rates related to jumps in trajectories: applica-
tions are found in such fields as mathematical demography and risk
analysis. ’

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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1. INTRODUCTION

The development of the martingale approach in the theory of random
processes has made it possible to formalize and then generalize many of the
intuitive notions commonly used in applied fields. One of these is concerned

with the concepts of hazard and hazard rate.

The term Aazard rale is usually associated with the probability of
occurrence of some unexpeéted event or series of such events. This notion,
which is popular in risk analysis, corresponds to the idea of a campensator or
dual predictable projection in martingale theory [1,2,3,4,5,6,7,8,9,10 ]. Many
important results from this theory are formulated in terms of compensators:
these include convergence of the parameter estimators and conditions for
absolute continuity and singularity of the probabilistic measures [5, 6].

Probabilistic representation of the compensators provides a bridge
between theory and applications. This paper is concerned with a generalization

of Jacod's important result [1]in this area.

2. BASIC NOTATION AND DEFINITIONS

Let (0.H.HP) be a probabilistic space, where H = (H;);»¢ iS some non-
decreasing right-continuous family of g-algebras, # = H,,, and g-algebra Hy is
completed by P-zero sets from H.

A real-valued random process Y;,t >0, is said to be H-adapted if for any
u© > 0 random variable Y,, is A, -measurable.

A non-negative random variable T is called the H-stopping time if the indi-
cator process ¥; =I{T=<t),t >0, is H-adapted. We will use the notation TAS to
describe the stopping time 1 = min (T.S).
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For any H-stopping time T there exists a g-algebra Hy in (), generated by
events Afrom A such that for any ¢t > 0 we have AN {T< t] € H,.

The H-adapted process m, is called an H-martingale if E|m,| < « for any
t>0and E(m;|H,)=m, forany t >u 20.

A real-valued H-adapted process is a local H-martingale if there exists a

sequence of H-stopping times (T, ), »¢ such that lim T, =« and for any n =0
7 +oo

the processes Myat, - t > 0, are uniformly integrable martingales.
A real-valued process Y; is H-well-measurable if the mapping (w.t) » ¥; is

measurable with respect to the g-algebra W(H) in {2 x (0,=) generated by all H-

adapted, right-continuous processes.
A real-valued process Y; is H-predictable if the mapping (w,t) » Y (w) is
measurable with respect to the g-algebra TI(H) in Q x (0,) generated by all H-

adapted, left-continuous processes.

A stopping time T is said to be H-predictable if the process
Y, =1(T<t), t 20, is H-predictable.

The H-adapted process Y;.t =20, is an H-semimartingale if it may be

represented in the form:

Y,=A + M, t=0,

where 4;. ¢t =0, is a locally integrable variation process and M; is an H-adapted

local martingale.

We shall let (E,, B(E,)) denote the measurable space such that £, = FA,
where A is some auxiliary point, B(£,) = B(£) |\ {A}. E is Lusin space and B(E)
is the Borelian o-algebra on E.

We will use the term random measure to describe the non-negative transi-

tion measure n(w;dt.dx) from ((,H) over (0,=) x E,.
Let TI(H) denote the o-algebra in 2 x (0,=) x £ defined by:

T(H) = TI(H) ® B(E) .

A random measure 7 is called H-predictable if for each non-negative II{(H)-

measurable function X the process (nX),(w), t 2 0, defined by

4
(nX);{w) = {{X(w.u .z ) n{w;du ,dz)



is H-predictable.
Hereafter we will omit the symbol w for simplicity.

We will also use the notation G\F to describe the g-algebra in (] generated
by sets from o-algebras G and F.

3. JACOD'S REPRESENTATION RESULT

Jacod's formula for the random intensity function deals with the case in
which environmental factors are random variables and consequently do not
change over time. The general process whbse intensity is of interest is a
sequence of random times and random variables called a multivariate point

process.

Some additional formal constructions will be useful in deriving the

representation of the random intensity in this particular case.

3.1. Multivariate point processes
According to [1], a multivariate point process is a sequence (T,.Z, ),20:
where the T, are H-stopping times and the Z, are Hrn-measurable random vari-

ables with values in (£,,B(E,)). Note that Z, = A if and only if T, = =, and that

the stopping times T,, have the following properties :
(i) 1,>0,
(ii) Tpey > Ty, if T, <o,
(iii) Tp4y =Ty, if T, == .

It follows from these assumptions that sequence (Tn)nzo has a unique

accumulation point T, = lim T,, < «. We will assume that T, ==, Ty = 0.
n o

A sequence of stopping times (T,),.o satisfying conditions (i)—(iii) is
called a univariate point process or simple point process. Any arbitrary

discrete-time random process is naturally also a multivariate point process.

A multivariate point process is uniquely characterized by the integer-

valued random measure u on (0,=) x F defined by the equality:

p((ot]l M= YT, <t)I(Z, €T), TeB(£), t=20 .

nal
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In the rest of this paper we shall use u to denote the integer-valued random

measure generated by some multivariate point process (T,,.Z, ), .0-

3.2. Dual predictable projections of integer-valued random measures

We shall define H/* as a o-algebra in (] generated by the multivariate point

process or, equivalently, by the integer-valued random measure p up to time ¢:

HE =ofu((0u]. ). u=<t, TeB(E)]

and let ﬁo be some fixed g-algebra in ). Denote by H§ the non-decreasing fam-

ily of g-algebras
HE = (H)eao
where
Hiy = HyvHp (1)

are g-algebras in {} generated by the union of I—;o and H#, t = 0. The family H§

is known to be right-continuous [2 ].

According to [1], there is one and only one (up to a modification on a P-
null set) H¥-predictable random measure v5 on (0,=) x E such that for each

non-negative H(Hé‘)-measurable function X we have
4 t
EffX(u.z) u(du,dz) = EffX(u.z) vo(du.dz) .
0F K

Measure vy, is called the dual Hf-predictable projection of u. It turns out that

one can choose a version of vy which P-a.s. satisfles the inequality:

vo(it}.E)<1, t=>0 . (2)

We shall use the following equivalent formulation of the above result in this
paper:
The random measure v is characterized by (2) and

(i) the process vy((0,t]. T), t >0, is Hf-predictable for any I' € B(E)
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(ii) the process (u({0.t].T) — vo((0,t]. T)). £ = 0, is an Hf-adapted local mar-
tingale.
Dual predictable projections of integer-valued random measures may be
interpreted as generalized cumulative random intensity functions. |
Remark. Notice here that g-algebra ﬁo is not necessarily formed by events
independent of H;. For instance, 170 could be the g-algebra in () corresponding

to the past history of some random process up to time 0. We shall consider the

g-algebra f—io generated by a Wiener process up to time oo,

3.3. Probabilistic representation of random intensity functions

In some senses, Jacod's representation of dual Hj*-predictable projections
serves as a bridge between the abstract theory of random processes with jumps
currently developing in the framework of the martingale approach, and the
wide range of applications based largely on the knowledge of probabilistic distri-
bution functions.

In order to express Jacod's result, we have to define regular versions of the

Hfy -conditional probabilities of events [T, <ujN{Z, €T} Ty =ul,

where >0, € B(£) andn =1,2,... . This may be done using equalities
P(Topsu. Bo€THEg ) = BT, 4y < u){Z, 1€ D) [Hfe )

P((Tpyy =u)|Hfig ) =BT, 2u)[Hfy ) -

1t should be emphasized once again that in this part of the paper we are consid-
ering the case in which additional information about events and variables
influencing the multivariate point process perceived by the statistician

(observer) does not change over time.
The following theorem was provedin [1].

Theorem 1. The following is a representation of a dual Hf-predictable projec-
tion vy of measure u:

w n B d P(T,, <u. Zy, € T|Hee,)
vo{(0.tL D) = Y IT, <t <Thy) ¥ [

n=0 p=0 T,At P(Tp > ulHfy))

(3)

Corollary. Notice that if the o-algebra ﬁo does not provide the observer with

any information about the events, and if all he has at time ¢ is information
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about events from the history H[‘, the hazard rate coincides with the dual H*-
predictable projection v of the measure i and the formula for v is a simple

corollary of equation (3):

Tp4188 Ay P(Tp4 <u, Zp 4 € F!H{-;)

0.t].T) = 3 = L. 3
MO 1) = BUT, <t =Ty § T,fAt P(T,. = u| HE )

(3)

In the case of a pure point process (a sequence of random times T, ), the
formula for the dual H#¥-predictable comp=snsator A{t) becomes:

- n Tp+1At PT+ < HN
A(t) = z_:ol(Tn<t5Tn+1) 3 f dy (pl u | T,)

N
p=0 T At P(Tp-l-] 2'U-|1r1"1"v)

, (3,,)

where the g-algebras HtN, t >0, are generated by the values of the point pro-
cess (T, ),»g OF, equivalently, by the values of the counting process N,,, u =0,

up to time £.

Equations (3°) and (3°’) produce known results when applied to well-studied
processes. Thus, for a Poisson process with deterministic local intensity func-
tion A(t), the dual predictable projection A(t) defined by equation (3’") coin-

cides with the cumulative hazard rate and is given by the equality
t
Alt) = [M(u)du .
0

For a finite-state, continuous-time, Markov process §; , t =0, with states
§1.2,....N{ and intensities A\;;(¢), 1. = (1.2....,N), t =0 , equation (3’) gives the

dual predictable projection in the form:

t
vol(0.£1. 1) = [ T A, ¢ o du
0 jel
Now assume that the observer has some additional information about the
intensity function, for instance, that he knows the value of some random vari-
able Z which influences the frequency of the jumps. This means that he is deal-
ing with the history H§, as determined by the equality (1), where g-algebra H,
coincides with the g-algebra g(Z) generated by random variable Zin 1. In this
case the observer needs to use the dual Hj*-predictable projection of u as a ran-
dom intensity function. Thus, in the case of a double stochastic Poisson pro-

cess N;, ¢t = 0, with random intensity function ZA(¢), ¢ =0 (where Z is some
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positive random variable), it is necessary to use eqn. (3) which gives the follow-

ing dual Hf'-predictable projection of N, , £ = O
t
AMt.Z) =7 [ Nu)du
0

Note that if two observers have diflerent information about the processes
occurring in some real system (for example, if one of them knows the value of
the variable Z and the other does not), they will use different hazard rates to
estimate the probability of change. In the case of continuously distributed
jump-times in a double stochastic Poisson process, the relation between the two
intensities (derived from a comparison between eqns. (3’") and {3’)) may be

represented as follows:

A(e) = B(ZI BN A (t) | B CY
where A(t) is the HN—predictable local hazard rate. This is related to the dual
Hx-predictable projection A(t) of N; by the equality:

—— t —
A(t):f)\(u)du i
0
We shall now prove the relation between A(t) and A(t). Consider the
integral G,(t) defined by the equality:

Toubdt g P(T,, <u|HY
Gulty = f e e = )

na P(Tq=ulHf)

which is taken from the right-hand side of eqn. (3°°). Let ¢p (u) be the density
function of conditional distribution P("[‘p,,_1 <u | H-F ). Note that the following
»

equality holds:
on(u) ={zx<u)expi-zrfx(v)dv;f(z)dz :

where f(z) is the density distribution function of random variable Z. Using

this equality and noting that for Tp <u

u
exp{—-zf)\(u)dv} = P(T, 44 >u|H£. Z=2z) ,
)



we have
T, At
G(t)= [ E@|HF. Ty >u)Nu)du .
T, At
Since

T, <u <Tpu) BZIHY Ty >u) = (T, <u < T,yy) B(Z| HY) .

we can derive the formula for the A(t) from eqn. (3°).

Remark. Equation {4) shows that to calculate intensity functions A(t) or A(t) it
is first necessary to calculate the HtN—conditional mathematical expectation.
This problem can be overcome by using an approach based on filtering of the
jumping processes (see, for instance, [11,12]). In the simplest life-cycle
models, which are characterized only by stopping time T (time of death) and
are widely used in reliability and demographic analysis, the random intensity
describes differences in susceptibility to death or failure [13]. Notice that in
the case of life-cycle processes, equation (3°’) gives the following relation
between the H-adapt.ed compensator A(t) and the local intensity function A(t):

tAT
Alt) = [ Au)du .
0

Recall that, from the definition of the compensator, the process

M) =I{T<t) -A(t), t=0,

is an H-adapted martingale.

4. GENERAL FORMULA FOR REPRESENTATION OF RANDOM INTENSITY

In spite of the fact that dual predictable projections exist for a wide class
of families of g-algebras, probabilistic representations are known only for o-
algebras with structure (1). However, in practical situations g-algebras often
have a more general structure. In particular, new information may be gen-
erated not only by the multivariant point process but also by some additional
process 7;. In this case the o-algebras describing the observation history have
the form H; =H"7VH[‘. where o-algebras Ht‘ are generated by some process 7,
which is observed simultaneously with the multivariate point process
(Tp.Z,)n2o- Detailed probabilistic characterization of dual predictable
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projections is often useful when applying the results of the general theory of
random processes in practice.

In this section we will give the probabilistic representation of the dual
predictable projection of integer-valued random measures corresponding to the
jumps of the semimartingale with respect to the family of g-algebras generated

by this process.

4.1. Generation of jumps
Let random process X; , t = 0, defined on probability space (0. H,H,P) be B-
adapted, take values in Rf and have right-continuous, left-limited sampling
paths. Denote by H* the family of g-algebras
H=Noix,, u=sr]
r>t
and assume that H§ is completed by the sets from H*® = HZ with a P-probability

of zero. Assume also that process X; may be represented as follows:
t ¢ t
X =X+ fA,du + [Bdw, + [ fzu(du.dz) , (5)
0 0 (A

where A4, and B, are H*-adapted matrices of appropriate dimensions, matrix B,
is non-singular for any w >0, E =R - {0}, and w, is an H-adapted, k-

dimensional Wiener process independent of X,

Note that, in general, the dimension of X; may be greater than that of the
jumping changes. This can mean, for instance, that we are also considering
situations with two-component processes of which one is pure jumping and the

other is continuous.

It follows from (3) that the measure g4 is H® -adapted and that
Zn = XT" —XTn_ .

Let +* denote the dual HF-predictable projection of integer-valued random
measure &, Our main aim is to derive the probabilistic representation of meas-

ure v=.
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4.2. The form of the hazard rate

The main result of this subsection is formulated in termms of auxiliary

processes X, , defined by the equalities:

¢ ¢ T, At
Xo ¢ =X0+fA.udu +_[Budwu + ff:z:p,(du.dz) . (6)
0 0 0 F

where A, B, w, u have been defined previously. Introducing the measures wu,

defined by the equalities

4 (0,61 1) =V I(T, < T, At)I(Z,€T), T € B(E). t 20,n =0 ,
r 3

egn. (8) may be rewritten as follows:
4 t t
X, e =Xp+ fAdu + [Bdw, + [ [zp, (dudz) .
4] o] oFr

Notice that measure u,;, may be considered as a measure of the jumps of the

process Xn..t , L =0.

Introduce ¢-algebras Hf" and Htp" such that:

H®= N oiX, . r<u},

u>t
Htp" = ofp, ((0t]. M u=<t I'e B(&) ,
and define the regular versions of the conditional probabilities of events
fTpr=uiNtZpy €l Ty z2ul u>0,T eB(E)
using the equalities
P(Tpyy <, Zp g€ T HP) = E(H(Tpyy < w) 1(Zp 4 € D) HP)
P(Tpsy 2| HP) = E(I(Ty 4 = )| H?) .

The next assertion is the main result of this paper.

Theorem 2. Assume that coefficients A and B are such that a strong solution of
equation (3) ezists and is unique. Then we have the following representation of

the dual B -predictable projection v* of integer-valued random measure u:
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T, 1102 z
o n P+l P(T, .4 <u, eTIHP)
V"((O.t],f‘) = 2 I(Tn <t5Tn+1) 2 du o+l Zp+1 U

(7)

This theorem is proved in the Appendix.

Sometimes it is more convenient to use another form of representation for
V* , transforming the conditional probabilities on the right-hand side of (7). For

this purpose we introduce the function F (u, I'), making use of the equality

Fu.T)=P(Z,, eTlHE Mg _, TeB(ELu=0n>0,

where P(Z,,, € F!Hi‘ﬂ_) is the regular version of the Him_-conditional pro-
bability of event {Z, ,; € T}. The dual H*-predictable projection v* of measure u

may then be represented in terms of this function as follows:

VE((04).T) = Y 1T, <t £T,,) 3 Flu, T)d P(Ty 3 S ul BP) .
n=0 p=0 T AL P(Tp+1->—u|1‘l:’)

5. EXAMPLES

5.1. Conditional Gaussian property

Let processY(t), t = 0, satisfy the linear stochastic differential equation

dY(t) = ag(t) + ay(t) Y(t)dt + b(t)dw(t), Y(0) =Y, . (8)

where Y, is a Gaussian random variable with mean m, and variance vy, w(t) is
an H-adapted Wiener process, H=(H;);,o is some non-decreasing, right-
continuous family of o-algebras, and Hy is completed by P-zero sets from
H = H.. Denote by HY the family of g-algebras in 0 generated by the values of
the random process Y(u), i.e.,

W =(H)izo. HY = NotY(w), v=u} t=20.

u>t

Assume that process Y(#) determines the random rate of occurrence of some

unexpected event characterized by the random time T, through the equality:

t
P(T)tlH}’)=exp§-f}’2(u_))\(u)du; ) (9)
0
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Notice that process Z{u) = Yz(u) u > 0, may be interpreted as the frailty
of an individual changing stochastically over time. Using the terminology of

martingale theory one can say that the process

tAT
A(t) = _{)\(u) Y3(w)du

is an HY-predictable compensator of the life-cycle process X; = (T < £), t=>0.
This means that the process M; = I(T <t) — A(t), t =0 is an HY-adapted mar-
tingale. Associating the stopping time T with the time of death, we may
describe the process Y3(f), t =0, as the age-specific mortality rate for an indi-

vidual with history Y4 = {¥(u)}, O<u <¢.

Letting A(t), ¢t =0, denote the observed age-specific mortality rate we
have N(£) = A(£)Z(t), t >0, where Z(t) = E{Y3(¢)|T > ¢t} [13].

In order to calculate the observed mortality rate A{(t), £ =0, it is neces-
sary first to calculate the second moment of the conditional distribution of the
Y(u) given the event {T=0}. It turns out that this moment may be calculated

quite easily using the result of the following theorem.

Theorem 3. Assume that process Y(t) and stopping time T are related through
eqns. (8) and (9). Then the conditional distribution of Y(t) given {T = ¢} is Gaus-
sian. The parameters of this distribution, i.e., the mean m; and the variance y;,

are given by the following equations:

dm
d
Tt = 2a,(t)7, + %) —BA(E) 7R g - (11)

The formula for A(t) is then A(t) = A(¢} (mf2 +7,) .

This theorem may be proved in a similar way as the conditional Gaussian
property for processes governed by stochastic differential equations of the
diffusion type (see [14]).
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6. APPENDIX: PROOF OF THEOREM 2

The proof uses representation (3) for vy It turns out that if the g-algebra
Hy in eqn. (1) is of a particular form (which will be specified later) then the

Hfiq -conditional probabilities of events {T, ., <uiN{Z;,, €I} and {Ty,; =u]j
will P-a.s. coincide with the Htu"-conditional probabilities of these events on the

integration intervals in (7). Representation of measure v, through H:"-
conditional probabilities makes it easier to prove its H®-predictability property.

It is then easy to check that the process
(12 ((0.£1. I) = vg((0.£]. T)), £>0

is an H®-adapted martingale for any I' € B(¥#). The fact that v* is unique shows
that ¥ and v, coincide P-a.s. Representation (7) is derived from (3) through
substitution of the conditional probabilities. Several auxiliary results will be

useful in the proof of Theorem 2: these are derived in the following subsections.

8.1. Auxiliary o-algebras

Introduce the auxiliary right-continuous families of ¢-algebras

HY, HY, HY#, HY, HY* and HY, where
HY = (H")0o» HY =olw,,u <tivo(Xy), HY=HY .
B = (HP)ao. HP =olu((0u].T),u<t, TeB(E)], HE=HE

HY# = (HP B)yao . HPH = HVEE

Y = (B )ta0. HYy = HOVHE = HVAD
HE ¥ = (HYE) a0 HY#H = HYVHP
HY = (H)ao. H = HVHY |

where H is some g-algebra in Q and g-algebras HY and H{§ are completed by P-
zero sets from g-algebras A" and AH*, respectively.

Recall also that family H* is defined as follows:

W = (H)20. Hf = NolX,usr].

r>t
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6.2. Existence of H® -predictable projections
We shall now establish that dual H*-predictable projections exist and are

unique.

Lemma 1. The dual H*-predictable projections v* of the integer-valued random

measure u erist and are unigue.

Proof. Note that the sets [0] £ IT,,.T, +;] £ belong to I] and have measure

M“(dw,du dz) = P{dw) u(du,dz)

less than or equal to 1. This means that measure M“ is o¢-finite on

(( (0.t] £), TT). From [1], this implies that the lemma is true.

6.3. Characterization of H*'#-stopping times
For any t =0 let

Hw =olw, —w,, r>2u>t] .

The next assertion is a generalization of Lemma 3.2 in Jacod's paper [1].

Lemma 2. [ef T be the HY #-stopping time. For any n = 0 there erists o random

varigble S* such that indicator I(S™ > u) is HY, -measurable for any u = 0 and

the following equality holds:

HT2ulliT, <u<T, . =1{S" > u{l{T, <u=<T,,.§ .

Proof. It follows from the definition of the g-algebra H¥ that the following fami-

lies of sets coincide:

HYEY NiT, <u<T, ) =HE NiT, <u <Typy
and consequently the families of sets
(FETVH#-) N iT‘n <u = Tﬂ.+1; = H;T\/Hﬁ N iTn <u STﬂ.+1;

also coincide. Take the set {T <wu{ from HvHf_, and find the set D, from
H"HE such that

IT<ul NiT, <u=sT, ) =D, NIT, <u=<T,4} .
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Note that for r < » we now have

[(D, N{T, < T UD, NIT, <ud)INET, <u €Tpy ) =D NIT, <u =Ty} -
Define S™ by the equalities

8" <uj = YD NIT, <7}) .

rsu
where the 7 are rational numbers. We then obtain

(T<uINT, <% < Tpypd = 15 <uPNIT, <u < Tpyy)

or

IT=ulNiT, <u<T, =8 2uiNiT, <u <T, 4] .

thus completing the proof of Lemmma 2.

8.4. Representation of martingales

The following result plays a fundamental role in the analysis of the predic-
tability property.
Lemma 3. let Zy be a right-continuous, left-limited, sqﬁare-integra.ble,

HY-martingale process. Then an HY-adapted process f (u.w), u > 0, exists such
that

¢
Effz(u,w)du. <ow, t =0
0
and
4
Z, =7y + _{f{u.w)dwu

The proof of this lemma is similar to that of Theorem 5.5 in [14]. The following

well-known result is important in the proof of some auxiliary assertions.

Lemma 4. /et L be some vector space of bounded real functions defined on ).
Assume that il contains the constant 1, is closed with respect to uniform con-
vergence, and is such that for any uniformly bounded incrsasing sequence of

non-negative functions f,, n 20, f, €L, the function f = lim also belongs

n ~»oo

to L. Let @ bae a subsast of L which is closed with respect to multiplication. Then
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the space L contains all bounded funclions, measured with respect to the o-

algebra H generated by the elements of .

Remark. This result is known as the monotonic class theorem, and is proved in
[15] . The theorem is also true if

(a) Liis closed with respect to monotonic and uniform convergence and

(b) @ is the algebraand 1 € §

or

(a’) Lis a set of functions closed with respect to monotonic convergence to the
bounded function and

(b’) @ is a vector space closed with respect to operation A (maximum of two

functions) and 1 € Q.

8.5. Predictability of H;’-well-measurable processes

It turns out that Hy-well-measurable processes have the following remark-
able property:
Lemma 5. Let Y* be an arbitrary HY-well-measurable process. Then process
YPIT, <t}is H¥-predictable.
Proof. Let T be an arbitrary H¥-stopping time, and denote by A(¢) the dual H*-

predictable projection of non-decreasing process I{T < ¢). From the definition

of A(¢) the process Z = I{T<t) - A(t) is an Hy’-martingale.
Now consider the process v, = wy 4y —wy,, and define HY = (Hz,t)tzo'

where iy , = olv,. u <t{VH'r

Observe that Hj , = H:L”.T,.H and consequently that family H} coincides
with family H}'W = (H:.T,‘H)tzo- It is not difficult to check that v, is a Wiener

process with respect to HY and that Z} = Zg_ .4 isan H}*“-martingale process.

From Lemma 3 we have the following representation of Z/":

¢
0 =78 + {fn(u.u)dfuu .

or, in terms of Z,,

T, +u

L vy =21, + 1[ I n(Ty + 1. 0)dwy .,
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Taking T, +u = ¢ we get

[ ¢
Z, (T, <t) = Zp + ffn(u,w)dwu (T, <t) .
Tn

The right-hand side of this equality is an H;'l"'-predictable process. Remembering
the definition of Z, , we deduce that the process I(T=<t)I(T,<t) is H¥-
predictable.

The result of the lemma may then be derived from the monotonic class

theorem [15].

8.6. Characterization of H” #-predictable processes

The following assertion describes the structure of HY#-predictable

processes.

Lemma 8. An HY'#-adapted process Z; is HY‘#-predictable if and only if, for any

n = 0, there exists an Hy’-well-measurable process 7 such that
YPI(T, <t<T,,)=Z (T, <t=<sT,,,) . (A.1)

Proot
Necessily, Consider the process Z, = 1{t <T), where T is an arbitrary HY:H-

stopping time. It follows from Lemma 1 that

Wt <DUT, <t <T,, )=t =S")IT, <t <T, ;) .

which leads to equality (B) with ¥J* = I(t < S™). That these conditions are neces-

sary may be proved from the monotonic class theorem.

Sufficiency. Observe that for an arbitrary H¥-adapted process Y;, the process
I{T, <t]Y; is HY'#-adapted. This is because

(HPvHE INIT, <t] = (HVAL)INT, <t} n=20 ,
and any arbitrary set from (HVHE)INIT, <t} is HvH-measurable. Left-

continuous HYY-adapted processes Y; generate left-continuous HY'*-adapted

processes I{T, <£]Y;. This means that the following inclusion is true:

N T, Ty 41| < TH{HE) (A.2)
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where II(HY) and [I(H¥#) are g-algebras for H}- and H"#-predictable sets
respectively, and ]|T,.T,+1]| is the stochastic interval corresponding to the

stopping times T, and T, ;. The inclusion (A.2) yields:

U Tp T ) NII(HE) < TI(H™#) (A.3)

From Lemma 5, the process YJ*I(T, <t) is H¥-predictable. Inclusion (A.3)
shows that the process 2 ¢ I]lTann]l (which according to equality {A.1) coin-
n

cides with process Z;) is H¥ #-predictable. This completes the proof.

6.7. A property of conditional distributions

Let H, G, F be g-algebras in {). Assume that they are complete with respect
to measure P and such that G ¢ H, £ CH. The next statement will then be use-

ful in analyzing the form of the dual predictable projection.

Lemma 7. Let Bec H, P(B) >0 be such that the families of sets F N\ B and
G N Bcoincide P-a.s. Then for any H-measurable integrable random variable n

the following equality holds:
I(B) E(n|GVvB) = I(B)E(n|#VB) .

Proof. For any A € H define the measure PB(4) as follows:

Let EB denote the mathematical expectation with respect to PB. The families of
sets GN\B and #N\B form o-algebras of the subsets of set B that, generally
speaking, are not g-algebras in {). Since these families are complete with
respect to measure PB, they coincide PB-a.s. with the o-algebras GvB and F VB

respectively.

It follows from the conditions of the lemmma that for any A € H we have

PB(A|GNB) = PB(A| FN\B), PB-as. ,

or, equivalently,

PY(4|GVvB) = PB(A| FVB), PB-ass.
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and thus the following equality holds PB-as. for any bounded random variable 7:
E%(n|GvB) = E(n| FVB) .

This may be rewritten in the form

1{B) EB(n| GVB) = I(B) EB(| F\VB), P-a.s.
or

IB) E(n|GVvB) = I(B)E(n|FVB), P-as. ,
thus completing the proof.

6.8. Some properties of conditional mathematical expectations

The next assertion will be useful in proving the predictable characteriza-

tion of some random measures.

Lemma 8. Let A< H{-:'“. Then the following equalities are true forany t >0 :
E((Tpyy < ) 1A HUVAE) = E((Tpsy < O TR HEVAE ) (A4)

E(I(Tp 4y =) | HYVHE ) = B(I(T, 4y = t) | HPVHE) .

Proof. Since JB, is non-singular for any w >0, the process w, may be

represented as follows:
¢
w, = [B7UAXS - A, du) |
0
where
t
X=X - [ fzu(du.dz) .
OF
This shows that the process w; is H*-adapted and leads to the inclusion:

HBVHE ¢ HF . (A.5)

Consider now the bounded random variables X1-sz X3 which are measur-

able with respect to g-algebras i, Hf and HY

. respectively. Note that Xg

does not depend on events from H, and consequently Hf since Hf C H,.



- 20 -
Define d = B{X;X,X31(T, ., < ¢)1(A)). Using the I-]’“"\/[-]-i-"ﬂ -measurability of
the product X;X,X5this can be rewritten as

d = BE(X XX E(I(T, 4y < t)I(A) [ H¥VHE )

Observe now that the product X;X,I(T, ., < t)I{A) is A¥-measurable and conse-
quently Hf-measurable. Using the fact that X5 is independent of the events of

o-algebra Hf we obtain

d = EB(X XI(T, ., <t)I{A)EX; . (A.8)

Since I(T,, ;; <t) = I(T,;; <t)KT, <t) equation (A.8) may be rewritten as fol-

lows:

d = E(X T, < £)E(1(T, ., < £) 1(A)| HPVHE (T, <t]))EX; .

Noting that events from (H,“’vHﬁ‘ YN{T, <t} also belong to Hf and since Xj is
independent of HF we get
d = B(X, XpX3 (T, <t)B(I(T,,, < t)(A)|HVHE (T, <t}))

= B(X) XX B(I(T, 4y < ¢) I(A)| HOVHE )

Thus
E(X) X, X3 E(I(T, 4y = t)I(A)IH’”vHﬁ‘ ) = B(X XX EB(I(Ty 41 < t)I(A)lH}""VHf‘;‘ )) .
Using the monotonic class theorem we prove the first part of the lemma.

In a similar way it is possible to prove the equalities:

E(I(Tpsy <t)IA) | HYVHE ) = E((T, 4y < £)I(A)| HPVHE) |

which yield

E(I(Tpyy = )| HYVAE ) = B((T, ,, = )| HOVAE) .
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6.9. Predictability analysis of the v

The following assertion is an important step towards the proof of the main

result.
Lemma 9. For any I' € B(£) the process v((0,t ].1). t = 0, is H¥ #-predictable.

Proof. It follows from Lemmas 5 and 6 that the dual Hg’-#-predictable projec-

tion of integer-valued random measure u{du,dz) may be represented as follows:

Toeibt g P(T 241 S U Zpyy ePIH;;"vHﬁ)

(01T = T AT, <t=To) 2 S T P AR

Observe that the function on the right-hand side of this equality immedi-
ately following the indicator I(T, <t < T, ;) is H{*vH{ -measurable, with

right-continuous, left-limited sampling paths. Th1s means that the function is

H}’-well-measurable. From Lemma 3 the process

Tubtyg P(T,,,<u, e | H¥VHE )
1T, <1) i d, P(Tp 4+, Zy 4y A
p=0 LAt P(Ty 4y = u | HPVHE,)

is H¥-predictable, and consequently (from Lemma 4) the process v((0.£]. I');2p
is HW #-predictable for any I" € B(£). This completes the proof.

8.10. Measure v as the dual H¥ #-predictable projection of u

The next two lemmas give the probabilistic form of the dual HWY:#-
predictable projection of wu.

Lemma 10. for any I' € B(E) the process
Y = p((0,t].T) —vg((0t]. 1), t =20,

is an HY#-adapted local martingale.
Proof. From the definition of the v, }’tr is an H}"'#-adapted local martingale for
any I"€ B(F). Introduce the process

X' =EB(YFIH##), t=0.
It is easy to see that X; is an H¥'#-adapted local martingale. However, it follows

from Lemma 6 that the process Ytr is H¥#-adapted and consequently coincides

with XF, thus proving the lemma.
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The following assertion provides a probabilistic characterization of the

dual H¥#-predictable projection of measure u.

Lemma 11. 7he dual HY¥-predictable projection aof integer-valued random

measure U coincides with the process v,

This may be proved using Lemmas 6 and 7 and the uniqueness of the dual

HY #-predictable projection of wu.

6.11. Probabilistic form of the dual H* -predictable projection of 1
The fact that eqn. (4) has a strong solution for X; yields the inclusion
HF € HPVHE |

which, together with (11), shows that g-algebras HvH# and Hf coincide. This
in turn means that the classes of H¥'#- and H®-predictable processes coincide,

and consequently that v, is B -predictable.

The introduction of a non-singularity condition for B,., u = 0, means that

u!

for any n = 0 we have:
¢
wy ={Bu‘1(dX,ﬁlu - A, du) ,
where

t
X=X —f_é'.Z#n(du.dz). n>0 t=0.
0

It follows from these equalities that process w; is HI"-adapted and consequently

that
Ht""th“ »C Hf L

Note also that equations {6) have a strong, unique solution for Xpn ¢ m=0. This

fact yields the inverse inclusion:
Hf" C HZ”th""
and consequently

thﬂ = }:sz\/fi‘[“,l
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From the definition of Htp" we have
HOT, <t} = HIP N{T, <t} = HE (T, <t]
and thus
(HPVHE I NIT, <t) = (HEVEEOIT, <t)= AT, <t

Substituting the H;”\/H{."" -conditional probabilities in egn. (3) by H:"—

conditional probabilities we obtain:

T, 1AL u 3
(a1 D) = BIT <t =T £ S WPy Su By STIAD)

p=0 T,At P(T, 4, > u|Hp?)

From Lemma 7 and the coincidence of the g-algebras H*vH}* and Hf for any

t > 0, we deduce that process

YE = p((0.t], T) — v5((0,t ], I), t >0

is an H*-adapted local martingale. The uniqueness of the dual H*-predictable
projection means that measures v, and * ceincide, thus completing the proof

of Theorem 2.
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(ii) the process (u((0.t]. ) — vo((0.t], 7)), t = 0, is an Hf-adapted local mar-
tingale.
Dual predictable projections of integer-valued random measures may be
interpreted as generalized cumulative random intensity functions.
Remark. Notice here that g-algebra ﬁo is not necessarily formed by events
independent of H;. For instance, ITIO could be the g-algebra in {} corresponding

to the past history of some random process up to time 0. We shall consider the

g-algebra ﬁo generated by a Wiener process up to time =.

3.3. Probabilistic representation of random intensity functions

In some senses, Jacod's represe'ntation of dual H§-predictable projections
serves as a bridge between the abstract theory of random processes with jumps
currently developing in the framework of the martingale approach, and the
wide range of applications based largely on the knowledge of probabilistic distri-
bution functions.

In order to express Jacod's result, we have to define regular versions of the
H&T' -conditional probabilities of events {T, ., <ulN{Z, €T} {Tp4 2 ull
where # >0, € B(E)andn =1,2,... . This may be done using equalities

P(Tpy su, B, €T Hfy ) = B(I(Ty 4y su)(Zy € DI Hx,)

P(I(Tﬂ+1 21‘)]]{&?’.) = E(I(Tn+1 2u)|H&'T“) .

It should be emphasized once again that in this part of the paper we are consid-
ering the case in which additional information about events and variables
influencing the multivariate point process perceived by the statistician

(observer) does not change over time.
The following theorem was proved in [1].

Theorem 1. Ths following is a representation of a dual Hf-predictable projec-
tion vy of maasure u:

T, 148 :
- n Bedd P(T,, <u. %, < Hy )
vo((0.t1.T) = $ (T, <t <T,,) }' P 2

n=0 p=0 ToAt P(TpnaulH&T,)

(3

Cbrollary. Notice that if the g-algebra ﬁo does not provide the observer with

any inforrmation about the events, and if all he has at time ¢ is information
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about events from the history H#, the hazard rate coincides with the dual H#-
predictable projection v of the measure y and the formula for v is a simple
corollary of equation (3):

At
Tp+188 g P(T, o1 S U Ly € THE)
w((0.6],T) = 21(1‘ <t=<T,, 2 S 2

p=0 TpAt P(Tp+12u|Hf:)

(3)

In the case of a pure point process (a sequence of random times T, ). the
formula for the dual H#-predictable compensator A(t) becomes:
Hubt g P(Tyy <ul|HY)

= QIT L =<T, 3 T ¥
A(t) ngo(n< n+1)PZ=IO T,',/;t p(TpnglH{:) 57

where the ¢-algebras Ht , £t >0, are generated by the values of the point pro-
cess (Tn)nzo or, equivalently, by the valdes of the counting process N,,, u =0,

up to time ¢.

Equations (3°) and (3°’) produce known results when applied to well-studied
processes. Thus, for a Poisson process with deterministic local intensity func-
tion A(¢), the dual predictable projection A(t) defined by equation (3’’) coin-

cides with the cumulative hazard rate and is given by the equality
4
AE) = [Mu)du .
0

For a finite-state, continuous-time, Markov process {; ,t =0, with states
{1.2.....N] and intensities A;;(¢),1.j = (1,2.....N), t =0 , equation (3’) gives the
dual predictable projection in the form:

t
Uo((o,t]. F) = f 2 A‘u—-fu—"j du .
0 jel

Now assume that the observer has some additional information about the
intensity function, for instance, that he knows the value of some random vari-
able Z which influences the frequency of the jumps. This means that he is deal-
ing with the history H§); as determined by the equality (1), where g-algebra H,
coincides with the g-algebra o(Z) generated by random variable Z in 1. In this
case the observer needs to use the dual H{-predictable projection of u as a ran-
dom intensity function. Thus, in the case of a double stochastic Poisson pro-

cess N;, ¢t = 0, with random intensity function ZA(t),t >0 (where Z is some
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positive random variable), it is necessary to use eqn. (3) which gives the follow-

ing dual Hf-predictable projection of N;, £ = O:
£
At Z) =Zf)\(u)du .
0

Note that if two observers have different information about the processes
occurring in some real system (for example, if one of them knows the value of
the variable Z and the other does not), they will use different hazard rates to
estimate the probability of change. In the case of continuously distributed
jump-times in a double stochastic Poisson process, the relation between the two
intensities (derived from a comparison between eqns. (3’) and (3°)) may be

represented as follows:

A(t) = E(ZI BN A (L) | (4)
where A(t) is the HN-predictable local hazard rate. This is related to the dual
H¥-predictable projection A(t) of N; by the equality:

— ‘ —
A(t) = [ X(u)du .
0
We shall now prove the relation between A(t) and A(t). Consider the
integral G,(t) defined by the equality:

T, 142
ity = of, e = 2

T,M P(Tp-l-]_zu | HTNP)

which is taken from the right-hand side of eqn. (3°"). Let rpp(u.) be the density
function of conditional distribution P(Tpﬂ <u | Hﬂ). Note that the following

equality holds:
Palu) = {zk(’u) exp{—zif)\(u)dv} f(z)dz ,

where f(z) is the density distribution function of random variable Z. Using

this equality and noting that for T, <u

exp{-zZA(u)dv} =P(Tpy >u | H.rl:. Z=2z) ,



we have
Y
Gy(t) = f E(Z]| Hg. Tpeg >u)Mu)du .
T, At
Since

(T, =u <Tpu) B@&| A Tpuy > u) = 1(T, < < T,y B(ZI BN

we can derive the formula for the A(¢) from egn. (3”).

Remark. Equation (4) shows that to calculate intensity functions A(¢) or A(t) it
is first necessary to calculate the Ht'-conditional mathematical expectation.
This problem can be overcome by using an approach based on filtering of the
jumping processes (see, for instance, [11,12]). In the simplest life-cycle
models, which are characterized only by stopping time T (time of death) and
are widely used in reliability and demographic analysis, the random intensity
describes differences in susceptibility to death or failure [13)]. Notice that in
the case of life-cycle processes, equation {3°’) gives the following relation

between the H—adapt-ed compensator A{t) and the local intensity function A{t):

tAT

A(t) = f Afu)du .
Q

Recall that, from the definition of the compensator, the process

M{t)=I(T<st)-A(t), t=0,

is an H-adapted martingale.

4. GENERAL FORMULA FOR REPRESENTATION OF RANDOM INTENSITY

In spite of the fact that dual predictable projections exist for a wide class
of families of g-algebras, probabilistic representations are known only for o-
algebras with structure (1). However, in practical situations g-algebras often
have a more general structure. In particular, new information may be gen-
erated not only by the multivariant point process but also by some additional
process 7,. In this case the g-algebras describing the observation history have
the form H, = H/'\H}, where g-algebras H“ are generated by some process 7,
which is observed simultaneously with the multivariate point process
(Tph.Zy)nao- Detailed probabilistic characterization of dual predictable
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projections is often useful when applying the results of the general theory of

random processes in practice.

In this section we will give the probabilistic representation of the dual
predictable projection of integer-valued random measures corresponding to the
jumps of the semimartingale with respect to the family of g-algebras generated

by this process.

4.1. Generation of jumps
Let random process X;, t =0, defined on probability space (0. H,H,P) be H-
adapted, take values in R* and have right-continuous, left-limited sampling
paths. Denote by HF the family of o-algebras
H=NolXx, v=r}
r>t

and assume that H§ is completed by the sets from A*® = H% with a P-probability

of zero. Assume also that process X; may be represented as follows:
¢ t t
X =Xg+ fAdu+ [Bdw, + [ [zp(du,dz) , (5)
0 0 0E

where A, and B, are H*-adapted matrices of appropriate dimensions, matrix B,
is non-singular for any u >0, £ =R - {0}, and w, is an H-adapted, k-
dimensional Wiener process independent of X,

Note that, in general, the dimension of X may be greater than that of the
jumping changes. This can mean, for instance, that we are also considering

situations with two-component processes of which one is pure jumping and the

other is continuous.

It follows from (3) that the measure yx is HF-adapted and that
Zn = Xt- - XT,‘- .

Let * denote the dual H*-predictable projection of integer-valued random
measure u. Our main aim is to derive the probabilistic representation of meas-

ure v/~
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4.2. The form of the hazard rate

The main result of this subsection is formulated in terms of auxiliary

processes X, ; defined by the equalities:

t ¢ T, At
X, ¢ =Xo+_(/)'Audu + [B,dw, + f.gz,u(du,dz) : (8)
0 0

where A, B, w, i have been defined previously. Introducing the measures p,

defined by the equalities

a0t D) = YT, < T, M) I(Z,€T).€B(E). t =0,n >0,
k

eqn. (8) may be rewritten as follows:
H t 4
X, =X+ [Aydu + [Bodw, + [ [zp (du.dz) .
0 0 oF

Notice that measure w, may be considered as a measure of the jumps of the

process X ; .t >0.

Introduce ¢-algebras H:" and Hf" such that:

H*=NolX . r<u},

u>t
B = o, ((0,t).1).u s ¢, TeB(E) .
and define the regular versions of the conditional probabilities of events
{Tpsr SulNiZgy €Y, {Tpyy=2uf, u >0, T e B(E)
using the equalities
P(T,. < u, By € TIH?) = B(I(Ty 4y < u) 1(Zy 4, € D] H?)
P(T, 42 ul ) = B(HT . 2 u)| H?) .

The next assertion is the main result of this paper.

Theorem 2. Assums that coefficients A and B are such that a strong solulion of
equation (3) exists and is unique. Then we have the following representation of
the dual B -predictable projection v*® of integer-valued reandom meaasure u:
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- n PHM <u ! z,
VE((0.t], 2 T, <t<Tn+1)2 f d, P(T. p+1 = 'Zp+1€F.Hu)

(7)

This theorem is proved in the Appendix.

Sometimes it is more convenient to use another form of representation for
V* , transforming the conditional probabilities on the right-hand side of (7). For

this purpose we introduce the function F(u, I'), making use of the equality
Fu,T)=P(Z,,, € F|H§Ml_)|rn+l=u. FreB(£),u=0,n2>20,

where P(Z,,, € l"lHi'm_) is the regular version of the H’Il“_-conditional pro-
bability of event {Z, ,; € ['}. The dual H*-predictable projection v* of measure u

may then be represented in terms of this function as follows:

V(0] 1) = 21(1‘ cist,y B F Pl DduP< Ty SulH?)

PR Ha  P(T,., > ulH)

5. EXAMPLES

5.1. Conditional Gaussian property

Let processY(t), t =0, satisfy the linear stochastic differential equation

dr(t) = aglt) + o (t) Y(t)dt + 6(t)dw(t). Y(0) = ¥, . (8)

where Y, is a Gaussian random variable with mean m; and variance yo, w(t) is
an H-adapted Wiener process, H=(H,);,o i3 some non-decreasing, right-
continuous family of g-algebras, and Hj is completed by P-zero sets from
H = H,. Denote by HY the family of g-algebras in 0 generated by the values of
the random process Y{(u), i.e.,

H = (HY)i20. HY =u(>\‘oi}’('u). v<suj, t20.

Assume that process Y(t) determines the random rate of occurrence of some

unexpected event characterized by the random time T, through the equality:

t
P(T>t|Hl’)=expi—_/o-}'e(u)k(u)dui ) (9)



- 12 -

Notice that process Z{u) = Y%(). u =0, may be interpreted as the frailty
of an individual changing stochastically over time. Using the terminology of

martingale theory one can say that the process

tAT
At) = f AMu) Y2(w)du
(o]

is an HY -predictable compensator of the life-cycle process X; = 1(T< ), t =0.
This means that the process M; = I(T<t) — A(¢t), ¢t =0 is an HY-adapted mar-
tingale. Associating the stopping time T with the time of death, we may
describe the process Y3(t), ¢ = 0, as the age-specific mortality rate for an indi-
vidual with history Y4 = {¥{(u)}, O<u <t.

Letting A(t), t =0, denote the observed age-specific mortality rate we
have A(£) = A(£)Z(t), t =0, where Z(t) = E§Y2(t)|T > ¢t} [13].

In order to calculate the observed mortality rate A{¢), t =0, it is neces-
sary first to calculate the second moment of the conditional distribution of the
Y(u) given the event §T > 0. It turns out that this moment may be calculated

quite easily using the result of the following theorem:.

Theorem 3. Assume that procass Y(t) and stopping time T are related through
egns. (8) and (9). Then the conditional distribution of Y(t) given {T = ¢t | is Gaus-
sian. The parameters of this distribution, i.e., the mean m; and the variance vy;,

are given by the following equations:

7 = 2a(t) + a5(t) my —2m 7 N(t), mg . (10)
d
%=2al(t)7‘ +b3(t) — 2M(t) 72, 7, - (11)

The formula for A(t) is then A(t) = A(t) (m.‘2 +7) .

This theorem may be proved in a similar way as the conditional Gaussian
property for processes governed by stochastic differential equations of the
diffusion type (see [14]).
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8. APPENDIX: PROOF OF THEOREM 2

The proof uses representation (3) for vy. It turns out that if the g-algebra
Hy in eqn. (1) is of a particular form (which will be specified later) then the

Hf'¢ -conditional probabilities of events {Ty,; <uiNtZ;,; €} and {Tp, = u]
will P-a.s. coincide with the H;‘:"-conditional probabilities of these events on the

integration intervals in (7). Representation of measure v, through H:"-
conditional probabilities makes it easier to prove its H*-predictability property.

It is then easy to check that the process
(1 ((0.£1. 1) = vg((0,£1. 1)), ¢ 20

is an H¥-adapted martingale for any I' € B(£). The fact that v* is unique shows
that v and v, coincide P-a.s. Representation (7) is derived from (3) through
substitution of the conditional probabilities. Several auxiliary results will be

useful in the proof of Theorem 2: these are derived in the following subsections.

8.1. Auxiliary o-algebras

Introduce the auxiliary right-continuous families of o¢-algebras

HY, B4, H*#, H*, HY¥ and HY, where
HY = (). HE = otw,. u < tjvolXg, HY=HY |
He = (HF)ao, HE=oflu((0u], 7). u<t,TeB(F)), HE = HE ,

Hb = (). YW = HNEP .

HY = (H¥ a0, HYy = HOVAEE = HPVED

AP = (B Phao.  HYP = HYVEP .
HY = (H)iz0. H'=HVHY
where H is some g-algebra in () and g-algebras HY and H§ are completed by P-

zero sets from g-algebras % and HH, respectively.

Recall also that family H* is defined as follows:

B =(H a0 HE=NolX,us<ri.

r>t
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8.2. Existence of H* -predictable projections
We shall now establish that dual H®-predictable projections exist and are

unique.

Lemma 1. The dual H* -predictable projections v* of the integer-valued random

measure u ezist and are unique.

Proof. Note that the sets [0] £ ]T,,.T,,,] £ belong to [l and have measure

M, (dw,du.dz) = P(dw)u(du,dz)

less than or equal to 1. This means that measure M“ is o-finite on

{((n{o.t] £).II). From [1], this implies that the lemma is true.

6.3. Characterization of HV'#-stopping times
For any £ > 0 let

HYy =olw, —w,, r2zu 2t} .

The next assertion is a generalization of Lemnma 3.2 in Jacod's paper [1].

Leroma 2. Let T be the HY #-stopping time. For any n = 0 there exists a random

variable S* such that indicator 1(S* > u) is H¥ ,-measurable for any u > 0 and

the following equalify holds:

HBT>ullf{T, <u<T, ) =1{S"2u]l{T, <u<T,,,} .

Proof. It follows from the definition of the o-algebra A} that the following fami-

lies of sets coincide:

H‘l‘l‘— N zTn <us Tn-l-l’ = Hﬁ. N &Tn <u = TrH-l!
and consequently the families of sets
(HVHE Y N Ty <u STy ) = HPVHE N ITy <u < T,

also coincide. Take the set {T<u] from H}VHf_, and find the set D, from

Hy\/H§ such that

IT<ul NIT, <usT, 1) =D, NI{T, <uUSTryyl .
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Note that for » < u we now have

[(D, NIT, <7 DU, NET, <uPINiT, <u €Ty pg) =D NIT, <u STy
Define S™ by the equalities

8" <uj = Y D.NIT, <7}) .

rsu
where the 7 are rational numbers. We then obtain

(T <ulNiT, <u <T,, ] = {5 <uiniT, <u <T, 4}

or

IT=uiNiT, <2 <Tp )} = IS" 2uNIT, <u =T 4 .

thus completing the proof of Lemma 2.

8.4. Representation of martingales

The following result plays a fundamental role in the analysis of the predic-
tability property.
Lernma 3. let Zy be a might-conbinuous, left-limited, sqﬁare-integrable,
HY-martingale process. Then an H¥-adapted process f (u.w), u > 0, exists such
that

t
Effz(u.w)du <wm, t 20
0

and
t
Z = Z°+{f(u.w)dwu .

The proof of this lemma is similar to that of Theorem 5.5 in [14]. The following

well-known result is important in the proof of some auxiliary assertions.

Lemma 4. Let L be some vector space of boundad real functions defined on ().
Assume that it contains the constant 1, is closed with respect to uniform con-
vergencs, and is such that for any uniformly bounded increasing sequence of
non-negative functions f,, n 20, f, €L, the function f = lim also belongs

R »e

to L. Lat Q ba a subsat of L which is closed with raspect to multiplication. Than
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the space L contains all bounded functions, measured with respect to the o-

algebra H generated by the elementsof Q.

Remark. This result is known as the monotonic class theorem, and is proved in
[15] . The theorem is also true if

(a) Liis closed with respect to monotonic and uniform convergence and

(b) @ is the algebraand 1 € @

or

(a’) L is a set of functions closed with respect to monotonic convergence to the
bounded function and

(b’) @ is a vector space closed with respect to operation A (maximum of two

functions) and 1 € @.

6.5. Predictability of H}’-well-measurable processes

It turns out that HY-well-measurable processes have the following remark-
able property:
Lemma 5. Let Y be an arbitrary HY-well-measurable process. Then pracess
YR 1T, <t]is Hy-predictable.
Proof. Let T be an arbitrary H¥-stopping time, and denote by A(t) the dual H}*-

predictable projection of non-decreasing process I{(T<¢). From the definition

of A(¢) the process Z; = I(T<t) — A(t) is an H¥-martingale.
Now consider the process v, = Wy 4y — Wy, and define Hy = (HY ¢)¢20s

where H , = olv,. u < t{VHr

Observe that A, = Hy'p , and consequently that family Hy coincides
with family H3" = (A3’ 4¢)e20- It is not difficult to check that v, is a Wiener

process with respect to HY and that Z} = Zp 4t isan H?"“-martingale process.

From Lemma 3 we have the following representation of Z™

4
r =723 + ffﬂ(u..o)dvu ,
0

or, in terms of Z,

T, +u
Zy o =2, + { Ia(Ty 41, 0)dwe 4, .
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Taking T, +u =t we get

[ ¢ ]
7, (T, <t) = |Zy + [fn(u.0)dw, |(T, <t) .
T

The right-hand side of this equality is an HY-predictable process. Remembering
the definition of Z , we deduce that the process I(T<#)I(T,<t) is Hy-
predictable.

The result of the lemma may then be derived from the monotonic class
theorem [15].

8.6. Characterization of H* #-predictable processes

The following assertion describes the structure of HY#-predictable

processes.

Lemma 8. An HY'#-adapted process Z, is HY #-predictable if and only if, for any

n = 0, there ezxists an H'-well-measurable process ¥* such that
YPI(T, <t <T,,.,) =2 (T, <t <T,,,) . (A1)

Proof
Necessity. Consider the process Z =1I(t <T), where T is an arbitrary HY'#-

stopping time. 1t follows from Lemma 1 that

Ht <DUT, <t <T,,,)=1{t < ST, <t<T,,,) .

which leads to equality (8) with YJ* = I(t < S™). That these conditions are neces-

sary may be proved from the monotonic class theorem.

Sufficiency. Observe that for an arbitrary H)’-adapted process Y;, the process
IiT, <t]Y; is HY#-adapted. This is because

(HEVHE )T, < 8} = (HEVER) T, < a2 0

and any arbitrary set from (H*HE)INIT, <t} is H¥vAf-measurable. Left-
continuous H}Y-adapted processes Y, generate left-continuous HY#-adapted

processes I{T, < ¢} Y;. This means that the following inclusion is true:

(HYYN] Ty Tp oy ]| < TI(HYH) (A2)
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where II(HY) and II(H¥#) are c-algebras for HyY- and HY #-predictable sets
respectively, and ]|T,.T, ]| is the stochastic interval corresponding to the

stopping times T,, and T, ;. The inclusion (A.2) yields:

Ul T T g 1 NII(HYY) € TI(HY#) (A.3)

n

From Lemma 5, the process YJ'KT, <t) is H¥-predictable. Inclusion (A.3)
shows that the process )} Y7 1L 2E T (which according to equality {(A.1) coin-
n

cides with process Z ) is H¥ #-predictable. This completes the proof.

8.7. A property of conditional distributions

Let H, G, F be g-algebras in (). Assume that they are complete with respect
to measure P and such that G ¢ H, F CH. The next statement will then be use-

ful in analyzing the form of the dual predictable projection.

Lemma 7. Let Bc H, P(B) >0 be such that the families of sets F N\ B and
G N Bcoincide P-a.s. Then for any fA-measurable integrable random variable 7

the following equality holds:
I(B)E(n|GvB) = I(B)E(n| FVB) .

Proof. For any A € H define the measure PB(4) as follows:

_ P(ANB)
PO 5w

Let EB denote the mathematical expectation with respect to PP, The families of
sets GNB and FN\B form g-algebras of the subsets of set B that, generally
speaking, are not o-algebras in (). Since these families are complete with
respect to measure PB they coincide PB-a.s. with the o-algebras G\vB and fvB

respectively.

1t follows from the conditions of the lernma that for any A € H we have

PB(AlGNB) = PB(A| FNB), PB-as. ,

or, equivalently,

PB(4|GvB) = PP(A| A/B), PPB-as.
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and thus the following equality holds PB.as. for any bounded random variable 7:
E3(n|GVB) = E(n| FVB) .

This may be rewritten in the form

1(B) EB(n!GvB) = I(B) EB(n| FVB), P-as.
or

I(B) E(n!GVvB) = I(B)E(n|FVvB), P-as. .

thus completing the proof.

8.8. Some properties of conditional mathematical expectations

The next assertion will be useful in proving the predictable characteriza-

tion of some random measures.

Lemma 8. Let A< H{-:m. Then the following equalities are true forany ¢t >0 :
E(I(Tpo <t) I(A)IH‘"VH{-:) =EB(I(Tp4y =< t)I(A)IH;‘”va:.) (A.4)

E(I(Ty sy = 8)|HYVHE ) = BE(I(Ty 4y = ) | HPPVHE ) .

Proof. Since A, is non-singular for any w =0, the process w;, may be

represented as follows:
¢
wy = [BINOG - A,du) |
Q
where
3
X=X —ffzp,(du.dz) .
oF

This shows that the process w; is H*-adapted and leads to the inclusion:
HPVHE c HE . (A.5)

Consider now the bounded random variables XI,XZ. X5 which are measur-

able with respect to g-algebras A, Hﬁ‘ and Hy,. respectively. Note that Xg

does not depend on events from H; and consequently Hf since A C H,.
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Define d = E(X;XpX351(T,,; < t)1(A)). Using the H¥VHE -measurability of
the product X,X,X;this can be rewritten as

d =E(X1X2X3E(](Tn+1St)l(A)'HwVHﬁ‘) .

Observe now that the product X, X,I(T, ;, < ¢t)I(A) is H}¥*-measurable and conse-
quently Hf-measurable. Using the fact that X5 is independent of the events of

g-algebra Hf we obtain

d = B(X;X,1(T,,; <t)I{A)EXg . (A.8)

Since I{T, 4y $t) = (T, 41 = t) T, <¢) equation (A.6) may be rewritten as fol-

lows:

d = B(X X (T, < t)E(I(T, 4, < 8)1(A)| H*VHE (T, <t]) EX;3 .

Noting that events from (H}*vHE )NIT, <t also belong to Hf and since Xj is
independent of Hf we get
d = B(X, X (T, <t)E((T,,, < )I(A) | H{*VHE . (T, <t}))

= E(X1X2X3E(I(Tn+1 < t)I(A)IH"”vHﬁ‘)) .
Thus
E(X,\ X3 B(I(Tp 4y < t)I(A)lH‘"vHﬂ ) = ]5(.1(1)(2)(3E(1(T,t{_l < t)I(A)lH“”\/Hf: )) .

Using the monotonic class theorem we prove the first part of the lemma.

In a similar way it is possible to prove the equalities:

E(I(T,,, <t)[(A)| HYVHY ) = BT, ,; < ) I(A) | HPVHE ) |

which yield

E(I(Toyy = ) [HYVHE ) = B(I(Tyyy 2 )| HVHE ) .
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6.9. Predictability analysis of the v

The following assertion is an important step towards the proof of the main

result.
Lemma 9. For any I' € B(F) the process vy((0,t ].T), t = 0, is HY #-predictabdle.

Proof. It follows from Lemmas 5 and 6 that the dual Hg'#-predictable projec-

tion of integer-valued random measure u{du,dz) may be represented as follows:

- n To+bd, P(T, S u, Zyyy €T HPVHE)
0.1.7)= Y I(T, <t <T,,
vo((0,t], T) 1:.2: (T, < 1) p2=0 u P(Tpﬂrzulh',‘fvﬂf;)

Observe that the function on the right-hand side of this equality immedi-
ately following the indicator I(T, <t <T,,;) is H{vH{ -measurable, with

right-continuous, left-limited sampling paths. This means that the function is

H'-well-measurable. From Lemma 3 the process

o, T 0P (Ty 1y 5.7y < V)

(T, <t
(T, < )p2=0 T’fu P(T, ., =u| HAVAE)

is H¥-predictable, and consequently (from Lemmma 4) the process v((0. ], 29
is HY #-predictable for any I' € B(X). This completes the proof.

8.10. Measure v as the dual HY #-predictable projection of n

The next two lemmas give the probabilistic form of the dual HW:A-
predictable projection of u.

Lemma 10. For any " € B(F) the process
YF = u((0.t].T) —vy((0t]. 1), t 20,

is an HY'#-adapted local martingale.
Proofl. From the definition of the vy, }’tr is an Hj’'#-adapted local martingale for
any ' € B(£). Introduce the process

X' =E(¥f1H#), t=0.
It is easy to see that X, is an H"'#-adapted local martingale. However, it follows

from Lemma 8 that the process Y‘P is H¥:#-adapted and consequently coincides
with X‘P. thus proving the lemma.



22

The following assertion provides a probabilistic characterization of the

dual H¥ #-predictable projection of measure yu.

Lemmoa 11. The dual HY#-predictable projection of integer-valued random

measure u coincides with the process vy,

This may be proved using Lemmas 6 and 7 and the uniqueness of the dual

HY #-predictable projection of u.
8.11. Probabilistic form of the dual H* -predictable projection of .t
The fact that eqn. (4) has a strong solution for X; yields the inclusion
HE < HPNEP

which, together with (11), shows that g-algebras H{"\H# and Hf coincide. This
in turn means that the classes of H¥#- and H®-predictable processes coincide,

and consequently that v, is B -predictable,

The introduction of a non-singularity condition for B,. u = 0, means that

for any n = 0 we have:
f
w = {Bu_l(dxft.u ~ 4, du) .

where

t
Xe=Xt -ffzp,(du.dz), n>0 t=0 .
0FE

It follows from these equalities that process w; is H’"-adapted and consequently

that

Note also that equations (8) have a strong. unique solution for X, ;. n = 0. This

fact yields the inverse inclusion:
B € HEvA
and consequently

H™ = HOH™ .
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From the definition of Ht“" we have

H{™N{T, <t} = H{-‘: NiTp < t)=HE (T, <t}
and thus

(HEVHE )T, <t) = (HPVHEM AT, <= BPNiT, <t ,

Substituting thé H“vH§ -conditional probabilities in eqn. (3) by Him-

conditional probabilities we obtain:

f} t’}AtduP(Tpﬂsu'ZpHeF'H:’) .

v{(0.£]. 1) = Y (T, <t =<T,,,)
n=0 p=0 T At P(‘[‘p+l?_u|[-[:9)

From Lemma 7 and the coincidence of the g¢-algebras HfvH}* and Hf for any

t 2 0, we deduce that process
YF = p((0,t]. T) —vp((0,t]. 1), £ 20

is an FF-adapted local martingale. The uniqueness of the dual HF-predictable
projection means that measures vy and v* coincide, thus completing the proof

of Theorem 2.
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