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One interesting class of quasidifferentiable functions
is that formed by the family of positively homogeneous
functions. In this paper, the author studies the pro-
perties of these functions and uses them to derive some

new results in the theory of cooperative games.
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1. Introduction

We shall begin by recalling the definition of quasidifferen-
tiability (for more information on the properties of quasidif-
ferentiable functions see [5]). Let a finite-valued function

f: S - E1 be defined on an open set S C En .

Definition 1 [5]. 4 function f <s said to be quasidifferentiable

at a point Xx € S if it €8s differentiable at x in every direction

g € E and there exist convex compact sets 9f(x) C E, and

gf(x) C En such that

-2§i51-= max (v,g) + min (w,qg) Vg&E - (1)
g vEI £ (x) weo £ (x)



The pair of sets Df(x) = [3f(x),3f(x)] is called a quasi-
differential of the function f at the point x and the sets
d9f (x) and 3f (x) are called a subdifferential and a superdif-
ferential, respectively, of £ at x .

In what follows we shall consider a positively homogeneous

function £ , i.e.,
f(ax) = Af(x) Y 20 . (2)

Let K be a convex cone in En with a compact base and a
non-empty interior. We shall suppose that T is the base of
this cone, where dim T < n ; let:ri T denote the relative interior

of the set T , and RT the affine hull of T .

Definition 2. 4 function £:T - E1 18 said to be quasidifferen-—

tiable at a point x €EX1i T <f it is differentiable at this point
in every direction g € ﬁT = RT-x and convex compact sets

QTf(x) ' 5Tf(x) C §T ex18t such that

3§$X) = max (v,g) + gin (w,g) Vg € ﬁT *
9 vEd £ (x) wEd £ (x)

The following proposition is an immediate corollary of

these definitions.

Proposition 1. Let a funetion f:K - E1 be quasidifferentiable

at a point x € int K . Then the function £f| , where

T (x,p)
T(x,p) = {z € K| (z=x,p) = 0} , p € E  ts quasidifferentiable
at x , and its quastidifferential is defined by the pair [A,B],

where



A=Pr (3f(x)) , B = Pr (3f(x)) ,
p= p

and PrpC represents the orthogonal projection of a set C on the

hyperplane

Hp = {z € En|(z,p) =0} .

2. Quasidifferentiability of a positively homogeneous_extension

Let us suppose that the function f:K = E, is the positively

1

homogeneous extension to the cone K of a function f defined on

the set T(x,x) , X € int K . Let f be quasidifferentiable at x .
Theorem 1. The function E is quasidifferentiable at x and moreover

DE(x) = [Qf(x) + x ﬁ% , sz(x)] .
X

Proof. Since f is quasidifferentiable, the equality

ag(%L = max (v,h) + min (w,h) , (3)
h vEd £ (x) wEa £ (x)

holds for every direction

h€H ={vE Enl(v,x) = 0}
and

af (x) , Af(x) C H, - (4)



Let us consider an arbitrary direction g € En and suppose

that

g # \x for every X € E1 . (5)
Consider

F(x,q) = lim( F(x+\g) - F(x) )

A=+0 A

It is clear that

xrAg (X+Ag,x) XeX) o
where “x"2 = (x,x) . Let

hoo A= (x+g) = X (6)

(X+g, X) g y

Then h € Hx and we have the following representation:

MK
(x+kg)—m = x + uh ,
where
ullxl?
A= > .
Il + (g,x) - n(g,x)
(Note that h#0 because g#Ax.) It is clear that A-=-+0 iff u-+0

and thus we have



£ (x+uh)(_xL>‘9_J.’2iL - £(x)
x

F(x,g9) = lim ( ) =
A—=—+0 A
= lim ( f(x+uh) - f(x) | f(x+uh)—-£-9—’%L)=
A~+0 A (P
- 1im ( flxtph) = £(x) . Ixl®+ (9,3%) - u(g,x) )+
u=+0 u Il 2
+ £(x) - _lﬂLE%_ .

M

Hence for every g#Ax the derivative _égéél. exists and

dF(x) _ _8f(x) . Ix1% + (9,%) . f(x)

- = (g.x) (7)
dg oh 112 ME
where h is defined by (6).
From (3) we then get
oFeo _ Mx1® + (90 [ L omy 4 min wony | s
o9 MK vEI £ (x) WED £ (x)
+ —J-Lf ’“‘2 (g,%)
X

Since the function _Qgéﬁl. is positively homogeneous in g ,
it is enough to assume that g satisfies the condition
112 + (g,x) > 0

Then, taking (6) into account, we have

D) L ey (vig _x_ﬁg,%) .
g vEDF (x) I



+ Iﬂin (W:g - X (gLX) + f(X) (glx)

wEIE (x) ML MK

Since 3f(x) , 0f(x) C H

Mg& = max (Vlg) + IBin (ng) + -&ZL (g,x)
El vED £ (x) wED £ (x) I
= max (Vlg) + I_[.lin (ng)
vEDE (x) + fgxg < wEo f (x)
- I

(8)

Now we have to check that this formula holds for g € Hx and

g=ax for some A#0 .

If g € H, » then (g,x) = 0 and

max (v,g) = max (v,g) .

VEBf(x)+—£i§%-x vEA£ (x)
- I

Let us suppose that g=iAx for some A#0 . Then

>F
féxz

E(x+urx) - E(x)\_

u /-

lim (
u—=+0

lim

( AN EGE = £60) 46 g
u=+0

u

But from (4) we have

max (v,Ax) + min (w,Ax) =
vegf(x)+-£i§l-x wEd £ (x)

= (—fﬂx’}\x) = )\f(x)

ML

thus proving the theorem.



3. Game-theoretical applications of quasidifferentiable

functions

Now let us consider the game-theoretical applications of
quasidifferentiable functions. The study of so-called fuzzy
or generalized games is currently attracting a great deal of
interest. We will not go into the reasons for this here (but
see J.-P. Aubin [1-3] on this topic): we shall simply recall
the main definitions.

Let I=1:n be a set of n players. We can then identify an
arbitrary set S C I , called a coalition, with a charac-
teristic vector eS , Where e=1[=(1,...,1)€.=.En and eS is the
projection of vector e on the subspace

s _ _ .
R° = {x € En|xi—0 for i & s} .

Thus the set of all coalitions is {0,1}" .

The set of generalized (fuzzy) coalitions is, by definition,
the convex hull co{0,1}%=[0,1]1%=1" . Hence a generalized co-
alition t € I" associates with each player i € I a participation

rate Ti € [0,1] , which is a number between 0 and 1 .

Definition 3 [3]. A4n n-person generalized cooperative game

(with side payments) is defined by a positiuvely homogeneous
function v: [0,1]17 = E, which assigns a payoff v(t) € R to each
generalized coalition T € [0,11% . The function v 728 called the
characteristic function of the game.

Since v is positively homogeneous we can extend v to E; by

setting

v(0) =0



for T € E: , T#O .

We shall take the vector space En as the space of outcomes
(or multi-utilities). Vector x=(x1,...,xn)EEEn represents the
utilities of the players; the utility of the generalized co-

T,X. - If 8 C I , then this

alition v is given by (1,X)= ¥4

1 M3

i=
utility is equal to (e°,x)= Z x. .
i€s
It is well-known (see, for example, [1,2]) that the direc-
tional derivative may be used to define the solutions of a game.
In an extension of this idea, J.-P. Aubin has proposed that the
Clarke subdifferential could be used to define a set of solu-

tions to locally Lipschitzian games, i.e., games with a locally

Lipschitzian characteristic function.

Definition 4 [3]. We say that the Clarke subdifferential

BclV(E) of vat T <s the set of solutions S(v) to a locally
Lipschitzian game with characteristie function Vv .
The following properties of the set S(v) are worthy of note:

(a) S(v) is non-empty, compact and convex
n

(b) S(v) is Pareto-optimal, i.e., if x € S(v) , then z xi=V(E)

i=1
(c) Ss(Av) = AS(v) for X € E1
(d) S(u+v) C Sfu) + S(v)
(e) If v is superadditive, then S(v) coincides with the core

of v

(f) If v is continuously differentiable at T , then S(v)=Vv(T)

i.e., S(v) contains only one element which coincides with

the generalized Shapley value of the game v .

’



Definition 5. A generalized game is said to be quasidifferen-

tiable if its characteristic function is quasidifferentiable.

Remark 1. Since quasidifferentiability is essential only on
the diagonal of cube I” then from Theorem 1 and the positive
homogeneity of function v it is sufficient to assume that v

is quasidifferentiable only at T .

Let v be quasidifferentiable and its quasidifferential be
[ov(T) , dv(T)] . From Proposition 1 we deduce that the func-
tion v1 = V|T(I[,E) is quasidifferentiable at T with a quasi-
differential defined by the pair [Prnzgv(n) , Prn:Fv(E)] . It
is clear that the positively homogeneous extension v of the
function v1 on E; coincides with v ; the quasidifferential of

this function at T , which may be found using Theorem 1, is

.. v(T =
[Prtév(ﬁ)+-]i1% T, Prg dv(T)] .

It is also clear that this pair is in some sense "Pareto-
optimal”, since for x € PrT[ ov () + -iu’(—Ilf)z- T and y € PrE ov (1)
T
we have

1

(x;4yy) = (x+y,T) = (ﬂ tc.tr) = v(T)

n
z
= ik

.
(because Pr. v (W) , Prp dv(T) C H) .
Let D"v(T) be a quasidifferential of v at T which is Pareto-

optimal in the sense described above. We then have the following

definition:

Definition 6. The quasidifferential D'v(T) of the characteristic

function v at the point WM <s called a quasisolution of the game.



_10-

There are at least two reasons for using the term "quasi-
solution". Firstly, it is known that quasidifferentials are

not unique and are defined up to the equivalence relation. We

should also note that a locally Lipschitzian function is not

necessarily quasidifferentiable and vice versa. Moreover, it

is obvious that a function which is both locally Lipschitzian

and quasidifferentiable may have both a directional derivative

and an upper Clarke derivative, which are essentially different

quantities.
Quasisolutions also possess certain properties which go

some way towards justifying their name.

1. If a characteristic function v is continuously differentiable
at T, then D'v(T) = [Vv(E) , 0] , where Vv(T) is the
gradient of v at T and a quasisolution can be identified
with the generalized value of the game.

2. If v is concave (i.e., superadditive), then DWV(E) = [0,5V(E)],
where 3v(T) is the superdifferential of the concave func-
tion v and the quasisolution DWV(E) can be identified with
the core of the game.

3. Quasisolutions are linear on v .

Remark 2. In general, if one element of a quasidifferential
is zero, then it is natural to regard the corresponding quasi-
solution as a solution of the game.

Finally, using the properties of quasidifferentials we can
find quasisolutions of the maximum and minimum games of a finite
number of quasidifferentiable games, and thus we may speak about

the calculus of quasisolutions.
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Let us now consider the directional deriwvative

avggtrz = 1im v(T+Ag) - v(T) .

A-+0 A

This value shows the marginal gain of coalition T when a
new coalition g joins the existing coalition T . (We do not
assume that g € E; » and hence this vector can have negative
components. Such components may be interpreted as the "damage"
caused to the corresponding players or alternatively as an in-
dication that they should leave the whole set of players).

Since representation (1) holds for a quasidifferentiable
game, it is interesting to consider the vectors x(g) and y(g)
at which the corresponding maximum and minimum are attained.

Since 9v(T) and dv(TW) are convex compact sets, the sets

Arg max {(x,g) |x € av(m)}

and -
Arg min {(y,g)|y € av(m)}

consist of only one element for almost every g € Sn-1 .

Let G(v) denote the set of such g , and z(g)=x(g)+y(g) .
Note that if the function v is both locally Lipschitzian and
quasidifferentiable and also satisfies some additional property
(which is too cumbersome to describe here~--see Demyanov [4]),
then the points z(g), g € G(v) , describe all extreme points of
the Clarke subdifferential of v at T (the set of solutions pro-

posed by J.-P. Aubin).
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4. Solution of quasidifferentiable games

We shall now define the solution of a quasidifferentiable
game, which we shall call an st-solution. We require the fol-

lowing additional definition:

Definition 7 [6]. Let K be a compact convex set in E . The

Steiner point of the set K 7s the point

1
s(K) = —G; _[Sn_1 op (K,a)dx , (9)

where A s the Lebesque measure on the unit sphere Sn-1 in E,
o 28 the volume of the unit ball in E , @ 18 a variable
vector on Sn—1 and p(K,-) is the support function of K .

Note that we always have s(K) € K and s(-K)=-s(K) . Let
v be a quasidifferentiable characteristic function with quasi-

differential
D'v(M) = [3v(m) , dv(T)] .

Definition 8. The st-solution of a quasidifferentiable game

with characteristic function v 1s the vector st(v) defined by

the equality
st(v) = s(dv(T) + s(dv(M)) . (10)
We first have to prove that this definition does not depend

upon the pair defining a particular quasidifferential v (such

a quasidifferential may not even be "Pareto-optimal”"). This
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follows immediately from the linearity on K (with respect to

vector addition of sets) of the function s defined by (9), and
from the following obvious property of quasidifferentials: if
[A,B] is a quasidifferential of v at x , then the pair [A1,B1]

is also a quasidifferential of v at x if and only if
A -B, =A, - B . (11)
Using the equality (11) and the linearity of s we get

S(A-B1) = S(A1-B) had

s(A)-s(B1) = s(A1)-s(B) ® s(A)+s(B) = s(A1)+s(B1)

The vector st(v) can be interpreted as the vector of average
marginal utilities received by the players.
We shall now describe some properties of st-solutions.

Proposition 2. If a generalized game is quastidifferentiable,

then:

1. The mapping st:v = st(v) Zs linear in v .

2. The st—-solution is Pareto-optimal, i.e.,

I M3

1(st(v))i = v(IL) .

i
3. If v is continuously differentiable, then st(v)=Vv(T) and
the st-solution coincides with the gemeralized Shapley value of V.

4. If v is concave (superadditive), then st(v) <s the Steiner

point of the core of the game.



-14-

The proof of this proposition follows immediately from Pro-
position 1, Theorem 1, and the definition of quasisolutions.
Now let us prove two more important properties of an st-solution:
it satisfies the "dummy" axiom (Theorem 2) and is symmetric (Theorem 3).
Let a quasidifferentiable game have characteristic function v

I\i

such that v(x)=v(x ) for every x € E:; . Then for every g€ En we have

ov(m) lim(v(tmg) - v(m) )=
9g A=—+0 A
(12)
- i (V(TII\iH\gI\b - V(EI\i)) _ av(rh
A=t0 A agt i

It is clear that the function \-;=VI'I\i is quasidifferentiable
R

at EI\l

and itsiquasidifferential at this point is defined by the
pair‘[Pr:fv(E) , Pr dv(m)] , where Pr A is the projection of A on

IRI\l . Hence, from (12), this pair is the quasidifferential of

v at T. Thus if x € Pr(dv(T)) and y € Pr(dv(T)) , then x;=0 ,

yi=0 . From this we have (st(v))i=0 and the following theorem
holds.
Theorem 2. If a quasidifferentiable game with characteristic

\i) for every x € [o, 11",

funetion v 18 such that v(x)=v(xI
then (st(v))i=0 .

In other words, the function st(:) satisfies the so-called
dummy axiom, which states that a (dummy) player who gives nothing

to any coalition will also receive nothing.

"Nothing will come of nothing"

Shakespeare, King Lear
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Suppose now that v is quasidifferentiable and 7 is a per-

mutation of the set of players I=1:n . We shall define the
game m*v as follews: w*v(x)=v(x _, yeoesX _1' ) .
T (1) T (n)
_1 _ , _ :
Let (m 'x); =x _4 and (mx); = x_, .
™ (i)

Theorem 3. The gt-solution is symmetric, Z.e., st(m*v)=m st(v) .

Proof. If [dv(T) , 5V(E)] is a guasidifferential of v at T,

then
81r'*v(1Iz = lim( TrME+>\g) -'rr*v(1IL)=
Kl A=+0 A

] lim( v(ﬂ-1E+n_1(Xq))-v(n—1ﬁ)) )
A~+0 A

- lim ( v(T+A (17 1g)) - v(T) )= _dv(m)
A=+0 A a(n_1g)

Hence

om*xv (1) = max (z"n'_1g) + r_nln (Yln_1g) =
g z€Jv () yE€av (1)

max (nz,n(ﬂ_1g))‘+ min (Wy'ﬂ(ﬂ-19))=

z€3v () yEaV ()
= max (z;9) + min (v.9) .
z€ET (v (T)) yE m(ov (L))

Thus [T(dv(T)),m(Av(W) ]| is a quasidifferential of 7*v at T .
Since the Steiner point is invariant under orthogonal trans-

formations of En , then
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s (m3v (M) =7s (3v(E)) , s(mdv(M)) = 7s(Iv(T))
and hence
st(m*v) = m st (v) , (13)
which is the proposition of the theorem.
It is clear that the above formula holds for every or-

thogonal transformation of En which leaves the vector T un-

changed.
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