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1 . Introduction

The theory of stochastic differential equations with reflecting
boundary conditions leads to the "Skorohod" problem, as it was remarked

by N. El Karoui and M. Chaleyat-Maurel in [13 ].

The Skorohod problem is defined as follows. We consider a compact
subset K in R" with nonempty interior and a vector field n_ on the

boundary 9K , not necessarily single valued, such that n_ € Sn-] for

all x in OK . Let a function w € COR+JRn) be given, w(0) € K and
let x € CGR+,K) , kK € CGR+;Rn) . We denote by |k|t the total variation

of k on [0,t ] and by laK the characteristic function of 3K .

The pair (x,k) 1is called a solution to the Skorohod problem

(w,K,nx) if for all t =290
(1) w(t) + k(t) = w(r)

(i) k[, < e

t
(iii) [kl = JO Lo (x()) dlk|g

Kk

s » where &(s) € n(u(s))

t
(iv) k(t) = J &(s) d
o

The existence and uniqueness cf solutions to (w,K,nx) has been
first considered - via explicit formulas - in the particular case when
K 1is some half space (see N. El Karoui, M. Chaleyat-Maurel [13 ]| and
N. El Karoui, M. Chaleyat-Maurel, B. Marechal [14 |) ; the first general

study was done by H. Tanaka [31 ] in the case when the domain is convex

and vector field n 1s normal.



Finally P.L. Lions, A.S. Sznitman [ 24 ] studied the case when

K = Q and the domain § has some "semi-smoothness" property and when

the vector field n_ is smooth : in [24 | the existence, and the uni-

queness for bounded variation data is proved and these results are
applied to the solvability of stochastic differential equations (or more

generally for data given by semimartingales).

We want to complete these results, by a different approach. As
usual, we have to allocate some smoothness requirement between the
function w and the boundary 38K of K for obtaining existence. We
shall provide two types of compromise : one assumes that w has a
contingent derivative, and that the vector field n_ has a closed graph
(Theorem 3.3) ; the second assumes only that w 1is continuous but

requires more assumptions on the normal cone to K .

We shall follow a direct approach to the Skorohod problem, by

locking at it as a viability problem for a differential inclusion. Set

cl U )\nx for x € 9K
Px) :=

{0} for x € Int K

This approach consists in looking for a pair of continuous functions

(x,k) satisfying for all t =0

(i) x(t) €K

(11) x(t) + k(t) = w(t)

]

(iii) k(t) € Loc

(iv) k(t) € T(x(t)) for almost every t

V
o



Or equivalently, by eliminating x(+) in the above, we can look for an

absolutely continuous function k : R, +R" satisfying

(i) w(t) - k(t) € K

1

(ii) k(t) € Lioe

(iii) k(t) € Tw(t)-k(t)) for almost all t >0 .

This problem is a particular case of a viability problem of the

following type :

Let K be a closed subset of RrR" s, F ¢ K IRn be a set valued

map, X_ € K . We are looking for a solution of the problem :
o

x € F(x)
(VP) {

x(0) = X . x(t) €K for all t =20 .

Therefore for studying the Skorohod problem, we can use a viability
theorem providing necessary and sufficient conditions for the existence

of a solution to (VP), which we now explain :

Let TK(x) be the contingent cone to K at x (see |2 ], [4])
or section 2 of this paper for a definition). Then under some
continuity assumptions on F the problem (VP) has a solution x(-)

if and only if the tangential condition
TK(x) NFx) # ¢

holds true.

In this way we obtain an existence theorem for a general set K which,

may be, could be used for solving stochastic differential equations.



The outline of this paper is as follows. We shall give in section 2
some background notes and we shall state in section 3 two main theorems.
In the fourth section, we specialize the map T'(x) to be the normal cone
to K at x and consider also the case of oblique reflecting boundary

conditions. We prove the main theorems in the fifth and sixth sections.

The author would like to thanmk P.L. Lions for raising up questions

studied here and many helpful discussions.

2 . Background notes.

o
We denote here by B (B) the open (respectively closed) unit ball
in R® , by s"!
subset of R" .

its boundary, the unit sphere in R" . Let K be a

a) Tangent and normal conmes.

The intermediate tangent cone (of Ursescu) IK(x) to K at x

is given by

K-x e
IK(x) 1= N U N fj;- + EB]
e>0 §>0 helo,8|

(see [15 ], [16 ) or[26]) .

(2.1) Proposition. The following statements are equivalent
i €
1) vEIL X

(i1) for all sequence hi >0 converging to zero there exist
a sequence V. erR" converging to v such that

.v. € i
X + h1V1 K for all 1 .



(iii) lim 1 d (x+hv) =0

5 , Wwhere dK(y) := dist(y,K)
h » 0+

(2.2) Definition. The asymptotic tangent cone to K at x 1is the

recession cone to IK(x) , which is defined by
[ o]
IK(x) = {u € IK(x) : utv € IK(x) for all v € IK(x)}

The asymptotic normal cone to K at x 1is the negative polar cone of

I:(x) , which is given by
N:(x) := {p eER" : <p,v> S0 for all v € I;(x)}
(see [16 ] for further properties).

(2.3) Remark : The asymptotic tangent cone is a closed convex cone

contained in the contingent cone of Bouligand

TK(x) s= N U [EEE + EB]
€>0 h€]0,8]
§>0
and containing the tangent cone (of Clarke)
Ce®) = N U n [K—;X+e3]
€>0 §>0 hE 10,5[

(see [4 ], [7], 128 ]).

If 9K 1is smooth (locally a graph of a differentiable function)
then I;(x) = TK(x) coincide with the usual tangent space to K at x
and if K 1is convex these three cones coincide with the tangent cone

cl U % (K-x) of convex analysis. For x € Int K they are equal
h>0

to whole space,



b) Monotone maps.

We recall that a set valued map F : K 3R" is called monotone if
<n,-n, , x| =%,> 2 0
for all n, € F(xi) , X €K, i=1,2 .
The set K is called weakly convex if there exists ¢ >0 such

that the map x + B F\N:(x) + cx 1is monotone. It can be verified that

this condition is equivalent to the following :

for all x € 3K there exists y €R" such that
| 1 = {x)
xﬂ[y+7EB]-¢ , Kﬂ[y*cB]-fXI

Geometrically it means that at every point x € 3K there exists a

supporting ball of radius -%E (see {8 ]).

weakly convex not weakly conyex

3 . Main results.

For a function k : R, +R" let | k|
of k on [O,t].

¢ denote the total variation

Let K be a closed subset of Rn and let JK denote its boundary

The characteristic function of the boundary 9K 1is defined by




1 if x € K
laK(x) tm {

0 otherwise

Let T :R" >R" be a set valued map whose values T(x) are

closed convex cones such that TI'(x) = {0} when x € Int K .

Consider a function w : R, +R™ such that w(0) €K .

(3.1) Definition. A pair (x,k) of continuous functions x :'R+ + K,

k :'R+ +R" is called a solution to the Skorohod problem (w,K,T) if
for all t =20

(i1) x(t) + k(t) = w(t)

t
(3.2) { G k|, o= [o Lop(x(s)) dik|g
t
(iv)  k(t) = [ &(s) dlk|,
L (o]
where &(s) € TI(x(s)) N Sn-.l if x(s) € K

First, we do not impose any smoothness assumptions on the boundary

9K , but we assume that w satisfies a weak smoothness requirement ;

!

For some function o €L
loc

*) ¢ lute) - v

s = t

lim in
s + t+

< oft)

Observe that functions of bounded variation satisfy the above property.



Second , we assume only that w is continuous, but the price to
pay is to require that the set K 1is weakly convex (see section 2 for

the definition).

(3.3) Theorem. Assume I has a closed graph, w satisfies (%) and
for some V>0, M>0 and all x € K there exists a symetric

positive definite matrix A(x) such that
A() 2V, IAI <M and N (x) CA(X) T(x)

Then the problem (w,K,I’) has a solution. If we assume moreover that
A does not depend on x and that there exists ¢ =2 0 such the map
x > AT(x) NN + cx 1is monotone, then there exists a unique solution

to (w,K,T) .

We shall prove this theorem in section 5.

a) Case when K 1is smooth.

Assume that the boundary 0K is smooth (of class Cl ) and w
satisfies the assumption (%). Let n_ be the unit onter normal to K
at x € 9K and NK(x) be the cone generated by n_, i.e,

NK(x) := U Anx , for x € 9K , and NK(x) = {0} for x € Int K .
A=0

Then the graph of NK(') is closed and satisfies the assumptions of
Theorem 3.3 with A(x) = Id . Thus in this case the problem (w,K,NK('))

has a solution.

b) Case when K 1is convex.

Let K be convex and let NK(x) be the normal cone to¢ K at x
in the sense of convex analysis, Then the set valued map NK(!) has a

closed graph and by section 2 , NK(x) = N:(x) . Moreover NK(') is a



monotone map. Hence if a function w € CGR+;Rh) is such that the condition

(*) holds by Theorem 3.3 the problem (w,K,NK(-)) has a unique solution.

c) Case when w 1is of bounded variation.

Assume w GCG!+,Rn) and |w|t <® for all t >0 , that is the

total variation of w on [0,t ] 1is finite. Then é% |w|t € L1 and

loc
therefore w verifies the condition (%). Then Theorem 3.3 implies that
if T satisfies all assumptions of Theorem 3.3 the problem (w,K,[)

has a solution.

The last case suggests another approach for solving the Skorohod
problem. Namely if w 1is only continuous we can approximate it by
smooth functions w. converging almost uniformly to w . Then if T
satisfies the requirement of (3.3), the problem (wi,K,F) has a solution
(xi’ki) . All we need then is the sequential precompactness of
{(xi,ki)}i > in an appropriate topology. To have this precompactness

property we shall require a monotonicity condition on the map T ,

We say that a cone ( CR" has a compact sole if there exists

a compact X CR™\ {0} such that C= U AX (such a X being a
A20
"sole" of the cone C , generating C ).

(3.4) Theorem. Assume that T has a closed graph and TI'(x) has a
compact sole for all s € 3K . Assume further that for some v ~>0 ,

c >0 and all x €K there exists a symmetric matrix A(x) such that

(i) The set valued map x » A(x)T(x) N B 4+ ¢x 1is monotone
(ii) AX) 2 vl for all x € 3K , A(+) 1is continuous

(iii) N‘I’Z(x) C A(x)T(x)



10

Then for all w ECCR+,Rn) » w(0) €X the problem (w,K,) has a
solution. Moreover if A does not dpend on x then the solution is

unique.

The proof of this theorem, which is related in many aspects to

the one of [24 |1 is given in section 6.

4 . Examples of applications.

Let K be a closed subset of R" . CK(x) be the tangent cone
(of Clarke) to K at x €K (see Remark 2.3 for definition and [4 ],
[7 1 for an exposition). Let N (x) be the negative polar cone of
CK(x) . When the boundary 9K 1is of class C1 then NK(x) is spanned

by the unit outer normal to K at x .

(4.1) Lemma. The set valued function x - NK(x) has a closed graph

if either one of the following conditions holds

(i) For all x € 3K , NK(x) has a compact sole

(i1) PFor all x €K , CK(x) = TK(x)
Proof. (i) is equivalent to Int CK(x) # ® . Thus by [28 ] (i) implies
that the set valued map x - CK(x) is lower semicontinuocus. If (1i)

holds then by [8 ] also CK(°) is lower semi continuous. This is

equivalent to say that the map x-a»NK(x) has a closed graph (see [3 ]).

a) Case when T(x) 1is the normal come to K at x ,

(4.2) Corollary. Assume that either condition (i) or (ii) of Lemma 3.l
holds and that w € CCR+,Rn) » w(0) €K, |w|t <> for all t >0

(i.e. w 1is of bounded variation on finite interyals). Then the problem
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(w,K,NK(-)) has a solution. Moreover if the set K 1is weakly convex

then there exists a unique solution to (w,K,NK(-)) .

Proof. The first claim follows directly from the case c¢) of section 3
and Lemma 4.1. The weak convexity of K means the monotonicity of map

X > NK(x) N B+ cx for some c >0 . By [8], if K is weakly convex,
then TK(x) = CK(x) for all x € K . Thus NK(x) = N;(x) and therefore
the map x NK(x) N B + cx is monotone. By Theorem 3.3 then there

exists a unique solution to (w,K,NK(o)) .

(4.3) Remark. Assumptions (1), (5) from [24 ] imply that the yector
field n_ considered there is the compact sole of NK(x) and that for
some ¢ >0 the set valued map x -+ NK(x) N B + cx 1s monotone, Hence
NK(') satisfies assumptions of Corollary 4.2.

We shall give next another application of Theorem 3.3 :

b) Case of oblique reflecting boundary conditions

(4.4) Corollary. Assume 0K is locally the graph of a differentiable
function and let n_ be the unit outer normal to K at x € 9K . Let
y : oK + s™
all x € 3K

be a continuous function such that for some VvV >0 and

<y(x),nx> = v

Set TI'(x) = {Ay(x) : A =20} and let w € Cm+,lln) , w(0) €K be such
that the condition (%) from section 3 is satisfied. Then the problem

(w,K,T) has a solution.

Proof. Let {Ei} i=1,2,...,n be an orthonormal basis of R" and fix

x € 3K . By assumptions No(x) = U An_. . Let p.,q. be orthogonal
K )‘20 X 1 1
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projections of £2; on N;Z(x) and T (x) := {vER": <v,y(x)> < 0}
respectively. Set aij(x) = <y(x),nx>-] (<pi,pj> + <qi,qj>) . The matrix
A(x) = (aij (x)) 1is symmetric. Let v ER® and TV, Myv be orthogonal
projections of v onto N;(x) ’ F-I(x) respectively, Then
A(X)v = <Y(x),nx>-l(ﬂlv + ﬂzv) . It implies that A(x)y(x) = n
and for some V' >0, A(x) >Vv'I, la(x)l €2/v , where V' does not

depend on x . Hence I satisfies the assumptions of Theorem 3.3 and

therefore the problem (w,K,I') has a solution.

5 . Proof of Theorem 3.3.

We set w(t) = w(0) for all t <0 . It is enough to prove the

Theorem under the additional assumption that K is bounded.

From now on we assume that K 1s compact. Clearly the proof of
existence will be completed if we show that for all T >0 there exists
(x,k) € c(o,T1, K) X c([0,T ],'Rn) such that the relations (3.2)
hold for all t €[0,T]. Fix T >0 . We shall prove the Theorem in

several steps.

Step 1. Assume first that there exists a constant b > 0 such that

' -
lim jof WD -w®O <y ¢ora11 ceqo,r].
t"’ t+ t -t

Consider the set

K := {(t,w(t)-x) : t€[-1,T ], x € K}

and the set valued function G from K into the subsets of )

defined by :



G(t,k) = T(w(t)-k) n%s

Since K 1is closed, w is continuous and T has a closed graph the

multifunction G 1is upper semicontinuous on its domain of definition K ,

Step 2. We claim that for all t € [-1,T ], k € w(t) - K there exists
a(t) € bB such that

{1} x (a(®) - Tw(t)-k) C T, (t,k)

Indeed by the assumption (%) for all t € [-1,T ] the contingent derivative
Dw(t) of w at t , defined by

Du(t) = {p ER" : (1,p) €T o (t,u(t)} (see [4 1)

is nonempty. Then by assumption of step | there exists a(t) € Dw(t) NbB .
By definition of Dw(t) there exists a sequence hi >0 converging to
zero such that

w(t+hi) - w(t)

lim o = a(t)

1+ o 1

Let v € I:(w(t)—k) . By section 2 there exists a sequence vy er"
converging to v such that w(t) - k + h.v, € K . It implies that
(t+h.1 . w(t+hi)-w(t)+k-hivi) € K and therefore

(t+hi . w(t+hi)—w(t)+k—hivi) - (t,k)

lim = (l,a(t)-v)
1 + + h

i

Thus (1,a(t)-v) € TK(t,k)
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Step 3. We claim that the following tangential condition holds
(5.1) ({1} x 6(t,k)) NT (t,k) # ¢

It is enough to consider the case (t,k) € 3K or equivalently
x := w(t)-k € 3K .

Let A(x) be as in assumptions of Theorem and define the scalar

product < , >, on ) setting <P»q> = <A(xX)p,q> . Let
P(x) := {p ER" : <P,V> <0 for all v € Iclz(x)}

that is P(x) is the negative polar cone to IK(x) for the scalar

1

product < , > which is equal to A(x) N;(x) . Then, by assumption,

(5.2) P(x) C TI'(x)

By a Theorem of Moreau (see for example [3 ]), every vy €R" has a
unique decomposition as y = Yi*Y, 0 Yy € I;(x) > ¥y € P(x) ,
Y Yy = o, Iylnx < ny“x 3 Ilyzllx < lly“x .

The properties of A(x) imply the following estimates :

|
< - < - < H
Iyl < Syl < Syl < Eiyl

and similarly

ly,I < 2yl

Furthermore inclusion (5.2) implies that for all x € K the following
holds :

For all vy €R" there exist y, € Im(x) , ¥V, € T(x)
1 K 2

such that y =y, +y, , Hyiﬂ <§% byll, i=1,2 .
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In particular it implies the existence of al(t) € I;(w(t)-k) ’
az(t) € P(w(t)-k) such that a(t) = a](t) + az(t) and

|a](t)| <% la(t) ] . Hence by Step 2, the tangential assumption (5.1)

is satisfied.

Step 4. We claim that the problem (w,K,I) has a solution. Indeed

consider the differential inclusion

y € {1} x G(y)
(5.3)

y(0) =0 , y() €K for t €[o,T ]

By the viability theorem, (see Haddad [18 ]), (5.3) has a solution, i.e.

there exists an absolutely continuous function y : [0,T ]» gk such that
y(t) € {1} x G(y(t)) for all t €[0,T ]

It implies the existence of absolutely continuous function k : [O,T ]+£Rn

satisfying for all t € [0,T ):

(1) R(t) € T@w(t)-k(t)) n%s

(ii) k(t) € w(t) - K
(iii) k(@) = 0
Let x(t) := w(t) - k(t) . Then (3.2) (i)-(iii) are satisfied and moreover

(5.4) lk(t)] < _”_\')’i

Since the multifunction t - T(x(t)) 1is measurable, there exists a
measurable selection ¢ on {t : x(t) € 3k} such that o(t) € I'(x(t)) N Sn_1
(see [33 ]).
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Set

k) ko™ if E(t) #0
&(t) = .
o(t) if x(t) €K, k(t) =0

Then d|k|t = Jk(t) §ldt and thus (3.2)(iv) is verified. Hence (x,k)

is the solution to (w,K,T)

Step 5. We consider here an arbitrary function w satisfying the

assumption (). Set

g llwCe —w) ] ||

al(t) := 1lim in ¢

t'> t+

T
and we consider the function w : E) . I a(s)ds] aﬁRn defined by

(o}

t
v [J a(s)ds] = w(t)
o
Then
_crt’ et
w[[ a(s)ds] - W[J a(s)ds]
.. o o ..o we)-w(t) ] 1
ltT iéi+ g T < lt?+1:£ L . Q)
[ a(s)ds - [ a(s)ds
o o
< 1

By the previous part there exist continuous functions (x,k) satisfying
T

(3.2)(1)-(iv) for all T € [O , J’ a(s)ds] and Ht(‘r)" <% . For all

o
t €[0,T ] set

_ t _ t
x(t) = x [I a(s)ds] 3 k(t) =k [JA

(o] o

a(s)ds]

Then dlk't <
k(t) € F(x(t)) implies (3.2)(iii). Exactly as in step 4 we verify that
(3.2)(iv) holds.

% a(t)dt . Clearly (3.2)(1),(ii) are satisfied. Moreover
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Step 6. (Uniqueness). Suppose that A dopot depend on x and that

there exists ¢ >0 such that the map x » AT(x) NB + cx is monotone,

Then if (xl,k]) and (x2’k2) are solutions to (w,K,I) we obtain
S LAk, - Ak BP(0) = <Ak, (0)-AK.(t) , k, (t)-k.(t)> =
dt 2 1 2 1 2 * 7] 2
= <Akl(t)-Ak2(t) . xz(t)-x](t)>

By monotonicity, using that ﬁi(t) € F(xi(t)) i=1,2 , we have
S LAk, - Ak 12() < cUIR, (£) + K, () 1) Ik, (£)-k, (¢) I
dt 2 1 2 o= | 2 2 1

Integrating on [0,t ] the above inequality we get

—;—llkl(t)-kz(t)ﬂz < —;-<A(k1(t)-k2(t)) » kj(0)-ky(1)> <

t [ ] .
< ¢ I (ﬂkl(s)|+“k2(s)") “kl(s)-kz(s)ﬂ2 ds
o

The Gronwall inequality implies then that
2
Ilkl(t) - kz(t)ll < 0

Hence k, = k and X, = w-k, = w-k, = x

6 . Proof of Theorem 3.4.

The last statement (the uniqueness) follows from Theorem 3.3,
We shall proceed with a proof of existence using results from [24 ].

Note first that if w € C10R+;Rn) then by Theorem 3.3 the problem
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(w,K,T) has a solution (x,k) . Since T(x) has a compact sole which
does not contain zero for all x € 9K we can find s8(x) € Sn-l and
p(x) >0 such that

<y,s(x)> 2 p(x) for all Yy ET(x) N Sn_l

Because [ has a closed graph for all x € 9K there exists R(x) >0
such that

(x' € 3K N (x+R(x)B)) = <y,s(x)> = p(x)/2

for all YyYETX N Sn—l

As in the proof of Theorem 3.3 it is not restrictive to assume that K
is compact. Then the boundary 3K can be covered by a finite number of

open balls B(x;,R(x;))

On the other hand the monotonicity of the map x » A(X)I'(x) NB + cx
(2]

implies that A(x)I'(x) C NK and hence by assumptions

A(x) T(x) = Ni(x)

Let w, € CmCR+;Rn) be a sequence converging to w uniformly on
compacts. By theorem 3.3 there exists a solution (xi’ki) to (wi,K,F)
By the results from [24] we know that a subsequence {(xij’kij)}j >3
converges to a solution (x,k) of problem (w,K,I') . (To prove it one
has to use the monotonicity to show the precompactness of set {(xi’ki)}i >
and verify that cluster points of {(xi’ki)}i > are solutions to

(X,K,r) s See [24 ])-
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