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Preface

In May 1984 the Swedish Council for Scientific Research convened
a small group of investigators at the scientific research station at
Abisko, Sweden, for the purpose of examining various conceptual
and mathematical views of the evolution of complex systems. The
stated theme of the meeting was deliberately kept vague, withonly
the purpose of discussing alternative mathematically based
approaches to the modeling of evolving processes being given asa
guideline to the participants. In order to limit the scope to some
degree, it was decided to emphasize living rather than nonliving
processes and to invite participants from a range of disciplinary
specialities spanning the spectrum from pure and applied
mathematics to geography and analytic philosophy.

The results of the meeting were quite extraordinary; while there
was no intent to focus the papers and discussion into predefined
channels, an immediate self-organizing effect took place and the
deliberations quickly oriented themselves into three main
streams: conceptual and formal structures for characterizing sys-
tem complexity; evolutionary processes in biology and ecology;
the emergence of complexity through evolution in natural lan-
guages. The chapters presented in this volume are not the proceed-
ings of the meeting. Following the meeting, the organizers felt that
the ideas and spirit of the gathering should be preserved in some
written form, so the participants were each requested to produce a
chapter, explicating the views they presented at Abisko, written
specifically for this volume. The results of this exercise form the
volume you hold in your hand.

Special thanks for their help in various phases of organizations
of the meeting and arrangement of the publication of this volume
are due to M. Olson, P. Sahlstrom, and R. Duis.

December 1985 John Casti, Vienna
Anders Karlgvist, Stockholm
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concern. Situated in Laxenburg, Austria, IIASA was founded in
October 1972 by the academies of science and equivalent organi-
zations of twelve countries. Its founders gave IIASA a unique
position outside national, disciplinary, and institutional bound-
aries so that it might take the broadest possible view in pursuing its
objectives:

To promote international cooperation in solving problems arising
from social, economic, technological, and environmental
change

To create a network of institutions in the national member organi-
zation countries and elsewhere for joint scientific research

To develop and formalize systems analysis and the sciences con-
tributing to it, and promote the use of analytical techniques
needed to evaluate and address complex problems

To inform policy advisors and decision makers about the potential
application of the Institute’s work to such problems

The Institute now has national member organizations in the
following countries:

Austria — The Austrian Academy of Sciences; Bulgaria — The
National Committee for Applied Systems Analysis and Manage-
ment; Canada — The Canadian Committee for IIASA; Czecho-
slovakia — The Committee for IIASA of the Czechoslovak Socialist
Republic; Finland — The Finnish Committee for IIASA; France -
The French Association for the Development of Systems Analysis;
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Introduction

John L. Casti and Anders Karlquist

Complexity and the Evolution of Living Systems

One of the most evident features distinguishing living from nonliving systems
is the tendency for living processes to evolve ever more complex structural and
behavioral modes during the course of time. This characteristic has been observed
in lowly protozoa and in highly evolved linguistic and social communities, and has
been variously labeled ''negentropy, ''variety', "information’, or just plain com-
plexity. The understanding and explanation of the trend toward the complexifica-
tion of living things forms the heart of any research program in the biological,
social, or behavioral sciences.

How does complexity emerge and what do we even mean when we speak of a
system as being complex? In everyday language, complexity is associated with
structural features such as large numbers of system components, high levels of
connectivity between subsystems, feedback and feedforward data paths that are
difficult to trace, and so on. Complexity is also associated with behavioral charac-
teristics such as counterintuitive reactions, surprises, multiple modes of opera-
tion, fast and slow system time scales, and irreproducible surprises. While the
structural features are, by and large, objective properties of the system per se,
the behavioral components of complexity are decidedly subjective: what is coun-
terintuitive, surprising, and so on is as much a property of the system doing the
observing as it is a feature of the process under study. Thus, any mathematical
formulations of the notion of complexity must respect the subjective, as well as
the objective, aspects of the concept. In this volume, the chapters by Rosen and
Casti address both aspects of the complexity question. Casti argues that complex-
ity emerges from the interaction between the system and its observer, while
Rosen introduces the idea of an activation—inhibition pattern to characterize the
informational interaction, and then uses this concept to speak of complexity.
Both of these chapters put forth strong arguments for the case that complexity of
living systems is a contingent, rather than intrinsic, property of the system, and
any theory of complexity management and control must start from this basis.

The explicit consideration of evolutionary processes in biology is taken up in
the chapters by Sigmund and Stenseth. Stenseth reviews the essential com-
ponents of the Darwinian theory: reproduction, variation, inheritance, and selec-
tion, and considers the issue of what kinds of mathematical models we need in
order to capture the Darwinian view in operational form. His conclusion is that the
numerous controversies surrounding the Darwinian paradigm in no way provide evi-
dence for rejecting it, but rather point to the need to extend and improve our
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models in various directions. The chapter by Sigmund offers an intriguing
mathematical structure suitable for capturing many of the most important features
of evolving systems, the so-called "replicator” dynamics. The term is taken from
Dawkins’ work on general phenotypic evolution and here Sigmund shows how the
general structure of the replicator equations covers a range of evolutionary
phenomena stretching from population genetics and prebiotic evolution to popula-
tion ecology and animal behavior. As a counterpoint to Darwinism, the chapter by
Thom presents some speculative views on the way in which energetic constraints,
together with a few genericity arguments, provide a key for understanding the
relations of tools and organs within the context of embryology. Thom's argument is
that constraints plus genericity force the embryo to develop along one of a very
small number of paths characterized by archetypical geometric forms. As Thom
emphasizes, such forms are imaginary entities offering no possibility for experi-
mental prediction or verification; nonetheless, his claim is that they provide the
basis for major theoretical advances bypassing the traditional Darwinian view.

The degree to which the evolutionary paradigm of biology mirrors the struc-
ture of a natural language is considered in the chapter by Berlinski. His point of
view is to examine the claim that life, on some level, is a language-like system. He
concludes that if life is a language-like system, then the neo-Darwinian theory is
deficient in its repertoire of theoretical ideas. On the other hand, if life is not a
language-like system, then the neo-Darwinian theory is singular in that it fails to
explain or predict the properties of systems that are in some measure close to
life. During the course of making these arguments, Berlinski touches on a number
of ideas treated in the other chapters, such as complexity, randomness, informa-
tion, pattern, and form.

The connection between the concept of measurement and the development of
human language is explored in the chapter by Pattee. He argues that it is only by
viewing measurement and language in an evolutionary context that we can appreci-
ate how primitive and universal are the functional principles from which our
highly specialized forms of measurement and language arose. Pattee’s position is
that the generalized functions of language and measurement form a semantically
closed loop, which is a necessary condition for evolution. The chapter closes with
some provocative arguments for why current theories of measurement and
language do not satisfy the semantic closure requirement for evolution, and a
suggestion is offered for a new approach to designing adaptive systems that have
the possibility for greater evolutionary and learning potential than existing artifi-
cial intelligence models.

Mathematical and Human Affairs

The role of mathematics outside of mathematics itself has always been some-
what unclear and ill-defined. What has been clear is that every generation's prob-
lems, especially in the social and behavioral sciences, seem to far exceed the
mathematical tools available, resulting in a continuing need to both develop new
mathematical concepts and to examine ways in which the existing "abstract non-
sense’ of the pure mathematician can be recast in a form usable to the practi-
tioner.
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In the opening chapter of this volume, Peter Gould examines some of the
problems of mathematicizing the physical, biological, and human worlds. He points
out that over most of history, mathematics has been driven by the problems posed
by practical, everyday living, ultimately addressing the question of whether
mathematics is reducible to mechanical operations on sets of objects. He concludes
that if this is so, then there is no possibility for a complete mathematicization of
the human world.

An illustration of the way in which ideas from pure mathematics can be used
to develop a language for speaking about human processes is provided in the
chapter by Johnson. In his report, classical ideas from algebraic topology are
used to associate a simplicial complex with a given human situation. The connective
structure of the complex is then employed to infer various ‘deep structures"”
associated with the social situation. During the course of developing this struc-
ture, Johnson shows how the introduction of numerous concepts not entering into
classical algebraic topology can play a significant role in teasing out the structure
of the human situation.

The chapter by Grenander approaches the role of mathematics in human
affairs from a different angle. Grenander's idea is that in order to speak about
pictures and patterns, it is first necessary to develop an entire algebra of pat-
terns. This algebra is then employed to mathematically characterize complex
visual phenomena, and forms the basis of numerous pattern formation and recogni-
tion procedures. As Grenander points out, such an approach is really "mathemati-
cal engineering'; we build logical structures using the algebra of patterns, just as
engineers build mechanical, electrical, or other physical structures.






CHAPTER 1

Allowing, Forbidding, but not Requiring:
A Mathematic for a Human World

Peter Gould

In Morris Kline's extraordinarily thoughtful Mathematics: The Loss of Cer-
tainty (Kline, 1980), one aspect emerges clearly: over by far the greatest part of
its history, mathematics has been driven by the need to describe the physical
world of things. The distinction between pure and applied mathematics did not
emerge until comparatively recently; no sharp distinction was made between
mathematics and science in the seventeenth and eighteenth centuries, and all the
great names contributed to the vast overlapping area between the two. In brief
"there was some pure mathematics but no pure mathematicians” (Kline, 1980, p
281). It is unfortunate that, just as the biological and human sciences started to
hive off from philosophy as separate fields of inquiry, so mathematics began to
detach itself from the physical sciences. First, this means that few mathemati-
cians today have ever been truly challenged by the biological and human sciences,
with the result that old and inappropriate forms of mathemetics have been bor-
rowed from the realm of the physical world to distort descriptions of the biologi-
cal and human worlds. Second, the possibilities for creating new and appropriate
qualitative mathematics have been diminished as mathematicians look increasingly
to mathematics itself, rather than to the challenges beyond their distressingly
private realm of discourse.

But like war and generals, mathematics is too important to leave to the
mathematicians. Such a statement, unless it is read correctly, will not please many
mathematicians (nor did it please the generals), but it may still be considered
seriously by the few who have acquired a deep and intimate knowledge of the his-
tory of their own field. Like any one of many human endeavors, mathematics can-
not reflect upon itself from the inside, but requires that creative sense of tension
that the philosophical stance has always provided at its best. The human meaning
of mathematics does not reside in mathematics, but in the larger arena of human
discourse that places this particular, and quite peculiar, form of inquiry in rela-
tion to other aspects of our intention to know.
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A Backcloth for Thinking

I would like to consider some of the problems of mathematization in the phy-
sical, biological, and human worlds, and I hope it will be considered appropriate
that we start with the human -~ the world of ourselves. This is a curious, self-
reflective world, and its capacity for self-reflection, for thinking about itself, is
surely its most outstanding characteristic. Atoms and animals do not conceive of
laws, nor do they generate the functional equations commonly used to describe
them. In contrast, we are distinguished by that very ability. For this reason, it is
perhaps appropriate to sketch a broad framework of concern within which we can
discuss mathematically more specific questions and requirements. With the
responsibility to represent the human sciences in this book, I hope you agree that
it is entirely appropriate that we first take a step backwards — a sort of intellec-
tual deep breath — and think about this world that is us; think about the cre-
ation of mathematics within and from out of this world; and then think about that
sudden backward t{wist when mathematics is used to describe the world from which
it originally arose. In doing so, it may seem that we are in a rather different realm
of inquiry than some of the other contributions in this book, and yet perhaps we
are always in this larger realm of thinking — even if we may not always realize it.

The mundane roots of mathematics

Not long ago, I read in L’Express (17—23 fevrier, 1984) a review of Giorello
and Morini's Paraboles et catastrophes: Entretiens avec René Thom (1983), in
which the reviewer wrote with great aplomb “Thus, mathematical structures have
come before their use in physics, and not the reverse”. Nowhere, perhaps, is the
striking contrast between the French Cartesian approach to science, and the
Anglo-Saxon empirical approach highlighted more vividly. It is the contrast
between the creation of a priori structures into which the world is forced, and
the creation of careful descriptions of the world which later suggest appropriate
mathematical structures. The reviewer's mistake is a common one, although quite
natural if the history of mathematics is not there to inform us about the facts. As
an Anglo-Saxon, and one concerned with historical veracity, let me suggest, very
generally and up to about one hundred years ago, that far from mathematical
structures being created for their own sake, and then being applied to areas of
scientific inquiry, the weight of evidence is for exactly the reverse. That is to
say, over most of its history mathematics has been positively driven by the
requirements and difficulties posed by the problems of practical, everyday living,
as well as by those appearing in the world of physical science as we know it today.
Such problems range from tallying sheep, building temples and pyramids with
square corners, surveying field boundaries after floods, and other, literally mun-
dane, tasks, to creating new algebras and topological structures in order to
describe events on the quantum and cosmological scales.

Some mathematicians still know the story, but let me remind others of the
infinitesimals of Isaac Newton, the extensions to the calculus by James Maxwell,
the algebras and numbers of William Hamilton that were so outrageous in their
time, and then point to the driving force behind Lagrange, Leverrier,
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Legendre...and the literally scores of other distinguished mathematicians of the
seventeenth to nineteenth centuries, who sought to describe faithfully the physi-
cal world. It is the intentional, and perhaps insatiable, curiosity to describe the
world, that Greek legacy that pushes the questions to the limits (and may yet des-
troy us), that invariably comes before the mathematics, that often informs
mathematicians where the deep problems lie, and that nourishes those who search
for the mathematical solutions. John von Neumann knew this well, and stated so
explicitly. And to accept this is not to deny in the least the desire of those who
seek to develop mathematics for its own sake, and in giants like Friedrich Gauss
and Henri Poincaré we see how both mathematics and science are illuminated by
such penetrating thinking. Yet as a geographer, I cannot help noting, in a some-
what mischevious mood, that even the distribution that bears Gauss’'s name was
devised to minimize the error in his instruments when he was making maps for the
Duke of Hannover — a sound, descriptive enterprise going back to Babylon.

Now it is equally true that we can also point, in more recent times — the last
eighty years? — to the reverse; namely, to the prior existence of mathematical
structures which later became not just useful, but essential for the development
of science. For example, Albert Einstein reaches for the tensor calculus of Ricci
and Levi-Civita (created only a few years before), and Walter Heisenberg struggles
to devise algebraic operations for rectangular tables of values, until Max Born
tells him to go and study matrix algebra — already well-developed. In these partic-
ular cases, the appropriate mathematical structures were already in place, but
even here the thinking about the physical world, from the cosmological to the
quantum level, preceded the applications.

Why am I trying to direct thinking towards this brief, and necessarily super-
ficial, historical review of mathematics? Because I want to point to the fact that
historically, and even today, the physical sciences have, in general, set an impec-
cable example of thinking about the phenomena of interest, and only then devis-
ing and creating the mathematics that seems to be called forth by the descriptive
requirements. The things themselves suggest the mathematical structures that
must come into being to describe the physical phenomena that falls under the
scrutiny of our curious gaze. What are the only other possibilities? First, to
choose an already existing mathematical structure, and then run around the world
desperately seeking something that will fit it. Rather like Diogenes searching for
an honest man, our journals are full of reports of methodologists searching for an
honest appltcation. However, I think it is necessary to reflect whether most of the
reports constitute science, in the sense that they genuinely illuminate a part of
our world.

Second, we can borrow unthinkingly the mathematical structures devised to
describe one aspect of our world, and use them, equally unthinkingly, to describe
another aspect. If we take the mathematical structures devised to describe the
worlds of celestial mechanics, statistical mechanics, quantum mechanics, contin-
uum mechanics...and just plain mechanics, and then map the human world
unthinkingly onto such structures, is it possible that the human world so
described can look anything but mechanical? In brief, does the mathematical
"language' chosen allow the description, and allow our thinking, to appear as any-
thing but mechanistic?



4 P. Gould

The meaning of mathematics

Now mechanism is a world of lawful statements, statements we make about
things in essentially their deterministic relations. And, simply as a stage aside, I
do not want to argue the deterministic wersus the probabilistic here. Throwing
some probability distributions into the arena of methodological discourse does not,
for me, solve the fundamental problems in the human sciences. It merely sweeps
them under the rug, so that the real questions of transcending both approaches
recede into concealment from our thinking. As for the purely statistical approach,
which was so popular in the human sciences until a few years ago, it condemns a
human scientist to be a calculator of moments of distributions. Quite apart from
the shallowness of such descriptions, and the shallowness of the questions they
purport to address, I cannot think of anything more boring as a lifetime’s work.

Whether we consider deterministic or probabilistic descriptions, as they
have been traditionally expressed, both are essentially functional in form. This
means that the cog-wheel variables on the right-hand side of the equation turn and
grind out, mechanically, on the left-hand side either a single value, or a mean value
smeared with a bit of variance. The mechanical coupling of the conventional binary
operations used on the set of real numbers is essentially the same, whether the
model is deterministic or probabilistic. In the human world, we need to move
beyond this simplistic dichotomy that arises from the descriptive requirements of
the physical and biological worlds (where they may be perfectly adequate), to the
fundamental facts of consciousness, reflection, and informed choice — not simply
conditioned behavior — in the human world. The mathematics must enable non-
mechanical interpretation in allowing, forbidding, but not requiring
geometries. This, as we shall see, may be a contradiction if claims are valid that
all mathematics is ultimately mechanical by its reduction to logically consistent
operations. This, for me, is a frontier question for which I seek your most
penetrating thought and insight. It may be, in a very deep sense, that the human
world is not mathematizable. Which is not to say that we do not take certain
aspects of the human world, and map them with enormously severe many-to-one
mappings onto mechanistic structures devised in the physical world. For example,
entropy maximization models (Wilson, 1970), straight out of Boltzmann, take counts
of people, and counts of costs between residences and workplaces, and after some
heroic assumptions, and a series of computer iterations, find a most-likely distri-
bution that best fits the numbers of the journey-to-work census for a particular
city. The result is a piece of social physics whose Langrangians tell us that a
residential area far from the work places is less accessible than those close to the
work places. Not terribly illuminating, and not terribly helpful when it comes to
planning changes in the structure of the city to create a more humane and equi-
table world. We have crushed away so much in the mapping that constitutes our
mechanical analogy that we cannot do very much with a solution that represents
the most general case of numbers distributed in a constrained box.

This frontier question — whether the tyranny of the conventional binary
operation forces mathematics and, therefore, the parts of our world described by
mathematics, to be mechanical — this question leads us to reflect upon the meaning
of mathematics itself. And here, as elsewhere in this chapter, I rely heavily upon
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the thinking of Martin Heidegger, who has reflected so deeply upon the original
Ur-meaning of so many words we use daily. Unfortunately, the words used now have
made a long journey through time from the Greek world where they were first
coined, used, and reflected their original human meaning. To recapture one par-
ticular meaning, let us read Heidegger carefully for a moment (1977, p 118):

Modern physics is called mathematical because, in a remarkable way, it makes
use of a quite specific mathematics. But it can proceed mathematically in this
way only because, in a deeper sense, it is already itself mathematical. Ta
mathemata means for the Greeks that which man knows in advance in his
observation of whatever is and in his intercourse with things...

He then goes on to elaborate on the characteristic of exactitude in physics,
through the use of measurement, number, and calculation, where physics is "the
self-contained system of motion of units of mass related spatiotemporally”. It is
obvious that we are extraordinarily close to Arthur Eddington (1935) here, with
physics as a closed, self-contained system - in a sense, Heidegger's 'object
sphere". But then Heidegger continues (1977, p 120):

The humanistic sciences, in contrast, indeed all the sciences concerned with
life, must necessarily be inexact just in order to remain rigorous... The
inexactitude of the historical sciences is not a deficiency, but is only the ful-
fillment of a demand essential to this type of research.

Now if the fundamental meaning of exactitude is grounded upon number and binary
operation, and inexactitude is a necessary condition for the historical or reconsti-
tutive sciences to be rigorous, we cannot approach and illuminate the human
sphere through the mathematics (the ta mathemata) of the physical sciences.
And let us recall that this has traditionally been a mathematics of binary opera-
tions on sets of numbers — usually the reals — for which the continuum is required
as a mathematlical definition. In this classical analytical world, inexactitude may
suggest the probabilistic smearings of the statistician, but these only represent a
loosening up, a fuzzying operation after the creation of deterministic operations
devised during the classical phase of the physical sciences. Instead of trying to
tidy things up by the contradictory use of probabilistic smears, perhaps we
should go back to the beginning and see what the human world, with real human
beings center stage, is trying to say to us. This return to the clearing in the
forest would be in the best traditions of classical science, even though the path
dimly seen through the trees may not lead in the same direction as the one we are
following now. Even to think of a mathematics that transcends the conventional
deterministic—probabilistic dichotomy may constitute a challenge to modern
mathematicians who are willing to leave classical analysis behind them.

In brief, we cannot employ conventional, physically inspired forms of
mathematics in the human sciences, not if we wish to pay reverent heed to that
world of conscious, sentient beings with the capacity to reflect upon any state-
ment or description we make of them. And I use the rather poetic phrase ""to pay
reverent heed” with Heidegger, because it is here that our word theory is
grounded in the Greek theoria (Heidegger, 1977, p 163). Its two parts are thea,
meaning outward appearance, the outward appearance we hear in our own word
theatre; and horao, which means to look attentively, to view closely. Theoria —
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theory — is to look attentively at outward appearance. But there are perhaps even
deeper roots, because with alslightly different stress the Greeks could also hear
in theoria both the4 and ora. Thea is goddess, and for Parmenides aletheia
appeared as a goddess. And a-letheia is letheia, or concealment, negated in the
Greek by the a, to create unconcealment that for the Greeks was the truth. Ora
is reverence, respect, and honor, so theoria now becomes the 'reverent paying
heed to the unconcealment of what presences' (Heidegger, 1977, p 164).

And now the long journey from the Greek world to us begins, a journey of suc-
cessive translations, each of which constitutes a many-to-one mapping in which
the original meaning is crushed out and lost. The Romans translate theoria as
contemplatio, and the templum of contemplatio has in it "to cut”, so that now we
hear our own word, template. For what is a template but something created
beforehand into which something later must fit — and if it does not, we cut it
down, and chop it up, and force it until it does fit — usually with inappropriate
applications of least-squares, or a myriad of other forcing acts that we euphemisti-
cally call "estimation procedures”.

So what do we regard as our fundamental task as biological and human scien-
tists? To pay reverent heed with the Greeks to allow that which is to come out of
concealment? Or shall we cut up and shape and force into our preexisting template
that which is in order that it shall become that which we want it to be? And I can-
not help commenting here on the contrast between the scientific approaches of
Rosalind Franklin (Sayre, 1975), Barbara McClintock (Keller, 1883), and Janet Row-
ley (Vines, 1884), and those a priori Roman templaters we call the model builders.
The first, Rosalind Franklin, spent seven years paying reverent heed to hundreds
of X-ray crystallography photographs, and the double-helix diagram was found in
her notes after her early death. The second, Barbara McClintock, was ridiculed
for years because she paid reverent heed to transposable genetic fragments, until
she was awarded the Nobel prize much later (she actually used the phrase "you
have to listen to the material”). The third, Janet Rowley, spent 25 years looking
at the translocations of chromosomes, and so opened, almost single-handedly, an
important and growing area of contemporary medical and cancer research. Is it
possible that some women in our Western culture have a gentler Greek mode of
questioning than many of the arrogant Roman templaters?

Let me suggest that after years of Roman arrogance, we try once more the
gentler Greek mode, particularly as we approach the difficult task of thinking
about the requirements for a mathematics that will describe, and allow that which
is to come forth, without too much of the severe, a priori templating. Without,
that is, so much forcing by severe many-to-one mappings of the human materials
onto constrained structures that we know in advance (ta mathemata) the social
physics that must be the conclusion. Let us also see the process of mathematical
description in the larger context that constitutes human interest and inquiry. As
scientists, we must always see mathematics as part of, as a contributor to, a much
larger endeavor. For this task, I want to use the three perspectives of Jiirgen
Habermas (1971) as temporary pegs on which to hang our thinking, rather than as
exclusive categories with which to fragment our thinking still further. As we shall
see, his perspectives are actually intertwined and connected viewpoints that
inform and shape each other.
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Technical, hermeneutic, and emancipatory perspectives

At the start of any inquiry, we have to choose to observe some things and not
others, and so we face the severe responsibility of thinking about what consti-
tutes useful and fruitful definitions. We can never, of course, be sure about these
until they have been tried, either to succeed or to fail in illuminating an aspect of
our world. In their own sphere, mathematicians know all about these, often facing
the same problems of trial and error, and therefore take such initial responsibili-
ties seriously. Many in the human sciences do not, or they appear to think that
the matter of definitions — of sets and operations and relations — is so obvious,
even banal, that it is trivial and naive even to mention this first, but always cru-
cial, step. Always crucial, in the literal sense of a crossing point, because it is
here that we take our first step along one of a number of possible paths, so that
virtually everything we can say thereafter is founded upon the choices we make
here. We then have the further obligation of thinking about how we shall observe
and record the relations between the sets, what operations we shall allow, how we
shall notate the elements and operations, and even how we might express our
thoughts symbolically or graphically. All these are essentially methodological
questions that lie in the perspective that Habermas has termed the technical.

Even here, and not just simply as a stage aside, I think we should pause and
remind ourselves, with Heidegger once again, of the deep and original meaning
lying within techne. It is true that the word is the Greek for art, but it is also
much more, and the deeper meaning only appears when we contrast it with phusis
— which we translate as “Nature”, but which really means that which "resides in
itself” (Heidegger, 1979, p 81). Techne stands in contrast to that which resides in
itself, it is the knowledge of beings, "that knowledge which supports and con-
ducts every human irruption into the midst of beings". There is nothing mystical
here: like all of Heidegger's thinking it is rock hard. The human irruption into the
midst of beings is simply the field zoologist trapping lemmings, the glaciologist
boring into the layered ice cap. the radar beam sweeping the thunderstorm, the
earth satellite gathering its harvest of pixels with its electronic scythe. Techne
is the mode of human irrupting into the phusis. So we can see techne as art, but
as a broad conception of art, as a human capacity to bring forth. After all, what
else is art and science but an irrupting into, and an adding of illumination to, the
phusis that is? Thus, this irrupting, technical perspective imposes an enormous
responsibility, for it determines what is brought forth in opposition to that which
resides in itself, to that which is. That human irruption means something else is
brought forth.

What, in scientific inquiry, is brought forth from the technical perspective?
It is, I would aver, a text: not necessarily a text of words, but a text that may be
offered in numerical, symbolic, geometric, graphical, or pictorial form. But
whether as ordinary language, algebraic equation, tensor, Galois lattice, geometri-
cal construction, systems diagram, bubble chamber photograph, or even computer
output (the essential evidence for the four-color theorem), it constitutes an addi-
tion to Nature that was not present prior to the human act of irruption with
Nature. And, as human scientists, perhaps we should reflect more deeply on the
fact that in the human realm our irruptions are often re-irruptions, for we inquire
into the human world constituted from both phusis and past human irruptions.
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The efficient management of a large irrigation system, for example, requires a new
irruption into a prior irruption into phusis.

But the real question is what dnes the text mean? The ten nonlinear equa-
tions of Einstein describing inertia, and centifugal and Coriolis forces have stood
as a symbolic text for 70 years: only in 1984 did Jeffrey Cohen, after 25 years of
trying with Eli Cartan’'s method, solve them. Now they can be given an extended
meaning. So it is here that we have entered the hermeneutic perspective, for it
is we who have to interpret and give meaning to the text. Sometimes, of course,
the text may mean nothing; we can give no interpretation to the things we have
created out of our technical definitions. I remember Hans Panofsky, the dis-
tinguished theoretical meteorologist, once telling me with complete candor that
sometimes spectral decompositions of turbulent wind records mean something —
and sometimes they do not! Thanks to Joseph Fourier, we know we can always
decompose any continuously differentiable function into linearly additive pieces.
But it is we who place and impose the structure with simple linear mathematics,
and this may, or may not, illuminate the complexity of the turbulence of phusis.

The hermeneutic act, the act of interpretation of text, requires that we
bring every scrap of knowledge, imagination, and insight to the task, and there is
nothing to help us here ~ no books, no machines, only ourselves. But suppose we
fail to interpret? To what can we ascribe our failure? Clearly, there are only two
possibilities: we have either created a text from the technical perspective that is
meaningless, or we have failed in the act of imagination. So back we circle to rede-
fine and restructure our text, or we try to augment, heighten, and sharpen our
imagination to bring to light that which lies still concealed. But suppose we
succeed in our interpretation, suppose we suddenly “see" the meaning — and
notice how we use the visual metaphor of “Oh, I see!”, of ""Voild!", to describe that
flash of illumination when understanding first breaks through. Even now our job is
incomplete, for science is shared and verifiable knowledge, and we still have to
persuade others to understand as we do. This may be no easy task: in all the sci-
ences, physics included, we find case after case where the same text has been
given different interpretations, and the advocates of different views had to per-
suade others that their interpretation was the....true one. But persuasion
means Thetoric (Sugiura, 1983), and I use the word in its original meaning, without
the perjorative connotations that it has gathered today. The art of rhetoric is an
old and honorable one, and it is employed constantly in science. Of what use is
your sudden seeing if you cannot persuade others to share it with you?

It is here that we find two crucial distinctions between the physical and
human sciences — and I must let more knowledgeable people determine whether, or
in what way, these distinctions characterize the biological sciences. First, the
differences in interpretation in the physical sciences may be decided by the crit-
ical experiment. This is available because of the intrinsic mathematical nature
that allows a looking ahead - the prediction of the physical sciences, in contrast
to the posidiction of the historical sciences — using the adjective historical once
again in the sense of the recreative or reconstitutive sciences. Prediction (in the
absolute sense with which it is employed in the physical sciences) is seldom avail-
able to the human sciences for two reasons. First, the ethical stance does not, or
should not, allow us to treat people as objects to be experimented with. Things do
not care, the atom is indifferent to its radioactive decay, the rock is unconscious
of the geologist's hammer. We do care: it is in our nature to care. Second, as
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human beings, either individually or as a social collectivity, we have the capacity
to reflect upon the algebraic and geometric descriptions, and either change the
geometries, or deny the algebraic expressions through our capacity as self-
reflective, conscious, and thinking beings. Such a changing and denying of the
geometry is unthinkable in the simpler and closed world of space—time, where our
descriptions are underpinned by the assumption that unalterable laws of mass and
motion hold eternally.

But already we have slid over into the third perspective of Habermas, the
emancipatory, for ethical questions and feelings of caring do not arise directly in
the technical and hermeneutic perspectives (although they may be deeply
informed and shaped by them), and the idea that we can change the structures of
our human world in the light of such values appears meaningless in the physical
world. Again, where the biologists lie I must leave for them to decide. So we see
that in all the sciences, the technical, hermeneutic, and emancipatory perspec-
tives are intertwined, shaping and informing each other. The technical perspec-
tive shapes the text to which the hermeneutic responds; for example, we inter-
pret today computer-shaped texts unthinkable 30 years ago. But it also shapes
the emancipatory perspective wherein lie our value structures. Who can deny that
our values have not been changed by the technical world? When do we tell someone
of an incurable genetic disease just diagnosed by advanced technology (Connor,
1983)? When do we detach someone from a life support system and let them die in
dignity? Moreover, these are not one-way streets: the hermeneutic perspective
informs the technical and emancipatory — we interpret the values of ourselves and
others — and the emancipatory informs both the technical and the hermeneutic.
Let me provide a somewhat more extended, but quite concrete, example.

In a recent study of international television (Gould et al., 1984), we had to
create sets of words at different levels of generalized meaning to describe both
the content and treatment of television programs. For example, a program like
Man and Woman might be described by two sets of words; the first describing the
content of the program as {physical health, individual relations, sexual relations,
procreation, birth control, individual health maintenance, social health mainte-
nancej, and the second the way that this connected structure of subjects was
treated by f{serious talk, social adjustment, ethical concern, documentary,
northwest European culture]. Such treatments are very different from those such
as {TV movie comedy, light performance}, which might turn the program into an
amusing farce about the sexual adventures of young doctors.

Now, given a set of TV programs, a set of descriptive words, and two people
coding (one a young TV executive from a major network in the US, the other a
young Marxist from a university in Latin America), would we expect the descrip-
tion of the programs in the set to be the same? In our wildest dreams, I do not
think the answer would be yes: at the technical level, the choice of descriptive
words might be different, perhaps with the Latin American coder requiring words
not even in the sets (these would be allowed to be added). Moreover, who can
doubt that the interpretations of the derived structural texts would also differ?
Why? Because both perspectives are informed and shaped by the underlying ideol-
ogies that express the values within the emancipatory perspective. So what price
"shared and verifiable knowledge" now? Perhaps in the human sciences we can
only have knowledge modulo the ideology? Perhaps the very phrase "human sci-
ences' is an oxymoron — a phrase containing within itself a contradiction?
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Some Traffic on the Backcloth

Within this broad, reflective framework, I now consider what an appropriate
mathematics for the human sciences might look like. I shall assume that we must
try to incorporate into our thinking three broad requirements. First, that any
mathematical language we devise for our descriptive task shall make well-defined
and operational the intuitive notions we have that structure is always central to
our concern. If we talk (as we so frequently do), of the structure of an ecological
system, a choral mass, a molecule, a family, a society, heart tissue, a university, a
game of chess, a ballet, a conference of people concerned with the structure and
evolution of systems...and the thousands of things that form the objects of human
inquiry, we have to translate such a fundamental concept into concrete descrip-
tive and operational terms. Second, we must allow our thinking to move out of the
deterministic—probabilistic dichotomy toward structures that allow, forbid, but do
not require. This, it seems to me, allows the most fundamental aspect of being
human, namely an acknowledgment of consciousness itself, and its self-reflective
capacity, to enter our structural descriptions. People are often parts of struc-
tures, or live in them. Finally, and in keeping with the empirical Anglo-Saxon
spirit, we must do our best to start with the things themselves, and try to think
what they require to describe them in their structural complexity.

Sets and hierarchies

To inquire is to make a choice, to choose to bring to our attention and
observe some things and not others. Of this act, it has been said that it is essen-
tially theoretical — theoretical in the a priori, Roman templating sense. Of this I
have some doubts, for it dresses simple and naked curiosity in something akin to
the Emperor’'s clothes. Much of our inquiry is founded upon sheer curiosity or
practical necessity, and it frequently involves bringing to our attention things
that we, or others, have not thought about very much before. In such situations, I
do not know how theory — in any well-developed, or even highly embryonic form —
enters at this stage. But no matter: choosing to observe some things and not oth-
ers means that we choose to observe, and therefore to define, sets. That sets also
form one of the fundamental building blocks in certain areas of mathematics should
give us encouragement. Perhaps we are starting in the right place.

Not that sets are always easy to define (Couclelis, 1983), and sometimes the
attempts lead to ambiguities, inconsistencies, paradoxes, and sheer nonsense. No
one with actual experience in empirical research ever claimed that set definition
was easy, quite the contrary, but if our sets are not well-defined then clearly this
is our first problem, or all else is built on sand. However, and despite ingeniously
constructed examples, it has been my empirical experience that set definition in
actual research practice often appears fairly straightforward, although it may be
time-consuming and tedious. In empirical research we define our sets extension-
ally, and I have the suspicion that such extensional definitions are close to simple
naming propositions, such as “John is a man" (Kline, 1880, p 186). Difficulties seem
to arise when intentional definitions are employed, perhaps closer to propositional
functions, such as "z is a man”. Set definitions for empirical research, rather
than simply logical speculation, may also be an aspect of a research program that
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comes under vigorous reappraisal if we produce an uninterpretable text from our
sets on the first analysis, and we have to circle back to think again. Even at this
point, it should be noted that such a circling back is not a vicious circle, nor
necessarily a sign of initial stupidity. It is a hermeneutic circle, or perhaps we
should say spiral, because the circling back due to initial failure takes us to a
starting point we were unable to reach before. If we are ignorant to begin with (as
we must be, otherwise are we genuinely inquiring?), we should be capable of learn-
ing from failure. Indeed, the history of science is essentially a history of failures
— some of them magnificent failures — and a history of renewed attempts to under-
stand.

But ingenious paradoxes of set definitions do point to one thing: our words of
everyday language, and the concepts they ennunciate, are often on different lev-
els of generalization. For example, we feel instinctively that there is something
awkward about the set M defined extensionally as {Algebra, Geometry, Topology,
Mathematics{, for the element Mathematics is clearly at a higher level of generali-
zation, say N + 1, and it covers Algebra and Geometry at level N. Where Topology
lies in this hierarchical scheme is anybody’s guess, but if you are going to talk
meaningfully of the structure of mathematics, you had better decide. Similarly, a
set of rooms at N —1 (the base level N is arbitrary), aggregate up to a set of
houses at N, which aggregate into a set of neighborhoods at N + 1, which aggre-
gate into a set of towns at N + 2...and so on. Nor do our hierarchies of cover sets
have to be formed from the usual tree-splitting partitions produced by
equivalence relations: dandelion at N — 2 can aggregate by well-defined and empir-
ically given relations to the N —1 level sets Vegetables, Flowers, and Weeds. In
medical diagnosis, the N-level symptom mouth ulceration may aggregate, with other
diagnostic elements, to many different diseases at N + 1. It is conceptually impor-
tant that we define very carefully the hierarchical structure of cover sets before
we undertake further inquiry, or we shall end up confusing elements of sets at one
level with members of their power sets at the next (Atkin, 1974).

Backecloth for traffic

But there is a further distinction to clarify: however we eventually define
the structures that are of interest to us, it is clear that they exist for some pur-
pose. However we create a structural text, and represent it algebraically as a
polynomial, or even as a physical model constructed from a chemist’'s beads and
connecting springs, that structure must mean something for something else. The
reason it has importance for us is because it supports something, it provides a
home for something, it carries something, or it is associated with something. In
brief, the structure matters other than for itself. It is here that we arrive at the
crucial difference between backcloth and traffic — two technical terms whose
definitions we must grasp carefully in their specific meanings. Backcloth is struc-
ture, a multidimensional structure that allows and supports traffic. Backcloth
structures, as multidimensional spaces, can exist without traffic: technically
traffic, as a graded pattern, can consist of all zeros (if we happen to choose a
number system to represent it). The reverse is not true: traffic needs a
backcloth, a structural geometry, to exist, to support it.
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Even though it means anticipating some of the points we discuss later, it is
useful to have a concrete example here. Suppose we want to speak of the struc-
ture of a conference — say one on Structure and Evolution of Systems. We might be
able to operationalize this seemingly valid, but initially quite intuitive notion, by
considering the connections between the participants (a well-defined set), and the
set of intellectual interests, carefully sorted out into their hierarchical levels of
generality, and perhaps evaluated according to degrees of interest or competence.
If the shared intellectual interests connect the participants, and so define a
structure of the conference (perhaps one of many), what might be traffic on such
a multidimensional structure? Clearly, ideas could be one sort of traffic, especially
those ideas requiring certain combinations of intellectual interests to exist. A
participant with limited professional competence in many interests that others
have as mathematicians, physicists, biologists, zoologists, archaeologists, etc.,
could not have some of the ideas supported on other parts of the structure (the
multidimensional geometry) of the conference.

Second, and perhaps as a result of the conference, some of the participants
may collaborate in the future on research programs and papers. Those papers, as
traffic, live on the pieces of the geometry that constitute the shared interests, or
faces, that connect them. Or, perhaps one person brings some interests from
those that define her, and another brings some of those that define him, and they
create a new piece of geometry (perhaps a Leftschetz prism), that can support a
paper of collaborative traffic that simply could not exist before — the geometry
was not there to support it. Notice that such a structure allows (that is to say,
ideas and research papers can exist if sufficient connective tissue is available in
the structure); it forbids (papers on the effect of environmental change on the
sexual habits of the Australian wombat will not exist, because the supporting
geometry happens not to be there); but it does not require. Why? Because sen-
tient, conscious, self-reflective human beings form an essential part of the
geometry, and they can choose to think and collaborate or not. And who could
predict whether they do or not? Also, of course, they are parts of other struc-
tures, and these geometries may also allow or forbid, but do not require in any
absolute, law-like sense.

Or take a mathematical curriculum in a university, one of whose structures
may be formed from a set of courses and how these are connected by the elements
they share in common. The traffic that is supported by such a structure might be
the students, and those that try to exist on a piece of the geometry defined by
very advanced elements may not exist for very long. But this suggests (indeed, the
very meaning of the word curriculum happens to be chariot race), that students
may have to start on one part of the structure, and then move along or through it
as they acquire the vertices that allow them to be transmitted to more advanced
parts farther along the course of study. Such movement is referred to as traffic
transmission (Johnson, 1882), and students will tell you that the struciure, the
way the pieces are connected together, affects the transmission. Is it a long
chain, representing the sort of teaching that Herbert Simon called the "recapitu-
lation of the field” method? Or have concerned and thoughtful mathematicians
created an introductory course in abstract algebra, a high-dimensional, and
perhaps well-connected, piece of structure that allows students to branch quickly
into other areas of modern mathematics?
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How are such multidimensional geometries defined in an operational sense?
Clearly, they can only be defined by connections between and on sets, but here
we face a number of choices, and I must make my definitions precise. These defini-
tions are not traditional, although they were originally devised by mathematicians
to make an important distinction that has turned out, quite fortuitously, to be use-
ful in empirical work. Mathematicians accustomed to traditional ways may object,
but then they are the first to insist upon clarity in this realm, and are often con-
descending when nonmathematicians object to their definitions. Thus, this obser-
vation constitutes an appeal for mutual tolerance and forbearance.

Functions, mappings, and relations

In science, almost universally, elements of sets are connected by functions,
which I shall define as injective, surjective, or bijective mappings, usually the last
because often the inverses exist and have empirical meaning. All of these are
one-to-one or many-to-one. In the physical sciences, the function is used almost
exclusively as a description of connections between the elements of sets. It has
been highly successful -~ it seems to describe with fidelity many aspects of the
physical world — and it has been borrowed by the biological and the human sci-
ences, often constrained to linear form.

However, there is no reason why we should constrain and confine our
descriptions to functions: we can enlarge the possibilities to mappings, where
these allow one-to-many and many-to-many connections between elements of sets.
Thus, all functions are mappings, but not vice-versa. But we can go further and
relax the requirement that all elements in the domain must be assigned. For exam-
ple, in the injective mapping or function, we are not required to employ all the ele-
ments of the co-domain, and there is no intrinsic reason, other than tradition, why
we cannot relax this requirement for the domain. Indeed, it is the next logical step
in the progression of relaxation and freeing the connective possibilities to allow
more appropriate structural descriptions. Since we have no a pricri knowledge
of what these may require in any specific area of empirical inquiry, it seems pru-
dent to provide for the most unconstrained description we can imagine. In this
way, we can record what is there freely, without forcing our initial observations
onto a constraining functional framework. Such an untraditional step may horrify
classical analysts, because it takes them into an area which is no longer secured
by convention, and where thinking has to start again. Others may find it more
congenial, and even useful, and be prepared to ignore the idea that utility is
somehow disreputable. As noted in the first part of this essay, historically the
usefulness of a concept for empirical description was considered honorable. We
might consider returning to this tradition. Thus, we define a relation, so that all
functions are mappings are relations, but not vice-versa.

With this highly unconstrained or free definition of connecting elements of
sets, we can represent a relation, say A, between two sets, say Pand [ (perhaps
people and interests), as an incidence matrix A, where we might use 1 or O to indi-
cate existence or nonexistence of a connection — although, in fact, any nonnumer-
ical symbol, an asterisk or even a banana, could be used. Thus, A S P x I, and
geometrically we represent each element in one set as a polyhedron, or simplex,
whose vertices are in the other set. It is the union of the simplicial complex,
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notated Kp(/ : A), made up of all the simplices, and its conjugate Kj(P: )\—1). that is
the backcloth. This is an important part of the text — essentially a geometric text
— that we have to interpret, and to which we have to give meaning. In any empiri-
cal study, it is important to examine, think about, and interpret the complex and
its conjugate, and normally this is undertaken by viewing the backcloth at all
dimensional levels. This is equivalent to putting on spectacles with interchange-
able lenses that can see only certain dimensional, or g, levels and above. For
example, we can view the structure of a conference with such high-dimensional
lenses or spectacles that no participant simplex comes into our view. As we grad-
ually lower the g-value, or the dimensional level, the participant simplices of vary-
ing dimensionality appear and enter the complex, and gradually connect with oth-
ers according to the interest vertices they share in common. The interests, of
course, form the conjugate structure — polyhedra of interests whose vertices are
defined by the participants.

Interestingly, the homology of the complex and conjugate are the same
(Dowker, 1951), and this raises, in the particular context of empirical research,
how such properties might be interpreted. For example, in a two-part invention of
Johann Sebastian Bach, a g-hole appears in the conjugate structure, where the
simplices are the notes, at ¢ =2 (and at ¢ =3 for the three-part invention), a
homological characteristic of the music presumably governed by the rules of har-
mony and counterpoint of those days, which allowed (and perhaps forbade?) cer-
tain transitions, or connections, between the notes — but did not require them.
Did not require them because a human being was writing the music and could make
choices. A particular two-part invention of Bach is perhaps a form of traffic on an
underlying musical backcloth. Arnold Schonberg changes the backcloth to allow
traffic previously forbidden. Similarly, in a football (soccer) Cup Final (Gatrell and
Gould, 1979), it was possible to see, in 1977, the way in which defensive players of
Manchester inserted themselves into the Liverpool structure to alter the homol-
ogy of the game.

Of course, the aim of a football team is to break up the structure of their
opponents, and such characteristics of global structure can be captured by simply
recording the number of pieces into which the backcloth falls at various g-levels,
and the numbers of gaps that offer varying amounts of obstruction to the
transmission of traffic. Needless to say, local structure, structure within a discon-
nected piece of the backeloth, may also be important, that is meaningful and capa-
ble of being given empirical interpretation. Furthermore, from the dimension of a
simplex, and the dimension of the space where it first joins others, we can also
derive simple measures of eccentricity that are in intuitive accord with the ordi-
nary meaning of the word. For example, a highly eccentric person in a conference
is going to be relatively disconnected from the rest. In a seminar with students, it
is good to have a high-dimensional teacher to provide the initial glue to connect
the somewhat eccentric students, and to help the student simplices in the com-
plex to increase their dimensionality by the end of the seminar. Similarly, a highly
eccentric football player may be disconnected from the rest of his or her team.
Notice that what a defensive player tries to do is to increase the eccentricity of
the offensive player by reducing the dimensionality of the face connecting him to
his own team. Equally, in remote sensing, an eccentric pixel in the relation Pixels
X Radiation Bands, or A € P X R, may indicate false transmission, or a land pixel
forming an island in a large lake of water pixels.
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Structural similarity

Such concern for global and local structure raises the question of what we
mean by similar structures. In global terms, the mathematician is wholly involved
here, for the fields of homology and homotopy theory are intimately concerned
with such questions, and definitions are precise. In the finite, noncontinuous realm
of empirical research, where we do not allow ourselves the luxury of things that
we cannot observe (like the continuum of real numbers), but where we are
nevertheless seeking appropriate mathematical descriptions, these rigorous views
on structural similarity may have to be enlarged (Johnson, 1981). For example, two
simplicial complexes describing two backcloth structures of empirical interest
may have the same homotopic structure (or, as it has been called in this finite
area, pseudohomotopic, or shomotopic, structure), but such general structural
similarity may disguise vast differences in local connection that are of great
empirical importance. The meaning lies in the substantive interpretation, not the
mathematics, which is the language of the text, although even these sorts of ques-
tions may result in great technical difficulties. We still do not have an algorithm
for the process of combinatorial search that tells us where the holes, the homoto-
pic objects, are, and what simplices form their boundaries. Thus, we may have to
be content, in an empirical sense, with simpler definitions of structural similarity
— such as set-preserving properties.

For example, suppose we consider two backcloth structures composed of (a) a
set of people in a small organization defined on a set of characteristic attributes
or responsibilities, or A € P X 4; and (b) the same set of people in which they are
considered both as givers and seekers of advice, or 4 € G X S. An interesting
question is whether there is any similarity between the structure of responsibility
and the structure of interaction of the people within the organization. Such a
question requires a long and careful search to answer it: first, because the initial
relations may be recorded as weighted, perhaps integer values, and a number of
binary matrices may be derived by slicing (see below). Second, because set-
preserving mappings may be sought at all dimensional levels. Now, it happened in
the research I am referring to in this example (Gould, 1984), that no set-
preserving mappings (except totally trivial ones at low slicing levels), could be
found, implying that one structure of the organization (the structure of the people
and their shared responsibility), was not reflected in the structure of interaction.
The question then was why? — a question that was unlikely to be even raised out-
side of this particular and careful structural approach.

As we have seen, relations, and therefore structures, are described by
binary matrices A, and these may be derived by slicing weighted matrices, either
by choosing a single slicing value @, a slicing row or column vector 8, and 8,, or
even a slicing matrix O”. In essence, these are mappings of the form 8: A - §{1,0}.
Such mappings, when used to derive a series of geometric texts, often cause con-
siderable discomfort to those approaching empirical problems from more conven-
tional directions. Many practitioners appear to want a method, usually in the form
of some sort of simplifying computer algorithm, that makes the research decisions
for them, and gives them a strained and highly simplified text to interpret. But
the human and biological worlds are complex, and many aspects require slow, care-
ful, patient, and meticulous search to find meaningful (i.e. interpretable) struc-
tures. If we have integer-weighted relations, we may have to explore the
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structures with many slicing mappings, but this is actually in the best tradition of
science, and has the advantage of keeping us very close to the original data. In
these days of computer simplification, this is a positive asset: otherwise, we are
back in a priori social physics, where everything is crushed down by least-
squares to simple, usually linear, functional forms. Indeed, patient structural
search, by trying to find the right mappings — right in the sense that they define
a structural text that is rich in interpretable possibilities — can often disclose
important structural change that is simply obscured by conventional approaches.
For example, time series of Portugal’'s international trade show a small dip after
1974, and then a continuation of upward trends (Gould and Straussfogel, 1984). A
careful examination of a series of international trade matrices, by finding the
right slicing mappings, discloses the enormous structural change that Portugal
actually experienced immediately after the 1974 Revolution, by being crushed
down from a 21 to a 5 dimensional simplex. Only when Portugal was seen to go
"left ...but not too left"” was she allowed to reconnect into the international trade
structure and regain her former dimensionality.

Once again, this empirical example raises the important conceptual distinc-
tion of backcloth and traffic. International trade, used as a crude surrogate to
define one aspect of international relations (and, therefore, international struc-
ture), is actually traffic being transmitted on a backcloth, a deeper structure of
international connections that allows, forbids, but does not require. What are the
elements of the set that form the deeper structure of international trade? And
notice that most trade flows fairly freely today, implying that the geometry is
relatively unconstraining, and that many country simplices share a common face of
specific vertices that allows traffic transmission. But simplices that share a face
form a star — an important part of a structure that is required for the transmis-
sion of traffic on the backcloth (Johnson, 1983; and Chapter 2 herein).

The association of backcloth simplices with traffic (often in the form of
integer numbers), implies a mapping of the set of simplices in the complex to the
positive integers, or [1: X »Z*, which implies that traffic can be considered as a
pattern on the backcloth which can be resolved as Il = Penrere. -
e ; N =dimX. Such thinking leads to a rich body of concepts in alge-
braic topology, and helps us to recognize that the holistic concept of change may
consist of change in the traffic on a relatively stable backcloth, in which case we
ascribe change to a force (a t-force, since the pattern is graded, i.e. intimately
associated with the dimensionality of the simplex on which it lives); or the change
may result when the backcloth or geometry itself changes.

Some Things to Think About

In this chapter, I have only had space to outline some rather broad and gen-
eral aspects of current explorations toward an appropriate mathematics for
empirical structural research and description. However, I would like to end with a
series of questions that I feel are certainly on the conceptual frontiers in the
human sciences, and perhaps some of them are provocative enough to engage the
attention of mathematicians.
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First, if traffic exists on a simplicial complex, what happens to that traffic in
the conjugate structure? Suppose we have a relation between a set of towns T =
fAbisko, Kiruna...} and a set of amenities 4 = {post office, country store,
garage...{, with people living as traffic on what a geographer would call a central
place structure. For example, Mats-Olof Karlqvist exists, let us say, on the Abisko
part of the simplicial complex, and contributes to the graded pattern n%, either as
a count of 1, or perhaps as a count of the number of kronor that he spends. But
what happens to Mats-Olof in the conjugate structure? This is the structure
where the amenities are the simplices, and we have to consider how a graded pat-
tern on a complex is smeared over the conjugate, and what the empirical meaning
might be.

Second, considerable attention is being paid to the old aggregation problem,
that meso gap between the micro- and macro-levels that so many of us feel in our
own areas of concern and research, not the least because algebraic hierarchies of
cover sets make such questions explicit (Couclelis, 1977, 1982). It has been pro-
posed, in principle, that we can characterize any thing or any person by a series
of binary answers to a string of questions pertinent to our inquiries. Thus, at the
lowest relevant level, say N — 3, we start with a series of binary strings, actually
a relation between the elements in one set (say the people in a town), and the set
of pertinent characteristics (presumably carefully sorted out). To the degree that
responses overlap, we may wish to aggregate to N —2 by recording the integer
numbers of women and men, the children in the barndaghem (kindergarten), the
police, and so on. Since we are often filtering away information, we may also wish
to consider how the detailed properties of the geographic space are also dis-
carded, from reality at one end (whatever we might mean by that), to a totally
abstract geometry at the other. I use the word filter purposely, because mathema-
ticians will recognize that we have been talking about filtrations at many points:
for example, when we change our dimensional lenses and when we change our slic-
ing parameters. But the question I want to pose is this: when we move from N —3
to N + 4, from enormous and, by definition, incomprehensible detail, to total and
utterly banal aggregation and geometric abstraction, are we, in a sense, moving
from the relation to the mapping to the function? Is this why models of social
physics work (to the degree that they do), because they are applied at a very
high level of aggregation and abstraction in which all the multidimensional struc-
ture has been crushed down and filtered away?

Third, there are important questions to examine concerning relationships
between hierarchical structures, where often one is a structure of physical
phenomena and the other is’ a structure of human control. Electrical power sys-
tems, for example (Gould, 1982), start at the N — 3 level of wires, bearings, circuit
breakers, washing machines, and electrical eggbeaters, and aggregate eventually
to the North American Power Control System at N + 5. One more eggbeater whip-
ping up a soufflé in New York City, and the aggregating relations produce a
brownout, requiring reserve spin power in Northern Quebec to be switched in. But
parallel to this is a whole hierarchy of human control, starting with line repair
people, and even ordinary citizens telephoning in reports of a power break caused
by lightning, to international control centers switching power across frontiers.
What are the relations between these? Similarly, in a big irrigation system in India
(Chapman, 1983), we have hierarchies of physical structures, from high dams stor-
ing water, to field channels and naka (the little gates that a farmer opens or
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closes to flood part of a field). Parallel to this physical structure is the hierarchy
of control engineers who decide how much water to release (and even whether it
shall be power for the cities today or water for the farmers tomorrow), right down
through the local irrigation officer (a valuable post, often "bought' because it is
so rich in bribery potential), to the individual farmer. To understand an irrigation
system requires, first, a sound and appropriate structural description of the
parallel, but intimately related, hierarchical structures.

Fourth, backcloth and traffic transmission can interact. For example, in a
third world country overloaded lorries (i.e. transmitted traffic), may pound the
laterite roads (the backcloth) to pieces. Moreover, what is a fire but the
transmission of traffic on an inflammable, hierarchical backcloth? Furnishings,
like curtains at N — 3, aggregate to rooms at N —2, to houses at N ~1, to neigh-
borhoods at N...and so on. Yet the transmission of this traffic destroys the
backcloth, and fires are often stopped by increasing the obstruction to transmis-
sion by changing the structure — as every firefighter knows.

Fifth, some attention is being given today to a variety of algebras (Heyting,
Free Boolean, and so on), and their lattice representations ~ for example, a Galois
lattice of a Heyting algebra (Ho, 1982). These are generated essentially from the
use of the AND A and the OR v binary operations, and the NEGATION ~ on a set,
and the claim has been made that because the simplices of a complex are created
from vertices joined together, they are actually propositions formed from A AND.
For example, a farmer simplex is a Tractor AND a Field AND an Irrigation pump
AND...so on. Thus, an actual, empirically verifiable simplex is a point on a Galois
lattice, or perhaps a lattice characterizing a Free Boolean algebra (Couclelis,
1983). I personally find this true, but unhelpful, and not particularly illuminating,
and I wonder if the love of logic and mathematical formalism for its own sake (in
mathematics perfectly legitimate and even desirable), has swamped thinking about
what is required for the descriptive task of the substantive scientist? I have great
difficulty with that OR v operation, since I cannot interpret it when I am trying to
build, and make operational, structural texts. Structures are composed of connec-
tions: this AND this AND this AND... . In marked contrast, the OR operation says
this OR this OR this OR..., and I feel myself as traffic, perhaps decision traffic,
bouncing around from one part of a structure to another. Furthermore, if empiri-
cally defined, simplicial complexes are large and difficult to comprehend, and
these are only a very small subset of the lattice of a Free Boolean algebra, then
how are we to grasp, and ultimately interpret, the combinatorially explosive possi-
bilities of the lattice vertices? In aggregating up an algebraic hierarchy of cover
sets, we may wish to use definitions employing v OR — in the television research,
for example, the employment of any descriptive term at the N + 1 level, such as
dance OR sculpture OR poetry... , may be sufficient to invoke the N + 2 level
term Art. But that is a matter of formalizing what we want to obtain as a meaning-
ful, that is, interpretable, text or description, rather than being subject to the
tyranny of a binary operation because it happens to characterize a particular
propositional logic and its lattice representation.

And this leads, finally, to my last series of questions: is it true that all
mathematics can be reduced to binary operations that have a few fundamentally
logical counterparts, and does this mean that all mathematics, in principle, can
be reduced to mechanical operations? For example, is the binary operation of
path composition in homotopy theory just another version of the logical AND A
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operation in the propositional calculus? In brief, can the computer, by turning on
and off mechanical switches, do everything in mathematics? Are mathematicians
ultimately Turing’s men? Are laws in the physical sciences actually contained in
the algebraic operations which are applied to the definitions made, and the
number systems chosen (Gould, 1983)7?

My intentions should not be misunderstocod here: when I ask ''Is mathematics
ultimately mechanical, reducible to mechanical operations on sets of things", I do
not mean to imply in the least that creative mathematicians are machines, that
brilliant discoveries of proof form are somehow denigrated and dismissed. But once
an area of mathematics is broken open, developed and extended, could those
developments in principle be mechanized by Turing’s machine? If so, I cannot
see how the human world is mathematizable, since all the structures, ultimately
grounded on some sort of binary operation, would have to be requiring. When
you do m binary opertion c¢? it requires E. But I know that the geometries of the
human world are not requiring, and the proof of a theorem meaningful to the
human world would imply the lack of that very capacity of consciousness that
would allow self-reflection resulting in a choice to deny the consequences of the
logical chain. Human beings have choices: farmer polyhedra in a small valley in
Portugal (Gaspar and Gould, 1981) can, but need not, produce large traffic values
of maize, apples, olives, and animals simply because they are defined as large mul-
tidimensional pieces of the structure of agriculture in the region. The capacity to
reflect, to think, to alter the geometry consciously is ultimately wus. Can
mathematics contain within itself allowing, forbidding, but not requiring, and,
therefore, not mechanical, geometries? Or is our natural language, in which we
think, and so have our being, also reducible to the software mechanisms of artifi-
cial intellipence and Turing’s machine that requires us to say: I (binary operation)
love (binary operation) you?
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CHAPTER 2

A Theory of Stars in Complex Systems

Heavier-than-air flying machines are impossible.
Lord Kelvin

Jeffrey Johnson

Introduction

A complex system such as a company, an institution, or a nation, can be
thought of as being made up of very many interrelated parts experiencing local or
global change through time. The practical need to control social institutions
through planning, management, and government underlies the need to find scien-
tific methods to describe and understand complex social systems, in the same way
that the requirements of engineering underlie the need to find scientific methods
to describe complex physical systems.

Let us assume that one can discriminate two kinds of data, the first concerns
observing 7relations between things and the second involves assigning numbers to
things. Somewhat simplistically, relational data lead to structure in an algebraic
sense while numerical data lead to functions in a statistical or analytic sense. In
other words, one has to combine both algebraic and functional methods to
describe complex systems and the ways they change.

In his methodology of @-analysis Atkin (1974, 1977, 1981) considers systems
to consist of a relatively static backcloth which supports a relatively dynamic
traffic of system activity. For example, an electrical network provides a backcloth
for a traffic of electrical currents, a road system provides a backcloth for a
traffic of vehicles, a university provides a backcloth for a traffic of ideas, and so
on. It is argued that combinatorial structure in the backcloth constrains the
behavior of the traffic, this combinatorial structure being determined by the
notion of connectivity. Atkin's work begins with Dowker’s observation that one
can construct two sets of polyhedra from a binary relation between two sets 4 and
B (Dowker, 1951); for example, the polyhedron determined by any particular a in
A has as vertices those b in B which are related to a. The notion of connectivity is
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then defined in terms of the faces that polyhedra share; in other words the con-
nectivity between two members of 4 is determined by the elements of B related to
both. This is explained in more detail on pp 23-29 and is illustrated with the
visual structure of a Tudor village and with the structure of the rectangular grid
used in image processing.

The theory of Galois stars, developed on pp 29-35 and illustrated with the
structure of an image and stars in the Bedford road system, generalizes Atkin’s
idea of connectivity by considering the intersection of many polyhedra in a star-
like configuration. This intersection is identified as a hub polyhedron, where stars
and hubs have a kind of mathematical duality related to the structure of the
Galois lattice (Johnson, 1983b). It is argued that this star configuration is funda-
mental in analyzing the structure of a hierarchical backcloth of polyhedra defined
by relations between hierarchically aggregated sets. Traffic is defined on this
hierarchical backcloth as functions mapping the polyhedra to numbers, where the
traffic functions themselves have hierarchical structure induced by the
backcloth. It is a fundamental tenet of this methodology that the star structure of
the backcloth constrains the values the traffic functions can take on the poly-
hedra ~ it allows and forbids, but does not require (see Chapter 1).

Within this context, in this chapter we define a general @-system (Johnson,
1982b) which is a hierarchical backcloth supporting hierarchical traffic. It is
suggested that the new star structure provides a superior method of analyzing the
backcloth of @-systems in order to understand their static, kinematic, and
dynamic properties.

On pp 35-38 an introduction is given to the ideas of traffic and change being
transmitted through the backcloth, this being illustrated by the structure of road
system designs constraining vehicle flows. This is followed by discussion of a view
of hierarchical structure developed during exceedingly difficult research into
classifying television programs (Gould et al., 1984), in which the nature of hierar-
chies and how they are defined to study complex systems is briefly described. The
cone construction is introduced and used to illustrate the Non-partition Principle,
The Nested Base Rule, the connectivity between words labeling elements and
structures in the hierarchy, and The Principle of Usefulness. The star structure
of Tudor Lavenham is briefly discussed to illustrate the idea of hierarchical set
definition based on combinatorial structure.

On p 46 the idea of the @system is introduced and the hierarchical agpgrega-
tion of system traffic is considered in some detail on pp 46—-50. In particular, it is
argued that some descriptions of complex systems which ignore the nature of
traffic aggregation over the backcloth may profoundly misrepresent the system
under study. Thus, models of complex systems that are equations alone are
unlikely to capture the complexity that is the system.

Despite fundamental questions about the nature of time having caused a revo-
lution in the conception of physical dynamics, analysts of complex social systems
often accept Newtonian clock time as an a priori reality: time is another numeri-
cal variable. This flies in the face of observation that social events unfold in his-
torical social time. On pp 51-60 the nature of social time and its relationship to
clock time are investigated. In this context, the final section investigates the con-
cept of prediction in social time and clock time, and gives eight different kinds of
predictions that can be made. The practical necessity to tie social time to clock
time in an effective way is investigated through the idea of a clock-time window for
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favored events, or goals. The section ends with some speculations on heuristics
for planning and managing complex systems, where these involve a structure
between planned system trajectories through time and the system states (ideally
the goals) which make up the possible trajectories. In particular, it is suggested
that stars in this structure with large numbers of simplices and high dimensional
hubs may be strategically advantageous.

As the main purpose herein is to convey ideas rather than prove mathemati-
cal results which can be found elsewhere, a conscious effort is made to keep nota-
tion to a minimum. Likewise, some definitions are not presented as pedantically as
they might be, preference being given to illustrating the ideas with diagrams. All
relevant references to the details are included herein. In particular, Johnson
(1981a) establishes a notation of @-analysis, Johnson (1983a) gives a detailed dis-
cussion of hierarchies in @-analysis, Johnson (1982b) gives the complete definition
of the @-system, Johnson (1976) and Johnson (18981b) contain theorems which show
that the road system backcloth constrains vehicular traffic flow, Johnson (1982a)
gives a discussion of time in the context of g-transmission, and Johnson (1983b)
presents the theory of stars. Atkin's texts (1974, 1977, and 1981) are standard
references for @-analysis. Other references of interest are Earl and Johnson
(1981), which discusses the relationship between @-analysis and graph theory,
Gould (1980) and Beaumont and Gatrell (1982), which give pedagogic accounts, and
Griffiths (1983) and Seidman (1983), which give different mathematical perspec-
tives on @-analysis. Many of these papers appear in two special issues on @
analysis (Johnson, 1981d, and Macgill, 1983).

Polyhedra and Their Connectivity

Let A be a relation between two sets 4 and B that is, there is a rule which
enables one to decide that a is A-related to b or a is not A-related to b, for each a
in 4 and each b in B. For example, let 4 be a set of squares and B be a set of eight
crossline types, so that each square is crosshatched by four of the eight crossline
types. This is illustrated in Figure 2.1, where two squares are crosshatched by the
line types B, 7, and 4§, but square 1 also has line type £ and square 2 has line type
1. Clearly, the visual effect of these lines in combination is different to the visual
effect of the lines seperately.

Bach of the squares has four line types and can be represented by a
tetrahedron, a polyhedron with a vertex for each line type, as shown in Figure
2.2(a). Figure 2.2(b) shows the polyhedra drawn such that they have a common
B—y—90 polyhedron, a triangle. For notation, the square 1 polyhedron is written as
< B.7v, 6, € > and the square 2 polyhedron as < 8, 7, 6, % >. The shared face of
the polyhedra is the triangle < 8, v, § >.

In general, a polyhedron with n vertices exists in an (n — 1)-dimensional
[(n —1)-D] space: a point (one vertex) is 0-D, a line (two vertices) is 1-D, a trian-
gle (three vertices) is 2-D, a tetrahedron (four vertices) is 3-D, a pentahedron
(five vertices) is 4-D, and so on. All polyhedra of dimension greater than two have
to be drawn on 2-D paper as stylized representations, see Figure 2.3.

Since squares 1 and 2 share a triangle [Figure 2.2(b)], they can be described
as two-dimensionally near, or 2-near. This idea can be generalized: let two polyhe-
dra be g-near if they share at least (¢ + 1) vertices (Figure 2.4); that is, they
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Square 1 B % €

Figure 2.1 Squares crosshatched by different sets of line types.

{a) (b)

Figure 2.2 (a) Squares 1 and 2 of Figure 2.1 represented as polyhedra. (b) Squares 1
and 2 share a triangle.

< &

Figure 2.3 Multidimensional polyhedra represented on 2-D paper: (a) tetrahedron, (b)
pentahedron, (¢) hexahedron, (d) septahedron.

share a g-dimensional face. Figure 2.5 shows how this idea can be extended: let
two polyhedra be g-connected if and only if there is a chain of pairwise, g-near
polyhedra between them.

For any set of polyhedra of dimension g or greater, it can be shown that
g-connectivity is an equivalence relation and so partitions the polyhedra into
disjoint equivalence classes called g-connected components. The @-analysis
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Figure 2.4 (a) O-near, (b) 1-near, and (c) 2-near polyhedra.

1-connected

Figure 2.5 Polyhedra that are g-connected.

algorithm lists the g-connected components of a relation for each value of q, as
illustrated in Figure 2.6.

Polyhedra are also called simplices, an arbitrary set of simplices is called a
simplicial family, and a set of simplices which contains all the faces of its sim-
plices is called a simplicial complex. Let A be a relation between
A =la,. az....a,}and B ={b,, bs....b, ], and let @ (a;) be a polyhedron with
vertices all those members of B which are A-related to a,;. The set of polyhedra
ia(a,,')]a.,_ € A} is a simplicial family denoted F,(B. A), which, together with all
its faces, is a simplicial complex, denoted K, (B,A). Let the relation A1 between B
and 4 be defined by the rule & A™la if and only if @ A b. Then the simplicial fam-
ily Fgp(4, )\—1) is defined analogously to F,(B,A) as a set of polyhedra
to(b,) | b, € B} with vertices that are members of A. Similarly, Kg(4. A1y is the
complex containing these polyhedra with all their faces. #, (8, A) and Fg(4, A Y
are said to be conjugate families, and the conjugate complexes K,(F, A) and
Kg(4, A1 are sometimes called the Dowker complezes (Griffiths, 1983).

Example 2.1 The English village of Lavenham is highly regarded for its wealth of
surviving Tudor buildings; those in the Market Square are shown in Figure 2.7.
Atkin and his coworkers (Atkin, 1971) defined a relation between the buildings
and the visual features listed in Table 2.1. The relation A € B X V is defined by
B, A Vj if Vj is a visual feature of facade B,, in which case building facades can be
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Figure 2.6 A @analysis of the polyhedra A1' Az- and A3 of Figure 2.2.

Table 2.1 Visual features used to describe buildings in Lavenham Market Square.

Symbol Feature Symbol Feature
Vy Brick facade Vis Horizontal window
V, Rendered plaster Vie Square window
V3 Exposed beams V17 Bay/Bow window
Vy Brick and flint facade Vie Dormer window
Vs Overhanging first floor Vie Shop window
Ve Solid wooden door Vao Leaded window
Vo Paneled wooden door Vay Elaborate chimney
V8 Glass paneled door sz Narrow plain chimney
Vg Elaborately framed door st Wide plain chimney
Vio Stone lintel Vas Clay tiled roof
Vii Brick lintel Vos Slate tiled roof
12 Wooden lintel Vog Gable end
13 Molded lintel Voy Sloping gable
V14 Vertical window Vze Passageway entrance
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Lavenham
Market Square

Figure 2.7 Lavenham Market Square.

Table 2.2 The visual polyhedra of some of Lavenham's buildings [the nota-
tion g(B,) means building 5, considered as a polyhedra].

Polyhedra Visual features

o(By) <Va. Vs, Vo Vaz. Vigs Vasi Vaes Vi Ve Vaor Vaa>
0(B>) <V, Vo Vig Vis Vigs Vigs Voo Var>

o(B3) V3, Vo Vg Vis Ve Vi Vie Vaor Vazo Vagr Var>
o(By) <V Vo, Vior Vag Vaze Vas: Var>

G(B5) <V2' V3' VS’ VB' VlZ' V15' V1'7' V19' V21' V24' V28>
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{a) {b}

Figure 2.8 Structure versus cluster: (a) Tudor house and (b) Tudor house?

considered to be polyhedra made up of their visual features, as illustrated in
Table 2.2. A @-analysis of the buildings has a major component {B;s, Bg, Byp By,
Bi3. Big, Bs} at ¢ =6, and {Bys, Be, Biz. B1. Bia. Bia, Bs, B3, Bz, Bg. Byy. Bie.
Bg, B.,i at ¢ = 5. The first of these contains buildings which conform to the popu-
lar concept of a Tudor house, while the Tudor features in the second component
are somewhat more sparse. This example shows that the general concept of a
Tudor house and what is actually a Tudor house can be different: in terms of
appearance houses built in Tudor times have often been modified according to the
needs and customs of later generations. Thus, at any time the visual structure of a
town is evolving towards a new visual structure.

It would be misguided at this stage to consider @-analysis as just another
clustering algorithm. Figure 2.8 shows two identical sets of visual features, but
clearly 2.8(b) could not be considered a Tudor facade or, indeed, any kind of
facade. To resolve this problem more structure is necessary, namely a kind of
grammar of shapes (c¢f., Stiny, 1980) to combine the Tudor features properly.

Example 2.2 Here we consider the structure of tessellated space in remote sens-
ing. In a square tessellation let square s be A-related to square s’ if they share an
edge or a corner. Then every square is 5-near the squares to its right, left, above,

| TP R S

Figure 2.9 The squares s and s’ are 5-near (that is,
they share a 5-dimensional polyhedral face).
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and below (Figure 2.9), and it is possible to show that the tessellated plane is
everywhere 5-connected. However, Figure 2.10 shows that the tessellated plane is
also everywhere full of 5-holes because diagonally adjacent squares are only 3-
near each other.

5-near
51 - ————i 52

5-near 5-near
S3 | 54

5 <——>53

5-near \

Figure 2.10 The tessellated plane is everywhere full of 5-holes (s, and s5 are only 3-
near, as are S, and §4).

An Introduction to the Theory of Stars

Whereas g-nearness is defined by the intersection of two polyhedra, the con-
cept can be extended to the intersection of many polyhedra. In Figure 2.11(a)
there are six tetrahedra which share a common triangle (shaded). These tetra-
hedra can be brought together at the triangle to form a star structure, as shown
in Figure 2.11(b). The common triangle is called the hub of the star.

Fxample 2.3 Recall from Figure 2.1 the crosshatching of squares by lines of dif-
ferent slopes. Figure 2.12 shows one hundred and seventeen squares, each related
to four of the eight crosshatch line types. Close inspection of the squares shows
that each of their polyhedra has the face < 8, 7, § > or the face < ¢, {, >, but
no polyhedron has both these triangles as a face. Thus the squares, viewed as
polyhedra, define two distinct stars, as shown in Figure 2.13. These stars can be
used to partition the squares according to the star they belong to, which reveals
the substructures shown in Figure 2.14. In this particular case the star structure
is exactly relevant to the process of pattern recognition.

The concepts of star and hub can be made more precise as follows. Given any
polyhedron ¢ in a simplicial complex K, (B.A), let the Galois star of o, denoted
star(o), be the set of polyhedra o(a;) which have o as a face. The Galois star
thus defined is a special case of the concept of star in topology, which not only
contains those polyhedra having o as a face, but also those polyhedra sharing one
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|

{a)

{b)

Figure 2.11 (a) Six tetrahedra share a common triangle and so (b) combine to form a
star structure with the common triangle as a hub.

or more vertices with ¢. In this chapter the term star means only the Galois star
defined here. Given any set of polyhedra {a(al), ag(as),... {, let its hub be the
polyhedron which is the intersection of the o(a;). Then it can be shown that o is
a face of hub(star(s)] and in the special case that o = hub[star(o)], the
polyhedron ¢ is called a mazimal hub. It can also be shown that {o(a D o(@z),... 3
is a subset of star[hub({a(a.l), g(ay).... )], and in the special case that
{o(a,). glay).... § = starfhub(io(a,). o(ay).... 1. the set of polyhedra is called a
maximal star.

Stars and hubs have a number of interesting mathematical properties, but
the most important is that in Proposition 2.1.
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Figure 2.12 Squares crosshatched by four of the eight lines with different slopes
(o — ).

(a) {b)

Figure 2.13 Stars formed by (a) 8 — ¥ — 6 polyhedra and (b) ¢ — ¢{ — 7 polyhedra.

Proposition 2.1
{o(aq), 0(ay).... } is a maximal star with hub < &4, b,,... > in F,(B,N if and
only if Ea(bl). g(by),... § is a maximal star with hub < a, az.. > in
FgA ™).
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{b)

Figure 2.14 A pattern recognized by the star structure of the squares. (a) Squares be-
longing to the &€ — ¢ — 7 star and (b) squares belonging to the § — ¥ ~ 4 star.

For the proof of Proposition 2.1, see Johnson (1983b, p 461).

In @-analysis, two simplices are defined to be g-near if and only if they have
a common q-face; that is, they share more than q vertices. Two simplices are g¢-
connected if and only if there is a chain of pairwise, g-near simplices between
them. Thus, g-connectivity is an equivalence relation on a complex and partitions
its simplices into g-connected components and a @analysis lists these com-
ponents for each value of ¢. Since the hub of a set of simplices is itself a simplex,
let the dimension of a hub be its dimension as a simplex. To maintain numerical
compatibility, let the codimension of a hub be defined as the number of named
simplices in its star, minus one [in the case that two named simplices are identical,
for example, o(a,) = o(ay). then each counts separately]. Let a simplex be
defined as an n—g-simplexz if its codimension is n and its dimension is q, and let a
set of simplices be n—q-near if they all share an n—g-simplex.

Proposition 2.2
g -nearness in @-analysis is the special case of n—g-nearness, for n = 1.
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Proposition 2.3
g-connectivity in @-analysis is the special case of n—g-connectivity, for
n =1, defined as the transitive closure of n—g-nearness.

The literature on @-analysis concentrates on these restrictions, but Prop-
ogitions 2.2 and 2.3 suggest that the @-analysis algorithm can be extended to
structures beyond those defined by g-nearness. However, they highlight a prob-
lem which is not apparent in the literature. @-analysis claims to be a language of
structure, but all structure analyzed through the @-analysis algorithm is second-
ary to the g-nearness function. However, the @-analysis algorithm is but a part
of the methodology of @-analysis and most applications of @-analysis require the
discussion to be wertex-specific. In other words, the specific vertices and sim-
plices must be considered explicitly, with properties such as dimensions, ¢-
nearness, eccentricity, etc., taking a secondary role as indicators.

The star structure developed in this chapter is not secondary to any mea-
sure; the stars and hubs simply exist as structures in their own right. We can
impose mappings, such as dimension and codimension, on these structures, but
these are secondary. The same is not true for the g-connected component struc-
tures of @-analysis, which are secondary to the g-nearness mapping.

Example 2.4 Figure 2.15 shows a simplified version of the road system in the
English country town of Bedford. As a simple experiment in @-analysis, a route was
defined for each through-traffic pair AB, AC,...,.HA,IA. A route Rj is related toa
link Lj if the route traverses that link. The roots are polyhedra connected to
each other through shared links, and links are polyhedra connected to each

0

Figure 2.15 Major roads in the Bedford system.
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Table 2.3 Major stars in the Bedford road system (through-traffic only).

Southern dbypass west—east
<AE AF,GF,,GF,HE HF,IE, IF> <—> <Lq.L aLigLizg,Liag>

<AE,AF,HE,HF IE,IF> <—>  <LylgLgLyoLaplzglag>
<AE,AF.AG,IE,IF,IG> <—>  <LgLiglygLaglsy>

Southern dbypass east—west

<EAEGEHEIFAFGFHFI>  <—>  <LoLglLgLaaLys>
<EA.EHEIFAFHFI> <—>  <LepyLgLgLjioLggl 4sLss>
<EA.EIFAFIGAGI> <—>  <LgliglygLsglsy>

Southern bypass
interacting 2-way

<AE . AFFEAEILFAFLIE IF> <—> <lylLglglqglq1>

<AE AF,AG.EAFAGA> <> <Lq,LgLqg.Lqq.L42>

A, origin

<AE AF,AG,AH AD> <—> <Ly Lyq.LygliopLigg,Liag>

A, destination

<EAFA,GAHA,IA> <—>  <Ly.Ly3.LypLaal g lag>

E, origin and destination

<AEEAEHELHE IE> <—> <L6.L7,L8,L9,L10>
B, origin
<BD,BE,BF,BG,BH> <—> <Lg,L 19,L 20,L 56.L r],O,L ">

B, origin and destination

<BF,BG,BH,GB,HB> <—>  <Lalysliglqiglyy>

Band C, origin

<BF,BG,BH,CG,CH> <—>  <LalLisligLlyplyz>

other through shared routes. Figure 2.16 shows those links in the system of
dimension three or more (Johnson, 1984). These data were reanalyzed by a com-
puter program searching for stars and the largest star—hub pairs are listed in
Table 2.3.

As with the @-analysis, these stars show the through-traffic structure to be
dominated by the informal bypass south of the town, east to west and west to east,
and northern origins B and C. Many British towns have a radial pattern similar to
Bedford, with the problem that many through-traffic routes must pass via the
town center, which causes severe congestion. It can be seen that Bedford has a
significant substructure for the origins—destinations A4, E, F, G, H, I through its
links south of the center. Also, it is interesting to note how A and, to a lesser
extent, £ dominate this substructure, because they are at the ends of the bypass
links. Hence many routes to and from A must share many links, to their mutual
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Figure 2.16 Bedford road system, through traffic links with dimension 3 or more.

detriment [disconnected routes perform better (Johnson, 1976)]. This is a pro-
perty of the backcloth, which might not be significant if 4 generated little
traffic. However, this is not the case; 4 connects Bedford with many towns to its
west and with the M1 motorway, so carrying a large volume of traffic. It is
interesting to note that since the original analysis a formal bypass has been
opened, which extends the informal southern bypass in the west to avoid the diffi-
cult urban roads between 7 and 4.

An Introduction to Traffic in Complex Systems

In complex systems one can make a distinction between qualifiative data and
quantitative data, the first being expressed as relations and the second being
expressed as numerical functions. The methodology of @-analysis makes a distinc-
tion between a relatively static backcloth structure (qualitative), which supports
a relatively dynamic traffic of system activity (quantitative). Over and above this,
the methodology claims that the star structure of the backcloth constrains the
behavior of the traffic — it allows and forbids, but does not require (see Chapter
1). To illustrate this, the route-link structure supports a traffic of motor vehicles
and constrains this traffic in the following ways. First, the vehicles cannot travel
where there is no road: no backcloth implies no traffic. Second, a road may exist
and allow vehicles to pass, but there may be none: the backcloth allows traffic,
but does not require it.

The previous sections suggest that the structure of relations can be investi-
gated through their families of polyhedra and the related connectivities. In the
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Figure 2.17 Traffic as a mapping from a polyhedron to a number.
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Figure 2.18 Illustration of g-transmission: a change 67 on ¢4 induces a change 87 on
0, which induces a change 61 on 05.

first instance, the representation of traffic can be thought of as an arrow map-
ping a polyhedron to a number (Figure 2.17). The theory of g-transmission (John-
son, 1982a) suggests one method in which backcloth structure can constrain
traffic. In its simplest case, we can define change in traffic to be transmitted
from one polyhedron to another through a shared g-face. For example, Figure 2.18
shows three polyhedra with ¢, 1-near 0, and 0, 1-near o3. Thus, ¢, and o5 are g-
connected, but they do not share any vertices. Under some circumstances, it is
possible that a change in traffic, én, on ¢ induces a change ém on 0, because they
are 1-near. Similarly, the change on 0, may induce a change ém on o3 because
they are l-near. In this way, changes in traffic may be transmitted from one
polyhedron to another, with which it has no shared vertices, via intermediate con-
nectivities. Figure 2.19 illustrates this for a simple road system with routes
between 4 and C, B and C, and B and D. Suppose there is an accident on link L,
which restricts its capacity. The resulting traffic flows on Ly and Lg decrease
because fewer vehicles are able to travel AC in unit time. If the road system is
congested it may be that vehicles on route BC are normally slowed by congestion
on Lg and Lg. A reduction in traffic on AB reduces congestion on links Lgand Lg,
and hence vehicles on route BC spend less time on L4y, Lg, Ly, and Lg. In turn,
this reduction in congestion may reduce travel time on route BD. By this argument
reduced flow on AC is 1-transmitted as reduced travel time on BC, which is 1-
transmitted as reduced travel time on BD.
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Figure 2.19 Changes transmitted through a single road system.

A number of theorems (Johnson, 1976) show that disconnecting the link and
route structures enables road systems to perform better. Dramatic examples of
this occur at complicated road intersections which, in Britain, are often rounda-
bouts (called rotaries or traffic circles in North America). For instance, in 1973
one of the roundabouts in the town of Hemel Hempstead was causing severe
congestion and an experiment was devised which implemented six mini-
roundabouts and two-way flows (Figure 2.20). Intuitively, it is clear that the design
before the experiment caused many routes to be highly connected and therefore
caused many vehicles to interact with each other, to their mutual detriment. Simi-
larly, it is clear that the experiment has caused at least some pairs of routes (e.g.,
ab and if) to become disconnected, to their mutual advantage. These intuitions
become more difficult when considering the whole intersection. However, the com-
puter analysis and theorems show the new design to be significantly disconnected
and that the traffic flow must improve, as, indeed, it has:

The current experiment being undertaken at the Plough has, in terms of
capacity and reduction of delays, proved a success and a new lease of life has
been given to the junction. (The West Herts Transportation Study, Hert-
fordshire Country Council, 1974.)

Vehicular traffic is an example of a much more general idea; for example,
Johnson and Wanmali (1981) considered a traffic of retail goods in Indian periodic
market systems, Gould (1981) considered a traffic of electricity on an unstable
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Figure 2.20 Hemel Hempstead system: (a) preexperiment, (b) postexperiment. The post-
experiment design significantly disconnects the link and route structure, thereby
dramatically increasing capacity.

physical backcloth in the US, Gould et al. (1984) considered a traffic of television
programs across a world backcloth, Atkin (1977) studied many kinds of traffic
associated with university life, and so on.

Hierarchical Structure

As is well known, large complex systems often have hierarchical descriptions
in a hierarchical vocabulary. A common problem when studying such systems is
that the description may be too coarse, with insufficient detail, or too fine, with
overwhelming detail (Figure 2.21). The intermediate word problem involves finding
useful words between too high and too low a hierarchical level. This is illustrated
in Figure 2.22, where the purpose is to describe television programs. Many
hierarchical schemes attempt to give exclusive classes, despite real systems hav-
ing a natural cover structure with intersections (Figure 2.23). In practice,
exclusive classes are not necessary and they violate natural structure in the
observations.

An intermediate word like SPORT has many things aggregated into it, and this
set can be represented in the usual Venn diagram. If this is joined to a point
representing SPORT at a higher level, a cone is formed (Figure 2.24). The cone
representation can be useful in a number of ways; for example, it gives a graphic
illustration of the Non-partition Principle (Figure 2.25) and it illustrates the kind
of structural requirements one would probably impose on a hierarchical scheme
(Figure 2.26). These cones can also be thought of in a structural way, as illus-
trated in Figure 2.27. Here the intermediate words Tudor-1, Tudor-2, and Tudor-3
are connected in terms of their lower level structure. It is interesting to ask
where archetypes like TUDOR come from, see Postulates 2.1 and 2.2.
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ANYTHING
(the universe) Insufficient
\ detail
-— What are the
-— intermediate
-— words?

EVERYTHING
(all minutiae)
The hierarchical soup —
overwhelming detail

Figure 2.21 The intermediate word problem.

ANYTHING
SPORT CRIME ART
T~ T~ /\\
Ball games Violence Music
Football Murder Jazz

Figure 2.22 Part of a heirarchy for describing television programs.

POSTULATE 2.1 Out of the combinatorially many ways things combine, human beings
select a relatively small subset to name.

POSTULATE 2.2 The principle of usefulness; that is, names are given to particular
combinations because it is wseful to do so.

For example, the archetype Scrambled Tudor” did not exist before, but it does
now because it is pedagogically useful (Figure 2.28).
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SPORT Level N + 2
Ball games Water sport Level N + 1
football water polo diving Level N

Figure 2.23 Level (N + 1) covers level N, but it does not partition it.

SPORT

Base {SPORT)

Figure 2.24 The hierarchical cone construction
with apex SPORT and base the Venn diagram
of the set of things aggregated to SPORT.
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Figure 2.25 The Non-partition Principle.

AN+1

\/

Figure 2.26 The Nested Base Rule [if A{v + aggregates
into AN then base(Aiv) c base(A” B,

41
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TUDOR Generic

A

OR

Tudor 1 Tudor 2 Tudor 3 Archetype

A

AND

Visual
features

Tudor 2 Tudor 3

s

Figure 2.27 Intermediate words are connected through lower level words.




A Theory of Stars in Complex Systems 43

Figure 2.28 Scrambled Tudor house style (compare with Figure 2.8).

Example 2.5 Stars and the hierarchical definition of Tudor house style. The rela-
tion between Lavenham building facades and visual features contains the stars:

< B4, Bg, B3, Bya, B15 > <—> <wooden lintel, horizontal window,
square window, leaded window, clay-
tiled roof>

< Bg, B4p, By3, By4, B15 > <—> <exposed beams, wooden lintel,
square window, leaded window, clay-
tiled roof>

which identify sets of houses that are definitely Tudor in style. It is interesting to
note that B, in the first does not have the feature of exposed beams in its facade;
the beams are doubtless present in the Tudor construction, but they are con-
cealed by plaster rendering and white paint.

The following stars are also associated with a Tudor-style house:

<B,, Bg. By, By3, Bys > <—> <wooden lintel, horizontal window,
square window, leaded window, clay-
tiled roof>

< Bl' Bs, B12' B14- B15 > <—> <first floor overhang, wooden lintel,
square window, leaded window, clay-
tiled roof>

<B4, Bg, B3, B4, B15 > <—> <wooden lintel, vertical window,

square window, leaded window, clay-
tiled roof>

< Bl' B12' Bya, By, B15 > <—> <wooden lintel, square window, leaded
window, clay-tiled roof >
< Bg, Bg, By, By3, B45 > <—> <exposed beams, wooden lintel, hor-

izontal window, clay-tiled roof >
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The following stars are interesting because they contain anomalies in terms of a
definition of Tudor style:

< Bg, Bg, By, By3, Bqg > <—> <horizontal window, square window,
leaded window, clay-tiled roof >

<B,.B,. By, Bg, By > <—> <paneled wooden door, horizontal
window, square window, clay-tiled
roof >

In the first of these, B, is included amoung the Tudor houses, although it appears
Victorian at first sight. In this case the leaded windows are definitely of a later
Victorian or Edwardian style which means they, at least, do not date back to Tudor
times: perhaps the descriptor leaded window requires further clarification?
Another anomaly with this house is its clay-tiled roof, while the construction of its
sloping gables is very similar to the Victorian cottage next door. For economic rea-
sons, most Victorian houses have slate roofs, but this one has a clay-tiled roof.
Perhaps it has been reroofed since Victorian times with clay tiles, or was it built
using old clay tiles from another building?

The second star contains a mixture of Victorian and Tudor house styles, so
similar considerations to the previous case apply. Now we have Tudor buildings fit-
ted with paneled doors more characteristic of later times; again, one can speculate
that old doors have been replaced with new.

These anomalies show that house styles exist which are hybrid, neither
acceptably Tudor nor obviously Victorian. As noted before, the visual structure of
an area evolves over time as one generation after another effects repairs and
improvements. It is interesting to note that the anomalies are seldom named and
that people very often restore old properties, which involves removing visually
incongruous features and replacing them with others more original. It may be that
initially we name combinations of features somewhat arbitrarily, but it would seem
that once something has been recognized and named there are strong pressures to
make similar objects conform to the name.

The problem of hierarchical set definition, or classification, involves discrim-
inating things which are different and aggregating things which are similar (John-
son, 1981c). Clearly, stars tell us which things are similar and are potentially very
useful in this. However, a binary relation between, say, facades and features is not
sufficient to discriminate Tudor from scrambled Tudor, because these styles
involve relations between the elements in the facade: Georgian style windows are
arranged in vertical and horizonal rows, roofs are on top, and so on. In other
words, there is a complicated set of rules which fit all the parts together prop-
erly. Such rules can be thought of as compound propositions which take the value
true when things fit together properly and false when they do not. In fact, the
propositions can be subdivided in such a way that testing any of the subproposi-
tions as true is sufficient to show that the compound proposition is true; the sub-
propositions are linked by the conjunction OR. Furthermore, each subproposition
is a set of simple propositions involving only the conjunction AND. Any single one
of the subpropositions is effectively a set of rules to establish whether a given set
of features combines properly for aggregation. Clearly, a necessary condition for
this is that the building possesses all the relevant features — that is, it has the
correct star structure.
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Propositions and relations are effectively the same things; one says
a4, asp,....a, are R-related if and only if P(a4, a,,...,a,) = true, where P defines
R. This allows the definition of different polyhedra to those given by a binary
relation: let <a 4, a5,....a, > be a polyhedron if and only if P(a4, a,,....a,) = true.

In the case of visual features and buildings it is possible to obtain two dif-
ferent sets of polyhedra: the first by observing the relation A between building
facades and features; the second by defining a set of propositions which test
whether a given set of features aggregates to a recognized type. By definition,
the aggregation propositions can only be applied if the necessary set of vertices
is present; that is, is a face of the A-polyhedron. Thus, the polyhedral analysis
becomes a necessary part of the aggregation procedure and also has considerable
heuristic value in eliciting appropriate aggregation propositions. The relational
part of an aggregation applies to what has been called the AND aggregation;
archetypes are aggregated by a simple OR (Johnson, 1983a). This is illustrated in
Figure 2.29.

TUDOR
>

OR-aggregation

/
Btilding -« Tudor 1 Tudor2  Tudor 3
facade A
(YA
LN
\ \
\ N

\ S AND-aggregation
\ = ~ -
N =~
N Ry Ra Ry
N
PN
~
~
~ A
e,

Figure 2.29 Hierarchical aggregation through AND and OR aggregations.
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@-Systems

Let H be a hierarchical scheme of sets; that is, various sequences of cones as
defined in the previous section. Let {A} be a class of relations between those sets.
The simplicial complexes formed from all the relations between the cones are then
called a hierarchical backcloth, denoted (H, {A}). Typically, a simplex in one of
these complexes combines a number of vertices from different cones, as illus-
trated in Figure 2.30. In this diagram traffic is represented by an arrow mapping
the simplex into a number; for example, the number of vehicles traversing a link,
the amount of grain grown on a piece of land, and so on.

Traffic,

g, asimplex ---- » wlo)

is a number

Hierarchical
soup

Figure 2.30 Schematic representation of a simple @-system.

As a simplification of the original definition (Johnson, 1982b), let us say that
a @-system consists of a hierarchical backcloth, B = (H,{\}), and traffic on the
hierarchical backcloth, T. Given a hierarchical scheme H of sets, any particular
class of relations {A{ between those sets defines a state of the backcloth. Given a
backcloth in a particular state, any particular values for a given set of traffic pat-
terns define a state of the traffic relative to the state of the backcloth. 4 state
of the @-system is a particular state of traffic relative to a particular state of
backcloth.

Hierarchical Aggregation of Traffic in §@-Systems

Manufacturing companies provide examples of complex systems which are
subjected to detailed analysis at many hierarchical levels. Figure 2.31 shows a
simple company with two factories and a head office. In Figure 2.32 one of the fac-
tories is described by the structure of its workshops, stores, and so on. In turn, a
workshop is described by the structure of the detailed manufacturing backcloth,
the part of the system where particular things are actually made. Figure 2.31 sug-
gests just a few of the many types of traffic that exist on this backcloth, traffic
that is explicitly known in most well-run companies.
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expenditure

$e
<The company> - [ncome $i
N profits $p

Profits (<The company>>) = Income(<The company>) — Expenditure (< The company>)

(a)

material consume
sumed q' tonnes

Bristol /— expenditure se’

anm————
factory ~— wages $w'
\ overheads $o’
London material unit cost $rig’ +q)
head
office .
material consumed g tonnes
/ expenditure $
— wages ¢
Manchester — g $w
factory \ overheads - $0

"+ 80" +$[¢' Xrig' +q)]

Expenditure (<Bristo! factory>) Sw
Sw +$o0 +$lg Xriqg' +q)]

Expenditure (<Manchester factory>)

{b)

Figure 2.31 Two relatively highly aggregate descriptions of a company, (a) more highly
so than (b).

Without laboring the point, Figure 2.31(b) shows that some traffic must refer
to more than one vertex of a polyhedron. It is clear that the unit cost of material
to each factory depends on the quantities required by both factories, since in this
kind of system unit costs usually decrease with quantity. Also, unit costs and quan-
tities are usually step functions with discontinuous changes in price — even simple
systems are unlikely to be linear, or even continuous, in their traffic.

Figure 2.32 shows how the company can be described in increasing detail
down to the level of the machines used and specific articles manufactured.
Although academics tend to dislike such a detailed level of description, it is
interesting to note that those responsible for complex systems, such as the
management of a company, do, indeed, have long lists of the parts used, do know
precisely who is employed and how much they are paid, do know how many
machines are owned and where they are, and so on. It is clear that without this
information the company would be unmanageable.
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MANCHESTER
FACTORY

Value of stock
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overheads $o
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Mill 2 Lathe 1 maintenance cost Sw
S— operator costs  $m
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Figure 2.32 Two relatively disaggregate descriptions of parts of a company, (b) more so
than (a).

This hierarchical view of complex systems highlights a number of aspects
that many analysts prefer to overlook. The most important of these is the nature
of the aggregation of traffic (Johnson, 1983c) and the implications of this for
predicting future system states. Figure 2.33 is an abstraction of a system at, say,
levels N + 5, N + 4, and N + 3, corresponding to a complicated organization. Let
us assume the backcloth for the analysis and consider the traffic. Between level
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N + 4 and level N + 5 the question of hierarchical apgregation may resolve itself
in terms of a function, with y = f(z, ,.....x, ). In real systems this function is
probably quite complicated, almost certainly piecewise discontinuous at many
places, possibly multiple-valued, depending on the system's history, and so on.
Note that the expression y =f(z,, 5 ...,x,) almost certainly does not mean
y = filxy) + falzz) + - +f,(x,) except for the simplest systems, and that
f{z4, z5...,x,) is a function of the whole polyhedron.

Level N+ 5 ° » ¥  Numbers

- X
A\ I
\ 2
Level N + 4 | X3 Numbers
> X4
, o XS
/

A\ X
\/ 6
h} 7 A
Level N + 3

i) >
/ AY -
\ .

: Numbers
] q
/ .

Figure 2.33 How does traffic aggregate relative to the backcloth?

Descending the hierarchy from level N + 4 to level N + 3 the backcloth
itself is more complicated — the N + 4 vertices now become N + 3 polyhedra with
associated discontinuities between some of the polyhedra. Recall that traffic
behavior depends on the star structure of the backcloth in some systems: how are
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these more subtle properties of the traffic aggregated? As drawn in Figure 2.33
the variable x5 may depend on a combination of traffic functions defined on a
number of N + 3 level polyhedra. It is then likely that the aggregation is condi-
tional on both the value of the N + 3 traffic and its supporting star structure.

Finally, one can ask how the traffic on a complex hierarchical system
is sometimes required to sustain the system. In some cases the maintenance of
relations may consume money; for example, the backcloth that supports telecom-
munications traffic also consumes income traffic — to the extent that the least
expensive backcloth necessary to support the communication traffic is sought:
telephone, telex, electronic mail, dispatch rider, etc. In other cases income
traffic is invested in creating new backcloth structures — a new factory, a new
machine, a new employee, for example. The decision to make such investment
reflects an awareness of the managers at N + 5 that $p is, indeed, determined by
structure at lower levels in the system. Since complex systems are complex these
examples can only hint at the application of @-system theory to real cases. How-
ever, an important point remains to be made in criticism of the kind of analysis
frequently involved in the prediction of future system states of nations, interna-
tional groupings, or even the world.

Figure 2.34 shows some typical variables involved in the equation of unem-
ployment for Britain. Some analysts seek functional relationships between such
variables and provide predictions on this basis. Despite such predictions being
notoriously unreliable, there is little evidence of these analysts asking fundamen-
tal questions about the methods they use: indeed, some do not even admit that
they deliberately shut their eyes to the real system because it is too complicated.
Complex systems are undeniably complicated in the numbers of elements, rela-
tions, and functions they involve. This complexity involves the intimate relation-
ship between traffic and stars (at least); and that complex systems are invariably
hierarchical with complicated hierarchical relations on the backcloth and traffic.
Given this, a main argument in this chapter is that one will not understand com-
plex systems by ignoring everything but highly aggregate numerical relationships.

People employed

People unemployed
F.T. Index

BRITAIN numbers

Bankruptcies last month

\ .
& New businesses last month

Etc.

Mean income(<BRITAIN>) = f(People employed, . ..)

Figure 2.34 An adequate description of a complex system?
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An Appropriate Concept of Time for Describing
Change in Complex Systems

Time is implicit in our interest in systems, but too often an inappropriate
Newtonian concept of time is used. Consider the pendulum in Figure 2.35 which is
used to measure clock t{ime. Suppose an observer can detect the presence or
absence of the pendulum bob at point p, and counts aloud the number of times the
presence of the bob changes to the absence of the bob at p. When the pendulum
is swinging one would hear the observer saying “‘one, two, three,..."”, which can be
used to construct a sequence of now-moments: now-1 means the observer says
"one", now-2 means the observer says "two", and so on. This sequence of now-
moments §now-1, now-2, now-3, ...} is totally ordered and has the usual properties
of Newtonian time. Note that it is not the position of the bob which marks time, it
is the change in position; the stationary pendulum bob cannot be used to mark
time in this way.

/
\
\ /
AN /
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N s
\\ ”
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‘*-._—’ L
P P
(a) {b)

Figure 2.35 The pendulum used for measuring clock time: (a) moving and (b) stationary.

In physics the now-moments are mapped to numbers according to their
sequential occurrence and, by a further process of abstraction, it is assumed that
subtracting one of these numbers from another gives an appropriate measure of
duration. This view of clock time is supported by the observation that different
physical systems give consistent durations when compared. For example, pendulum
clocks, spring clocks, water clocks, candle clocks, quartz clocks, etc. all give
more-or-less coincident now-moments signifying the passing of, for example, an
hour. However, these clocks have to be calibrated against each other, there being
no absolute duration. Similarly, some clocks are internally more consistent than
others, which we interpret as being the ability to measure time more accurately.
However, it can be argued that clocks do not measure time, they define time rela-
tive to their now-moments. In classical physics, motion and change in motion are
used to observe (pendulum) clock time in the first place; then time is subsequently
used to define and observe motion as velocity, acceleration, etc. In other words,
motion is tautologically defined by motion, or time is tautologically defined by
time, in physical systems.

The now-moments of the pendulum clock are particularly simple, with only
two observable states; namely, the bob is at p, and the bob is not at p. Thus the
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now-moments of a physical system can only be observed as changes in state
of the system.

The discrepancy between physical time and social time is well known (e.g.,
Sorokin and Merton, 1937); time flies, time drags, and so on. This is sometimes
interpreted that the social system is in some way out of step with true (clock)
time. However, it is equally possible to say that clock time may not be appropriate
for measuring time in social systems. Certainly, social events do not appear to be
totally independent of clock time, since many human activities are defined in
terms of days, weeks, months, years, etc. On the other hand, historians measure
social time by social events such as wars, treaties, births, deaths, marriages,
inventions, and so on. Although they find it useful to associate such events with
dates in clock time, there is seldom the suggestion that the cycles of history can
be related to exact clock-time durations.

Social events are characterized by structure; they are made up of many
necessary parts which must be combined in the correct way for the event to have
happened. Events have the property that the whole is more than the sum of the
parts. For example, consider the event Workshop on Structure and Evolution of
Systems. Somewhat simplistically, suppose it is made up of the activities <travel
from home to Abisko>, <listen to papers>, <academic discussion>, <social discus-
sion>, <contemplate nature>, and <skiing>. The academic event is characterized
by <travel from home to Abisko, listen to papers, academic discussion>, presum-
ably to be experienced by all participants, with all parts necessary for the event
to have happened. However, most experience a richer event: <travel to Abisko,
listen to papers, academic discussion, social discussion, skiing> for the gregarious
sportsperson; <travel to Abisko, listen to papers, academic discussion, contem-
plate nature > for the introvert, and so on. For each of the participants, the parts
of the event form by themselves or with others (evolve?) until the event is recog-
nized to have happened. Some have a feeling that the event develops over a clock
time week, others may feel everything gels on the last day. In either case, it is
likely that the event of participating in the workshop marks in their memory when
May 1984 occurred, rather than vice-versa.

Atkin has described such processes as p-events, where the number p
reflects the number of parts of the event (Atkin, 1974, 1977, 1981). These p -
events reflect the observation that something has changed in the system. In just
the same way that changes in the physical system of the pendulum seem to be
appropriate for defining physical clock time, it does not seem unreasonable to let
changes in social systems define social time. In other words, it is suggested that
the time appropriate to a @-system is defined by changes in state of the @-
system. In a @-system the past can be defined to be all states of the system
which have been observed, excluding the state of the system as it is being
observed now in the present. The future can be defined to be all possible
states of the @-system and, of the many possible states in the future, only some
will be observed. A discussion of past, present, and future in logic can be found in
Prior (1967). If one accepts that a @-system can have a single state, s, at a given
now-moment (effectively a definition of now-moment), it is possible to produce a
kind of stochastic lattice (Figure 2.36) which corresponds to what Atkin (1879) has
called the NOW-horizon. Let a path through this lattice be called a @-system
trajectory through social time. In other words, a @-system trajectory is a set of

@-system states 251,.,.,8"' {, where s**! can follow s*.
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Figure 2.36 A stochastic lattice of @-system states.

It is possible to consider @-system trajectories as p-events which grow as
superevents of previous events [Figure 2.37(a)], where the @-system does not "for-
get” its past. However, there are many @-systems in which earlier p-events are
lost by accident or design [Figure 2.37(b)]; for example, the erection of scaffold-
ing in the construction of a building is an event which is subsequently removed as
a means to the event "the building is finished'. Thus, some system trajectories are
developments of events from events which have ceased to exist.

oo

Figure 2.37 The development of events from previous events (p-simplices are
represented by polygons): (a) p-events as superevents of previous events which still
exist; (b) the development of events from previous events which have ceased to exist
(events E,, E,, E'3. and E, cease to exist as E5 evolves).
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Figure 2.38 Changes in state determined by changes in traffic: (a) p-events as changes
in traffic (p-forces); (b) changes 07 can be predicted to arrive at ¢ at now-moment n
(changes are g-transmitted through the fronts F,,, Fy,....F, ).

In some cases, the trajectories are characterized by changes in the traffic
state without any change in the backcloth state (Figure 2.38). For example, the
backcloth to the pendulum does not change with counting the passing of now-
moments and their related intervals. The theory of g-transmission (Johnson,
1982a) examines the change of traffic values over a backcloth, the general idea
being that g-dimensional changes (g-forces) are transmitted down g¢-
connectivities. It transpires that simplicial complexes have a transmission front
structure which relates to the time it takes for changes to occur in the traffic.
Given a g-connectivity, one might ask when a g-force at one end is g-transmitted
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to the other. The answer can be given precisely as the number of transmission
fronts along the chain, which gives the tautological prediction that a g¢-force (a
change in g-dimensional traffic) arrives at a simplex precisely at the moment it
arrives [Figure 2.38(b)].

Time and Prediction in Complex Systems

Suppose every social §-system exists in a single state when observed at any
given clock time and that @-systems are not observed and recorded continuously
in clock time. The history of a social @-system is then composed of a series of
clock-time defined states, s®. In general, let the expression 6s = ste — ¢t
represent the change of state between clock times ¢4 and ¢,

The relationship between social and clock time can be schematically drawn as
in Figure 2.39, in which the polygons represent simplices that are associated with
change as events. Implicit in this picture is a large amount of omitted backcloth
that does not change with these events and, for simplicity, it is assumed the
events are not simultaneous. Thus, the transition from system state st1 to state
sta is schematically represented by a hexagon (5-simplex) changing to an octagon
(7-simplex), this change happening between clock times ¢, and {,. If it is now ¢,
all the past events can be ordered in retrospective clock time (it is assumed),

Moo

2
s /_w
N
‘ ,/
4 Iy lg

—» Past ——————p NoW ——p Future ——»

Figure 2.39 Mapping social time into clock time (Q-system events are represented as
polygons).
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but it is not always possible a priori to predict whether other events will occur
before or after each other in future clock time. Thus, we can know what the pos-
sible system states are, but we may be unable to reliably predict which will occur
first.

In his book Multidimensional Man, Atkin (1881) speculates on some very
interesting relationships between the dimensions of events and clock time and
uses the formula (Atkin, 1978, p 292)

p+1l|p +2 t +1
Y x
=1 Lt +1 2
as the time ratio of structural interval to Newtonian interval to derive the rela-
tionships below. Notice

+2
t+1

is the number of t-faces of a (p + 1)-simplex and the number of edges in each £-
face is

t+1
2

Atkin also assumes hierarchically unbound time-intervals of successive 8-events at
successive levels, with 24 h taken as a given fact. Although Atkin does not argue a
precise relationship between social time and clock time, his point that high-
hierarchical, high-dimensional social events take a relatively long clock time to
occur is very convincing; for example he gives relationships between human
events and clock time (Atkin 1881, p 196):

Quickest impression Breath Waking/sleeping Life
134 x107% s 3.4s 24h 70y

There is no doubt that many human activities relate closely to clock time and
the related physical events. Attempts to ignore clock time when traveling can
result in the social-psychic~physical disorder called jet lag; the period of gesta-
tion for humans is about nine calendar months; it takes three years of study to
obtain a bachelor’'s degree at some universities, and so on. Some of these
correspondences reflect biophysical properties which genuinely occur in clock
time and others are conventions which apparently depend on social considera-
tions.

POSTULATE 2.3 Prediction hypotheses:

(1) Some social events, for example birthdays, can be tautologically predicted in
clock time. These predictions are exact.

(2) Some social events, for example gestation and birth, can be predicted in
clock time (inexactly), because physical processes are involved.

(3) Some social events, for example football matches and television watching, can
be predicted in clock time because they have been planned to occur at
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specific clock times. These (exact) predictions may become incorrect for
other socially determined reasons and events.

(4) Some social events can be predicted in clock time on the basis of previous
observations; for example, taking an annual holiday. These predictions may
be inaccurate or incorrect.

(©) Some social events predictably must precede other events; for example, the
road must be built before people can drive along it.

(6) Some social events can be seen retrospectively as predictable from previous
events, but systematic collection of data about those previous events would
be impractical, for example: the car broke down; I walked home; it was fine; I
went the long way round; I heard a bird; I looked up; I tripped; I broke my
leg; I am not at work, ... the car breaking down caused me to be absent from
work.

(7) Some events can be tautologically predicted in social time; for example, when
I am good enough I will play in the first team; when I feel better I will get out
of bed.

(8) Some events seem chaotic with respect to clock time; for example, whether I
win or lose when playing dominoes.

This can be summarized as follows: there are (at least) two types of time: they are
measured by physical events (clock time) and social events (social time); these
events are determined by changes in the state of physical or social @-systems;
social time can be precisely associated with clock time for past and present
events; some social events can be precisely predicted in clock time; some social
events can be roughly predicted in clock time; and some social events are not
predictable in clock time beyond the possibility that they might happen.

The speculations which attempt to relate future states of @-systems to clock
time have one of the forms:

(1) The @-system will have the state s? at some unknown i, i > now.

() The @-system will have the states st and s?, and the former precedes the
latter in clock time.

(3) The @-system will have the state st after some t o In clock time, where
toin < 1.

(4) The @-system will have the state s before some t
Lax > -

max 10 clock time, where

If an event must occur before a system state s? occurs in clock time and
after a system state s? occurs in clock time, then [s", s’] is defined to be a @
system window for that event. If it is speculated that an event will occur before
a clock time ¢, and after a clock time £ ,,. then [t ., £ ..1 is defined to be a
clock-time window for that event. For example [the universe at your birth, the
universe at your death] is a @-system window for the event of you reading this
chapter. More speculatively, [1984 AD, 2084 AD] is a clock-time window for the
event of you telling me what you think of it.
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When planners and decision makers are attempting to locate social events in
clock time, it will probably be helpful if (as far as possible) they arrange their
goals (desired states of the @-system) into:

(1) Those with time window [now, £..].
(2) Those with time window [Z ;.. ¢ nax]-
(3) Those with time window [£_,,, ?].
(4) Those with time window [now, ?].

Here ¢, and ¢  exist in clock time. The first three of these relate goals to
clock time and the last states that the pgoals belong to the unknown clock-time
future including, for practical purposes, never happening.

In principle, the time windows for a set of goals can be superimposed on each
other, as illustrated in Figure 2.40. With any set of goals, the intersection of their
time windows is either empty or a subwindow in clock time. Let W be the set of all
subwindows that can be generated by the time windows for a set of goals G. Then
it is an interesting research question to ask: Does the structure of the relation
between a set of goals G and a set of time windows W have any (heuristic) value for
strategic planning in clock time? Certainly the complex K, (W ,A) shows how the
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Figure 2.40 Juxtaposition of time windows for future events, ¢, , where the time windows
are (a) [now, a0 )i (B) [Emyn. Epaxds (€) [Epyp.?]. and (d) [now, ?].
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Social events not known
a priori to be before or
after each other in clock time.

Before - —=  After

Figure 2.41 Quasi-ordered events in social time.

goals are related to each other through shared subwindows of clock time. Also, the
complex KW(G,)\‘l) shows how intervals of clock time are related to each other
through shared goals.

The subintervals not containing other subintervals can be ordered by clock-
time occurrence, w* occurring before w? *1. Let G! be the set of goals that can
occur in time window wt € W. Then the expression

n
11 6*.
t=1

the Cartesian product of the sets G*!, contains all those @-system trajectories
which begin with a goal that can occur in w?! and end with a goal that can occur in
w™, where wl, w?. ..., w™ have no subintervals. These trajectories could be writ-
ten (thl-Gtza-"--Gt’:, ), where G,{, € ¢7; that is, the @-system is steered toward the

goal G;’: via a set of desired system states which are, by definition, themselves

goals. Theoretically, decision makers could devise tactical sets of actions to
proceed from one goal to another in a -system trajectory.

However, those goals which will occur a long while into the clock-time future
may be possible in very many clock-time subwindows. Thus, the further ahead that
is planned, the more possible system states that have to be considered for tactical
planning. Clearly, tactical planning should not be attempted beyond the ability to
cope with the combinatorial possibilities.

Although events are totally ordered in historical clock time, there seems no
good reason to insist that they are necessarily totally ordered in the future. For
example, if two events share the same clock-time window, one does not know which
will occur first. Certainly, there is no suggestion that the events will necessarily
occur simultaneously. Thus, one can view future events as being quasi-ordered by
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their occurrence in future time (Figure 2.41). In turn, this means that the stochas-
tic lattice of Figure 2.36 must be revised; its vertical columns of system states are
implicitly alternatives for a single future time.

Suppose that decisions about a @§-system are made in a language which can
have a single state of the system as a vertex. Then the political part of making
decisions consists of O-dimensional traffic on this metastructure, and choosing
strategies (sets of system states) can be viewed as p-dimensional traffic on a stra-
tegy which is a system trajectory with (p + 1) states. Considered thus the stra-
tegies are connected through shared system states and the system states (includ-
ing the goals) are connected through shared strategies.

Speculation 2.1

The technical problem of deciding between strategies to achieve apreed goals
may be assisted by the heuristics:

(1) High-dimensional goals in the system state versus trajectory complex may be
more attainable (strategically superior) than low-dimensional goals in this
structure.

(2) Sets of highly connected strategies (@-system trajectories) in the trajectory
versus system state complex may be more attainable and more manageable
(strategically superior) than highly eccentric strategies.

(3) Large, high-dimensional stars will indicate significant commonality between
many strategies and goals.

Conclusion

In this chapter ! have directed a number of arguments at different readers.
To the uncommitted, I have presented a view of complex systems which I believe to
be along the correct lines, if not perfect. To those familiar with @-analysis, I have
presented the star structure as a generalization of g-connectivity, which I believe
is necessary, if not sufficient, for understanding complex systems. To statisticians
and economists I have presented here the argument that sometimes they may have
ignored important backcloth structure while concentrating on functional relation-
ships. To all I would say this: "heavier-than-air complex systems are possible” -
for those able to go beyond conventional methods of thinking.
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CHAPTER 3

Pictures as Complex Systems

Ulf Grenander

Introduction

When we try to process images — restore, analyze, or understand them — we
can approach the problem by viewing the image as a complex system of units, com-
bined by certain rules of regularity. The choice of units is by no means straight-
forward. Initially, it may appear that a natural choice would be the picture ele-
ments (pixels), say black and white, or gray scale, or color, etc. A closer scrutiny,
however, reveals this approach to be too superficial and that we must use more
intrinsic, more informative, units that lead to the construction of random
geometries, several instances of which we study herein.

In attempting to build regular structures (random geometries) suitable for
image analysis we use the concepts and techniques of the general theory of pat-
terns that has emerged in recent years. This is really mathematical engineer-
ing: to build logical structures just as the engineer builds mechanical, electronic,
or other physical structures. In so doing, we attempt to express our prior
knowledge of the world or microworld, for example, as seen by a digital camera, in
a precise mathematical form. It is reminiscent of what those in artificial intelli-
gence call knowledge engineering.

Once this has been achieved for a particular system, so that we have created
a picture ensemble together with a probability measure of it, we turn to the
analysis of the ensemble, and to the problems of deriving algorithms, based on the
regular structure used, for image analysis. Our knowledge of how to do this is far
from complete, but the last few years have witnessed a rapid development of
analytical results.

One circumstance that has contributed to the increased interest in applying
theoretical ideas of patterns to image processing is the recent advance in com-
puter architecture. Computers have not just become faster and cheaper — their
fundamental architecture is also changing from purely sequential von Neumann
machines to truly parallel ones. This fits exactly the mathematical properties of
the regular structures discussed above and makes possible hardware implementa-
tions of the algorithms we are deriving.
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It is not enough to prove optimality or other properties for our algorithms.
We must also demonstrate that they are computationally feasible, which is done by
systematic mathematical experiments on the computer. To date conventional
machines, a VAX, a timeshared IMM3081, and various microcomputers have been
used. These have restricted the size of the images that can be processed, but are
sufficient to establish feasibility and give an indication of what computing power is
required for larger images.

Before we examine how to implement the above in actual cases, let us first
relate what follows to the general theme of the book. We attempt to show why
pictures should be viewed as complex systems. Space does not allow more than an
outline of this approach, but it is sufficient to illustrate the main ideas. Neverthe-
less, the discussion may give the erroneous impression that it concerns only pic-
ture processing; this is not true. On the contrary, many other complex systems
are being analyzed in similar terms: for example, shape formation in embryology,
medical diagnostic patterns, and large software systems. All of these applications
of general pattern theory share one essential feature: the analysis employs as
units certain concepts — the generators — that need not be directly observ-
able.

It has sometimes been argued that scientific theories should only involve
observables. But this is wrong, as is obvious from even a cursory reading of the
history of science. Instead, one could state, as René Thom has, that such theories
typically use imaginary units — unobservable ones. When the theorist tries to
invent suitable units he or she strives for simplicity: thus the units should
interact as simply as possible. In the following, as well as for other complex sys-
tems, this is achieved in the sense that they interact locally, where locality is
expressed by the connections of the o graph discussed below. It is this graph
that determines the type of repularity that characterizes the complexity of the
model. Herein, the type is given by the random geometrics that are introduced.

Bear in mind that the examples given are intended as illustrations of a metho-
dology of general scope. For didactic reasons we concentrate on the main princi-
ples and do not present the computer programs that have been used to implement
them.

Basic Concepts in General Pattern Theory
The combinatory approach

The starting point of spectral analysis is Fourier’s theorem, which states
that the set of all functions can be generated by trigonometric functions. The
generators, g = A4 exp i(Mz + A,y + p), where the trigonometric functions are
written in complex form for convenience, span the set of all pictures that could
conceivably be of interest.

Fourier analysis is mentioned because it is an example of how complicated
phenomena can be described by combining simple units: the trigonometric func-
tions. We know that other systems of orthogonal functions can also be used to
build analytical methods, but we also know that only certain orthogonal systems
are natural. What system to use depends on what sort of pattern ensemble we have
at hand. The choice of generators, decisive for the success of the method of
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analysis that we arrive at, is difficult and requires both inventiveness and insight
into the pattern structure.

Suppose that we have selected a set, G, of generators. The generic-element
of G (the generator space) is denoted by g with suitable subscripts when
needed. To synthesize patterns we form combinations, ¢ = {g,.95,...,9,}. butit
requires a good deal of thought to understand how such a ¢ should be interpreted.
Therefore, let us return to the Fourier case for guidance. If

c ={4,expi(A\lz + Ny + 9y), dpexpi(Wz + Xy +¢,)....1,
we interpret this by saying that it represents the image with the series expansion
I(x,y) = A, exp -i.()%:c + )\%y + ¢,) +A2exp-i.()\§: + )\%y + )+

Hence, if we have two combinations,

¢ = (g1, 0p.)
¢ =(g91.95)

they represent the same image if functional identity holds between the two series;
that is

Yo, (x.y) =Yg (z) . (3.1)
1 1

Thus, we identify two combinations, ¢’ and c¢”, of generators if the identifi-
cation rule R in equation (3.1) holds, or, symbolically if ¢" R ¢” is true. We
encounter many other sorts of identification rules herein, usually not linear as
rule (3.1), but the important thing to remember is that one image I can be
analyzed in several combinations c. The image is what the observer can see,
while ¢ is an analysis or explanation of it.

So far, we have merely imitated Fourier analysis, but we now find a fundamen-
tal difference. In the Fourier case we are free to select the generators arbi-
trarily, but here we have to introduce restrictions between them. It is best to
explain this with some examples.

Example 3.1 Consider a linear spline, a piecewise linear function for which the
line segments have been joined continuously, as in Figure 3.1(a). The continuity
condition is the restriction mentioned above. Here, the line segments play the
role of generators and we can parameterize them, Figure 3.1(b), so that g is
represented as the four-vector (a,b,k.l), where (a,b) is the interval on which the
segment is defined and y =1 + kz is its equation.

To ensure continuity each generator emits two signals to its neighbors; one,
B,. to the left and the other, 8,, to the right. These signals, the bond values, are
two-vector, in this example. The left one, 8,, tells the left neighbor that the left
endpoint of the interval of definition is @ and that the corresponding ordinate is
L + ka. The bond value to the right says that the right endpoint is  and the
corresponding ordinate is [ + kb.

We now join generators as in Figure 3.1(c). At each juncture, where two bond
values f’ and B” meet, we require that a bond relation p hold, 8’ p 8”: in this
example p means simply EQUAL, so that
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(a)
g = la.b,k,2 B4 D—@—(] Ba
B = (a, +ka)
B, = (b,2+ kb)
{b)
(Do (oD
(c)

Figure 3.1 (a) A linear spline; (b) parameterized generators; and (c) linked generators.

pB <=>b'=a”andl' +k'b' =1"+k"a"
= (b1 + kb
ﬁ” = (a”, l” + kl'all

ﬁ,
ﬁl

Note that we have joined generators in a LINEAR chain; other topologies (or
connection types) are used later. Formally, we write a configuration,
c = 6(91, 9293 - .-, 9,). Where g, are the generators used from G, and o, the
connector or connection graph, states how they should be joined. If p holds for all
bond couples occurring in o, we say that the configuration is regular, and the set
C (o.p) of all regular configurations over p is the configuration space.

Quite often one image (here = function) can be represented by two or more
different regular configurations. In Figure 3.1(a). for example, if we split the
fourth interval (a,, b,) into two parts and let each subinterval support one line
segment, the image is then also represented by a five-generator configuration.
Hence an image corresponds to a set of R-identified regular configurations and
analysis consists of studying this correspondence.
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Example 3.2 Now let us examine how this appears in a two-dimensional (2-D) ver-
sion, Figure 3.2(a). Consider again linear splines, that is piecewise linear functions
(defined on the triangles), continuously joined to each other. For simplicity, we
assume that the triangle system is fixed to the regular one in the figure, although
this is not really necessary.

4
y
u u u
T T12 T3
2 2 2
T 12 T13
u u u
™21 T2 T2
2 9 2
T T2 T3
u u u
T3 T Tz
2 2 2
Ta Ta T3
x'
(a)
u u
922 avD 923
o § &

9%2 —(JvD 9%3

(b)

Figure 3.2 (a) Two-dimensional linear splines, defined on the triangles; (b) relationship
of generators.

We can parameterize the generators as

g =(T.a,b,c),

which means that the linear function is defined on the triangle T and has the
equation J = a + bx + cy. Since we have two types of triangles, upper and lower,
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the generator space splits into the union G = G! UGY. Each triangle borders on
12 others: T%,, for example, has the neighbors Téa, 7%, Tia, T, Tiz, 4. Th,
T%. Téz, %, Téa’ T3;. Two neighbors can share a side, S, or a vertex, V, as in
Figure 3.2(b), where g, shares a side with 9%, and a vertex with g%a. The bond
values in a bond couple for a side consist of two real numbers, one for the ordinate
at each endpoint of the side. If the bond couple corresponds to a vertex the bond
values need only consist of a single, real number for the single ordinate. As before
we let p stand for EQUAL:

B pB <> F=p".

In this example, the generators have an arity of 12 (number of bonds from
the generator). Also the connector o is a good deal more complicated than in
Example 3.1. Actually, one could simplify the construction, but we do not attempt
this here. We have not included any information about the location of a 7 in the

bond values as it is not necessary, since the triangulation was specified in advance
— with nonregular triangulation this would be needed.

Example 3.3 Let us turn to a rather different pattern ensemble. Suppose we
operate on the background space ZLZ, the discrete 2-D torus, and use a binary
background space {0, 1}, say O for white and 1 for black. We want to form
(discrete) horizontal lines, not extending over the whole rangex =0tox =L —1,
and not crowding each other vertically. This pattern is wholly artificial and not
particularly interesting in itself. It does illustrate, however, some important prin-
ciples in pattern synthesis and we return to it repeatedly.

How should we choose the generators? It is clear that we must let the 1-
generators send signals to the O-generators vertically: keep away! But not hor-
izontally, where we want contiguous segments of ones. What is required are aniso-
tropic generators sending out different bonds in different directions. So, we
choose four generators and use a four-neighbor topology (NJ = 4), enumerated j =
0, 1, 2, 3: the first, generator 0, sends ﬁj =0 in all directions [Figure 3.3(a)] and
plays the role of white or zero; generator 1 is shown in Figure 3.3(b) and plays the
role of the left endpoint of a line segment; generator 2 [Figure 3.3(c)] represents
an internal point of a line segment; and generator 3 [Figure 3.3(d)] represents a
right endpoint.

This is summarized in Table 3.1 (later usually referred to as the GE, for rea-
sons to be discussed), which contains the respective bond values. Now we decide
which bond couples, 8, B, are regular and introduce the bond relation p by the
truth value table (1 for true, O for false). Inspection of Table 3.2 together with
Figure 3.3 shows that only such patterns as we initially decided to synthesize are,

Table 3.1 Relationship between bond coordinates and generators.

Bond coordinate, 7

Generator O 1 2 3
o] 0 0 0 0
1 1 3 1 1
2 1 2 1 2
3 1 1 1 3
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indeed, regular. Figure 3.4(b) shows one regular configuration with G =0, 1, 2, 3,
represented by the symbols 0, [~, X —|, respectively.

Example 3.4 The regular structure defined in Example 3.3 generates patterns
consisting of (discrete) line segments, all horizontal. If, instead, we wanted verti-
cal line segments they could be obtained by rotating the generators through 90°.
If we require both horizontal and vertical line segments to give a new generator
space, G4, we can use both types of generators together, G' =G v G,.

(a) (b}

(c) (d)

Figure 3.3 (a) Generator 0; generator 1; generator 2; generator 3.

Table 3.2 Truth value table (1 = true; 0 = false).

gz o 1 2 3
0 1 1 0 0
1 1 0 0 0
2 0 0 1 1
3 0 0 1 0
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y=L—1 x=L—1y=L—-1

x=0 x=L-1
(a)

y=L—1 x—L—1y L—1

(b}

Figure 3.4 (a) Image produced by (b) configuration with G = {0, 1, 2,3} = {0 |- x —|}.

To make this general we introduce the concept of the bond structure group.
Consider a generator spae GO with all its generators of arity N/ (sometimes
denoted ) and with the bonds enumerated by bond coordinates j =0, 1, 2,...,
NJ - 1. The set J of NJ bonds is now subjected to permutations and we choose the
set of permutations so that it forms a group (BSG, the bond structure group), but
with no other general restriction.

For example, if N/ =-4 and we allow all rotations, then we can represent the
bond structure group as

where each row is a (cyclic) permutation of J = (0, 1, 2, 3).

We now extend the original generator space GO to the extended generator
space GFE produced as the set of all generators that can be obtained from GO as
the result of an arbitrary permutation. Returning to Example 3.4, we see that GE
consists of 16 elements (with duplication) and, in general
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IGE| = 60| x | BSG| .

Starting from a generator space G and a bond relation p we have formed the
configuration space C(R) of all regular configurations over a connecting graph o;
R = < p,o > In this chapter we concentrate on the case where o is fixed in
advance, but in other situations it is necessary to let it be variable, taking values
in some set I, the connection type, of possible connectors. We speak of the
regularity R as comprising the local regularity, p. and the global regularity, o
(or ).

It was mentioned earlier that the configuration is an abstraction used to syn-
thesize the images. An image is what an ideal observer can see, and we have
identified some configurations in terms of an identification rule R. An image is an
equivalence class

I ={clc € C(R), cR co} CCR) 3.2)

of all the configurations that are R-equivalent to a fixed prototype c, The set of
all such images forms the image algebra J. It is an algebra in the sense that
given two images, /, and /,, we may be able to combine them into a new one,
Iz = 0¢(I{,I;), where g, is some new connector. Note, however, that this is only
possible if K is not violated for the new /5. Therefore, the algebraic operation is
not always defined (similar to not being allowed to divide by zero for real
numbers). In Example 3.1, if we start from the two images /, and /; in Figure 3.5
and let the algebraic operation be the combination of 7, moved to the right, with
I, it is clear that local regularity holds for og(/y, I3). Indeed, the right bond value

5
/1
S L S B R R EE S A R e
0 5 10
5
/2
| A N B S R B S B St B o g
0 5 10
5
\'2/
lllrlllllll14—'L
0 5 10

Figure 3.5 Images used to illustrate Example 3.1.
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of I is 1 and the left bond value of 12 is also 1 so that p, meaning EQUAL, holds.
On the other hand, I, has a left bond value of 4 so that p is false and 64(/,,/3) is
not defined.

The image algebra J expresses the combinalory properties of images and
describes a rigid pattern (or pattern ensemble), while an I € J is a realization
of the pattern.

Metric pattern theory

If our patterns were perfectly regular the image algebra would be the
appropriate reference space for the ensuing pattern analysis. Unfortunately,
most real patterns are not that rigid — they exhibit much variability — which must
be taken into account in any realistic analysis. We do this by replacing the strict
dichotomy of regular and nonregular with a graded evaluation in which a probabil-
ity is attributed to each configuration. The purpose of metric pattern theory is
to introduce and analyze such probability measures, for both configurations and
images. This randomness is conceptually different from the observational noise
that deforms images — deformations are discussed later.

Consider, for a fixed connecator ¢, the configuration space

C(0) = {0(g1, 9z Ip) Vg4 EGJ . (3.3)

A given configurationc = 6(g4,....,94...., g5 ) is parameterized by:

(1) Generator coordinates enumerating sitesin g, 1 =1,2,...,n.
(2) Bond coordinates, 7 =1,2,...,v,.

Hence a bond couple in ¢ can be written as (k, k") with X = (i, 7)and &” = (1", 7).
In order that ¢ be regular we must have, as discussed in the previous section, the
proposition

(k,k'YEO
where the conjunction is taken over all bond couples appearing in o.

In order to relax condition (3.4), we replace p, defined on B x B (B = bond
value space), by a function 4 on B x B, taking as values nonnegative real numbers.
The values of 4, the acceptor function, need not be probabilities, but serve as
defining probabilities. In C(0) we then introduce the probability densities

PE) =2 el (A8 @), By @] 35)

In order to make p a legitimate probability density, with P[C(o)] = 1, we
must choose the normalizing constant 7 so that the sum of p(c) over all ¢ € C (o),
if C(0) is discrete, or the integral with respect to some fixed measure, if C(0) is a
continuum, is equal to one. Expression (3.5) is related to probability models stud-
ied intensively in statistical physics, where the constant Z is given the name par-
tition function. Note the similarity between equations (3.4) and (3.5). The first,
rigid regularity, is a special case of the second, relaxed regularity, if we make Z =
1, let A take only the values O and 1, and interpret these as truth values.
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It is convenient to write equation (3.5) in a slightly different form, mathemat-
ically equivalent, but easier to manipulate during the design of inference
machines, discussed later; namely,

-1 0 1/T
pr(c) Z 11_:[1 Qg;) (k,kr'l)eaAo [ﬂj (94): B3(g49] . (3.6)

Here @ is a density in the generator space G, Ao is a fixed acceptor function, and
T a positive parameter called the temperature of the pattern, in analogy with
statistical physics. If we write

Ay(B. B) =expay(B.8) .

where a , should be thought of as the affinities between bond values, we obtain

N
pe) =< I Q(gy)exp {L Y aglBs(g1). By (9'1.')]} (3.7
Z =1 T e,kheo

The role of @ is to give different emphasis to different generators. It is not
the same as the marginal distribution of all gs in the random configuration ¢, but
is useful for easy manipulation of the probability measure when we want to
increase or decrease the occurrence of a particular generator.

What happens when T -»07? Well, if ay(B.8") is positive, then (1/7)-
aq (B, 8”) becomes very large, and if it is negative, then (1/7) a, (8", ) becomes
very small. Hence a small T accentuates any difference in affinities between bond
values. Certain configurations, where the bond values fit well, have large proba-
bilities, and so all others are highly unlikely. Therefore, cold patterns will, with
high probability, become regular in the sense of the bond relation

Bpf’ <>ap(f.f) = max ay(By, B2) .

B1. P

The opposite case, T »+ =, renders the exponents in equation (3.7) close to
zero, which means that the generators in ¢ behave, almost, as an i.i.d. sample from
G with the marginal distribution equal to (actually proportional to) @. Hence hot
patterns are purely random and very chaotic. It is only in this special case that
@ represents the marginal distribution.

The probability density p in equation (3.7) on C induces a probability mea-
sure on J equal to the set of all, R-equivalence classes of C, so that an image 7/, or
a set of R-equivalent configurations 7 € J,/ € C, has the probability

PI)= 3 p) .

cel

For any fixed T, P in equation (3.7) represents a flexible pattern. It is a
relaxed form of the regularity described by an image algebra.

Example 3.5 First a simple example: suppose that G = {0, 1{ with B; (@) =g.and

that we use the trivial identification rule R = (0, 1), so that configuration here
means the same thing as image, and suppose the acceptor matrix is

1.4
A=|; 1|l=@ukl=01).

A typical image is given in Figure 3.6, and shows little geometric activity.
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Figure 3.6 Image typical of Example 3.5.

If we increase the size of the entry agy = a 19 = .1, the picture becomes more
chaotic; if we lower it the picture contains larger clumps of zeros or ones. This
can, of course, also be achieved by replacing A with

Ap =ta Tkl =0,13
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Example 3.8. If we use the generators in Example 3.6 with the acceptor matrix

|

and if we identify O with a blank and 1, 2, or 3 with a star we obtain, in one partic-

101 1.01 .01
1.00 01 .01
01 .01 1.00

A=

ular case, the configuration shown in Figure 3.7. Note that horizontal segments
such as 12223 are surrounded by zeros. This configuration corresponds to the

60 0000000O00O0O0CO0O0123001300000130130
30012230013 000000O0O0O00O0O0OO0CO0O0O0O0O00O001
01300001300130123000123000013000
00000O00O0O0O0O0OOO0OO0OOO0OOOOCOOO0O0O123000013
00000O0CO0O1301222301230000000012000
0000130000000 O0O0O0O0O0O00000130000000
13000000000013000000013001230000
001301223000000013013000000000O00
00000O0COOO0ODO0OOT123000000O0O0OO0O01300013
000123000013 00000000000O0O00O00O00O0O00O00O00O0
000DO00DO0O0O0DODO0OO0OO1122301222230000123290
0001222223013 00000000000012300¢00¢0
1 300000000300013013000000000013¢0

image in Figure 3.8.
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Figure 3.7 Configuration typical of Example 3.6.

If we change the temperature from 7 = 1 to 7 = 10 for the situation given by
Figures 3.7 and 3.8 we obtain the configuration in Figure 3.9. It is obvious how far

we are here from the local regularity p of Example 3.1. Ones occur together, the

right and left endpoints appear at the wrong end,

The

so chaos reigns.

corresponding image, Figure 3.10, is very hot; lines crowd each other (note, espe-

cially, the top) and little structure is visible. This case is used repeatedly in the

following as an illustrative example. The pattern itself is of no interest, but serves
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Figure 3.8 Image produced by the configuration of Figure 3.7.

a didactic purpose. We have not said anything about the method of pattern syn-
thesis used to give these pictures. It is far from easy and is discussed later.

Deformation of images

Equation (3.7) defines a probability measure P, which serves as a priocr in
the Bayesian approach. In addition to the randomness described by this prior we
need another source of randomness to deform the image, called D, a deformation
mechanism:

D:J +JP =asetof possible deformed images.

In linear inference the most common assumption is that D acts additively: the
only effect is to add random noise n to I, I? = | + n. This is called additive
noise deformation, and is a special case of contrast deformations. Another
contrast deformation is the symmetric binary noisy channel which works as
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Figure 3.9 Case of Figure 3.7, but with 7 = 10.

wik kdkkk ki

*
dhkdkhkkkhkkkdkdkdkhkhk dkkkddh ok

% i ok U i ik i ok ke

* ¥

*
* ke

%k dk deokodeode kb * ok dk

* * i e K
* &

* % e e

* i

*hkk hkk dhhkdkdk dkkkik

dhdd ok kded  doak

dkdk K

*

* ik kK

* ok
LR 28 4
%* *
ke e
% de i ke

*

*dokodk ok ok

L3

hhkhk ki dhkhkhkkhhkkkkkk

* kk
* Kk k&

* k

hk kkdk dkdkk

* ko

* ik

* ok

* K
Ak dk kk kA

*
* k

*

*
* hkk ok Kk

* x
* ik

dhddhk ki

* ok kk ok kK
hhkkk dhk dhkkk

*hk kK

* khkkk kK K*
* * dkdkkdk Kk kik
hhkhkhkh dkdkk ddkkkkk

* &
* W

* &k

*
* h ok k

*hk ok kK
* K

* ko

*
* kkk ok

%* *
hkk Kk

* ok ke * i % ke i
hhdd * k Khdkdkdd

* Ahhkkkkk
* Khkk

*

%k ok Kok

* ok ok ok ok * K dkk
Ahkdkhkhkhkhkhkdk dkd

* *

* ok ok ko

* i
*

* khkkhkk K

* ¥k ok

e de de ke ok

* ok
hAhkhkhkkhkikk

LR &

dhkddhkk * Kk

ke

* kK
* wkk

dhk Kk dhkk Kk

* ot de e e de o e e ik ok ke e ke

* & LE 5 S * Ak
*
d ot de ke koK ke ke e e

* ok kkk ok

*

*
ddkk  kk

ek

dk  dkkkk
hhkk hkkdhkdkkhkdk dkdkkkddk

LR & &4

* i
 w kK

*
* ok ok k

ke koo

* ok dedok

*
hAhkhkhkhhhhhkk & dkh

* ok

* ke i ek

* ke i ke dhkdkhhk ki * ¥
ddk  kkokkkkk kkhk * K

*

*

Adhdkdhkhkk Kk ok

*

Figure 3.10 Image produced by the configuration of Figure 3.9.
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follows. Let the pure image i =7(x,y) be a black and white picture so that
I(x,y) takes only two values, say O and 1. Then we define, for a fixed 7, that for
v =0or1,

1 —¢if I(x,y) =v

PP (x,y) =y|I]= {8 i Izoy) =1 - (3.8)

Note that the probabilities of the error 1 » 0 or the error O -+ 1 are the same (i.e.
symmetric).

Sometimes we have nonrandom deformations. An important case is blurring,
which acts on contrast patterns where the contrast values are in some linear
space, say, the real line, /(z, ¥) € R. Then the deformed image is the convolution

P,y =3 wellx -ty —-n . (3.9)
&n

Usually the range of summation is small compared to L. An example is

—L — it o<lelInl=n
Wen =R +1) .

0 else

a rectangular window, but it is more common to have less sharp windows: w
goes to zero smoothly as [£| and |7| become large. Another nonrandom D is the
mask deformation. If I(x,y) is defined for 0 < £, 7 <L then

1P =z, y)|@x.¥) €M} .

where M is a sebset of Z E Some of the observations have become hidden from the
observer.

Before we discuss inference machines, let us summarize how we introduce
regular structures:

Step 1 Choose a connector, g, which is a graph with sites where the generators
may reside. So far we have examined only very simple, regular connec-
tors, but we later show how several levels within o can be useful.

Step 2 Choose a generator space, G, with special attention given to the actual
meaning of the bond values — the signals exchanged by generators. This
is the crucial step, demanding inventiveness and intuition.

Step 3 Introduce the rigid regularity by a bond relation, p, corresponding to
the type of ideal patterns that we began with.

Step 4 Describe what the ideal observer is allowed to see by an identification
rule R. This is usually easy.

Step 5 Relax the regularity by replacing p with an acceptor function, as in
equation (3.7).

Step 6 Study the deformations caused by imperfections in instrumentation and
transmission.

We are now ready to study the process of pattern inference.
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Introducing Pattern Inference Machines

The starting point when constructing inference machines is the question:
How can we simulate probability measures of the form (3.7)? We want a systematic
method for generating a random sample of i.i.d. observations from C or J obeying
equation (3.5). In other words, we are attempting pattern synthesis.

There are two reasons why pattern synthesis plays a central role in our
approach. The first is obvious — we want to synthesize images to judge whether
the pattern model actually gives patterns of the type we want. The second, and
this is the more important, is that all our analyses and inferences will be based on
pattern synthesis. This claim, that analysis can be done by synthesis, may appear
paradoxical, but we shall show that it is true.

The Markov property

The probability measure P can be said to be regularity controlled, since it
is driven by the acceptor 4, which mimics the bond relation p that expresses the
rigid regularity. P is a very large family of measures, too large, and must be made

Figure 3.11 Configuration with
¢ =0(9091.929239495969798998 109 11)
¢’ ' =0'(gg.g9)
" =0"(90.91.929394959697910:911)
¢ =0 (949596979109 11)
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specific by choosing a particular 4, or a small family of A4s. But before this can be
done, we must first understand one fundamental property that all these Ps have in
common. For simplicity we assume that:

(1) The generator space G is finite, |G| =7 < .
(2) The acceptor function (acceptor matrix) 4 takes only positive values.

Both of these conditions can be relaxed.

Consider the configuration diagram in Figure 3.11. In the configuration ¢ we
select a subconfiguration, c¢’, and consider c¢ as the connection of ¢’ with the
remaining subconfiguration ¢ ”,

¢ =gg5(c’.c”) .
Let us calculate the conditional probability using the general equation (3.5),
P(c’andc”) . _P(c)
P(c’™) P(c')
The constant Z cancels since it appears in both numerator and denominator and
we obtain

P(c’|c”) =

(k. k)EO

[ 11 A[ﬁ,(gn.ﬁ,'(gi,)]]
P(c’lc”) =
» 1 A[ﬁ,(gn.ﬁ,,(gm]]

(k. k)EQG”

with the notation k& = (i,7), k" = (i’,7) for the generator and bond coordinates,
and where the summation extends over all generators in ¢’. However, a lot of fac-
tors occur in both the numerator and the denominator, and so can be canceled.
Indeed, all generators that are not connected with the subconfiguration ¢’ cancel
and we, therefore, obtain (with obviously abbreviated notation),

1 4

(k. k)ET

r o4

(k,k)YET"”

Pc'ley = [

where the new subconfiguration ¢ = c”(g,ll,giz,...) (see Figure 3.11) consists of

the outer boundary of c’’: the set of generators that are not contained in ¢’ but
border it. In summary, we have shown that

P(c’'lc) =P(c’

)

that is, the probability depends only upon the outer boundary c¢’’, not on all the
outer generators inc .

This is a Markov property, generalizing the idea of a Markov chain or Markov
process. We are, therefore, in a general sense dealing with Markov processes
(sometimes called Markov random fields) and our task is to invent methods of
inference in Markov processes (partially observable).
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Simulation for pattern synthesis

To provide a pattern synthesis for a given relaxed pattern P we need an
algorithm that generates a random configuration from the pattern P. No direct
method is known for doing this — we are forced to apply an indirect one, which is
based on the Markov property discussed in the previous section. Select a site iy
and consider the generator g1, there. Conditioned by the rest of the configura-

tion it has some probability distribution P-L,' Let us update ¢ by replacing 91,
with a random generator g,L’1 which has been generated from P-Ll' We discuss later
(p B81) exactly how to do this and only remark here that P.L1 depends only upon the
immediate neighbors of 91,

Now we select another site, i,, and replace 91, by some g.L'z simulated under
the probability law P.Lz. Proceeding in this way we obtain a sequence of configura-

tions, ¢4,¢5,€g,...,C4,..., Which can be thought of as an ordinary Markov chain in
time. The state space is C, probably of enormous cardinality, but finite under
assumption (1) of the previous section.

We have not specified how the sequence i, i,.... should be chosen and prefer
not to do so completely yet. Suffice it to say that each site i must be visited infin-
itely often during the sequence for the following reasoning to hold true. It is not
difficult for anyone familiar with Markov chains to see that the probability distri-
butions of ¢, converge to a unique equilibrium distribution. But the probability
distribution P in equation (3.5) is certainly in equilibrium: just recall how we
update ¢,. Hence the limiting distribution of ¢;, ¢ - =, is the P we want to simu-
late.

It should be pointed out that while the probability distributions will con-
verge, the configurations c, themselves will not. They will continue to vary dur-
ing the updating and will not settle down to a particular one. Let us extend this:
it is not necessary to update a single site at a time. The reasoning above remains
valid if, at time ¢, we update several sites at once, so long as no two of these sites
are neighbors. At time ¢ = 1 we can update all sites in S,, at ¢ =2 all sites in S,
and so on, where the S;, the sweep areas, are subsets of {1,2,..., n}.

And this is where recent advances in computer technology appear as if
preordained. If we have access to a parallel computer with many processors (pro-
cessing elements or PEs) working at the same time, we can apply each PE to updat-
ing each generator in a sweep area. Then we change from sweep area to sweep
area. If the sweep areas are large we can speed up the pattern synthesis
drastically.

Which sweep areas to use depends on the topology induced by the connector
o. For a square lattice with NJ = 4 neighbors two sweep areas are enough, one
consisting of the rings and the other of the crosses in Figure 3.12(a). If N/ = 8 we
need four sweep areas, as in Figure 3.12(b) and indicated by the four symbols used
therein. For a general ¢ the number of sweep areas required equals the chromatic
number of the graph; that is, the number of colors needed to color the graph so
that neighbors have different colors.

Sometimes we violate the condition that no two sites in a sweep area be
neighbors, which improves convergence but at the cost of increased computer
time for the individual updating, since the above rules do not apply and have to be
replaced by more complicated ones.
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Figure 3.12 Sweep areas for connectors with (a) N/ = 4 and (b) NJ = 8.

The choice of sweep areas, the sweep strategy, is not well understood at
present. Moreover, only scanty knowledge is available as to the number of itera-
tions (the relazation time) needed before the probability distributions converge
sufficiently to the equilibrium distribution. Many computer experiments have been
performed to study this and the conclusion is that warm images are easy to syn-
thesize; the convergence is fast. Cold images take longer to synthesize.

These empirical results have recently been supplemented by an analytical
one. A theorem, which we quote without proof and without complete specification,
states that the relaxation time

t 2(167/T ,

relax

where a and 7 are positive constants. It follows that as the temperature T drops
to zero, the relaxation time increases exponentially. This explains our empirical
findings and should serve as a warning when highly rigid patterns are encoun-
tered. The scheme described here is called stochastic relaxation.

Stochastic relaxation for pattern inference

To see how synthesis via stochastic relaxation is directly related to syn-
thesis, examine Figure 3.13. It shows a six-level configuration, viewed from the
side, so that, for example, level three actually has 16 generators but appears to
have only four. The connector is fairly simple; if it were not for the horizontal
connections in the level h = 2 it would be simply a tree. The two lowest levels
have a special significance. Consider two configurations ¢’ and ¢ with the con-
nector of Figure 3.13 and identify them, such that ¢’R ¢ ”, if and only if they coin-
cide at h =1, ¢; =c4 . This identification rule implies that the equivalence
class of R-equivalent configurations is determined by the first level, so we can sim-
ply say that the second level c, is the image.

In the computer experiment that produced Figure 3.13, the identification
rule R was induced by an equivalence relation R on the generator space (see also
Example 3.8). Hence, the acceptor function that appears in a bond couple
between g, at h =1 and g, at h =2 can be written
1if g, belongs to the equivalence class of g4

A(B1. B2 =

0 else
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Figure 3.13 Side view of a six-level configuration.

Here the 8s equal the gs; they are full information signals.

The lowest level, h = 0, plays the role of the deformed image, 12, which is
actually observed by the available instrumentation. In this example, a generator
gpat A =1 and a generator g, at 2 = 0 were related by the acceptor function

4By By ={ ~*HILTIz
£ else
In other words, D is a symmetric, binary noisy channel with error probability .

To summarize: level 0 is the deformed and observed image I level 1 is the
pure image / that we want to see, and the upper levels constitute the analysis or
generation of /. Whether we want it for its own sake or not, the analysis must be
included in the inference procedure.

The pattern inference procedure can now be run. The generators at h = 0O
should be fixed as the values observed in /P; the remaining levels can be given
arbitrary values (but one can do better than that if speed is of importance). We
then update all the sites (except for h = 0) in the total configuration using the
updating procedure described above, with some sweep strategy. After a number of
sweeps the probability distributions settle close to equilibrium. In this case, since
we fix IP, the marginal probability measure for I, h = 1, tends to equilibrate with
P according to equation (3.9)

P,(I|IPy »P(|IP),as t » = . (3.9)

This can be immediately used for pattern inference of the Bayesian type.
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We started with a prior for I and simulated the posterior on the right-hand
side of equation (3.9). But the Markov process in time is (asymptotically) station-
ary and ergodic so that we can estimate I by a procedure of averaging type.
The exact form of the procedure depends upon what optimality criterion we use. If
the Is are binary and we adopt Hamming distance as the optimality criterion,

d(l. 1) = # Wz, Y (x.y) # Iz, y)} .

so that we want to find a restored image I7'*, with E[d (/,/™*)] a minimum, we should
choose I'* using rule (3.10)

1i JYy)=t./2

M.y = { if fo(z.y)=ty/

0 else ! (3.10)

where we have run the inference process for the iterations ¢ =1,2,...,¢,, and
Fn{x.y) is the number of iterations for which we have observed a 1 at site (z, y)
in h = 1. On the other hand, if G =R and we want to minimize the expected L,
distance, we should choose the restoration procedure
1 0u
Mzoy) =7 ¥ cilzy) .
1t=1

Space does not allow us to discuss the refinements of such procedures. It
should be mentioned, though, that substantial increases in the process speed can
sometimes be obtained by variable temperature schemes, large sweep areas, and
careful initialization.

It is important to realize that these procedures do not simply guarantee con-
vergence. They are the best possible ones under the given conditions: the pat-
tern inference process exploits the available information optimality. We
have thus seen that, just as the process can synthesize patterns, it can also
analyze (infer) patterns. It realizes the maxim

PATTERN ANALYSIS = PATTERN SYNTHESIS.

Let us now look at other types of pattern analysis in addition to inference.
Suppose that the image has been masked from view (see the section on deformation
of images, p 75): only certain sites, (z,y) € M¢ can be observed (with or without
pattern deformation). We then initialize the process by fixing the values at these
sites to be the observed values, letting the rest be arbitrary. The process is run
for a number of sweeps, level 1 observed, and the above procedure used, which
results in optimal extrapolation from M® to all sites.

Suppose that D blurs the image by convolution, as discussed earlier, with
width 3. Then the three lowest levels of Figure 3.13 appear as in Figure 3.14 (the
upper levels are not shown as they are exactly as in Figure 3.13). Remember that
this is a side view; the object is really a set of planes. In Figure 3.14 the two
upper levels are connected by bonds that express a deterministic relation as in
equation (3.8). The two lower levels are connected by bonds that express stochas-
tic relations, for example, a binary noisy channel.

Once it is realized that, because of the locality of blurring operations, we
continue to obtain joint probabilities as before, it is clear that we can run the
pattern inference process again with the lowest level, h = 0, fixed in order to
restore the pure image at h = 2. In this way the picture is simultaneously
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Figure 3.14 Lowest three levels of Figure 3.13 when D blurs the image by convolution
with width 3.

Figure 3.15 Level h = 0 is the observed image and the generators at h = 3 are binary.

unblurred and cleaned of noise, as far as is possible given the information
contained in 2. Consider Figure 3.15 in which, again, h = 0 is the observed
image. Let the generators allowed at h = 3 be binary; that is, the only values are
on and off.

We observe IP, fix h = O to the values observed, run the inference process a
number, t,, of sweeps, and record how many times each of the generators at the
site 1 were on the maximum level, h = 3. If such a number is greater than t,/2 we
say that we have recognized object i in the picture, otherwise not. This means
that the inference process achieves optimal paitern recognition under the
given conditions.

Examples of inference processes

We illustrate the general procedure described above with two simple exam-
ples. The programs are not described herein.

First, we discuss the pattern synthesis that underlies the picture shown in
the section on metric pattern theory. In Example 3.5 we used a 2-D toroidal
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lattice of size L x L, and updated according to the scheme of rings and crosses, as
shown in Figure 3.2(a); we initialized this at random. After implementing the res-
toration by computer programs we ran the process to obtain optimal recognition.
An example is shown in Figure 3.16, where / is the pure image, 1P is the deformed
image observed by the viewer, and /* is the restored image. The results from run-
ning this pattern inference process speak for themselves.
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Figure 3.16 (a) Pure image (/), (b) deformed image observed by the viewer (]D), and (¢)
restored image (/*) for Example 3.5 (/ is as in Figure 3.8).
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Figure 3.17 (a) Pure image (/), (b) deformed image (]D), and (¢) restored image (/*) for
horizontal line segments and relaxed regularity.
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In our second example, in which we have horizontal line segments and relaxed
regularity, we developed similar computer programs. Figure 3.17(a) shows a syn-
thesized pure image, 3.17(b) the deformed image, and 3.17(c) the restored one. The
latter has recovered much of the lost structure and the error rate has been
approximately halved.

The patterns used so far as illustrative examples were synthesized from cer-
tain given generators and acceptor functions. We conclude the chapter by showing
a real pattern analyzed by S. Geman, D. Geman, and D. McClure (unpublished). The
image in Figure 3.18(a) was drastically deformed by additive noise, Figure 3.18(b).
The restoration algorithm produced the image shown in Figure 3.18(c).

(c)

Figure 3.18 (a) Blurred image (roadside); (b) degraded image due to additive noise; and
(¢) restored image including the line process (1000 iterations).

The successful application of general pattern theory to picture processing,
or to the analysis of other complex systems, requires a thorough examination
of the basic elements: the generators, the connector graph, and the acceptor
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functions. In addition, the corresponding soft- and hard-ware problems must be
solved, challenging tasks which have been accepted by a number of researchers.
The prospects look promising, but what is absolutely essential is collaboration
with other scientists who have knowlepe of particular subjects: biologists, physi-
cians, psychologists, linguists, and others.

The reader who wishes to learn more about this pattern theoretic research
should consult the author's series Leciures in Patiern Theory, 3 volumes,
Springer Verlag, 1976, 1978, 1981.



CHAPTER 4

A Survey of Replicator Equations

Karl Sigmund

Introduction

What are the units of natural selection? This question has aroused consider-
able debate in theoretical biology. Suggestions range from pieces of polynucleo-
tides. genes, or gene complexes to individuals, groups, or species. It could be,
however, that different answers are correct in different contexts, depending on
the scale on which selection acts most decisively. This is somewhat analogous to
physics, where the dominant force may be gravitational, electromagnetic, or
strong or weak interparticle attractions, depending on the problem.

It is therefore convenient to consider an abstract unit of natural selection in
theoretical investigations, which can be replaced by the appropriate real unit
(genes, individuals, or species) in specific circumstances. This abstract unit is
termed a replicator in Dawkins’ book The Extended Phenotype (Dawkins, 1982).
The term describes any entity which (&) can give rise to an unlimited (at least in
principle) sequence of copies and (b) occurs in variants whose properties may
influence the number of copies.

Biomathematical arguments support the usefulness of this concept. Indeed,
the remarkable similarity of dynamical systems describing the action of selection
in the most diverse fields lends weight to the notion of a common mechanism
underlying these different observations. The term replicator dynamics has been
applied to this mechanism (see Schuster and Sigmund, 1983). In the case of con-
tinuous time (generations blending into each other), the dynamics can be
described by an ordinary differential equation x = F(x) of the type

z, =z, [f;x)—-%, i=1..n “4.1)

while for discrete time (separate generations) the dynamics are given by a differ-
ence equation x -» 7'x with

F400
(Tx), = ::,L[ ";

L i=1l...n . 4.2)
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In both cases, the term ¢ is defined by

n
&(x) = 2 z, 1, (%) (4.3)
1=1
and ensures that the state x of the system remains on the unit simplex
n
S, =X=(xq...2,) €ER™: Yz, =1, z, 20 for all i} . 4.4)
1=1

The functions f,(X) describe the interaction of the different variants of the
underlying replicator and are specified by an appropriate biological model.

In particular, first-order interaction terms, that is linear functions
J1(X) = (AxX); defined by a matrix 4 = (a”), where

n
@ax,; = Yy ayz, , (4.9)
i=t

lead to dynamics which have been investigated independently in (i) population
genetics, (il) population ecology, (iii) the theory of prebiotic evolution of self-
replicating polymers, and (iv) sociobiological studies of evolutionarily stable traits
of animal behavior. Within these contexts, the dynamics describe the effects of
selection upon (i) allele frequencies in a gene pool, (ii) relative frequencies of
interacting species, (iii) concentrations of polynucleotides in a dialysis reactor,
and (iv) distributions of behavioral phenotypes in a given species.

After a brief summary of the biological background in the following section,
we present a survey of the mathematical aspects of continuous- and discrete-time
replicator equations. There are many interesting results, in particular for the
first-order case, due to the work of Akin, Hofbauer, Zeeman, and others. On pages
93-94 we are concerned with some general properties of replicator equations and
on pp 94-95 we discuss the existence and stability of equilibria and present some
theorems on time averages and exclusion properties. Results concerning the per-
manence of the biological components of the system are presented on pp 96-98.
Gradient systems for replicator equations are then described, followed by an
overview of the classification of low-dimensional phase portraits. Finally, we sum-
marize the relationships between game theory and first-order replicator equa-
tions.

Biological Motivation
Population genetics

Genes are the quintessential replicators. It is therefore quite appropriate
that the first systematic study of a class of replicator equations occurred in popu-
lation genetics: the classic work of Fisher, Haldane, and Wright on the effects of
natural selection upon the frequencies of alleles at a single locus of a diploid, ran-
domly mating population.

Briefly, if A,.....4,, denote the possible alleles and z,...,x,, their frequencies
within the adult population, then random fusion of gametes yields zygotes of
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genotype A,LAJ with frequency 2::1::1 for 1 # 7 and z,'z for ¢ = j. (This is the
Hardy—Weinberg law.) Let ay denote the fitness of genotype A,LAJ, which in this
context is the probability of its survival from zygote to adulthood. The genotypes
4;4 4 and A,Ai are identical (it does not matter which parent contributes which
allele) and hence Qyy = ayy. Since the heterozygous genotype A,LA_, (i # j) carries
one gene 4, while the homozygous genotype A, 4; carries two such genes, the fre-
quency (T'x), of allele 4, in the adult stage of the new generation is proportional
to

%| T Rayyzizy + 2ay,zf
img

and hence to z; (4X), . Thus

Ax),

(Tx), ==z, with a,; = ay, (4.6)

under the obvious assumption that ® (which can be interpreted as the average fit-
ness of the population) is not equal to zero.
The corresponding continuous-time selection equation

z, =z,[A®), — 8] with a; =a, 4.7

has been known since the 1930s. It is considerably easier to handle than its
discrete counterpart (4.6), but its derivation is less clear. It is usually obtained
under the assumption that the population is always in Hardy—Weinberg equili-
brium, an assumption which is not strictly valid in general (see Ewens, 1979).

Thus first-order replicator equations with symmetric matrices occur in popu-
lation genetics.

In the model considered here, selection acts through the different viabilities
of the genotypes. Differential fecundities (where the number of offspring depends
on the mating pair) lead to equations for the genotype frequencies which are not
of replicator type (see Pollak, 1979). Except in some special cases (e.g., multipli-
cative fecundity), these equations behave rather differently from (4.6) or (4.7)
(see Bomze et al., 1983). The effects of mutations and (for models with several
genetic loci) recombinations are also not described by replicator equations.

On the other hand, frequency-dependent fitness coefficients fall within the
general framework of replicator equations. Models for haploid organisms lead to
equations of the type

a

Tx); =z, [T] (4.8)

or
z, =z,(@, -9 . (4.9)

where x, is the frequency of chromosome GG; and a; denotes its fitness. Equations
of this type are almost trivial if the coefficients a, are constant. If they are fre-
quency dependent (e.g., if they are linear functions of z;), however, then
interesting replicator dynamics occur.
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Prebiotic evolution

Equations of type (4.8) were first studied (initially within the framework of
chemical kinetics) in an important series of papers by Eigen (1971) and Eigen and
Schuster (1979) on prebiotic evolution. In this context the z; are the concentra-
tions of self-replicating polynucleotides (RNA or DNA) in a well-stirred dialysis
reactor with a dilution flow $ regulated in such a way that the total concentration
z4, + -+ z, remains constant (without loss of generality we can set this concen-
tration equal to 1). In the absence of mutations this leads to continuous-time repli-
cator equations (generation effects do not play any part, even if the initial popula-
tion of molecules reproduces in some synchronized way).

Independent replication of the polymers leads to equations (4.8) with con-
stant reproduction rates a;. This implies (except in the case of kinetic degen-
eracy) that all but one of the molecular species vanishes, with the loss of the
corresponding encoded information. In their search for ways of preserving the ini-
tial amount of molecular information, Eigen and Schuster were led to study net-
works of catalytically interacting polynucleotides. Such interactions (and the
corresponding replication rates) are usually quite complicated, but nevertheless
some rather general results have been obtained. In addition, certain special cases
of linear catalytic (or inhibiting) interactions, yielding the first-order replicator
equations:

z, =z, (Layz; — ), i=1..n (4.10)

have been studied as approximations of more realistic chemical kinetics.

The hypercycle (a closed feedback loop in which each molecular species is
catalyzed by its predecessor) has attracted particular attention (see Schuster et
al., 1979, 1980; Hofbauer et al., 1980). Both the cooperation of the components
within a hypercycle and the strict competition between individual hypercycles
suggest that such networks may have been involved in some phases of early prebi-
otic evolution. The hypercycle equation is given by

z; =zylz, H, @ -8, i=1..n , (4.11)

where the indices are taken on modulo n and the functions H, (X) are strictly posi-
tive on S, . If the H,; are constants, k;. the above equation then reduces to a spe-
cial case of the first-order replicator equations:

z, =z (kg — D), k, >0 (4.12)

obtained if matrix 4 = (a”) in equations (4.10) is a permutation matrix:

0 0 --- 0 k
0 kg~ 0 O

0 0'.'kn_10
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Animal behavior

Taylor and Jonker (1878) were the first to introduce first-order replicator
equations into models of the evolution of animal behavior. This approach was
based on Maynard Smith's use of game theory in the study of animal conflicts
within a species, equating strategies with behavioral phenotypes and payoffs with
increments of individual fitness.

These investigations initially centered on the notion of evolutionary stability
(see Maynard Smith, 1974), which may be interpreted as game-theoretic equilibria
which are proof against the invasion of behavioral mutants. This static approach
assumed certain implicit dynamics which were soon made explicit in the form of
equations, once again of replicator type.

Let E,.....E, denote the behavioral phenotypes within a population, z,,...,z,
the frequencies with which they occur, and iy (1<1i,7 <n) the expected pay-
off for an E,-strategist in a contest against an E'j -strategist. Then, assuming ran-
dom encounters, we obtain (4 X), as the average payoff for an E;-strategist within
a population in state x, and

$=x4x=Yz,4x), (4.13)

as the mean payoff. In the case of asexual reproduction, the rate of increase
:bi / z; of phenotype E; is given by the difference (4 x); — x"4 x, which once again
yields (4.10) {or, in the discrete-time case,

@x), +C

T0 =2 g e

: (4.18)

where C is a positive constant].

The assumption of asexual reproduction at first seems rather unnatural. It
can be shown, however, that in many important examples the essential features of
the dynamical model are preserved in the more complicated case of sexual repro-
duction (see Maynard Smith, 1981; Hofbauer et al., 1982; Hines, 1980; Bomze et al.,
1983; Eshel, 1982). Rather than introducing some sort of Mendelian machinery
which, given the present state of knowledge of the genetic basis of behavior, is
bound to be highly speculative, it seems reasonable to adhere to the more robust
and manageable asexual model (see Schuster and Sigmund, 1984).

The corresponding replicator equations are examples of frequency-
dependent sexual or asexual selection equations. Many specific types of conflict
(e.g., the Hawk—-Dove—Bully—Retaliator game, the War of Attrition game, and the
Rock—Scissors—Paper game) have been examined within this framework (see Zee-
man, 1981; Bishop and Cannings, 1978; Schuster et al., 1981).

The game-dynamical aspects of the linear replicator equations (4.10) may be
expected to lead to applications in fields such as psychology and economics (see
Zeeman, 1981). A justification of viewing strategies as replicators is given by Daw-
kins (1982).
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Population ecology

Equations used to model ecological systems are commonly of the form
Yy T Yy f i @Wqelip) 1 =10, (4.15)

where y, are the densities of different populations interacting through competi-
tion, symbiosis, host—parasite, or predator—prey relationships. Such equations
“live" on R} and are usually not of replicator type. However, relative densities do
yield replicator equations. In particular, Hofbauer (1981a) has shown that the
classic (n —1)-species Lotka—Volterra equation

Yy =Yy(byy +Tbyyyy), i =11 (4.16)
is equivalent to the first-order replicator equation (4.10) on S, \ {x: z,, =0} with
ag; = by — byp,

v
z, =——, i=1,..n (4.17)

n
E Yy
j=1

and y,, =1. The barycentric transformation (4.17), together with a change in velo-
city, maps the orbits of equations (4.16) into the orbits of equations (4.10). Which
of these equations is more convenient will depend on the problem considered. Simi-
lar results hold for interactions of order higher than linear.

Sexually reproducing organisms are not replicators in the strict sense of the
term, but within ecological considerations and disregarding genotypes they may be
viewed as such.

General Properties

The term & in equation (4.3) guarantees that the continuous-time replicator
equations (4.10) "live” on S,,, since (3;z;) =0 on S,,. Thus, the simplex and all its
faces (which consist of subsimplices characterized by z; = 0 for all © in some non-
trivial subset I of {1....,mn}) are invariant. In particular, the corners e, are equili-
bria. The solutions of equations (4.1) in S,, are defined for all £ € R.

For the discrete-time replicator equation (4.2) to have any meaning, the term
$ must be nonvanishing on S,, . It always has the same sign and we assume that the
f1(X) are also of this sign, say positive. In this case the simplex and all of its
faces are once again invariant. If a continuous- or discrete-time replicator equa-
tion is restricted to a face of S,, the resulting equation is again of replicator type.

We say that two vector fields f and g on S,, are equivalent if there exists a
function ¢ : S,, - R such that f,(x) —¢;(X) =c(X) holdson S,, forall i. If t and g
are equivalent then the restrictions z'.L =zy[fy(® — ¥] and ii =z;[g4(@ — ¥]
coincide on S,,. In the same way, if there exists a function ¢ : S, +R* such that
f1(® = c(Dg,; (X) holds on S, for all i, then the difference equations x -+ I'x with
%), =z,f,(0® L and (Tx), =z,9,(®?* coincide on S,, .

In particular, we say that the n Xxn matrices 4 and B are equivalent if the
vector fields A x and BX are equivalent in the sense described above. This is the
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case if and only if there exist constants cy such that @y — b“ =cy for all i and
j. BEquivalent matrices lead to identical first-order replicator equations. Thus,
without loss of generality, we may consider only matrices with zeros in the diago-
nal, for example, or matrices whose first row vanishes.

Another useful property is the quotient rule

Zt
zy

.
= |25 @ = 15 (20] (4.18)
7

or, in the discrete case,

—_(Tx)t = z_" f_"' (4.19)
for z, > 0.

Losert and Akin (1983) have shown that the discrete-time first-order replica-
tor equation induces a diffeomorphism from S, into itself. This result is important
because it excludes the chaotic behavior caused by the noninjectivity of mappings
such as £ » ax (1 —z). However, the discrete case is still far less well-understood
than the continuous one and may behave quite differently.

Equilibria and Their Stability

The fixed points of equations (4.1) or (4.2) in the interior of S, are the
strictly positive solutions of

Ji{(®==f,® (4.20)
and
11+..,+1n:1 . (421)

If equation (4.20) holds, the common value is ®. Similarly, the equilibria in the inte-
rior of a face defined by z; =0 for some i € 1,...,n1 are the strictly positive
solutions of the analogous equations.

In particular, the inner equilibria of first-order replicator equations are the
strictly positive solutions of the linear equations (4.21) and

LAy Ty = Vo Ty =0 = Py Ty (4.22)

These solutions form a linear manifold. Generically, there is either one or no inte-
rior equilibrium. In fact, there is an open, dense subset of n X matrices such
that the corresponding replicator equations admit, at most, one fixed point in the
interior of S,, and in the interior of each face (Zeeman, 1980).

In many cases it is easy to perform a local analysis around a fixed point p by
computing the eigenvalues of its Jacobian. One such eigenvalue is $(p); this
corresponds to an eigenvector p which is not in the tangent space. Since we are
studying the restriction of equations (4.1) to S,,, this eigenvalue (or more pre-
cisely, one of its multiplicities) is irrelevant. Thus, for example, the relevant
eigenvalues of a corner e; are the n —1 values of @iy —Qyy (7 #1).

For the hypercycle (4.12) there is always a unique fixed point p in intS, ,
which is given by
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k2

Tk,

and the eigenvalues of the Jacobian at p are (up to a positive factor) the nth
roots of unity, except for 1 itself (see Schuster et al., 1980). It follows that pis
asymptotically stable for n <3 and unstable for n = 5. In fact, using Hzt as a
Ljapunov function, it can be shown that p is globally stable for n < 4. For n =5,
numerical computations show that a periodic attractor exists, although this has
not been proved rigorously.

Linearization around the inner equilibrium of equations (4.12) allows the use
of the Hopf bifurcation technique. Zeeman (1980) has shown that for n =3 such
bifurcations are degenerate and do not lead to periodic attractors. In fact, the
equivalence of equation (4.10) for n =3 with the two-dimensional Lotka—Volterra
equation (4.16) implies that it admits no isolated periodic orbit. For n =4, how-

ever, there exist nondegenerate Hopf bifurcations, the simplest of which is given
by

Py =

0O 1 —-u O ]
0 0 1 —-u
-4 0 0 1
1 -4 0 ©

which, for & =0, reduces to the hypercycle equation with globally stable interior
equilibrium (see Hofbauer et al., 1980). De Carvalho (1984) refined this by showing
that for small & >0, the periodic orbit is globally attracting in intS,,, except for
the stable manifold of the inner equilibrium.

If there is no fixed interior point, then there exists a ¢ € R® with Y¢c, =0
such that the function Hzf‘ (which is defined on intS,, ) increases along the orbits
of equation (4.10) (Akin, 1980; Hofbauer, 1981b). It follows from Ljapunov's
theorem that each orbit x(¢) in the interior of S,, has its o limit

(X ={y€S,:qt, » += with x(t,) > ¥}

contained in the boundary of S, . This implies that there are no periodic, or
recurrent, or even nonwandering points in intS,, if there is no fixed inner point.
However, this does not mean that lim, , .z, (t) =0 for some i. Akin and Hofbauer
(1982) give an example, with n = 4, where the « limit of every interior orbit is a
cycle consisting of the corners e, €,, e;, ¢, and the edges joining them. Con-
versely, if the orbit x(t) is periodic in intS,, or, more generally, has its w limit in
intS,, . then the time averages of this orbit

T
o1 ,
lim = /x, (t)dt, i =1,....n 4.23
An o m @ (4.23)
exist and correspond to an interior equilibrium of equations (4.10) (see Schuster
et al., 1980). It frequently happens that an interior equilibrium is unstable and
hence physically unattainable, but is nevertheless still empirically relevant as a
time average.
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Permanence

It is often very difficult to derive a full description of the attractors of
replicator equations. [Recall that strange attractors have been observed numeri-
cally (Arneodo et al., 1980), and that there is still no proof of the existence of a
unique limit cycle for the hypercycles (4.12) with n =35]. More modest results
may be obtained in such situations by considering only whether the attractors are
in the interior or on the boundary.

In particular, we say that the replicator equations (4.1) are permanent if
there is a compact set in intS,, which contains the @ limits of all orbits starting in
intS,, [or, equivalently, if there is a § > 0 such that lim; ., infz, (¢) = é for all 1,
whenever z, (0) >0 for all i]. Such systems are robust in a sense which is obvi-
ously of great practical importance in ecology, genetics, or chemical kinetics. On
the one hand, the state remains bounded at some distance from the boundary even
if it oscillates in some regular or irregular fashion: therefore a population (or com-
ponent) within this system cannot be wiped out by small fluctuations. On the
other hand, if the system starts on the boundary (i.e., with one or more com-
ponents missing), then mutations introducing these components (even if only in
tiny quantities) spread, with the result that the system is soon safely cushioned
away from the faces of the simplex.

We must make two remarks here. First, permanence is not a structurally
stable property (in the same way that the asymptotic stability of a fixed point is
not necessarily structurally stable). Second, a nonpermanent system does not
always lead to the exclusion of some components. Zeeman (1980) has shown that
there is a specific case of equation (4.10) which has an attractor on the boundary
and one in the interior. It can also happen that each interior orbit remains
bounded away from the faces, but by a threshold which depends on the orbit; for
permanence, the threshold must be uniform.

The most useful sufficient condition for permanence is the existence of a
function P defined on S,,, with P(x) > 0 for x € intS,, and P(x) =0 for x € bdS,,,
such that P = P¥, where V¥ is a continuous function with the property that, for all
X € bdS, . there is some ' >0 such that

T
1
7 { Y[x(t)dt >0 . (4.24)

We describe P as an average Ljapunov funciion. Near the boundary, P
increases on average, so that the orbits move away from the boundary (Hofbauer,
1981b).

It has been shown by Schuster et al. (1981) and by Hofbauer (1881b) that the
general hypercycle equations (4.11) have P(X) =z,z, 'z, as an average
Ljapunov function and are therefore permanent. This is of great importance in the
realistic design of catalytic hypercycles, whose dynamics are too complex to be
represented by equations (4.12).

Brouwer's fixed point theorem implies that a necessary condition for per-
manence is the existence of a fixed point in intS;, (Hutson and Vickers, 1983). For
permanent first-order replicator equations (4.10), such an equilibrium is neces-
sarily unique. Another very useful condition for the permanence of equations
(4.10) is that the trace of the Jacobian at this fixed point must be strictly nega-
tive (Amann and Hofbauer, 1984).
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Amann and Hofbauer obtained a remarkable characterization of permanence
for systems (4.10) with matrices 4 of the form

+ 0 - -+ =
+ 0 - - =

[ . P + 0

where + means that the corresponding element is strictly positive and — means
that it is negative or zero. The following conditions are equivalent for equations of
this type:

(1) The system is permanent.

() There is a unique inner equilibrium p and ®(p) is strictly positive.

(3) There is a vector z € R, with z; >0 for all 4, such that all compenents of
z4 are strictly positive.

(4) The matrix C obtained from A4 by setting Ci5 = Qyyq,4 (taking indices of
modulo n), that is, by moving the first row to the bottom, is such that its
determinant and all its principal minors are strictly positive.

n’

Note that —®(p) is just the trace of the Jacobian at p and that matrices such
as C, which have diagonal terms strictly positive and all other terms nonpositive,
play an important role in mathematical economics.

As a special case we find that the hypercycle equation (4.12) is always per-
manent. Another special case has been obtained by Zeeman (1980): the replicator
equation (4.10) with n =3 and 4 of the form

o + -l
-0 +
+ -0

is permanent if and only if det4 >0 (in this case the inner equilibrium is a global
attractor). In addition, Amann and Hofbauer (1984) have used the general theorem
to characterize permanence in special types of reaction networks, such as hyper-
cycles of autocatalysts:

T =z (@my by 4z, 4 — @) (4.25)
or superpositions of counter-rotating hypercycles:
Ty Sx(@ 4Ty g+ 04T, — D) (4.26)

with (a;.b; >0). Hofbauer (1981b) has also proved that inhomogeneous hyper-
cycles

z, =z, +a,zy 4 — ) (4.27)



98 K Sigmund

with a; >0, are permanent if they have an interior equilibrium. This was done

—1
using I—Iz: ' as an average Ljapunov function. More generally, Hofbauer conjec-
tures that equation (4.10) is permanent if and only if for some p with p; >0, the

function Hzf ! is an average Ljapunov function or, equivalently, if and only if for
such a p the inequality p"AX > X:‘AX holds for all fixed points X in bdS,, . This was
proved by Amann (1984) for the case n = 4.

It can be shown that a necessary condition for the permanence of first-order
replicator equations with a; 4= 0 is that an irreducible graph is obtained on draw-
ing an arrow from j to i wherever ay > 0; that is, that any two vertices can be
joined by an oriented graph (see Sigmund and Schuster, 1984). It would be
interesting to know if such a graph is necessarily Hamiltonian; that is, contains a
closed oriented path visiting each vertex exactly once. [This has been shown by
Amann (1984) for the case n <4 and a;; = 0.]

An interesting class of examples is provided by models describing the com-
petition between several hypercycles. If these hypercycles are disjoint then the
equation is of the form

£y =z (kyTpgy — 9 . (4.28)

where 7 is a permutation of indices containing several cycles. Such systems are
not irreducible and hence not permanent. If the cycles are all of length less than
4, then one of them succeeds and the others vanish (see Schustet et al., 1880).
This is probably also true for larger cycles, but has not yet been proved.

Once again, the situation is much less clear in the case of discrete-time repli-
cator equations. A sufficient condition analogous to the existence of an average
Ljapunov function has been given by Hutson and Moran (1982). Hofbauer (1984)
has shown that the discrete hypercycle

kyz, 4 +C

T, = zt{ 3 (4.29)

(with k; > 0) is permanent if and only if C >0.

Gradient Systems of Replicator Type

The evolutionary dynamics defined by the gradients of certain potential
functions are of great interest because they correspond to popular notions of
adaptive genotypic or phenotypic landscapes and yield biological models with
extremum principles of a type familiar in theoretical physics. The action of selec-
tion in such situations drives the state uphill along the path of steepest ascent.

Gradients depend on metrics. Shahshahani (1979) provided a geometric
framework for population dynamics by using a Riemann metric instead of the more
usual Euclidean metric on S,,. Replicator equations which are gradients with
respect to this metric are of considerable interest (see Akin, 1979).

Shahshahani defines the inner product of two vectors x and y in the tangent
space Y;Sn (where p € intS,,)) in the following way:

1
<XYy>, =),—=x,Y
P Zpt i1



A Survey of Replicator Equations 99

This introduces a notion of orthogonality which depends on p and a definition of
distance which differs from the Euclidean distance by attaching more weight to
changes occurring near the boundary of S,. If V is a differentiable function
defined in a neighborhood of p, then the Shahshahani gradient GradV(p) is
defined by

<GradV(p),y >, = DV(P)(Y) (4.30)

forally € TpS , where DV(p) is the derivative of V at p. The more usual Euclidean
gradient gradV(p) is defined by

gradV(p)-y = DV(pXy) . (4.31)

Using the fact that y € TpSn if and only if y €R,, satisfies Z'y,,' =0, it can be
shown that the replicator equation (4.1) is a Shahshahani gradient of V if and only
if fis equivalent to gradV, in the sense outlined on pp 93-94.

The case where V is a homogeneous function of degree s is of particular
interest, since this implies that #(x) = sV(x), from Euler's theorem. The average
fitness $ then grows at the largest possible rate and the orbits are orthogonal (in
the Shahshahani sense) to the constant level sets of .

In particular, if we have

V(®) =Ya;x, (4.32)

then the Shahshahani gradients are z,(a; — $), that is, equations (4.8). If, how-
ever, we have

V) = %Za” z,T; (4.33)
i

where a, = 2y, then the Shahshahani gradients are the selection equations (4.7).
The corresponding extremum principles, which give conditions for the average fit-
ness ¢ to increase at the largest possible rate, have been stated by Kiippers
(1979) and Kimura (1858), respectively. However, they did not specify the
appropriate metric. The fact that ¢ increases along the orbits of equations (4.7) is
Fisher's Fundamental Theorem of Natural Selection.

An immediate consequence of Fisher's theorem is that the orbits of equations
(4.7) converge to the set of equilibria. In addition, each orbit converges to some
equilibrium. This has been proved by Akin and Hofbauer (1982), who once again
used a Ljapunov function of type H:cf . Analogous results also hold for discrete-
time selection equations, but are considerably harder to establish - they have
been proved by an der Heiden (1975) for the case n =3 and by Losert and Akin
(1983) for the general case. It would be interesting to know whether this conver-
gence holds whenever fis the Euclidean gradient of a homogeneous function.

First-order replicator equations (4.10) are Shahshahani gradients if and only
if

@y tay tag, = By g, tay (4.34)

kolds for all indices %, 7, and k (Sigmund, 1984). This is the case if and only if the
matrix 4 is equivalent (in the sense described on pp 93—-94) to a symmetric matrix,
or equivalently, if and only if there are constants ¢; such that
@;; —ay; =Cy —C; holds forall 4 and j.
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Equations of the type
z, =z40g,(zy) — 8 (4.35)

are obviously Shahshahani gradients. If the functions g, are monotonically
decreasing, they model competition between replicators which inhibit their own
growth but are otherwise independent. In this case it can be shown that there
exists a unique global attractor. More precisely, we can assume without loss of
generality that g,(0)=g,(0)=-'-=2g, (@0) >0, in which case there exists a
number K and a p € 5,, such that

91®) =" T gm®,) =K (4.36)
D1 >0,...0p >0, Dpmyg =0,...pp =0 , (4.37)

where m is the largest integer j with 94 (0) > K. The point p is the limit, as ¢
approaches +w, of all orbits x(¢) for which z,(0) >0, i =1,...,m. A variant of this
model shows that if the total concentration 211, is kept at a constant value ¢ (not
necessarily equal to 1) by replacing ¢ by ®/c, then the number of species that
can coexist increases with increasing ¢ (see Hofbauer et al., 1981). The special
cases

1

_— 4.38
c; + dtzt ( )

gi(z;) =a; —byz; and gy(z;) =

have been studied by Epstein (1979).

Classification

Except in low-dimensional cases, there is little hope of obtaining a complete
classification of first-order replicator equations (4.10) up to topological
equivalence. Two such equations are said to be topologically equivalent if there
exists a homeomorphism from 5,, onto itself which maps the orbits of one equation
onto the orbits of the other equation in such a way that orientation is preserved.
Two n Xn matrices are described as R-equivalent if the corresponding replicator
equations are topologically equivalent.

Zeeman (1980) proposed a method for the classification of stable cases. By
analogy to the definition of structural stability, an n Xn matrix 4 is said to be
stable if its R-equivalence class is a neighborhood of 4. Thus, small perturbations
of A do not change the topological structure of the corresponding replicator equa-
tion. Zeeman conjectured that the stable matrices form an open dense set in the
space of n Xn matrices and are divided into a finite number of R-equivalence
classes for each n. He proved this for n =2 and 3, and classified all correspond-
ing stable replicator equations. (For n =2 and 3 there are 2 and 19 stable
classes, respectively, up to time reversal.)

A basic requirement for the classification of equation (4.10) for n =3 is that
there are no limit cycles. This is a consequence of the corresponding result for
two-dimensional Lotka—Volterra equations (see, e.g., Coppel, 1966) and of the
equivalence between such equations and first-order replicator equations
(Hofbauer, 1981a). Bomze (1983) extended Zeeman’s classification to cover
unstable cases, obtaining 102 types of phase portraits up to time reversal.

Little is known about stable matrices for higher dimensions, apart from the
fact that stability implies that all fixed points of equations (4.10) are hyperbolic
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(the real parts of the eigenvalues of their Jacobians do not vanish). This was
proved by de Carvalho (1984).

Recall that, without loss of generality, the diagonal of a matrix may be
assumed to contain only zeros. Let Z, denote the class of such matrices with
nonzero off-diagonal terms. Two matrices 4 and B in Z, are said to be sign
equivalent if the corresponding off-diagonal terms have the same sign and com-
binatorially equivalent if A can be made sign equivalent to B by permutating
the indices. Zeeman (1980) showed that 4 and B are combinatorially equivalent if
and only if the equations obtained by restricting the corresponding replicator
equations to the edges of S, are topologically equivalent. Within Z,, R-equivalence
classes are refinements of the combinatorial classes. There are 10 such combina-
torial classes for n =2 and 114 for n =3 up to sign reversal (Zeeman, 1980). De
Carvalho (1984) has studied 19 combinatorial classes without inner equilibria as a
first step towards a classification of R-stable matrices for m = 4. Another step in
this direction was taken by Amann (1984), who characterized all 4 X4 matrices
which lead to permanent replicator equations.

Another interesting (although highly degenerate) class of examples is pro-
vided by circulant matrices (a;; = a4 44 444 for all ¢ and j. counting indices on
modulo n). A partial analysis of this class is given in Hofbauer et al. (1980). It is
shown that the center of S, (i.e., the point m, where m; =1/n) is always an
equilibrium; it is not hard to compute the eigenvalues of its Jacobian. If m is a
sink, then mis a global attractor; if mis a source, then all orbits converge to the
boundary. Nondegenerate Hopf bifurcations occur for n = 4.

Connections with Game Theory

It has often been remarked that game theory is essentially static. However,
the replicator equations (4.10) and (4.14) offer dynamic models for normal form
games which are symmetric in the sense that both players have the same stra-
tegies and the same payoff matrix 4. In fact, the dynamic extension is already
implicit in the notion of an evolutionarily stable state (Maynard Smith, 1974, 1982),
which is a refinement of the concept of a Nash equilibrium.

A point p € S, is said to be evolutionarily stable if it satisfies the following
two conditions:

(1) Equilibrium condition:

pAp=xAp for all xX€S5, . (4.39)
() Stability condition:

if pAp=x4Ap for x # p, then pAxXx > xXA4AX . (4.40)

A game can have zero, one, or several evolutionarily stable points. As shown by
Selten (1985), the notion is not structurally stable: some matrices which yield evo-
lutionarily stable points can be perturbed into matrices which do not. In this con-
text we also refer the reader to Bomze (1985) for a thorough analysis of the rela-
tion of evolutionary stability to the multitude of equilibrium concepts used in game
theory.
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It can be shown that the following four conditions are equivalent (see
Hofbauer et al., 1979; Zeeman, 1980):

(1) pis evolutionarily stable.
(2) Forall q €5, with q # p, we have

PA[(Q1 —e)p + £q] > QA[(1 —g)p + £q] (4.41)

provided that & > 0 is sufficiently small.
(3) Forall x # pin some neighborhood of p, we have

PAX>XAX . (4.42)

(4) The function Hzf" is a strict local Ljapunov function at p for the replicator

equations (4.10); that is, strictly increasing along all orbits in a neighborhood
of p.

Condition (2) is probably the most intuitively obvious in a biological context:
if the state of the population is p, then a fluctuation introducing a small subpopu-
lation in state q becomes extinct, since the p population fares better than the q
population against the mixture (1 — £)p + £q.

1t follows from the equivalence of (1) and (4) that any evolutionarily stable
point p is an asymptotically stable fixed point of equations (4.10). However, the
converse is not true. In particular, (3) implies that if p € intS,, is evolutionarily
stable, then it is an attractor for all orbits in intS,,, and hence the unique evolu-
tionarily stable point in S, ; however, Zeeman (1980) has shown that there exist
3 x3 games with two asymptotically stable fixed points, one in the interior and the
other on the boundary of S, .

Akin (1980) has shown that equations (4.10) have no fixed point in intsS,, if
and only if there exist two strategies x and y in S,, such that X dominates y in the
sense that

XAz >yAdz

for all z € intS, . This result is supplemented by precise statements concerning
the support of stratepies x and y and the form of global Ljapunov functions or
invariants of motion for equations (4.10).

The results obtained using the time averages (4.23) described on p 95 suggest
a computational method for finding equilibria (and hence solutions) of normal form
games. These results, which can easily be extended to asymmetric games (i.e.,
games in which the players have different payoff matrices), should be compared
with the classical methods (involving differential equations) for finding the solu-
tions of games (see, e.g., Luce and Raiffa, 1957, p. 438).

The discrete analogues of such methods involve iterative procedures. It turns
out, however, that discrete-time replicator equations of the type (4.14) do not
appear to lend themselves very well to game dynamics; in particular, an evolu-
tionarily stable point need not be asymptotically stable for equations (4.14) (see,
e.g., Schuster and Sigmund, 1984).

The behavior of equations (4.10) and (4.14) for zero-sum games (a, j=a ﬂ) is
analyzed in Akin and Losert (1984). If an interior equilibrium exists, then the con-
tinuous model (4.10) has an invariant of motion. The equilibrium is stable, but not
asymptotically stable, and all nonequilibrium orbits of model (4.10) in intS,, have &
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limits in intS,, but do not converge to an equilibrium. By contrast, if the discrete
time model (4.14) has an interior equilibrium then it is unstable and all nonequili-
brium orbits converge to the boundary. If there is no inner equilibrium, then all
orbits converge to the boundary in both discrete and continuous cases. In the
discrete case all possible attractors may be described using the notion of chain
recurrence.
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CHAPTER 5

Darwinian Evolution in Ecosystems:
A Survey of Some Ideas and Difficulties
Together with Some Possible Solutions

Nils Chr. Stenseth

Introduction

Ecology, the biological science of environment, has not produced a synthesis
of environment from its broad technical knowledge of influence of external
parameters on organisms. Before Darwin (1858), environment was considered
an organic whole. Everything in it made some contribution and has some
meaning with respect to everything else. Darwin subscribed to this view, but
his emphasis, and that of his followers, on the evolving organism struggling to
survive, suppressed the exploration of holistic aspects of the origin of
species that might have been developed. After Darwin, the organism came
into great focus, first as a comparative anatomical entity, then later with
physiological, cellular, molecular, behavioural, and genetic detail. In con-
trast, the organism's environment blurred through relative inattention into a
fuzzy generality. The result was two distinct things (dualism), organism and
environment, supplanting the original unified organism—environment whole
(synergism). (Patten, 1982).

In a way we may say that we have two types of

...ecologies today, reflecting the tension between dualism and synergism.
Population ecology, descended from Darwin, focuses on organism, and ecosys-
tem ecology, in the earlier holistic tradition, deals with environment. Melding
of these two subdisciplines depends on finding the means to investigate the
organism—environment complex... (Patten, 1982).

The Australian physicist and father of statistical mechanics, Ludwig E. Boltzmann,
is reported (see, e.g., Maynard Smith, 1982a) to have said that the nineteenth cen-
tury probably would be remembered as Darwin's Century. More than one hundred
years after the death of Charles Darwin, Boltzmann seems to be right: today we
remember Darwin as the person who convinced us that evolution is a fact and as
the person who presented a theory — consistent with the facts — which explained
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the mechanism of evolution, the process of natural selection. Thus, we mean by
Darwinism the theory that evolution has occurred as a result of natural selec-
tion. As the above quotations from Patten (1982) show, the influence of Darwin has
not been only positive — it lead to dualism by focusing on the individual organism
rather than the mutual interaction between the organism and the environment.
Nevertheless, Darwin has, of course, had a tremendously positive influence on
biology — he made us understand how organisms evolve in a fixed environmental
setting.

What Darwin (1859) did was to transform biology into a proper science with a
theoretical basis, without which the study of biology would be nothing more than
an enterprise of collecting curiosa — it would be stamp collecting. The idea of
natural selection has helped us to organize both our data and our thoughts as to
how the living world came to be like it is today. Darwin was also one of a series of
scientists who documented that our own species, Homo sapiens, was closely
related — phylogenetically — to other living creatures of the Earth; man no longer
had a unique position totally separate from all other organisms.

More than one hundred years after Darwin's death and after a long period of
heavy criticism and scrutiny, the basic ideas of Darwinism still hold. Much
remains, of course, to be done in the refinement of the Darwinian theory of evolu-
tion. For example, one serious difficulty is that we do not understand what really
generates ''selective pressure".

In this chapter I present the basic ideas in the Darwinian theory of evolu-
tion, concentrating on the general ideas rather than providing a detailed review of
the mathematical formulation and the empirical tests of this theory; good reviews
of both these aspects are already available (see, e.g., Roughgarden, 1979;
Futuyma, 1979). Indeed, I want to concentrate on those aspects of Darwinism
which, to my mind, are inappropriately treated in the literature. In the latter
part of the chapter I discuss some of the difficulties we are faced with when try-
ing to formulate a theory as to how selective pressure is generated. Specifically, I
outline some of the mathematical difficulties, but I also discuss some possible
mathematical fragments useful to a theory of evolution in ecosystems.

Evolution
Microevolution, macroevolution, and phylogenetics

The idea of a changing universe has now replaced the long unquestioned view
of a static world, identical in all essentials to the creator’s perfect creation.
Darwin more than anyone else extended to living things, and to the human species
itself, the notion that mutability, not stasis, is the natural order. He suggested
that material causes are a sufficient explanation not only for physical phenomena,
as Descartes and Newton already had shown, but also for biological phenomena,
with all their seeming evidence of design and purpose: it was no longer necessary
to refer to the will of God or to the Aristotelian final causes. As Futuyma (1979)
points out,

...by coupling undirected, purposeless variation to the blind, uncaring pro-
cess of natural selection, Darwin made theological or spiritual explanations
of the life processes superfluous. Together with Marx's materialistic theory
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of history and society and Freud's attribution of human behaviour to influ-
ences over which we have little control, Darwin hewed the final planks of the
platform of mechanism and materialism.

Evolution, the process of changing biological structures over time, is commonly
divided into two (partly overlapping) types: micro- and macro-evolution. By
microevolution we mean the patterns of change that occur within a species and by
macroevolution we usually mean evolution above the species level; herein, I use
macroevolution to refer to the processes of speciation and species extinction.

Darwin held that both micro- and macro-evolution could be understood as
resulting from the same process. Hence, current Darwinists hold that macroevolu-
tion may be seen as the sum of microevolutionary changes. About this presumption
there has recently been much debate and disagreement; this I return to later.

Phylogenetics is the discipline that attempts to reconstruct the genealogical
relationships of living and extinct organisms; from such studies phylogenetic trees
are constructed. These phylogenetic trees are, by definition, assumed to indicate
the evolutionary pathways that have been followed during the history of life. Phy-
logeny, then, represents the evolution of a race or a genetically related group of
organisms (such as a genus, a family, or an order). Examples of such phylogenetic
trees are given in Figure 5.1, and these show what seems to be a trend, at least
initially, of increasing numbers of species (or other taxonomic categories) with the
age of the group. Similarly, a closer inspection of such phylogenetic trees often
suggests a trend toward greater complexity or toward, for example, larger size
(e.g., Simpson, 1953; Gould, 1981): I return to this later.

Some observations

In 1973 Van Valen reported the results of a thorough analysis of rates of
extinction at the species, genus, and family level. On the basis of his observations,
he concluded that for several groups of ecologically related organisms each had a
constant, age-independent probability of becoming extinct (see Figure 5.2). This
pattern has since become known as '"The Law of Constant Extinction”. There has
been much debate over its empirical validity (e.g., Maynard Smith, 1975, 1976a;
Hallam, 1976; Van Valen, 1978, 1977; Stenseth, 1979). The present concensus is,
however, that the pattern of constant age-independent extinction appears true
for many groups of organisms.

When analyzing rates of evolution (i.e., how fast phenotypic characters
change) we observe that in some cases evolution proceeds at a fairly constant but
slow rate, whereas in other cases evolution proceeds at an erratic, nonconstant
rate (Eldredge and Gould, 1972; Gould and Eldredge, 1977; Stanley, 1979; Schopf,
1982; Schopf and Hoffman, 1983; Gould, 1983). These are facts — not speculations
— and have given rise to the idea of distinguishing between a gradualistic and a
punctualistic pattern of evolution (see Figure 5.3). This idea has, however, pro-
duced much confusion (e.g., Stebbins and Ayala, 1981); what are, for example, fast
and slow evolution? The distinction between a gradualistic and a punctualistic pat-
tern of evolution has fostered a serious controversy over mechanisms in evolution
(e.g., Gould, 1980; Williamson, 1981a; Charlesworth et al., 1982). This controversy
is a real one since the punctualistic view explicitly implies (Williamson, 1981b) a
notion of constancy and nonewvolution over extensive periods of time.
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Figure 5.1 (a) The first phylogenetic tree of life, published by Ernst Haeckel (1866).
The modern arrangement is quite different to the structure shown here.

We must also account for the observation that suggests some sort of conver-
gent evolution of — or in — ecosystems of similar physical condition (e.g., Pianka,
1978; Orians and Paine, 1983). It is hard to imagine how this can be explained on
the basis of the current Darwinian theory of evolution. I return to this later.
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Figure 5.1 (b) Phylogenetic chart of living organisms, based upon the concept of five
kingdoms. Three major grades of advancement are recognized: prokaryote, unicellular
eukaryote, and multicellular. Adaptive radiation has occurred at each level. At the
prokaryote level, two phyla are recognized, bacteria and blue—green algae. At the uni-
cellular eukaryote level, extensive radiation has led to the formation of many different
classes and orders, but no distinctive phyla. From some of these classes, several phylo-
genetically distinct groups of multicellular organisms have arisen, only five of which
have advanced to the grade that includes tissue differentiation and elaboration of a dis-
tinctive form at the visible or macroorganism level. Three of these are basically photo-
synthetic: red algae, brown algae, and the green algal (archegoniate) seed plant line.
Because they resemble each other in being autotrophic (with progressive expansion of
surface area) and, in the case of most aquatic forms, have similar reproductive pro-
pagules, these three groups are placed in the plant kingdom. One line, the fungi, consists
of heterotrophic organisms that absorb rather than ingest food, and thus share with
plants an expansion of surface and a sessile mode of life, The third line includes the mul-
ticellular animals of Metazoa, which are heterotrophic ingestors, most of which remain
compact in bodily form and develop internal rather than external membranes of absorp-
tion (based on Whittaker, 1969, and redrawn from Dobzhansky et al., 1977).
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Figure 5.1 (¢) Generalized phylogeny of lobe-finned fish and amphibians. Devonian
lobe-fins are classed in three groups:

(1) Dipnoans, represented today by lungfishes.

(2) Coelacanths, represented today by the living fossil Latimeria, from deep water in
the western Indian Ocean.

(3) Rhipidistians, extinct as fish although all land vertebrates are among their des-
cendants. The tetrapods developed from primitive rhipidistians through such early
amphibians as the ichthyostegods, radiating into disparate groups including large,
extinct amphibians, familiar living amphibians, and primitive reptiles (after Col-
bert, 1969).
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Figure 5.2 Taxonomic survival curves demonstrating a fairly constant and age-
independent rate of extinction (see Van Valen, 1973; Stenseth, 1879). (a) Unicellular di-
noflagellate cysts; only extinct species (after Van Valen, 1973). (b) Rodent genera —
both living and extinct groups are included (after Van Valen, 1973).
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Figure 5.3 Diagrams of speciation under punctuated equilibria and gradualism. The
vertical axis is geological time (a few tens of millions of years). The horizontal axis de-
picts morphologic and genetic divergence which, for punctuated equilibria, is believed
to be focused at speciation events, with long periods of intervening stasis (species B
would be a living fossil). For gradualism, morphologic and genetic divergence is believed
to be a more or less continuous process through time. Hence species durations are in-
ferred to be shorter under gradualism than under punctuated equilibria (after Schopf,

1982).
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Darwinism
The core

Assume, as Darwin did, that populations consist of individuals which:

(1) On average, produce more offspring than is needed to replace them upon
their death.

(2) Have offspring which resemble their parents more than they resemble ran-
domly chosen individuals in the population.

(3) Vary in heritable traits influencing reproduction and survival (i.e., fitness).

We may refer to these three properties as reproduction, inheritance (or con-
stancy), and variation.

Intuition then suggests that, in an ecosystem with limited resources, those
individuals which produce more offspring that survive until the age of reproduc-
tion are favored; other individuals will not be able to establish themselves in a
population of individuals producing as many offspring as possible that survive as
well as they can. It was this process that Darwin called natural selection.
Mathematical models have been developed (see any modern evolution text, e.g.,
Roughgarden, 1979) to demonstrate that the above intuitive argument is logically
correct. Hence, we do not today consider natural selection to be a hypothesis; it
is now considered a logical consequence of the assumed properties of life. Hence,
we need not test the idea of natural selection. What needs to be tested, by analyz-
ing real-life data, is the assumed organization of life, as well as the patterns we
deduce from the evolutionary models (for a cogent discussion of this issue, see
Maynard Smith, 1978a). | give a particular example (the lemmings) later in this
chapter.

Since only living things, by assumption, can evolve, we may define life by
entities that have the three properties listed above: reproduction, inheritance,
and variation. This is, within the Darwinian theory of evolution, the logical defini-
tion of life.

The form, life cycle, and so on, of all currently living species are, according
to Darwinian theory, assumed molded by this process of natural selection; that is,
currently existing organisms are assumed to have evolved from previously existing
organisms through the process of natural selection. As pointed out above, Darwin
suggested two very different ideas in his Origin: the phenomenon of evolution and
the mechanism of natural selection — the latter was original, the former was not.
By neo-Darwinism, we mean the theory of evolution that occurs as a result of
natural selection, but add a theory of inheritance (i.e., Gregor Mendel's contribu-
tion) and a theory of how genes spread in a population (i.e., population genetics as
formulated by R.A. Fisher, J.B.S. Haldane, and S. Wright; for a review, see e.g.,
Futuyma, 1979; Roughgarden, 197S).

Notice that selection may occur at several levels of organization: the unit of
selection may be the gene, the chromosome, the individual, the population, the
community, etc. Analysis of a variety of mathematical models demonstrates, how-
ever, that selection at levels higher than the individual is far less efficient than
standard Darwinian — or individual - selection (e.g., Maynard Smith, 1976a).
Selection at lower levels may be of great importance; much work needs to be done,
however, before we can understand how these various levels of selection are
integrated (see, in this connection, Sigmund, 1985).
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As already suggested, the strength and direction of the selection pressure is
determined by the environment in which the evolutionary process occurs. Hence,
selection of various types of individuals does take place within the framework of
the ecosystem (composed of all coexisting living organisms and the physical tex-
tures). I specify this later in the chapter.

Fitness

Consider first an asexually reproducing organism. Assume that each indivi-
dual gives rise to B offspring per unit time which maturate within one unit time,
that each of these survives a unit time with the probability s,, and that the adults
survive a unit time with probability s,. Then, the natural definition of individual
fitness, A, is

A=Bs, +s, (5.1)
so that
Ny o1 = AN, (5.2)

where N, is the density of the population at time £. Thus defined, A is the net
rate of population growth and therefore represents a formalization of Darwin's
first premise [premise (1) above].

Natural selection, in the case of an asexual population, operates so as to
select those strategies (defined by B, s,, and s,) which maximize A. This is, in
fact, a simple logical consequence of how populations grow in an otherwise stable
environment [both biologically and abiotically (or physically)]. It is common to
attach the label 'best fit" to those individual strategies that are thus selected;
these individuals are those best adapted to the environment in which they are
currently living.

A necessary condition for a population to exist over some length of time is
that its density either is stable over time or fluctuates within some limited
bounds; so, on average, we must require some sort of ecological stability. That is,
denoting the evolutionarily optimal strategy as Ap,,, we must require that
Apax = 1. (As is apparent, I have in this mathematical definition tacitly disre-
garded the possibility of a stable limit-cycle of ecological density; I presume, how-
ever, that everything |l say below can be extended to such cases — but some
theoretical work is, of course, needed.)

According to the adaptationist program (see, e.g., Calow, 1983), most natural
populations are close to their adaptive peak most of the time. This assumption
dates back explicitly to Fisher (1930), and implicitly to Darwin (1859).

Further, it is important to realize that such a noninvadable population (see
Maynard Smith, 1982b; Stenseth, 1983a; Reed and Stenseth, 1984) does not need to
be homogeneous; indeed, it may be polymorphic — in which case the mathematical
models become more complicated. The fitness definition given in (5.1) must then be
extended to involve the average fitness, A, as

— n
A= Y p;(B;Sy; +Sa4) (5.3)
i1=1
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where p, is the relative frequency of each of the various coexisting strategies i,
where i =1,2,..., n (see, e.g., Stenseth, 1984a). Assuming that

Ny 1 = AN (5.4)
where N, is the total density at time £, natural selection maximizes X, but so that
Xmax = 1 (to comply with the constraints of ecological stability discussed above).
In this case both gene-frequency changes (i.e., changes in p,; for a general treat-
ment, see Roughgarden, 1979; see also Sigmund, 1985) and evolutionary changes
may occur (i.e., occurrence of new mutants; for a general treatment, see Reed and
Stenseth, 1884).

An equivalent formulation of natural selection may easily be given for sexu-
ally reproducing populations. Thus, let N, be the density vector of a monomorphic
population with different classes and sexes. Then, an ecological model for the
genetically monomorphic population with age and sex classes — analogous to model
(5.2) — would, after the system has reached its stationary state (with respect to
age distribution and sex ratio), be given by (see Stenseth, 1884b)

N, ., = AN, (5.5)
where A, a scalar, is analogous to that used in equation (5.2). That the A used in
equation (5.5) is a scalar follows from Sharpe and Lotka (1911), who demonstrated
that a population always returns to the same stationary age distribution ~ and, I
presume, the same sex ratio — if it is temporarily disturbed, as long as the pri-
mary sex ratio, the age-specific reproductive rates, and the survival rates remain
unchanged.

At the ecologically stable equilibrium (N¥), A(N*) =1. To study the process
of natural selection, we must extend model (5.5) to include ecological competition
between wildtype strategy and mutant strategy (see Reed and Stenseth, 1984). Let
N, be the density vector of the mutant strategy, then the extended model is

N; o1 = A (N, NN,

N,y =8 (N NN ©8
where A, (N;, O) is equivalent to A(N;) and A, (N;, O) is equal to the zero matrix.
Both A4 and A, are matrices that define sexual and competitive (as well as other
types of) interactions. These quantities therefore define the fitness of wildtype
and mutant strategies under the prevailing conditions. For a general and far more
thorough treatment of this kind, but with reference to differential equations, see
Reed and Stenseth (1984); a summary is given below (pp 124-127).

When establishing the expressions for A; and A,. the genetic structure of
the population and, for example, kin selection arguments (Hamilton, 1964a, b) can,
and should, be taken into consideration. Here it suffices to note that the ecologi-
cally and evolutionarily stable equilibrium will still be characterized by A = 1,
which means that the distribution of the various age and/or sex categories is con-
stant over time; in particular, this implies that both sexes have the same relative
fitness.

It is not necessary - nor, to my mind, always desirable — to formulate stan-
dard population genetic models for studying evolutionary processes or phenomena.
Ecological models of the kind defined by equations (5.5) and (5.8) are often more
desirable since they emphasize that, in order to understand natural selection, we
must understand the ecological interactions (both intra- and inter-specific)
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between coexisting individuals (see, e.g., Stenseth and Maynard Smith, 1984); ecol-
ogy is essential for understanding evolution. This formulation is not new: it dates
back to the pioneers of the field (e.g., Kostitzin, 1938). I return to the importance
of ecology later.

One feature of this presentation so far should be noted: I have taken an
organismic point of view (favored, e.g., by Kostitzin, 1838) rather than the
currently more popular genetic point of view (favored by, e.g., Fisher, 1930, and
Haldane, 1932). It is my belief that the genetic point of view too easily forgets the
individual organism — the only real and objective unit in natural systems - and
thus is partly responsible for the difficulties facing theoretical population genet-
ics today (see, e.g., Lewontin, 1974, 1979). To my mind, the ESS approach
developed by Maynard Smith in a series of contributions (see, e.g., Maynard Smith,
1982b) does, in effect, merge the two approaches.

Natural selection operates so as to produce a population with a strategy that
renders the equilibrium defined by N, = N, .4 = N*, and N = N; ,; = O asymp-
totically stable for any possible mutant strategy. It turns out that under a variety
of biolopically reasonable assumptions an asymptotically stable (N*,0) is
equivalent to maximizing A as defined by equation (5.1) (Charlesworth, 1980; Char-
nov, 1982; Reed and Stenseth, 1984). Specifically, the existence of sexual repro-
duction does not automatically invalidate this assertion. However, several biologi-
cal situations do not give equivalence between an asymptotically stable (N*, 0) and
maximization of A; one such case was discussed by Charnov (1982) and another by
Reed and Stenseth (1984). However, the formulations given by equations (5.1) and
(5.6) can handle a variety of biologically complicated and interesting situations.

It follows, though, that fitness is not always optimized in the strict sense of
the word; in fact, fitness is rather difficult to define in the case of a sexually
reproducing population. In both of the discussed cases, however, there is some
quantity — a scalar, vector, or matrix — which is being maximized through evolu-
tion by natural selection. As has been shown above, this quantity, which may be
called fitness, is well-defined mathematically and empirically.

Heredity and variation

Through observations on the breeding of cows, pigs, dogs, and so on, Darwin
came to understand much about inheritance and variation [i.e., premises (2) and
(3); see p 112] in living organisms. But he never really obtained a proper under-
standing of these features of life. One of his basic difficulties was that he had no
concept of a gene; that is, he had no concept of particulate inheritance. Nor had
he any thorough understanding of how new, inheritable varieties arose and spread
through a population.

It was the German biologist August Weismann who provided the basis for our
current understanding of these two basic features of life. Weismann is remem-
bered for his opposition to Lamarck’s premises of the inheritance of acquired
characters and for having developed the theory of germ plasma (see below). On
this basis, August Weismann may properly be called the greatest evolutionary biol-
ogist since Charles Darwin: in fact, owing to Weismann, natural selection is today
considered not merely one of many mechanisms that adapt organisms to their
environment — natural selection is considered the mechanism that brings about
adaptations (see, e.g., Maynard Smith, 1982a).



116 N. Chr. Stenseth

Weismann was always a strong supporter of Darwin and wrote that the Origin
of Species has excited "delight and enthusiasm in the minds of younger students”
(Weismann, 1893). Unlike Darwin, however, Weismann firmly opposed the idea of
inheritance of acquired characters. In fact, he put the matter to an empirical test
in a somewhat naively conceived experiment in which he cut off the tails of mice.
With painstaking thoroughness, he observed five generations of progeny from tail-
less parents, 901 mice in all. Needless to say (today), they all grew normal tails.

Weismann (1886, 1893) conceived the idea, arising from his observations of
the Hydrozoa, that the germ cells of animals contain “something essential for the
species, something which must be carefully preserved and passed on from one gen-
eration to another': the theory of germ plasma was born. Its essence was that all
living things contain a special heredity substance. The general idea is still
accepted as valid (e.g., Maynard Smith, 1983), since the overwhelming majority of
inherited differences between organisms are caused by differences between chro-
mosomal genes and not cytoplasmic inheritance. Weismann, however, lacked nearly
all the experimental genetic data that now exist; he filled in the details of his
theory with wide-ranging — but certainly useful — speculations that at times
became somewhat mystical.

Even at that time, when the writings of Gregor Mendel on genetics were lying
unnoticed, Weismann saw that, since the hereditary substances from two parents
mixed in the fertilized egg, there would be a progressive increase in the amount of
hereditary substances unless, at some stage, there was a compensating reduction.
He therefore predicted that there must be a form of nuclear division in which
each daughter nucleus receives only half the ancestral germ plasma contained in
the original nucleus. The cytological work of other investigators proved the
correctness of this prediction and enabled Weismann, together with the others, to
propose that the germ plasma was located in what were subsequently called the
chromosomes of the egg nucleus. Hence, instead of germ plasma one speaks today
of chromosomes, genes, and DNA.

The theory of germ plasma is the current basis for our understanding of how
new, genetically determined traits (or varieties) arise and how they are transmit-
ted to subsequent generations. Weismann assumed in his theory that any fertil-
ized epg al an early stage pives rise to two independent populations of cells within
the organism:

(1) The germ-line (or germ plasma) constituting the sex cells.
(2) The soma-line constituting the body.

Weismann hypothesized that genetic changes occurring in the germ-line are
independent of genetic changes occurring in the soma-line (at least in the sense
that acquired characters are not transferred to subsequent generations).
Essentially, the distinction between the germ-line and the soma-line
corresponds to the distinction between genotype and phenotiype (Johannsen,
1909; see also, e.g., Dobzhansky et al., 1977). The genotype of an organism is its
total assemblage of genes (i.e., its genome), whereas the phenotype is the
organism’s total assemblage of traits. The phenotype is the product of the
individual's genotype as well as its environment. The fitness — or some equivalent
measure — of an individual is a phenotypic property determined by both the
individual’'s intrinsic property and the properties of the environment it is living
in. Hence, natural selection operates on the phenotype. However, through this
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natural section acting on the phenotype, the average genotypic properties of the
population are changed over generations, in response to (selective) pressures gen-
erated by the environment: that is, there is an interplay between the individual's
intrinsic features and the features of the environment.

In Dawkins’ (1976, 1982) terminology, the phenotype — as interpreted in this
chapter — would be the survival machine or the replicator. Schuster and Sigmund
(1983) and Sigmund (1985) present some rather useful and powerful mathematical
results for the study of replicator dynamics in the context of evolution. They also
relate the theory of replicator dynamics to the theory of games as applied to evo-
lution (see, e.g., Maynard Smith, 1982b, 1984; see also Open Peer Commentaries
by Barlow et al., 1984).

Weismann's idea is illustrated in Figure 5.4(a). This view, first presented in
1886, corresponds directly to what we today call the Central Dogma of molecular
biology — "DNA - RNA - protein' (Crick, 1858, 1870, 1973; see also Dawkins, 1982;
Stenseth, 1885a), illustrated in Figure 5.4(b). As Crick once said, "Once informa-
tion has passed into proteins it cannot get out again".

(a)

(b)

Figure 5.4 The Weismannian view of inheritance (a) The Weismannian theory of the germ
plasma: the germ, G, is passed from one generation to another whereas each individual's
soma, S, extinguishes when the individual dies. The process resulting in the fully
developed organism from a fertilized egg is called development and is indicated by the
arrow from G to S. That there is no arrow from S to G signifies that inheritance is
Weismannian — and not Lamarckian (with inheritance of acquired characters). (b) The
Central Dogma of molecular biology states that information is transferred from DNA to
proteins (prot.) and not the other way (see text for a discussion).
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The opposite of Weismannian inheritance is lLamarckian inheritance (after
Lamarck, 18089) which allows acquired characters to be transmitted to subsequent
generations. Most acquired characters seem to be the result of injury, disease,
and old age. Therefore, a mechanism able to transmit such changes of the soma (or
the phenotype) back into the germ-line would commonly lower fitness of the
offspring. Maynard Smith (1983) suggested, in fact, that this is the functional
explanation of why inheritance is rarely Lamarckian. He then suggested that if

...an organism had some way of telling which of its acquired characteristics
were adaptive, a mechanism for transmitting them would be favoured. Of
course, this is precisely what happens with learning and cultural inheritance.

From the Weismannian point of view, it appears correct to call Darwinism a
theory of "chance and necessity"”, as Jacques Monod (1971) once did: it is a matter
of chance which new variant — or phenotype — arises. In particular, the
occurrences of these new variants are random events relative to those that are
needed by the organism in order to increase its phenotypic fitness as compared
with those of other, coexisting organisms. However, those genetic variants that
have (on average) greater fitness or are such that (on average) the population of
which they are part is noninvadable are necessarily favored and maintained by
natural selection. Random gene substitutions generate new phenotypic variation —
deterministic (or, at least, nonrandom) ecological interactions determine whether
these newly generated variants are “chosen' by natural selection or not.

Developmental Biology

If we are to understand evolution, we must remember that it is a process
which occurs in populations, not in individuals. Individual animals may dig,
swim, climb or gallop, and they do also develop, but they do not evolve. To
attempt an explanation of evolution in terms of the development of individuals
is to commit precisely that error of misplaced reductionism of which geneti-
cists are sometimes accused. (Maynard Smith, 1883).

Developmental biology is the scientific study of the processes which lead to the
formation of a new animal or plant from cells derived from one or more parent indi-
viduals. These are the processes that define the transition from G to S in Figure
5.4(a); these processes, by which a fertilized egg becomes a fully developed organ-
ism (i.e., the soma) we collectively call development or ontogeny. Development
and ontogeny are thus the processes by which a new generation of organisms is
produced from a parent generation of organisms.

In short: evolution produces phylogenies; development produces ontogenies;
ontogeny is the life history of an individual.

The concepts evolution and development have always been very closely
related; indeed, the two were synonymous until the 1840s (Bowler, 1975; Patter-
son, 1983). The change in meaning of evolution from development of the embryo to
transmutation of species was initiated by von Baer (1828). Just as Darwin first pro-
moted natural selection by analogy with artificial selection, so Haeckel (1866), who
coined the word phylogeny (see p 107), first promoted it by analogy with onto-
geny. Haeckel’s biogenetic law, that ontogeny recapitulates phylogeny, was also a
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restatement of a much older tradition, the ancient idea of recapitulation or pro-
gressive ascent of a ladder-like uniserial chain of being. But Haeckel clearly dif-
ferentiated his evolutionary version of recapitulation from the older, nonevolu-
tionary version, by pointing out that the ontogeny of the individual corresponds
to, or recapitulates, only a part of phylogeny. Maynard Smith (1983, pp 41-43, his
Figure 2) gives. a neat theoretical justification for why this is likely to be so.

Molecular and developmental biology show, without the slightest doubt, that
development is exceedingly complex. Unfortunately, we are largely ignorant of the
biochemical nature of events at the molecular level, the mechanisms by which they
occur, and especially the control processes that govern them. Development is, in
fact, one of the greatest mysteries in biology. There exists no theory of develop-
ment comparable with the theory of evolution. Some (e.g., Futuyma, 1979) claim
that we need to understand the complexity of development at the biochemical
level before we can understand the alterations of ontogeny which are the history
of evolution. Further, it is often claimed that if we obtain a better understanding
of development, we automatically obtain a better understanding of evolution (see,
e.g., discussions in Bonner, 1982).

After the publication of Darwin’'s Origin of Species, but before the general
acceptance of Weismann's view, problems of evolution and development were inex-
tricably bound together. However, one important consequence of Weismann's con-
cept of the separation of germ-line and soma-line was to render possible the
understanding of (population) genetics, and hence evolution, without having to
understand development. This was, at least in the short term, an immensely valu-
able contribution, because the problems of heredity proved to be solvable,
whereas those of development apparently were not so easily solvable. We do not
need to understand in detail how S (in Figure 5.4) developed from G as long as S is
genetically determined to some extent; the developmental process must be a map-
ping process. However, whether any particular S is fit or not — or how fit it is —
is determined by the prevailing ecological conditions. Hence, it is my view that
without a better understanding of ecology we cannot understand evolution. In fact,
I dare to claim that if we obtain a better understanding of ecology, we automati-
cally obtain a better understanding of evolution; but that I return to later.

Obviously, we will eventually require a more complete understanding of
development, but we also need new concepts before we can understand it. It is
comforting, meanwhile, that Weismann was right since we can progress towards
understanding the evolution of adaptations without understanding how the
relevant structures develop.

Properties such as morphology, demography, and behavior of fully developed
organisms, are, in a general way, the result of interactions between gene products
(i.e., proteins) in a particular environment. Thus, let g, be the ith gene of an
organism and let p 4 be the jth gene product (protein); in general, one gene may
give rise to several gene products; similarly, one gene product may also be the
result of several genes. Some gene products may, of course, also control the rate
of production of other gene products, as well as the rates of diffusion of these
products between cells. In general, we can write

H=d®..Pz...0,: F) .7

where M is the generalized morphology of the organism, £ denotes the environ-
ment of the organism, and
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Py =04(91. 92 I E) . (5.8)

Both d and p, () are, in general, nonlinear functions.

Long ago, Maynard Smith (1960) and Maynard Smith and Sondhi (1960) did
some interesting work on such models, based on the work of Turing (1952), which
were tested on the basis of experimental work on Drosophila (Maynard Smith and
Sondhi, 1961). [Later, several workers carried out similar analyses (e.g. Wolpert,
1969, 1983; Oster et al., 1980).] They found that standing waves easily resulted for
a hypothesized chemical compound produced by the gene products which could
diffuse from one cell to another (Figure 5.5): hence, some sort of prepattern was
assumed to be generated. The cells could then respond by developing, for exam-
ple, a bristle if the value rose above some threshold. In this example then, the
bristle configuration is denoted M whereas the gene products that produce the
prepattern are the ps. A particular example is provided by Sondhi (1962) for Dro-
sophtla subobscura, and shown in Figure 5.5(d).

Because of the nonlinearity of the functions for ¥ and p, small changes in g
and p may, in general, cause large as well as small changes in M. Hence, we cannot
conclude from the observation of a large change in M that this is caused by a large
change in (94,95,--.84,) Nor in (p,,P5..... 0, ). René Thom (1975), of course, said
this long ago. Many developmental biologists seem, however, not to have realized
this simple consequence of nonlinearity in functions. Instead, they talk about
developmental constraints; for a discussion, see Alberch (1980), Oster and Alberch
(1982), Lander (1982), and Bonner (1982). An illustration of this is given in Figures
5.5(b) and 5.5(c); in Figure 5.5(b) a fairly large change in the threshold value pro-
duces no change in M, whereas in Figure 5.5(c) a small change in the threshold
value produces a large change in M.

However, if evolution through natural selection brings about adaptation, we
would expect that organisms will normally be close to their adaptive peak. This
has, in fact, commonly been assumed valid since Fisher’s (1930) pioneering work in
population genetical theory and today forms one of the basic premises in the
adaptationist research program (e.g., Calow, 1983). Thus, greatly deviating forms
are, in general, characterized by lower fitness than the wildtype (or most common
and, presumably, most well-adapted phenotype). Figure 5.6 illustrates this point:
hopeful monsters or systemic mutations as envisaged by Goldschmidt (1940) — that
is, complex new adaptations arising without selection from a restructuring of the
genome - can be ruled out on probabilistic grounds; but they are not a priori
excluded as impossible*.

This is why evolutionary biologists are not — or rather have not been — so
concerned by large mutations (i.e. macromutations); recently there has, however,
been some discussion, and confusion, over the importance and commonness of such
macromutations. Questions of how often macromutations occur — and of how often
they are of major evolutionary importance — are ultimately empirical ones. The
most fruitful approach is a genetic analysis of related species which differ mor-
phologically. Such analysis does little to suggest that mutations of large effects
have been important in evolution (see, e.g., Charlesworth et al., 1982). Darwinists

*In fact, we know that single mutational events can and do give rise to large phenotypic
changes, as a visit to any genetic laboratory establishes. A rather exciting natural example of
a successful macromutation is the gastric brooding frog (Rheobatrachus; Tyler, 1983): inter-
mediate evolutionary steps seem {n this particular case inconcelvable.
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Figure 5.5 The idea of a field, or prepattern, generated by gene products diffusing from
one cell to another. (a) A hypothetical case where a standing wave of some gene product
is generated by the intrinsic dynamics of the system. The string of cells denoted 1
represents a hypothetical string before the developmental process has finished (which
in this case is assumed to generate bristles if the concentration of the gene product is
above a threshold value, T. (b) A case for which a relatively large mutational change in
the threshold concentration (from T to T’) has occurred. As can be seen, no phenotypic
change results. (¢) A case for which a relatively small mutational change in the thresh-
old concentration (from 7 to T'’) has occurred. As can be seen, a major phenotypic
change results. The phenotypes in (a) and (c¢) will have distinctly different patterning of
their bristles. See, for example, Maynard Smith (1983) and the text for further discus-
sion. (d) Sondhi’s model of the origin of a neomorghic (new) pattern. If the first peak of
the prepattern is between threshold levels T1 and Tz, it produces the wildtype pattern
of bristles and ocelli (I) in Drosophila subobscura. If the second peak exceeds thresh-
old T3, additional bristles are formed (II): bristle & is doubled, and new bristles (B) ar-
ise. These new bristles are unknown in normal Drosophilids, but have a counterpart in
Aulacigaster leucopeza (III), a member of a related family (after Sondhi, 1962, and Fu-
tuyma, 1879).
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Fitness (\)

Phenotypic character

Figure 5.6 A hypothetical fitness curve relating a certain fitness (A) to a certain
phenotypic character (¢ = M). The phenotype € is, in the current environment, the op-
timal (or best) one. The phenotype C is the average in the current populat.lon A small
deviation (due to a mutation) from this average one (from ¢ to either c4 or ¢) is as like-
ly to produce a slightly improved phenotype as to produce a slightly deteriorated
phenotype. A large mutation from ¢ to ¢, is, because the average phenotype is assumed
to be close to the optimal phenotype ¢ in the first place, likely to produce highly
deteriorated phenotypes (see text for further discussion).

also have another reason for paying most attention to mutations of small effects
(i.e. micromutations): even if a large mutation should produce an integrated whole
of reasonably high fitness, fine tuning by selection of mutants with small differ-
ences in phenotype is always required before an exact adaptation to the current
environment can be achieved.

Note, however, that I have not yet said anything about how fast evolution
proceeds over time. Until now I have only considered whether new variants, aris-
ing as a result of mutation, will differ much or little from their preceding parental
form. The rates of evolution I return to later in the chapter.

Ecological and Evolutionary Stability
What kind of theory do we need?

Maynard Smith (1969) once pointed out that what we need to obtain a better
understanding of the living world

..is first a theory of ecological permanence, and then a theory of evolution-
ary ecology. The former would tell us what must be the relationships between
the species composing an ecosystem if it is to be ‘permanent’, that is if all
species are to survive, either in a static equilibrium or in a limit cycle. In
such a theory, the effect of each species on its own reproduction and on that
of other species would be represented by a constant or constants. ..
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In evolutionary ecology these constants become variables, but with a relaxa-
tion time large compared to the ecological time scale. Each species would
evolve so as to maximize the fitness of its members. If so, a permanent system
might evolve to an impermanent one.

A new paradigm, essential for the study of evolutionary ecology, was introduced in
1972 with Maynard Smith’s concept of evolutionarily stable strategies, or ESS
(see also Maynard Smith, 1982b; Sigmund, 1985). As defined by Maynard Smith and
Price (1973, p 15) an ESS is "a strategy such that, if most of the members of a
population adopt it, there is no ‘mutant’ strategy that would give higher reproduc-
tive fitness". That is, an ESS population cannot, according to this definition, be
invaded by a mutant (small or large) phenotype. Only individual selection is
assumed to operate (e.g., Leén, 1976, pp 303-304; Maynard Smith, 1982b). As in
most models for studying evolutionary changes, the ESS concept requires a con-
stant environment or a long-term, consistently changing environment. Maynard
Smith (1982b) has recently reviewed many of the applications of the ESS concept.

Lawlor and Maynard Smith (1976) used this method to locate a joint ESS in a
system of competing species. An ESS was, according to these authors, found at a
value of the evolutionary variable (see below) such that the actual specific growth
rate is zero, and such that if we keep the equilibrium state fixed and vary only
the evolutionary variable, negative specific growth rates result for the evolving
population (Figure 5.7). That is, no mutant has a higher reproductive fitness when
it first arises. As pointed out by Schaffer (1977), the analysis performed by
Lawlor and Maynard Smith is identical to a method provided independently by
Allen (1976). Similar approaches were also described by Case and Casten (1979),
Case (1982), Case and Sidell (1983), Roughgarden et al. (1983), and Roughgarden
(1983Db).

rll

r=rlx(M*); M]

Figure 5.7 An interpretation of an ESS as found by, for example, Lawlor and Maynard
Smith (1976). r = (1/ xz) (dx / dt) as given in the main text; £ is the ecological equili-
brium value (found by solving dx /dt =0), and M is the morphology or phenotypic
character under evolution (see text and Reed and Stenseth, 1984, for further discus-
sion).

This particular method developed by Lawlor and Maynard Smith for finding an
ESS works well for the simplest cases where, for example, each evolving
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species is phenotypically monomorphic; see the section on fitness above (pp
113-115). However, this method is not generally applicable to more complex
models, for example, in which we want to distinguish between different age classes
or different genotypes of a species or when we want to consider models with two
sexes (e.g., Leén, 1976). Obviously, we need the ESS method discussed by Lawlor
and Maynard Smith to apply to such complex, but biologically very reasonable
examples as well. Even though Allen (1876) applied his method to a sexually repro-
ducing population (i.e., a polymorphic one), he treated several aspects rather
superficially. Hence, together with Jon Reed, I (Reed and Stenseth, 1984) have
extended the ESS method as originally presented by lLawlor and Maynard Smith
(1976) in order to handle such cases as well.

A theory of noninvadability of ecologically stable ecosystems

Let X = (X,,X,.....X,,) denote the density vector of an established population
on, for example, an island or continent; each element refers to suitably defined
groups of organisms in terms of, for example, the density of each species. Assume,
for X, =0, that the dynamic behavior of these populations is described by an eco-
logical model of the form

dxX/dt = f (X) 6.9)

characterized by a stable equilibrium at X = X By stable, here and in the follow-
ing, I mean asymptotically stable in the sense of Liapunov stability (e.g., Arnold,
1973); thus, I only consider a local form of ecological stability. As is well known, a
sufficient condition for such stability is that all eigenvalues at equilibrium have
negative real parts; if at least one of these eigenvalues has a positive real part,
the equilibrium is unstable. In the following, I regard this as a necessary condi-
tion for evaluating the stability of any particular community structure. This is
reasonable because if model (5.9) does not correspond to a community with locally
stable equilibria, the resulting (sometimes extensive) density variations of the
species in the community are likely to cause extinction of one or more species and
thereby change the entire structure of the system described (e.g., Maynard
Smith, 1974). I therefore tacitly exclude the possibility of stable limit-cycles.
Someone should, however, extend the following analysis to cases with limit cycles;
unfortunately, I am unable to do this myself.

To require ecological stability of the kind just described is, however, not suf-
ficient when studying evolutionary stability. This is because a new species may be
able to invade the community, even though it is Liapunov stable in an ecological
sense. Much empirical material demonstrates that invasion of new species into
existing communities is a common ecological phenomenon (e.g., Elton, 1858;
MacArthur and Wilson, 1967; Diamond, 1963; MacArthur, 1972). In addition new
species may arise as a result of sympatric speciation; new species that arise as a
result of allopatric speciation and then enter the community as new members are,
in the present context, equivalent to a true ecological invasion. Finally, new
phenotypes of the currently coexisting species may arise, either as a result of
mutation in sifw or as a result of immigration from neighboring populations.

From this it follows that we must extend the model given by equation (5.9) so
that it also includes potential invading species (or phenotypic mutant forms), or
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groups of species. Let Y = (¥,.Y,...., ¥,,) be the density vector of those forms try-
ing to invade the established community [given by model (5.9)]. Assuming, for
X, 20,Y, =0, an extended ecological model of the form

dX/dt = FX,Y)

dY/dt =¢(X. Y) (5.10)
where F(X,0) = f (X) and G¢(X,0) = O; that is, if there are no invaders, model
(5.10) reduces to (5.9).

] assume that the invaders are rare to begin with. In arguments relating to
microevolutionary changes, this seems to be a fairly reasonable assumption. Simi-
lar assumptions have previously been made by MacArthur (1972) and Roughgarden
(1974) when studying species packing; the limiting similarity theory (MacArthur
and Levins, 1967; MacArthur, 1972; and Roughgarden, 1979) is, in fact, a special
case of the discussed model in which whether the invaders succeed or not in the
estabhshed community is determined by the stability of the equilibrium given by
X = Xand Y= Oin model (5.10). If this equilibrium (X 0) is Liapunov stable, none
of the deviating forms represented by Y are able to invade the established com-
munity; if it is unstable, one or more of the deviating forms represented by Y can
invade and possibly establish itself in the community. The resulting new commun-
ity may or may not be stable in the sense of Liapunov stability; this must, of
course, necessarily be analyzed by model (5.9) (see Case, 1982).

From the assumptions made for the extended model (5.10), it follows that its
Jacobian matrix (see, e.g., Arnold, 1973) evaluated at the equilibrium X = f(,Y =0,
has the triangular form

'oF oF |
83X aY| lg sl
p= | = (5.11)
0 a3| IR
aY

where @ = 9F/ 8X = aF(X, 0)/ 8X = 87 (X)/ 8X, etc. The @matrix is, in current
ecological literature, referred to as the community or a-matrix (Levins, 1968).
Reed and Stenseth (1984) suggest that R be called the invasion matriz.

Let p (M) be the characteristic polynome for P; i.e.,

p(N) =det(P — N) (5.12)

where [ is the diagonal unity matrix, and A is an eigenvalue for the system defined
by mode! (5.10). From matrix (5.11) it follows that

P = g7 (N (5.13)
where ¢ and r are the characteristic polynomes for the @- and FR-matrices;
notice, however, that ¢ corresponds to the equilibrium situation of mode! (5.9)
defined by X = X, whereas 7 corresponds to the equilibrium situation of model
(5.10) defined by X=X, Y = 0. Hence, we must necessarily evaluate the eigen-
values of @ (as is usually done in ecological community studies) as well as those of
R; all eigenvalues must have real parts less than zero in order to guarantee staﬁbﬂ-
ity. [From this result it is, of course, obvious why I initially assumed X = X in
model (5.9) to be a locally stable equilibrium point in the sense of Liapunov.} A
very similar approach to the study of community stability was taken by Case
(1982) for a few-species community.
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An interpretation of
A) Models with evolutionary variables

Suppose that some of the populations in the considered community give rise
to mutant phenotypic strategies and that these phenotypes depend on the value
of an evolutionary variable, M, with domain in some subspace C of R". This C = F
is thought of as a constraint on the possible phenotypes; that is, a fitness set in
the sense of Levins (1968) or a phenotype set in the sense of Maynard Smith
(1978a).

The evolutionary variable enters the basic ecological model as an ecologi-
cal parameter. The ecological model therefore has the form

dX/dt = fX; H) . .14)

As above, the existence of a stable ecological equilibrium X = X (M), depending on
M, is assumed. Generally, the model may have several stable equilibria for a
given value of M; hence, there is a choice involved in the definition of X (M).
Thus, depending on the particular properties of the ecological equilibrium, evolu-
tion may proceed in different directions.

With the ecological parameter, M, made explicit as in model (5.14), the effect
of changes in this parameter on the fitness of the evolving organisms may be stud-
ied more easily. Let Yrepresent populations with mutant phenotypes correspond-
ing to the parameter value M’ # M. Then we assume an extended ecological model,
in the sense of model (5.10), of the form

dX/dt = F(X Y. M. M)
dY/dt =GX Y M.M)

with the equilibrium X = f((M), Y=0.

In any particular application of this method, the relation between F and G, if
any, can be specified. Further, FF and G may or may not be specified as specific
growth rates multiplied by the density of the particular species. In any case, it
seems impossible to define F'and G without a thorough understanding of the eco-
logical situation - just as it would be impossible to define appropriately f in model
(5.14) without a thorough ecological understanding.

It should be realized that this approach actually transforms an evolutionary
problem into an ecological problem; whether or not a feature evolves depends on
the outcome of the (ecological) competitive situation initially facing mutant forms,
when they are rare. Biologically, this is of course a rather appropriate way of
viewing the problem. That is, an ecological understanding of competition seems
necessary for understanding evolution — ecology is important.

(5.15)

(B) ESS, evolutionarily stable strategy

Given these models and equilibria we say that the phenotype corresponding
to the parameter value M is evolutionarily stable if all M’ # M correspond to
stable (f( 0) equilibria in model (5.15): this value of M we denote M* (i.e. M = M*).
This M* is then said to represent an ESS, if the equilibrium of model (5.15) is
stable for all M’ in some neighborhood region outside M in C; that is, for
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all M’ in some subset of C. Thus, no mutant with a parameter value different from
that of the wildtype should be able to invade the established community when this
is at ecological equilibrium.

To my mind, this ESS method is today the most powerful technique available
for studying the evolutionary maintenance of phenotypic features, M* [see, e.g.,
equation (5.7)], where the asterisk denotes the ESS morphology. Usually, this
method is presented as a local problem; that is, M = M* + ¢ where ¢ is a small
deviation (or mutation) from the wildtype, M*. Using the approach developed by
Reed and Stenseth (1984), this ESS method may easily, and properly, be extended
to a global problem. Notice, however, that mathemgtically we do this by studying
the local stability properties of the equilibrium (X 0) of model (5.10). That is, if
(f( 0) is locally stable for all mutant strategies, m € F, where F denotes the fit-
ness set (see Levins, 1968; Maynard Smith, 1978a), then M* is evolutionarily stable
in a global sense.

This, then, is a precise way of analyzing — and obtaining a better understand-
ing of — why the structure M (or f) came to dominate under the prevailing condi-
tions; thus we may better understand why nature became how it is (see Mayr,
1961; Pianka, 1978).

Some examples

@A) Sex ratio in mammals

Why is the 1:1 sex ratio so commonly observed among, for example, mammals?
A structural biologist would, probably, answer this question by referring to the
X —Y chromosome system which is so common among mammals (Bull, 1983). However,
this is only an answer to the how question (see, e.g., Pianka, 1978; and above); the
evolutionary answer to the posed why question (see Pianka, 1978; and above), first
givenn by Fisher (1930), is as follows. Assume the panmictic population to be com-
posed of a majority of females. Then, it would pay, evolutionarily, to produce a
surplus of sons since these would have a higher probability of finding a mate than
would a daughter. In this way, the number of grandchildren — hence fitness —
would be maximized. Similarly, if the panmictic population is composed of a major-
ity of males, it would pay to produce a surplus of daughters since these would have
a higher probability of finding a mate. Analysis demonstrates that the 1:1 sex
ratio is, in fact, an ESS (Maynard Smith, 1978b; Charnov, 1882). As pointed out by,
for example, Maynard Smith (1978b), this argument does not depend on a mono-
gamous mating system; it is valid also for harem-forming species. These arguments
depend critically on the fact that all offspring have exactly one father and one
mother; that is, at any instant in time there are exactly as many mothers as there
are fathers.

Furthermore, this argument depends critically on the existence of random
mating (any unpaired individual may mate with any unpaired individual of the other
sex): if inbreeding occurs, then a female-biased sex ratio will often be the ESS sex
ratio (Hamilton, 1967). The wood lemming (Myopus schisticolor) and the collared
lemming (Dicrostonyz groenlandicus) are interesting examples of this.

Wild populations of the wood lemming are characterized by exaggerated den-
sity cycles and an excess of females (70—-807 females; Kalela and Cksala, 1966).



128 N. Chr. Stenseth

Breeding experiments show that this excess of females is due to a significant pro-
portion of reproductively active females producing only daughters. Fredga et al.
(1976, 1977) have hypothesized a gene on an X chromosome (denoted X* in the fol-
lowing) which suppresses the male determining genes on a Y chromosome and
causes a selective nondisjunction in the fetal ovary (a meiotic drive) so that only
X* carrying eggs are produced. The X* gene is supposed to have no effect on
X*X-females. No difference in litter size or in any other phenotypic character
has been observed among the different female types (in captivity); in particular,
there are no detectable differences in their fertility. Although Fredga and his
co-workers have not shown any evidence, other than circumstantial, for the
existence of a mutant X* gene, their genetic hypothesis is consistent with avail-
able data.

In the system hypothesis by Fredga et al. (1976, 1977) three types of matings
are possible:

XX-females X XY -males, giving a 1:1 sex ratio.
XX*-females X XY-males, giving 3 females to each male.
X*Y-females X XY-males, giving only female offspring.

A similar system seems to exist for the collared lemming (see Fredga, 1983; Bull,
1983).

Maynard Smith and Stenseth (1978) found that this system may be stable
against invasion by a mutant gene suppressing the X* mutation. Hence, we should,
according to this hypothesis, expect to find the female-biased system only in
regions where intense inbreeding occurs. On this basis it is interesting to observe
that for Dicrostonyx groenlandicus a female-biased sex ratio similar to that
observed in Myopus schisticolor only seems to exist in places where the habitat
is divided into small patches surrounded by transition habitats (senswu Stenseth,
1983b; see also Thorsrud and Stenseth, 1985) that are not inhabitable.

From these theoretical studies as well as from other observations it is rea-
sonable to conclude that the ecological setting seems to be of essential importance
in determining what the evolutionarily optimal strategy is; yet another example
that ecological understanding is important for a better understanding of evolution.

(B) Sex ratios in tropical butterflies

The tropical butterfly Acraea encedon also demonstrates the importance of
ecology in understanding evolution. In this species, two types of female exist —
one ordinary sexual female producing broods with a 1:1 sex ratio on average and
another abnormal female producing only daughters; the males are regular. Using
standard population—genetic arguments, it has been claimed (see, e.g., Heuch,
1978) that if a population of only males and normal females is invaded by abnormal
females, the latter outcompete the sexual females and, as a consequence, drive the
entire population to extinction. This argument hinges, however, on the assumption
of density-independent rates (Stenseth, 1985c¢). If the population dynamics rates
are made density dependent, a stable population with both normal and abnormal
females may easily result. That this is so may be seen using the model originally
developed to study pseudogamy (Stenseth et al., 1985; Stenseth and Kirkendall,
1985).
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Let the density of normal females (as well as the density of males) be given
by z; since the sex ratio is 1:1, 2z is the total density of the bisexual population.
Let B, be the expected instantaneous rate of production of adult progeny (males
and females) by mated females, and u, the corresponding adult mortality rate.
Finally, the potential number of mated females per male is given by a. Utilizing
these quantities, it follows — for continuous reproduction — that the dynamics of
females are given by

dr/dt =0.5a8x — wzx . (5.16)

Further, let ¥ be the density of abnormal females, and let g, be the rate at
which these females produce adult (female) progeny. The specific mortality rate
for the abnormal type is j,. Let p and ¢ (¢ =1 — p) measure the relative success
of normal and abnormal females in obtaining matings so that » /q is the relative
pairing success of sexual females; then, p/q =1 (i.e., p =q =0.5) represents
random mating, whereas p > 0.5 indicates that the two strains of females are
disproportionately chosen.

The dynamics of the two types of females in a mixed population are then
given by

dz/dt =058z alpx/(zp +yg)] — iz
dy/dt = Bz alqy/ (zp + Yq)] — Hox

The quantities pzx /(xp + yg) and qy / (zp + yg) represent the potential
proportion of mated normal and abnormal females; multiplying each quantity by a
gives the actual proportions mated (as would be observed in the field); in equa-
tions (5.17) these proportions are multiplied by z (now intepreted as the density
of males).

Both the availability of resources (i.e., the degree of density dependence)
and the availability of males limit the population. This, I believe, is, in general, a
proper ecological feature of sexually reproducing populations.

The stability properties of models (5.16) and (5.17) are depicted in Figure
5.8. In Figure 5.9 I further demonstrate that it is the density dependences in
demographic rates and in the quantities describing behavioral features that
enable stable coexistence between the two female types. However, as is obvious
from Figure 5.9, the region of stable coexistence depicted in Figure 5.8 does not
collapse; it is the existence of a stable ecological equilibrium that becomes impos-
sible without density dependences in demographic rates. And it is elementary that
an exponentially growing population cannot be maintained as such in a world of
limited resources.

.17

(C) Character displacement

Similarly, studies on character displacement (e.g., Lawlor and Maynard Smith,
1976; Slatkin and Maynard Smith, 1973; Roughgarden, 1979, 1983a, b; Lundberg
and Stenseth, 1985) show that ecological settings are important in determining the
evolutionarily optimal strategy. As this topic has been so well-covered in the eco-
logical and evolutionary literature, I do not discuss it herein, but merely remind
the reader of it.
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Figure 5.8 Stability properties of models (5.16) and (5.17). Let a be the degree of
niche overlap between normal and abnormal females; further, let R be the relative
reproductive advantage of abnormal females under extremely low densities (given that
they are mated). The diagrams then show the region in the a —F parameter space in
which only the normal female population is both evolutionarily and ecologically stable,
and in which the mixed population is ecologically stable. To the right of the I curves,
abnormal females can invade an equilibrium population with normal females only. To the
left of the C curves, a population with both types of female exhibits an ecologically
stable equilibrium. Hence, the shaded region depicts an attainable stable equilibrium
with coexistence. To the right of both the I curves and the C curves, a normal popula-
tion at equilibrium is invadable by abnormal females; in this region factors other than
those of (local) population dynamics have to be considered in order to explain the
maintenance of all-female broods. Numbers in the diagrams represent the sex ratios
(1 + y*/ z*). (a) No density dependence in p (i.e., no selective advantage for normal
females in acquiring matings) and the same degree of weak density dependence in repro-
ductive and survival rates (i.e., demographic rates — § and ). (b) Density dependence
in both p and the demographic parameters; at low density normal females have an ad-
vantage in acquiring matings. For the parameters not shown in the diagram, the follow-
ing values have been assumed: a =1, u,(0) = u,(0) =0.1, and §,(0) = 1 (after Sten-
seth, 1985¢c).

Ecology — the Template of Evolution

The abiotic and the biotic environment

I think it fair to say that at present we have a reasonably well-developed
theory - the Darwinian theory of evolution — to help us understand what the
optimal (or most fit and hence expected) phenotypic structures are, given a cer-
tain environmental condition. However, the environmental situation has rot
been of concern to evolutionarily oriented laboratory biologists in general, nor to
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Figure 5.9 The stability properties of models (5.16) and (5.17) in the absence of density
dependence in demographic rates and in p . For a fixed p,, this stability region (see Fig-
ure 5.8) remains unchanged as do the sex ratios in various parts of this region, regard-
less of the degree of density dependence (as long as this degree is equal in p as well as
in 8 and in k). However, actual densities increase in the shaded region to infinity as the
degree of density dependence diminishes to zero.

population geneticists in particular. Specifically, this was not a problem for the
pioneers in the field, such as Ronald Fisher and J.B.S. Haldane: they considered,
in most cases, only one species in an otherwise constant environment — and they
almost never treated species—species interactions.

As a result, we have at present no convincing theory of ecology. This is
unfortunate since, as I have pointed out above, the total environment of a given
species consists partly of its abiotic environment and partly of its biotic environ-
ment, where the biotic component comprises other coexisting species, each of
which plays the same game; they are all evolving as a result of natural selection.
The challenges of evolving species are faced with because of a changing abiotic
environment are likely to be of a qualitatively different kind to those of a chang-
ing biotic environment (due to evolution of coexisting species). Furthermore,
these evolutionary issues will probably be studied using quite different methods.

Following Maynard Smith (1882c), what we need

...is a theory which says something about natural selection, and hence about
the environment. Since the major component of the environment of most
species — in most cases — consists of other species in the ecosystem, it fol-
lows that we need a theory of of ecosystems in which the component species
are evolving by natural selection.
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What we need in ecology is something like Weismann's general theory of develop-
ment; but such a theory is hard to formulate. The building blocks must, I am con-
vinced, be the Darwinian theory of evolution and a theory of ecology; the former
we have, the latter we do not have. The data for testing such a theory would, I am
sure, have to be provided by paleontology and ecology.

A question, two answers, and a possible solution

To demonstrate how difficult is the situation that evolutionary biology is in,
it is worthwhile to note that it is now far easier to ask the following question then
to answer it: Will evolution cease if we stop all physical disturbances ~ regular and
irregular — of the environment due to factors like seasonal changes and randomly
changing weather conditions? It turns out, indeed, that very competent biologists
might give quite opposite answers to this question — and that each of them will
defend their position rather strongly. Unfortunately, it is at present rather diffi-
cult to say who is right. And that suggests to me that something is wrong, and that
something important is missing in current Darwinism. I have no doubt that it is a
more solid understanding of ecology and a more synthetic theory of ecology that
are missing.

How, then, can ecology more properly be incorporated into evolutionary
arguments (and into the theory of evolution)? Van Valen (1973) suggested (in the
same paper in which he presented the 'Law of Constant Extinction"”) the Red
Queen hypothesis: the Red Queen, you will remember, explained to Alice in
Wonderland (Carroll, 1871) that

...it takes all the running you can do, to keep in the same place. If you want
to get somewhere else, you must run at least twice as fast as that.

Van Valen's Red Queen view of evolution then asserts that any evolutionary change
in any species is experienced by coexisting species as a change of their environ-
mental conditions. Hence, a species must evolve as fast as it can in order to con-
tinue its existence. If the species does not evolve as fast as it can, it will become
extinct. An "arms race" (Dawkins and Krebs, 1979) results: this I call the Red
Queen type of evolution.

Darwin (1858) had very similar ideas:

the most important of all causes of evolution is one which is almost indepen-
dent of ...altered physical conditions, namely, the mutual relation of organ-
ism to organism...

Furthermore, Darwin said:

...if some of these species become modified and improved, others will have to
be improved in a corresponding degree or they will be exterminated.

Van Valen (1973) claimed that his Red Queen hypothesis would explain the '"Law of
Constant Extinction”, but his argument was, however, not convincing (e.g., May-
nard Smith, 1976a; Stenseth, 1979).
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A Darwinian Theory of Evolution in Ecosystems

Previously, I have reviewed several models for the Red Queen hypothesis
(Stenseth, 18979, 1985a) — some developed specifically for it and others appropri-
ate for analyzing it — and I do not repeat this discussion herein. However, I do
emphasize the potential prospects of the models due to Kerner (1957, 1959) on
"the statistical mechanics of population dynamics" even though there are several
difficulties with this approach (see, e.g., Maynard Smith, 1974; Stenseth, 1979,
1885a; Case and Casten, 1979). In addition to the difficulties mentioned in my ear-
lier writings, there is yet another: the species number in the community of
interacting organisms should be allowed to vary as a result of speciation, immigra-
tion, and extinction. I do not know whether this is at all possible, but some com-
petent mathematician should think about it — if advancements are made, they
could benefit evolutionary ecology greatly.

The lag load

Maynard Smith (1976a) specified the Red Queen hypothesis by introducing
the evolutionary lag load concept. Let L, be the lag load of the ith species in an
area. Further, let W, = (1/z;)(dx /dt) = f;(x) be the ith species’ current mean
fitness [see equat1on (5.9); also Stenseth, 1983a] and let Wt be the maximal possi-
ble fitness of the species in the current environment which it would have if all
possible favorable alleles, whether or not they are yet segregatmg are incor-
porated. As pointed out by Stenseth and Maynard Smith (1884), W, /W, is, in prin-
ciple, a measurable quantity; hence, L, is measurable. Using these concepts L, is
defined as

Ly = (Wy — W)/ Wy . (5.18)

A community with a fixed number of species

Assume first that a fixed number of species coexist in the community. Let
6L, denote the change in unit time of the ith species’ lag load. As explained by
Maynard Smith (1976a), L; may be expressed as

8Ly = 8,L, — 8 L, (5.19)

where 6,L, is the change in the ith species’ lag load due to (micro-) evolution of
the S—1 coexisting species (i.e., change in its biotic environment) and dgL,_ is the
change in the ith species’ lag load due to its own (micro-) evolutionary approach
to its adaptive peak as defined by its current environment.

Let ;3.,;_7- measure the increase in the ith species’ lag load caused by a unit
change in the jth species’ lag load. Then we may rewrite equation (5.19) as

8Ly = $B4y0,L; — 8yl (5.20)
7

(where, of course, #,; =0). Assuming that dgL,_ may be expressed as k,; L, (which,
in fact, is a generalized form of Fisher's fundamental theorem of natural selection;
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see Stenseth and Maynard Smith, 1984) and putting L= (1/S)2L1, we obtain
i

dL/dt = (k /ST Ly;Thyy) — TLyT (5.21)
TR ]

As pointed out by Maynard Smith (1976=z), model (5.21) only has a stationary
equilibrium point if 3}8,, =1 for all j; if 3}8,; <1 for most j, L would decrease
1 1

and evolution in the community would be in what Maynard Smith called the conver-

gent mode; if, however, Eﬁﬁ > 1 for most j, L would increase and evolution in
1

the community would be in what Maynard Smith called the divergent mode. As
pointed out by Stenseth (1979), these conclusions do not refer to the global
behavior of the model since both 8 and S are treated as constants — which they,
of course, are not. Hence, the conclusion reached by Maynard Smith (1976a), that
the Red Queen hypothesis seems to be implausible, is not necessarily correct (see
Stenseth, 1979; and the next section).

A community with a changing number of species

Stenseth (1979) pointed out that changing the number of species in the sys-
tem (as a result of speciation, immigration, and/or extinction) would, in general,
change the values of §,; and thus the value of 2844 for the various j. In order to

4
study the effects of changing S, Stenseth and Maynard Smith (1984) studied the
dynamic behavior of the following system:

dL/dt = (a + bL + cS)L
dS/dt =h +d —e)l +(f —g)S

in which they argued that & <0, A >0 and (f —g) <0, but witha,c,andd —e
of uncertain sign. The complete dynamic behavior of model (5.22) is summarized in
Figure 5.10 (for details, see Stenseth and Maynard Smith, 1984; and also Stenseth,
1985a). As can be seen, both a Red Queen type of continued evolution and a sta-
tionary state without any evolutionary changes may occur in a physically stable
environment: a similar distinction also emerges in the case of some background,
low-level physical noise (see Stenseth, 1985a). Stenseth and Maynard Smith (1984)
suggest that the Red Queen type of coevolution corresponds to the gradualistic
pattern of evolution (see pp 107-108), whereas the stationary state corresponds
to the punctualistic pattern of evolution (see above).

Obviously, model (5.22) is too general to be of much help in interpreting the
fossil record in any detail. However, it does demonstrate that a reasonable
Darwinian model may be formulated which predicts both the gradualistic and the
punctualistic pattern, depending on the values of the parameters. This conclusion
is, to my mind, important since it shows that it is not necessarily correct to say,
as, for example, Gould (1980, 1982), Stanley (1975, 1979, 1982), and Stanley et al.
(1983) do, that the punctualistic pattern of the fossil record cannot be predicted
on the basis of Darwinism. Specifically, the analysis carried out by Maynard Smith
and myself demonstrates clearly that one cannot draw conclusions regarding

(5.22)
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Figure 5.10 The dynamic behavior of model (5.22) for various combinaticns of parame-
ters. As can be seen, both the gradual Red Queen type of evolution and the stasis-plus-
punctuation type may result. The dynamics of the _evolutionary system for various values
of a, ¢, and d — e are shown. Notice that the d / df isocline in (e) does not intersect
the dS/dt isocline since the latter approaches an asymptote far to the left of the
dL /dt isocline.

mechanisms on the basis of observed patterns (see Maynard Smith, 1982¢, for a
relevant discussion).

Several other conclusions can be drawn from this analysis: first, the Red
Queen hypothesis is plausible; as explained above, depending on the parameters of
the system the Red Queen mechanism may lead to either a Red Queen type of evo-
lution or to stagnation. Second, the 'Law of Constant Extinction" follows from the
Red Queen hypothesis. Several other applications are discussed by Stenseth
(1985a). Most important in this context is the suggestion that if evolution is of the
Red Queen type and continues for ever even in a physically stable environment,
increasingly more complex forms (defined in some proper way) tend to evolve.
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Two more general conclusions about evolution may be drawn from model (5.22):

(1) I have elsewhere (Stenseth, 1985b) argued on the basis of this model that the
tropics may properly be considered the cradle of most of the world’s biocta;
the tropics are, however, a bad museum since the rate of extinction is high
because of the higher species diversity.

(2) I have further suggested (Stenseth, 1985d) on the basis of this model that
evolutionary novelties are more likely to arise in environmentally unstable
regions than in environmentally stable regions. Essentially, this is so because
the pattern depicted in Figure 5.10 (b) is more likely to occur in physically
unstable regions, whereas the pattern depicted in Figure 5.10 (a) is more
likely to occur in physically more stable regions. Some observations suggest
the validity of this prediction (Jablonski et al., 1983; Hickey et al., 1983;
Zinmeister and Feldman, 1984; see also Stenseth, 1985d).

Finally, it seems plausible that this kind of Red Queen model for coevolution
in ecosystems should be able to explain observations that suggest convergent evo-
lution at the community level (e.g., Orians and Paine, 1983). Much work remains to
be done in this area, though.

Environs — an alternative approach

Based on the system ecology approach (e.g., Odum, 1969, 1971), Patten and
his co-workers have taken another route (e.g., Patten, 1975, 1978, 19881, 1982,
1983, 1985; Patten and Auble, 1980, 1981; Patten and Odum, 1981; Patten et al.,
1976); Wilson's (1980) approach is along similar lines.

As in the case of the Red Queen approach (e.g., Maynard Smith, 1976a; Sten-
seth and Maynard Smith, 1984), evolution is, as far as I understand, assumed to
proceed by natural selection of individual organisms due to both direct and
indirect effects (generating the selective pressure) of the environment. Also, as in
the model of Stenseth and Maynard Smith (1884), the ecological niche (e.g., Grin-
nell, 1917, 1828; Elton, 1927; Hutchinson, 1957; Pianka, 1978; Roughgarden, 1979)
is assumed to represent the point of direct contact between organisms and their
environment (both its abiotic and biotic parts). Patten and his co-workers (e.g..
Patten, 1981, 1983; Patten and Auble, 1980, 1981) suggest, however, a new theoret-
ical concept, the environ, which is the unit of organism—environment coevolution.
At least to me, this approach seems exceedingly complex, described in a highly
developed system-theory jargon. However, I have a very strong feeling that it
might be important in helping us out of some of the difficulties we are faced with
in evolutionary theory today. This approach, linked with Van Valen's (1973) Red
Queen view of evolution might provide an important advancement and should be
attempted by someone better qualified than I.

But to hypothesize that evolution favors linearity at the ecosystem level, or
that undesirable effects of nonlinearity at the ecosystem level are selected
against, as Patten (1975, 1983) suggests, is — I believe — a wrong track: such a
selection seems only to be possible if ecosystems, or the like, are the unit of evo-
lution. And as demonstrated by Maynard Smith (1876b), group selection of this
type is likely to be far less efficient than evolution at the individual level — or at
some lower level of organization. See Stenseth (1984c) for a general discussion of
ecosystem evolution.
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What kind of models do we need?

Previously (Stenseth, 1983a, 1985a; see also 1984c) I have discussed the
kinds of mathematical models we would need in order to understand the operation
of natural selection in a dynamic community which changes with respect to both
number and phenotypic properties of the coexisting species. This is, to my mind,
the most important technical problem to solve before we can develop improved
models for evolution in ecosystems.

Consider a model of the kind

(1/z,)@z, /dt) = z,f4 () (5.23)

where z,; is the density of the ith species (i =1,2,...,S, where S is the total
number of coexisting species), and f, is the specific growth rate of the ith
species [see equation (5.9)]. For a fixed number of species, S, and nonchanging f,,
model (5.23) is a standard population dynamics model referring to ecological time
(sensu Stenseth and Maynard Smith, 1984); here z; are the only variables. As dis-
cussed above, the f,-functions, however, change as a result of microevoluion
occurring on what might be called a population genetic time scale (sensu Stenseth
and Maynard Smith, 1984; see also Lawlor and Maynard Smith, 1976). For a commun-
ity with a fixed number of species, f;, may reach an ESS or a CSS state (Schaffer
and Rosenzweig, 1978; see also Roughgarden, 1979). Several theorists contend that
it is sufficient to study few-species assemblages (e.g., Beddington and Lawton,
1978). Models of many-species communities — maybe with more tightly packed sub-
systems — are, however, important to analyze since we know that diffuse competi-
tion does occur fairly frequently (see, e.g., Pianka, 1978, 1980).

We have mathematical techniques available for analyzing both the population
dynamic and microevolutionary changes. However, as pointed out in the previous
subsection, S is also a dynamic variable changing on a fairly slow time scale as a
result of speciation and extinction (see Stenseth and Maynard Smith, 1984). As far
as I know, there is no standard analytical technique available for analyzing model
(5.23) with S as a dynamic variable (but see the section on environs above)*. The
development of such techniques would, I am sure, greatly benefit evolutionary biol-
ogy.

I am at present unable to recommend what sorts of mathematics should be
used for analyzing the problems discussed in this chapter. However, one thing is
important to remember whan choosing which mathematics to use in various fields
of the natural sciences: living material is, by definition, characterized by units
having the properties of reproduction, inheritance, and variation (see p 112).
Nonliving material is everything else. As is apparent, I have in this chapter on liv-
ing material been using mathematics primarily developed for the nonliving world.
That might be a serious shortcoming of all the studies I have reviewed.

I am afraid I have been very vague in my recommendations; I wish I could be
more precise and specific.

*Several good discussions of the modeling of such evolving ecosystems exist, however (e.g.,
Beddington and Lawton, 1978; Roughgarden, 1979); see also the interesting and relevant discus-
sion presented by Johnson (1981).
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A Synopsis of Darwinism

The basic premises in the Darwinian theory of evolution (i.e., Darwinism) are
reproduction, inheritance, and wvariation. If a population of individuals is
characterized by these properties, evolution may occur as a result of natural
selection; if the environmental situation changes, evolution occurs, in general, as a
result of natural selection adapting the organism to the new environmental condi-
tions. In this way the population evolves closer to its adaptive peak. Where this
adaptive peak is located (i.e., which phenotype corresponds to the adaptive peak)
is determined by the coexisting spe.cies (i.e., the biotic properties of the environ-
ment) as well as by the abiotic properties of the environment.

These microevolutionary changes brought about by natural selection due to
(phenotypic) fitness differences are reflected in genotypic changes (i.e., gene
frequency changes) in the population. Notice, however, that many genotypic
changes may occur without any corresponding phenotypic change: this we call
non-Darwinian evolution (Kimura, 1983).

Referring to Figure 5.11, we may then say that the shape of the fitness curve
(and in particular the location of the adaptive peak along the phenotype axis) is
determined by the environment (both biotic and abiotic); since we presently have
only vague ideas about ecology, we have only vague ideas about how this fitness
curve is determined. The location of any individual along the phenotype axis is
determined by the dewvelopmental processes; even though we have very vague
ideas at present about developmental biology, we know that for any particular
genotype there is, in a particular environment, a particular phenotype that
develops. This process is a many-to-one mapping. Which genotype is selected is

AN b
i
|
N ——
z N —r--
-~ | | [
H | ] |
c Lo
h= | ! {
w I } !
| | |
Lo
| | !
R
| ; |
¢ & ¢y

Phenotypic character

Figure 5.11 A synopsis of Darwinian evolution in ecosystems. The phenotype ¢ is the op-
timal one under current environmental conditions (see text for further discussion). The
positions of the fitness curve and ¢ are determined by the environment. The positions of
the two depicted organisms’ phenotypes (¢, and Cz) are determined by their genotypes
and environments. Which one is favored in the process of evolution is determined by the
Darwinian process of natural selection (comparing )\1 and )\2).
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then determined by the fitness (or some analogous property) of this phenotype
compared with other phenotypes’ fitnesses. According to the theory of natural
selection, the one with the highest fitness is selected.

Since we do not understand development (and, in particular, since we do not
have a theory for development) we cannot predict the course of evolution. But
even without such a theory for development, we can predict that evolution occurs
if the fitness curve changes. But without a theory for ecology we are unable to
say what is needed to change the fitness curve.

After more than one hundred years of research into the Darwinian theory of
natural selection, we have a fairly good understanding of how natural selection
operates for a given selective pressure. However, this is of little use when trying
to predict the long-term patterns of the fossil record, since we do not understand
how the fitness curve changes as a result of evolution in coexisting species. That
is, we do not understand what generates the selective pressure. For that reason,
study ecology! And even more, try to develop a general theory for ecology.

Then, having such a theory for ecology, we might be able to solve several of
the current controversies in biology today and assist the solution of practical
problems like pest control and resource management (see, e.g., Stenseth, 1983a,
1884c).

Today there is certainly no indication that Darwinism ought to be rejected.
The only solid experimental threats to the Darwinian view are the observations of
nonchromosomal inheritance (such as, e.g., the phenomena of cortical inheritance
in ciliates; e.g., Steel, 1979; see also Brooks, 1983). Darwinists should, as Maynard
Smith (1983) emphasized, not be allowed to forget these observations — doing that
would be to reject critical evidence against one’s view. However, the very reason
for not rejecting the Darwinian view in spite of such observations is that the
overwhelming majority of inherited differences between organisms are caused by
chromosomal genes — hence the Weismannian assumption holds true in the majority
of cases.

Contrary to some writers’ views (Gould, 1980, 1982; Stanley, 1979; Stanley et
al., 1983), the pattern of stasis-plus-punctuation seen in the fossil record [Figure
5.3(a)] certainly constitutes no reason to reject the Darwinian approach (see
above): at best, such observations only suggest that we have to refine existing
theory (see Maynard Smith, 1982c, for a relevant discussion).

Above all, we have to bring ecology (back) into evolutionary theory — or
rather, we have to study the organism—environment as a synergistic whole. Ecol-
ogy and the Darwinian evolutionary theory should no longer

...remain...separate disciplines, travelling separate paths while politely
nodding at each other as they pass. (Lewontin, 1979).

I hope that some of the studies reviewed in this chapter may help to bring
ecology and evolution into a closer, truly mutual relationship. Much remains to be
done — but the seeds for a unified theory of evolutionary biology are there. Most
of all, we must weed our flower-bed. Unfortunately, this is rather hard when we do
not know for sure which seedlings are weeds and which seedlings are the flowers
we want to grow. I only wish I knew how to tell them apart.
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CHAPTER 6

On System Complexity: Identification,
Measurement, and Management

John L. Casti

Complexity and Simplicity’

1 have yet to see any problem, however complicated, which, when
you looked at it the right way, did not become still more complicated.
Poul Anderson

The notion of system complexity is much like St. Augustine’s description of
time: “"What then is time [complexity]? If no one asks me, I know; if I wish to
explain it to one that asks, I know not.” There seem to be fairly well-developed,
intuitive ideas about what constitutes a complex system, but attempts to axioma-
tize and formalize this sense of the complex all leave a vague, uneasy feeling of
basic incompleteness, and a sense of failure to grasp important aspects of the
essential nature of the problem. In this chapter we examine some of the root
causes of these failures and outline a framework for the consideration of complex-
ity that provides a starting point for the development of operational procedures
in the identification, characterization, and management of complex processes. In
the process of developing this framework for speculation, it is necessary to con-
sider a variety of system-—theoretic concepts closely allied to the notion of com-
plexity: hierarchies, adaptation, bifurcation, self-organization, and reductionism,
to name but a few. The picture that emerges is that of complexity as a latent or
implicate property of a system, a property made explicit only through the
interaction of the given system with another. Just as in baseball where some
pitches are balls and some are strikes, but "they ain’t nothin’" until the umpire
calls them, complexity cannot be thought of as an intrinsic property of an isolated
(closed) system; it is only made manifest by the interaction of the system with
another, usually in the process of measurement and/or control. In this sense, it is

tNotes and references relevant to each section are given at the end of the chapter.
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probably more meaningful to consider complexity more as a property of the inter-
action than of the system, although it is clearly associated with both. The explora-
tion and exploitation of this observation provides the starting point for an emer-
gent theory of complex processes.

Before embarking upon a detailed consideration of complexity in natural and
human phenomena, it is useful to consider for a moment why a deeper understand-
ing of complexity, per se, is of either theoretical or practical importance. The
basic reason is the seemingly inherent human need to simplify in order to under-
stand and direct (control). Since most understanding and virtually all control is
based upon a model (mental, mathematical, physical, or otherwise) of the system
under study, the simplification imperative translates into a desire to obtain an
equivalent, but reduced, representation of the original model of the system. This
may involve omitting some of the original variables, aggregating others, ignoring
weak couplings, regarding slowly changing variables as constants, and a variety of
other subterfuges. All of these simplification techniques are aimed at reducing the
degrees of freedom that the system has at its disposal to interact with its environ-
ment. A theory of system complexity would give us knowledge as to the limitations
of the reduction process. For example, it is well known that the three-body prob-
lem of celestial mechanics cannot be resolved in analytic terms; however, the two-
body problem is completely solvable, but a sequence of two-body problems cannot
be combined to solve the three-body problem. Thus, the complexity of the three-
body problem is intrinsically greater than any sequence of two-body problems and
there is an irretrievable loss of information in passing to such a reduced
representation. A useful theory of system complexity would provide conditions
under which such a decomposition would work and perhaps even suggest novel,
nonphysical, simpler representations that would be valid when the "natural” sim-
plifications fail.

What are the distinpuishing structural and behavioral characteristics of
those systems we intuitively think of as being complex? Perhaps the easiest way
to approach this question is to consider its converse: what features do we associ-
ate with simple systems? Some of the most evident properties of simple systems
are:

o Predictable behavior. There are no surprises: simple systems exhibit a
behavior pattern that is easy to deduce from knowledge of the external
inputs (decisions) acting upon the system. If we drop a stone, it falls; if we
stretch a spring and let it go, it oscillates in a fixed pattern; if we put money
into a fixed-interest bank account it grows to a sum according to an easily
understood and computable rule. Such predictable and intuitively well-
understood behavior is characteristic of simple systems.

Complex processes, on the other hand, display counter-intuitive, seem-
ingly acausal behavior full of unpredictable surprises. Taxes are lowered and
unemployment and stagflation persist; low-cost housing projects generate
slums worse than those the housing replaced; construction of freeways
results in unprecedented traffic jams and increased commuting times. For
many people, such unpredictable and seemingly capricious behavior defines
a complex system.
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Few interactions and feedback/feedforward loops. Simple systems gen-
erally involve a small number of components, with self-interaction dominating
the mutual interaction of the variables. For instance, primitive barter
economies involving only a small number of goods (food, tools, weapons, cloth-
ing) are generally much simpler and easier to understand than the developed
economies of industrialized nations, in which the pathway between raw
material inputs and finished consumer goods follows a byzantine route involv-
ing large numbers of interactions between various intermediate products,
labor, and capital inputs.

Besides involving only a few variables, simple systems generally have

very few feedback/feedforward loops. Such loops enable the system to re-
structure, or at least modify, the interaction pattern of its variables,
thereby opening-up the possibility of a wider range of potential behavior
patterns. As an illustration, imagine a large organization characterized by
the variables: employment stability, substitution of work by capital, and level
of individuality (personal level). Increased substitution of work by capital
decreases the human level in the organization, which in turn may decrease
employment stability. Such a feedback loop exacerbates any initial internal
stresses, potentially leading to a collapse of the process. This type of col-
lapsing loop is especially dangerous for social resilience and is a common
feature of complex social phenomena.
Centralized decision-making. Power in simple systems is generally concen-
trated in one or, at most, a few decision-makers. Political dictatorships,
privately owned corporations, and the Roman Catholic Church are good exam-
ples of such systems. These systems are simple because there is very little
interaction, if any at all, between the lines of command. In addition, the
effect of the central authority’s decision upon the system is usually rather
easy to trace.

By contrast, complex systems display a diffusion of real authority.

There is generally a nominal, supreme decision-maker, where the buck stops,
but in actuality the power is spread over a decentralized structure, with the
actions of a number of units combining to generate the system behavior. Typ-
ical examples include democratic governments, labor unions, and universities.
Systems exhibiting distributed decision-making tend to be somewhat more
resilient and more stable than centralized structures, as they are more for-
giving of mistakes by any one decision-maker and are more able to absorb
unexpected environmental fluctuations.
Decomposable. Typically, a simple system involves weak interactions among
its constituent components. Consequently, if we sever some of these inter-
actions the system behaves more-or-less as before. Relocating American Indi-~
ans to reservations produced no major effects on the dominant social struc-
ture in Arizona, for example, since, for cultural reasons, the Indians were
only weakly coupled to the local social fabric. Thus, the simple social inter-
action pattern could be further decomposed and studied as two independent
processes, the Indians and the setilers. A similar situation occurs for the
restricted three-body problem, involving the Sun, Earth, and Moon. For some
purposes, this system can be decomposed by neglecting the Moon and so
studied as a simpler two-body problem.
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On the other hand, a complex process is irreducible. Neglecting any
part of it or severing any connection usually irretrievably destroys essential
aspects of the system’'s behavior or structure. We have already mentioned
the unresiricted three-body problem in this regard. Other examples include
the tripartite division of the US government into executive, judicial, and leg-
islative subsystems, an RLC electrical circuit, and a Renoir painting.

The picture that emerges from the foregoing considerations of simple sys-
tems is a notion of complex phenomena characterized by counter-intuitive
behavioral modes that are unpredictable from knowledge of environmental inputs;
by relatively large numbers of variables interacting through a rich network of
feedback/feedforward connections; by decentralized decision-making structures
and a high level of functional indecomposability. Since such features are charac-
teristic of many of the human systems of modern life, it is necessary to develop
effective procedures for managing and planning the future course of such
processes. Let us briefly consider some of the issues involved in obtaining a han-
dle on complex systems.

Management of the Complex

Some problems are just too complicated for rational,
logical solutions. They admit of insights, not answers.
J. Wiesner

We have already noted that system complexity is a contingent property aris-
ing out of the interaction I between a system S and an observer/decision-maker
0. Thus, any perception and measure of complexity is necessarily a function of S,
0, and I. Conditioned by the physical sciences, we iypically regard S as the
active system, with O being a passive observer or disengaged controller. Such a
picture misses the crucial point that generally the system S can also be regarded
as an observer of O and that the interaction 7 is a two-way path. In other words,
for a given mode of interaction 7, the system S displays a certain level of complex-
ity relative to O, while at the same time O has a level of complexity relative to S.
For the sake of definitiveness, let us denote the former as design complexity and
the latter as control complezxity. It is our contention that the behavior of §
becomes uncontrollable when these two complexity levels are too far apart; hence
the "golden rule' for management of complex systems is to arrange matters so that

design complexity = control complexity.

The distinction between design and control complexity has been blurred in
the natural sciences because of the almost universal adoption of the tacit assump-
tion that the interaction 7 is one-way, from O to S. When S is a system of macro-
particles as in, say, the observation of an oscillating pendulum in mechanics, it is
defensible tc argue that the pendulum cannot "see” O or, at least, the pendulum
has no awareness of O as a system with which it is in interaction. Hence, there is
no notion of control complexity and the regulation and management of S by O
proceeds according to classical principles. But when we pass to the microscopic
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and quantum levels or to the global and cosmic levels, the assumption of no control
complexity becomes increasingly difficult to defend. And by the time we move to
systems possessing even primitive levels of self-awareness in biology and the
social sciences, we can no longer neglect the inherent symmetry in the interaction
I. The first step in addressing management issues for complex systems is the
explicit incorporation of control complexity into the modeling and decision-making
framework.

To illustrate the above points, consider the structure associated with
representative government at the regional or national level. Here we have a sys-
tem S composed of the political leaders (mayor, governor, etc.) interacting with a
system O consisting of the general public. If the complexity of S as perceived by
O is high, then the public sees its leaders as taking incomprehensible actions;
they see a byzantine and unwieldy governmental bureaucracy and a large number
of independent decision-makers (government agencies) affecting their day-to-day
life. In short, what would be observed is exactly what is seen in most countries
today. On the other hand, if the political leadership were to perceive the public
as being very complex, what would their observations be? They would see a seem-
ingly fickle, capricious public, composed of a large number of independent self-
interest groups clamoring for more and more public goods and services. Further-
more, there would be a perception that the public interest groups were connected
together in a rather elaborate network that could not be decomposed into simpler
subgroups. Consequently, actions or decisions taken to address the interests of
one group could not be isolated in their effect, which may possibly be contrary to
the interests of another. Or, even worse, because of the dense web of intercon-
nections and feedback loops comprising the public structure, unpredictable and
unpleasant side effects may emerge from actions taken to satisfy some subgroups.
It goes without saying that these observations form part of the everyday life of
most public officials in the western world (and, most likely, the eastern, too).

From the above considerations, we can conclude that the crux of the problem
of modern government wersus its citizenry is that both the public and the govern-
ing officials regard each other as complex systems. If either recognized the other
as simple, much of the tension and dissatisfaction with contemporary political
structures would disappear. The ideal situation would be for each to perceive the
other as simple, in which case both parties would be happy. Failing this, simple
government with a complex public or complex government with a simple public
would at least reduce the difficulties and tensions in one direction, but with possi-
bly increased tensions in the other. Local administration in a small, rural commun-
ity would be representative of the former, while a political dictatorship of some
sort would be typical of the latter situation. Unfortunately, at the regional and
national level throughout most of the western world, we have the complex/complex
case, which requires a deeper consideration of how each side comes to attach the
label "complex" to the other, before the question of complexity management can
be meaningfully addressed.

As emphasized earlier, complexity as a system property emerges from the
interaction of a given system with another. If a system S can interact with O in a
large number of nonequivalent ways, then S regards O as complex; conversely, if
S has only a small number of modes of interaction with O, then O appears simple.
In the governmental context, a dictatorship appears more complex to the public,
because the public has many different modes of interaction with the government
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since, in such situations, most of the agencies of day-to-day life (police, military,
communications, transport, agriculture, etc.) are directly in governmental hands.
Such centrally planned structures require a high level of control complexity to
maintain and are perceived as complex by other systems which have to interact
with them.

A system is counted as simple if there are only a small number of non-
equivalent ways to interact with it. The pen I used to write this manuscript is a
simple system to me. The only mode of interaction with it that I have available is
to use it as a writing instrument; however, if I were, say, a chemical engineer, then
many more modes become available. I could analyze the plastic compound of which
it is made, the composition of chemicals forming the ink, the design of the writing
ball at its tip, and so forth. So, for a chemical engineer my ballpoint pen becomes
a far more complex object than it is for me.

If we adopt the position of this chapter that effective management of com-
plexity consists of arranging systems so that design and control complexity are
approximately equal, preferably at a relatively high or low absolute level, then we
operationally face the question of how to formally characterize the idea of a sys-
tem, an interaction between two systems, and the notion of equivalent inter-
actions.

Systems, Observables, and Models

For the things of this world cannot be made known
without a knowledge of mathematics.
Roger Bacon

To progress beyond the obvious and trivial, it is necessary to formalize the
common language and linguistic terms used earlier to describe system complexity
and its management. Only through such a formalization can we transfer these intui-
tive, but fuzzy, terms into a mathematical setting that provides the possibility of
gaining operational insight into the way complexity is generated and suggests how
procedures can be developed to cope with the complex.

For us, a system S is composed of an abstract set of states (}, together with a
collection of real-valued observables f,:(} » R. For example, let the system S
consist of the rotational symmetries of an equilateral triangle. There are then
several candidates for the abstract state space (), as shown in Figure 6.1. Thus,
there is nothing sacred about the state space (); it is just a collection of elements
that name, or label, the possible positions of the triangle. A typical observable
for this system would be the map f., which assigns to the state w € () the minimal
number of rotations through 27/3 needed to reach w from the state [a, b, c].
Thus, f:Q - §0,1,2{ CR. In this case, if we take (1 = (g, then f (&) = w, but if we
use (I = (), or (), then f(w) € {);. Consequently, for the observable f it is possi-
ble to code any of the states in {}; or (3 by an element of Q; in a certain sense,
()3 is a wniversal state space for this system, relative to the observable f.
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24 § 23
a
= [a,b,c] 0 0
b c
c
= [c,a,b] 27/3 1
a b
b
= [b,c,al 4n/3 2
c a
Figure 6.1

In physics and engineering, it has become common practice to use 2 = R™ as
a universal state space for a system involving n observables, {f,}/,. In fact, a
good deal of the art behind mathematical modeling in the physical sciences lies in
a judicious choice of observables {fi |, so that the points of R™ serve as a univer-
sal coding scheme for the actual abstract states of 5. It is both remarkable and
unfortunate that this procedure works as well as it does: remarkable since there
is no a priori reason to expect that the natural world is constructed so as to uni-
formly lend itself to such an encoding scheme; unfortunate, since the successes in
physics and engineering have generated a certain sense of unjustified confidence
that a similar procedure will work equally well in the social and behavioral sci-
ences. It does not, which accounts for a great deal of the difficulties found in
many attempts to mimic the methods of physics when modeling human affairs. All
that having been said, let us return to the formalization of system descriptions
and complexity.

From the (possibly infinite) set of all observables characterizing S, we select
a subset (usually finite), F = {f 1. f2..... fy]. and call F an abstraction of S. Asso-
ciated with the abstraction F is a relation, or a set of relations, $, between the
observables f; of F,

0= é(-fl'fz""’fN) .
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Such a relationship $ is termed an equation of state or a description for the
system S. Since the observables are all real-valued functions of (), if there are m
relations, $: R™ » R™,

As a simple illustration of the preceding ideas, let the system S be the
citizenry of a country. The abstract states () of such a system might characterize
the political mood of the populace. For this, we could take

0 = foy, Wy, w3, 0y, 5

where w,; = very content, t, = weakly content, w; = divided, w, = some dissatis-
faction, wg = great unrest. Two (of many) observables for this system could be f,
the fraction of the population favorably disposed to the political party in power,
and f,, the fraction neutral or opposed to the current regime. The actual numeri-
cal values of f, and f, when the system is in any state, w € (), need to be deter-
mined on empirical grounds. However, we always have the equation of state

S f=fy+f—1=0,

for any @ € (L.

In the above situation, there is no notion of causality. The observables of F
and the equation of state ¢ are simply quantities that represent our view of the
system S; they compactly summarize our experimental and observational
knowledge of S'; that is, the data. The common manner in which a causal structure
is imposed upon the observables is through the recognition that in all systems
there are noticeably different time-scales according to which the values of the
observables change. We can employ (tacitly or directly) these time-scales to
induce a notion of order, or a causal structure, upon F.

To see how a causal structure can be introduced, imagine a system S charac-
terized by an abstraction F = {f,,..., fy} involving N observables. Further, assume
that observation has shown that the observables change on three time-scales,
slow, medium, and fast, for example. For the sake of exposition, let the observ-
ables be labeled so that

a = o fp ) =slow |

f

U = fpippen fg) = medium

Efq +1""‘fN; = fast .

Let 4, U, and Y represent the range of values of the observables a, u, and y,
respectively. By the preceding argument, we have 4 CR¥, U CR™, and ¥ CR™,
where n =q —k and m = n — ¢. The causal relationship is induced by invoking
the principle that slow dynamics force, or cause, fast dynamics. Thus, we regard a
and uw as causing y. In common parlance, the slow variables a are generally
termed parameters, while the medium-speed, causal variables u are termed
inputs (controls, decisions). The response variables y are the system outputs.
Usually, there is a feedback effect in that ., and sometimes a, is modified
by the output y. But the important point here is that when we think of some
observables causing others, it is the rate-of-change of the observables that pro-
duces the temporal ordering which we assign to the system. Thus, causality is not
necessarily a natural or intrinsic aspect of S, but rather is introduced by the
way the observer perceives the various time-scales at work in the system. In the
classical physical sciences, this point is not usually particularly important and

Yy
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becomes significant only at cosmic and quantum levels; however, in the social and
behavioral sciences it is an issue at the very outset, and partially accounts for the
difficulties in economic and social modeling of deciding what causes what, a ques-
tion which lies at the heart of any sort of predictive modeling.

A better intuitive understanding of the partitioning of the system observ-
ables is obtained if we employ an evolutionary metaphor. The slow variables a can
be thought of as specifying the system genotype; that is, the aspects of S that
enable us to recognize the system as S and not some other system S’. For
instance, in an urban environment, a might code information about the local geo-
graphic, cultural, political, and economic structure that allows us to know we are
in Omsk rather than Tomsk. The medium-speed observables w correspond to the
system’s environment. Thus, u represents either natural environmental factors
or those created by decision-makers. Finally, the outputs ¥ characterize the mor-
phostructure, or form, of S, the so-called system phenotype. For many social
systems, y represents the behavioral responses of S to genetic mutation (change
of a) and/or environmental fluctuation (change of w). In the urban context, u may
reflect various actions by policymakers, such as imposition of zoning restrictions,
urban renewal legislation, and the like, while ¥ would then display the effects of
those environmental decisions, together with the given genotype (city), as new
housing developments, modifications of transport channels, redistribution of
industry, and so forth. The important point is the relative time-scales of the
processes.

Now let us turn to the central question of this section: how to decide whether
two descriptions, or models, of the same system are equivalent. In the above termi-
nology, we have the description

d,:U Y,
and the description
(56 U Y ,

both purporting to describe the same system S, and our question is whether the
two descriptions convey the same information about S or, what amounts to the
same thing, do $ and ) provide independent descriptions of 57

Mathematically, the descriptions @a and ‘I>a are equivalent if there exist

maps g and A, depending on a and @, such that the following diagram commutes:

P

a

9“0

LY
CedE—
<~¢— <

x>

o

Wy

.
&

The existence, properties, and construction of the maps 9,5 and h g depend
strongly upon the mathematical structure assumed for the sets U and Y and the
descriptions @a and 66' We do not discuss these matters here. A purely
mathematical treatment of the above question forms the core of singularity
theory, which is covered in detail by Golubitsky and Guillemin (1973), Lu (1976),
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and Gibson (1979). The systems view of singularity theory as outlined above is
treated in Casti (1984).

It is worthwhile to pursue, for a moment, the implications of system
equivalence. If !I?a and 6& are equivalent, it means that a change of the parameter
a to @ can be neutralized, or cancelled out, by a corresponding relabeling of the
elements of the sets U and Y. Speaking metaphorically, if we regard S as an organ-
ism described by !Iia, then the genetic mutation @ = @ can be made invisible by an
appropriate modification of the environment U and the phenotype Y. When put in
such terms, the notion of system equivalence is strongly reminiscent of the theory
of biological transformations originally developed by d'Arcy Thompson in the early
1900s. In that theory, an attempt was made to show that a common genetic struc-
ture in the past could be inferred from phenotypic equivalence in the present. In
other words, two species (y.y) with different genotypes (a # a) in the present,
would be considered to have arisen from a common ancestor (@ = &) in the past, if
there is a phenotypic transformation h which transforms one species into the
other. This is clearly a special case of our diagram when the environment U is held
fixed (g = identity).

For given genotypes a and a, it may be that there exist no transformations
g and h which enable us to pass from ¢, to 42&. In this case, there exist muta-
tions @ near a that result in qualitatively different phenotypic structures. Such a
situation forms the underlying basis for a theory of bifurcation and catas-
trophes, which we consider in more detail below.

The Emergence of Complexity

The electron is not as simple as it looks.
Sir William Bragyg

The complexity of a system S is a contingent property, depending upon the
nature of the observables describing S, the observables characterizing the sys-
tem O measuring S, and their mutual interactions. Imagine that O sees S in an
operational mode which O describes by the equation of state !Iia. Further, suppose
that at another time O sees S in the mode §.. 1f &, and $ are equivalent, in the
sense described above, O concludes that S is manifesting essentially the same
behavior in the two modes, and QO is able to use equally well either description to
characterize both modes of S. On the other hand, if @a 4 ) é (i.e., they are not
equivalent), O is unable to reduce one description to the other and regards the
operation of S as being more complex, since O sees more variety in the possible
modes of S's behavior. This simple idea forms the nucleus of our main thesis that

complexity of S = the number of nonequivalent descriptions
(relative to 0) !Iia that O can generate for S.

Interchanging the roles of S and O, the complexity of O relative to S is defined in
a similar manner. Let us denote these two complexities as Cp(S) and Cgq(0),
respectively. Thus, Cp(S) is what we earlier termed design complexity, while
Cs(0) is the control complexity of the joint system S and O.
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A crucial aspect of our notion of system complexity is that it is a compara-
tive concept: there is a tacit assumption that in order to compute Cp(S), O must
have available a family of descriptions of S and a method for deciding whether
or not two descriptions from the family are equivalent. If @ denotes the family of
descriptions, the above procedure defines an equivalence relation on @, thereby
partitioning it into appropriate equivalence classes. Since, by definition, all
descriptions belonging to a given class are equivalent, the number Cp(S) is just
equal to the number of classes that @ is separated into by our concept of system
equivalence. To operationally implement this procedure, the following steps are
needed:

(1) Beginning with a fixed description S construct a family @ of descriptions
containing S as a member. One fairly standard way of doing this has already
been described above, when we begin with the description @(fl,...,fN) and
isolate some observables as parameters a. The values of a then provide a
parameterized family of descriptions of S.

(2) Partition @ into equivalence classes in accordance with the equivalence rela-
tion "~'" described earlier. To accomplish this task, it is necessary to employ
the machinery of singularity theory, once the mathematical character of @
and the equivalence relation are fixed.

(3) Calculate Cp(S) = card @/~ = the number of classes into which @ is split by
the relation ~.

In terms of management and decision-making, it is O who must select the fam-
ily @ and the relation ~; different selections lead to different levels of complexity
as perceived by 0. Similar remarks apply to the view of O as seen by S.

A simple example in which the above concepts are explicitly displayed is
when $: U » Y is linear with U = R™,Y = R™. In this case, $ can be represented
by an m X n matrix, once bases are chosen in U/ and Y. In order to parameterize
the description &, let us suppose that we regard the first diagonal element of ® as
a parameter; that is @ =[$];,. Then the family @ = {$,:R™ > R™, a € R{. Now
let P and @ be linear coordinate transformations in U/ and Y, respectively, and
suppose we consider an alternative description, ¢ gt that is, we change the value
of the element [$],, from @ to &. We ask if ¢, ~ <I>& or, what is the same thing,
does the diagram

u
Pl
u

commute? Well-known results from matrix theory tell us that in this case ¢, ~ ¢,

d

a
—_—
e

<4¢—— <
o]

&.

a

if and only if

rank ¢, =rank ¢_
a
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Thus, if we let @ = min {m, n |, we can assert that
complexity &, <a +1 .

The exact complexity, of course, depends upon the structure of the fixed ele-
ments of @a. If, for example, rank $, is constant for all @ € R, then complexity
%, =1. Thus,

complexity ¢, = number of different values that rank
$, assumes as a ranges over R.

In passing, we note that the points a* € R at which ¢, changes rank are
what we earlier termed bifurcation points. They represent places where the
inherent information in the description @a (here represented by the number of
linearly independent rows of &, for example) is different from that in ¢,. for a
near a *. We return to this point in a more general context later.

In summary, complexity emerges from simplicity when alternative descrip-
tions of a system are not reducible to each other. For a given observer, the more
such inequivalent descriptions he or she generates, the more complex the system
appears. Conversely, a complex system can be simplified in one of two ways:
reduce the number of potential descriptions (by restricting the observer’s means
of interaction with the system) and/or use a coarser notion of system equivalence,
thus reducing the number of equivalence classes. The first strategy is exemplified
by a decision-maker who listens to only a few advisors before making a decision
rather than gathering a full spectrum of views on a particular issue; a failure to
dig deep enough to get all the facts surrounding a situation before taking action
would be representative of the second approach to simplification. Both
approaches are considered in more detail below, but first let us examine some of
the ways in which the complexity of a system can change in a natural manner.

The Evolution of Complexity

In short, the notion of structure is comprised of three key ideas: the idea
of wholeness, the idea of transformation, and the idea of self-regulation.
J. Piaget

It has been recognized, at least since the work of Turing and von Neumann on
self-reproducing machines, that in order for a system to evolve to a higher level of
complexity, it is necessary for the system to contain its own self-description. We
might well ask why it would not be possible to design a self-reproducing system
with given functional characteristics using hardware alone, without also requiring
an internal linguistic description of what it is doing. The answer lies in the condi-
tions for reliability, adaptation, growth, and evolution that we use to characterize
complex systems; we are not interested in a system whose natural tendency is to
degenerate or lose its function. Systems that contain their own genetic descrip-
tion are one known type of organization that allows survival and evolution despite
errors within the system, or even errors in the description. In general, we have
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only a feeble understanding of the explicit conditions for the linguistic descrip-
tions needed to achieve the threshold of reliability and adaptability necessary for
survival and evolution.

In the above view, a complex system is a composite consisting of a physical
structure (the hardware) carrying out functions under the instructions of an
internal description of itself (the software). This situation would be well under-
stood, as it is in computer science, if it were not for the fact that in most systems
of interest the hardware and software are contained in the same physical struc-
ture. A key problem in the understanding of complex processes is the way in
which the dynamic modes of the system interact with the linguistic modes, and the
manner in which these complementary modes are combined to provide an external
observer with some level of complexity, as outlined earlier. If we regard a mea-
surement process as a physical structure that executes a rule which relates a
system to an element of its description, then the encoding of dynamical processes
to linguistic structures is very closely related to measurement. On the other hand,
the decoding and physical execution of a genetic description is a problem of
interpretation.

The measurement/interpretation complementarity can be very easily demon-
strated by examining ordinary human speech. We can either say what we mean or
we can examine how we have said it, but we can’t do both simultaneously. We can
represent physical structures as descriptions only when we recognize that the
structures are obeying a coherent set of rules, which we call a language. And it is
in this language that we formulate our concepts of complexity or simplicity. The
irony in this picture is that the natural language we use to identify complexity
may cause us to interpret inherently simple events, as seen by the internal
language of our self-describing system, as complex messages in our interpretative
natural language. An important component in the management of complexity is the
institution of procedures to bring the internal and natural languages much closer,
and so to prevent the external observer from receiving a message that is not
really in the system itself.

Considerations of structure and description also bear heavily upon the emer-
gent complexity arising out of lower level, simpler processes. If we think of the
evolutionary process, in general, as a mapping of environmental variety and con-
straints into the structure of the evolving system in the form of organizing princi-
ples and coded information, then it is possible to distinguish three quite distinct
evolutionary strategies: the phylogenetic, ontogenetic, and sociogenic. Let us
consider these strategies in light of our earlier remarks.

. Phylogenetic. This strategy involves random genetic mutations and gene mix-
ing which are tested in their phenotypic forms by interaction with environ-
mental stresses. The successful structures (if any) result in the blind,
natural selection of the corresponding genotypes. In terms of our earlier for-
malism, the map ¢, :U =Y is modified by purely random changes in a with
future mutations of a entirely unaffected by the resulting phenotypes
Yo (u). Such a strategy is enormously profligate and slow, permitting rapid
environmental fluctuations to reduce the viability of species before the phy-
logenetic mapping can catch up as, for example, with the extinction of the
dinosaurs.



On System Complezxity 159

. Ontogenetic. If the system has some means of storing the results of muta-
tions in a, for example, with some neurophysiological structure like a brain,
then instead of random genetic changes, we have selective trial-and-error
probings of the environment. In short, the genetic changes are directed by
what has gone before irn a process called learning. Such an ontogenetic
strategy permits a more rapid and refined process of information generation
about the environment; there is an adaptive mechanism by which successful
phenotypic characteristics are fed back to the gene pool to promote further
genotypic changes. We might think of this feedback or learning mechanism as
embodied in the neural code of the system, as opposed to its genetic code.
However, this strategy also has its drawbacks, principally the fact that the
information is stored in the system and goes out of existence with its death.

. Sociogenic. This strategy is associated with systems that are not only social,
as in various insect societies, but also sociocultural, which involves not only a
permanent social organization, but also an arbitrary symbolic coding of the
role relationships in the society. At this level, the sociogenic strategy of
evolution involves an additional code, the normative code, which is stored
outside the physical system itself. Thus, the information about the environ-
ment does not die with the system and, in fact, can be passed on to new
systems without their having to first directly experience the actual environ-
mental interactions. In this strategy, besides the advantage of extra-somatic
storage of information, there is the possibility of the system
restructuring itself very rapidly when environmental pressures become great
enough.

In the sociogenic strategy, we pass from a variation of the genetic code
to mutations of the normative code, which guides the social and psychological
development of new generations. Instead of a gene pool comprising the
system's stock of coded information, there is an idea pool which is a reser-
voir of the culture’'s templates for the coordination and integration of indivi-
dual actions and interactions. New ideas or ideologies are continually
generated as mutations, subject to various selection pressures, with repro-
ductive success measured by the perpetuation of one normative system and
social structure as opposed to others.

As a simple illustration of sociocultural evolution, consider the develop-
ment of societal regulatory mechanisms; that is, the dominant political struc-
tures. The appearance of democratic forms of social regulation represents,
from the purely objective point of view of cybernetics, the evolution of a
more adaptive political structure. For example, a more extensive idea pool,
fuller information and feedback channels in the system, and a more extensive
mapping of the internal as well as external states of the system and environ-
ment.

Of special importance is the balance between those institutional struc-
tures and processes designed to maintain a given structure and those
designed to enable better adaptation to environmental conditions. The former
structures are much more strongly incorporated into the micro- and macro-
structure of the political system than the latter; hence, pressures tend to
mount until the old structure can be changed only through potentially de-
structive revolution — a singularly poor strategy for evoluton.
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Our previous consideration of system complexity as a property of the
interaction between a system and its observer/repulator applies at each level of
the above evolutionary scheme. However, we can also think of the emergence of'a
new type of system complexity as we pass from the phylogenetic to sociogenic
strategies. This is an evolution not of the complexity displayed by a fixed system,
but rather a qualitative change of the type of system from individual, nonlearning
units to social collections of adaptive units, each system type requiring its own
complexity concept. We touch on some of these distinctions in the next section
which deals with the interrelationships between system complexity and the con-
cepts of adaptation, hierarchy, and bifurcation.

Complex Systems: Adaptation, Hierarchy, and Bifurcation

There is nothing in the whole world that is permanent. Everything
flows onward; all things are brought into being with a changing
nature; the ages themselves glide by in constant movement.

Ovid (Metamorphoses)

Treatments of complexity often place great emphasis upon various behavioral
or structural characteristics of a system, which, if present, offer supposed prima
facie evidence that the system is complex, by whatever interpretation the author
is advocating. Three of the most commonly cited characteristics are:

. Adaptability. The capacity for the system to monitor its environment and to
reconfigure itself on the basis of its observations in order to more effec-
tively perform its function.

. Hierarchy. The tendency for the system to be structurally organized in a
stratified manner so that information and activities at lower levels are com-
bined as inputs to higher levels, while overall direction and control passes
from higher to lower levels.

. Bifurcation and novelty. The tendency for complex processes to spontane-
ously display a shift from one behavioral or structural mode to another, as
levels of organization increase. These surprises or emergent novelties
represent points of bifurcation where a previous description of the system
breaks down and a new description, not reducible to the old, is required.

While it should be clear by now that we do not hold to the view that any of
the above features is an infallible indicator of complexity, it certainly is true that
many complex phenomena are hierarchically structured, do display emergent
behavioral modes, and can adapt to new situations. Consequently, it is of interest
to examine how well these system properties can be accommodated to the complex-
ity concept introduced earlier in this chapter.

Adaptation

Consider the capability of a system to adapt to changing conditions in the
environment. This is a functional concept involving at least some subsystems
changing their functional behavior to accommodate the new environment. A
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political system granting voting rights to women in response to egalitarian social
currents, as in Switzerland in recent times, is the type of adaptive change a com-
plex system can often make. So is the way in which banks have been introduced
into modern economic structures as an adaptation to provide for intertemporal
exchanges in disequilibrium. Here, a subsystem whose previous function was only
to act as a storehouse of wealth, has changed its function to provide credit and
other services which allow an economy to sustain a continual state of disequili-
brium. One might say, even, that all adaptation arises as a result of a principle of
function change, whereby subsystems created for one function begin to perform a
quite different function when the system perceives the new function to be evolu-
tionarily more advantageous than the old. The classical biological example of this
kind of shift is the evolution of the human eye, which cannot confer any survival
advantage until it sees and cannot see until it is highly evolved and complex.
Thus, it is difficult to imagine how such an organ could arise as the result of
minute differential changes in a fixed organ, even over millions of years. It is much
more reasonable to suppose that originally the eye performed a function quite dif-
ferent from sight and an accidental feature of this proto-eye was that it was pho-
tosensitive. As time wore on, the photosensitivity feature became more and more
evolutionarily advantageous and the original function of the eye was lost.

The picture of adaptation as being a system response to changed cir-
cumstances leads to the basic evolutionary equation

variation + selection = adaptation,

expressing the fact that, in order to adapt, the system must have many potential
modes of behavior and a procedure for evaluating the relative fitness of the vari-
ous alternatives in a given environment. One of the difficulties with complex
human social systems is that redundancy at the genetic level, which gives the
capacity for independent variations, is too limited. As a result, there is too little
room for trying new approaches and for exploring alternative pathways to a given
functional goal when operating circumstances change. Systems such as large
nuclear power plants, national economies, major ecosystems, and the like have lit-
tle, if any, degrees of freedom in their structure or design with which to experi-
ment. The consequences of a failure are too great to allow the evolutionary equa-
tion to operate effectively, at least in its natural mode. In our view, until more
resilient design policies are employed for such large-scale systems, the only possi-
ble way to escape this prison of hypotheticality is by way of mathematical models
and computer exploration of alternative systems, rather than by relying upon
nature's trial-and-error. On balance this is probably a better strategy anyway,
since we don’'t have millions or even hundreds of years to find solutions to our
energy, economic, and environmental problems. But the potential Achilles heel in
the computer simulation strategy is that it is totally dependent upon the
existence of faithful models of reality, expressible in mathematical terms. Thus,
the weight of the entire edifice is concentrated upon the need to develop a sci-
ence of modeling and effective procedures for the identification of '"good' models
of human and natural phenomena.

To incorporate the above ideas into our earlier formalism, we must introduce
a feedback mechanism through which environmental fluctuations are sensed by
the system and used to generate exploratory variations in the system's
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“genomes". Recalling that the basic description (or model) of the system is given
by a family of relations

d,:U-Y ,

inclusion of adaptive capabilities requires two steps:

(1) Feedback/feedforward loops. The system genome a is now thought of as
being at least partially determined by either current and past states of the
environment (feedback), in which case a =al[u(f — 7)] and/or upon
predicted future states of the environment (feedforward). In the latter
event, @ =alu(t + 7)]. Here T is some time-lag, while 2 denotes the
predicted future environmental state. There are good arguments for both
feedback and feedforward mechanisms in adaptive structures and, most
likely, any truly self-organizing complex structure develops both modes for
coping with environmental change.

(2) Selection procedure. Implicit in the above feedback/feedforward mechanism
is a selection procedure; the environment is sensed and predicted and a rule
is applied which tells the system how to modify its genome to best fit the
changed circumstances. Thus, the feedback/feedforward loops represent
both random and directed search in the space of the genomes, together with
a procedure to weed out the "good’ genetic patterns from the "bad”.

At this point it is useful to note the distinction between the adaptive capa-
bility of an individual system and the effect that the association of individuals in a
society has on this capacity. Basically, the adaptive capacity of an individual is
reduced, but group adaptive capacity is increased as individuals join together in
cellular societies. The key point here is that the group capacity is increased, but
on a much longer time-scale than that for individuals. Thus, individual companies
join together to form a multinational conglomerate, thereby gaining a group ability
to respond to global economic fluctuations that no individual member could easily
accommodate, but on a much longer time-scale than the reaction time of a typical
firm. It is probably fair to say that higher-level associations only arise through
defects in the adaptive capability of individuals. More than any other factor, it is
this limited adaptive capacity of individuals that gives rise to the hierarchical
organizations so typically present in complex systems.

Hierarchy

The failure of individual subsystems to be sufficiently adaptive to changing
environments results in the subsystems forming a collective association that, asa
unit, is better able to function in new circumstances. Formation of such an associ-
ation is a structural change; the behavioral role of the new conglomerate is a
functional change; both types of change are characteristic of the formation of
hierarchies. It has been argued by Simon (1969, 1581), as well as others, that evo-
lution favors those systems that display stable, intermediate levels of structure.
Furthermore, a complex system is incomprehensible unless we can simplify it by
using alternative levels of description. A digital computer illustrates both types
of hierarchies, where we have structural or hardware levels from microchips to
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functional units like disc drives, terminals, processors, and so on. On the descrip-
tive side, we have the system software which describes what the structural levels
are to do, using a series of descriptive levels from machine languages to high-level,
natural-language programming languages.

In a hierarchical structure, the various levels of organization refer primarily
to different ways in which it is possible for us to interact with the system, i.e.
nonequivalent types of state descriptions generate different hierarchical levels.
It is not possible, for instance, to understand the machine language operations
represented by a particular BASIC statement without moving away from the level
of BASIC to the more microscopic level of machine instructions. The two descrip-
tions are incompatible in much the same way that it is impossible to understand a
biological organism by studying its individual atoms and molecules. Of course, the
same situations occur repeatedly in economics under the rubric micro—macro
problems, as well as in urban studies, psychology, sociology, and many other areas.

It is interesting to note that in hierarchical organizations, the organizational
characteristics look the same at each level, in that the dynamics and structural
interactions at each level appear to be models of each other. This feature was
noted long ago by Haeckel in his bioenergetic law — ""ontogeny recapitulates phy-
logeny", expressing the observation that each organism carries the entire history
of the phylum within itself. Other examples of this principle abound: computer
programs and their subroutines, a symphony and its various movements, a neural
network and the associated network of genetic control, a book and its component
chapters, and so on. Some of these hierarchies are structural, while others are
functional, and it appears safe to say that the central problem of hierarchy
theory is the understanding of the relation between the structural and the
descriptive (or functional) levels. Most of the classical physical sciences have con-
centrated upon structural decompositons, culminating in today’s multimillion-dollar
searches for the ultimate particles of matter. This is suitable for the study of
physics, but for an understanding of living systems (biological, human, social) it is
necessary to look for functional decompositions: the new reductionism will be
based upon units of function and description, not units of structure.

How can the preceding concepts of hierarchical levels be incorporated into
our mathematical formulation? At the structural level, the atoms of our modeling
formalism are the real-valued observables f, : Q) +» R, where {1 is the system’s set
of abstract states. In a loose sense, {f;{ are the state variables of the model.
Structural hierarchies are formed by combining these state variables, either by
aggregation or disaggregation, into new quantities. Imagine that we have n observ-
ables that can be collectively written f = (f4.....f,) A hierarchy is formed by
prescribing a rule for combining these quantities into m new observables,
f =1 fa-wfplthatiseach f, = f, (fq....f,) Diagrammatically, we have

R
De——D
De—

™

f
 —
f
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in which, the map £ is either an imbedding or a projection of R® + R™, depending
upon whether n <m or n > m. The interesting part of the diagram involves the
map a and the new state space {). Since ( B, f ) repregent a different hierarchical
level than (£}, f), it is generally the case that ) # (}; that is, the set of states
appropriate for characterizing the system at a given level is not generally the
state set appropriate for another level. But the diagram makes it clear that there
is some flexibility 1n passing from Q to D We can either choose @, thereby fixing
the new state set 3, or we can choose {} and then determine a« from the relation
Bof fo a. The picture sketched above provides a prototypical framework for
all structural stratifications that involve the introduction of hierarchies through
aggregation and disaggregation.

The descriptive stratification proceeds on the basis that the system activity
is determined by the equation of state that links its observables. Thus, the func-
tion that the system performs is described by the rule

& g f) =0 .

Farlier, we subdivided the observables using cause-and-effect arguments and
wrote this relationship as

b, U Y .

Now let us consider what is implied when the system passes to a new descriptive
level at which a new function is performed. In our context it can mean only one
thing: the equation of state & has been modified to a new equation @ possibly (but
not necessarily) with a change of observables from f - f: that is, in diagrammatic

form
v
g l
v

We have already discussed the ramifications of this diagram and note here only
that the appearance of a new functional hierarchical level is abstractly the same
as the occurrence of a bifurcation in the system description. Consequently, the
emergence of new functional hierarchies is completely intertwined with the con-
cept of system bifurcation, and an understanding of the system’s functional levels
of organization can only occur through a deeper investigation of the number and
type of its bifurcation points.

L)

a
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>
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Bifurcation, Error, and Surprise

Farlier, we considered the situation in which there were two descriptions of
a given system, say <D and fb- and addressed the question of when we could mean-

ingfully say that @, was equ‘walent to <D . It was argued that $, ~ <P- if maps g
and A could be found such that the dlagram above commutes. In other‘ words,
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b, ~ :15& if a change of genotype a + @ can be neutralized by appropriate
changes, g and A, of the environment and phenotype, respectively. If no such g
and h exist (within some appropriate class of maps), then a is called a bifurca-
tion point for the description ¢ (or, equivalently, & is a bifurcation point for the
description 5). We then define the complexity of the system in terms of the
number of bifurcation points. So in this sense, a system S is more complex than a
system S’ if our description of S contains more bifurcation points than our
description for S’. Thus, the concept of system complexity and the idea of a bifur-
cation are intimately linked at the very outset of our theory: increased complex-
ity can only emerge at a bifurcation point and, conversely, every bifurcation point
gives rise to a new mode of system behavior that is not reducible (i.e. understand-
able) in terms of the old. Now let us consider a quite different way in which bifur-
cations can generate emergent behavior when two systems are made to interact
with each other.

Consider the simple situation in which we have () = the real numbers R, and
the observables f = (f4,....f, ), are defined as

fi: R >R 1 =12,...n.
r - 1ith coefficient in the
decimal expansion of r

Then, clearly, r4, 7, € R are equivalent with respect to the observables f when
7, and 7, agree in the first n terms of their decimal expansions. Now choose
numbers r{ , 7, such that

Ty™~pTy + Ta™~pT2
Now we let the 1-system interact with the 2-system through multiplication; that is,
we form the products r3=(r,7,) and r3 = (r;7, ) and find that, in general,
T3 ﬁfré ; that is, the equivalence classes under f are split by the interaction
(i.e., by the dynamics). In other words, the interaction generates a bifurcation of
the f-classes, a bifurcation that we usually call round-off error, in the above con-
text. It is instructive to examine the source of this so-called error.

To see the way the error is introduced in the above situation, let us consider
a numerical example. Let 7, =123, r{ =124, r, =234, and r; =235, and use
f = (1. f2) that is, the equivalence relation generated by f is such that two
numbers are equivalent if they agree in the first two places. Here we have 7, 7,
(= 28782) ﬁfri 7, (=29140), a discrepancy with our expectation based on the
Jf-equivalence. Our surprise at finding 7,7, # friré occurs because the set of
observables f = (f,,f>) is too limited, thereby causing an unrealistic expectation
concerning the interaction between the 1- and 2-systems. If we had expanded the
set of observables to the set f = (f1,f 2. f3), then no such discrepancy yould
have occurred, since there would be no equivalence, at all, of 4,7 under f. So,
the entire source of our observed error is purely from the incompleteness in the
description of the system.

The preceding arguments are entirely general: error (or surprise) always
involves a discrepancy between the objects (systems) open to interaction and the
abstractions (models, descriptions) closed to those same interactions. The remedy
is equally clear, in principle: just supplement the description by adding more
observables to account for the unmodeled interactions. In this sense, error and
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surprise are indistinguishable from bifurcations. A particular description is inade-
quate to account for uncontrollable variability in equivalent states and we need a
new description to remove the error.

It is interesting to note that since bifurcation and error/surprise are identi-
cal concepts, and that complexity arises as a result of potential for bifurcation,
we must conclude that complexity implies surprise and error; that is, to say a sys-
tem displays counter-intuitive behavior is the same as saying that the system has
the capacity for making errors, although the error is not intrinsic to an isolated
system, but occurs when a system interacts with another.

Models, Complexity, and Management

The man who draws up a program for the future is a reactionary.
Karl Marz

It has been said that the reason we construct models is to be able to say
"because'. Coping with complexity involves the creation of faithful models of not
only the system to be managed, but also of the management system itself. As we
have continually emphasized, complexity, its identification and control, is an
interactive concept between the system and its manager and it is impossible for
the management system to effectively regulate the controlled system without hav-
ing a concept (read: model) of itself, as well as of the system to be managed. This
self-description is essential if the management system is to survive in the face of
inevitable error and environmental disturbances of the type discussed above. In
our earlier terms, effective complexity management reduces to the simple
prescription

design complexity = control complexity.

But, what is involved in reaching this state of system—theoretic nirvana?

One aspect we can be certain of is that the search for effective management
of complexity does not necessarily involve simplifying the process to be regulated.
As Einstein pointed out, things should be as simple as possible, but no simpler,
which we could translate as reducing the design complexity to the level of the
control complexity, but no lower. Turning this argument around, we can also think
of increasing the complexity of the management system to bring it into line with
the design complexity of the system. Thus, effective complexity management may
involve either simplifying or complexifying, depending upon the circumstances.
But, in either case, it is first necessary to have means for assessing the levels of
complexity of the two interacting systems. Thus, we must begin to develop the
framework for a theory of models, one that includes effective methods for identi-
fying the complexity of interacting systems and the means by which the conflict-
ing complexity levels can be brought into harmonious balance.

Imagine, for a moment, that such a theory of models already exists and con-
sider the types of mangement strategies that would serve to balance design and
control complexities at some acceptably high level. First, we note that it is not
sufficient simply to equalize the complexity levels of the system and its
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observer/controller. They must be balanced at a sufficiently high level: if I sim-
plify a Chopin piano sonata by requiring that it be played only on the white keys, I
have certainly reduced its complexity level to the level of my observational ability
{(complexity) to understand the piece. However, I obtain very little pleasure from
this kind of complexity balance; the variety that makes the piece interesting has
been destroyed and ! would probably benefit more with no system at all to
observe. In this situation, it is far more reasonable to raise the complexity level of
my observing system to match the level of the piece, which presumably already
exists at a high enough level to perform its intended function. So, any management
scheme must begin by taking into account the absclute level at which the design
and control complexities are to be equalized.

In terms of general control strategies, there are two complementary
approaches. One is to develop bifurcation-free and bifurcation-generating feed-
back policies. As has been noted elsewhere, feedback laws have the effect of
changing the internal structure of the system they regulate. Of course, in our con-
text this means that any feedback policy has the potential to change the design
complexity of the controlled system. Some illustrations of how this can be done
are discussed in Casti (1880), although from the somewhat different perspective of
optimal control theory, not the more general setting discussed here.

From a management point of view, there are some disadvantages to using feed-
back policies, the principle one being that any error-actuated feedback law does
not even begin to act until the system is already out of control; that is, if there is
no error, the system is not being regulated at all. For many engineering systems
this situation is quite satisfactory, but in social and behavioral processes we can-
not usually be so sanguine about error-actuated control. Generally, in such
systems we would like to anticipate difficulties and take action now to avoid pro-
jected malfunctions later. In human systems, we cannot afford the luxury of wait-
ing for the system to fail before we take remedial action. This basic principle
leads to the idea of anticipatory control and feedforward policies.

The most important feature of anticipatory control systems is that the
manager must have a model of the system to be regulated, and his or her actions
are dictated by the regularities between the behavior of the system, as
predicted by the model (which is run on a time-scale faster than real-time), and
the actual, observed system behavior at the future time of the model prediction.
The prediction and observation are then correlated and the model recalibrated,
leading to the idea of adeptive control. Surprisingly, there seems to have been
very little study of such processes, although some recent work by Rosen (1978,
1984) promises to redress this imbalance of knowledge between feedback and
feedforward regulators.

From the above, the broad outline of a research program for complexity
management begins to emerge, and consists of the following major components:

(1) A Theory of Models. There is a need for development of a sufficiently rich
theoretical framework for mathematically representing processes in the
social, behavioral, and cultural environment. This theory must of necessity
include methods for identifying relevant observables, state spaces, and equa-
tions of state, as well as provide a basis for formally incorporating the com-
plexity, adaptation, hierarchy, and emergence concepts discussed above.
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() Anticipatory Control. A deep investigation into the nature of feedforward
policies as opposed to feedback is needed, in order to provide the means for
balancing complexity levels between the manager/decision-maker/
observer and the system under consideration. Such an investigation will
include studies of adaptive mechanisms, as well as the role of anticipatory
policies in reducing/generating bifurcations in the managed system descrip-
tions.

Each of these points need considerable elaboration before they can consti-
tute a plan for a truly creative research program. But already it is clear that
creative research is what is needed if any progress at all is to be made in the com-
plexity management problem. And here the emphasis is on the word creative: no
pedestrian, pull-the-pieces-off-the-shelf-and-put-them-together type of program
will suffice. New ideas and new approaches are the only currency of this realm. It
seems appropriate to close by stating a few general features that serve to identify
what we mean by creative research, as opposed to the pedestrian. Our advice to
anyone contemplating creative research is to:

. Avoid the research literature.

. Avoid practitioner’s problems.

. Never put high hopes on any study for any useful information.
. Never plan — especially not in the long term.

. Never apply for a research grant.

. Never give up if everyone thinks you are wrong.

. Give up immediately when they think you are right.

As Nietzsche said, "that which needs to be proved cannot be worth much”, so in
today's world 1 won’t hold my breath waiting for any putative "research” organiza-
tions to adopt even one of the foregoing principles as part of their official posture
and manifesto. Nonetheless, the closer an individual researcher comes to adher-
ence to these guidelines, the closer he or she will be to a position from which to
crack the nut of system complexity and its management.

Notes and references

Complexity and simplicity

A detailed consideration of the contention that system complexity necessarily
relates to the interaction of a given system with its observer/describer/controller is
found in

Phillips, W. and Thorson, S. (1875) Complexity and policy planning, in Sysiems
Thinking and the Quality of Life, Proc. Soc. for General Sysiems Research
Annual Meeling.

This paper is notable for its review of various concepts of complexity in the field of
social system management and for its conclusion that " ... no adequate characterization
of the complexity of a system can be given without specifying the class of observers
dealing with the system, as well as the specific purposes of the observers"”. The author’s
arguments supporting this view of complexity culminate in the contention that "which-
ever approach we take to modeling the outer environment - the policy problem — the
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complexity characteristic of the system is contingent upon our description of the rela-
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Ashby, W.R. (1973) Some peculiarities of complex systems. Cybernetics Medicine
9: 1-8.
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Quine, W.v.0. (1964) On simple theories of a complex world, in J. Gregg and F.
Harris (Eds) Form and Strategy in Science (Dordrecht: Reidel),

Wimsatt, W. (1972) Complexity and organization, in K. Schaffner and R. Cohen (Eds)
Studies in the Philosophy of Sciences, Vol. XX (Reidel, Boston),

and the classic paper

Simon, H., (1968) The architecture of complexity, in Sciences of the Artificial
(Cambridge, MA: MIT Press).

Management of the complex

The concepts of design and control complexity were introduced by Gottinger in the
somewhat different context of an automata—theoretic treatment of complexity. For a
recent account of his ideas see

Gottinger, H. (1983) Coping with Complezity (Dordrecht: Reidel).

This work represents an approach to the problem of system complexity originally ini-
tiated by John Rhodes in

Rhodes, I. (1971) Application of Automata Theory and Algebra (Berkeley, CA:
Lecture Notes, Department of Mathematics, University of California).

The importance of the symmetry of the interaction between the system and its
observer/controller has been particularly emphasized in

Rosen, R. (1984) Anticipatory Systems (London: Pergamon),
and

Rosen, R. (1978) Fundamentals of Measurement and Representation of Natural
Systems (New York: Elsevier).

For a discussion of some of the important matters arising from the interactions
present in the political process see

Kirby, M.J.L. (1980) Reflections on Management of Government Within a Demo-
cratic Sociely in the 1980s, Parts I & II. (Ottawa: Plaunt Lectures, Carlton
University).
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Works emphasizing similar aspects of complexity in social and behavioral areas include
Winthrop, H. (1972) Social systems and social complexity in relation to interdiseci-
plinary policymaking and planning. Policy Sciences 3: 405—-420,

Winham, G. (1976) Complexity in international negotiation, in D. Druckman (Ed)
Negotiations (Beverly Hills: Sage Publ. Co.),

as well as the Phillips and Thorson article cited earlier.

Systems, observables, and models

A thorough exposition of the ideas surrounding observables, abstractions, and
equations of state is found in the Rosen books cited earlier.

The fast—slow distinction as a means of inducing causality is a special case of
hierarchical ordering, but in time rather than space. For a discussion of this crucial
point, see the book

Fraser, J.T. (1978) Time as Conflict (Basel: Birkhauser).
Additional discussion of the macro—micro problem is found in

Allen, T.F.H. and Starr, T. (1982) Hierarchy (Chicago: University of Chicago
Press).

Use of an evolutionary metaphor to characterize human systems is far from new,
dating back at least to Herbert Spencer and the social Darwinists. A modern attempt to
mimic biology as a guide to social development is

Corning, P. (1983) The Synergism Hypothesis (New York: McGraw-Hill).
In the economic area, the evolutionary metaphor has been quite well-developed in
Nelson, R. and Winter, S. (1982) An Evolutionary Theory of Economic Change

(Cambridge, MA: Harvard University Press),

Boulding, K. (1981) Fvolutionary Economics (Beverly Hills: Sage Publ.).
Singularity theory is treated from a mathematical point of view in

Golubitsky, M. and Guiltemin, V. (1973) Stable Moppings and their Singularities
(New York: Springer),

Lu, Y.C. (1976) Singularity Theory (New York: Springer),

Gibson, C. (1979) Singular Points of Smooth Mappings (London: Pitman).

The connection between these mathematical results and the theory of equivalent systems
is made in

Casti, J. (1984) System Similarity and Laws of Nature [[ASA WP-84-1 (Laxenburg,
Austria: International Institute for Applied Systems Analysis).

The emergence of complezily

For a discussion of the interrelationship between the idea of system complexity as
presented here, and the concepts of system error and entropy, see Chapter 5 in Rosen
(1978), cited earlier.

Many attempts have been made to define the complexity of a system in terms of pro~
perties of the system alone, such as number of components, density of internal
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interactions, and so forth. Some machine—theoretic efforts along these lines are

Bremermann, H. (1974) Complexity of automata, brains and behavior, in S. Levin
(Ed) Lecture Notes in Biomathematics, Vol. 4 (Berlin: Springer),

Bremermann, H. (1974) Algorithms, complexity, transcomputability, and the
analysis of systems, in W. Reidel, W. Handler, and M. Spreng (Eds) Proc. Fifth
Caongress of the Deutsche Gesellschaft fur Kybernetik (Munich: Oldenbourg),

Gaines, B. (1976) On the complexity of causal models. IEEE Tran. Syst. Man &
Cyber. SMC-6: 56-59,

George, L. (1977) Tests for system complexity. Int. J. Gen. Syst. 3: 253-258.

In addition to missing the crucial point that complexity depends upon the interaction of
a system with another rather than upon the system itself, an annoying aspect of such
studies is the way in which the extremely useful term complexity has been usurped by
the computer-orientation of such authors and taken to mean something very specific in
the context of machines and algorithms. This situation is by no means new, as the com-
puter industry has a long and deplorable history of taking useful terms and concepts,
such as information, system, and systems analyst, and then warping the terms to such an
extent that their original meanings are totally lost. Normally this distorting process
could be dismissed with a casual shrug, as is done in mathematics, for instance, but for
the fact that the computer-industry propaganda machines effectively promote their new
meaning of these terms to the general public, thereby creating considerable confusion
as to the more general, and far more useful interpretations of these important concepts.

A fascinating article involving the use of complexity in assessing aesthetic experi-
ence is

Goguen, J. (1977) Complexity of hierarchically organized systems and the struc-
ture of musical experiences. Int. J. Gen. Syst. 3: 233-251.

This article introduces the concept of conditional complexity, based upon past experi-
ences and expectations, and then applies the idea to develop a theory of surprise for
musical compositions. For purposes of aesthetic satisfaction, the author concludes that
if the conditional complexity of a piece is too low, then our expectations are too easily
and too often fulfilled to maintain our interest, whereas if the conditional complexity is
too high, our expectations are too often frustrated to permit much listening satisfac-
tion. This argument leads to an aesthetic law of the mean for musical complexity.

The evolution of complexity

System complexity depends upon whether the system is regarded as an object or as
a description, a theme explored in detail in

Lofgren, L. (1977) Complexity of systems: a foundational study. Inf. J Gen. Syst. 3:
197-214.

The stability and evolutionary potential of self-describing complex systems
depends also upon the complementary relation between the dynamic (structural) and
linguistic (functional) modes of system description. This relationship is inextricably
intertwined with the epistemological problem of measurement. For a detailed considera-
tion of these matters, see

Pattee, H. (1977) Dynamic and linguistic modes of complex systems. Ini. J Gen.
Syst. 3: 258—-266.

A discussion of the several types of evolut.ionar‘ly strategies is found in
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Buckley, W. (1977) Sociocultural systems and the challenge of sociobiology, in H.
Haken (Ed) Synergetics: a Workshop (Berlin: Springer).

Complex sysiems: adaptatlion, hierarchy, and bifurcation
A detailed exploration of biological adaptation as a metaphor for human systems is
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Rosen, R. (1975) Biological systems as paradigms for adaptation, in R. Day (Ed)
Adaptive Economic Models (New York: Academic Press).
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University of Michigan Press),
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Ecosysiem (New York: Plenum).
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Rosen, R. (1978) On anticipatory systems: I & II. J. Social & Biol. Structures 1:
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Day, R.H. (1985) Disequilibrium economic dynamics: a post-schumpeterian contri-
bution. J. Econ. Behavior and Org. (to be published in 1985),
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Simon, H.A. (1981) The Sciences of the Artificial (2nd edn) (Cambridge, MA: MIT
Press).

The appearance of hierarchical organizational structures in natural, as well as
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H. Pattee (Ed) (1973) Hierarchy Theory (New York: Braziller).
See also

Jantsch, E. (1980) The Self-Organizing Universe (Oxford: Pergamon),
as well as the Allen and Starr book cited earlier.

The emergence of new structures and behavioral modes through parameter fluc-
tuations and environmental variability is discussed in some detail in

Prigogine, I., Allen, P., and Herman, R. (1977) Long term trends and the evolution
of complexity, in E. Laszlo and J. Bierman (Eds) Goals in a Global Community
(New York: Pergamon),

Prigogine, I. (1980) From Being to Becoming: Time and Complexily in the Physi-
cal Sciences (San Francisco: Freeman).

The concept of surprise as a system bifurcation is explored in
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Casti, J. (1982) Topological methods for social and behavioral sciences. Int. J.
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A nontechnical consideration of the same circle of ideas and their applied significance
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Holling, C.S. (Fall 1983) Surprise? IIASA Options (Laxenburg, Austria: Interna-
tional Institute for Applied Systems Analysis).
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Atkin, R.H. (1981) A theory of surprises. Environment & Planning B, 8: 359-365.
While Atkin’'s theory does not explicitly employ the idea of a system bifurcation, the con-
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bilistic theory of surprises.

Models, complexily, and management

The question of complexity management is hardly a new one. A nontechnical intro-
duction to some of the important managerial issues that arise is

Beer, S. (1870) Managing modern complexity. Futures 2: 245-257.
It is often held that the objective of system management is to stabilize a process in the
face of a fluctuating environment and, in this context, that stability and complexity are
positively correlated. Discussions of the pros and cons of this dubious argument are

found in

Chadwick, G.F. (1977) The limits of the plannable: stability and complexity in plan-
ning and planned systems. Environment and FPlanning A 9: 1188-1192,

Pimm, S. (1984) The complexity and stability of ecosystems. Natwre 307: 321-326.
The question of bifurcation-free feedback control laws is taken up in

Casti, J. (1980) Bifurcations, catastrophes and optimal control, IEEE Tran. Aulo.
Control, AC-25: 1008-1011.

For a discussion of how linear feedback control laws alter internal system structure, see

Casti, J. (1977) Dynamical Systems and their Application: Linear Theory (New
York: Academic Press).

The connection between feedback and feedforward control laws and the effect that each
type has on the alteration of system structure is pursued in

Kalman, R. (1971) Kronecker invariants and feedback, in L. Weiss (Ed) Ordinary
Differential Equations (New York: Academic Press).

The problems of anticipatory control are developed in

Rosen, R. (1979) Anticipatory systems in retrospect and prospect. General Sys-
tems 24: 11--23.

See also the Rosen works cited earlier.



CHAPTER 7

On Information and Complexity

Robert Rosen

Introduction

We introduce the rather wide-ranging considerations which follow with a dis-
cussion of the concept of information and its role in scientific discourse. Ever
since Shannon began to talk of information theory (by which he meant a proba-
bilistic analysis of the deleterious effects of propagating signals through chan-
nels; cf. Shannon and Weaver, 1949), the concept has been relentlessly analyzed
and reanalyzed. The time and effort expended on these analyses must surely rank
as one of the most unprofitable investments in modern scientific history; not only
has there been no profit, but also the currency itself has been debased to worth-
lessness. Yet, in biology, for example, the terminology of information intrudes
itself insistently at every level; code, signal, computation, recognition. It may be
that these informational terms are simply not scientific at all; that they are a tem-
porary anthropomorphic expedient; a facon de parler which merely reflects the
immaturity of biology as a science, to be replaced at the earliest opportunity by
the more rigorous terminology of force, energy, and potential which are the pro-
vince of more mature sciences (i.e. physics), in which information is never men-
tioned. Or, it may be that the informational terminology which seems to force
itself upon us bespeaks something fundamental; something that is missing from
physics as we now understand it. We take this latter viewpoint, and see where it
leads us.

In human terms, information is easy to define; it is anything that is or can be
the answer to a question. Therefore, we preface our more formal considerations
with a brief discussion of the status of interrogatives, in logic and in science.

The amazing fact is that interrogation is not ever a part of formal logic,
including mathematics. The symbol "?" is not a logical symbol, as, for instance, are
V" "A", "J", or “V"; nor is it a mathematical symbol. It belongs entirely to
informal discourse and, as far as I know, the purely logical or formal character of
interrogation has not been investigated. Thus, if information is indeed connected
in an intimate fashion with interrogation, it is not surprising that it has not been
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formally characterized in any real sense. There is simply no existing basis on
which to do so.

I do not intend to go deeply here into the problem of extending formal logic
(always including mathematics in this domain) so as to include interrogatives. What
I want to suggest here is a relation between our informal notions of interrogation
and the familiar logical operation "=>"; the conditional, or the implication, opera-
tion. Colloquially, this operation can be rendered in the form "If 4, then B". My
argument involves two steps. First, that every interrogative can be put into a kind
of conditional form:

If 4, then B ?

(where B can be an indefinite pronoun like who, what, etc., as well as a definite
proposition); and second, and most important, that every interrogative can be
expressed in a more special conditional form, which can be described as follows.
Suppose [ know that some proposition of the form

If A, then B

is true. Suppose I now change or vary A; that is, replace 4 by a new expression,
¢4 . The result is an interrogative, which I can express as

If 64, then éB ?

Roughly, I am treating the true proposition "If 4, then B", as a reference, and I
am asking what happens to this proposition if I replace the reference expression
A by the new expression 64. I could, of course, do the same thing with B in the
reference proposition; replace it by a new proposition 6B and ask what happens
to A. I assert that every interrogative can be expressed this way, in what I call a
variational form.

The importance of these notions for us lies in their relation to the external
world; most particularly in their relation to the concept of measurement, and to
the notions of causality to which they become connected when a formal or logical
system is employed to represent what is happening in the external world; that is,
to describe some physical or biological system or situation.

Before discussing this, I want to motivate the two assertions made above,
regarding the expression of arbitrary interrogatives in a kind of conditional form.
I do this by considering a few typical examples, and leave the rest to the reader
for the moment.

Suppose I consider the question

"Did it rain yesterday?"
First, I write it as
"If (vesterday), then (rain)?"

which is the first kind of conditional form described above. To find the variational
form, I presume I know that some proposition like

"If (today), then (sunny)”
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is true. The general variational form of this proposition is
"If d(today), then &(sunny)?”

Then, if I put
d(today) = (yesterday),
d(sunny) = (rain)

I have, indeed, expressed my original question in the variational form. A little
experimentation with interrogatives of various kinds taken from informal
discourse (of great interest are questions of classification, including existence
and universality) should serve to make manifest the generality of the relation
between interrogation and the implicative forms described above; of course, this
cannot be proved in any logical sense since, as noted above, interrogation remains
outside logic.

It is clear that the notions of observation and experiment are closely related
to the concept of interrogation. That is why the results of observation and experi-
ment (i.e. data) are so generally regarded as being information. In a formal sense,
simple observation can be regarded as a special case of experimentation; intui-
tively, an observer simply determines what is, while an experimenter systemati-
cally perturbs what is, and then observes the effects of his or her perturbation.
In the conditional form, an observer is asking a question which can generally be
expressed as

"If (initial conditions), then (meter readings)?"

In the variational form, this question may be formulated as follows: assuming the
proposition

"If (initial conditions = 0), then (meter readings = 0)"
is true (this establishes the reference, and corresponds to calibrating the
meters), we ask
"If d(initial conditions = 0), then d(meter readings = 0)?"
where, simply
d(initial conditions = 0) = (initial conditions)
and
8(meter readings = 0) = (meter readings).

The experimentalist, essentially, takes the results of observation as the refer-
ence and asks, in variational form, simply

"If &(initial conditions), then d(meter readings)?"

The theoretical scientist, on the other hand, deals with a different class of
question; namely, those that arise from assuming a B (which may be B itself) and
asking for the corresponding 4. These are questions that an experimentalist can-
not approach directly, not even in principle. It is the difference between the two
kinds of questions which distinguishes between experiment and theory, as well as
the difference between the explanatory and predictive roles of theory itself;
clearly, if we give 84 and ask for the consequent 0B, we are predicting, whereas
if we assume 6B and ask for the antecedent 84, we are explaining.
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It should be noted that exactly the same duality arises in mathematics and
logic themselves; that is, in purely formal systems. Thus, a mathematician can ask
(informally): If (I make certain assumptions), then (what follows)? Or, the
mathematician can start with a conjecture, and ask: If (Fermat's Last Theorem is
true), then (what initial conditions must I assume to construct explicitly a proof)?
The former is analogous to prediction, the latter to explanation.

When formal systems (i.e. logic and mathematics) are used to construct images
of what occurs in the world, then interrogations and implications become associ-
ated with ideas of causality. Indeed, the whole concept of natural law depends
precisely on the idea that causal processes in natural systems can be made to
correspond with implication in some appropriate, descriptive inferential system
(e.g. Rosen, 1984, where this theme is developed at great length).

But the concept of causality is itself a complicated one; a fact largely over-
looked in modern scientific discourse, to its cost. That causality is complicated
has already been pointed out by Aristotle, for whom all science was animated by a
specific interrogative: Why? He said explicitly that the business of science was to
concern itself with "the why of things". In our language, these are just the ques-
tions of theoretical science: If (B), then (what 4)? and hence we can say B
because A. Or, in the variational form, B because 64.

However, Aristotle argued that there were four distinct categories of causa-
tion; four ways of answering the question why. These categories, which he called
material cause, formal cause, efficient cause, and final cause, are not inter-
changeable. If this is so (and I argue below that, indeed, it is), then there are
correspondingly different kinds of information, associated with different causal
categories. These different kinds of information have been confused, mainly
because we are in the habit of using the same mathematical language to describe
each of them; it is from these inherent confusions that much of the ambiguity and
murkiness of the concept of information ultimately arises. Indeed, we can say more
than this: the very fact that the same mathematical language does not (in fact,
cannot) distinguish between essentially distinct categories of causation means
that the mathematical language we have been using is, in itself, somehow fundamen-
tally deficient, and that it must be extended by means of supplementary struc-
tures to eliminate those deficiencies.

The Paradigm of Mechanics

The appearance of Newton's Principia toward the end of the seventeenth
century was surely an epochal event. Though nominally the theory of physical sys-
tems of mass points, it was much more. In practical terms, by showing how the
mysteries of the heavens could be understood on the basis of a few simple, univer-
sal laws, it set the standards for explanation and prediction which have been
accepted ever since. It unleashed a feeling of optimism almost unimaginable today;
it was the culmination of the entire Renaissance. More than that: in addition to
providing a universal explanation for specific physical events, it also provided a
language and a way of thinking about systems which has persisted, essentially
unchanged, to the present time; what has changed has only been the technical
manifestation of the language and its interpretation. In this language, the word
information does not appear in any formal, technical sense; we have only words
like energy, force, potential, work, and the like.
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It is important to recognize the twin roles played by Newtonian mechanics in
science: as a reductionistic ultimate and as a paradigm for representing systems
not yet reduced to arrangements of interacting particles. The essentidl feature of
this paradigm is the employment of a mathematical language with an inherent dual-
ity, which we may express as the distinction between internal states and
dynamical laws. In Newtonian mechanics, the internal states are represented by
points in some appropriate manifold of phases, and the dynamical laws represent
the internal or impressed forces. The resulting mathematical image is thus what is
called nowadays a dynamical system. However, the dynamical systems arising in
mechanics are mathematically rather special ones, because of the way phases are
defined (they possess a symplectic structure). Through the work of people like
Poincaré, Birkhoff, Lotka, and many others over the years, however, this dynami-
cal system paradigm, or its numerous variants, has come to be regarded as the
universal vehicle for the representation of systems which could not, technically,
be described in terms of mechanics; systems of interacting chemicals, organisms,
ecosystems, and many others. Even the most radical changes occurring within phy-
sics itself, like relativity and quantum theory, manifest this framework; in quantum
theory, for instance, there was the most fundamental modification of what consti-
tutes a state, and how it is connected to what we can observe and measure; but
otherwise, the basic partition between states and dynamical laws is relentlessly
maintained. Roughly, this partition embodies a distinction between what is inside
or intrinsic (the states) and what is outside (the dynamical laws, which are formal
generalizations of the mechanical concept of impressed force).

This, then, is our inherited mechanical paradigm, which in its many techni-
cal variants or interpretations has been regarded as a universal language for
describing systems and their effects. The variants take many forms; automata
theory, control theory, and the like, but they all conform to the same basic frame-
work first exhibited in the Principia.

Among other things, this framework is regarded as epitomizing the concept of
causality. We examine this closely here, because it is important when we consider
the concept of information within this framework.

Mathematically, a dynamical system can be regarded simply as a vector field
on a manifold of states; to each state, there is an assigned velocity vector (in
mechanics it is, in fact, an acceleration vector). A given state (representing what
the system is intrinsically like at an instant) together with its associated tangent
vector (which represents what the effect of the external world on the system is
like at an instant) uniquely determine how the system will change state, or move in
time. This translation of environmental effects into a unique tangent vector is
already a causal statement, in some sense; it translates into a more perspicuous
form through a process of integration, which amounts to solving the equations of
motion. More precisely, if a dynamical system is expressed in the familiar form

dz,/dt = f,(z4...zy) i =1,...n 7.0

in which time does not generally appear as an explicit variable (but only implicitly
through its differential or derivation, dt), the process of integration manifests
the explicit dependence of the state variables z; = z; () on time,

t
z; (1) =.t/‘ft[31(7)""-zn(7)]d7+I-L(to) . (7.2)
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This is a more traditional kind of causal statement, in which the state at time ¢ is
treated as an effect, and the right-hand side of equation (7.2) contains the causes
on which this effect depends.

Before going further, let us take a look at the inteprands in equation (7.2),
which are the velocities or rates of change of the state variables. The mathemati-
cal character of the entire system is determined solely by the form of these func-
tions. Hence, we can ask: What is it that expresses this form (i.e. what determines
whether our functions are polynomials, or exponentials, or of some other form)?
And given the general form (polynomial, say), what is it that picks out a specific
function and distinguishes it from all others of that form?

The answer, in a nutshell, is parameters. As [ have written the system (7.1)
above, no such parameters are explicitly visible, but they are at least tacit in the
very writing of the symbol f,. Mathematically, these parameters serve as coordi-
nates for function spaces; just as any other coordinate, they label or identify the
individual members of such spaces. They thus play a very different role to the
state variables, which constitute the arguments or domains of the functions that
they identify.

Here we find the first blurring. For the parameters which specify the form
of the functions f; can, mathematically, be thrown in as arguments of the func-
tions f,; themselves; thus, we could (and in fact always do) write

Ji1 =@y zp,aq,...,a,) (7.3)

where a; are parameters. We could even extend the dynamical equations (7.1) by
writing da; /dt =0 (if the a; are indeed independent of time); thus, mathemati-
cally we can entirely eradicate any distinction between the parameters and the
state variables.

There is still one further distinction to be made. We pointed out above that
the parameters a,; represent the effects of the outside world on the intrinsic sys-
tem states. These effects involve both the system and the outside world. Thus,
some of the parameters must be interpreted as intrinsic too (the so-called consti-
tutive parameters), while others describe the state of the outside world. These
latter obey their own laws, not incorporated in equation (7.1), so they are, from
the standpoint of equation (7.1), simply regarded as functions of time and must
be posited independently. They constitute what are variously called inputs, con-
trols, or forcings. Indeed, if we regard the states [z,(¢)], or any mathematical
functions of them, as corresponding outputs (that is, output as a function of input
rather than just of time) we pass directly to the world of control theory.

So let us review our position. Dividing the world into state variables plus
dynamical laws amounts to dividing the world into state variables plus parameters,
where the role of the parameters is to determine the form of the functions, which
in turn define the dynamical laws. The state variables are the arguments of these
functions, while the parameters are coordinates in function spaces. Further, we
must partition the parameters themselves into iwo classes; those which are
intrinsic (the constitutive parameters) and those which are extrinsic; that is,
which reflect the nature of the environment. The intrinsic parameters are intui-
tively closely connected with the system identity; that is, with the specific
nature or character of the system itself. The values they assume might, for exam-
ple, tell us whether we are dealing with oxygen, carbon dioxide, or any other
chemical species, and, therefore, cannot change without our perceiving that a
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change of species has occurred. The environmental parameters, as well as the
state variables, however, can change without affecting the species of the system.

These distinctions cannot be accommodated with the simple language of vec-
tor fields on manifolds; that language is too abstract. We can only recapture these
distinctions by (a) superimposing an informal layer of interpretation on the for-
mal language, as we have done above, or (b) changing the language itself, to render
it less abstract. Let us examine how this can be done.

In order to have names for the various concepts involved, I call the constitu-
tive parameters, which specify the forms of the dynamical laws, and hence the
species of system with which we are dealing, the system genome; the remaining
parameters, which reflect the nature of the external world, I call the system
environment, and the state variables themselves I call phenotypes. This rather
provocative terminology is chosen to deliberately reflect corresponding biological
situations; in particular, I have argued (cf. Rosen, 1978) that, viewed in this light,
the genotype—phenotype dualism which is regarded as so characteristically bio-
logical has actually a far more universal currency.

The mathematical structure appropriate to reflect the distinctions we have
made is that of genome-parameterized mappings from a space of environments to a
space of phenotypes; that is, mappings of the form

fg:E - P

specified in such a way that given any initial phenotype, environment-plus-genome
determines a corresponding trajectory. Thus, we have no longer a simple manifold
of states, but rather a fiber-space structure in which the basic distinctions
between genome, environment, and phenotype are embodied from the beginning.
Some of the consequences of this scenario are examined in Rosen (1878, 1983); we
cannot pause to explore them here.

Now we are in a position to discuss the actual relation between the Newtonian
paradigm and the categories of causation described earlier. In brief, if we regard
the phenotype of the system at time ¢ as effect, then

(1) Initia! phenotype is material cause.
(2) Genome g is formal cause.
(3) [fg(a), as an operator on the initial phenotype, is efficient cause.

Thus, the distinctions we have made between genome, environment, and phenotype
are directly related to the old Aristotelian categories of causation. As we shall
soon discover, that is why these distinctions are so important.

Note that one of the Aristotelian categories is missing from the above; there
is no final cause. Ultimately, this is the reason why final cause has been ban-
ished from science; the Newtonian paradigm simply has no room for it. Indeed, it is
evident that any attempt to superimpose a category of final causation upon the
Newtonian world would effectively destroy the other categories within it.

In a deep sense, the Newtonian paradigm has led us to the notion that we may
effectively segregate the categories of cawusation in our system descriptions.
Indeed, the very concept of system state segregates the notion of material cause
from other categories of causation, and tells us that it is correct to deal with all
aspects of material causalion independent of other catepories: likewise with the
concepts of genome and environment. I, in fact, claim that this very segregation
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into independent categories of causation is the heart of the Newtonian para-
digm. When stated in this way, however, the universality of the paradigm perhaps
no longer appears so self-evident.

Information

We said above that information is, or can be, the answer to a question, and
that a question can generally be put in the variational form: If 64, then 8F?. This
serves as the connecting bridge between information and the Newtonian paradigm.
In fact, it has played an essential role in the historical development of Newtonian
mechanics and its variants, under the rubric of virtual displacements.

In mechanics, a virtual displacement is a small, imaginary change imposed on
the configuration of a mechanical system, while the impressed forces are kept
fixed. The animating question is: If such a virtural displacement is made under
given circumstances, then what happens? The answer, in mechanics, is the well-
known Principle of Virtual Work: if a mechanical system is in equilibrium, then
the virtual work done by the impressed forces as a result of the virtual displace-
ment must vanish. This is a static (equilibrium) principle, but it can readily be
extended from statics to dynamics, where it is known as D'Alembert’s Principle.
In the dynamical case, it leads directly to the differential equations of motion of a
mechanical system when the impressed forces are known. Details can be found in
any text on classical mechanics.

In what follows, we explore the effect of such virtual displacements on the
apparently more general class of dynamical systems of the form

dz,/dt = f3 (24,0 Zp) 1 =17 . (7.4)

There is, however, a close relationship between the general dynamical systems
(7.4) and those of Newtonian mechanics; indeed, the former systems can be
regarded as arising out of the latter by the imposition of a sufficient number of
nonholonomic constraints.[1]}

As we have already noted, the language of dynamical systems, like that of
Newtonian mechanics, does not include the word information; the study of such
systems revolves around the various concepts of stability. However, in one of his
analyses of oscillations in chemical systems, Higgins (1967) drew attention to the
quantities

u”(:cl,...,:cn) =8/ B:t:j(d:ci s/dt) .

These quantities, which he called cross-couplings if i # 7 and self-couplings if
i = j, arise fundamentally from the conditions which govern the existence of
oscillatory solutions to equations (7.4). It turns out that it is not so much the mag-
nitudes as the signs of these quantities that are important. In order to have a con-
venient expression for the signs of these quantities, he proposed that we call the
jth state variable, x;, an activator of the ith, in the state (zf :c,,?). whenever
the quantity

dx,
de¢

_0
B:cj

>0

0 0y —
Uiy (T g Tp) = @Phnz®
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and an inhibitor whenever
u“(:cf,..., :c,,?) <0 .

Now, activation and inhibition are informational terms. Thus, Higgins' ter-
minology provides an initial hint as to how dynamical language might be related to
informational language, through the Rosetta stone of stability.

Now let us examine what Higgins’ terminology implies. If z; activates z; in a
particular state, then a (virtual) increase in z, increases the rate of change of z,
or, alternatively, a (virtual) decrease of = P decreases the rate of change of z;. It
is, intuitively, eminently reasonable that this is the role of an activator. Con-
versely, if z, inhibits z;, it means that an increase in z, decreases the rate of
change of z; , etc.

Thus, the n? functions, uﬁ(zl,...,zn); i, 7 =1....n, constitute a form of
informational description for the dynamical system (7.4), which I have elsewhere
(Rosen, 1979) called an activation—inhibition patiern. As we have noted, such a
pattern concisely represents the answers to the variational questions: If we make
a virtual change in z4, what happens to the rate of production of z,?.

There is no reason to consider only the quantities Uy We can, for instance,
go one step further, and consider the quantities

Uy (T Ty)) = 8/ 6z, [8/ a:cj(dzt /d4t)] .

Intuitively, these quantities measure the effect of a (virtual) change in z, on the
extent to which z; activates or inhibits z,. If such a quantity is positive in any
particular state, it is reasonable to call z, an agonist of z; with respect to z,; if
negative, an antagonist. That is, if Ugjk is positive, a (virtual) increase in zx,
increases or facilitates the activation of z; by zji. etc. The quantities Uy gk thus
define another layer of informational interaction, which we may call an
agonist—antagonist patiern.

We can iterate this process, in fact to infinity, to produce at each state 7 a
family of n.” functions, u“_“,r(:cl,...,:cn). Fach layer in this increasing sequence
describes how a (virtual) change of a variable at that level modulates the proper-
ties of the preceding level.

So far we have considered only the effects of virtual changes in state vari-
ables, z;. on the velocities, dz, /dt, at various informational levels. We could simi-
larly consider the effects of virtual displacements at these various levels on the
second derivatives, dz:A:,,;/dt2 (i.e. on the accelerations of z;), the third deriva-
tives dszi/dts, and so on. Thus, we have a doubly infinite web of informational
interactions, defined by the functions

8 I g |az
8z, 6::1 dt™

m
Uigk,.r (T10 Ty) =

If we start from the dynamical equations (7.4), then nothing new is learned
from these circumlocutions beyond, perhaps, a deeper insight into the relations
between dynamical and informational ideas. Indeed, given any layer of informa-
tional structure, we can proceed to succeeding layers by mere differentiation, and
to antecedent layers by mere integration. Thus, knowledge of any layer in this
infinite array of layers determines 2!l of them and, in particular, the dynamical
equations themselves. [f we know, for instance, the activation—inhibition pattern
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Uyy (z4.....x,), we can reconstruct the dynamical equations (7.4) through the rela-
tionship

n
df, = ¥ uydz, (7.5)
i=1

(note in particular that the differential form on the right-hand side resembles a
generalized work), and then set the function f;(z,.... z,) so determined equal to
the rate of change, dx, / dt, of the i th state variable.

However, our ability to do all this depends fundamentally on the exact-
ness of the differential forms which arise at every level of our web of infor-
mational interaction, and which relate each level to its neighbors. If the forms
in equation (7.5) are not exact, there are no functions f;(z,.....z, ) whose dif-
ferentials are given by it, and hence no rate equations of the form (?.4). In such
a situation, the simple relationship between the levels in our web breaks down
completely; the levels become independent of each other, and must be posited
separately. So two systems could have the same activation—inhibition patterns,
but vastly different agonist—antagonist patterns, and hence manifest entirely dif-
ferent behaviors.

To establish firmly these ideas, let us examine what is implied by the require-
ment that the differential forms

n
Y uyydzy
5=1

defined by the activation—inhibition pattern be exact. The familiar, necessary
conditions for exactness here take the form

0 o)

oz, Y15 = azj

Uik

for all i, 7, k& = 1,...,n. Intuitively, these conditions mean that the relations of
agonism and activation are entirely symmetrical (commutative); that z, as an
agonist of the activator z; is exactly the same as z; as an agonist of the activator
z,; and similarly for all other levels.

Clearly, such situations are extremely degenerate in informational terms.
They are so because the requirement of exactness is highly nongeneric for dif-
ferential forms. Thus, these very simple considerations suggest a most radical con-
clusion: that the Newtonian paradigm, with its emphasis on dynamical laws,
restricts us from the outset to an extremely special class of systems, and that
the most elementary informational considerations force us out of that class.
We explore some of the implications of this situation in the following section.

Meanwhile, let us consider some of the ramifications of these informational
ideas that hold even within the confines of the Newtonian paradigm. These con-
cern the distinctions made in the preceding section between environment, pheno-
type, and genome; the relations of these distinctions to different categories of
causation; and the correspondingly different categories of information which
these causal categories determine.

First, let us recall that according to the Newtonian paradigm, every relation
between physical magnitudes (i.e. every equation of state) can be represented as a
genome-parameterized family of mappings

fg:E'—*P
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from environments to phenotypes. It is worth noting specifically that every
dynamical law or equation of motion is of this form, as is shown by

dr/dt = fy(z.a) . (7.6)

Here, in traditional language, z is a vector of states, a is a vector of external con-
trols (which together with states constitutes environment), and the phenotype is
the tangent vector dz /di¢ attached to the state z.[2] In this case, then, the
tangent vector or phenotype constitutes effect; the genome g is identified with
formal cause, state x with material cause, and the operator fg (...,a) with efficient
cause.

By analogy with the activation—inhibition networks and their associated
informational structures, described above, we can consider formal quantities of
the form

0

d
m [-d—t' (effect)] (7.7)

As always, such a formal quantity represents an answer to a question: If (cause is
varied), then (what happens to effect)? This is the same question as we asked in
connection with the definition of activation—inhibition networks and their corre-
lates, but now set in the wider context to which our analysis of the Newtonian
paradigm has led us. That is, we may now virtually displace any magnitude which
affects the relation (7.6), whether it be a genomic magnitude, an environmental
magnitude, or a state variable. In a precise sense, the effect of such a virtual dis-
placement is measured by the quantity (7.7).

It follows that there are indeed different kinds of information. What kind of
information we are dealing with depends on whether we apply the virtual displace-
ment to a genomic magnitude (associated with formal cause), an environmental mag-
nitude (efficient cause), or a state variable (material cause). Formally, we can now
distinguish at least the following three cases:

(1) Genomic information,

) d
—— | —(effect
d(genome) {dt (etfect)

(2) Phenotypic information,

o)

2 |4
O(state)

ar (effect)

(3) Environmental information,

0
d(control)

d
az (effect)} .

We confine ourselves herein to these three, which generalize only the
activation—inhibition patterns described above.

We now examine an important idea; namely, the three categories defined
above are not equivalent. Before justifying this assertion, we must briefly dis-
cuss what is meant by equivalent. In general, the mathematical assessment of the
effects of perturbations (i.e. of real or virtual displacements) is the province of
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stability. For example, the effect on subsequent dynamical behavior of modifying
or perturbing a system state is the province of Lyapunov stability of dynamical
systems; that of perturbing a control is part of control theory; and that of per-
turbing a genome relates to structural stability. To establish this firmly, let us
consider genomic perturbations, or mutations. A virtual displacement applied to
a genome g replaces the initial mapping _fg determined by g with a new mapping
_fg,. Mathematically, we say that the two mappings, _fg and fg4-, are equivalent, or
similar, or conjugate, if there exist appropriate transformations

a:E - FE
g:P P,
such that the diagram

f
E—2 5 p
l lﬁ
E——>

gl

commutes; that is, if
BLfg(e)] = £, lade)]

for every e in FE. Intuitively, this means that a mutation g - g’ can be counter-

environments and phenotypes. Stated yet another way, a virtual displacement of
genome can always be counteracted by corresponding displacements of environ-
ment and phenotype so that the resultant variation on effect vanishes.

We have elsewhere (Rosen, 1978) shown at great length that this commuta-
tivity may not always obtain; that is, that there may exist genomes which are
bifurcation points. In any neighborhood of a bifurcating genome g, there exist
genomes g’ for which _fg and _fg, fail to be conjugate.

With this background, we return to the question of whether the three kinds
of information (genomic, phenotypic, and environmental) defined above are
equivalent. Intuitively, equivalence would mean that the effect of a virtual dis-
placement 8g of genome, supposing all else is fixed, could equally well be produced
by a virtual displacement of environment, da, or of phenotype, ép. Or stated
another way, the effect of a virtual displacement dg of genome can be nullified by
virtual displacements —8a and —6p of environment and phenotype, respectively.
This is simply a restatement of the definition of conjugacy or similarity of map-
pings.

If all forms of information are equivalent, it follows that there could be no
bifurcating genomes. We note in passing that the assumption of equivalence of the
three kinds of information defined above thus creates terrible ambiguities when it
comes to explanation of particular effects. We do not consider that aspect here,
except to say that il is perhaps very fortunate that, as we have seen, they are
not equivalent.
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Let us examine one immediate consequence of the nonequivalence of genomic,
environmental, and phenotypic information, and of the considerations which cul-
minate in that conclusion. Long ago (cf. von Neumann, 1951; Burks, 1966) von Neu-
mann proposed an influential model for a self-reproducing automaton, and subse-
quently, for automata which grow and develop. This model was based on the famous
theorem of Turing (1936), which established the existence of a universal computer
(universal Turing machine). From the existence of such a universal computer, von
Neumann asserted that there must also exist a universal constructor. Basically, he
argued that computation (i.e. following a program) and construction (following a
blueprint) are both algorithmic processes, and that anything holding for one class
of algorithmic processes necessarily holds for any other class. This universal con-
structor formed the central ingredient of the self-reproducing automaton.

Now, a computer acts, in the language we have developed above, through the
manipulation of efficient cause. A constructor, if the term is to bear any resem-
blance to its intuitive meaning, must essentially manipulate material cause. The
inequivalence of the two categories of causality, in particular manifested by the
nonequivalence of environmental and phenotypic information, means that we can-
not blithely extrapolate from results pertaining to efficient causation into the
realm of material causation. Indeed, in addition to invalidating von Neumann's
specific argument, we learn that great care must be exercised in general when
arguing from purely logical models (i.e. from models pertaining to efficient cause)
to any kind of physical realization, such as developmental or evolutionary biology
(which pertain to material cause).

Thus, we realize how significant are the impacts of informational ideas, even
within the confines of the Newtonian paradigm, in which the categories of causa-
tion are essentially segregated into separate packages. We now consider what hap-
pens when we vacate the comforting confines of the Newtonian paradigm.

An Introduction to Complex Systems

Herein, I call any natural system for which the Newtonian paradigm is com-
pletely valid a simple system, or mechanism. Accordingly, a complex system is
one which, for one reason or another, resides outside this paradigm. We have
already seen a hint of such systems in the preceding section; for example, sys-
tems whose activation—inhibition patterns Uyy do not give rise to exact differen-
tials Yju,4dz,;. However, some further words of motivation must precede a conclu-
sion that such systems are truly complex (i.e. reside fundamentally outside the
Newtonian paradigm). We must also justify our very usage of the term complex in
this context.

What I have been calling the Newtonian paradigm ultimately devolves upon the
class of distinct mathematical descriptions which a system can have, and the
relations which exist between these descriptions. As noted earlier, the basis of
system description arising in this paradigm is the fundamental dualism between
states and dynamical laws. Thus, the mathematical objects which can describe
natural systems comprise a category which may be called general dynamical sys-
tems. In a formal sense, it appears that any mathematical object resides in this
category, because the Newtonian partition between states and dynamical laws
exactly parallels the partition between propositions and production rules (rules of
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inference) which presently characterize all logical systems and logical theories.
However, we argue that, although this category of general dynamical systems is
large, it is not everything, and, indeed, it is far from large enough.

The Newtonian paradigm asserts much more than simply that every image of a
natural system must belong to a given category. It asserts certain relationships
between such images. In particular (and this is the reductionistic content of the
paradigm), it asserts that among these images there is the universal one, which
effectively maps on all the others. Intuitively, this is the master description or
ultimate description, in which every shred of physical reality has an exact
mathematical counterpart; in category-theoretic terms, it is much like a free
object (a generalization of the concept of free semigroup, free group, etc.).[3]

There is still more. The ingredients of this ultimate description, by their
very nature, are themselves devoid of internal structure; their only changeable
aspects are their relative positions and velocities. Given the forces acting
between them, as Laplace noted long ago, everything that happens in the external
world is in principle predictable and understandable. From this perspective,
everything is determined; there are no mysteries, no surprises, no errors, no
questions, and no information. This is as much true for quantum theory as for clas-
sical; only the nature of state description has changed. And it applies to every-
thing, from atoms to organisms to galaxies.

How does this universal picture manifest itself in biology? First, from the
standpoint of the physicist, biology is concerned with a rather small class of
extremely special (indeed, inordinately special) systems. In the theoretical
physicist's quest for general and universal laws, there is thus not much contact
with organisms. As far as he or she is concerned, what makes organisms special is
not that they transcend the physicist’s paradigms, but rather that their specifi-
cation within the paradigm requires a plethora of special constraints and condi-
tions, which must be superimposed on the universal canons of system description
and reduction. The determination of these special conditions is an empirical task;
essentially someone else's business. But it is not doubted that the relationship
between physics and biology is the relationship between the general and the par-
ticular.

The modern biologist, in general, avidly embraces this perspective.[4] Histor-
ically, biology has only recently caught up with the Newtonian revolution which
swept the rest of natural philosophy in the seventeenth century. The three-
century lag arose because biology has no analog of the solar system; no way to
make immediate and meaningful contact with the Newtonian paradigm. Not until
physics and chemistry had elaborated the technical means to probe microscopic
properties of matter (including organic matter) was the idea of molecular biology
even thinkable. And this did not happen until the 1930s.

At present, there is still no single inferential chain which links any impor-
tant effect in physics to any important effect in biology. This is a fact; a datum; a
piece of information. How are we to understand it? There are various possibilities.
Kant, long ago, argued that organisms could only be properly understood in terms
of final causes or intentionality; hence, from the outset he sugpested that organ-
isms fall completely outside the canons of Newtonian science, which are applicable
to everything else. Indeed, the essential telic nature of organisms precluded even
the possibility that a "Newton of the grassblade' would come along, and do for
biology what Newton did for physics. Another possibility is the one we have
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already mentioned; we have simply not yet characterized all those special condi-
tions which are necessary to bring biology fully within the scope of universal phy-
sical principles. Yet a third possibility has developed within biology itself, as a
consequence of theories of evolution; it is that much of biology is the result of
accidents which are in principle unpredictable and hence governed by no laws
at all.[5] In this view biology is as much a branch of history as of science. At
present, this last hypothesis lies in a sort of doublethink relation with reduction-
ism; the two are quite inconsistent, but do allow modern biologists to enjoy the
benefits of vitalism and mechanism together.

Yet a fourth view was expressed by Albert Einstein, who wrote in a letter to
Leo Szilard: '"One can best appreciate, from a study of living things, how primitive
physics still is”.

So, the present prevailing view in biology is that the Newtonian canons are
indeed universal, and we are lacking only knowledge of the special conditions and
constraints which distinguish organisms from other natural systems within those
canons. One way of describing this with a single word is to assert that organisms
are complex. This word is not well defined, but it does connote several things. One
of these is that complexity is a system property, no different from any other pro-
perty. Another is that the deg7ree to which a system is complex can be specified
by a number, or set of numbers. These numbers may be interpreted variously as
the dimensionality of a state space, or the length of an algorithm, or as a cost in
time or energy incurred in solving system equations.

On a more empirical level, however, complexity is recognized differently, and
characterized differently. If a system surprises us, or does something we have not
predicted, or responds in a way we have not anticipated; if it makes errors; if it
exhibits emergence of unexpected novelties of behavior, we also say that the sys-
tem is complex. In short, complex systems are those which behave counter-
intuitively.

Sometimes, of course, surprising behavior is simply the result of incomplete
characterization; we can then hunt for what is missing, and incorporate it into our
system description. In this way, the planet Neptune was located from unexplained
deviations of Uranus from its expected trajectory. But sometimes this is not the
case; in the apparently analogous case of the anomalies of the trajectory of the
planet Mercury, for instance, no amount of fiddling within the classical scenario
succeeded and only a massive readjustment of the paradigm itself (via general
relativity) availed.

From these few words of introduction, we can conclude that the identification
of complexity with situations where the Newtonian paradigm fails is in accord with
the intuitive connotation of the term, and is an alternative to regarding as com-
plex any situation which merely is technically difficult within the paradigm.

Now let us see where information fits into these considerations. We recall
that information is the actual or potential response to an interrogative, and that
every interrogative can be put into the variational form: If 64, then dB? The
Newtonian paradigm asserts, among other things, that the answers to such interro-
gatives follow from dynamical laws superimposed on manifolds of states. In their
turn, these dynamical laws are special cases of equations of state, which link or
relate the values of system observables. Indeed, the concept of an observable was
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the point of departure for our entire treatment of system description and
representation (cf. Rosen, 1978); it was the connecting link between the world of
natural phenomena and the entirely different world of formal systems which we
use to describe and explain.

However, the considerations we have developed above suggest that this world
is not enough. We require also a world of variations, increments, and differentials
of observables. It is true that every linkage between observables implies a
corresponding linkage between differentials, but as we have seen, the converse is
not true. We are thus drawn to the notions that a differential relation is a general-
ized linkage and that a differential form is a type of generalized observable. A dif-
ferential form which is not the differential of an observable is thus an entity
which assumes no definite numerical value (as an observable does), but which can
be incremented.

If we do think of differential forms as generalized observables, then we must
correspondingly generalize the notion of equation of state. A generalized equation
of state thus becomes a linkage or relation between ordinary observables and dif-
ferentials or generalized observables. Such generalized equations of state are the
vehicles which answer questions of our variational form: If 4, then 8B?

But as we have repeatedly noted, such generalized equations of state do not
usually follow from systems of dynamical equations, as they do in the Newtonian
paradigm. Thus, we must find some alternative way of characterizing a system of
this kind. Here is where the informational language introduced above comes to the
fore. Let us recall, for instance, how we defined the activation—inhibition net-
work. We found a family of functions Uyy (i.e. of observables) which could be
thought of in the dynamical context as modulating the effect of an increment dz;
on that of another increment df,;. That is, the values of each observable, Uy
measure precisely the extent of activation or inhibition which z; exerts on the
rate at which z, is changing.

In this language, a system falling outside the Newtonian paradigm (i.e. a com-
plex system) can have an activation—inhibition pattern, just as a dynamical (i.e.
simple) system does. Such patterns are still families of functions (observables),
Ugj and the pattern itself is manifested by the differential forms

w; = Yuyydz;

But in this case. there is no global velocity observable, f,, that can be inter-
preted as the rate of change of z,; there is only a velocity increment. It should
be noted explicitly that Uy which define the activation—inhibition pattern, need
not be functions of z; alone, or even functions of them at all. Thus, the differen-
tial forms which arise in this context are different from those with which
mathematicians generally deal, and which can always be regarded as cross sections
of the cotangent bundle of a definite manifold of states.

The next level of information is the agonist—antagonist pattern, Uyjk - In the
category of dynamical systems, this is completely determined by the
activation—inhibition pattern, and can be obtained from the latter by differentia-
tion:

)
Uije = —6_::;: Ui
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In our world of generalized observables and linkages, u;; are independent of
Uyjs and must be posited separately; in other words, complex (non-Newtonian) sys-
tems can have identical activation-inhibition patterns, but quite different
agonist —antagonist patterns.

Exactly the same considerations can also be applied to every subsequent
layer of the informational hierarchy; each is now independent of the others, and
so must be posited separately. Hence a complex system requires an infinite
mathematical object for its description.

We cannot examine herein the mathematical details of the considerations
sketched so briefly above. Suffice it to say that a complex system, defined by a
hierarchy of informational levels of the type described, is quite a different object
to a dynamical system. For one, it is quite clear that there is no such thing as a
set of states, assignable to such a system once and for all. From this alone, we
might expect that the nature of causality in such systems is vastly different to
what it is in the Newtonian paradigm; we come to this in a moment.

The totality of mathematical structures of the type we have defined above
forms a category. In this category the class of general dynamical systems consti-
tutes a very small subcategory. We are suggesting that the former provides a suit-
able framework for the mathematical imaging of complex systems, while the latter,
by definition, can only image simple systems or mechanisms. If these considera-
tions are valid (and I believe they are), then the entire epistemology of our
approach to natural systems is radically altered, and it is the basic notions of
information which provide the natural ingredients.

There is, however, a profound relationship between the category of general
dynamical (i.e. Newtonian) systems, and the larger category in which it is embed-
ded. This can only be indicated here, but it is important indeed. Namely, there is a
precise sense in which an informational hierarchy can be approximated, locally
and temporarily, by a general dynamical system. With this notion of approximation
there is an associated notion of limit, and hence of topology. Using these ideas, it
can be shown that what we call the category of complex systems is the completion,
or limiting set, of the category of simple (i.e. dynamical) systems.

The fact that complex systems can be approximated (albeit locally and tem-
porarily) by simple ones is crucial. It explains precisely why the Newtonian para-
digm has been so successful, and why, to this day, it represents the only effective
procedure for dealing with system behavior. But in general, it is apparent that it
can usually supply only approximations, and in the universe of complex systems
this amounts to replacing a complex system with a simple subsysiem. Some of the
profound consequences are considered in detail in Rosen (1978).

This reletionship between complex systems and simple ones is, by its very
nature, without a reductionistic counterpart. Indeed, what we presently under-
stand as physics is seen in this light as the science of simple systems. The
relation between physics and biology is thus not at all the relation of general to
particular; in fact, quite the contrary. It is not biology, but physics, which is too
special. We can see from this perspective that biology and physics (i.e. contem-
porary physics) develop as two divergent branches from a theory of complex sys-
tems, which as yet can be glimpsed only very imperfectly.

The category of simple systems is, however, still the only one that we know
how to use. But to study complex systems by means of approximating simple sys-
tems resembles the position of early cartographers, who were attempting to map a
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sphere while armed only with pieces of planes. lLocally, and temporarily, they
could do very well, but globally, the effects of the topology of the sphere become
progressively important. So it is with complexity; over short times and only a few
informational levels, we can always make do with a simple (i.e. dynamical) picture.
Otherwise, we cannot; we must continually replace our approximating dynamics
with others as the old ones fail. Hence another characteristic feature of complex
systems; they appear to possess a multitude of partial dynamical descriptions,
which cannot be combined into one single complete description. Indeed, in earlier
work (Rosen, 1977), we took this as the defining feature of complexity.

I add a brief word about the status of causality in complex systems, and
about the practical problem of determining the functions which specify their
informational levels. Complex systems do not possess anything like a state set
which is fixed once and for all. Also, the categories of causality become
intertwined in a way which is not possible within the Newtonian paradigm. Intui-
tively, this follows from the independence of the infinite array of informational
layers which constitutes the mathematical image of a complex system. Variation of
any particular magnitude connected with such a system typically manifests itself
independently in many of these layers, and thus reflects itself partly as material
cause, partly as efficient cause, and even partly as formal cause in the resultant
variation of other magnitudes. We feel that it is, at least for the most part, this
involvement of magnitudes simultaneously in each of the causal categories which
makes biological systems so refractory to the Newtonian paradigm.

Also, this intertwining of the categories of causation in complex systems
makes the direct interpretation of experimental results of the form: If 64, then
4B, extremely difficult. If we are correct so far, such an observational result as
it stands is far too coarse to have any clear-cut meaning. In order to be meaning-
ful, an experimental proposition of this form must isolate the effect of a variation
84 on a single informational level, keeping the others clamped. As might be
appreciated, this will in general not be an easy task. In other words, the experi-
mental study of complex systems cannot be pursued with the same tools and ideas
that are appropriate for simple systems.

One final conceptual remark is also needed. As mentioned earlier, the
Newtonian paradigm has no room for the category of final causation. This category
is closely linked to the notion of anticipation, which in turn is linked to the ability
of systems to possess internal predictive models of themselves and their environ-
ments, which can be utilized for the control of present actions. We have argued at
great length elsewhere (cf. Rosen, 1984) that anticipatory control is indeed a dis-
tinguishing feature of the organic world, and have described some of the unique
features of such anticipatory systems. Herein we have shown that for a system to
be anticipatory, it must be complex. Thus, our entire treatment of anticipatory
systems becomes a corollary of complexity. In other words, complex systems can
admit the category of final causation in a perfectly rigorous, scientifically accept-
able way. Perhaps this alone is sufficient recompense for abandoning the comfort-
ing confines of the Newtonlan paradigm, which has served so well over the centu-
ries. It will continue to serve us well, provided we recognize its restrictions and
limitations, as well as its strengths.
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Notes

[1] Newton's original particle mechanics, or vectorial mechanics, is hard to apply to
many practical problems, and was early on (through the work of people like Euler
and Lagrange) transmuted into another form, generally called analytical mechan-
ics. This latter form is usually used to deal with extended matter (e.g. rigid
bodies). In particle mechanics, the rigidity of a macroscopic body is a consequence
of interparticle forces, which must be explicitly taken into account in describing
the system. Thus, if there are N particles in the system (however large N may be)
there is a phase space of 6N dimensions, and a set of dynamical equations which
expresses for each particle the resultant of all forces experienced by that parti-
cle. In analytical mechanics, on the other hand, any rigid body can be completely
described by giving only six configurational coordinates (e.g. the coordinates of
the center of mass, and three angles of rotation about the center of mass), how-
ever many particles it contains. From the particulate approach the internal forces
which generate rigidity are replaced by constraints; supplementary conditions on
the configuration space which must be identically satisfied. Thus, the passage from
particle mechanics to analytical mechanics involves a partition of the forces in an
extended system into two classes: (a) the internal or reactive forces, which hold
the system together, and (b) the impressed forces, which push the system around.
The former are represented in analytical mechanics by algebraic constraints, the
latter by differential equations in the configuration variables (six for a rigid
body).

A system in analytical mechanics may have additional constraints imposed
upon it by specific circumstances; for example, a ball may roll on a table top. It
was recognized long ago that these additional constraints (which, like all con-
straints, are regarded as expressing the operation of reactive forces) can be of
two types, which were called by Hertz holonomic and nonholonomic. Both kinds of
constraints can be expressed locally, in infinitesimal form, as

T
Y uylmy,....xzy)dz, =0
1=1
where z4,....z, are the configuration coordinates of the system. For a holonomic
constraint, the above differential form is exact; that is, the differential of some
global function ¢(z,....,x,) is defined over the whole configuration space. Thus,
the holonomic constraint translates into a global relation

¢(z,,....x, ) = constant .

This means that the configurational variables are no longer independent, and that
one of them can be expressed as a function of the others. The constraint thus
reduces the dimension of the configuration space by one, and therefore reduces
the dimension of the phase space by fwo.

A nonholonomic constraint, on the other hand, does not allow us to eliminate a
configurational variakle in this fashion. However, since it represents a relation
between the configuration variables and their differentials, it does allow us to
eliminate a coordinate of velocity, while leaving the dimension of the configuration
space unaltered. That is, a nonholonomic constraint serves to eliminate one degree
of freedom of the system. It thus also eliminates one dimension from the space of
impressed forces which can be imposed on the system without violating the con-
straint.

Similarly, if we impose r independent nonholonomic constraints on our sys-
tem, we (@) keep the original dimension of the configuration space; (b) eliminate r
coordinates of velocity, and thus reduce the dimensionality of the phase space by
r; and (c¢) similarly, reduce by r the dimensionality of the set of impressed forces
which can he imposed on the system.
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(2]

Let us express these facts mathematically. A nonholonomic constraint can be
expressed locally in the general form

dzi d‘z'n.
SRR Tl vul iy

v =0

which can (locally) be solved for one of the velocity coordinates (dz,/ d¢, say).

Thus, it can be written in the form
dzy
TH =Y|Zy, Toen Ty,

= ¥(z,, a)

dz, dz,,
Tat vt dt

where we have written & = (z,,...,dx,, /dt). [At this point the reader is invited to
compare this relation with equation (7.6) in the main text.]

Likewise, if there are r nonholonomic constraints, these can be expressed
locally by r equations

dz, /dt = ¥;(z4,....2,, &) i =1,.,r

where now a is the vector (z, ,4,....2,. dz, ,,/d¢,...,dz, /dt). These equations of
constraint, which intuitively arise from the reactive forces holding the system
together, now become more and more clearly the type of equations we always use to
describe general dynamical or control systems.

Now what happens if r =n? In this case, the constraints leave us only one
degree of freedom, they determine a vector field on the configuration space.
There is in effect only one impressed force that can be imposed on such a system,
and its only effect is to move the system; once moving, the motion is determined
entirely by the reactive forces, and not by the impressed force. Mathematically,
the situation is that of an autonomous dynamical system, whose manifold of states is
the configuration space of the original mechanical system.

This relationship between dynamics and mechanics is quite different from the
usual one, in which the manifold of states is thought of as generalizing the mechani-
cal notion of phase, and the equations of motion as generalizing the impressed
force. In the above interpretation, however, it is quite different; the manifold of
states correspond now to mechanical configurations, and the equations of motion
come from the reactive forces.

The reader should be most careful not to confuse two kinds of propositions, which
are equivalent mathematically but completely different epistemologically and
causally. On the one hand, we have a statement like

dz /dt =fg(z, a) .

This is a local proposition, linking a tangent vector or velocity dz /d¢ to a state
z, a genome g, and a control a. Each of these quantities is derived from observ-
ables assuming definite numerical values at any instant of time, and it is their
values at a common instant which are related by this proposition.

On the other hand, the integrated form of these dynamical relations is

t
zt)= [ fylz.a(nlaT .
to

This relationship involves time ezplicitly and links the values of observables at
one instant with values (assumed by these and other observables) at other
instants.

Each of these epistemically different propositions has its own causal struc-
ture. In the first, we treat the tangent vector dz /d¢ as effect and define its
causal antecedents as we have done. In the integrated form, on the other hand, we
take xz (t) as effect and find a correspondingly different causal structure. In gen-
eral, the mathematical or logical equivalence of two expressions of linkage or
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relationship in physical systems does not at all connote that their causal struc-
tures are identical. This is merely a manifestation of what was discussed earlier,
that the mathematical language we use to represent physical reality has
abstracted away the very basis on which such causal discriminations can be made.
It should be recognized that this reductionistic part of the Newtonian paradigm can
fail for purely mathematical reasons. If it should happen that there is no way to
effectively map the master description onto some partial description, then this is
enough to defeat a reductionistic approach to those system behaviors with which
the partial description deals. This is quite a different matter from the one we are
considering here, in which no Newtonian master description ezists, and the pro-
gram fails for episiemological reasons, rather than mathematical ones.

This statement is not simply my subjective assessment. In 1970 there appeared a
volume entitled Biology and the Future of Man, edited by Philip Handler (1970),
then President of the National Academy of Sciences of the USA. The book went to
great lengths to assure the reader that it spoke for biology as a science; that in it
biologists spoke with essentially one voice. At the outset, it emphasized that the
volume was not prepared as a (mere) academic exercise, but for serious pragmatic
purposes:

Some years ago, the Committee on Science and Public Policy of the National
Academy of Sclences embarked on a series of 'surveys' of the sclentific dis-
ciplines. Each survey was to commence with an appraisal of the 'state of the
art’... . In addition, the survey was to assess the nature and strength of our
national apparatus for continuing attack on those major problems, e.g., the
numbers and types of laboratories, the number of scientists in the field, the
number of students, the funds avallable and their sources, and the major
equipment being utilized. Finally, each survey was to undertake a projection
of future needs for the national support of the discipline in question to
assure that our national effort in this regard is optimally productive... .

To address these serious matters, the Academy proceeded as follows:

....Panels of distinguished scientists were assigned subjlects... . Each panel
was given a general charge...as follows:

The prime task of each Panel is to provide a pithy summary of the status of
the specific sub-field of science which has been assigned. This should be a
clear statement of the prime scientific problems and the major questions
currently confronting investigators in the field. Included should be an indi-
cation of the manner in which these problems are being attacked and how
these approaches may change within the foreseeable future. What trends can
be visualized for tomorrow? What lines of investigation are likely to sub-
side? Which may be expected to advance and assume greater importance?...
Are the questions themselves...likely to change slgnificantly?... . Having
stated the major questions and problems, how close are we to the answers?
The sum of these discussions, panel by panel, should constltute the equivalent
of a complete overview of the highlights of current understanding of the Life
Sciences.

There were twenty-one such Panels established, spanning the complete gamut
of biological sciences and the biotechnologies. The recruitment for these Panels
consisted of well over 100 eminent and influential biologists, mostly members of the
Academy. How the panelists themselves were chosen is not indicated, but there is
no doubt that they constituted an authoritative group.

In due course, the Panels presented their reports. How they were dealt with
is described in colorful terms:

... . In a gruelling one week session of the Survey Committee...each report
was mercilessly exposed to the criticism of all the other members... . Each
report was then rewritten and subjected to the searching, sometimes scath-
ing, criticisms of the members of the parent Committee on Science and Public
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Policy. The reports were again revised in the light of this exercise. Finally,
the Chairman of the Survey Committee...devoted the summer of 1968 to the
final editing and revising of the final work.

195

Thus we have good grounds for regarding the contents of this volume as con-
stituting a truly authoritative consensus, at least, as of 1970. There are no minor-
ity reports; no demurrals; biology does indeed seem guaranteed here to speak with

one voice.
What does that voice say? Here are a few characteristic excerpts:

The theme of this presentation is that life can be understood in terms of the
laws that govern and the phenomena that characterize the inanimate, physi-
cal universe and, indeed, that at its essence life can be understood only in
the language of chemistry. [emphasis added]

A little further along, we find this:

Until the laws of physics and chemistry had been elucidated, it was not pos-
sible even to formulate the important, penetrating questions concerning the
nature of life... . The endeavors of thousands of life sclentists... have gone
far to document the thesis... (that) living phenomena are indeed intelligible
in physical terms. And although much remains to be learned and understood,
and the detalls of many processes remain elusive, those engaged in such
studies hold no doubt that answers will be forthcoming in the reasonably
near future. Indeed, only two major questions remain enshrouded in a cloak
of mot quite fathomable mystery: (1) the origin of life...and (2) the
mind-body problem...yet (the extent to which biology is understood) even
now constitutes a satisfying and exciting tale. [emphases added]

Still further along, we find things like this:

While glorying in how far we have come, these chapters also reveal how
large 1s the task that lles ahead... . If (molecular biology) is exploited with
vigor and understanding...a shining, hopeful future lles ahead. [emphasis
added]

And this:

Molecular biology provides the closest insight man has yet obtained of the
nature of life — and therefore, of himself.

And this:

1t will be evident that the huge intellectual triumph of the past decade will, in
all likelihood, be surpassed tomorrow — and to the everlasting benefit of
mankind.

It is clear from such rhapsodies that the consensus reported in this volume is not
only or even mainly a scientific one; it is an emotional and aesthetic one. And
indeed, anyone familiar with the writings of Newton’s contemporaries and succes-

sors will recognize them.

The volume to which we have alluded was published in 1970. But it is most sig-

nificant that nothing fundamental has changed since then.
In the inimitable words of Jacques Monod (1971, pp 42-43):

We can assert today that a universal theory, however completely successful
in other domailns, could never encompass the blosphere, its structure and its
evolution as phenomena deducible from first principles... . The thesis I shall
present...is that the biosphere does not contain a predictable class of
objects or events but constitutes a particular occurrence, compatible with
first principles but not deducible from these principles, and therefore
essentially unpredictable. [emphasis added]
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CHAPTER 8

Organs and Tools: A Common Theory of Morphogenesis

René Thom

Introduction: Toward a Comprehensive Biological Theory

At the beginning of the sixteenth century, people began to anatomize dead
bodies and discovered organs for which the putative function had to be found. The
simplest method of establishing this was to associate the organ with a tool, which
apparently naive procedure led, nevertheless, to striking successes. Within that
century, Harvey showed the heart to be a pump that sent blood through natural
pipes, the blood vessels. The skeleton (bones, joints, and muscles) provided obvi-
ous mechanical interpretations (a member acting as a lever, for instance); and the
lungs were compared to a pair of bellows (with the obvious omission of the funda-
mental physiological function of gas exchange between air and blood). All these
mechanical analogies led to Descartes' theory of the animal machine. It was only
with our noblest organ, the brain (the seat of the soul), that these analogical
explanations met with difficulties: How could consciousness and thinking be gen-
erated inside this apparently amorphous gray or white substance? But the
mechanical imagery was to achieve, around 1950, its most notable success. The
almost simultaneous appearance, in the middle of the twentieth century, of com-
puters and molecular biology developed the idea that the genetic material, DNA,
was the analogue of a computer program for the development of an adult organism
from an egg. This interpretation offered a new, important breakthrough: previ-
ously the mechanical analogy had constantly raised the problem of biological final-
ity. How could all these organs, so beautifully adapted to their function and of
such a huge efficiency, be formed, apparently by themselves, during embryological
development? Was it not necessary to postulate the assistance of a "pgenius”, a
demiurge who had to direct and control the whole process of epigenesis? The pro-
position that the complete structure of the organism might be encoded in the
genomic nucleotide sequence of DNA solved the problem: one had only to admit
that DNA, playing the role of the demiurge, directed the full development of the
embryo, exactly as an engineer dictates orders to his or her subordinates in a
manufacturing plant. Thus, teleology could be rendered more acceptable under the
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new term of teleonomy. This idea gained acceptance as soon as it was discovered
that the traduction mechanism, DNA - protein, was effectively a code, in the
technical sense of the word; to any triple of nucleotides there corresponds only
one amino acid. But, in the initial case of metazoa embryonic development, the
situation is entirely different: one has to understand how the genetic information
supposedly included in DNA can render itself in the three-dimensional (3-D)
organic structure of the embryo (and later of the adult). (Here I am referring to
the Metazoa; the case of Procaryotes is somewhat different.) As a result, all
modern biological thought has been trapped in the fallacious homonym associated
with the phrase "genetic code", and this abuse of language has resulted in a state
of conceptual sterility, out from which there is little hope of escape.

To achieve some progress in solving this difficulty, only a major theoretical
jump will be of any help. And theory cannot exist — in biology no less than in any
other discipline - without introducing imaginary entities. After all, life itself, in
the usual reductionist view, cannot be anything other than an imaginary concept.
Thus, in the organ—tool conceptualization, it may be more sensible to reverse the
sense of the explanation; instead of explaining the organ by the tool, could we not
explain the tool by the organ? This has already been suggested by many vitalist
philosophers, such as Bergson. Could the intuitive imagination which led Homo
faber to build his extraordinarily efficient tools — centuries before the appear-
ance of modern science — be none other than the manifestation through phylo-
genetic evolution of some biological unconsciousness? A simple idea can be taken
here as evidence: the tool, generally, extends the action, and the action, in its
essential motor structure, is genetically inherited. We have here to reconsider the
Lamarckian axiom: function creates the organ. Not, as is often trivially stated,
that organs are created and develop as the result of the frequent performance of
a function, but in a more abstract, platonic sense. All the regulatory properties of
an organic structure rely on some geometric properties of a "figure of regulation”
which lies in some abstract space of metabolic activities. A function is then a
regulatory apparatus of a formal, dynamic nature insuring homeostasis of some
physiologically important character (or parameter), such as chemical energy con-
tent, oxygen content, organic waste content, etc. The performance of such a func-
tion may involve a wide variety of physicochemical agents as well as the most
diverse organs. When all these functions perform correctly, they insure canaliza-
tion of the metabolic state of the system around a specific attractor (the figure of
regulation).

The aim of theoretical biology is to describe (with the utmost accuracy possi-
ble) this geometric object. We are certainly still very far from this, but as an
approximate procedure, we may try to give local descriptions associated with a
specific function, using the data of partial models of the following type. If the fig-
ure of regulation is described as an invariant, closed object of flow X in a space of
very high dimension (}, a function may be given by an auxiliary dynamic (M;Y).
where Y is a flow in a phase space M of low dimension, and we have a smooth map
F(Q,) » M such that for any z € [}, with ¥ = F(z), the image vector F(X;z) is
very near Y(y). Moreover, the image dynamics (M;Y) have to be algebraically sim-
ple (as in catastrophe theoretic modeling). The local coordinates in ¥ have biologi-
cal meaning; they insure that the semiotic character of life is the most important
value to be defended against the potentially deadly threats of external stresses.
[Here we have the axiologic character of these imaginary entities, frequently
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described mathematically by a potential function, following Kergosien's terminol-
ogy (1984).] Of course, the use of such imaginary entities produces difficult philo-
sophical and methodological problems. In fundamental physics, most basic notions
(such as mass, force, fields, etc.) are also imaginary, but their existence is made
legitimate by their implication in highly accurate quantitative laws. In biology we
cannot expect such a justification; but, at least, we may introduce our imaginary
entities in to qualitatively stable models. In the same way as physical laws are
frequently the results of symmetry constraints, we may try to impose as rigorously
as possible constraints for the spatiotemporal propagation of our entities. Practi-
cally, all these constraints arise as the consequences of a single principle, the
principle of locality, which can be stated as follows: any local process inside a
living being has to be explained as a result of only local deterministic processes.
Action at a distance is prohibited (e.g., pure magic).

In its most general formulation, the principle of locality could be stated not
only with respect to the usual space—time dimensions, but also to all semiotic (ima-
ginary) spaces in which our imaginary entities are embodied. However, this would
exclude any kind of qualitative discontinuity in the behavior of such entities; such
a restriction is too stringent and one has to allow that at exceptional loci discon-
tinuities of a qualitative character may occur (catastrophes), in the same way as
sound propagation has to accept the presence of shock waves. But, in such cases,
the discontinuities themselves have to be explained in terms of local deterministic
processes (this justifies the importance of catastrophe theoretic formalism).

Salient Forms and Pregnances
The concepts used in such analyses are of two kinds:

(1) Salient forms, that is forms which are defined by a sharp boundary in their
background space. Molecules, cells, organs, and organisms are salient forms,
with well-defined spatiotemporal localization. Most of these forms are clearly
individualized and in space any two have to be disjoint (impenetrability).

(2) Pregnances denote all field-like entities; they are not localized so two dis-
tinct pregnances may be present at the same point of space—time without
interacting. Pregnances propagate in space, according to local deterministic
principles [for instance, partial differential equations (PDE) for physical
fields]. Any pregnance involves some energy content and, as such, any pro-
pagating pregnance is also an energy flux. (In some sense, the concept of
energy is the most general physical pregnance.) Biological pregnances are
sometimes subjectively defined (as life, fear, etc.); objectively, they pro-
pagate in space—time via material support or appropriate salient forms (the
support of these forms may be material or field-like; olfactory signals are of
the first kind, visual and auditory of the second).

Interactions between salient forms and pregnances may be described as fol-
lows (cf. Thom, 1983). Pregnances emanate from salient forms called source forms.
They may invest other salient forms, in which they create a change of internal
state with, sometimes, perceptible effects (the so-called figurative effect); gen-
erally, invested salient forms become secondary, induced source forms for the
same pregnance. Subjective pregnances propagate from salient form to salient
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form by two modes of action; action by contiguity (contact) and action by similar-
ity. Objective pregnances propagate only by contact (the axiom of locality). Using
this ontology of salience and pregnances, we may establish the following classifica-
tion of local processes:

(1) A salient form invested by a pregnance. This may be subjective; for exam-
ple, a subject under the influence of fear communicated by nearby subjects.
Or it may be objective, such as excitation of an atom (salient form) by an
electromagnetic field (a physical pregnance); microbial contagion of an animal
is another example, the contagious disease being here an objective preg-
nance. The fact that the pregnance is carried by specific salient forms (the
bacteria) is no reason to exclude a contagious disease from the pregnance
concept.

() Emission of a pregnance by a salient form. An infested individual may pro-
pagate a contagious disease. In fact, it should be realized that in order for a
form to be salient, it has to be carried to an observer by a physical field
(such as light or sound).

(3) Interaction of a pregnance with a salient form. Here we are basically con-
cerned with physical flows that satisfy, locally, the invariance of the kinetic
momentum. If we immerse a solid (s) in such a flow, then the topology of the
flow may be drastically changed according to the position of s inside the flow.
This type of interaction is the basis of the notion of preprogram, developed
below.

(4) Pregnance—-pregnance interactions. Little is known in general about such
interactions, except the case where the pregnances are described by poten-
tial functions on the same space, where the catastrophe theoretic formalism
may be valid. In particular, a pregnance may interact with itself in such a
way as to create shocks (that is salient forms), but these rarely materialize
as independent entities.

(B) Interactions between salient forms. 1 believe that such interactions can
always be described as an exchange of pregnances between the forms.

Interactions of type (5) are the only ones recognized in modern biology (for
instance, communications between cells). The logicist ideal is to eliminate preg-
nances and reduce them to contiguity processes that involve only contact, absorp-
tion, or emission of material bodies. But physical fields are not matter and
biochemical interpretation of the great pregnances (the effects) is still very far
from being achieved.

As said earlier, any physiological function has, in practice, a large number of
biochemical carriers (even inside the same individual); this renders the biochemi-
cal interpretation of pregnances very difficult, although a complete theory should
also explain the variations of biochemical support of a given function within, for
instance, the animal kingdom. Thus, a comparative evolutionary physiology is
needed, which should parallel, and complete, the comparative evolutionary
embryology. Here, quite certainly, historical events played an important role, and
accounting for their importance would require much painful study.

Among the imaginary entities that must be introduced are the classical epi-
genetic gradients of embryology. Nobody knows the biochemical basis for an
animal’s cephalocaudal gradient, but nobody can doubt its importance. On this



Organs and Tools 201

basis alone, the theoretical introduction of pregnances seems to me in need of no
further justification. But, of course, in each specific case one has to find con-
straints to the propagation of pregnances. Do they need specific salient forms to
invest? What kind of partial differential equation, if any, must they satisfy to pro-
duce smooth propagation? If the physicochemical basis of the pregnance is known
(molecular diffusion, electromagnetic fields, etc.) such constraints may be esta-
blished. If the basis is unknown, one may have to rely only on a locality axiom, act-
ing in a purely qualitative way. In such cases, it may be impossible to build a model
in the usual quantitative sense of the word, but we may, nevertheless, arrive at a
metaphor which, while not allowing strict control of the situation, could bring
about a better understanding of the phenomena.

The Notion of Preprogram

In my book Structural Stability and Morphogenesis (Thom, 1972) I pro-
posed that the major accidents of early embryology (gastrulation, etc.) could be
explained by mechanisms of type (4), where initially we have only epigenetic gra-
dients unfolding some singularity of a potential that is of metabolic origin. Such a
concept is acceptable only in a static situation, in which the inner fluxes of
energy within the embryo may be neglected. As soon as some inner circulation
arises, then kinetic variations of these fluxes have to be taken into consideration;
this corresponds to the somewhat mysterious process denoted internalization of
an erternal variable in my previous work (Thom 1972). This is why any coherent
theory of morphogenesis has to account for how a propagative flux of energy can
be modified in its topology under a variation of the boundary constraints. This is
the object of the classical obstacle problem in PDE theory (see, for instance,
Arnol'd's book, Catastrophe Theory, 1984). I propose to summarize all that we
need in the following metatheorem.

We consider a domain U/ in some Euclidean space R™ *l(z; ¥): with =z a
specific, real coordinate, and y € R™. Suppose that the domain U meets the slice
0 <z <1 along some set B and suppose that U is crossed by an energy (or
material) flow which propagates in the sense of increasing x. This flow emanates
from a source situated distantly in the negative x half-space. We suppose that the
boundary 8 B can be subjected to a deformation

G:BxI-R"1  0<z <1,

depending on the parameter s €/, leaving the edges fixed, & n[x =0,1]. Let
m(s;y), ¥ € R™, be the asymptotic density of the energy flow for a value s of the
deforming parameter [if s is time, then the deformation G(s) is supposed to be
infinitely slow with respect to the speed of the flow]. For any s, the boundary
G(s) is impenetrable to the flow, which must always be tangent to the boundary.
Let C be the set of critical values of the smooth, real-valued function m(s; ¥) in
the plane (s;m). Then, by the genericity assumption, the set C is a smooth curve
with normal crossings as the only singularities, and its projection on the s-axis
admits only fold points (f) as critical points (Figure 8.1). Proof of this
metatheorem requires showing that the associated map F which transforms the
function space of the deformation G(s) into the function space of the density
m(s;y) is sufficiently surjective to permit transversality of the m functions
which are not generic. I do not know to what extent theorems of this type are
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found in the current literature. It should be observed, also, that the spatial
framework in which this theorem was stated may allow any kind of interpretation,
whatever the propagating process we began with.

»
»

T $

Figure 8.1 Arcs of maxima (—); arces of index n — 1(-—); T = stopping point.

In applications to morphogenesis, U is the usual domain of 3-D Euclidean
space. We consider, on the curve C, those arcs J associated with the maxima of the
density m(s;y), and we restrict ourselves to only fairly sharp maxima, with very
low intervening thresholds. The standard fold point of C is the junction of a J-arc
with an arc of index one in the density m (s;y). If the parameter s denotes time,
then for a value s° for which a maximum (s) disappears, we have at the dispari-
tion point two possible situations:

(1) The disparition point (s°; Y) is a fold point of C; there the maximum u of m
coincides with a saddle of index one, according to a local model of the type
m(s:V) =m(si) +(s -y, vy + L @)
1<j<n 1
for local coordinates 4, Yy in Y, and m(so;Y) # 0. Then the fold point in
the (s;m) plane is a flex point (with horizontal tangent) of the graph of the
functlon m(s%y 1)- Hence it belongs to the basin of some other maximum 7 of
m(s Yy yj) whose local flow captures the disappearing flow (Figure 8.2).
(2) At the disparition point (s 1Y), the local intensity m (s° Y) vanishes. This is,
strictly speaking, not a generic situation, but it is of utmost practical impor-
tance; it corresponds to the task of stopping entirely the local flow.

These two situations can be symbolized by the two graphs 1A and 1B in Fipure
8.3. By reversing the sense of time, we obtain the two symmetric morphologies 2A
and 2B in Figure 8.3. These four morphologies play a fundamental role in classify-
ing organs and tools according to their main functions. In the technical world, one
of the most frequent preprograms occurs when a solid (s) is immersed in a material
flow; here the control space U may be the full 6-D space describing all positions of
U. If we consider k-D families of the positions of s we may obtain in such a control
space higher singularities than those described above. For instance, ina 2-D U we
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Figure 8.2 Capture of a disappearing maximum & by a higher maximum 7.
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1A: Confluence of the two flows 1B: End of a flow

|
1

{ |

2A: Ramification of a flow 2B: Birth of a flow

Figure 8.3 Morphologies 1A, 1B, 2A, and 2B.

may have points where a flow may possess a triple ramification (stably in U), but
usually the solid s is constrained in a low-dimensional family of positions.

This notion of preprogram appears as a dynamical metaphor for the classic
notion of gatekeeper due to Kurt Lewin (1951), the founder of topological psychol-
ogy; that is, an individual whose position in a society allows him or her to modify
deeply the structure and the intensity of some particular economic (or communica-
tional) flow. The basic aim of this chapter is to show the ubiquity of preprograms
in biological organization; in that respect, DNA —~ in my view — is no longer the
program directing the whole development and regulation of the organism. It is a
preprogram — with, undoubtedly, some central character — but a preprogram
among many, as practically any organ has the same preprogramming capacity.

Organs and Tools as Preprograms: A Taxonomy

Let us return to the four canonical morphologies in Figure 8.3. The morphol-
ogies 1A and 1B are of a concentrating, converging character; morphologies 2A and
2B are, on the contrary, of a ramifying, diverging character. Generally, one may
say that for life and technical needs, convergence is more important than diver-
gence. In fact, as we shall see, even in the ramifying case 2A at least one of the
created flows (usually the "upper' one) is strictly canalized.
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Morphology 1B: End of a flow

We start with the simplest of the morphologies, 1B (Figure 8.3). If the s
parameter is spatial, not temporal, then morphology 1B has the character of spa-
tially limiting a flow. This means that the flow runs across a spatial domain U lim-
ited by a compact surface W such that the density m(s; y) of the flow is zero out-
side . In simpler terms, the surface ¥ is a wall containing the flow in its interior.
If, as earlier, we denote Oz as the direction of the flow, then, for almost all values
of z, the projection of the wall W onto Oz is regular, and the flow has a product
structure H x I defined by this projection on any (sufficiently small) interval J
around the regular value x . The flow is encapsulated in a tube of section A and is
said to be canalized. In most cases, the 2-D section is a disk and the wall W
appears as a tubular neighborhood of some central trajectory; we call such a situa-
tion a simple canalization.

Most flows that occur in living or inanimate nature almost always exhibit sim-
ple canalization; the same is a fortiori true of the flows used in human technology
(pipes, electric conductors, etc.). The only exceptions are the global fluid flows
such as the oceanic currents (e.g., Gulf stream) or atmospheric wind.

Canalization — the underlying concept of Waddington's (1957) notion of
"chreod" — may be given a metaphoric description in terms of a potential well. A
3-D potential well limited by two vertical walls is a good representation of the bed
of a simple canalized flow (for a section x = cst). It is sometimes convenient to
treat the potential well as a smooth, parabolic well (Figure 8.4). This amounts to
replacing the original density function m(z; y) (v is the transverse coordinate in
the section) by a potential function V(y:z). which may be roughly taken as the
opposite; that is —m(z;y) = V(y;z) (Figure 8.5). Also, to describe generic singu-~
larities of simple canalized flows, we can use the catastrophe theoretic formalism
on the family of potential functions V(y; x), where ¥ is the internal variable and x
the control variable. This leads to the morphologies 1A, 1B, 24, and 2B given ear-
lier (Figure 8.3).

A
m

Figure 8.4 Simple canalized flow.
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Figure 8.5 Equivalent parabolic well for the flow in Figure 8.4.

Canalized morphology 1B

Let us then consider morphology 1B for simple canalized flows; we take here
the s parameter as being Oz, a spatial coordinate. The spatial end of a flow pro-
vides a paradox, as matter and energy cannot disappear at the end point. The flow
may disappear as the result of a phase transition (as for rivers that flow from
Moroccan Atlas and disappear by evaporation in the hot sands of the Sahara). It
may disappear as a canalized flow, like those sewers near the Riviera beaches at
which ends the waste is left to diffuse freely in the ambient water; a similar situa-
tion is that of industrial chimneys, where the smoke diffuses freely in the atmo-
sphere. (Here the flow really ends in a generalized ramifying morphology, cf. Fig-
ure 8.7 and the discussion of morphology 2A below.) If the flow is not permanent,
but starts (and finishes) at definite times, then another solution may exist: the
tubular neighborhood of the canalization may extend itself as a tubular neighbor-
hood of the end point singularity. This leads to a partial expansion of the end
point, which bounds a spatial domain in which the matter carried by the flow may
accumulate (Figure 8.6). This is the origin of the container morphology, of which
we can cite a large number of examples, both biological and technological. A vase,
for instance, is the material realization of a potential well in which solid or liquid
may be stored; if the flow is gaseous, then the container has to be closed (the gas
not being sufficiently subject to gravity). Sometimes closure of a pipe occurs by
fixing a specific solid obstacle, such as the cork on a bottle neck; here elasticity
of the cork symbolizes the expanded end point. In organic morphology, for exam-
ple, the stomach and the bladder are such containing organs; the cell itself, inside
its membrane, can be considered as such a receptacle. Nothing is more fundamen-
tal, both in life and technology, than this requirement of canalization and contain-
ment; if the technique of nuclear fusion is still ineffective, it is because we do not
know how to contain a plasma. [1]
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Figure 8.6 Origin of a container as an enlarged end point of a canalized flow.

A very interesting case of morphology 1B occurs in blood coagulation; here an
accidental gap in a canalizing wall is repaired by the transported flow itself. An
example of this being partially achieved in technology is the valve. Manufacturers
of tubeless tires have also been able, at least partially, to mimic this process.

Morphology 2B: birth of a flow

According to the well-known maxim, ex nihilo nihil, a flow cannot be born
out of nothing. A natural example of morphology 2B is the source of a spring; liquid
water, previously circulating below ground, suddenly appears and creates a
spring. Here we have, before the water surfaces, a subterranean concentration of
small streams converging towards the source point. This is the opposite morphol-
ogy to the diffusion morphology that occurs when canalization discontinues (a con-
vergent, ramifying process as opposed to the diverging ramification of diffusion,
Figure 8.7).

Source point

—

Hidden generalized confluence

Figure 8.7 Birth of a flow (morphology 2B).

The case of phase transition described for morphology 1B occurs also for Z2B.
For instance, an electric bulb is a light source in which the light field is produced
by thermal energy due to the Joule effect in the filament. Sun, as a light source,
emits energy produced by nuclear reactions and gravitational collapse.

Examples of concentration processes providing sources are frequent in biol-
ogy, such as capillaries anastomosing into veins; the funnel is a typical prepro-
gram transforming a noncanalized flow into a simple canalized one. The umbrella is
also a preprogram creating a canalization within a noncanalized flow (rain), but
here the inside of the canalized domain has zero flow (in principle). An important
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case is that in which the liquid of the flow emanates from a reservoir where it has
been stored. The usual appliance for creating alternately the morphologies 2B and
1B is the cock. This reversibility constraint is expressed in the Hamiltonian char-
acter of the control dynamics in the U control space of the cock; the cock is
rotated, and the coupling of the Hamiltonian dynamics with the irreversibility of
the effect (opening or closing) appears in the helicoidal nature of the screw
thread. The door is a similar preprogram in which the control dynamics is also a
rotation. Biologically, the function of the cock is taken over by ring-like muscles
known as sphincters; here we have in the wall surface a reversible enlarging of
an end point. In terms of physical fields, such as light, we think of the light
source; the light flow exhibits a kind of inner canalization due to the ray struc-
ture, so any opaque object imbedded in the field acts as a preprogram. Placing a
screen across a ray-bundle stops the light flow; removing the screen allows the
light to flow again. The concentration of a ray-bundle by a converging lens at the
focal point is also a form of sharp canalization (but of limited duration). In general,
the theory of a total apparent contour, viewing an object along all possible direc-
tions, can be considered as the preprogramming capability of any opaque object in
a fixed bundle of parallel light rays. When we move this object according to the
full rotation group SO(3), we obtain, in the 3-D control space, U = S0O(3), a bifur-
cation set with known generic singularities, which Kergosien has aptly named the
obturation set. Some of these singularities (of codimension one) correspond to
stopping (or creating) the flow of light through some hole in the body. The differ-
ence in morphologies 2B and 1B corresponds to the classic opposition found in
physiology between inhibition and excitation. The energetic fluxes which are
excited or inhibited may have the most varied organic or biophysical supports,
but the metaphor of the cock remains in each case valid.

Morphology 1A: Confluence of two flows

For noncanalized flows, the dichotomic junction of 1A (Figure 8.3) does not
present a problem; it amounts to mixing two flows. Joining two pipes with a junc-
tion piece (such as the French culotie) is the simplest example of morphology 1A
(Figure 8.8). But such simplicity is a little fallacious; if we have strict canalization,
then owing to the presence of a potential well the genericity assumption renders
the situation asymmetrical. Generally, one of the flows that arrives at the con-
fluency point is in a metastable flex point of the potential well and so is captured
by the lower potential flow. This occurs in the pgeosphere, for instance, when the
tributary river reaches the main valley, U-shaped by glaciation, to produce the
water falls of a suspended valley (often, nowadays, a hydroelectric plant is built
below the falls). Hence, generically, morphology 1A is energetically favorable (and
perhaps always entropically favorable).

There are numerous examples of confluences of flows in the biosphere (veins
anastomoses, confluency of the bile duct with the intestine, etc.); at a higher
level, we have phagocytosis between cells and predation among animals. But here,
again, there is an asymmetrical situation where one of the individuals, the preda-
tor, is endowed with intentionality. Among superior animals predation becomes a
conflict and hence frequently dramatic (the agon).

Between two solid bodies, the junction morphology may be realized by using
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Figure 8.8 Confluence of two pipes (morphology 1A).

an auxiliary object (such as binding string) or a chemical (e.g. glue). But, in gen-
eral at least, a partial congruence of some parts of the bodies’ surfaces is
required.

Horphology 2A: dichotomic ramification

Reversing the junction morphology of two pipes can be done, but it requires
energy to work efficiently (for example, higher fluid pressure is required up-
stream). A natural stream, like a river, is generally canalized by its own flow, the
river-bed being limited by the higher banks (and valley slopes). This canalization
is strong inasmuch as the flow is fast and there is a large downhill slope, which
results in strong erosive power. But for simple canalized flows, ramification is
energetically unfavorable because it requires lifting a part of the flow to an upper
minimum (Figure 8.9). This is demonstrated by the fact that, generally, natural
drainage systems usually develop confluences and only rarely ramifications. When
the latter do occur, as in delta-heads, this expresses the fact that the river has
lost its erosive, hence its canalizing, power. In flat areas, the canalization is fre-
quently man-made, with artificial dams. In fact, ramification of a stream is often
obtained by building a dam (provided with sluices) across the river, and forcing
part of the flow into an artificial canal (as frequently occurs for irrigation).

It is very important that the ramifying morphology 2A, requiring energy, is
more difficult to realize than the confluency 1A; we discuss later some philosophi-
cal implications of this. For the present, it suffices to say that the required
energy for ramification may be furnished immediately by the flow itself, as in
explosive processes (e.g. the electric spark), but then the ramification itself is
not strictly controlled and may repeat itself, possibly giving rise to a divergent,
infinitely ramifying process (Figure 8.7). If we require a ramification of type 2A
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Figure 8.9 Creating an auxiliary flow from the main flow (ramifying morphology 2A).

that is strictly controlled, then we must use a preprogram which enables some
part of the energy carried by the main flow to force the derived flow into the
alternative canal (Figure 8.10). If this diverted flow must be raised above the level
of the main flow, we can no longer use a fixed preprogram (like the dam above),
and have to use a moving preprogram. The standard example here is the Moria,
the millwheel used in the Middle East to lift the water of a river into a higher irri-
gation canal (the Archimedes screw is another device for the same purpose).

Original flow

N

Watergate Diversion canal

Dam

Main river bed

Figure 8.10 Creating morphology 2A.
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Moving Preprograms

In the preceding section, we considered a fixed solid s within a stationary
flow, in which it is obvious that s is subjected to forces emanating from the
current, but the control is such that s remains at rest. Suppose we allow s to move
inside some space U; then under the pressure of the fluid, s moves and develops a
coupling with the fluid. It is predictable that this interaction will achieve an
asymptotic regime, described by an attractor for the motion of s in U. The sim-
plest case (for a nonpoint attractor) is a closed trajectory (the only nontrivial
attractor if U is 1-D). An example is when a millwheel is moved by a current; we
may consider that the kinetic energy of the wheel (and its axis) is a ramified
branch of the full energy flow of the current. Conversely, if we give to s a periodic
motion, then the fluid may take a stationary regime. This is the principle behind
the propulsion of boats by paddle-wheels or propellers. The pump is such a mov-
ing preprogram, which couples the push—pull periodic motion of the piston with
the irreversible character of the valves, and so transfers this motion to a periodic
pushing of the fluid.

A priori, the formation of such moving preprograms seems to require human
participation, but geological examples show that such preprograms may occur
quite naturally. A river erodes its banks and sometimes a detached rock may be
trapped by the ambient current in a circular movement (forming a pothole). (We
discuss later the theory of periodic, oscillatory movements entrained by a con-
tinuous flow.) Moving preprograms are among the most ancient tools used by man-
kind. For example, the knife blade (or azx) is a tool used to cut or split a solid into
two parts. In catastrophe theoretic formalism, the blade can be considered as a
dual cusp associated with the potential

V=xz%/4 +uz%/2 + vz

as shown in Figure 8.11. Its interaction with the potential well canalizing the body
creates a scission of the potential well. For the sieve (or net) we have a material
flow moving across the mesh with particles separated according to their size rela-
tive to that of the threshold magnitude, the mesh of the sieve.

X

/LN

A4

Figure 8.11 Potential associated on the
Maxwell line of the dual cusp.

For many normal tools, in fact, we implicitly use the principle of relativity of
movement; instead of placing a fixed obstacle inside a moving flow, we have a mov-
ing preprogram thrown against the treated body at rest. Which seems to show that
the relativity principle was innately used much earlier than Galileo or Einstein...
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Continuing these general considerations, [ suggest that due to this fundamen-
tal asymmetry between morphologies 2A and 1A, the symbolism of the movement
direction of 1A might be a cultural universal. The transition of 2 units -+ 1 unit is
always easier than the reverse, 1 » 2. For instance, we may place in a basket dif-
ferent objects with no difficulty at all, but if we want to extract from the basket a
specific object, we have to choose this object from the whole set of contained
objects. This requires the use of some gestaltist, perceptive criterion which is
transformed into a motor preprogram by the mind’s activity. Even without choos-
ing, we have, in order to achieve morphology 2A, to lift the basket and turn it in
such a way that the contents fall to the ground. Here we meet with, perhaps, two
of the most difficult questions in physics: the origin of time irreversibility and the
nature of the second principle of thermodynamics. Remember that for the origin
of irreversibility in Boltzmann's H-theorem, we have the Ansatfz that two
molecules are freely independent before colliding, but after collision they form a
single system united by correlations; that is, morphology 1A is preferred to 2A. In
the same spirit, Gibbs considered the following paradox. Consider two balloons
joined by a pipe (Figure 8.12), with a cock to allow the contents to mix. If, initially,
the contents are chemically different gases, mixing produces an increase in
entropy. If the two balloons contain the same gas at the same temperature, mixing
gives no entropy increase. To explain the result, Schrédinger had to invoke the
quantum principle of indiscernability of particles! (For in the second case,
quantum-wise, nothing happens and so the mixing is imaginary...) From the
viewpoint of qualitative dynamics, the superiority of 1A over 2A is obvious. For if
we allow some coupling between two differential systems (M,:.X,). (M,: X,) (notation
of p 198) so that the product structure (M; X) X (M5; X5) is (in general) unstable;
it breaks under the weakest form of coupling (at the slightest resonance). The
split property of the system and the split systems form a set of infinite codimen-
sions in the function space of flows on M, x M,. One cannot avoid the general feel-
ing that if we explain the spatial individuality of a system by some form of canaliz-
ing dynamics, then placing all these systems inside the same huge potential well
strongly impairs each individual dynamics. To extract a specific system from the
melting pot requires restoring its canalizing dynamics, which cannot be done
without time, cunning, and energy. In this metaphor, extracting the chosen system
requires the use of qualitative properties of the system, which (a) are specific to
it and (b) resist the perturbations due to mixing. Hence the use of a sieve: we
rediscover here Maxwell’'s demon as an antidote to the second principle.

Cock

Figure 8.12 Mixing of two gases from two balloons (Gibbs' paradox).



212 R. Thom

Entraining an Oscillator by a Continuous Flow:
The Dynamical Origin of the Cybernetic Loop

The millwheel

The motion of a millwheel in a steady current is apparently smooth; but a
more detailed analysis can be achieved if we consider a wheel with one single
blade. Then the rotation of the system can be decomposed into two periods:

(1) The blade enters the water, receives energy from the current, and delivers
it to the system; this is the eniraining phase of the period.

(2) The blade enters the air, the wheel rotates by inertia (invariance of angular
momentum), but as the system has to overcome friction or other consuming
demands, it loses some energy (not enough to prohibit it from reentering the
current); this is the retrofiux phase (since the blade is moving in the oppo-
site direction to the current).
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Figure 8.13 Fully anharmonic entrainment of an oscillator by a continuous flow: g, spa-
tial coordinate; o, assoclate momentum. The total area, A, of the hysteresis loop divided
by the total length, T, of the period is equal to the gained energy, E.

So the complete cycle of the blade is divided into the two phases, entraining
and retroflux, with short, catastrophic transitional periods in between (Figure
8.13). (Here the discontinuities affect second-order derivatives.) As a millwheel
usually has many blades breaking the rotational symmetry, the total movement is a
superposition of all the cycles; hence the final movement appears smooth. Note
also that the retroflux phase is the one in which the system delivers useful
energy (cf., the example of the Noria, quoted above). If this useful energy is
directed to a preprogram acting up-stream on the entraining flow itself, then we
have the classical cybernetic loop of retroaction, as exemplified by Watt’s regula-
tor for steam engines.
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The violin string under the bow

When the string moves in the same direction as the bow, the relative velocity
is less and the friction coefficient greater; this is the entraining phase. When the
string moves in the opposite direction, the relative velocity is larger and the fric-
tion coefficient smaller; this is the retroflux phase. Overall, the string receives
kinetic energy from the bow, dissipated through friction; due to the catastrophic
transitions between the two phases, the oscillation is strongly anharmonic, which
ensures the richness of the timbre of the emitted sound.

The clock’'s escapement

Here again a detailed analysis of the escapement mechanism reveals an
entraining period, where the pendulum travels in the same direction as the cog-
wheel moved by the falling weight, and a phase of retroflux, where the pendulum
moves in the opposite direction.

Harmonicity Versus Anharmonicity of Oscillations:
The van der Pol Theory

Consider the standard potential of the cusp singularity
V=z%4-uzx?/2 + vz .

The first derivative inx .V, = z3 —ux + v, defines in the (v;x) plane (here the
x axis is vertical!) the smooth curve C of equations V,, =0, v = ux — z3, For posi~
tive values of u, this curve has the well-known S-shape wiggle which defines the
cusp catastrophe: it has fold points of coordinates x = £+ 1/ V3, u = £2/3V3,
respectively. The upper and lower branches of C (x > 1/ V3,z < -1/ V3, respec-
tively) correspond to minima of potential V and so are stable regimes for the
dynamics defined by —grad,V. The middle arc (—1/3 <x <1/3) corresponds to
an unstable regime (¥ maximum). For u going to 0 and becoming negative, the
curve C(u) unfolds its wiggle and becomes a simple curve of negative slope,
dx /dv. The limiting case is u =0, where C(0) has a flex at 0 with a vertical
tangent (the wiggle disappears).

We consider now the dynamics defined by —gradV with respect to the hyper-
bolic metric ds? = dz? — k dv?, with k positive. The components of this gradient
are:

3 —uz +v v=-x/k

T =z
For k going to + o, this dynamics tends towards a constrained dynamics, which
admits the stable arcs of the curve C(u) as a slow manifold. Set uw =(k —1)/ k&,
then for any positive k, the flow admits the origin O as the only singularity. The

linear parts of the flow at 0 (x = —uz + v and v = —=z / k) define the (2.2) matrix

~-1/k O

—ul\
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Figure 8.14 Continuous deformation of an attracting cycle born by Hopf bifurcation into
an hysteresis loop (van der Pol theory). Intermediate cycles are provided by ‘“rivers"”
flowing into the cycle and prefigurating the stable branches of the associated charac-
teristic.

with the characteristic polynomial in s, s?2 +us +1/k. For negative w and small

ju |, with & <1, gradv has 0 as a repelling focus:; hence for —gradVl there is an
attracting focus. As u passes through 0 and & through +1, we obtain the standard
Hopf bifurcation, which transforms this attracting focus into a repelling one and
creates an attracting cycle G(k). A more detailed study shows that for k increas-
ing to +, this cycle develops into the hysteresis loop H associated with the wig-
gle C(1) (Figure 8.14). We conclude from this brief study that an hysteresis loop of
type H can be deformed (in a continuous family of easy definition, depending on
the parameter k) into an interior smooth cycle which may later concentrate into
an attracting focus; that is, a return towards the organizing center (v =v =0,
V = x4/ 4) of the cusp catastrophe.
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Morphological versus cybernetical approach

The general metatheorem stated on pp 201-203 gives some credence to the
apparently common belief that any regulatory procedure can be described by a
diagram involving only excitations and inhibitions of specific operations (i.e.,
opening and closing of apertures). For any path in a control space may be given a
slight deformation to the characteristic of a preprogram, in such a way that it
admits only the four singularities 1A, 1B, 2A, and 2B. But the interpretation of
confluences 1A or ramifications 2A may lead to difficulties if the branches are
qualitatively distinct or if the relative intensities of fluxes play an important role
later. In this respect, the problem of concatenation of preprograms is important;
it occurs each time a branch arising from a ramification 2A is so directed as to act
by local diffeomorphism in the control space of a subsequent preprogram. In such
cases, genericity assumptions may be kept valid by applying the composition of
generic smooth maps. But this would require having converging morphologies only,
and not diverging ones [Dufour theorem (1977)]; it is a fact that in most ramifying
processes 2A only one branch is of interest (it bears some pregnance, some value).
Moreover, as we shall see in the "budding process" described later, optimality
constraints may impair the transversality requirement.

Biological Finality and the Dynamics of Life

In this section, we discuss what may be considered as profound analogies
between primitive forms of teleological construction and the basic processes of
biological replication, at the cellular and organic levels. We first describe this
construction with an example of a technical nature.

Millwheels and diversion canals

The first millwheels were originally built on river banks and were rotated
only by the natural current. But people quickly became aware that they could
obtain a much higher efficiency if the mill was built on a steeper river gradient.
Hence the idea of creating an artificial fall, by diverting water further up-stream
into a canal of very low gradient, and allowing it to enter the main stream via the
blades of the millwheel. It should be noted that this idea was developed with prac-
tically no scientific or technical knowledge. (It occurred certainly in the early
Middle Ages, perhaps even in Antiquity ... after all, beavers also know how to build
dams.)

To build the diversion canal, the river has to be dammed with varying aper-
ture levels (sluices) to allow the excess of water to flow through the original river
bed; this is a case of the ramifying morphology 2A. Between the dam and the
millwheel(s) the stream is in a state of bimodality. Where the canal water reenters
the river bed, a junction of morphology 1A occurs. In considering the bimodality of
the gravitational potential energy, it is natural to use a hysteresis loop. h,
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(Figure 8.15), which can be obtained by folding into an S-shape (cliff) the original,
smooth, linear slope of the stream. This can be done at the cost of introducing, for
the side SD of the loop k4, a fictive retroflux, which precisely describes the con-
taining effect of the dam and the ensuing lack of kinetic energy in the main
stream.

Diversion canal

(Fall)
Effect of dam/

Fictive retroflux
Main flow

Figure 8.15 Hysteris loop h 4 associated with a diversion canal.

Main stream

Diversion canal

Fall

F
/
o

Entraining of miliwt.cel

Main stream
Millwheel —

yd
U | N
Retroflux

Figure 8.16 Millwheel entrained by an artificial water fall.

As explained earlier, the millwheel has itself an hysteresis loop H. Since the
internal energy of the wheel is taken from the potential energy of the river, its
energy is considered as negative in terms of the axis z. Figure 8.16, so con-
structed, may be considered as resulting from the concatenation of the two hys-
teresis loops h4 and H, with coincidence of the vertical movements associated
with the transitions (a) direct flux to retroflux for A, and (b) retroflux to direct
flux for H. The two cofold lines meet at O, but have to spatially coincide. The
energy of falling water in the segment FO is transferred to the wing of the wheel
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Figure 8.17 Section of butterfly catastrophe
corresponding to Figure 1.16.

entering the fall along UO. Note that between the two loops A, and H, there is a
saddle connection at O, common point of the two loops.

The process by which a ramification of type 2A occurs up-stream with the
creation of an auxiliary loop is a typical, primitive form of teleological activity. It
is also, in some sense, a primitive model of cell replication if we consider an hys-
teresis loop to be a 2-D geometric cell. Note, finally, that the folding of the
characteristic corresponds to passing from a simple cusp singularity to a but-
terfly one, subject to the constraint that the corresponding path in control space
has to be of the type which expresses that the two-fold extreme points coincide.
In a standard plane section of the butterfly bifurcation locus this path meets the
central double point (Figure 8.17).

Dynamics of Life: A Bird's Eye View

The metabolism of living things is — at a given instant — a kind of stationary
metabolic regime, represented in a space of biochemical parameters as an attrac-
tor for a flow; this metabolic activity is entrained by an energetic flux of dissipa-
tive nature. For Farth, energy comes from solar light and finally degradates into
thermal energy; it is believed that in the initial, primitive soup energy sources
were of a chemical and radiative nature. This flux had to be canalized; how are we
to imagine the walls of this canalization? A general answer can be provided as fol-
lows. The chemical reactions involved in biochemistry are fundamentally of two
very different types: first, fast, stoichiometric reactions involving small metabol-
ites colliding freely in an aqueous medium; second, nonstoichiometric reactions
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involving macromolecules. These latter polymerizations, or degradations and depo-
lymerizations, are much slower than those of the first type. Spatial regions
in which macromolecules are more densely concentrated have a much slower
metabolism than those free regions in which free collision dominates. Owing to the
adherence of small molecules to macromolecules, free collisions are rarer in the
macromolecular regions. The turbulent attractor, of large dimension, which
characterizes the free region degenerates in macromolecular regions to a quasi-
point attractor (a stationary state). Of course, even in macromolecular regions
small metabolites do interact; but owing to their adherence to macromolecules,
which in general exhibit an ordered configuration, the free collisions become spa-
tially guided, hence canalized. There are well known examples of this in organelles
such as chloroplasts and mitochondria. As a result, we may consider the energy
flux in living matter as a kind of stream canalized between banks provided by
metabolic states of macromolecular regions. Moreover, life is itself a spatially
canalized phenomenon. Of course, the formation of cells different from the sur-
rounding medium may be purely due to a phase transition, as when two liquids
cease to be miscible (formation of lipid bilayers as membranes); but such nuclei
have to be metrically controlled and replicate regularly by schizogenesis. Hence
the very likely conjecture that biochemical canalization (by macromolecules) and
spatial canalization (by membranes) had to be strongly coupled initially; which
means that membranes have to be spanned by regularly ordered macromolecules.
As the limiting membrane is relatively fixed (neglecting such phenomena as pseu-
dopodia, pinocytosis, etc.), it must be colonized by macromolecules such as those
which form a cytoskeleton. Although this limiting cytoskeleton has to increase in
interphase by polymerization, we may suppose that the growth is a relatively
ordered process, allowing us to define for any point of the membrane its temporal
trajectory (mathematically, the cytoskeleton defines a connection). Hence the
membrane can be considered as the fixed bank of the energetic flux due to the
metabolism of small molecules. We have to consider the total cytoskeleton as a
macromolecular system susceptible to biochemical vibrations; the period of such a
vibration — entrained by the ambient energy flux — is the cell replication cycle,
in which one cell becomes two (morphology 2A). If the membrane is considered to
be at rest, some parts of the cytoskeleton must still be internal to the cell and
exhibit variation. Here the analogy with the millwheel becomes relevanti. The axis
of the millwheel must be bound to the fixed banks, although, at the same time, it
has to rotate; and it carries blades which must fully interact with the current.
These properties strongly suggest that the axis of the millwheel is realized — in
our metaphor — by genomic DNA. We justify this analogy by developing the meta-
phor; that is, by describing more precise relationships between biochemical and
spatial canalization.

In a biphasic entrained system, we distinguish between the entrainment
phase and the retroflux phase. In classic descriptions of the mitotic cycle, the G
and S phase have to be considered as the entraining phase (synthesis and poly-
merization of macromolecules). The G, phase is the retroflux period, with progres-
sive deceleration of the metabolism. Mitosis proper (i.e. spatial scission) is the
catastrophe that enables the passage from retroflux to entraining. But the main
problem for life is to transform the chemical, dissipative current into a spatial
current. Suppose the available energy exists outside the cell in the form of
specific molecules (e.g. glucose); then capturing this energy would be relatively
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easy if these molecules happened to belong to a current hitting the cell wall. In
this case, it would suffice to have in the wall a macromolecular system of
intertwined strings constituting a net, such that the pores formed act as a sieve
for the required molecules. (Some marine animals actually use this method to feed
on plankton.)

In general, however, for a cell unable to move by itself such a current does
not exist; hence it must be created within the cell by internal cellular mechan-
isms. For example, there may be on the outer wall itself predator organelles
(macromolecular systems) able to capture the prey molecules and transfer them
within, where they are treated and their available free energy undergoes a long
sequence of transformations involving a series of chemical carriers, resulting in,
for instance, the ATP—ADP system. As, in metabolism, most of the energy is of a
chemical nature (neglecting kinetic or electrical energy), we may suppose that
this energy has continuous trajectories within the cell and defines there a flow.
For instance, some energy carried by intermediate molecules of the sequence must
be transferred back to the outer wall to provide the predator organelles with the
energy they require to capture and transfer. Hence this energy flow must be
somewhat complex within the cell. Let us idealize our living cell as a 3-D Euclidean
ball, defined in Euclidean three-space Ozxyz by

:t:2+yz+zzsl?2 ,

where R is the radius. Let x be a vector field defining this energy flow in B. We
call xp the flow obtained when the normal component vanishes on the boundary
sphere by local smoothing. We may admit that for a generic time { in interphase,
the flow Xp is conservative (condition of stationariness of the asymptotic regime).
But such a flow xj, tangent to the boundary sphere, must have on the boundary an
even number of singular points, and as Xp inherits from the original flow x a gra-
dient structure with respect to time (every trajectory of x entering B has to
leave after a finite, fixed time}, then any trajectory of X leaving a singular point
on B must reach 8B at another singular point. As for a flow on R%, not all minimal
sets can consist of saddle connections and there should exist at least one center;
there has to be a connection between centers for the flow Xp, which has to exhi-
bit internal vortices.

The simplest example of such a flow is that defined by a rotation of the ball
B around the 2z axis (Figure 8.18). The two centers are then the two poles
(x =y =0; 2z = +1) and there is a gradient structure on the z axis from, for
example, the North Pole to the South Pole. This is thus the axis of invariant points
akin to the genome.

Here we remark on the dynamics of cell replication. If we consider an equa-
torial section of the ball B, we obtain a 2-D disk D having the origin O as center.
There exists a flow in D, with O as a singular point (center) and tangent (nonvan-
ishing) to the boundary d0D. How are we to cut this cell into two? The most obvious
approach is to join the two opposite points JK [Figure 8.18(b)], of coordinates
z =0, y = t1, and to collapse by continuous deformation the segment JK to the
origin 0. We thus obtain a figure of eight, formed by two disks meeting at O, a com-
mon point which could be a saddle-point of the inherited flow. But this requires an
anterior duplication of the singularity of the flow, hence the constraint of dupli-
cating the penome before the cell itself.
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Figure 8.18 (a) Rotation of a ball around the z-axis; (b) breaking a cycle into two re-
quires preliminary duplication of the central singular points.

How can the singularity O duplicate itself? Here the mathematician's goal is
to replace the cybernetic execution of a program by sheer analytic continuation.
The simplest approach is to consider the initial flow in D (the one of concentric
circles centered at O) as given by the linear pencil of equation

% +y% -7r% t=0,

defining the line at infinity. Now let this line at infinity approach and pass
through O as the axis Oy. Biologically, this means that the genome moves to the
boundary wall and that the wall, extending to infinity as a straight line, must
necessarily break (Figure 8.19). The flow is then given by the meromorphic
potential

y =zt y?
2y
the flow lines of which are given by a very similar equation

2 2
H=—%y—=cst

Then the mirror axis Oy assumes the role of the mitotic equatorial plane and both
genomes separate to create two distinct cells. Of course, the idea that replication
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Figure 8.19 Two pencils of orthogonal circles.

occurs through some kind of analytic continuation, where an inducer structure,
being in contact with a competent medium, extends itself into a similar structure
is difficult to imagine (although the centriole is not very far from achieving this).
We know how life has solved the problem; it has anticipated the splitting of the
genome along Oy by replacing the single molecule O with a dipole system of axes
parallel to Oy (note that a dipole flow is very similar to the flow defined by the
Hamiltonian A). By some reflection principle, this dipole creates across the mir-
roring axis Oy a new dipole homologous to the preceding one, thus producing a
quadrupole (Figure 8.20). Now this ménage & quaire reorganizes as two dipoles of
axes parallel to Oz, thus allowing the dividing line Ox to be different from the
mirroring line Oy; the reader has probably recognized here the fork-like nature
of the DNA semi-conservative mechanism of replication. [2] As for breaking the
envelope, this phenomenon is well known for the nuclear wall in Eukaryotes
(although it occurs very posteriorly to DNA duplication). Obviously the genome
has very different structures and functions in Prokaryotes as opposed to
Eukaryotes.
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v

Figure 8.20 Quadrupole composed of two dipoles.

The Genetic Code

If we believe the metaphor that direct flux represents the dissipative energy
flow of small metabolites and retroflux the polymerization of macromolecules, then
there should be in the cell a catastrophe locus where the local regime shifts from
entraining to retroflux. It is likely that the ribosomes are those organelles in
which such a change happens; polymerization occurs also along the DNA string, in
the synthesis of Messenger RNA. I propose that the locus of trajectories of the
Messenger RNA strings, when they retreat from the DNA chain, can be considered
as a surface having the genome as boundary line (perhaps the genome in its
activated state can be considered as an edge of regression of a singular surface:
one sheet carrying the necessary precursors, the other the synthesized strings).
In the spherical model B, the RNA strings move along a helicoidal surface with, as
the director curve, a spiral drawn on a cone with Oz as the axis and S (South Pole)
as the vertex. In extending itself, the RNA string finally contacts ribosomes
which, on this conical surface, are regularly situated at generator lines (Figure
8.21). The conical surface can be considered as a conveyor belt bringing precur-
sor material to the growing wall. Passing through the ribosomes, of course, the
RNA string is translated into an amino acid chain.

The dynamics of the system may be more intelligible if we remember the toys
that children used to make when domestic heating was provided by coal stoves.
The children cut from cardboard a spiral, which they attached to the top of a
knitting needle stuck in a cork placed on the stove (Figure 8.22). The spiral was
held in a delicate equilibrium, its center on the top of the needle; the cardboard
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__— Protein

— — Ribosomes

Figure 8.21 Helicoidal surface on which RNA strings move.

spiral comprises two opposite pradients which, along with its own weight and the
ascending hot air, cause it to rotate around the needle.

1 Cork

Ascending warm air

Figure 8.22 Illustration of the dynamics of Figure 8.21.

Of course, biochemists say that all the reactions involving DNA -+ RNA - pro-
teins may be realized in vitro, in the presence of the necessary precursors, ATP,
ribosomes, and the relevant enzymes. This proves, perhaps, only that the enzymes
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are able to direct locally the energy flow in such a way as to provide in a micro-
environment the necessary energetic configuration. Anyway, the kinetics in vivo
are considerably faster than in vitro.

Perhaps to understand the origin of the genetic code we should consider the
ribosomal reading mechanism as a modulated sieve: in a flow of amino acid precur-
sors the ribosome is a funnel constructed such that the shape of the bottom hole
is determined by the triplet structure of the Messenger RNA. One may well ima-
gine proto-biotes living in a flow of useful molecules and able to modify the topol-
ogy of the capturing sieve according to the nature of the incident molecules. Ini-
tially, we can imagine that a specific molecular flow creates a puffing of a specific
part of the chromosome, leading to exploitation of this flow or triggering, by a
convenient sieve-like preprogram, a regulatory synthesis of proteins. One has to
imagine a phonemic ritualization of such a process involving "puffs' only three
nucleotides long. Such a number is, in fact, the least number of elements able to
delineate a planar hole, the bottom of the ribosome funnel. But here, of course, we
entertain yet more speculation...

Dynamics of Development in Metazoa

Here, we are interested in the embryology of triploblastic animals — ver-
tebrates in particular, recalling the basic scheme expounded in Thom (1972). The
first differentiation splits entoderm from mesectoderm; it is interpreted as the
result of a cusp catastrophe, in which the lower regime represents the subject,
the predator (entoderm), and the upper the object, the prey (ectoderm). The
mesoderm’s function is to capture the prey; that is, to push it to the fold point X
(the mouth; Figure B.23). This is the result of performing a hysteresis loop
between the upper and lower regimes [pumping energy from the entodermal
reserves (liver) to catch the prey]. But the presence of bilateral symmetry
quickly complicates the morphology; axial mesoderms (notochords) and paraaxial
mesoderms (somites) appear which split into three parts (dermatome, clerotome,
and myotome) and later form vertebrae around the neural tube created by neuru-
lation; and finally lateral mesoderms appear (kidneys, gonads, and the two lateral
sheets, somatopheure and splanchnopleure, enclosing the coelom). The first cycle
(the dorsal one) essentially develops the voluntary muscles and bones; the second
(the ventral one) the involuntary muscles and vascular system (in particular, the
heart).

The central theme is that the main functional hysteresis loop of Figure 8.23
splits into two according to Figure 8.24. A dorsal cycle involves chasing and ingest-
ing the prey; a ventral cycle involves digesting the prey, storing the chemical
energy produced by digestion, and delivering this energy to the motor organs
(essentially, blood circulation). I suspect that, at least for the higher vertebrates
from fishes to mammals, this splitting process takes place via the budding of a
loop described earlier. The fundamental hysteresis loop OAKL of the mesoderm
then becomes a smooth loop [by decreasing the k& coefficient of van der Pol's
theory we may produce a continuous family of concentric cycles, a conservative
dynamics that is within the rectangle of the hysteresis loop, Figure 8.25(a)]. Now
the straight line ¢ = 0 of the model is an internal image of the symmetry axis; it
occupies the direction v —x =cst, near to the upper left corner A [Figure
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Figure 8.23 Fundamental cycle of the mesoderm.
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Figure 8.24 Splitting the mesodermal fundamental cycle into two: the dorsal (FAMT) and
ventral (AGLH).

8.25(b)]; the stable regime within the little triangle BAC describes the notochord
(singularity of the elliptic umbilic)

V=zy@Ex +y —c)

10.2In the paraaxial mesoderm (somites), the constant ¢ vanishes, and the
line v =z —~z, acts as a mirroring axis for the tangent dynamics of A4; the
centers of the concentric cycles are pushed towards the boundary, at the corner
A. As a result, a symmetric dynamics is formed by reflection on the symmetric
angle [Figure 8.25(c)); the centers then move away from A (as in mitosis) and the
dorsal cycle is created [and also, symmetrically, the ventral cycle, Figure 8.25(d)].
This describes the classic process of neural induction, where the mesodermal
plate induces by contact the formation of neural tissue in the overlying ectoderm.
The cell budding process occurs both in the induced ectoderm and in the inducer
mesoderm (but in opposite directions). In the latter tissue, after the centers have
moved away, one may obtain attracting cycles both in the dorsal and in the ventral
oscillator, thus realizing a torus [Figure 8.25(d)]. A further degeneracy toward 1-D
resonance may explain, by breaking the quotient circle periodically, the meta-
meric splitting into somites. And by unfolding each somite along the cephalocaudal
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Figure 8.25 (a) Continuous family of concentric cycles within the hysteresis loop;
(b) the notochord; (c¢) axial dynamics (general); (d) paraaxial dynamics (somites);

(el) sclerotome, (e“) dermatome, (em) myotome.

gradient, we may find an interpretation of the ternary splitting (sclerotome, der-
matome, and myotome) arising later in somites [Figure 8.25(e1—em)]. Later in the
development, the fusion of sclerotome and myotome is a suggestive image for the
canonical vertebrae [Figure 8.25(f)], with the neural arch enclosing the neural
tube, and the haemal arch enclosing the dorsal aorta. The internal regimes of the
somtatopleure [Figure 8.25(h)] and the splanchopleure [Figure 8.25(i)] are purely
dorsal and ventral, respectively (here the conservative character of the flow
disappears). The last regime, in its most cephalic part, keeps some oscillatory
character (attracting cycle) which manifests itself in the cardiac cells by elemen-
tary contractions (note that the periods of this last cycle may have nothing in
common with the previously considered cycles).

To explain the intermediate development of lateral mesoderm (nephrotomes,
gonads) one has to postulate that some further budding of the system of loops
occurs. For instance, at the vertex L of the ventral rectangle (Figure 8.26, lower
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Figure 8.25 (cont.) (f) schema of vertebrae; (g) germinal
dynamics; (h) somatopleure; and (i) splanchnopleure.

right) a new loop may be born by further budding (LKPO); LK represents produc-
tion of waste material and OP symbolizes the external world. The edge KP is the
(catastrophic) excretion of waste into the external world. The retroflux arrows
PQ and QL represent, respectively, the loss of energy due to production of waste
and the necessary injection of inorganic material (such as water and oxygen) for
producing waste material (urine, carbon dioxide). Gonads are also related to this
repelling cycle; but the germinal line cells emanate in generel from the splanchno-
pleure, very near the origin 4. Here again, one may conjecture that the return to
germinal dynamics occurs via the straightening of the fundamental S-
characteristic of the first catastrophe (ectoderm—entoderm), leading to the
V=zt/4 organizing center, and then allowing the two roots emanating from zero
to develop Hopf bifurcations, in such a way as to develop for each pair of sym-
metrical roots a figure of eight [Figure 8.25(g)].

Another very important budding process is the cephalic loop extending from
the upper left vertex T into TBIS (Figure 8.26, upper left). The edge 7B
represents tracking the prey; the retroarrow IB represents the projection
emanating from the eye to the external object (the active pregnance of seeing); IS
is the progressive localization of the prey, and ST its spatial localization by sen-
sory inputs. This model invokes the concept that underlies the whole embryology;
there is a kind of symbolic physiological blastula, the cells of which are hys-
teresis loops, causally related by the identity of the same energetic flow. This
blastula forms by successive mitoses (budding) of an original "cell” the fundamen-
tal hysteresis loop of the mesoderm. As the basic physiological constraints are the
same for the whole animal kingdom, one may suspect that this physiological blas-
tula is a universal structure within animal embryology (and, perhaps, also its tem-
poral method of formation). But the coupling with spatial unfoldings (ill-defined,
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Figure 8.26 The physiological blastula.

both qualitatively and quantitatively) creates the variety of Bauplans observed
in nature. To take a single — striking — example, let us consider the starfish,
which develops from a bilaterally symmetric larva into an organism of five-fold
symmetry. In vertebrates, the cephalocaudal axis is mapped on the vertex 4 of
the physiological blastula, with a tendency to unfold along the diagonal TAL (mouth
in the head, T'; anus at the caudal extremity, L). When the starfish undergoes
metamorphosis, its cephalocaudal axis is spatially vertical (the mouth—-anus axis);
it is mapped along the ventral diagonal AL of the symbolic blastula. But the dorsal
diagonal AT (devoted to prehension activity) is mapped in the adult along the hor-
izontal circle dual (perpendicular) to the central vertical axis, and it is there bro-
ken into a five-order symmetry. Such huge geometrical remodelings of the body
obviously necessitate an almost total lysis of the organic structure during
metamorphosis.
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Concluding Remarks

I hope to have shown in this chapter how the consideration of very crude
energetic constraints, together with some genericity assumptions, may increase
our understanding of tools, organs, and embryology. Of course, orthodox scientists
may say that such ideas are not useful, as they do not allow experimental predic-
tion or verification. To that I would like to answer that I do not claim here to pur-
sue scientific data, my only aim being to revive the concept of natural philosophy.

Notes

[1] As pointed out on pp 201-211, complete vanishing of a flow is a nongeneric situa-
tion. Hence it is extremely difficult to produce preprograms that allow simultane-
ous perfect opening and closing of a flow. This is why, in almost all cases, shut off
faucets do leak — a truth any owner of an apartment (or country house) can hardly
doubt. This necessary dependence of life processes on nongeneric situations such
as perfect containment has led some thinkers (e.g., J. Monod in his celebrated
Chance and Necessity) to appeal to contingence and randomness to explain the
origin of life. But we should not forget the constraints which control propagations
of specific physical entities; already in optics, total absence of light (full dark-
ness) is relatively easy to obtain in a stable way. A solid body (a crystal for
instance) is a closed set in Euclidean space to a very good approximation. Molecu-~
lar biology is undoubtedly correct to express the importance of these constraints
due to molecular bindings, and hence to the underlying spatial geometry.

[R] In this passage from dipole to quadrupole by symmetry, the symmetry is not only
spatial, but also internal (the symmetrical equivalent of a +1 charge is a -1
charge). In organic epigenesis such an internal symmetry cannot exist between
cells; as a result, the symmetry plane of bilateral embryos is frequently also the
separation plane of twin embryos. This appears in double-monster teratology
(Siamese twins, spina bifida, etc.). Note that if we have in the (xz;v) plane the
dipole field defined by the potential ¥ = z/ (z? + v%) then the fold map ¥ -z
defined by £ = y? induces on the (¥; V) plane a field defined by the meromorphic
potential

W =y?/ (yt + vd

This is precisely the type of potential that occurs in our consideration of van der
Pol theory, pp 213-214.
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CHAPTER 9

The Language of Life

David Berlinski

Introduction

In the spring of 1984, I delivered two lectures at IIASA under the title The
Language of Life. Dianne Goodwin was kind enough to prepare a verbatim tran-
script of my talks; [ have used the months since then to purge the written record
of what I said of its incoherence, vagrant inaccuracies, and general slovenliness.

This chapter is at once long and terse — an unhappy combination, and one
that makes severe demands of the reader. Many arguments are highly compressed
and must be elaborated before they appear convincing. I have not hesitated to
make use of mathematical concepts in expressing myself; but I draw no mathemati-
cal conclusions. I thus run the risk of alienating the general reader even as I anta-
gonize the mathematician. For these reasons, it may be helpful if in this introduc-
tion I endeavor to place this chapter in a somewhat wider personal and intellectual
context.

As it stands, The Languwage of Life represents a draft of one-third of a
larger work entitled Language, Life and Logic. Another part of that more ambi-
tious project was delivered at IIASA two years ago as a set of lectures. The written
record of those lectures, which I hope to publish separately as a working paper, is
entitled Classification and its Discontents.

My aim in Language, Life and Logic is to explore a certain complicated com-
mon ground that holds between language, on the one hand, and the graphic arts,
on the other. These are the classic systems of representation of the human imagi-
nation. In both, there is a curious division between the system’s syntactic and
semantic structures: a theory, for example, consists of a finite set of sentences,
the sentences of words; paint and then pigment comprise a painting; and yet,
words and sentences, paints and pigments, manage, somehow, to cohere and, then,
in a miraculous act of self-transcendence, to make contact with a distinct and dif-
ferent external world. The problems of theoretical biology, it might seem, have
nothing much to do with issues that arise in the philosophy of language or the phi-
losophy of art. Not so. A gene comprises a linear array of nucleotides that under
certain conditions expresses a protein or set of proteins. The proteins, in turn,
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are organized to form a structure as complicated as a moose or a mouse. The
nucleotides are plainly alphabetic or typographic in character; the organism itself
is rich, complex, complete, continuous, unlike an alphabet. How is it, then, that
such typographic structures as DNA manage to express so much that is not typo-
graphic at all? This is a question quite similar to questions that might be raised
about language itself, or works of the graphic arts; and when it is pursued, certain
metaphors and quite peculiar images begin drifting from one subject to the other.
There is the notion of meaning, of course, which is common to language, art, and
life; but also the idea that life is itself a language-like system; or that art is
organic. The relations of satisfaction, representation, and expression, while for-
mally distinct, of course, nonetheless display points of contact. In order to
explain how it is that a painting may represent a face, for example, one has
recourse to the notion of a metaphor, a concept from the philosophy of language
and linguistics; to make sense of gene expression, one deals in concepts such as
code, codon, information, and regulation. In a general way, a theory, a painting,
and a gene belong to the class of interpreted or significant typographic objects. It
is for this reason that it has seemed to me profitable to explore some of the con-
cerns of theoretical biology and the philosophy of art and language in a single
volume.

Within the context of this chapter, my aim is to explore the ramifications of
a controlling metaphor: the idea that life comprises a language-like system. I do
this against the background of the neo-Darwinian theory of evolution — the most
global and comprehensive scheme of thought in theoretical biology. My argument
at its most general is constructed as a dilemma: if life is a language-like system,
then certain concepts are missing from Darwinian thought; if not, then Darwinian
thought is suspicious in the sense that its principles do not naturally apply to cog-
nate disciplines. The intellectual pattern to this chapter is thus one of movement
between two unyielding points, a kind of whiplash.

Part One establishes the historical and contemporary background to
Darwinian thought; and makes the argument that much of biology cannot be
reduced to physics. In Part Two, I consider the confluence of certain concepts:
distance in the metric spaces of organisms and of strings, metric spaces in phase,
complexity, simplicity, Kolmogorov complexity, the ideas of a weak theory, and a
language-like system. Part Three plays off concepts of probability against the
hypothesis that molecular biological words are high in Kolmogorov complexity —
with results that are inconclusive. In Part Four, I examine evolution or biological
change as a process involving paths of proteins. The discussion is set in the
mathematical contexts of ergodic theory and information theory. In many
respects, the classical concepts of information and entropy are most natural in
discussing topics such as the generation of protein paths by means of stochastic
devices; but there is a connection between Kolmogorov complexity and entropy in
the sense of information theory, which remains to be explored. Almost all of Part
Four represents a tentative exploration of concepts that require, and will no
doubt receive, a far fuller mathematical treatment.

Many of the points that I make in this paper I first discussed with M. P.
Schutzenberger in Paris in 1979 and 1980. Indeed, it was our intention and hope to
publish jointly a monograph on theoretical biology. This has not come to pass. Still,
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to the extent that my ideas are interesting, they are his; to the extent that they
are not, they are mine.

John Casti read the penuitimate draft of this essay and discovered any
number of embarrassing errors. I am grateful for his stern advice, which I have
endeavored to heed.

PART ONE

A System of Belief

The natural thought that theoretical biology comprises a kind of intellectual
Lapland owes much to the idea that biology itself is somehow a derivative science,
an analogue to automotive engineering or dairy management, and, in any case,
devoid of those special principles that lend to the physical or chemical sciences
their striking mahogany lustre. This is the position for which J.J.C. Smart (1963)
provided a classic argument in Philosophy and Scientific Realism.[1] Analytic
philosophers, for the most part, agree that nothing in the nature of things com-
pels them to learn organic chemistry; Feyerabend, Putnam, and Kuhn have won-
dered whether any discipline can properly be reduced to anything at all; and,
then, whether anything is ever scientific, at least in the old-fashioned and hon-
orific sense of that term.[2] Naive physicists — the only kind — are all too happy
to hear that among the sciences physics occupies a position of prominence denied,
say, to urban affairs or agronomy. The result is reductionism from the top down,
a crude but still violently vigorous flower in the philosophy of science. The physi-
cist or philosopher, with his eye fixed on the primacy of physics, thus needs to
sense in the other sciences — sociology, neurophysiology, macrame, whatever -
intimations of physics, however faint. This is easy enough in the case of biochemis-
try: chemistry is physics once removed; biochemistry, physics at a double dis-
tance. Doing biochemistry, the theoretician is applying merely the principles of
chemistry to living systems: like the Pope, his is a reflected radiance.

In 1831, the German chemist Uriel Wohler synthesized urea, purely an
organic compound — the chief ingredient in urine, actually — from a handful of
chemicals that he took from his stock and a revolting mixture of dried horse
blood. It was thus that organic chemistry was created: an inauspicious beginning,
but important, nonetheless, if only because so many European chemists were con-
vinced that the attempt to synthesize an organic compound would end inevitably in
failure. The daring idea that all of life ~ I am quoting from James Watson's text-
book (1965), The Molecular Biology of the Gene — will ultimately be understood in
terms of the "coordinative interaction of large and small molecules’ is now a com-
monplace among molecular biologists, a fixed point in the wandering system of
their theories and beliefs. The contrary thesis, that living creatures go quite
beyond the reach of chemistry, biochemists regard with the alarmed contempt
they reserve for ideas they are prepared to dismiss but not discuss. Francis
Crick, for example, devotes fully a third of his little monograph, Of Molecules and
Men, to a denunciation of vitalism almost ecclesiastical in its forthrightness and
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utter lack of detail.[3] Like other men, molecular biologists evidently derive some
satisfaction from imagining that the orthodoxy they espouse is ceaselessly under
attack.

Theoretical biologists still cast their limpid and untroubled gaze over a world
organized in its largest aspects by Darwinian concepts; and so do high-school
instructors in biology — hardly a group one would think much inclined to the idea
of the survival of the fittest; but unlike the theory of relativity, which Einstein
introduced to a baffled and uncomprehending world in 1805, the Darwinian theory
of evolution has never quite achieved canonical status in contemporary thought,
however much like a cold wind over water its influence may have been felt in
economics, sociology, or political science. Curiously enough, while molecular genet-
ics provides an interpretation for certain Darwinian concepts — those differences
between organisms that Darwin observed but could not explain — the Darwinian
theory resists reformulation in terms either of chemistry or physics. This is a
point apt to engender controversy. Woodger, Hempel, Nagel, and Quine cast reduc-
tion as a logical relationship: given two theories, the first may directly be
reduced to the second when a mapping of its descriptive apparatus and domain of
interpretation allows the first to be derived from the second. I am ignoring
details, now. The standard and, indeed, the sole example of reduction successfully
achieved involves the derivation of thermodynamics from statistical mechanics. In
recent years, philosophers have come to regard direct reduction with some unhap-
piness. There are problems in the interpretation of historical terms: the
Newtonian concept of mass, for example; and theories that once seemed cut from
the same cloth now appear alarmingly incommensurable. Kenneth Schaffner has
provided a somewhat more elaborate account of reduction: his definition runs to
five points.[4] By a corrected theory, he means a theory logically revived to bring
it into conformity with current interpretations: Newton upgraded, for example.
His general scheme for reduction, then, is this:

(1) All of the terms in the corrected theory must be matched to terms in the
reducing theory — a requirement of completeness.

(2) The corrected theory must be deducible from the larger theory, given the
existence of suitable reduction functions — a requirement of derivability.

(3) The corrected theory must indicate why the original theory was incorrect —
a requirement of epistemological insight.

(4) The original theory must be explicable in terms of the reducing theory -~ a
requirement of cogency.

(5) The original and corrected theories must resemble each other — a require-
ment of intellectural symmetry.

In the case of theoretical biology, to speak crisply of deriving, say, molecular
biology from biochemistry is rather like endeavoring to cut steel with butter:
there is a certain innocence to the idea that molecular biology has anything like a
discernable logical structure. What one actually sees is a mass of descriptive
detail, a bewildering plethora of hypothetical mechanisms, much by way of anecdo-
tal evidence, a few tiresome concepts, and an array of metaphors drawn from phy-
sics, chemistry, information theory, and cybernetics. The definition of reduction
just cited is, in addition, incomplete, its flagrant inapplicability aside. In Men-
delian genetics, the concept of a gene is theoretical, and genes figure in that
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theory as abstract entities. To what should they be pegged in molecular genetics
in order to reduce the first theory to the second? DNA, quite plainly, but how
much of the stuff counts as a gene? "Just (enough) to act as a unit of function,”
argues Michael Ruse, a philosopher whose commitment to prevailing orthodoxy is a
model of steadfastness.{5] The functions that he has in mind are biochemical: the
capacity to generate polypeptides; but to my way of thinking, the reduction
achieved thus is illicit. In biochemistry, the notion of a unit of function is otiose,
unneeded elsewhere. To the extent that molecular genetics is biochemistry, it
does not reflect completely Mendelian genetics; to the extent that it does, it is
not biochemistry, but biochemistry beefed-up by extrinsic concepts, a conceptual
padded shoulder. What holds in a limited way for molecular genetics holds in a
much larger way for molecular biology. Concepts such as code and codon, informa-
tion, complexity, replication, self-organization, stability, negative entropy
(grotesque on any reckoning), transformation, regulation, feedback, and control —
the stuff required to make molecular biology work — are scarcely biochemical: the
biochemist following some placid metabolic pathway need never appeal to them.
Population genetics, to pursue the argument outward toward increasing generality,
is a refined and abstract version of Darwin’s theory of natural selection, applied
directly to an imaginary population of genes: selection pressures act directly on
the molecules themselves, a high wind that cuts through the flesh of life to reach
its buzzing core. Has one achieved anything like a reduction of Darwinian thought
to theories that are essentially biochemical, or even vaguely physical? Hardly.
The usual Darwinian concepts of fitness and selection appear unvaryingly in place.
These are ideas, it goes without saying, that do not figure in standard accounts of
biochemistry, which very sensibly treat of valences and bonding angles, enzymes
and metabolic pathways, fats and polymers — anything but fitness and natural
selection. To Schaffner’s list of five, then, I would add a sixth: no reduction by
means of inflation — a contingent and cautionary restriction that, for the time
being at least, enforces a stern separation between biology and mathematical phy-
sics.

The Darwinian theory of evolution is the great, global organizing principle of
biology, however much molecular biologists may occupy themselves locally in
determining nucleotide sequences, synthesizing enzymes, or cloning frogs. Those
biologists who look forward to the withering away of biology in favor of biochemis-
try and then physics are inevitably neo-Darwinians, and the fact that this theory
— their theory - is impervious to reduction they count as an innocent incon-
sistency. If mathematical physics offers a vision of reality at its most comprehen-
sive, the Darwinian theory of evolution, like psychoanalysis, Marxism, or the
Catholic Faith, comprises, instead, a system of belief. Like Hell itself, which is
said to be protected by walls that are seven miles thick, each such system looks
especially sturdy from the inside. Standing at dead center, most people have con-
siderable difficulty in imagining that an outside exists at all.

The Historical Background

Charles Darwin completed his masterpiece, On the Origin of Species, in
1859. He was then forty-nine, ten years younger than the century, and not a man
inclined to hasty publication. In the early 1830s, he had journeyed to the islands
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of the South Atlantic as a naturalist aboard H.M.S. The Beagle. The stunning diver-
sity of plant and animal life that he saw there impressed him deeply. Prevailing
biological thought had held that each species is somehow fixed and unalterable.
Looking backward in time along a line of dogs, it is dogs all the way. Five years in
the South Atlantic suggested otherwise to Darwin. The great shambling tortoises
of the Galapagos, surely the saddest of all sea-going creatures, and countless sub-
species of the common finch, seemed to exhibit a pattern in which the spokes of
geographic variation all radiated back to a common point of origin. The detailed
sketches that Darwin made of the Galapagos Finch, which he later published in On
the Origin of Species, show what caught his eye. Separated by only a few hun-
dred miles of choppy ocean, each subspecies of the finch belongs to a single fam-
ily; and yet, Darwin noted, one group of birds had developed a short, stubby beak;
another, living northward, a long, pointed, rather Austrian sort of nose. The varia-
tions among the finch were hardly arbitrary: birds that needed long noses got
them. By 1837, Darwin realized that what held for the finch might hold for the
rest of life and this, in turn, suggested the dramatic hypothesis that far from
being fixed and frozen, the species that now swarm over the surface of the Earth
evolved from species that had come before in a continuous, phylogenetic,
saxophone-like slide.

What Darwin lacked in 1837 was a theory to account for speciation, but the
great ideas of fitness and natural selection evidently came to him before 1842, for
by 1843 he had prepared a version of his vision, and committed it to print in the
event of his death. He then sat on his results in an immensely slow, self-satisfied,
thoroughly constipated way until news reached him that A.R. Wallace was about to
make known his theory of evolution. Wallace, so far as I know, had never traveled
to the South Atlantic, sensibly choosing, instead, to collect data in the Fast
Indies, and, yet, considering the same problem that had earlier vexed Darwin, he
had hit on precisely Darwin’s explanation. The idea that Wallace might hog the
glory was too much for the melancholic Darwin: he lumbered into print just months
ahead of his rival; but in science, as elsewhere, even seconds count.

The theory that Darwin proposed to account for biological change is a con-
ceptual mechanism of only three parts. It involves, in the first instance, the
observation that living creatures vary naturally. Each dog is a member of a com-
mon species and thus dog-like to the bone; but every dog is doggish in his own way:
some are fast, others slow, some charming, and others bad from the first, suitable
only for crime. Darwin wrote before the mechanism of genetic transmission was
understood, but he inclined to the view that variations in the plant and animal
kingdoms arise by chance, and are then passed downward from fathers to sons.

The biological world, Darwin observed, striking now for the second point to
his three-part explanation, is arranged so that what is needed for survival is gen-
erally in short supply: food, water, space, tenure. Competition thus ensues, with
every living thing scrambling to get his share and keep it. The struggle for life
favors those organisms whose variations give them a competitive edge. Such is the
notion of fitness. Fast feet make for fitness among the rabbits, even as a feathery
layer of oiled down makes the Siberian swan a fitter foul. At any time, those
creatures fitter than others are more likely to survive and reproduce. The win-
nowing in life effected by competition Darwin termed natwral selection.
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Working backward, Darwin argued that present forms of life, various and
wonderful as they are, arose from common ancestors; working forward, that biolog-
ical change, the transformation of one species to another, is the result of small
increments that accumulate, step by inexorable step, across the generations, until
natural selection recreates a species entirely. The Darwinian mechanism is both
random and determinate. Variations occur without plan or purpose — the luck of
the draw; but Nature, like the House, is aggressive; organized to cash in on the
odds.

The Central Dogma

Everthing that lives, lives just once. To pass from fathers to sons is to pass
from a copy to a copy. This is not quite immortality, even if carried on forever, but
it counts for something, as every parent knows. The higher organisms reproduce
themselves sexually, of course, and every copy is copied from a double template.
Bacteria manage the matter alone, and so do the cells within a complex organism,
which often continue to grow and reproduce after their host has perished,
unaware, for a brief time, of the gloomy catastrophe taking place around them. It
is possible, I suppose, that each bacterial cell contains a tiny copy of itself, with
the copy carrying yet another copy; biologists of the early eighteenth century,
irritated and baffled by the mystery of it all, actually thought of reproduction in
these terms: peering into crude, brass-rimmed microscopes, they persuaded them-
selves that on the thin, stained glass, they actually saw a homunculus; the more
diligent proceeded to sketch what they seemed to see. The theory that emerged
had the great virtue of being intellectually repugnant. Much more likely, at least
on the grounds of reasonableness and common sense, is the idea that the bacterial
cell contains what Erwin Schroedinger called a code script — a sort of cellular
secretary organizing and recording the gross and microscopic features of the cell.
Such a code script would be logically bound to double duty. As the cell divides in
two, it, too, would have to divide without remainder, doubling itself to accommodate
two bacterial cells where formerly there was only one. Divided, and thus doubled
without loss, each code script would require powers sufficient to organize anew
the whole of each bacterial cell. The code script that Schroedinger (1945) antici-
pated in his moving and remarkable book, What is Life? — he wrote in the 1940s —
turns out to be DNA, a long and sinewy molecule shaped rather like a spiral in two
strands. The strands themselves are made of stiff sugars, and stuck in the sugars,
like beads in a sticky string, are certain chemical bases: adenine, cytosine, gua-
nine, and thymine: A, C, T, and G, in the now universal abbreviation of biochemists.
It is the alternation of these bases along the backbone of DNA that allows the
molecule to store information.

One bacterial cell splits in two: each is a copy of the first. All that physically
passes from cell to cell is a strand of DNA: the message that each generation sends
faithfully into the future is impalpable, abstract almost, a kind of hidden hum
against the coarse wet plops of reproduction, gestation, and birth itself. James
Watson and Francis Crick provided the correct description of the chemical struc-
ture of DNA in 1952. They knew, as everyone did, that somehow the bacterial cell
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in replication sends messages to each of its immediate descendents. They did not
know how. As it turned out, the chemical structure of DNA, once elaborated, sug-
gests irresistably a mechanism both for self-replication and the transmission of
information. In the cell itself, strands of DNA are woven around each other and
by an ingenious twist of biochemistry matched antagonistically: A with T, and C
with G. At reproduction, the cell splits the double strand of DNA. Each half floats
for a time, a gently waving genetic filament; chemical bonds are then repaired as
each base fastens to a new antagonist, one simply picked from the ambient broth
of the cell and clung to, as in a single’s bar. The process complete, there are now
two strands of double-stranded DNA where before there was only one.

What this account does not provide is a description of the machinery by
which the genetic code actually organizes a pair of new cells. To the biochemist,
the bacterial cell appears as a kind of small sac enclosing an actively throbbing
biochemical factory; its products are proteins chiefly — long and complex
molecules composed, in their turn, of twenty amino acids. The order and composi-
tion of the amino acids along a given chain determines which protein is which. The
bacterial cell somehow contains a complete record of the right proteins, as well as
the instructions required to assemble them directly. The sense of genetic identity
that marks E. Coli as E. Coli and not some other bug must thus be expressed in
the amino acids by means of information stored in the nucleotides.

The four nucleotides, we now know, are grouped in a triplet code of 64 codons
or operating units. A particular codon is composed of three nucleotides. The amino
acids are matched to the codons: C—G—A, for example, to arginnine. In the transla-
tion of genetic information from DNA to the proteins, the linear ordering of the
codons themselves serves to induce a corresponding linear ordering first onto an
intermediary, messenger RNA, and then onto the amino acids themselves — this via
yet another messenger, transfer RNA. The sequential arrangement of the amino
acids finally fixes the chemical configuration of the cell.

Molecular biologists often allude to the steps so described as the Central
Dogma, a queer choice of words for a science.

The dour Austrian monk, Gregor Mendel, founded the science of genetics on
purely a theoretical notion of a gene, which he likened to a bead on a string. In
DNA, one looks on genetics bare: the ultimate unit of genetic information is the
nucleotide. All that makes for difference, and hence for charm, in the natural
world, and which is not the product of culture, art, artifice, accident, or hard
work, all this, which is brilliantly expressed in maleable flesh, is a matter of an
ordering of four biochemical letters along two ropey strands of an immemorial
acid.

The Central Dogma describes genetic replication; but the concepts that it
scouts plainly illuminate Darwinian theory from within. Whether as the result of
radiation or chemical accident, letters in the genetic code may be scrambled; one
letter shifted for another; entire codons replaced, deleted, or altered. These are
genetic mutations: arbitrary, because unpredictable; and yet enduring, because
they are variations in the genetic message. The theory by which Darwin proposed
to account for the origin of species and the nature of biological diversity now
admits of expression in a single English sentence. Evolution, or biological change,
so the revised, the neo-Darwinian theory, runs, is the result of natural selection
working on random mutations.
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PART TWO

Evolutionary Theories

The popular view of evolution tends to be a tight shot on a tame subject: the
dinosaur, who did not make it; the shark, who did; but the maturation of an organ-
ism is itself much like the evolution of a species; only our intimate acquaintance
with its precise and unhesitating character suggests, misleadingly, I think, that
the two processes differ in degree of freedom. Psychology, economics, urban
affairs, anthropology, political science, and history also describe processes that
begin in a state of satisfying and undemanding simplicity, and end later with
everything complex, unfathomable, chaotic. The contrast to physics is sobering.

The dynamics of evolutionary theories are often divided into two conceptual
stages. In economics, there are macro~- and micro-economic theories, aggregate
demand versus the theory of the firm; within linguistics, language at the continu-
ous level of speech, and language some levels below, discrete, a matter of the con-
catenation of words or morphemes. Biology, too, is double-tiered: above, the organ-
ism prances; unseen, below, at a separate level, its life is organized around the
alphabetic nucleotides.

Metric Spaces

By a metric space S I mean a space upon which a function
d:SxS » R,

has been defined, assigning to each pair of points s, s’ in S a nonnegative real
number — the distance d (s, s’) — and satisfying the usual axioms:

d(s,s)=0<=>s =5’ ; 9.1)
d(s, s) =d(s’, s) ; 9.2)
d(s,s’) +d(s’, s")=>d(s,s") . Q.3)

Double metrics

The distance between organisms

The disciplines of comparative anatomy and systematic zoology classify
creatures into ever-larger sets and sets of sets: individuals (dogs, say), species,
genera, families, orders, classes, phyla, taxa, and kingdoms. The classification
itself forms an algebraic lattice, with individuals acting as the system’'s atoms.
Comparative anatomists and zoologists bring an exquisitely refined and elaborate
intuition to the task of sorting the various biological creatures into appropriate
categories: the obvious cases leap to the eye; at the margins of the system, where
the whale resides, difficult matters are decided by reference to historical and
comparative anatomy, parallel structure, common organization, biological traits,
and, often, levels of biological achievement. If the image of a lattice is for the



240 D, Berlinski

moment taken literally, then each level of the lattice, from the atoms upward,
comprises a set or ensemble: of individuals, in the first instance, of sets of indivi-
duals, in the second. An ensemble at any distinct level of the lattice, I assume,
satisfies equations (8.1)—(8.3), and counts thus as a metric space.

The distance between strings

DNA is a string drawn from a four-letter alphabet; proteins are strings of
fixed length composed of 20 amino acids; as such, both strings belong to a wider
family of string-like objects: computer programs written in a given language, the
sentences of a natural language, formal systems; and acquire by osmosis a distinct
conceptual and mathematical structure. It makes little difference whether strings
of DNA or strings of amino acids are taken as fundamental; and, in any case, I
often alternate between the two. By an alphabet A 1 mean a fixed and finite col-
lection of elementary entities called words; by the universe of strings over a
finite alphabet, the set of all finite sequences A* whose elements lie in 4.

The natural distance between words W =w,.w,, V =v,y.v, W, VEL)is
fn] + |n| — 2 x [k}, where k is the maximum of the length of a word U = u,...u,,
which is a subword both of ¥ and V. For example, let # = cadbabbd, V = xcaaba.
An appropriate U is U = caab; hence D(W,V) =8 +6 -2 X k.

Grantham (1974) has proposed a definition of distance in a Euclidean metric
space of proteins based on properties of composition, polarity, and volume; but
the theory of evolution suggests that changes in biological strings come about
through mutations — random flash points at which letters are scrambled. Some
strings may change in a large-hearted way, with whole blocks of letters wheeling
and shifting like cavalry horses; but the least mechanism to which these opera-
tions may be resolved is the simple one of erasure and substitution — deletion and
insertion. The elementary processes of evolution at the molecular level lend to the
natural metric a certain simple plausibility in the face of fancy competition. T' =
A*, then, is a typographic meiric space; dp, its natural distance.

Metric spaces in phase

M and M*, suppose, are two metric spaces; g: ¥ + M* assigns to each point p
in M a distinct point P* in M*. ¥ and M* are in phase under g if g acts roughly
to preserve distances: for any £ > 0, there exists a ¢ >0, such that for all p and
ginM

dy@. @) <¢ 2 dylg@)g@]<§ .

g is thus uniformly continuous on M; ¢ is, of course, a function of £ It often
happens that a particular mapping between metric spaces is especially natural —
for reasons that are not mathematical. The English alphabet, for example, makes
for two metric spaces: strings of letters, sets of words. Strings of letters are
close if they agree in spelling; words if they agree in meaning. Small typographic
changes give rise to large differences in meaning: these metric spaces are not in
phase. This observation is often regarded as a paradox in the context of theoreti-
cal biology. In an important and influential article, King and Wilson recount evi-
dence showing that chimpanzee and human polypeptide sequences are more than



The Language of Life 241

99 percent identical; the species appear further apart than a comparative
analysis of their polypeptide chains might otherwise suggest.[6]

Complexity

Complexity and simplicity, like Yin and Yang, are metaphysical duals; except
for a vagrant connection to intuition, it hardly makes a difference what is called
which. Mathematicians and philosophers are interested in complexity for their
own ends; so are theoretical biologists, who in their better moments are quite
capable of evincing a sense of Heraclitian awe when confronted with the intrica-
cies of the protozoan swim bladder. Simple counting principles often seem as if
they might provide a general scheme for the measurement of complexity. Suppose
that X is a nonempty set of objects and that 4, B, C,... are constructed from the
elements of X by certain specified operations — concatenation, for example. Can
we not then say that the complexity C (x) of any object is a measure of the number
of its distinct elements and the separate and specifiable relations between them?
C (z) would be a monotonically increasing function of the square of the number of
distinct elements in any given construction. Simple, no? And intuitively satisfy-
ing?

Apparently not. Label the parts of an ordinary watch in an obvious alpha-
betic fashion; and the binary relations between its parts as well. The watch when
working, let me suppose, has a complexity measured at C; but so, then, does the
watch when not working — when not assembled, in fact, binary relations being free
for the asking. Examples of this sort, when extended and made precise, suggest
ultimately that any complex object belongs to an embarrassingly large equivalence
class of objects precisely equal in point of complexity.

Statistical mechanical complexity

A system of identical particles moving within a fixed, bounded, and finite
volume of space constitutes a configuraiion; never having seen the blue smoke
from a cigar spontaneously collect in but one corner of a warm room, the thought-
ful physicist — pipe, slippers, Beagle-eyes, an air of earnest confusion — concludes
that not all configurations are equally probable; yet if there are N configurations
Pr(N,) = N; /N - this for each i. This incompatibility between what one sees and
what one gets is known as Boltzmann’s paradoz, an unhappy name if only because
no real paradox is forthcoming; but an unhappiness nonetheless. Distinct confi-
gurations, Boltzmann argued, may be grouped into states; what the altogether
more elegant Gibbs called ensembles. Within thermodynamics — statistical
mechanics from above — the entropy S of a system appears perpetually in the
ascendancy and tends inexorably to a maximum; statistically, Boltzmann reasoned,
S is thus proportional to

S =klogW ; (8.4)

where &k is Boltzmann's constant, and W a measure of those configurations compati-
ble with a given state — complexions as they are called in old-fashioned texts.
Configurations are alike in point of probability: not so complexions; the probabil-
ity of finding a mechanical system in a given state is proportional to the number of
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distinct complexions realizing that state. At equilibrium, the complexions are at a
maximum; and so, too, the entropy, which functions as a kind of ectoplasmic mea-
sure of randomness or disorder.

Complexity under a classification

Statistical mechanics has a good point to its credit, and implies a second.
Certain states of a physical system may be multiply realized; their number, if
counted, makes for a measure of sorts. What is measured within statistical mechan-
ics is plainly not complexity; the description of entropy as disorder serves only to
explain the whole business to the baffled undergraduate, with the explanation
rapidly withdrawn by the time he enters graduate school. Still, I am struck by the
extent to which the mathematical definition of entropy is made possible by an
enterprising reorganization of the way in which mechanical systems are classified;
in assessing complexity, a concept with a brutish family resemblance to disorder,
the classification may well come first.

An example? Of course. I shall pass glowing colored slides about shortly. Con-
sider the set of all functions f:R™ - R. Those smooth functions whose critical
points are nondegenerate are known as Morse functions and are at once open,
dense, and locally stable in C*(R™, R). Any Morse function may be expressed in
canonical form: if z is a critical point of f, there exists a number &k such that in a
neighborhood of x, and after a suitable change in coordinates,

f@=zf+ - +zf-zf, - -z2. (9.5)

Such is Morse’s lemma. Their mathematical docility suggests that the Morse func-
tions are simple, if anything is; but the Morse functions are simple because they
are Morse functions, and not Morse functions because they are simple; simplicity
is a derivative quality, like color, contingent upon a classification, and unremarked
otherwise.

The concept of a degenerate singularity makes for a simple classification on
the space of smooth functions C *(R™, R); but a set of objects may be simple under
a classification even if the classification is itself unpleasantly complex. Writing
some years ago, Smale asked whether there exists a least Baire set U in the space
of all dynamical systems Dyn(M) on a compact manifold M, whose elements might be
qualitatively described “by discrete numerical and algebraic invariants".[7] The
question as posed admitted of a simple answer: no. What is needed, Smale later con-
cluded, is a sequence of nested subsets U; [Dyn(M)], where k is relatively small, U
open, and U, dense. As i increases, more of Dyn(M) is swallowed; as i decreases,
stability and regularity properties come to the fore. It is for U, that Axiom A is
satisfied, nonwandering sets are finite, and the transversality condition is met. U
thus consists of "the simplest, best-behaved, nontrivial class of dynamical sys-
tems'’; but nothing in Smale's organization of Dyn(M) is simple at all.

A set is absolutely simple under a classification if it is at once open, dense,
and locally stable; under this definition simplicity does not come in degrees.
Often, suitable sets turn out to be merely of the first Baire category, the best one
can do; sets that are dense need not be stable, and vice versa. First category sets
and sets of measure zero coincide in the case of countable sets; but not beyond.
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From the point of view of statistical mechanics, simplicity and complexity are
concepts that involve configurations; complexity under a classification is a matter
of routine: what is complex is singular, unusual. These notions may be brought
into alignment — but only for a certain class of objects. An object 4 is dissective
only when it may be decomposed to a finite stock of parts in a finite number of
steps. The mammalian eye is a dissective structure; so is the whole of a mouse, a
moose, or a mole; but curves and concepts, the real numbers, the coast of Britain,
sea-green sea-waves, and, perhaps, the entire bizarre universe of elementary par-
ticles, are indissective. A dissective object is thus composed of its parts taken
together under a certain distinctive relationship. Say that A is composed of a,,
a,,....a, under R. By a relational alternative to R I mean a single permutation of
the parts of A. If A, for example, contains but two parts, a and b, say, under the
relationship R(a.b), R(b,a) is a relational alternative to R ~ the only one in fact.
Given R, I denote by R* the full set of all relational alternatives to R. If 4 is
dissective it is /* that forms its complexion class: the set of all sets of its parts
under all and only their relational alternatives.

An elementary partition of a complexion class splits the class as a whole into
equivalence classes; relative to a partition, complexity and simplicity are attri-
butes of equivalence classes, and are judged simply by size. To the extent that
[E,] is larger than [Ej]. it is simpler as well; and vice versa. Almost all structures
in theoretical biology may be dissected to a finite, although very large, base; in
this sense, biological complexity and simplicity have pliant finite measures.

The mammalian eye, for example, is a dissective structure. Its parts (on one
level of dissection, at least) are proteins, which are arranged in various delicate
and precise ways. I am ignoring, now, any dynamic considerations and thinking
instead of the mammalian eye as a static object. The complexion class to the mam-
malian eye consists of all and only those rearrangements of proteins that comprise
relational alternatives to the mammalian eye itself.

What makes an eye distinctively an eye, rather than some assembly of jelly-
like proteins, is obviously the fact that it is capable of sight. This invocation of
function sounds an unavoidably Aristotelian note; but without some concept such
as function or purpose, theoretical biology loses much of its point. Let me parti-
tion the relational alternatives to the mammalian eye into equivalence classes on
the simple basis of function. In the full complexion class, those structures that
are capable of sight fall to one side; and those that are blind and stare sight-
lessly, fall to the other. Complexity and simplicity appear as matters of relative
size: the larger the equivalence class, the simpler the structures. Given the deli-
cacy of the mammalian eye, most of its relational alternatives will be incapable of
sight; like the Morse functions, these complexions are simple structures; but
again, simple because they are sightless, and not sightless because they are sim-
ple.

Complexity in strings

Of the 2™ binary sequences of length 7, some, such as

0,0,0,0,0,. (9.6)
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seem simpler than others,
0,0.1,0,1,.. ®.7

for example; yet the most natural probability distribution over the space of n -
place binary strings assigns to both the same probability: 2. It goes against the
grain, mine, at any rate, to reckon (8.6) as likely as (8.7), especially when n is
large; but nothing in the sequences themselves indicates obviously the point of
distinction.

The goal of science, René Thom has suppested, is to reduce the arbitrariness
of description; substitute data for description, and the apothegm gains my assent.
A law of nature is data made compact: ¥ = ma, said once and for all, the whole of
an observed or observable world compressed into just four symbols. A series of
observations compactly described is rational; if rational, not random. This curious
but compelling chain of deductions prompted Kolmogorov to argue that randomness
in binary sequences or strings might be measured by the degree to which such
strings admit of a simpler description.[8] In following this line, Kolmogorov took
the first step toward severing information theory from its unwholesome connection
to the theory of probability. If S is a binary string its length is measured in bits:
an n-place binary string is n bits long. By a simpler description of S, Kolmo-
gorov meant a string D shorter than S such that D describes S by acting as the
input to a fixed computer that generates S. Strings that cannot be compactly
described are complez, random, or informalion-rich, strings that can, are not;
of these adjectives, only the second preserves even a vagrant connection between
the concept that it connotes and what is being measured. This rather inelegant
idea makes plain the felt difference between a string of n Os, and a mixed string.
Sequence (9.6), for example, may be expressed by a program, speaking loosely,
whose length is log,n + C. If n = 32, logon =5: the relevant instruction is sim-
ply to write or compute O 2% times. C measures what little is needed to carry out
the instructions; 32 — 5 = 27, the compactness of the program. The shortest pro-
gram that computes a mixed sequence such as sequence (8.7), by way of contrast,
may well be close to 32 bits in length: to compute the sequence, the computer must
first store it precisely.

The details? They have been changing since Kolmogorov first spoke, oracle-
like, on the subject in a note published in 1967; like a snake engulfing an egg, the
theory of recursive functions is engaged in swallowing algorithmic information
theory, a development that I deplore, but accept as inevitable. Consider the set of
all n-place binary strings A* over a binary alphabet 4 and let TM be a fixed com-
puter — a Turing machine, say; g is a general input—output function on 7M map-
ping strings onto strings. The complezity of a string S of length n is the length
of the shortest binary string D that generates S under 7M by means of g. What-
ever the complexity of S, D will plainly be maximally complex, and, hence,
entirely random. Otherwise, it would not be the shortest description of 5. All fin-
ite length strings quite obviously have a finite measure of complexity; and only fin-
itely many distinct strings of the same length have the same finite measure of com-
plexity. Quite surprisingly, the decision problem for complexity is recursively
unsolvable; this result follows almost directly from the unsolvability of the halting
problem for Turing machines. Like truth, randomness is a property that remains
ineluctably resistant to recursive specification.
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If all else fails, a binary sequence of length n may be generated by a binary
sequence of length m: there are 2" such algorithms, and 2”* 1 —2 algorithms
shorter than this. On any reasonable interpretation of complexity, algorithms
within a fixed integer k of n itself must be reckoned random or complex or nearly
so. Thus 2" ~k—t —p/2n algorithms have a complexity less than n — k; and are
hence nonrandom or simple. If £ =10, this ratio is roughly 1 in 1000; of 1000
binary sequences of length n, only one can be compressed into a program more
than ten bits shorter than itself. Hence:

Theorem 9.1 The set of random sequences of length n in the space A* of all
binary sequences of length n is generic in 4*.

These random sequences are simple under a classification because they are typi-
cal, but complex in a stronger and more absolute sense because they are random
or information-rich. In this context, genericity is a finile measure of size. The
number of purely random strings grows exponentially with n, of course. If most
binary sequences are random, the appearance of sequence (9.6) prompts a natural
stochastic surprise: sequences such as (9.7) are what one expects. The definition
of Kolmogorov complexity may be directly extended to recursively enumerable
sets; sets of strings especially, and hence languages.

Language-like Systems

When it comes to language, there is syntax and semantics. Phonetics is the
province of the specialist; pragmatics remains a pale albino dwarf. To semantics
belongs the concept of meaning; to syntax, the concept of a well-formed formula or
a grammatical sentence. The reference to logic is happy if only because it
highlights the fact that language-like systems go beyond the natural languages.
Any language no doubt exists primarily to convey meaning: but meaning in
mathematics is a matter of a model — an extrinsic object.

The construction of strings within a language-like system involves con-
catenating or associating simpler strings; any finite string may be dissected to a
finite set of least elements. Going up, concatenation; going down, finite dissection;
retrograde motion of this sort suggests that language-like systems on this level be
represented algebraically as semigroups. Let 4 be any nonempty set of objects —
words, for example, or letters, or numbers. 4 has the structure of a semigroup if
there exists a mapping 4 x4 - 4 such that forall a, b,and cin 4

(aob)oc =aoc(boc) .

In English words go over to sentences from left to right; in Hebrew, from right to
left; but in any case, one step at a time. Let 4 be a finite set of words now, with
words understood implicitly as the least elements of a natural language; and let 4A*
be the set of all finite sequences (ag,...,a, , whose elements {a,....,a, } lie in 4.
To endow A* with the structure of a semigroup, it suffices to define an associative
mapping A* X A* - A*: easy enough. If

Sl = ((11...., a.m)
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and

Sy =g 0,)
then

S10 82 =(€C1isCopan) »
where

Cy TAyi Cpyy =by
i=12,..mj=1L2.,n .

A* is at once a free-semigroup over a finite alphabet and a universal language:
no sequences are left out.

Almost all language-like systems are large in the sense that they have many
distinct strings. Meditating on the matter in the late 1950s, and regularly
thereafter, Noam Chomsky argued that every natural language is infinite by virtue
of its recursive mechanisms — conjunction and alternation, for example — and,
simultaneously, that such mechanisms are recursive by virtue of the fact that
every natural language is infinite. Both halves to this argument, taken together,
describe a closed circle in space. Whatever the truth, language-like systems, if
they are infinite, are countably infinite and no bigger.[9]

Going further toward a definition of a language-like system involves the bad-
lands beyond triviality. Linguistics, the French linguist Maurice Gross once provo-
catively remarked, admits of but a single class of crucial experiments. Native
speakers of a given language are able to determine whether a given sentence is
grammatical. Experiments of this sort exist because no language-like system
encompasses the whole of a set of strings drawn on a finite alphabet — a curious
and interesting fact, which the sheer concept of communication might otherwise
not suggest. The distinction between grammatical and ungrammatical strings
induces a primitive classification on a language-like system; and reflects an even
stronger principle of fastidiousness: the vast majority of language-like strings are
not grammatical at all and represent syntactic gibberish. The fastidiousness of
language-like systems is yet again a fact: it would be easy, if unrewarding, to
design an artificial language in which most strings were grammatical. From the
point of view of grammar, the strings of a natural language are complex under the
classification of strings into grammatical and ungrammatical sets. With the strings
arrayed in front of the mind's bleak and rheumy eye, in ascending order, by
length, with sets of strings stacked like an inverted pyramid, the grammatical
strings in a language-like system appear as nothing more than a thin smudge; they
are thus complex under this classification because they are singular, unusual.
The origins of this bit of natural history are to be discovered, no doubt, in the
algorithmic properties of the human brain: in order to store a natural language,
the brain must first represent it — in the form of recursive rules, for example.
This suggests that language-like systems are low in point of Kolmogorov complex-~
ity; and from this point of view, simple.

A natural language, I have already observed, realizes two metric spaces (cf. p
240); but the informal example that I gave involved the concept of meaning, and
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not grammar. No matter: the point carries over to the case at hand - and
comprises the third of three queer natural facts that nothing in the concepts of
grammar or communication obviously implies. Thus, let T be a typographic metric
space of strings under the natural metric; the same set of strings comprises a
second metric space under the degenerate distance function d*: if s and s’ are
both grammatical, d*(s,s’) =0; if not, d*(s,s’) = «. These are the natural and
(degenerate) grammatical metric spaces of a language-like system. In a language-
like system, natural and grammatical metric spaces are plainly not in phase.

Two models of generation

Linguistics is a rebarbative, hair shirt of a subject; and grammar a vexing
property. Linguists, for reasons of their own, are often interested in the weakest
of generative devices that specify all and only the sentences of a natural
language.

Representation by grammar

A phrase structure grammar is a quadruple G =(4,7T,S,P), where 4 is
some finite alphabet of symbols; T, a distinguished subset of 4 — the set of so-
called terminal symbols; S, a distinguished initial symbol; and P, a finite set of
production rules of the form u -+ v; u is a nonempty set of nonterminal symbols,
and v some specified string of characters. The set of all strings of terminal sym-
bols constitutes a phrase structure language — a proper subset of the set of all
strings 4* defined over 4.

By a context-free production rule, I mean one in which « may occur in any
context — in effect, a rule in which u figures in isolation. Correspondingly, there
are context-free grammars.

Example 9.1 let 4 =(@.,b),T =(a.b), and P be the two rules S » ab; S » aSh.
This grammar generates all and only the strings of the forma™b™.

Representation by systems of equations

Consider the context-free grammar G whose production rules are S -+ aSa,
and S »c, where T = (a,c), and § is an initial symbol. Let the variable f, range
over terminal symbols. The action of the production rules may be mimicked by ar
equation:

S=fi+fat - +f, .
where addition is construed as set theoretic union. For G,
S =aSa +c¢

Replacing S by S0 =c¢,

SW =geca +¢
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This process repeated ultimately yields a system of equations

S =gea +¢

S@ = a(aca +c)a +¢ = a?ca? +aca +a

i=n
s™ =a™ca™ + -+ +aca +c = Y atcat .
1 =0

4 =00
At the limit, the solution s(™ = Y atcat is given by a formal power series in
1=0

noncommutative variables.[10]

A language-like system has formal support when each and every string in
the system may be described by a single algorithm; only for context-free
languages may grammars and systems of equations be balanced against each other.
Elsewhere, the situation is darker. There is a sense, however, in which these two
representations exhaust the possibilities for the description of structured and
infinitary objects; and correspond, in the Metaphysical Large, to the alternatives
confronting an imaginary Deity in creating the observable world.

Weak Theories

The vitalist believes that life cannot be explained in terms of physics or
chemistry. In the nineteenth century, in Germany and France, at least, his was
the dominant voice before Darwin; and natural philosophers, such as Cuivier or
von Baer, or Geoffrey St. Hilaire, dismissed mechanism with a kind of troubled
confidence that suggests, in retrospect, a combination of assurance and wistful-
ness. Orthodoxies have subsequently reversed themselves with no real gain in
credibility. David Hull, in surveying this issue, concludes that neither mechanism
nor vitalism is plausible, given the uninspiring precision with which each position
is usually cast.[11] D'Accord. To the extent that the refutation of vitalism involves
the reduction of biological to physical reasoning, the effort involved appears to
me misguided, and reflects a discreditable, almost oriental, desire for the Unity of
Opposites. On the standard view of reduction, the sciences collapse downward
until they hit physics: Rez-de-Chawusee; but our intellectual experience is
divided: mathematics, physics, biology, the social sciences. Each science extends
sideways for some time and then simply stops. The ardent empiricist, surveying
the contemporary scene, might well incline to scientific polytheism, with
mathematics under the influence of an austere Artin-like figure, and biology
directed by a God much like Wotan: furious, bluff, subtle, devious, and illiterate.

Still, the philosopher of science is bound to wonder why so many philoso-
phers have remained partial to the reductionist vision, and hence to mechanistic
thought in biology. David Armstrong, J.J.C. Smart, Michael Ruse, and even the usu-
ally cagey W.v.0. Quine, call on elegance to explain their attachment. Were the sci-
ences irreducibly striated, one set of laws would cover physics, another biology,
and still a third, economics and urban affairs, with the whole business resembling
nothing so much as a parfait in several lurid and violently clashing colors. This is
an aesthetic argument, and none the worse for that, but surely none the better
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either. If elegance is inadequate as a motive, intellectual anxiety, realized uncons-
ciously, is not.

Vitalism commences from the conviction that nothing in our experience is
much like the life that ripples and bubbles so abundantly over an entire planet,
and nowhere else, apparently. Now mathematical physics is not only the pre-
eminent discipline of our time - it is where the laws are. Evolutionary theories in
biology are weak in the sense that they are not directly sustained by the author-
ity of physics; and, worse, weaker still in being counterphysical. Thermodynamic
arguments count against the very existence of the structures that they are meant
to explain. Fact heavy, law poor, such theories remain surprisingly resistant to
confirmation. Were biology an aspect merely of physics, the sceptic would get
short shrift: there, the answer to whether what works, works, is simply that it
does.

Science is unavoidably general. To say that copper conducts electricity is
weakly to imply the counterfactual conditional that were anything much like
copper it would conduct electricity as well. It has often appeared to philosophers
of science that specifying what it means for something — an z, say — to be much
like copper inevitably comes to claiming that, among other things,  conducts
electricity. Still, the similarity in structure between two domains of discourse —
computer programs and natural languages, for example — may be obvious on
grounds other than the fact that they share the same laws.

When [ speak of a theory, I follow the logician’'s lead: a theory consists of a
consistent set of sentences in a given language; the set-theoretic or algebraic
structures in which a theory is satisfied comprise its models. Two models that
share the same structure are isomorphic and hence elementarily equivalent in the
sense that they satisfy the same sets of sentences. What I am after is a weaker
notion entirely — partial similarity in structure. I know of no way, unfortunately,
to define this concept so that the definition applies equably to biology, and, say,
geology; I suspect, in fact, that partial similarity in structure will require a defini-
tion with indefinitely many separate clauses. Whatever the details, similarity in
structure is bound to be a matter of degree, so that it makes sense of sorts to say
of two models that they are at a certain distance, one from the other. In this way
a family !M,L {.1 =1,2,... of (possibly) first-order models may be given an appropri-
ate and empirical metric structure.

Suppose that T is a theory holding in M; and let #* be a model at some fixed
distance from M. By the symmetric difference T/ T™ of T I mean the number of
formulas 7™ of T that fail to hold in M* when 7 is interpreted in M*.

A theory T is general, | shall say, if for any £ >0, there exists a 6 >0 (a
function of &, of course) such that

dM M*) <6 »T/T™ <& (8.8)

Generality in my sense is a kind of stability; and as Dr Johnson remarks, the
soul must ultimately repose in the stability of the truth.

To see an analogy between the operations of life, on the one hand, and the
operations of language, on the other, is to raise the question whether the laws of
biology have a natural and legitimate interpretation in linguistic terms. I am myself
indifferent to the fate of the Darwinian theory, and perfectly prepared to
believe, along with Wickramasinghe and the luckless Hoyle, that life originated in
outer space, or that the Universe-as-a-Whole is alive and breathing stertorously;
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but if Darwinian theories work in life, they should work elsewhere — in language-
like systems, I should think. Should they fail there, this may be taken as evidence
for the inadequacy of Darwinian theories, or as evidence for the inadequacy of the
analogy that prompted the comparison in the first place.

I stress this point if only because it has so often been misunderstood.

Life as a language-like system

It was von Neumann who gave to the idea that life is like language a part of its
curious current cachet. The last years of his life he devoted to a vast and clumsy
orchestration of cellular automata, showing in a partial fashion that when properly
programmed they could, like abstract elephants, reproduce themselves. Some
years before, McCulloch and Pitts had constructed a series of neural nets in order
to simulate simple reflex action; Kleene demonstrated that their nets had the
power of finite automata and were capable of realizing the class of regular events;
von Neumann's automata had the full power of Turing machines. Michael Arbib, E.F.
Codd, G.T. Herman, A. Lindenmayer, and many others, have carried this work for-
ward, with results that asymptotically approach utter irrelevance.[12] Yet the
analogy between living systems and living languages has not lost any of its brassy
charm. There is information, of course, which is apparently what the genes store;
replication, coding; messages abound in the bacterial cell, with E. Coli, in particu-
lar, busy as a telephone switchboard. So striking has the appropriation of termi-
nology become, that some biologists now see the processes of life, in all their gran-
deur, as the effort of a badly protected and vulnerable bit of genetic material to
keep talking for all eternity.

Unlike an argument, an analogy stands or falls in point of plausibility; good
arguments in favor of bad analogies are infinitely less persuasive than bad argu-
ments in favor of good analogies. Certainly the proteins, to stick with one class of
chemicals, may be decomposed to a finite base — the 20 amino acids. The precise,
delicate, dance-like steps that are involved in their formation suggest, moreover,
that they satisfy some operation as abstract as concatenation. On the other hand,
the number of possible proteins, although large, is finite; but one of the joys of
analogical reasoning is the vagueness with which the line between success or
failure may be drawn.

The grammatical strings of a language-like system are low in Kolmogorov com-
plexity, and so are not random. Such is the fastidiousness of a language-like sys-
tem. What of the proteins? If they are random, it makes little sense to think of
them as biological words or sentences. Jacques Monod, whose metaphysical attitude
toward biology suggested nothing so much as a kind of chirpy bleakness, drew
attention to the random character of the proteins in Le hasard et la necessite;
his argument has been gravely accepted by many molecular biologists.[13] In fact,
the evidence leading to his conclusion is fragmentary; the standards of random-
ness to which he appealed, imprecise. Thus it struck Monod that knowing, say, 249
amino acid residues in a chain 250 residues in length, one could yet not predict
the last member of the chain; much the same is true for English sentences, of
course; it is, in any case, simply untrue that protein strands exhibit such wanton
degrees of freedom. Within protein chemistry, there are many instances of what
appear to be strong internal regularities: palindromic patterns, for example.
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Nonetheless, I am in sympathy with Monod to this extent: it is unlikely that the
analogy between life and language will be profitably pursued on the atomistic level
of the nucleic acids or the proteins themselves.

PART THREE

Arguments Good and Bad

The theory of evolution is haunted by an image and an observation: the first,
that of the hapless chimpanzee, typewriter-bound, endeavoring, quite by chance,
to strike off the first twenty lines of Hamlet’s soliloquy: the second, the comment
of an anonymous Jansenist logician, who remarked, quite sensibly, “that it would
be sheer folly to bet even ten coppers against 10000 gold pieces that a child
arranging at random a printer’s supply of letters would compose the first twenty
lines of Virgil's Aneid"’. Image and observation do not quite cohere into a single
argument: it is clear in neither case how the imagined stochastic experiment is to
stop. Still, the notion of randomness yet lies at the center of evolutionary
thought, and there it sits, toad-like and croaking. On the simplest and most intui-
tive conception of probability, what can occur is weighted against the background
of what might occur: five diamonds: all other combinations of the cards. In poker,
there are 2598960 five-card hands, but only 5148 flushes. It is their ratio that
one might expect to observe as cards are actually dealt; but in the longest of long
runs, the passage to the limit gives content to the intuitive idea that a number of
successive trials will converge to a particular real number: 0.002, for example, if
flushes are being counted.

One of the curiosities of the very notion of probability is the inescapability
of the improbable. The laws of thermodynamics, to take a notorious example, are
anisotropic: they go in one direction; downhill, as it happens, a circumstance with
what appears to be overwhelming personal support. Statistical mechanics provides
a brilliant and persuasive explanation for thermodynamic laws; yet Poincaré
demonstrated, in an absurdly easy proof, that any statistical mechanical confi-
guration, of whatever degree of implausibility — k molecules of gas, for example,
occupying 1/V of the total volume V of a finite and bounded container — is bound
to recur, in all its vividness, poignant symmetry, and complexity, given enough
time. Physicists often explain the discrepancy between thermodynamics and sta-
tistical mechanics by arguing that the time involved is very long. No doubt.

The evolution of life on this planet is, as Darwin realized, not a hurried
affair. Early on, Darwinian biologists got rid of the theological limits set to the age
of the Earth by Bishop Ussher and others in the seventeenth century; the scale
within which Darwinian evolution might have worked is bounded by perhaps five
billion years. Nineteenth century biologists assumed that whatever else one might
say about Darwinian biology, it would not fail for lack of time; this thesis twentieth
century biologists have carried over intact.

Five billion years is apt to seem long if one is counting the minutes; but it is
not long enough to sample on a point by point basis a space whose cardinality is
roughly 1015 — touching base with a new point at every second, say; and yet there
are 20%%0 possible proteins — a number larger by far than the expected life of the
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universe measured in seconds. In a space of this size, the odds against discover-
ing a specific protein — fishing it from an urn, say — are prohibitive: 1 in 2050,

I spoke hastily just now of a specific protein: if any protein will do, the odds
improve: in a uniform probability space {ai {, Pr(@; va, ' - v a;) =1. The dis-
tinguished British biologist Peter Medawar has seized upon this point, and com-
menced happily to trot, but in what I think is the wrong direction.[14] ""Biolo-
gists,” he writes, "in certain moods are apt to say that organisms are madly
improbable objects or that evolution is a device for generating high degrees of
improbability. I am uneasy about this entire line of thought,” he continues, "for
the following reason:

Everyone will concede that in the games of whist or bridge any one particular
hand is just as unlikely to turn up as any other. If I pick up and inspect a par-
ticular hand and then declare myself utterly amazed that such a hand should
have been dealt to me, considering the fantastic odds against it, I should be
told by those who have steeped themselves in mathematical reasoning that its
probability cannot be measured retrospectively, but only against a prior
expectation ... For much the same reason, it seems to me profitless to speak
of natural selection's ‘generating improbability’ ... it is silly to be thunder-
struck by the evolution of organ A if we should have been just as thunder-
struck by a turn of events that had led to the evolution of B or C instead.”

Medawar is roughly right about probability: the fallacy to which he refers is
the error of retrospective specification; and consists precisely in reading back
into an original sample space information revealed only on the realization of a par-
ticular event. In poker, a deal distributes n» hands of equal probability: 1 in
2598860, as it happens. This sample space is retrospectively specified if one hand
in particular is contrasted with the full set of 25889538 hands that remain, and
probabilities assigned to the partition so created; what appears initially as one
among equiprobable events becomes under retrospective specification an improb-
able event in a sample space of only two points. It is embarrassing for an author to
point such things out. Still, Medawar is wrong in the general conclusions that he
draws from this paragraph. Card sharps and statisticians are little interested in
the set of all five-card sequences. In poker, sequences are initially partitioned
into equivalence classes of uneven size: a royal straight flush, of which there are
four, a straight flush, four of a kind, a full house, a straight, three of a kind, two
pairs, and, then, finally, whatever is left ~ the vast majority. There are four ways
to achieve a royal straight flush; many more ways in which to realize a full house.
Since they are specified in advance, partitions in poker carry no taint of retro-
spection; and plainly, in poker there is only a rough correlation between the
internal character of sequences within a partition and their payoffs: what is
important here, as elsewhere, is the classification, which is very largely arbi-
trary.

Medawar’s argument, on its face, thus involves rather an uninspiring mistake,
but it is not yet a mistake in evolutionary thought. The human eye, a chastened
Medawar might argue, turning his back on his own analogy between life and the
cards, represents one arrangement of its constituents: any other might have done
as well. In admiring the structure that results, we suffer from misplaced awe, like
a toad contemplating a dog. Does this argument carry conviction eye-wise? Is it
reasonable to suppose that any other arrangement of the eye’s constituents would
result in an eye? In anything at all? The question sounds an unavoidably Aristo-
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telian note: an eye is an organ with a specific function — sight, most obviously; an
eye-like configuration does not count as an eye unless it can see. To frame the
discussion thus is to answer the question immediately, at least on the level of
intuition; but what I have said must not be confused with an argument in refuta-
tion.

Viable proteins

Linguistics is possible if only because human beings have strong and reliable
intuitions about natural languages. The polypeptides are alien strings, accessible
only through an arduous act of the biochemical imagination. Grammar effects a
segregation of strings in a language-like system; beyond grammar, aloof, untouch-
able, there is meaning: the two concepts do not coincide. Some grammatical
strings, in a natural language, at least, are grammatical and meaningless; others,
meaningful but ungrammatical; but meaning and grammar belong together, yoked
pairs in the same corner of some dimly understood conceptual space. An algebraic
system of strings in which no distinctions of meaning and grammar are recognized
is profligate; and pointless because of its profligacy.

In a preanalytic sense, the concept of meaning indicates a kind of coherence;
and has a usefulness of application in domains other than language. A life well-
spent is meaningful: its parts and patterns are ordered; full with life, biological
creatures are filled with meaning, a kind of blunt, irrefrangible purpose; in death,
this meaning disappears, and what is left, the corpse and its grim constituents,
appears all at once to lose the integrity of the creature itself, and becomes,
instead, a thing among other things, an object merely. To the vitalist, living
creatures instantiate some unique property that remains stubbornly unseen else-
where — in the domain of objects studied by mathematical physics, for example; in
death, this property vanishes, like a fluid evaporating. In mechanistic thought,
the passage from life to death is rather like a phase transition, a singularity of
sorts in the trajectory of the organism, a disabling and permanent catastrophe,
that reflects, as it must, only a change in the constituents of the organism, a vari-
ation in its wunderlying pattern. The concept of a complexion, which
figures in statistical mechanics, provides a useful measure of meaning. The com-
plexion set to a biological organism represents those relational alternatives of its
biological parts that correspond to living systems. The unalterable fact that living
systems die and hence do not persist indicates that some of their complexions fail
to preserve life and hence meaning; in fact, the number of meaningless complex-
ions must be significant: most of the arbitrary rearrangements of a complex organ
— a mammal, say — result in nothing more than a botch — a circumstance with
which every surgeon is familiar. The Central Dogma of molecular biology estab-
lishes a relationship between strings of nucleotides and strings of proteins; to the
extent that the whole of a biological organism may be resolved into its protein-like
parts, the Central Dogma establishes a larger, more indirect, relationship between
molecular biological order and order in the larger sense of life. This relationship
has an inverse: if only certain forms of life have meaning, this, too, is reflected, as
it must be, in the universe of molecular biological strings — on the level of string
ensembles, for example. If certain protein ensembles are meaningful, and not oth-
ers, this suggests, but does not imply, that the same distinction is palpable on the
level of the individual proteins themselves. The term viable I mean as a biological
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coordinate to the Siamese concepts of meaning and grammar; a protein is viable
only when it achieves a certain minimum level of biological organization and useful-
ness. What level? What kind of organization? Usefulness in what respect and to
what degree? Who knows?

Full loads, fair loads, fair samples

In a natural language, sentences decompose to words; words to letters. Gram-
matical constraints hold weakly at the level of English words. The set of all word-
like combinations of English letters of fixed length n, I shall say, make up a full
load; the set of all grammatical words, a fair load. Within molecular biology, a full
load corresponds to all possible proteins of normal length: a set whose cardinality
is 2020, To the fair loads in English correspond the viable proteins in molecular
biology. How large is the biological fair load? Again, who knows? Whatever its ulti-
mate size, those proteins that have already been synthesized in the course of bio-
logical history are viable if anything is: nothing succeeds like success. This set is
a fair sample of a fair load. Its size Murray Eden calculates at 20%%. The task
that he sets himself is the infinitely delicate one of drawing inferences about the
fair load from its fair sample.[15]

Between the fair sample of a fair load, and the fair load itself, is the differ-
ence between what is and what might be; between the fair load and the full load,
the difference between biology and mathematics. In English, the difference
between the fair load and the full load is as absolute as death. Any two words of
English thus resemble each other more than they are likely to resemble a word
generated at random from the letters of the English alphabet. In the case of the
polypeptides, Murray Eden writes:

Two hypotheses suggest themselves. Either functionally useful proteins are
very common to this space, so that almost any polypeptide one is likely to find
has a useful function to perform, or else the topology appropriate to this
protein space is an important feature of the exploration: that is, there exists
certain strong regularities for finding paths through this space.

In asking whether the viable proteins are common in the space of all polypep-
tides, Fden is asking, in effect, whether the fair sample is marked by discernable
statistical regularities. "We cannot now discard the first hypothesis,” he adds,
“but there is certain evidence which seems to be against it: if all polypeptide
chains were useful proteins, we would expect that existing proteins would exhibit
very different distributions of amino acids."” Statistical tests appear to show that
pairs of proteins are drawn from a common stock. His example involves the alpha
and beta human hemoglobin chain. One form of hemoglobin has 146 amino acid resi-
dues, the other 140. The two chains may be set down, side by side, and matched,
residue by residue. They agree at 61 points; there are 76 points at which they
differ, and 9 points at which no match is possible because the chains are not of
the same length. It is plausible that one chain was derived from the other, or that
both were derived from a common ancestor. What is curious about these pairs of
proteins, however, is the fact that even though the chains do not agree completely
in the order of their amino acids, they do agree in their distribution; reason
enough, Eden argues, to suppose that the proteins themselves are drawn from a
statistically significant fair sample.

The criticism of this historically important argument, I leave as an exercise.
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Delicate inferences

In What is Life?, Schroedinger argued that living systems must have
recourse to what he dubbed an "aperiodic crystal” in order to store information.
Crystals are repetitive, regular, and information poor; the order of a living system
is specific, irregular, information rich. There is a certain splendid effulgence to
the vocabulary of theoretical biology that it would be uncharitable not to cherish.
H.P. Yockey identifies order with Kolmogorov complexity; and so does R.M. Thomp-
son, a mathematician who in writing on theoretical biology alternates between
information theory and a pious endeavor to communicate to the reader his appre-
ciation for the many faces of Krishna.[16] On the other hand, G.J. Chaitin and
R.M. Bennett identify biological order with algorithmic simplicity. A division of
intuition on so fundamental a point may suggest a degree of conceptual confusion
approaching the schizophrenic.

If biological words are characterized by a high degree of Kolmogorov com-
plexity, could time and chance have combined to discover a structure comparable,
say, to cytochrome c or any of the modern hemoglobin chains? This is the ques-
tion raised by the redoubtable H.P. Yockey: the problem as posed has but two
parameters.[17] In the beginning the primeval soup, which I always imagine as
rather a viscous, Borscht-like fluid, contained perhaps 10*? amino acid molecules.
There is, inevitably, an element of fantasy to all quantitative calculations of this
sort. At each second, over the course of 1 x 10° years, an indefatigable stochastic
Deity arranges and then rearranges the 104 amino acid residues in sequences
whose length N = 101. There are

20191 or 2535 x 10131 ©.9)

such sequences. The odds against discovering any one in particular thus stand at 1
in 2.535 x 10131, Not all residues, however, are equally probable. Save for a very
large set of strings of small probability, the number of sequences of length N is

aMH | (9.10)
where
n
H=-% Py logg py . (9.11)
e

Here P4 measures the probability of the jth residue, and @ = 2, so that H is
measured in bits.

In the end — the details are not important to my argument — Yockey con-
cludes that

H = 4.153 bits/ residue ; 9.12)
the number of 101 place sequences is
23-153x101 = 1 gog7 x 10126 | (9.13)

"Information theory,”" he remarks, "shows that, in this case, the actual number of
sequences is smaller than the total possible number by a factor of 10%". Now there
are, in all, 3.8 x 105! families of cytochrome c sequences; in order to obtain any
one of them by chance, Yockey argues, it would be necessary to repeat an elemen-
tary stochastic experiment 3.15 x 109 times on 108 separate planets "in order to
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have a reasonable expectation of selecting at least once a member of the ensemble
of 3.8 x 105! cytochrome ¢ sequences in only ten of them".

From nothing, nothing, the Darwinian doubters have always claimed; and I
have been there with the best of them; but this argument, couched as it is largely
within the algorithmic theory of complexity stands on what seems to me dubious
ground:

(1) A binary string is random to the extent that its shortest program is roughly
of the same length as the string itself; this definition trades only in counting
bits. Now, the impulse to assert that contemporary proteins are random owes
much, I think, to the rather primitive idea that life, if complex, requires com-
plex constituents or atoms; I have suggested something similar in arguing that
the proteins inherit a grammatical distinction from the structures that they
constitute. Kolmogorov complexity, however, is ill-defined on any level of bio-
logical organization past the molecular; but even if a mammal or a mollusk
could be represented as a binary string, nothing suggests that those strings
would be high in Kolmogorov complexity. Quite the contrary. Life in the large,
on the level of the organism itself, is organized with what appears to be brisk
algorithmic efficiency. Living creatures are simple in the sense of Kolmogorov
complexity; but complex under the classification of their complexions. In this
sense, they behave much as a language-like system. This observation is com-
patible with the thesis that protein strings are, nonetheless, high in Kolmo-
gorov complexity; but it is compatible, too, with the contrary thesis that pro-
tein strings reflect the complexity of life by means of their organization
and not their complexity. Nothing in the concept of Kolmogorov complexity
measures the algorithmic organization of a string or set of strings; two
equally complex strings may well differ in their time complexity to the
extent that only one is polynomially bounded.

(2) The difference between the space of available proteins, and the small subset
actually chosen by evolution, makes for a trite contrast; yet what lends to
cytochrome c its position of statistical distinction? "Because of the very fun-
damental function of the cytochromes,” Yockey writes, " ... the histones and
other proteins, which are believed to be of very ancient and even pre-
cellular origin, one cannot relax the specificity requirement derived from
cytochrome ¢" [emphasis added]. In generous conversation, Yockey has ampli-
fied this point by suggesting that the specific protein chains necessary for
life correspond to the set of words in a language — fair and not full loads; a
curious remark inasmuch as words in & natural language are low, and not high,
in Kolmogorov complexity. Still, I am sympathetic to the drift of this line; but
the difficulty goes beyond the problems of an imperfect analogy. Certain
classes of proteins, Yockey argues, are necessary for life. Such are the
information-rich, complex strands; other strands are specific in the limited
sense that they are statistically unlikely: "only a tiny fraction of the (avail-
able) sequences will carry specificity.” It follows by Theorem 9.1 (p 245)
that specificity and complexity are not the same thing: the set of complex
strands (of a given length) is in the majority; their emergence is probabilisti-
cally favorable, indeed, unavoidable. Cytochrome ¢, considered simply as a
complex protein, is no more likely to appear than any other complex protein;
but no less likely either. Having discovered cytochrome c, quite by chance,
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Life might have made do with any other protein of comparable complexity. If
by specificity, Yockey means statistical unlikelihood in a uniform sample
space — the space of all complex proteins, for example — his surprise at the
emergence of cytochrome ¢ is attributable to retrospective specification; if
not, what then is specificity, the mysterious middle term to his argument? If
the specific proteins have some independent description, Yockey does not
provide it; and their size, apart from suggesting that it is low, he does not
calculate.

PART FOUR

Der Prozess

The evidence in favor of the thesis that proteins are random sequences of
amino acids is exiguous; and random words may well be grouped into nonrandom
sequences. This suggests that the close study of the statistical properties of cer-
tain proteins may involve a kind of dense conceptual myopia, something that
reflects a passionate absorption in minutiae. The process by which evolution in
strings takes place, on the other hand, is macroscopic and global, an energetic
probabilistic swarming over sample spaces that are never specified by means of
mechanisms that are never clarified.

Biological paths

Life loiters over two metric spaces. The first is alphabetic; the second, zoo-
logical. Evolution comprises a drama in the large, at the zoological level; but the
Central Dogma requires that any change in the large be mirrored by an alphabetic
change, and so the process is doubled as it is divided. To talk blithely of evolution
in strings is to assume the completion of the two first steps in biological evolution:
the emergence of life-like systems from inorganic matter; and the adventitious
creation of the modern biological system of replication and genetic information. An
explanation of these steps I cede to the forces of the Night: my more limited con-
cern is with evolution as a process that takes place once the genetic machinery is
throbbing moistly. In evolution at the molecular level, one amino acid is dropped
from a protein string, another is inserted: make way’!. move over!’, getl out!, get
lost!, to cast the operations in easily understood terms; even if the process is
more complicated, it may mathematically be resolved into discrete and finite
steps. Whatever the details, proteins change over time; and the changes leading
to their creation may be regarded as a path P =p,4,p,....p, or protein
sequence. Suppose that 4 comprises the full stock of 20 amino acids; 4/, the set
of all words of amino acids precisely 250 points in length; and A*, the set of all
finite sequences drawn over A/. I assume — an assumption note! — that 4* has
the structure of a language-like system under the binary and associative operation
of protein concatenation, where concatenation has precisely its usual linguistic
meaning.



258 D. Berlinski

Stochastic processes

Let S be a system and X the set of its states or configurations. State transi-
tions are represented by a transformation T: X -+ X, an artifice expressing the
action of the system's laws of evolution. If Ty ., =T, T,, [T, €R] is a flow, or
group action of R on X.

On the Darwinian theory, evolution is at its secret heart stochastic; it is
natural, therefore, to specialize the concept of a process to the case in which X is
a measure space, T a measure preserving transformation. This is the domain
chiefly of ergodic theory. Its underlying, indeed, fundamental, object is a proba-
bility space (X, B, u), where X is a set of states, B a o-algebra of measurable sub-
sets of X, and u a countably additive nonnegative set function on B. u(X) is, of
course, 1. Let T be an invertible injection from X onto X; if u(T—iE) = u(kE) for
all £ in B, T is a measure-preserving transformation; the system (X,B,u«,T), a
basic probability space.[18]

By the orbit of a measure-preserving transformation T, I mean the extended
history of a single point z under T from the infinite past to the infinite future: a
trajectory from void to void. Artificially truncated at z, the system is in an initial
state or condition. A real valued function f:X - R, whose values correspond to
&), frd=), (sz), ... acts to measure a system along its orbit; the class of such
measurements is defined only to the extent that f is itself measurable:

— N-
f(z) = lim 1/NY f(T*z) 9.14)
N—tw k=0

is thus the time mean of the system;

frdu (9.15)
X

its space mean: systems in which the two coincide for every measurable function
are ergodic.

Example 8.2 Let 4 be an alphabet of n symbols a,, a,...., a,. with probabilities
P4 Py ..., Py, such that p, >0, and Zp,_ =1. The product space n% consists of
the set of all two-sided sequences in n; the various probabilities assigned to each
sequence induce a measure u on n*. The shift transformation (fz), =z, .4 is
measure preserving; the system that results is a finite-valued stationary stochas-
tic process with identically distributed terms.

Example 8.3 Let M = (au) be an n X n stochastic matrix. Let » = (p,,....p, ) be
a row probability vector fixed by M:

oM =p

Keep the product space and shift transformation from Example 8.2; Uy may be
extended to a countably additive measure on the algebra generated by cylinder
sets; by the Caratheodory—Hopf theorem, Uy thus forms a measure on the Borel
Fields of n*.

Example 8.2 models, say, a doubly infinite series of coin flips, each with probabil-
ity of one-half; FExample 8.3, a regular Markov chain, where p measures the a
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priori probability of each symbol, M, the transition probabilities from one symbol
to another.

Entropy

Consider a source consisting of a finite alphabet 4 and an associated string
of symbols, ... Zoz,x, ... , where each z, is an element of 4. Symbols appear in
sequence with a fixed probability p;: if the probabilities are independent, the
average entropy per symbol is

n
H=—- Y p;logzp; . (9.16)
1=1

H is at its maximum if each p;, =1/ 7. In general, the probability that a particu-
lar symbol appears in sequence may depend on symbols that have gone before.
This is true if the source is a finite-state Markov device. Let 47 be the ensemble
of all doubly infinite sequences drawn on A the cross section on 4% of sequences
that coincide at a finite number of points a, = T where t; represents any set of
integers, is a cylinder set. Now if 4 contains k letters, the number of n-term
sequences over 4 is k™; and each sequence is a cylinder in the larger space Al 1t
is the cylinder that has a fixed probability Pr(C): the set of all n -term sequences
represents a finite probability space, k™ points in size. The average amount of
information per symbol sent out by a source of this sort is

H, =-1/k ¥ Pr(C) log, Pr(C) : 8.17)
CeC,

the entropy of the source itself

H=lim -1/k ¥ Pr(C)log,Pr(C) . (8.18)
k —e CEC,

The concept of a source may be specialized to the case of a measure-
preserving system under ergodic constraints.[19]

The Shannon—Macmillan theorem

A source puts out sequences; at any given time, there will be only finitely
many — A™ in fact, if 4 is a finite alphabet, and n is the length of each sequence.
Finite length sequences are cylinders in the infinite probability space determined
by the source; they inherit a probability structure. If n is sufficiently large,
there exists an arbitrarily small £ and § > 0 such that the n-term sequences may
be separated into two groups. For the first

log,Pr(C)/n +H| < £ ;
for the second,
YPr(c,) <9d .

This is Shannon's theorem, a result in mathematics that appears to add an author
in regular periods. In any case, sequences of the first group are characterized by
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the fact that (1/n) log,Pr(C) is arbitrarily close to ~ H. The probability of any
such sequence C; is thus 2™, the number of such sequences is 2™ and
comprises a very small share of the total number a™ =2" logza of available
sequences: a happy result. In coding a channel of communication, attention need

be directed only to a tiny sample of the output.

The Stochastic Structure of an Evolutionary Source

In considering evolution as a stochastic process, the object of study becomes
biological paths; and not biological words — stray proteins, say, or bits of nucleic
acids. The full set of paths in evolutionary space comprises an infinitely large set
of strings, if only because evolution appears unbounded as a natural language. The
sheer stress on the notion of randomness in popular accounts of evolutionary
thought suggests at first that something like a pure Bernoulli process may under-
lie the whole business, an extended coin flip by means of a coin with 20250
separate faces. This is obviously absurd. Evolution is a process by which an
ensemble of strings changes over time. Each string is composed of points — amino
acids, in fact; the probability that any particular point will change is arbitrary
but low; there is little likelihood that all points in a string will change simultane-
ously. Transition probabilities in a neighborhood N of a set of proteins £ are thus
concentrated in that neighborbood.

If an ensemble of proteins occupies a certain finite set of states 4,, its evo-
lution comprises a finite state Markov process — a stochastic source satisfying
the hypothesis of the Shannon—Macmillan theorem.

Trapping problems

The entropy of a source is a measure of its stochastic character: H at its
maximum represents a high degree of uncertainty; al! messages are equally prob-
able. The hypothesis of the neo-Darwinian theory is that evolutionary sources are
largely random. What this means is, in fact, not entirely clear; but it surely implies
that H is relatively large. Let Hy,, thus be the imagined entropy of an evolu-
tionary source. "If the process of manufacturing messages'”, Chomsky and Miller
remark, ''were completely random, the product would bear little resemblance to
actual utterances in a natural language'.[20] Going backward, if the utterances of
a natural language are regular, their source is not random. To the extent that a
fair sample of evolutionary paths is regular, the fair load is regular as well. A
source specifically designed to generate the fair load of protein paths has thus
an entropy H

H <Hyay - (8.19)

In itself, this is neither controversial nor surprising; if the degree of protein
regularity is small, the difference between H and Hy,, is negligible; if large, an
evolutionary source over-generates. The real issue is a matter of degree, a ques-
tion of finesse. Linguistics, of course, suggests that if H is very much lower than
HMax, over-generation becomes inordinate; a stochastic source cannot, in general,
converge on any natural language whose complexity is beyond the recursive
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capacity of finite-state automata; but while life may be a language-like system, it is
not necessarily like a natural language, Chinese, say, or even Esperanto.

Hemoglobin chains

Statistical entropy is a measure of uncertainty: and a measure, too, of the
number of alternative messages — my use of the word is metaphoric — that a sto-
chastic source may generate. H at a relative maximum indicates that a source may
send out multiple messages, a kind of energetic babble; at a relative minimum, H is
constrained — by the rules of grammar, for example, or the laws of logic. In the
case of life, Murray Eden observes, path lengths between proteins are most obvi-
ously limited by time, and evolution must be achieved within bounds set by the
number of generations in the history of an organism. Meandering paths between
proteins are temporally inaccessible. The alpha and beta hemoglobins, Eden
argues, were derived by a process of evolution, one from the other; a path
between the two sequences must thus exist. Eden calculates that this path at its
shortest requires something like 120 separate steps, where each step involves a
specific point mutation.[21] The population size of hemoglobin proteins — the fair
sample — is, he estimates, 10% the rate of mutation 107°. Each step in this path
corresponds to a positive gain in fitness: movement upward along a local gradient
of relative perfection. In a conservative sense, it would take roughly 2700000 gen-
erations to convert a population of 108 alpha hemoglobin chains to a population of
beta hemoglobin chains. So far, so good.

If certain paths, of whatever length, are inaccessible to life, a stochastic
source is occluded. This is certainly what the hypothesis that life is a language-
like system implies; it is implied, too, by the fact that contemporary hemoglobin
chains exhibit relatively little wariance: certain possible paths are deficiently
viable, ungrammatical in a sense. Nature, in passing from one chain to another,
has evidently rather a small target in mind.

2700000 generations for the evolution of a protein is short: twice that
number is long. Let k be a point midway between these numbers. If A comprises
an initial set of 108 hemoglobin chains, Py, is the full load of protein paths [P“],
whose initial terms Plj all lie within /7. The number of targeted protein paths in
P is small: so much to do, so much to see. The number of targeted protein paths
that reach their target within k generations is vastly smaller: so much to do, so
little time. If the entropy of a stochastic source is great, the untargeted meander-
ing paths are apt to be favored; by contraposition, this implies that the source
entropy for an evolutionary system is rather low; constrained, in fact, by the
choice of time and targets; but what expresses these constraints, the Darwinian
theory does not say.

Weizenbaum Theory [22]

It is a peculiarity of molecular biological strings that, like the elements of a
natural language, they realize two spaces. These are spaces with distinct and dif-
ferent metrics: there is no reason to suppose that they are in phase. Evolution as
a process works most directly on biological organisms, which must perish or per-
severe in the face of circumstance. To the extent that evolution is a process by
which organisms converge over time to some local (or global) optimal, the
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processes of convergence that are sketched broadly in life must have some sub-
stantial echo at the molecular biological level, where words and strings hold sway.
The relationship between metric spaces that this pattern exemplifies is quite gen-
eral — the province, in fact, of Weizenbaum theory. Thus let M and N be two
metric spaces, each with its own natural metric; points in M are labeled ¢,, ¢,, ...,
i, points in N, e,, €5, ... , e,; f:M » N is a mapping between points in ¥ and
points in N ~ a bijection, to make matters trivially simple. M and N are arbitrary,
and admit of obvious specification:

(1) M is a typographic metric space; N, the space of biological organisms (see p
240).

(2) M is a typographic metric space under the natural metric on words; N, the
same space under distance defined in terms of meaning or grammar (see pp
245-248).

(3) M is a typographic metric space; N, a space of algorithms.

Thus f might map linear sequences of DNA or proteins, or sets of such
sequences, onto organisms, or sets of organisms; equally, f might map a linear
string of letters onto a sentence, with a fixed meaning in a natural language; or
onto an algorithm in a given computer language such as Algol; then, too, f might
map fixed strings in an assembly language onto a computer program. In each of
these cases, f does not preserve metrics; M and N are not necessarily in phase.

In addition to the natural metric on M, there exists an induced metric dN(t)
on M defined by the following relationship:

dyuyf te.f e =dyle.e) . (9.20)

The Weizenbaum experiment

To specify a Weizenbaum experiment, it is necessary to provide M with a pro-
bability transition system Pr determining for each point ¢ in M the probability
that ¢ will change to t’; and an initial probability distribution Pr,. A dis-
tinguished element e* € N is fixed from the first. Within the context of molecu-
lar biology, transition probabilities are focused on relatively nearby strings - this
because point mutations result in string-like changes of a short typographic dis-
tance. In a biological Weizenbaum experiment, this fact is respected to the extent
that the typographic metric space and the probability transition system are mutu-
ally in accord: probabilities follow typographic neighborhoods. Elsewhere, proba~
bilities and distances are adjusted accordingly.

A point ¢ is selected in accordance with the initial probability distribution
Pry, over M. The distance dy ©) from f (¢,) to e* is measured; the system engaged
fori =1,2,3,..,;ast;_, moves to {,;, the distance dy,;, between f(f;) and e* is
recorded. The outcome of the Weizenbaum experiment is the sequence

dN(O)' dN(l)""' dN('n.) .

The Weizenbaum experiment is successful if:



The Language of Life 263

Condition W For dy, at an average distance from e* the sequence {dy,,}
converges to a neighborhood of 0.

Condition W, when met, implies that {dy )} is both stable and oriented. The
graph of a sequence of points constitutes a trajectory; the set of trajectories in N
that are at once stable and oriented is of measure zero. A successful Weizenbaum
experiment thus establishes that Pr(M) cannot be arbitrary with respect to its
induced metric structure. In particular, points that are far in the indwuced
metric have small transition probabilities: those probabilities that count must be
concentrated on nearby objects — nearby in the sense of the induced metric. On
the other hand, transition probabilities over molecular biological strings are, on
the neo-Darwinian theory, focused on neighborhoods that are nearby in a natural
metric.

It is perhaps for this reason that, with the exception of life itself, no one
has ever seen a successful Weizenbaum experiment.

Eigenvalues of natural selection

In Darwinian thought, the effects of randomness are played off against what
biologists call the constructive effects of natural selection, a mechanism that
philosophers have long regarded with sullen suspicion. Wishing to know why a
species that represents nothing more than a persistent snore throughout the long
night of evolution should suddenly (or slowly) develop a novel characteristic, the
philosopher will learn from the definition of natural selection only that those
characteristics that are relatively fit are relatively fit in virtue of the fact that
they have survived, and that those characteristics that have survived have sur-
vived in virtue of the fact that they are relatively fit. This is not an intellectual
exercise calculated to inspire confidence.

Natural selection is a force-like concept; and, as such, acts locally if it acts
at all. Mathematicians often assume that evolution proceeds over a multidimen-
sional fitness surface, something that resembles a series of hills and valleys; a
great deal that is theoretically unacceptable is often hidden in a description of its
topology. But I am anticipating my own argument. In speaking of locality, I mean to
evoke the physicists's unhappiness at action at a distance. Strings that are far
apart should be weak in mutual influence; this is a spatial constraint. Then again,
no string should be influenced by a string that does not yet exist. This is a tem-
poral constraint, a rule against deferred success. The historical development of a
complex organ such as the mammalian ear involved obviously a very long sequence
of precise historical changes. Comparative anatomy suggests that the reptilian jaw
actually migrated earward in the course of evolution. It is very difficult to under-
stand why each of a series of partial changes in the anatomy of the reptilian jaw
should have resulted in a net increase in fitness before the advent of the mam-
malian ear. Certain genes within the bacterial cell, to take another example, "“are
organized into larger units under the control of an operator, with the genes
linearly arranged in the order in which the enzymes to which they give rise are
utilized in a particular metabolic pathway'’.[23] The genetic steps required to
organize an operon cluster do not “confer any selective advantage to the pheno-
type so that individual steps are independent”.[23] The rule against deferred
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success functions as a prophylactic against the emergence of teleological or Aris-
totelian thought in theoretical biology.[23]

I have pictured evolution on the molecular level as a process involving paths;
natural selection acts to induce a statistical drift on some paths, and not others:
those paths involving a positive gain in fitness are favored. At any particular time,
at any particular place, one has an ensemble E of protein strings, embedded, so to
speak, in an underlying probabilistic structure, a measure-preserving system, to
keep to the concepts already introduced. To this structure, natural selection is
grafted, and acts, presumably in virtue of a property that may be represented by
the action of a real-valued, measure-theoretic function: thus f (z), f (Tz). f (Tzz).

. are successive local calculations of fitness under the action of the system's
transformation, the eigenvalues to the system. Suppose now we consider a
finite-state system consisting of an alphabet of 26 letters; and the set of
sequences k places in length. There are, of course, 26X such sequences. Each
letter a;, € A occurs with a fixed and independent probability p;. The shift
transformation moves a given string one place to the left. In effect, this system is
simply the finite-state stationary process with identically distributed terms men-
tioned in the example already discussed; and may be represented as a linear array
of k squares. An initial probability distribution fixes the configuration of the sys-
tem for the first (integral) moment; at each subsequent step, every square
changes: the odds in favor of any particular letter appearing are 1/26. If doubly
infinite in extent, this system models the play of k¥ 26-sided dice continued from
the indefinite past to the indefinite future.

What are the chances, one might ask (with a marked lack of breathlessness in
my own case), that a system of this sort — a pure Bernoulli process — could con-
verge on a particular sentence of English? Following Mannfred Eigen, let us sup-
pose that the sentence in question is TAKE ADVANTAGE OF MISTAKES, so that k is
23; this is the target sentence — S.

Even here, poised between irrelevance and imprecision, delicate and impor-
tant biological questions arise.[24] Thus, while it makes sense of sorts to say that
for every string, there exists a target — there would be many target sentences ~
it makes far less sense to say, as Eigen does, that there exists a target for every
string — just one, in fact. Fixed in advance, a target so singular would seem suspi-
ciously like a goal and hence streng verboten in evolutionary thought. How might
such a target be represented and by what means might its influence be transmit-
ted to strings? These are not trivial questions.

In any event, nothing in Figen’'s own example quite indicates why a stochastic
system with a target sentence, however defined, should stop when it has reached
its goal. This, however, is a trivial defect, easily made good by the construction of
an evaluation measure. Suppose, for the sake of simplicity, that fitness involves
only a mapping from strings to 0 and 1: at S, f(S) = 1, elsewhere, f is 0. An
evaluation measure serves to size up strings in point of fitness as they appear: at
S, where f(S) = 1, it orders the system simply to stop; at all other strings, the
command is to mush on.

Stochastic device, target sentence, fitness function, and evaluation measure,
taken as a quartet, comprise an Figen system. The enterprising Professor William
R. Bennett Jr has calculated that an Eigen system would require a virtually infin-
ite amount of time to reach even a simple target sentence — a number roughly a
trillion times greater than the life of the universe In the same spirit, Murray
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Eden has figured that life would require something like 1013 blubbery tons of E.
Coli "if one expected to find a single ordered gene pair in 5 billion years". The
trouble is not simply one of finding the right letters: it is also the problem of not
losing them once they are found.

What more, then, is needed? The opportunity, Stephen Jay Gould remarks,
for the system to capitalize on its partial successes. Curiously enough, this is
Figen's answer as well, a bizarre example of independent origin and convergent
confusion. As Eigen works though his example, his system is designed to retain
those random changes that fit the target sentence. Looking at the record of
Eigen's own simulation, we see that quite by chance the letter A appears in the
first generation in the right place on the sequence. It stays intact, A’ish so to
speak, for the rest of the simulation. When an E pops up, it, too, gets glued to the
system.

The result is an advanced Eigen system, and an improvement over the hope-
lessly slow Eigen system already described. Under the advanced Eigen system, fit-
ness is no longer an all or nothing affair; f thus takes values, let us say, between
0 and 1. Scanning every new string, the evaluation measure selects those strings
sy such that f(s;) > f(s;_y). These the system retains until it finds a string
superior in point of fitness. The result is a sequence of strings the ascends in
fitness. At S, as before, the system stops.

An advanced Figen system may well reach a target system in rather a short
time: unfortunately, in theoretical biology, as elsewhere, the question is not
whether but how. To the extent that fitness is purely a local property, it is diffi-
cult to understand why every ascending sequence should necessarily converge to
a neighborhood of 1, and hence indirectly toward S. A string that only partially
conforms to S is locally no fitter than a string that remains resolutely unlike S.
On the other hand, if each of the ascending sequences converge to S it is very
hard to see that fitness is a local property, and hard thus to understand what it is
that an evaluation measure manages to measure. What is unacceptable is the obvi-
ous and tantalizing idea that an evaluation measure judges fitness by calculating
the distance between random strings and a target sentence: distance is not a
local property; an evaluation measure so constructed would plainly be responding
to signals sent from the Beyond, a clear case of action at a distance. The problem
of discovering a target sentence remains unchanged, hopeless. In fact, this is pre-
cisely what the advanced Eigen system actually measures, since an arbitrary sen-
tence in which A appears in the second position is judged fit only because it is
closer to the target sentence than it might otherwise be. When the matter is care-
fully explained, theoretical biologists understand at once that the very concept of
a target sentence constitutes a beery and uninvited guest in evolutionary thought.
I have taken the argument a step further by insisting that evaluation measures
themselves be purely local.

Need I insist that the situation is made no better if instead of a specific tar-
get sentence I talk of systems set for success when they reach any sentence
whatsover? I suppose, since it may at first appear easier to design a system that
by randomly changing letters, in what Eigen hopefully calls the evolution game,
approximates an arbitrary English sentence instead of just one. The illusion of
ease is ill-gotten, of course: a target sentence is a minor stand-in for a major con-
cept. If no particular target sentence is fixed in advance, then any sentence of
English, once reached, makes for success. Simply to stop, the system must have an
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abstract characterization of all the English sentences. Of these, there are infin-
itely many. A system bouncing briskly from one set of random permutations to
another, no less than the linguist or logician, thus requires nothing less than a
grammar of the English language if it is not to keep babbling forever.

I have described grammars in terms of the notion of formal support; these

concepts receive no definition in Darwinian theory.
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CHAPTER 10

Universal Principles of Measurement and
Language Functions in Evolving Systems

H.H. Pattee

The ability to construct measuring devices and to predict the results of
measurements using models expressed in formal mathematical language is now gen-
erally accepted as the minimum requirement for any form of scientific theory. The
modern cultural development of these skills is usually credited to the Newtonian
epoch, although traces go back at least 2000 years to the Milesian philosophers. In
any case, from the enormously broader evolutionary perspective, covering well
over three billion years, the inventions of measurement and language are commonly
regarded as only the most recent and elaborate form of intelligent activity of the
most recent and elaborate species.

In this discussion I argue that such a narrow interpretation of measurement
and language does not do justice to their primitive epistemological character, and
that only by viewing them in an evolutionary context can we appreciate how primi-
tive and universal are the functional principles from which our highly specialized
forms of measurement and formal lanpguages arose. I present the view that the
generalized functions of language and measurement form a semantically closed loop
which is a necessary condition for evolution, and I point out the irreducible com-
plementarity of construction and function for both measuring devices and linguis-
tic strings. Finally, I discuss why current theories of measurement, perception,
and language understanding do not satisfy the semantic closure requirement for
evolution, and I suggest approaches to designing adaptive systems which may exhi-
bit more evolutionary and learning potential than do existing artificial intelligence
models.

My approach is to generalize measurement and linguistic functions by examin-
ing both the most highly evolved cognitive systems and the simplest living systems
that are known to have the potential to evolve, and abstracting their essential and
common measurement and linguistic properties. I want to emphasize that when I
speak of molecular language strings and molecular measuring devices I am not con-
structing a metaphor. Quite the contrary, I mean to show that our most highly
evolved languages and measuring devices are only very specialized and largely
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arbitrary realizations of much simpler and more universal functional principles by
which we should define languages and measurements.

Generalized Measurement

The classical scientific concept of measurement requires a distinct physical
measuring device that selectively interacts with the system being measured,
resulting in output that has a symbolic interpretation, usually numbers. Most
scientists regard the output of a number as an essential requirement and, indeed,
numbers are required if the language of science is restricted to mathematics. If
the laws are expressed by equations of motion, then the initial conditions must be
numbers if we are to use the equations to predict other numbers. However,
without questioning the enormous advantages of numbers and formal mathematical
representations of laws, it is obvious that measurements are possible without
numerical outputs (e.g., Nagel, 1932). For example, timing, navigating, surveying,
weighing, and even counting were once accomplished by iconic, mimetic, or analog
representations. Today the trend is away from the outputs of traditional labora-
tory measuring devices with visible numerical scales and toward transducers that
feed computers and robots directly. In all cases the type of output from a mea-
surement is chosen according to the particular functional requirements of the sys-
tem as a whole.

The essential point is that while the selection of input patterns, the choice
of output actions, and the relation of input to output in any measuring device is
largely arbitrary, the only fundamental requirements for useful measurements are
the precision and reproducibility, or local invariances, of the input—output
relation, and the functional value of the entire operation to the system doing
the measuring. The requirement of reproducibility means that the measuring de-
vice must be isolatable from the system being measured, and resettable, so that
the measurement process can be repeated an arbitrary number of times to give
the same output for the same input pattern. However, such an abstract descrip-
tion of measurement is incomplete, since it omits the crucial requirement of sys-
tem function, or the value of the measurement.

From the abstract definition of measurement alone we would conclude that
any relatively fixed or constrained set of particles in a physical system qualifies
as a measuring device if we interpret pattern as simply the initial conditions of
the free particles and action as the alteration of their free trajectories after col-
lision with the constrained set. Thus, we might say that a rock in a stream maps
the input flow pattern to the output action of turbulence, or say that in crystal
growth the constraint of a dislocation on a crystal surface maps the patterns of
molecular collisions to the specific action of binding more of its own constituents.
However, we do not normally call these cases measurement processes. By con-
trast, the pattern recognition required for specific substrate binding and cata-
lytic action of cellular enzymes I would call a measurement, even by the most
rigorous definitions that apply to highly specialized, artificial devices. How do I
justify this? Clearly, the enzyme's action is more complicated than crystal
growth, but I do not see the level of complexity of the measuring device as the
only criterion; for example, calipers are a simple, artificial constraint, that we
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may use to measure size. The only distinction I find convincing is that of system
function or, more specifically, that of pattern—action mapping that supports the
persistence or survival of the system, and subsidiarily of the measuring con-
straints that make up the system. In other words, there must be functional clo-
sure. It is necessary that the enzyme serves a function in the cell for its pattern
recognition and catalytic action to be called a measurement. This is still too broad
a definition, since it gives no clues as to the characteristics of function, other
than survival, that are required of measurement. We must specify some further
conditions on this mapping from patterns to actions that are necessary for effi-
cient or effective measurements. Are there also conditions on the way that suc-
cessful systems of measuring devices interact? Let us consider what is common to
some extreme examples of successful measuring devices.

Measurement as a Classification

The most important, and yet the most deceptive, aspect of our highly evolved
artificial measurements is the feeling we have as intelligent observers that we
know what attribute we are measuring independently of the measuring constraints.
This is a half-truth. We usually have an abstract concept of what attributes we
wish to measure and design the constraints of the measuring device so that its out-
put action expresses these attributes and minimizes all others. Since the output
action is designed to be very simple, we often tacitly assume that the correspond-
ing input patterns are very simple. For example, we think of temperature as a
simple property of a gas, but our thinking does not change the complex molecular
collisions of the gas. This is actually a useful deception in building classical
models, although it leads to erroneous results in quantum mechanics. In fact, the
measuring device necessarily interacts physically with all of the system's innu-
merable degrees of freedom, and it is precisely because of the innumerable inter-
nal constraints of that particular device that only a few degrees of freedom are
available for the output actions.

It is primarily this property of mapping complex input patterns to simple
cutput actions that distinguishes useful measurement functions from merely com-
plex physical constraints. Without this complex-to-simple or many-to-one mapping
process we would not be able to identify equivalence classes of events and, conse-
quently, we would not be able to construct simple models of the world. I would go
further and claim that this classification property of measurement is an
epistemological necessity. Without classification, knowledge of events would not
be distinguished from the events themselves, since they would be isomorphic
images of each other. This also implies symmetry in time, and measurement must be
an irreversible process.

From a broad biological perspective, the entire nervous system has evolved
for the principle function of quickly and reliably mapping the ineffably complex
configurations and motions of the environment to a very few vital actions; that is,
run, fight, eat, sleep, mate, play, etc. Although these actions can be decomposed
into complex subroutines, the decision is still which of only a small number of
actions to employ. The entire organism can therefore qualify as an extreme case
of a generalized measuring device. L.et me return now to the other extreme of evo-
lution and consider measuring devices at the molecular level.
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At the cellular level we have the example of the single enzyme molecule. The
action of an enzyme, like the action of an artificial measuring device, may be
described very simply. Generally, it is the catalysis of one particular covalent
bond and, consequently, we might think of the corresponding input pattern simply
as one particular substrate molecule. But this would miss the essential property of
an effective measuring device, which is to reduce the complexity of input inter-
actions by means of its internal constraints. When we speak of an enzyme as highly
specific it is another way of saying that it recognizes or distinguishes very com-
plex input patterns.

This ability to recognize complex input patterns and, as a consequence, exe-
cute a simple action requires physical constraints of a special type. Since the
many-to-one mapping is arbitrary, the constraints must arbitrarily couple the
configurations available for fitting the input pattern to the motions of the de-
vice that produces the output actions. In physics these are called nonholonomic or
nonintegrable constraints. A holonomic constraint is a restriction on the confi-
gurations of a set of particles, such as occurs in forming a crystal from a solution
of molecules. This freezing-out of configurational degrees of freedom necessarily
freezes-out the corresponding motions of the crystallized molecules, so that we
see the constrained system as a rigid solid. A nonholonomic constraint may be
defined as a restriction on the motions of the particles without a corresponding
restriction in the particle configurations. In other words, a formal expression of
a nonholonomic constraint appears as a peculiar equation of motion for selected
velocity components, where certain configurational variables serve as initial con-
ditions. However, we cannot generally eliminate any configurational variables of
the system by using these relations because of the nonintegrability of the equa-
tions of constraint. This results in a flexible or allosteric configuration. What we
call machines are made up of holonomic, rigid parts that are coupled by nonholo-
nomic, moving linkages. In such machines more configurations of the parts are
allowed kinematically than are allowed in the dynamic motions of the parts (e.g.,
Pattee, 1972b). In proteins it is these nonholonomic constraints that couple the
complex configurations or patterns of the substrate to the allosteric motions caus-
ing catalytic actions.

The complexity of patterns that can be usefully distinguished -clearly
depends, in part, on the complexity of the internal constraints of the measuring
device that fits the pattern. What is not so clear, but equally important for recog-
nition, is that the output action must be simple and repeatable. In fact, we can
imagine a complex fit that requires complex constraints without any correspond-
ing simple action, as in a pjle of gravel. We also speak of complex actions resulting
from complex constraints, as in the weather. But it is only when complex inter-
actions result in simple, repeatable actions that we speak of recognizing patterns.
Enzymes require hundreds of amino acid residues to fold into a structure which we
say fits the substrate; but any solid has molecules that physically fit each other
just as well, yet we do not generally picture solids as pattern recognizers. It is
only the simple catalytic action that establishes the fit interaction as a pattern
candidate; but I would again argue that the only objectifiable existence of
patterns is ultimately established by some form of system closure. That is,
the distinguishing property of measurement constraints is that their
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pattern—action mapping supports the system that is necessary to synthesize
these constraints. Since this is such a fundamental condition, let me discuss it in
more detail. We shall see that for evolution to be possible, functional closure must
be more complex than just autocatalytic cycles.

Function Requires Construction

Returning now to the human level we can say that the primary function of
measurement is to map the ineffably complex interactions of the physical world
into attributes which are necessary for our survival in this world. To realize this
function, it is obviously necessary for us to pay attention to these attributes.
This justifies the epistemological illusion of thinking about the world in terms of
these measured attributes; that is, in terms of the simple outputs of the measur-
ing devices rather than the complex inputs. In the everyday use of observations
and measurements there is no survival value in analyzing the inner details of
measuring devices. In other words performance of measurements does not benefit
from analysis of the constraints of the measuring device.

In fact, if one analyzes the measurement constraints using a microphysical
description, the measurement funciion unavoidably disappears into a
measurement-free physical system with more degrees of freedom. On the other
hand, it is from this more detailed physical system that the complexr measure-
ment constraints must have been synthesized in the first place. This means
that we must have control over physical details of constructing measurement de-
vices even though we do not want or need knowledge of these details while we
actually perform measurements. The measurement activity therefore requires
both functional primitives, in the sense that any analysis of the constraints of
the measurement device necessarily obliterates the essential classification action,
and constructional primitives, in the sense that knowledge of the function of
the device can result in no necessary rules for synthesizing the device's con-
straint.

This apparently improbable interrelation between genes and enzymes is the
simplest case of what I call semantic closure (Pattee, 1982). By general semantic
closure I mean the relation between two primitive constraints, the generalized
measurement-type constraints that map complex patterns to simple actions and
the generalized linguistic-type constraints that control the sequential construc-
tion of the measurement constraints. The relation is semantically closed by the
necessity for the linguistic instructions to be read by a set of measuring devices
to produce the specified actions or meaning. The semantic closure principle is
supportable from several levels:

(1) As an empirically based generalization from the facts of molecular biology.

(2) As a theoretical requirement based on the logic of heritable systems (e.g. von
Neumann, 19686; Polanyi, 1968).

(3) As an epistemological condition necessary for the distinction between matter
and symbol (Pattee, 1982).

It may also be stated, as a complementarity principle, that the properties of
measurement and language cannot be adequately defined individually, but form an
irreducible, complementary pair of concepts.
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Generalized Language

There is common agreement on many of the universals of language sétructure
(e.g., Hockett, 1966). Natural and formal languages are discrete, one-dimensional
(1-D) strings of elements from a small alphabet. The strings are further con-
strained by lexical and syntactic rules which may be very simple or very complex.
These rules may be precise and explicit, as in formal languages, or ambiguous and
difficult to formulate as in natural languages. Language strings are constructed
and read sequentially, although all natural languages also have the essential
metalinguistic ability to reference themselves out of sequence; that is, to con-
struct strings that refer to other strings in the language. From what is known of
the structure of the gene it appears to qualify fully as a natural language system
(e.g., Pattee, 1972a).

When it comes to language function it is more difficult to find simple gen-
eralizations, let alone common agreement. Language unquestionably has many
functions; for example, memory, instruction, communication, modeling, thought,
problem-solving, prediction, planning, etc. What I am proposing is not inconsistent
with any of these functions. However, my criteria for functions in both measure-
ment and language are based on the most primitive conditions for evolvable sys-
tems. These include:

(1) The ability to construct and coordinate measuring devices and other func-
tional structures under the control of a heritable description (i.e., genetic
control).

() The ability to modify function by changing the description (i.e., mutability).

(3) A heritable process for evaluating the description—construction system as a
whole (i.e., natural selection).

The impressive techniques of molecular biology have shown us in some detail
how present cells accomplish these processes, so in a phenomenological sense
they are no longer considered problems by biologists. However, there remain the
essential mysteries of how such cellular systems came to exist and how multicellu-
lar systems develop. That is, how does such a coordinated set of linguistic instruc-
tions and measuring constraints evolve from a nonliving physical world and how are
such intricate multicellular morphologies constructed and maintained by these
linguistic and measurement devices? I comment on approaches to these problems
in the last section but, since I have no solutions, for the present I assume the
existence of cells and simply generalize from the structure of linguistic con-
straints and how they function in the cell system.

We considered the basic function of measurement devices as mapping complex
patterns to simple actions. In cells, these actions are typically the catalysis of a
single bond; in effect, the smallest change that can be made in the constraints of a
molecular system. However, this small change is only made if a complicated set of
other constraints is satisfied, namely the recognition of the substrate molecule. In
a linguistic device the functions are quite different. The function of the linear
sequence is to control the sequence of actions necessary to construct the measur-
ing device, but it does this through the simplest possible type of constraint, the
chain of single bonds. At the other extreme of language constraints, we find that
one principle function of our spoken and written languages is to give instructions;
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and it is an impressive fact, often taken for granted, that by forming discrete
strings from about 30 types of simple marks we can effect the construction of
almost any conceivable pattern, whether it is in the brain, in the actions of the
body, or in the construction of artifacts. How these transformations take place
from the simple, 1-D string of constraints to the physical structures and actions
represented by these strings is almost a total mystery for natural language, even
though we find we are able to know the meaning from the strings. But by contrast,
at the molecular level we know in great detail how the genetic strings are
transformed into the structures and actions represented by the strings, but we
have no way of deriving the meaning of any string; that is, of how to tell from the
genetic message alone what the function is of the protein it describes.

A generalized language might therefore be characterized as a simple chain of
constraints that controls the construction of complex patterns. If we try to for-
malize this further, as we did with measurement, we might be tempted to say that
linguistic devices map a domain of 1-D constraints to a range of n-D patterns.
However, this would be a misleading abstraction. In the case of the measuring de-
vice, it is the actual constraints of the device itself that recognize the input pat-
tern and are physically responsible for the output action. Therefore, by saying
that the device maps the input pattern to output action we mean that it is respon-
sible for dynamically executing the mapping. On the other hand, a string of
constraints in a language is dynamically inactive. Language strings are pure confi-
gurations; that is, they have no significant motions or velocity components. Thus,
symbol strings are rate independent in the sense that their meaning, or what they
control, does not depend on how fast they are read.

Semantic Closure

We explained earlier how the action of measurement constraints is function-
ally primitive, since analysis of the details of the constraints interferes with the
measurement function. In a similar way the meaning of a linguistic string is func-
tionally primitive, since analysis of the mechanisms of production of the string
interferes with the meaning. In practice, we look at the results of a measurement
and do not confuse ourselves with the constructional details of the measuring de-
vice. Similarly, when we generate linguistic strings we focus on the meaning, not
the mechanics of production.

This complementary primitiveness of measurement and linguistic meaning is
not only an observable fact of biology but also, I believe, an epistemological neces-
sity. As we said earlier, it is essential that we be able to directly picture the
world from what we perceive or from the outputs of measuring devices without hav-
ing to also know the physical details of the perceiving or measuring constraints as
parts of the nonmeasuring interactions of the physical world. This requirement of
semantic primitiveness of perception and measurement accounts for what I call the
epistemic illusion of the reality of the world, which is not involved with the com-
plex and largely arbitrary constraints that execute perception and measurement.
The alternative possibility, that we must analyze these measurement constraints,
only leads to irrelevant details at best or an infinite regress at worst. In a comple-
mentary sense it is essential that we be able to directly grasp the meaning of
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linguistic strings without becoming involved with the complex and largely arbi-
trary details of the constraints that generate and interpret strings. Just as in
the case of measurement, this requirement of semantic primitiveness of language
accounts for the epistemic illusion that strings have an intrinsic meaning indepen-
dent of the dynamical constraints that generate them or that they ultimately con~
trol. Only through semantic closure do these two primitives complement each
other and form an autonomous, evolvable system. The semantic closure principle
allows us to treat the action of a measuring device as primitive because the
details of its construction are accounted for by a linguistic string, while the
meaning of the linguistic string can be treated as primitive because the details
of interpretation are accounted for by a set of measuring devices. For me, it is
this fundamental relation between the relative primitives of measurement and
language constraints that distinguishes evolvable or epistemic systems from nor-
mal physical systems. In the final sections I elaborate on why this closure princi-~
ple offers more promise for models of evolvable systems than other approaches.
Before doing this, let me summarize the properties of generalized measurement
and language.

Properties of generalized measurement

(1) Measuring devices are localized, isolatable, resettable structures with
repeatable actions.

(2) Measuring devices have no intrinsic output actions, but may be triggered to
simple actions by specific input patterns (nonholonomic constraints).

(3) Measurement constraints obey all physical laws, but are not derivable from
laws (generated by system function).

(4) Measuring devices are constructed sequentially under the control of linguis-~
tic constraints, but a complete, finite set of measuring devices is necessary
to read linguistic strings (semantic closure).

(®) Measuring devices execute a many-to-one mapping from complex input pat-
terns to simple output actions (classification).

(6) Measuring devices do not occur in isolation, but form functional, coherent
sets within a system.

(7) The value and quality of any measurement is a system property determined
by the survival of the system in which it functions.

(8) Beyond these properties, the domain of input patterns, the range of output
actions, the choice of mapping, and many other aspects of measuring devices
are largely arbitrary.

Properties of generalized language

(1) Language structures are discrete, 1-D strings made up of a small number of
types of elements.

(@) Language strings have no intrinsic actions, but may trigger action in measur-
ing devices (nonholonomic constraints).
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(3) Linguistic strings obey all physical laws, but are not derivable from laws
(generated by system function).

(4) A complete, but finite, set of measuring devices is necessary -to read and
interpret linguistic strings.

() Linguistic instructions are necessary to control the synthesis of this inter-
preting set (semantic closure), as well as the synthesis of other functional
components of a system.

(6) Language strings are transcribed sequentially, independently of rate, but
they may reference themselves out of sequence (metalanguage).

(7) The value and meaning of any linguistic string is a system property deter-
mined by the survival of the system that it controls.

(8) Beyond these properties, the physical structure, the choice of alphabet, the
units of meaning, and many other aspects of language strings are largely arbi-
trary.

Models of Evolution

How can these primitive closure requirements for measurement and language
be incorporated into a model of an evolving or learning system? How would such a
model differ from previous models? Let us begin with the second question. Many
more or less literal simulations of genetically controlled, self-reproducing systems
have been studied, beginning with von Neumann’s self-reproducing automaton in
which he first explicitly recognized the need for a genetic description as well as a
universal constructor that must read and execute this description if evolution is
to produce increasingly complex systems. However, von Neumann (1966) was more
interested in the logical or linguistic aspects of the model than in the physical
aspects of pattern recognition and measurement. He was well aware of this neglect
of the physical aspects of the problem ("...one has thrown half the problem out
the window and it may be the more important half.”), but at that time (ca. 1948)
the Turing concept of computation was well-developed, while molecular biology was
still a great mystery.

Many later simulations of evolution have been attempted for the purpose of
improving the adaptation or optimization process in formal or artificial systems
(e.g., Bremermann, 1962; Fogel et al., 1966; Klopf and Gose, 1969; Holland, 1975;
Barto, 1984). Only a few models of evolution have been constructed to help concep-
tualize and test the postulates of neo-Darwinian theory (e.g., Moorehead and
Kaplan, 1967; Conrad and Pattee, 1970). In all but one of these models, the process
of natural selection is accomplished by fitness criteria which are explicit and
preestablished by the programmer. In the Conrad and Pattee model no explicit fit-
ness criteria were introduced. Instead, a set of general conditions or rules of
interaction between organism and environment were defined, such as conservation
of metabolic resources. However, the nature of the environment with respect to
the organisms was preestablished; that is, no genetically modifiable measurement
constraints were introduced in this model. Thus, in the existing models of evolu-
tion the environment has been represented as a fixed, objective framework that
produces the selection pressures on the populations of organisms. Our present
complementary view of language and measurement requires the epistemic condition
that the organism can only respond directly to the simple output of measurements
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of the environment. As we have seen, these simple outputs are a consequence of
complex constraints resulting from genetically controlled syntheses. However,
there is no explicit relation of the gene string to the input—output mapping of the
measuring device. Gene strings that construct measuring devices cannot be
thought of as programs that manipulate data structures in a computer. In the
latter case, every program instruction must be completely explicit. Explicit
actions require that all types of inputs, outputs, and hardware operations be
preestablished. By contrast, in the organism it is the genetic instructions that
construct the hardware that determines all the inputs, outputs, and actions.
Genetic consequences are therefore entirely implicit. One cannot assign an ele-
ment of the gene to an element of action, yet this is the central requirement of a
program or effective procedure in computation. Furthermore, simply to say that
the architecture of present computers is totally unlike the architecture of organ-
isms is a misleading understatement, since even the concept of architecture plays
an entirely different role in organisms to that in computers. For these reasons
any form of computational metaphor for organisms must be treated with skepti-
cism.

Up until quite recently the predominant view of genetic control has been
very much like the view of computation as an explicit program control of data
strings in memory. The alternative view that morphogenesis depends both on
autonomous dynamics (archetypes) and internal constraints (chreods) for which
genes provide only local switching forces is well known (Waddington, 1968), but for
many years lacked empirical evidence and a conceptually clear, formal model.
Currently, such topological and dynamical models of morphogenesis are more popu-
lar largely because of the application of elegant mathematical formalizations of the
singularities, bifurcations, degeneracies, and instabilities of dynamical systems.
These mathematical and physical theories of continuous systems arose from com-
pletely distinct concepts and methodologies to those of the computational models
of morphogenesis, yet they have also led to models for the growth of many types of
biological patterns as well as impressive claims for more general powers (e.g.,
Thom, 1975; Prigogine, 1980; Eigen and Schuster, 1979; Haken, 1981). However, in
spite of these significant contributions to mathematical and physical theory, biol-
ogists usually perceive the excitement over these formal models as coming more
from the physicists and mathematicians who are impressed with the complex pat-
terns that can be generated from such simple equations and boundary conditions.
The problem is that molecular genetics is itself so well-established at the founda-
tions of biology that dynamical models are not likely to be useful until they can
incorporate these linguistic constraints into their models of evolution and
development. While some of these dynamical models have helped clarify measure-
ment constraints (e.g. Prigogine, 1980), none of them has directly contributed to
the genotype—phenotype closure relation that is necessary for evolution.

It is also instructive to review current theories of cognitive activities at the
other end of the evolutionary scale where the subjects of interest are perception,
action, learning, language, knowledge, and other forms of intelligent activity. It is
significant that here also we find two opposing schools, one based on explicit
linguistic strings and the other on implicit measurement dynamics. The first school
arose from logic and computation theory, and is now dominated by the paradigm of
the computer as the universal symbol system that can model cognitive tasks such
as pattern recognition, classification, learning, and understanding natural
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language. It is the claim of the computationalists or information processors that
these tasks can be understood as purely linguistic or string-processing activities
without reference to measurement or any physical dynamics, except as preesta-
blished input and output transducers for the strings. These computational
modelers appear to have a principled commitment to the epistemic illusion charac-
teristic of linguistic constraints that strings contain implicate meaningful informa-
tion, and that by processing these strings with a sufficiently clever rewriting of
the rules, this meaning can be explicated (e.g., Newell, 1980; Pylyshyn, 1880). Ina
somewhat less principled way, the information processors are committed to the
complementary epistemic illusion of measurement that only the simple output
action need be entered into their models, and that the origin of the complex
dynamical constraints that generate these simple outputs need not be considered
as a part of their cognitive process.

The opposing school, which arose from the ecological physics approach of J.J.
Gibson (1979) takes the other extreme of basing their models on a principled
avoidance of linguistic constraints, which they argue are neither essential for
mapping perception to action nor for the construction of measurement con-
straints. Ecological physics models are based on extensions of the dynamical
singularity theories of physics (e.g., Turvey and Carello, 1981; Turvey and Kugler,
1984), and understandably emphasize perception-action models rather than
genetic control or language understanding.

Both the information processing and the ecological physics schools of cogni-
tive modeling appear to have committed themselves to their exclusive methodologi-
cal principles without serious consideration of the empirical facts of development
and evolution. In effect, the information processors are committed to the principle
that discrete strings possess intrinsic meanings independent of the physical
dynamics that generate the strings, while the ecological physicists are committed
to the principle that physical dynamics possess intrinsic meanings independent of
the genetic strings that have constructed the dynamical constraints. One simple,
but very frustrating, fact of evolution is that natural selection does not follow the
physical or logical principles of most other scientific models, but operates only
through opportunistic and even haphazard experiments. Survival depends on
balancing many highly interrelated, qualitative system properties such as speed,
reliability, efficacy, recovery from error, efficiency, and adaptabiity. Thus,
although it may be technically efficient for us to recognize shape by computation
on a string of data obtained by an arbitrary scanning of the shape, the enzyme is
much quicker using direct 3-D template recognition with no computation whatso-
ever; and although it is technically possible to cast a machine from a 3-D template
with no string processing, the enzyme is constructed more reliably by sequentially
processing a gene string. At the cognitive level why should this opportunistic
strategy be different? We can recognize the number of rocks in a pile directly if
there are less than 6 or 7, but we must count them sequentially if there are more.
In a fraction of a second we directly recognize our complex friends in a crowd, but
may have to follow long strings of inductions to identify a simple mineral in a rock.
The brain, like the cell, has clearly evolved the power both to directly perceive
patterns (measure) and to process strings (compute).

To me, the effort to model the brain as exclusively one or the other type of
constraint may be useful engineering — in principle it can be done — but that is
not our problem. Our problem with the nervous system is to understand the
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functional interrelation of direct perceptions and language necessary for effica-
cious action and learning, just as the problem with the cell is to understand the
functional interrelations of gene strings and cellular dynamical constraints neces-
sary for development and evolution. These interrelations are certainly very com-
plex and largely unknown, but what is perhaps the most fundamental evolutionary
fact we already know, and that is the meaninglessness of strings or dynamics
taken in isolation. From the evolutionary perspective it is only the semantic clo-
sure of genotypic language strings and phenotypic measurement dynamics that
defines any biological organism in the first place. Whether any physical strings or
dynamical constraints can be said to form a language or a measuring device, or
whether either has function or meaning can only be decided in terms of its origin
and function in the life of the organism.

Conditions for Artificial Evolving Systems

I now come to the question of how this semantic closure property of measure-
ment and language can be incorporated into an artificial system. Although language
and measurement are complementary primitives they do not relate symmetrically.
We pointed out that measurement constraints are dynamically active without
linguistic inputs, even though they may have been constructed under linguistic
constraints. Measurement devices physically execute the mapping from input pat-
terns to output actions. This means that a system of measuring constraints, once
constructed, can perform complex dynamical tasks without further linguistic con-
trol. In other words, the specific actions of measurement systems do not require a
program to run them. By contrast, a linguistic constraint has no intrinsic dynam-
ics, it is rate independent, and it therefore can execute no rule or action by
itself. Every action of a linguistic system must therefore have an external rule or
program step to execute it. In effect this is how computation is defined. Only a
string that is mapped into another string by means of an effective procedure can
qualify as formal computation; but a measurement by itself is not an effective pro-
cedure since it has no explicit input. Conrad and Hastings (1985) have proposed
naming such direct transformation a new computational primitive, but since there
is no explicit input, they must use a nonstandard definition of computation.
Gibbsonians often refer to measurement constraints as ‘“smart machines” that
accomplish their function without computation, to contrast them with string pro-
cessing that requires smart programming if any useful output is to result.

I am proposing that any model of an evolutionary process must clearly
represent and functionally distinguish language and measurement constraints (i.e.,
the genotype and phenotype) and must preserve the properties and relations of
each. This includes the construction of the measuring devices under the con-
straints of the linguistic strings and the reading of these strings by measuring
devices. It must also include the ability of the strings to gradually or suddenly
modify the inputs, outputs, and mappings of the measuring devices and must allow
the representation of measuring devices to function under an autonomous dynam-
ics once they have been constructed. This latter condition is difficult to fulfill in
an artificial model since the function of a measuring device depends on its inter-
actions with an environment. If we try to simulate the natural environment, the
model becomes very complex and yet is incomplete. On the other hand, if we
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invent too simple an artificial environment, the measurement mapping becomes
trivial. The engineering approach is to have the model adapt to the real natural
environment, but this requires the construction of real measuring devices under
genetic control. This may be practical, but one could question its status as an
explanatory model, or even a model at all, since it would appear to be a real evolv-
ing system. One more pedagogic-type model might utilize an artificial environment
that could be gradually modified in the hope of inducing new measurements by the
organism. What are the simplest conditions under which we can expect such emer-
gent behavior?

It appears obvious that the simulation of language constraints on a computer
is simpler than the simulation of measurements. However, there is an enormous
difference between natural languages and artificial programming languages, which
is easily recognized, but not understood. Typically, computer languages do not
tolerate mutations or recombinations, whereas genes and natural languages depend
on such changes for evolution and creative expression. One difference which may
be significant is the lack of complementary measurement constraints in current
computer architectures. Since linguistic constraints have no intrinsic dynamics,
the computer does nothing unless given a program step. Furthermore, this step
must be explicit; that is, the mapping from the domain of program steps to the
range of output actions must be unconditionally defined in advance. This total
dependency on linguistic inputs results in a total intolerance to the absence of
inputs or to inputs with syntactical error. It also follows from the requirement of
explicitness in the program steps that errors are also explicit; that is, changes in
input—output mappings cannot be gradual. Natural systems, on the other hand,
operate with measurement constraints under autonomous dynamics that do not
require linguistic inputs for their function. Furthermore, this function depends
only implicitly on the linguistic strings that controlled their construction; that is,
the mapping from strings to measurement function cannot be specified as a
sequence of unconditionally defined steps as in a program. Each linguistic step
contributes to the final function only in conjunction with the contributions of
other steps so that no single linguistic input step can be assigned an unconditional
consequence in the output action. This input—output relation can be observed
most directly in the folding transformation that converts the linguistic string con-
straints of the polypeptide’s primary structure into the 3-D globular structure of
a functioning enzyme. The significant result of this transformation is that a muta-
tion or recombination of the linguistic string may result in all degrees of func-
tional change, from virtually no change, to gradual or continuous change, to
discontinuous change, to a new function. This same variability in meaning occurs in
natural language where a single change in a letter or word may result in no change
of meaning, a shift of meaning, or an entirely new meaning.

The nature of this relation between description and function or between
language and meaning is certainly the most crucial and yet the most puzzling
aspect of any epistemic or evolutionary system. It is a problem as old as philoso-
phy and even now it is not clear that a complete explanatory model is possible. My
only conclusion from this discussion is that unless an artificial system contains
representations of the constraints of both generalized language and generalized
measurement, as well as the complementary relations between them that I have
described as semantic closure, the model is not likely to evolve similarly to living
systems or to contribute significantly to the theory of evolution.
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