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CONCENTRATION CURVES AND HAVE-STATISTICS
FOR ECOLOGICAL ANALYSIS OF DIVERSITY:

PART OI: COMPARISON OF MEASURES OF DIVERSITY

Dianne G. Goodwin and James W. Vaupel

ORIENTATION

Given the central importance of diversity in ecology and the life sciences
more generally, it is not surprising that a variety of methods and measures have
been developed to describe and summarize diversity. In the two previous parts of
this series of papers, comparisons were drawn between concentration curves and
frequency distributions, the most widely used graphical display of variation, and
between concentration curves and dominance-diversity curves. This final part of
the three paper series compares various statistics that might be used to summarize
diversity, with a focus on the usefulness of have-statistics as a supplement to more
traditional measures. The first section of our discussion lays out some reasonable
criteria and principles that good measures of diversity should satisfy: some tradi-
tional measures violate at least one of the criteria; the have-statistics pass the
hurdles and have some desirable properties in addition. We then illustrate the use
of different measures by way of examples drawn from Howard's studies of bullfrogs
(discussed in Part I), the study of species diversity among diatoms (discussed in
Part II), an analysis of mating systems of various birds, and a survey of human fer-

tility in 41 countries.

PRINCIPLES FOR JUDGING MEASURES OF EVENNESS

The literature on measures of diversity is so vast and chaotic (see, e.g., Hurl-
bert 1971, Patil and Taillie 1982, Peet 1974, and Rao 1982b for overviews) that it
is impossible to make headway without a clear goal and some principles of naviga-
tion. Our goal is to try to gain some understanding of the uses and limitations of
have-statistics and concentration curves by comparing them with other kinds of

measures of diversity. We will base this comparison on some principles and desir-



able properties of diversity measures.

For our purposes, it is convenient to begin with the aspect of diversity known
as evenness. There is widespread agreement among researchers who have thought
about the principles that a measure of evenness should satisfy (e:g., Marshall and
Olkin 1979, Foster 1985) that the following four principles are reasonable. For ex-
pository simplicity, we use £ to mean individual, species, or any other "have' and
we use Y to mean offspring, zygotes, mates, members of a species, or any other
"had".

1. The Anonymity Principle

Consider any two z's in a population. Suppose they can be identified: for
convenience, call one Harry and the other Larry. Suppose one has ¥ and the oth-
er has ¥’. An evenness measure should not change if Harry is the one with y rath-

er than the one with v .

2. The Relativity Principie

Evenness should depend only on the relative amount, i.e., the proportion of
the total, each £ has and not on the absolute amount. Consider, for instance, a po-
pulation with two z's, one having 70% of the ¥'s and the other having 30Z. Even-
ness should be the same regardless of whether the total number of y's is ten, a

thousand, or a million.

3. The Replication Principle

Suppose a population is replicated so that there are now m identical popula-
tions. Suppose the m populations are combined into a new population with m times
as many z's. The evenness of this new population should be the same as the even-
ness of the original population. For instance, suppose the original population con-
sists of two z's, one having 70%Z of the ¥'s and the other having 30%Z. After a single
replication and combination, the new population will consist of four z’s, the top
half (i.e., top two) having 70% of the ¥ ’s and the bottom half having 30Z. Evenness

should remain the same.



4. The Transfer Principle

Consider any two z's in a population such that one has ¥ and the other has
somewhat fewer, ¥ —d. Suppose a transfer is made such that the first £ now has
even more, ¥ +c, and the second x has even fewer, ¥y —d —c. According to the
Fully-Responsive Transfer Principle, an evenness measure should decrease. Ac-
cording to the Partially-Responsive Transfer Principle, an evenness measure
should not increase and there should be at least one pair of z’s such that such a
transfer would result in a decrease in the evenness measure. Note that the Fully-
Responsive Transfer Principle implies a transfer from a "poor" z to a very rich =
should decrease evenness by more than an equal transfer to a not-so-rich x, and
the Partially-Responsive Transfer Principle implies that such a transfer from the
poor to the very rich should decrease evenness by at least as much as a transfer

to the less rich.

A measure of evenness that is consistent with principles 1, 2, and 3 and with
the partially-responsive version of principle 4 might be called a consistent meas-
ure. A measure consistent with 1, 2, and 3 and the fully-responsive version of 4
might be called a strictly-consistent measure. As documented below, three of the
most commonly used "measures of evenness' are neither consistent nor strictly-

consistent.

It turns out that the four principles have a close relationship with concentra-
tion curves, as follows. If and only if the concentration curve for one population
lies between the curve for another population and the diagonal line at all points
between 0 and 1, will any consistent measure of evenness indicate that the even-
ness of the first population is greater than the evenness of the second population.
Hence, if one concentration curve lies under another it can be said that the first
population is definitely more even (regardless of the measure of evenness used)
than the second population. This is one of the key reasons that concentration
curves are so useful and why the central role of concentration curves in the
analysis of evenness is, as Allison (1978) put it, "virtually unqguestioned” by
economists, other social scientists, and mathematicians who have studied inequali-
ty.

If one concentration curve is lower than a second curve at some points but at
other points the curves either touch or run along together, then all strictly-

consistent measures of evenness will indicate that the first population is more even
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than the second. Depending on the measure and on where the curves touch, a
measure that is consistent but not strictly-consistent may indicate either that the
two populations are equally even or that the first population is more even than the
second. Consequently, it is possible to reformulate the criteria for a measure of

evenness as follows:

-- a measure of evenness is strictly-consistent if and only if the measure gives a
lower value of evenness to a concentration curve that lies outside another
concentration curve at at least some points and never lies inside the other

concentration curve.

— a measure of evenness is consistent if and only if the measure gives a lower
value of evenness to a concentration curve that lies outside of another con-
centration curve at all points between O and 1 and gives a lower or equal
value of evenness to a concentration curve that either lies outside or touches

another concentration curve at all points.
These two criteria might be called the concentration-curve criteria.

In our empirical analyses, on occasion the concentration curves crossed over.
In these cases two different summary measures may give the two populations a dif-
ferent ordering:” according to some measures, the first population may be more
concentrated and according to other measures, the second population may be more
concentrated or, at least, equally concentrated. The differences in the measures
were small and when a number of populations were considered the rankings accord-
ing to different measures tended to be more or less the same. This highlights the
importance of concentration curves themselves as compared with any particular

summary measure.

WHICH MEASURES ARE CONSISTENT?

Many measures have been used to capture the evenness of a population; we
consider only the most commonly used measures, as well as various have-statistics.

Among these measures the following distinctions can be made:
-- The havehalf, haveall, and other have-x measures are consistent measures of

evenness.

-- The halfhave and other y-have measures are consistent measures of uneven-
ness. That is, these measures are consistent with the four principles of even-

ness, except that the measures decrease as evenness increases.
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-- The havenone is a consistent measure of unevenness.

— The Gini coefficient, which is usually defined as the proportion of the area
above the diagonal line that lies between the diagonal line and a concentration
curve, is a strictly-consistent measure of unevenness. An alternative expres-

sion for the Gini coefficient is

22 |p-g -pj|
L

ZN ]

where p, is the proportion of total ¥ 's attributable to the i’th x and N is the

number of z's.

The coefficient of variation and Crow's I, which equals the square of the coef-
ficient of variation, are both strictly-consistent measures of unevenness. Crow’'s /
is usually defined as the ratio of the variance in number of offspring divided by the

squaf‘e of the mean number of offspring. This ratio reduces to:

The core of this expression, it might be noted, is Simpson’'s well-known index of

dominance:

> Ptz

1
Another expression for Crow's I is:
2 E (P-g — Py )2
i J
2

This expression is intriguingly analogous to the formula for the Gini coefficient.

~- One of the entropy fneasures proposed by Thiel, namely

InN+Y pylnp; .,
i

(where In denotes the natural logarithm) is a strictly-consistent measure of

unevenness.

-- The most commonly used "measure of evenness", Pielou's J', is not a consistent

measure of evenness. The measure J’, given by

yo=g
H

max
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where H’ is Shannon's measure of information (or entropy),

H =-), p; Inp,
1

and

H __=InN,

max

violates the replication principle. Consider, for instance, the following exam-
ple. A population consists of two z's with BOZ and 207 of the ¥'s, respective-
ly. Another population consists of twenty z's, the first ten having 8% of the
v's each and the second ten having 2% of the y’s each. The second population
clearly can be created by replicating the first population ten times. In both
populations the top half have 807 and the bottom half have 207 of the ¥'s, and
the concentration curves for the two populations are identical. However, J’
for the first population is 0.72, whereas it is 0.94 for the second population.
In general, for any distribution of y's among the z’s, if the number of z's in-
creases but the concentration curve remains the same (i.e., as a population is
increasingly replicated), J’ will asymptotically approach 1. It might be noted
that although Thiel's entropy and J’ are both simple transforms of Shannon’s
measure of entropy, Thiel's entropy is a strictly-consistent measure of even-

ness whereas J’ violates the replication principle.

Pielou’s J is also not a consistent measure of evenness. J is defined by

where H is Brillouin’'s measure of information (or entropy),

K! )
kilkp! - ky!
K

In(

H =

where K is the total number of ¥'s and k; is the number of y's of the i'th z.

The formula for A which is the maximum value A can attain, can be found

max?
in Pielou (1969, p. 233). It is not difficult to show that J violates both the re-
lativity principle and the replication principle. Consider, for instance, the

following three populations:
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1) a population with two z's, one with 5 ¥ 's and the other with 1 v.
2) a population with two z’s, one with 50 ¥ ’s and the other with 10 y's.
3) a population with twenty z's, half with 5 ¥ 's each and half with 1 y each.

The concentration curves for these three populations are identical and any
consistent measure of evenness should be the same for all three. The value of J,
however, is 0.680 for the first population, 0.64 for the second, and 0.92 for the
third. Peet (1974) provides another example demonstrating that J violates the re-
lativity principle.

— McIntosh’s "index of evenness” (Mclntosh 1967; Pielou 1969), which we will
denote by Mc, is not a consistent measure of evenness because it violates the

replication principle. The index can be expressed as:

1-\/Lw
= 1
L

vN

Mc

As an example, consider a population which consists of two z's, with 802 and
107 of the ¥'s respectively. Suppose this population is replicated ten times
to produce a population in which the top ten z’'s each have 97 of the y’'s and
the bottom ten each have 1%. Evenness should be the same in both cases, but

MclIntosh’s index is 0.32 for the first population and 0.92 for the second.

SOURCES OF CONFUSION

The three measures that are not consistent measures of evenness, J’, J, and
Mc, were all derived by Pielou by standardizing a measure of diversity-—-Shannon’s
entropy, Brillouin’'s entropy, and Mclntosh's index of diversity, respectively--so
that the standardized measure ranges from zero, when one z has all the y's, to
one, when all z's have the same number of ¥’s. This approach is unsatisfactory on

three counts.

First, standardization of a measure of diversity does not guarantee that the
resulting measure will be a consistent measure of evenness. If standardization is
desired, the correct approach is to appropriately standardize a consistent meas-
ure of evenness: the resulting measure will then also be a consistent measure of

evenness.
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Second, standardizing a measure so that its range is from zero to one does not
imply that the measure itself is independent of N (i.e., the number of z’'s). Such
standardization merely implies that the range of the measure is independent of N.
Pielou argues that a measure of evenness should be independent of N, but her
measures are not. The replication principle is a way of defining and operationaliz-
ing the idea that evenness should not vary across populations of different sizes N
that are identical in their distribution of the y¥'s. The measures J’, J, and Mc all

violate the replication principle.

Third, a measure that is standardized so that its range stretches from zero to
one (or any other interval that does not depend on N) will necessarily be incon-
sistent with the replication principle, i.e., with the idea that evenness should not
depend on population size. A population in which one z out of two has all the ¥’s is

more even than a population in which one x out of 20 has all the ¥ 's because:

1. according to the replication principle, a population in which one z out of two
has all the 7 's is just as even as a population in which 10 z's out of 20 have

all the ¥ ’'s, and

2. according to the transfer principle, a population in which 10 z’s out of 20
have all the ¥ ’'s is more even that-a population in which one z out of 20 has all

the v '’s.

Thus, a measure that gives all populations the same value when one x dom-
inates cannot be a consistent measure of evenness. On the other hand, a consistent
measure must always give the same value to populations that are perfectly even
(because of the replication principle). A consistent, reasonable and intelligible
way to standardize a measure of evenness is to set the measure equal to 1/N when
one z out of N has all the ¥’s and set the measure equal to 1 when all z’'s have

equal numbers of ¥ 's.

The measure J, which is a standardized version of Brillouin’'s entropy H,
violates both the replication principle and the relativity principle. It violates the
relatively principle because it depends on the total number of y¥'s. Pielou argues
that J should be used for fully-censused collections whereas J’, which is a stand-
ardized version of Shannon's entropy H’, should be used for samples from very

large communities. She bases this position on three notions:

1. In information theory, Shannon’s entropy "is strictly defined only for an infin-
ite population’, whereas Brillouin’s entropy is appropriate for messages of

finite length (Pielou 1969, p. 231). However, as Pielou notes, "analogies with
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information theory ... do not, of course, provide a compelling reason for using
H’ and H in the way just outlined” (Pielou 1975, p. 10). Indeed, why should
the diversity or evenness of a population be measured the same way as the in-

formation content of a message or code?

"A value of H is determined from a complete census and hence is free of sta-
tistical error whereas a value of A’ is estimated ... and thus has sampling er-
ror; estimates of A’ should always be accompanied by estimates of their stan-
dard errors’ (Pielou 1975, p. 11). Any measure of evenness that is estimated
has a sampling error and could be accompanied by an estimate of its standard
error. Thus, Pielou's argument here is simply an argument for calculating

standard errors and not an argument in favor any particular kind of measure.

"If, from an indefinitely large community, we take two samples, one small and
one large, and treat both as collections, the small collection would be expect-
ed to have a lower value of H than the large collection. This result accords
with what we intuitively require of a diversity index..." (Pielou 1975, p. 11).
The underlying idea here, as we understand it, is as follows. Consider a com-
munity that consists of a large number of different species (the z’s), some of
which have large populations of individuals (the ¥ ’s) and some of which have
small populations. If a small sample is taken, many of the rare species are
likely to be missed. Hence the diversity of the sample will tend to be less than
the diversity of the entire community. This, however, does not imply that an
index of diversity—or an index of evenness—should tend to decrease with the
size of the sample: indeed, such variation would violate the relativity princi-
ple. Rather, the diversity (or evenness) of the sample should be summarized
by a measure that is consistent with underlying principles. If it is desired, an
estimate of the diversity of the entire community might then be made, using
appropriate statistical methods for drawing inferences about a universe from
a sample. It might be possible to develop a short-cut approach to estimating
the diversity of the entire community: in such an approach, a measure of es-
timated diversity would have to tend to increase as sample size decreased, in
order to counterbalance the tendency for small samples to be less diverse

than the entire community.
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DESIRABLE PROPERTIES OF MEASURES OF EVENNESS

Although the "measures of evenness' most commonly used by ecologists are
not consistent with the four principles of evenness or the concentration-curve cri-
terion, a variety of consistent measures of evenness exist. In choosing amongst.l
the alternatives, an analyst might want to consider how the measures compare ac-
cording to some desirable properties. We consider five such properties below:

standardization, intelligibility, decomposibility, sensitivity, and robustness.

1. Standardization

As discussed above, it is often desirable to use standardized measures of
evenness that range in value from 1/N when one £ out of N has all the y’'sto 1
when all z's have the same number of y¥'s. Only one of the measures discussed
above has this property, the haveall statistic. It is not difficult, however, to

standardize other measures.

—- The havehalf ranges from 1/2N to 1/2. Thus, twice the havehalf (a measure
which we will refer to as the double-havehalf) is a standardized measure of

evenness as is, more generally, £ times any have-z statistic.

-- The Gini coefficient ranges from 1-1/N to 0. Hence the complement of the
Gini Coefficient (i.e., one minus the Gini coefficient) is a standardized meas-
ure of evenness. By analogy to terms such as cosine and colog in which co in-

dicates complement, we will call this measure the co-Gini index of evenness.

— Crow's I ranges from N—1 (for a population in which one x has all the y¥'s) to

0 for a perfectly even population. Hence,

is a standardized measure of evenness. This measure can also be interpreted
as the inverse of N times Simpson’s index of concentration. We will refer to it

as the reciprocal-Simpson index of evenness.

— Thiel's entropy varies from In N to zero. One transformation that might be

used to convert this measure into a standardized measure of evenness is:

- l ;
-(lnNi-Z‘:PilﬂPi) e Zi:m P

¢ N

-1
N T] o
{
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(where, by convention, zero times the log of zero is taken as zero and zero
raised to the zero power is taken as one.) Buzas and Gibson (1969) proposed
this measure as a measure of evenness. It can also be derived by raising e to
the Shannon index and then dividing by N. We will call this measure the

exponential-Shannon index of evenness.

- It might be noted that concentration curves are standardized in that the vert-
ical and horizontal axes both run from O to 1. Thus, it is easy to compare the

evenness of two populations merely by examining their concentration curves.

2. Intelligibility

A second desirable property of measures of evenness is intelligibility. Ideal-
ly, a measure should be easy to comprehend, intuitively meaningful, simple to ex-
plain to others, and naturally relevant to the problems being addressed. Although
there is no disputing taste, and intelligibility is clearly a matter of taste and per-
sonal opinion, have-statistics, especially the havehalf and the haveall (or
havenone), achieve these goals for us better than any other measures of evenness

we are familiar with.

Gini's coefficient has a simple geometric interpretation on a concentration
graph as the proportion of the area above the diagonal line that lies between the
concentration curve and the diagonal line. Yet its biological interpretation is not

directly clear. What does it mean if the Gini coefficient is .3 as opposed to .47

Simpson’s index of dominance,

Zpiz ,

i

forms the core of two of the indices discussed above, Crow’s I,

NY pf-1 .
i

which is a measure of unevenness, and the '"reciprocal-Simpson index",

which is a standardized measure of evenness. Simpson’s index can be interpreted
as the probability that two randomly selected ¥'s belong to the same z, e.g., the

probability that two individuals in a population belong to the same species. This is
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a helpful, ecologically-relevant interpretation, but unfortunately the interpreta-
tion pertains to Simpson’s index rather than to the measures of evenness them-
selves. Suppose, for instance, that the value of Crow’'s I was 9.26 and, correspond-
ingly, that the value of the reciprocal-Simpson measure was 0.097. Without
knowledge of N, it is impossible to convert these values into their Simpson
equivalent and even if it was known that N was thirty-eight, say, the calculation of

the value of 0.27 of Simpson's index takes a bit of effort.

Crow’s I has a direct interpretation that has some ecological meaning. Define
the "importance" of each £ as the amount of %’s that z has and, similarly, define
the importance of each ¥ as the total amount of ¥’s the z that has that ¥ has. Let
X be the average of the first of these importance variables and let Y be the aver-
age of the second. In the case, for example, of a population of females having
broods of children, X would be the average brood size per female and Y would be

the average brood size per child. Then it can be shown that
Y =X{T+1)

If, as above, I is 9.26, then this implies that the average child has 10.26 times as
many siblings (including itself) as the average mother has children. Such a situa-
tion could arise if most females have no children and if almost all children come
from large families. The relationship between X and Y implies that in a stationary
population females on average only have 1/ (I +1) as many offspring as their own
average brood size. Hence, in the example given, the average child would have
less than a tenth the offspring her mother had-—perhaps because more than nine-
tenths of each birth cohort leaves no offspring. Preston (1976) provides an in-
teresting discussion of the relationship, for humans, between family sizes of chil-

dren and family sizes of women.

Latter (1980) argues that entropy "has many convenient properties from a
mathematical point of view, but is extremely difficult to interpret genetically”. We
have not been able to find any helpful biological interpretations of any of the vari-
ous entropy measures and have not been able to develop much of a feeling for what

a Theil entropy of, say, 0.52 means.
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3. Decomposibility

Theil's entropy, like various other measures of entropy, does, however, have
the desirable property of decomposibility. Foster (1985) calls decomposition "the
most useful property of the Theil entropy measure’”. Suppose a population is
comprised of several groups. Then, as explained by Foster and by Theil (1972), it
is possible to calculate a "within-group" entropy and a '"between-group" entropy.
The within-group entropy measures the average unevenness within the various
groups; the between-group entropy measures the unevenness of the distribution
where the group mean replaces each group member’'s vy value. The desirable
feature of Theil's entropy is that the value of Theil’s measure for the entire popu-

lation is simply the sum of the within-group and between-group measures.

As discussed by Foster (1985), it is also possible to decompose Crow's I (and
some other measures described by Foster) into within-group and between-group
components, although the decomposition is somewhat complicated. Patil and Taille
(1982) also discuss a number of measures that can be decomposed. We have not yet
investigated whether it is possible to find some useful decompositions based on
various have-statistics nor have we explored the uses of decomposition in our stu-

dies.

4 and 5. Sensitivity and Robustness

A measure is sensitive if it responds to changes in the underlying data. If the
data are known to be accurate, this is a desirable property. If, however, some of
the data may be in error, a robust measure that is insensitive to errors is desir-
able. Hence, for some applications sensitive measures are preferable and for oth-
er applications robust measures are indicated. Some measures are sensitive to
data in certain ranges--say in the middle of the overall range--and robust to data
in other ranges--say at the extremes. In investigating some biological questions, it
may be desirable to use a measure that is sensitive to prolific or dominant z's but
robust to changes in z's that have little or no ¥’s, but in other analyses the oppo-
site may be the case--e.g., in studies where the rare species with small populations
are of great interest. A good introduction to the concepts of sensitivity and
robustness, illustrated by a comparison of the mean (which is a sensitive measure),
the median (which is robust) and the mid-mean, the mean of the middle half of the
data values, (which is sensitive to the middle range and robust to the extreme ends

of the range), can be found in Tukey (1978).
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Strictly-consistent measures of evenness or unevenness, like Gini’'s coeffi-
cient, Crow’'s 7, or Thiel's entropy, are more sensitive to transfers of ¥'s among
the z's than are consistent measures like the havehalf, haveall, or halfhave. The
haveall is an extreme case because it only depends on the proportion of £ that
have all the y’'s: the distribution of the ¥'s among these x’s is irrelevant. Simi-
larly, other have-zx and y-have statistics are insensitive to certain kinds of
transfers among the z's. When field data in ecological studies may be subject to

substantial error, this robustness of have-statistics may be a valuable property.

Although robust to certain kinds of transfers, have-statistics are sensitive to
changes in the amount of ¥'s any particular & has. A statistician might call the
havehalf the ".5 fractile of the inverse right-hand concentration curve”. The
median is also a .5 fractile (of a frequency distribution), but the havehalf differs
from the median in a key respect. The median is a robust statistic that will not
change in value if any of the values of the frequency distribution are changed, ex-
cept for the one or two middle values of the distribution. The value of the
havehalf, on the other hand, changes if any single value of the underlying frequen-
cy distribution is altered. This sensitivity to changes in any of the values of the
underlying frequency distribution holds for all the have-statistics except the

héveall and its complement the havenone.

The sensitivity and robustness of different measures of evenness deserves
further attention. A useful exercise would be to do some empirical calculations
based on plausible changes and errors in a data set, to determine how different

measures respond.

DIVERSITY

Ecologists use the word diversity in two different senses, one broad and the
other narrower. In the broader sense, diversity refers to the differences among
individuals in a population. In its narrower, more technical meaning, which is typi-
cally used in studies of species diversity, diversity is defined as a measure that
captures both "evenness” and ‘richness”, where richness is a measure of how
many z's (e.g., species) there are in the population or community, that is, the vari-
able we have been calling N .' For example, Pielou (1975, p. 14) explains that "the
diversity of a community depends on two things: the number of species and the
evenness with which the individuals are apportioned among them."” It seems reason-

able that such a measure of diversity should satisfy three of the principles laid out
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at the beginning of this paper, namely the anonymity, relativity, and transfer prin-
ciples. Instead of the replication principle used for a measure of evenness, the

following replication principle might be used for a measure of diversity.

The Replication Principle for a Measure of Diversily:

Suppose a population is replicated so that there are now m identical popula-
tions. Suppose the m populations are combined into a new population with m times
as many z's. The diversity of this new population should be greater than the
diversity of the original population. Furthermore, the bigger m is, the larger the

diversity should be.

This principle, plus the other three principles, implies that a diversity meas-
ure D can be considered a function of N (the number of z’s) and £, where £ is
some consistent or strictly-consistent measure of evenness. (D, in these two
cases, might be called a consistent or a strictly-consistent measure of diversity.)

The functional relationship is defined by:
D=yN.E) ,
where
STWN+LE)Y>Fr(N,E) , any N ,andany £ ,
and
FWNE+a) >f(N,E) , anyN ,anyF £ ,andanya >0

That is, diversity should increase if either richness N or evenness E increases.

Numerous functions f satisfy these criteria, but one seems particularly ap-

propriate, at least for ecological applications:
D=NEFE

Diversity in this case is simply richness times evenness, where richness is meas-
ured by N and evenness is measured by any consistent or strictly~consistent meas-
ure. If evenness is standardized to vary from 1/N when one £ dominates to 1 when
all £'s have equal ¥'s, then this measure of diversity varies from 1 to N. Such a

measure of diversity can be interpreted as the '"equivalent number” (MacArthur



-16 -

1965), "effective number", or "even number' of z's, i.e., the number of z's that in
a situation of complete evenness would produce the same diversity as the actual
diversity. For instance, consider a community of different species with differing
populations. If N, the number of species, is 120 and £, the evenness, is 0.5, then
the diversity would be 60 and it might be said that the community has a diversity

equivalent to the diversity of a community with 60 equally numerous species.

The concept of diversity as the product of N and £ is so natural that the fol-

lowing principle may seem appropriate:

The Proportional Replication Principle:

Suppose a population is replicated so that there are now m identical popula-
tions. Suppose the m populations are combined into a new population with m times
as many z's. The diversity of this new population should be m times the diversity

of the original population.

This principle, together with the other three principles, implies that diversity
should be measured as the product of N and some measure of evenness. Such a

diversity measure might be called a "proportional” measure.

MEASURES OF DIVERSITY

Numerous measures of diversity have been proposed and it is beyond our
scope to review more than a few of the most widely known measures as well as some
have-statistic measures. Among these measures the following distinctions can be

made:

— N times a have-y measure is a consistent, proportional measure of diversity.
Such a measure can be interpreted as the number of z's that account for the
specified proportion of the ¥'s. Thus the N : havehalf is the number of z's
that have half the y's. Twice the N ' havehalf is a standardized measure of
diversity that varies from one to N, and may be interpreted as the number of
z's in an even population with the same diversity as the actual population. We

will refer to this measure as the double-halfhave measure of diversity.
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N times the haveall is a standardized, consistent, proportional measure of
diversity that gives the number of z's that have any ¥’s. For instance, in the
case of females having offspring, if the haveall is .80 and N is 50, then 40 fe-
males had offspring. In studies of the diversity of species in a community,
where every species included has to have, by definition, at least one member,
the N - haveall is simply equal to N: in this special case, this measure of

diversity coincides with the measure of richness.

Simpson’s index of concentration is a strictly-consistent, proportional meas-
ure of concentration and its inverse is a standardized, strictly-consistent,
proportional measure of diversity, which might be called the reciprocal-

Simpson index of diversity.

N times the complement of Gini's coefficient is a standardized, strictly-
consistent, proportional measure of diversity, which might be called the co-

Gini index of diversity.

Shannon’s entropy,
-X P lnp
i

is a strictly-consistent measure of concentration, but it is not standardized or

proportional.

By multiplying the exponential-Shannon index of evenness by N, the following
standardized, strictly-consistent, proportional measure of diversity, which

might be called the exponential-Shannon index of diversity, can be derived:

H pt_p‘
i

Brillouin’s entropy is not a consistent measure of diversity because it violates
the relativity principle. Peet (1974) has noted that "... the Brillouin formula

does not provide an acceptable index of heterogeneity''.

The variance is not a consistent measure of diversity because it violates the

relativity principle.
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APPLICATIONS

To illustrate some of the points made above about alternative measures of

evenness and diversity, we provide three examples.

1. Lifetime Reproductive Success of Male vs. Female Bullfrogs

Table 1 presents various summary statistics pertaining to lifetime reproduc-
tive success of male vs. female bullfrogs. The original data are from Howard
(1983); in Part I of this series of working papers, in Figure 9, concentration
curves were drawn based on these data. Scrutiny of the two curves and the vari-
ous summary statistics might help the interested reader form his or her own judg-

ments of the merits of concentration curves and of different summary statistics.

2. Diversity in a Community of Herbaceous Plants

Table 2 is similar to Table 1 and has a similar purpose. It presents various
summary statistics pertaining to the diversity of herbaceous plants in a deciduous
woodlot, as described in Part 2 of this series of working papers, in conjunction
with Figure 1. Note that whereas Table 1 includes various measures of evenness,
Table 2 presents alternative measures of diversity. Only those measures of diver-
sity that were discussed above and that seem particularly useful are inciuded. All
of the standardized measures of diversity given in the table correspond to N times

a standardized measure of evenness.

3. Birds of a Feather

An example of the use of summary measures of evenness for ecological
analysis is Payne and Payne's (1977) comparison of the distribution in mating suc-
cess of male birds in different mating systems. Payne and Payne argue that "mat-
ing systems and the statistics of mating success among males are closely related"
and that measures that summarize the evenness in the distribution of mating suc-
cess among individual birds are useful tools in describing and comparing the mat-

ing systems of populations (Payne and Payne 1977, p. 165).

Payne and Payne use three particular measures of "evenness” in their study,
namely the coefficient of variation, Pielou’'s evenness index and the coefficient of
skewness. As we have noted, the coefficient of variation (often abbreviated CV),

which is the square root of Crow's 7, is a strictly-consistent measure of uneven-
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Table 1. Summary statistics for the predicted lifetime reproductive success of
male and female bullfrogs.

Standardized measures of evenness: Males Females
Haveall 31 .46
Double-Havehalf (2 - Havehalf) A3 .20
Co-Gini (1-Gini) .18 .26
Reciprocal (1/N - Simpson) .18 .28
Exponential-Shannon (eShannon Index , xy .23 .34

Have-statistics:

Havequarter 2.287 4,717
Havehalf 6.507% 10.177%
Quarterhave 92.687 85.427
Halfhave 100.00Z 100.00%
Havenone 69.00% 54.00%

Measures of unevenness:

Crow’s Index 4.68 2.56
Gini's Coefficient .82 .74
Thiel's Entropy 1.47 1.08

ness. Payne and Payne (1977, p. 167) note "monogamous and polygynous species
overlap perhaps less in CVs, and this may be the single statistic best describing
the distribution of mating success in different mating systems.” Pielou's evenness
index has already been discussed; it is not a consistent measure of evenness. The
coefficient of skewness is also a defective measure of evenness because it does not
satisfy the transfer principle. For example, take three populations of three z's
each. In the first population the distribution of ¥ among the z’s is 1,7,7. In the
second population it is 4,5,6 and in the third it is 1,1,13. The first population has a
skewness of -.707, the second a skewness of 0 and the third a skewness of .707. But

the transfer principle implies that it is the middle population that is most even.
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Table 2. Summary statistics of diversity of herbaceous plant species in a decidu-
ous woodlot.

Standardized measures of diversity

(i.e. Equivalent numbers of species) Value
Haveall (richness; number of species) 62.

Double-Havehalf (2 - N - Havehalf) 14.38
Co-Gini (N - (1-Gini)) 21.18
Reciprocal-Simpson (1/Simpson) 21.10

Exponential-Shannon (gShannon Index, 27.92

Other measures of diversity:

Shannon Index (Entropy) 3.33

Simpson’s Dominance Index (of lack of diversity) .05

Table 3 is styled after Payne and Payne’s presentation and uses an accessable
subset of their data sources. However, we relied on our own statistical calcula-
tions. For details of the specific data sets the reader should refer to Payne and
Payne's article and the source mat.er'ial.1 We present a variety of measures of
evenness for the birds of different species, but omit Pielou’s index and the coeffi-
cient of skewness because they are not consistent measures of evenness. We have

not included the havehalf as it is simply one half of the double-havehalf.
The species of male birds are placed in three categories:

A. Those which generally form lek or dispersed lek mating systems in which males

display, but form no pair bond and provide no parental care;

B. Those which form mating systems in which males are sometimes polygynous,

form pair bonds and may provide some parental care, and

1A cautionary note is in order. As was demonstrated in Part I, the concentration of reproduction
changes depending on the stage of reproduction considered and whether all, only the reproductive-
ly viable or only the reproductively successful animals are included. Also, concentration is re-
duced with the use of averaged data. The nature of the data must obviously be considered before
any substantive conclusions can be drawn. The purpose of this example is illustrative.



Vidua chalybeata
(Indigo)

Vidua chalybeata
(Indigo)
Manecus menecus

(White-bearded manekin)

Manacus menacus
(White-besrded manakin)

Tympenuchus cupldo
(Prairie chicken)

Lyrurus tetrix
{Black grouse)

Pipra erythrocephela
(Golden-headed manakin)

Pipra erythrocephale
(Golden-headed manakin)

Telmatodytes palustris
(Marsh wren)

Agolatus phoeniceus
(Red-winged blackbird)

Agelalue phoenicous
(Red-winged blackbird)

Melosplza melodie
(Song sparrow)

Agslalus phoenlceus
(Red-winged blackblird)

Legopus lagopus

(Red grouse)

Agelalus phoeniceus
(Red-winged biackblrd)

Lagopus lagopus
(Red grouss)

MATING SYSTEMS:

Table 3, Distribution of mating success among male birds from species with different mating systems.

Type Number of

adult

malea
A 14
A 14
A 12
A 10
A 9
A L]
A 16
A 13
B 25
B 51
B 53
C 15
B 53
[ 72
B 51
c 74

Mean no. matinga,
mates or
fledglinga/adult

1.0 matings

observed

22"

23"

438"

33"

40"

49"

67"

3.8 fledglings

25"

38

3"

3.0 female

meten

5.2 size of
fledged
broods

2.7 female
mnates

5.0 slze of
fledged
broods

Double-
Havahalf

0.100

0.117

0.130
0.136
0.159
0.23%
0.325
0.390
0.432
0.461
0.548
0.587
0.613

0.639

0.841

0.667

Havaall

0.288

0.429

0.250
0.800
0.333
0.500
0.8?5
0.769
0.760
0.961
0.981
0.933
0.981

0.917

0.961

Co-Gini

0.143

0.177

0.161

0.199

0.193

0.278

0.367

0.438

0.527

0.635

0.714

0.703

0.725

0.742

Reciprocal
Simpaon

0.132

0.185

0.1711

0.178

0.202

0.294

0.406

0.468

0.566

0.594

0,689

0.763

0.794

0.784

0.801

0.628

STANDARDIZED MEASURES OF EVENNESS

Exponential
Shannon

0.175

0.225

0.189
0.249
0.240
0.344
0.470
0.548
0.645
0.742
0.792
0.841
0.870

0.834

0.669

0.089

A. Leks and diapersed leks — males display, but form no pair bonds end provide no parental care.

B. Polygynous — male form palr bonds and may provide some parental care.

C. Monogamous — males have well developad pair bonds, males and females provide parental care.

Crow'a

Index

6.571

5.075

4.847

4.829

3.940

2,396

1.482

1.135

0.768

0.683

0.452

0.311

0.259

0.276

0.248

0.207

Gint's
Coeff.

0.857

0.823

0.839

0.801

0.607

0.722

0.833

0.562

0.473

0.408

0.365

0.302

0.286

0.297

0.275

0.258

MEASURES OF UNEVENNESS

Thilel's
Entropy

1.744

1.494

1.815

1.381

1.427

1.069

0.755

0.605

0.439

0.209

0.233

0.173

0.140

0.181

0.140

0.117

Have
quarter

0.025

0.029

0.032

0.034

0.040

0.059

0.069

0.076

0.087

0.064

0.114

0.124

0.144

0.135

0.149

HAVESTATISTICS
Have Half
none have
0.714 1.000
0.571  1.000
0.750 1.000
0.200 0.989
0.667 1.000
0.500 1.000
0.375 0.962
0.231  0.925
0.240 0.830
0.039 0.779
0.019  0.769
0.067 0.703
0.019 0.709
0.083 0.712
0.039 0.699
0.014 0.684

Quarter

have

0.964

0.919

1.000

0.908

0.950

0.833

0.718

0.815

0.545

0.529

0.472

0.445

0.425

0.406

0.420

0.394

Reference

Payne&Payne 1077
(Cowple,1976)

Payne&Payne 1977
(Junctlon,1973)
L111 1974
{LekB,Group1,1967)

L111 1874
(LekB,1968)

Robel 1966
Kolvisto 1965
L1l 1976

(Lok4,1870)

Lil! 1976
{Lek2,196D)

Verner 1965
per season

Holm 1973
= (Harem averages)

Holm 1873
=(Harem averages)
Nice 1837

Holm 1973

Jenkins et al 1963
(1960,highlanda)

Holm 1973

Jenkins ot al 1963
(1960,lowlands)

_'[z-
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C. Those in which males form pair bonds, are generally monogamous and both

males and females care for the young.

These classifications are generally consistent with a trend from extreme po-
lygamy to monogamy. We have ordered the birds, according to their double-
havehalf measures, from those populations in which individual mating success is
most concentrated to those in which it is least concentrated. As suggested by
Payne and Payne, there is a tendency for mating success to be progressively more
evenly distributed in systems moving from those which are extremely polygamous

to those which are monogamous.

Note that all of the various measures of evenness rank the species in more or
less the same order. Consequently, any one of the measures could be used to draw
Payne and Payne's conclusion. If a single measure were to be used, it seems to us
that the havehalf offers the advantage of being simple to explain and easy to
comprehend. If two measures were to be used, the havehalf and the haveall pro-
vide, at least for us, more readily intelligible information that any other pair of

measures.

CORRELATIONS BETWEEN MEASURES OF EVENNESS

The comparison of mating success of birds presented above suggests that the
various measures of evenness and unevenness are highly intercorrelated. To
check this conjecture, we calculated the correlation (as measured by Pearson’s
rz) between each possible pair of the measures. Table 4 shows the results. Note
that we grouped the double-havehalf and the havehalf together and we grouped the
co-Gini and Gini measures together because each of these twin measures has ident-

ical correlations with the other measures.

All the measures are highly correlated with all the other measures. This sug-
gests that they all are providing more or less the same information. Indeed, the set
of alternative measures can be reduced even further than the high correlation
coefficients imply. Although the reciprocal-Simpson measure and Crow's I are not
perfectly correlated with each other, these two measures are simply transforma-
tions of each other and each one is completely determined by the other. 1t is only
because the function linking the two measures is not a linear function that the
correlation between the measures is not one. Similarly, the exponential Shannon

measure and Thiel's entropy are deterministic transformations of each other.



Table 4. Correlation coefficients (for Pearson's 1'2) for evenness measures in Table 3.

Haveall Co-Gini/Gini Reciprocal Exponential Crow’'s/  Thiel's Have Half  Quarter

Simpson Shannon Entropy quarter have have
Double-Havehalf /Havehalf 784 991 997 .086 .862 .952 .979 .939 .978
Haveall .820 .788 .831 .738 .844 729 762 .842
Co-Gini /Gini .996 .998 .859 .963 .956 .960 .985
Reciprocal Sinmpson .992 .859 .955 975 .853 .978
Exponential Shannon .873 .973 .944 949 .087
Crow's / .953 .803 707 .884
Thiel’s Entropy .893 .859 .979
Havequarter 921 .928
Halfhave 914

_gz-
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When two measures are highly correlated or are perfectly determined by each‘
other, a choice between the measures can be based on considerations of conveni-
ence, intuitiveness, comprehensibility, explainability, and the like. Just as saying
a glass is half-full may convey a different vector of meaning than saying the glass
is half-empty, use of the haveall measure rather than the havenone measure may
highlight a different aspect of evenness in a population. Thus, even in this simple
case of two complementary measures, we think that a careful analyst should devote
some attention to considering the most appropriate measure to use to present
information-—and perhaps decide to present both measures. Tversky and Kahneman
(1981) and Vaupel (1982) provide further discussion of statistical insinuation and

implicational honesty in the use of alternative measures.

We also used data from Lutz (1985) to investigate another data set, pertaining
to the concentration of reproduction among human females in 41 different coun-
tries. The correlations between the various pairs of evenness and unevenness
measures are displayed in Table 5. It is interesting to note that all the measures,
with the exception of the haveall statistic, are highly correlated. The haveall
measure appears to provide another dimension of information. In Part I of this
series of papers, we frequently found the haveall statistic (or its complement, the
havenone) be useful in addition to the havehalf measure; the havehalf plus the

haveall generally seemed to be the most informative pair of statistics.

CONCLUSION

In the three parts of this series of papers we have strived to persuasively
make a single, simply-stated point: concentration curves and various associated
have-statistics are useful in ecological analyses of diversity. In Part I, we provid-
ed several examples of how concentration curves and have-statistics could be used
to analyze evenness in reproductive success.v In Part 11, we extended the approach
to species diversity and some related topics. Finally, here in Part III, we com-
pared have-statistics with other measures of evenness and diversity, both accord-

ing to some general principles and as applied to some specific examples.

Diversity, heterogeneity, variety, and inequality in populations is a vast sub-
ject, at the heart of ecology, demography, and the life sciences more generally.
One approach to this subject is to study population concentrations. What propor-
tion of the population has all the offspring, what proportion of the species ac-
counts for half the total biomass, what proportion of the matings are attributable
to the most successful quarter of the males? These are important questions that

are directly addressed by concentration curves and have-statistics.



Table 5. Correlation coefficients (for Pearson's 7'2) for evenness measures, World Fertility Survey.

Hoveall Co-Gini/Gini Reciprocal Exponential Crow's/  Thiel's Have Half Quarter

Simpson Shannon Entropy quarter have have
Double-Havehalf Alavehalf .B16 .959 967 .864 .926 .849 971 918 .993
Haveall .485 462 .669 .483 .689 .201 498 222
Co-Gini /Gini 976 .959 942 .948 .888 985 .947
Reciprocal Sinpson .948 .989 .940 .935 928 972
Exponential Shannon .938 .999 .788 943 .862
Crow's [ i .936 .918 .886 .953
Thiel's Entropy 775 .932 .851
Havequarter .819 .882
Halfhave .897

_gz_
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