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Preface 

This paper contains most of the documentation for a collection of 
routines designed to solve problems in stochastic linear and nonlinear 
programming. The programs were contributed to  the Adaptation and 
Optimization (ADO) project of the System and Decision Sciences program 
by several researchers and represent the current state-of-the-art in sto- 
chastic programming algorithms (several of the algorithms are discussed 
in "Numerical Techniques for Stochastic Optimization Problems," Yu. 
Ermoliev and R Wets eds., whose compilation has been a part of ADO'S 
work recently). There is much work yet to be done - this paper describes 
but a single brick in the foundation of stochastic programming tech- 
niques. But one brick is vastly superior to no bricks. 



Documentation for the ADO/SDS Collection of 
Stochastic Programming Codes 

Jonathan Edwards, ediior 

Introduction 
This working paper contains most of the documentation for a collection of 

routines designed to  solve problems in stochastic linear and nonlinear pro- 
gramming. The programs were contributed to the Adaptation and Optimization 
(ADO) project of the System and Decision Sciences program by several 
researchers. The codes in the collection implement several of the algorithms 
discussed in "Numerical Techniques for Stochastic Optimization Problems" (Yu. 
Ermoliev and R. Wets eds.), whose compilation has been a part of ADO'S work 
recently. 

This paper consists of the User's Manuals for eight of the nine programs on 
the ADO/SDS tape (the documentation for Alexei Gaivoronsky's ST0 routine is 
itself a working paper - "Stochastic Quasigradient Methods and their Implemen- 
tation" (IIASA WP-84-55). by Yuri Ermoliev and Alexei Gaivoronsky - and there- 
fore i s  not included). The tape itself includes the text for all the User's Manuals 
(including Gaivoronsky's) as well as a table of contents (the first file). 

The ADO collection may be obtained from 

Project Secretary 
ADO/SDS 
IIASA 
A-2361 Laxenburg 
Austria. 

Persons who would like a copy should send a blank reel of 9-track computer 
tape t o  the above address and should include a note indicating their prefer- 
ences for density and character set (IIASA'S computer can generate unlabelled 
tapes a t  1600 or  800 bits per inch using either the ASCII or EBCDIC character 
codes). 



NDSP User's Manual 

J. Edwards 

Introduction 

This program is based on the Lshaped method of Van Slyke and Wets for 
two-stage stochastic linear programs. The method is described in [I]. The algo- 
rithm particular to this implementation (Nested Decomposition for Stochastic 
Programming [NDSP]) was invented by John Birge and is described in [Z]. The 
program was developed by John Birge a t  the University of Michigan. The linear 
programming sections were taken from the  program LPM-1, developed by J.A 
Tomlin a t  Stanford University [3]. The program is written in FORTRAN IV. The 
following description of the problem and the discussion of the  algorithm are 
adapted from [4]. 

The Problem 

The multi-stage stochastic linear program under consideration is 

minimize 

e = c lz l  + EC, min czzz + . - . + Ehlmin cTzTj I I 
subject to  

where ct is a known vector in R"' for t= 1. .... T, b ,  is a known vector in R ~ ' ,  tt is a 
random mt vector defined on the  probability space (Zt .&.Ft) for t=2, ..., T, and A( 
and Bt are appropriately dimensioned known real valued matrices. "Eh" 
denotes mathematical expectation with respect to  6,. 

The Method 

The L-shaped method of Van Slyke and Wets applies to this problem when 
T=2. I t  is an outer linearization procedure that  approximates the convex objec- 
tive term in the stochastic program by successively appending supporting 
hyperplanes. In NDSP, the supports a re  found by optimizing a nested sequence 



of linear programs. Previous methods for the multi-stage problem have tended 
to  assume a specific s tructure for the problem; NDSP does not require any spe- 
cial structure, although there must be a finite number of random variables Ct 
and these must be discretely distributed. 

NDSP is based on the observation that, given some realization Ct of the ran- 
dom vector in period t and given the solution zt-l from period t-1, the  decision 
problem a t  period t can be mi t t en  

minimize 

subject to  

where Q, +,(zt ) is a convex function, D f E R~~ for all 1, and rt s n++l. 

Problem (2) is solved using a r e l a z e d  m a s t e r  p rob l em,  viz. 

minimize 

ct zt + *t 

subject to  

where E: and e: are chosen so that e i  - E:zt = Qt+,(zt) [i.e., (3.3) is equivalent 
to  .lPt 1 Qt+,(zt)]. rt and st count the number of constraints (3.2) and (3.3), 
respectively, in period t and are  initially set to zero. This problem is  solved to 
obtain (s t ,S t )  for t=1. ..., T (for the first period, dl = 0 and (3.1) is replaced by 
A l z l  = b ,). The solution Zt -, from period t-1 is used on the right hand side of 
(3.1) when solving (3) for period t. 

If the  problem (3) is infeasible in some period t, NDSP adds a "feasibility 
cut" (3.2) to (3) in period t-1, adds 1 to rt-,, and solves (3) anew for all periods 
T, ~ = t - l .  ..., T. Note that  when an infeasibility occurs in period t and a feasibility 
cu t  is added to (3) in period t-1, the  resulting problem in period t-1 may be 
infeasible, requiring a feasibility cut  to be added to the  problem in period t-2. 
In this manner, infeasibility can propagate back to the first period. 

Once feasible solutions have been found for (3) in all periods, NDSP calcu- 
lates Et and et in each period t using the solutions from period t+ 1 and the for- 
mulas 

Et = Irt+lBt+l (4) 

where rt+, is the optimal dual vector in period t + l .  If Et and st a re  found such 
that  (3.3) is not satisfied for some period t, NDSP adds an optimality cut  (3.3) to 
the  problem in  period t and adds 1 to s t .  Introducing the  optimality cut  



changes the  problem in period t, so NDSP repeats t he  process outlined in the 
preceding two paragraphs t o  find a new feasible solution. The "forward pass" to  
obtain feasibility in each period and the "backward pass" t o  solve (2) based on 
the relaxation in  (3) a r e  repeated until the  optimal solution has been found 
(i-e.. until the constraints  (3.3) may be satisfied in every period). 

In t he  above discussion, the t t s  were fixed in the sense tha t  a t  each period 
t one realization of tt was chosen and used to  calculate the optimal solution for 
use in the  next period. To solve the problem fully, all realizations of the ran- 
dom variable in a particular period mus t  be examined. 

For implementation with multi-stage problems, i t  is assumed that  there is 
a finite number Kt of "scenarios" in each period t. Each scenario in a given 
period corresponds to a problem (3) given a single realization of the random 
vector in  t ha t  period. For every scenario j in period t, t = l  ,.... T-1, there is a 
unique "ancestor" scenario a ( j )  in period t-1 and  one or  more "descendant" 
scenarios d ( j )  in period t + l .  It is fur ther  assumed that  every scenario in a 
given period has the same number of descendants as  every other scenario in 
the period. In o ther  words, every se t  d e ) ,  j = l  ,...,Kt contains exactly Kt+,/ Kt 
scenarios in period t + l .  The first set  [d ( l ) ]  contains the  first through the 
Kt+,/ Kt t h  scenarios, the  second set  [d (2)] contains the  [(Kt +,/ Kt )+l] th  
through the  2Kt+,/ Kt t h  scenarios, etc.  

In t he  last  period (T), the program uses Wets' "bunching" method [5] to 
examine all realizations of # and find those for which a given basis is optimal. 
This method represents  an  alternative to  the  "sifting" procedure of Garstka and 
Rutenberg. In order  t o  apply this method, the algorithm assumes tha t  the  ran- 
dom vector in period T contains a k e d  number of independent random ele- 
ments,  t ha t  these elements  a r e  discretely distributed, and  tha t  every scenario 
in period T-1 is a n  ancestor  of every scenario in period T. 

Adding multiple realizations to  the original description effectively adds 
superscripts t o  problems (2) and (3) and changes equations (4). viz. 

Equation (2) becomes minimize 

subject t o  

Equation (3) becomes minimize 

subject t o  

The equations for Et and et become 



and 

where p:+l is the probability that the random vector in period t + l  assumes the 
value associated with the kth scenario. The sum is taken over every descendant 
of scenario j in period t (i.e.. k runs from [(j-l)(Kt+,/ K t ) + l ]  to jKt+, /  Kt). 

Rather than solve one problem (3) a t  each period t ,  NDSP solves (3') for all 
j, j=1, ..., Kg using the solution to the appropriate ancestor scenario on the right 
hand side of (3.1'). Similarly, during the backward pass, NDSP checks that (3.3') 
holds for every scenario in each period. 

Unboundedness may be handled explicitly following the procedure in [I], 
but in this implementation all variables are upper bounded and hence unbound- 
edness is avoided. 

Input Overview 

The input format for this program follows the MPS standard for mathemati- 
cal programs [6] in most respects. However, the multi-stage nature of the algo- 
rithm demands tha t  the data be split into periods and scenarios within each 
period. There is also some control information that  does not comply with the 
standard. 

The program takes its data from unit 5. It is the  user's responsibility to  
connect this unit to  the appropriate file before the  program is invoked. 

Control Information 

The first line of the input contains five integers that  control the program's 
execution. Each is read using an 14 format and there are no blanks between the 
integers. The numbers provide the following information and must appear in 
the order specified: 

- the problem number. This is used simply to identify the problem. I t  
must  not be zero. 

- the  row index of the objective rows. This integer identifies which of 
the  rows specified in the ROWS sections of the file are the objective 
rows. If this number is zero or is omitted, a value of 1 is assumed. 

- the  number of iterations between matrix inversions when solving 
the  linear program (3'). NDSP uses a revised, primal-simplex 
method to  solve (3'). This is the number of iterations between inver- 
sions of the  basis. If this number is zero or is omitted, a value of 
99999 is assumed. 

- the  maxirnium number of iterations allowed to solve the linear pro- 
gram (3'). If this number is zero or is omitted. a value of 99999 is 
assumed. 

- the number of periods (T). This number must  appear. 

The next several lines contain the number of scenarios in each period tha t  
have the same ancestor in the  previous period (i.e., the values of Kt/Kt-,). 
There is one such line for each period and the  values are read using an 14 for- 
mat. This value should be 1 for the first and last periods, since the right hand 
side for the  first period is deterministic and the right hand side for the last 
period is  entered separately a t  the end of the data. 



Data 

The remainder of the input file provides the values for the ct s, the 4 s, the 
Bt s, and the variables on the right hand sides ( b  and the  tt s), as well a, Q bounds 
for the solution. The user may also include sections that  specify an initial basis 
in any period for any scenario. 

Note that no case conversion is performed and therefore all section 
headers should be capitalized. 

The following information must be provided for each (2, j = l ,  ..., Kt in a given 
period t, t=1, ..., T-1, and once for the last period: 

- the probability tha t  the random variable assumes the  realization ti. 
This value is read using an FS.3 format. It should be 1.00 for the 
first and last periods. 

- two sections (ROWS and COLUMNS) in standard MPS format contain- 
ing the values of ct and At. The values for ct are taken from the 
entries for the  objective row in the COLUMNS section. The 
remainder of the  entries in the COLUMNS section specify the  con- 
tents of At. 

- an optional section (BASIS) which follows standard MPS format con- 
taining an initial basis for the current period. This section contains 
a list of column and row names indicating which variables are basic. 
The column name appears in the first name field (columns 5 
through 12) and the row name appears in the  second name field 
(columns 15 through 22). The program writes sections in this for- 
mat to unit 7 containing the names of the basic variables in the 
optimal solution (see the "Basis File" section below). 

- a section (RHS) in standard MPS format containing the  value of 62. 
For the first period, this section contains the  value of b ,. For the 
last period, i t  contains the values of any nonstochastic elements of 
CT as well a s  one value for each of the stochastic elements of tr. 

- an ENDATA card in standard MPS format (i.e., a card with the charac- 
ters "ENDATA" in the first 6 columns). 

- lower bounds on all variables except slacks. These values are  read 
using a 9F8.0 format. There must be enough lines to supply a lower 
bound for every non-slac k variable. 

- upper bounds on all variables except slacks. These values are  read 
using a 9F8.0 format. There must be enough lines to  supply an 
upper bound for every non-slack variable. 

- two sections (ROWS and COLUMNS) in standard MPS format contain- 
ing the values of Bt. Since Bt is  used in period t + l ,  these two sec- 
tions do not appear in the data for the last period. 

- an ENDATA card in standard MPS format. 

Following the  last of these specifications (which gives the values of ct ,  At, 
etc., for the last period) is a section (STOCH) containing the values for the sto- 
chastic elements of 6 in the  last period. This section follows standard MPS for- 
mat: the row name of the element appears in the f i s t  name field (columns 5 
through 12), a value for the  element appears in the first numeric field (columns 
25 through 36), and the  probability that the element takes the associated value 
appears in the second numeric field (columns 50 through 61). Both numbers 
are read using an F12.4 format. As many as five separate values may be 
specified for each random element. 



Output File 

The program writes a log and most of i ts  results to unit 6. It first prints 
the  problem number, the densities of the 4 matrices, and the values and pro- 
babilities of the stochastic elements in the  last  period. 

Basis File 

The program writes the names of the variables tha t  are basic in the 
optimal solution to the linear program (3') in each period and for each scenario 
to uni t  7 (an exception is the last period, for which the  program m i t e s  only the 
names  of t he  variables which appear in the last  basis found). The names a re  in 
the  form "column name" "row name" and  appear in t he  first and second name 
fields (columns 5 through 12 and 15 through 22). respectively. The names for 
each scenario in each period a re  preceded by a basis section header card. 
These sections may be included in the  input to  provide the program with s tar t -  
ing bases. 

Data Structures 

Many variables used by NDSP have a distinct value in each period and for 
each scenario within a period (5 is a good example). To keep these values 
separate  yet readily available, the program uses multidimensional arrays. In 
general,  each array contains all the values for a single variable and an array 
reference whose last three subscripts a r e  (i,j,k) re turns the  value tha t  the  vari- 
able the array contains assumes in period i. If i is 1, j and k must  also be 1 
(other  values of j or k reference storage tha t  i s  not used). If i is 2 and there a re  
more  than  two periods, the value applies in the second period to the  jth 
scenario and k must  be 1 (other values of k reference storage tha t  is not used). 
If i i s  3 and there are more than  three periods, the value applies in the  third 
period t o  the k th  descendant of the jth scenario in  t he  second period. In this  
case,  k is not t he  index of the scenario in the third period. It is the  index of the  
scenario within the set  d ( j )  in the second period (i.e. l<&KS/ KZ). Whenever i is  
equal to the  number of periods (T), j and k must  be 1 (since all scenarios a t  
period T share the same ancestors). 

As a n  example, let  u s  assume that  we have a four period problem and t h a t  
there  a r e  two second period scenarios and  six third period scenarios (i.e., each 
second period scenario has three descendants). Let ml=m2=m3=M and let  XKSI 
have the  smallest dimensions possible, i.e., M by 4 by 2 by 3. The elements of b 
and  t h e  (s would appear in the a r ray  XKSI as shown below, where m= 1, ..., M. 

XKSI(m.1,1,2). XKSl(m,1,1,3), XKSl(m.1,2,1), XKSI(m,1.2,2), and 
XKSI(m, 1,2,3) - unused 

XKSl(m,2,1,2) and XKSI(rn,2,1,3) - unused 

XKSI(m,2,2,2) and XKSI(rn,2,2,3) - unused 



The data for the  fourth period 1s appears elsewhere, but they would appear in 
XKSI(m,4.1,1) otherwise. 

The algorithm requires several matrices for each period (e.g., 4). These 
matrices tend to be rather  sparse, and the program represents them in a corn- 
pact fashion to save space. To represent a large, sparse, two-dimensional array, 
the program uses three smaller one-dimensional arrays. The first array con- 
tains the nonzero elements of the matrix. These elements are ordered by 
column. Each element of the second array contains the  row index within the 
sparse matrix of the  corresponding element in the  first array. The third array 
contains the indices within the  first two arrays where the entries for each 
column of the sparse matrix begin. The ith entry in the  third array is a pointer 
to the beginning of the  ith column. 

Common Blocks and User-Accessible Parameters 

Most of the  major variables used by this program are commented within 
the program and are of little concern to the user. Of potential interest, how- 
ever, are several constants in the BLOCK DATA subroutine and the  major array 
dimensions. The constants are discussed below. An explanation of the array 
dimensions appears in the section entitled "Limits and Extensions." 

The following tolerances and limits appear in the  named common block 
"BLOCK" and are initialized in the BLOCK DATA subroutine: 

- zero tolerance (ZTOLZE). 

- pivot tolerance (ZTOLPV). 

- reduced cost tolerance (zTCOST). 
- maximum number of nonzero elements in any At array (NEMAX). 
- maximum number of rows in any right hand side element of prob- 

lem (3) (i.e., b l  or 1)) (NRMAX). 

- maximum number of columns in the 7)  vector form of the basis 
inverse (NTMAX). 

The variables ZTOLSM and NEGINF, which also appear in the  common block, 
are not used. 

The subroutine SHIFTR is used to move blocks of data around within certain 
arrays. Due to the methods it  uses, the arrays B, X, Y, and YTEMP must appear 
as a group in tha t  order within the blank common block. 

Limits and Extensions 



The current version of this program is somewhat experimental and several 
limitations have been imposed during its development. This section 
enumerates the limits and offers instructions concerning removing or extend- 
ing them. 7his advice should not be regarded as  gospel! 

The current version of this program permits three periods with up to three 
scenarios in the second period. The random vector in the last period may have 
up to three independent random elements which may assume one of as many as 
flve values for a total of 125 scenarios in the last period. Each scenario prob- 
lem (3') is limited to 350 rows and 600 columns. Within a scenario problem (3'), 
the matrix A( may have no more than 3000 nonzero elements and the matrix 
Bt-l may have no more than 600 nonzero elements. The q vector form of the 
basis inverse may have no more than 1000 columns and 3000 nonzero elements. 

To change these limits, the user must change the dmensions on the 
arrays listed below as directed. To change the  maximum number of rows, the 
maximum number of nonzero elements in the At matrix in each scenario prob- 
lem (3'). and the maximum number of columns in the q form of the basis 
inverse, the user must also update the constants NEMAX, NRMAX, and NTMAX, 
respectively, in the BLOCK DATA subroutine. Following is a list of arrays, the 
common blocks (or subroutines) in which they appear, and the dimensions 
which they must have. "nzero" is the maximum number of nonzero elements 
allowed in the At matrix in each scenario problem (3'), "nrows" and "ncols" are 
the maximum number of rows and columns, respectively, allowed in a scenario 
problem (3'), "neta" is the maximum number of columns allowed in the q vec- 
tor form of the basis inverse, "nper" is the number of periods, "ntwo" is the 
number of scenarios in the second period, "nthree" is the number of descen- 
dants in the third period that  belong to each scenario in the second period, 
"nxi" is the number of stochastic elements in the random vector in the last 
period. and "nrel" is the maximum number of values tha t  each stochastic ele- 
ment may assume. Note tha t  nper cannot be larger than 4 and that nxi cannot 
be larger than 3. 

Blank Common 
A(nzero,nper,ntwo, nthree) 
ATMP(nzer0) 
ABN(maximum number of nonzero elements in B,,nper,ntwo,nthree) 
E(nzero) 
IA(nzero,nper,ntwo,nthree) 
IE(nzero) 
IBN(maximum number of nonzero elements in Bt ,nper,ntwo,nthree) 
ITMP(nzero) 
JH(nrow,nper,ntwo,nthree) 
KBTMP(ncol+ 2) 
KINBAS(ncol+2,nper,ntwo,nthree) 
LA(ncol+2.nper.ntwo,nthree) 
LBN(ncol+ 2,nper,ntwo,nthree) 
LE(ne ta+2) 
LTMP(ncol+ 2) 
NCOL(nper,ntwo,nthree) 
NCOLP(nper,ntwo,nthree) 
NELM(nper.ntwo,nthree) 
NROW(nper,ntwo,n three) 
NROWP(nper.ntwo,nthree) 
NTH(nper, ntwo,nthree) 
PROB(nper,n two,nthree) 



BLOCK4 
BND(nrow) 
CBST(nxi.nre1) 
IBST(nxi) 
INST(nxi) 
JSTCH(nrel,nrel,nrel) 
N c u R ( ~ x ~ )  
NETND(see footnote below) 
NXNF(nxi) 
PRBV(nxi.nre1) 
PRST(nrel,nrel,nrel) 
YBx(nrow) 
YPIBAR(ncol+ 2) 
MXNST - this variable should be set to nxi. 

Subroutine INPUT 
ICN(ncol+2.2) 
1 ~ ~ ~ ~ ( n c o l + 2 , 2 , n p e r , n  two,nthree) 

Subroutine INVERT 
MREG(nrow) 
HREG(nrow) 
VREG(nrow) 

Subroutine W W U P  
ICN~M(ncol+2.2,nper,n two,nthree) 
XTEMP(ncol+Z) 

There are  many loops in the subroutine INIT and several loops in the sub- 
routine INPUT whose upper limits must be changed to match those of the 
dimensions of the arrays which the loops initialize. 

The subroutine SHIFTR contains several constants which may need to  be 
changed. The numbers in the equations are formed as follows (the numbers in 
parentheses to the  right of the expressions refer to the value of IOLD and INEW 
when the  expression applies): 

NETND(i) contains the number of r ]  vectors in the ith basis and its dimension sho-uld be 
large enough to  accomodate as meny bases as are likely to be generated. 



nperenrmax* ntwo plus value (1) above. (2) 

2* nper* nrmaxantwo (3) 

nrmax plus value (3) above. (4) 

The dimension of the  array BARRAY should be a t  least 
2* nper* nrmax* ntwo + nrmax + ncol + 2. 

Subprocedure Hierarchy 

See the attached figure. 

References 

[I] R. Van Slyke and R. Wets, "L-Shaped Linear Programs with Applications to  
Optimal Control and Stochastic Linear Programs," SIAM Journal o n  Applied 
Mathematics v. 17, pp. 638-663, 1969 

[2] J. Birge, "Decomposition and Partitioning Methods for Multi-Stage Stochas- 
t ic  Linear Programs," Technical Report 82-6, Department of Industrial and 
Operations Engineering, the  University of Michigan, 1982 

[3] C. E. Pfefferkorn and J. A. Tomlin, "Design of a Linear Programming System 
for ILIAC IV," Technical Report SOL 76-8. Systems Optimization Laboratory, 
Stanford University, 1976 

[4] J. Birge, "An L-Shaped Method Computer Code for Multi-Stage Stochastic 
Linear Programs," in Numerical Methods for Stochastic Optimization, Yu. 
Ermol'ev and R Wets (eds), to appear in 1985 

[5] R. Wets, "Stochastic Programming: Solution Techniques and Approximation 
Schemes", in Mathematical Programming: State-of-the-Art 1982, Bachem, 
Groetschel, and Korte (eds), 1983 

[6] IBM Corp., Mathematical Programming Subsystem - Extended (WSX) and 
Generalized Upper Bounding (GUB) Program Description. document 
number SHZO-0968- 1 





T h e  I n t r o d u c t i o n  to 
STOCHASI?C QUASIGRADIENT METHODS AND THEIR 

IMPLEMENTATION 

Yuri h o l i e v  and Alezei Gaivoronski 

ABSTRACT 

[Editor's note - What follows is an excerpt from the introduc- 
tion to IIASA Working Paper WP-84-55, which serves as a user's 
manual for Alexei Gaivoronski's program, STO. A complete copy of 
that  paper appears on the ADO/SDS tape.] 

1. INTRODUCTION 
This paper discusses various stochastic quasigradient methods (see [1,2]) 

and considers their computer implementation. I t  is based on experience 
gained both a t  the V. Glushkov Institute of Cybernetics in Kiev and a t  IIASA 

We are  concerned here mainly with questions of implementation, such as 
the best way to choose step directions and step sizes, and therefore little atten- 
tion will be paid to theoretical aspects such as convergence theorems and their 
proofs. Readers interested in the  theoretical side are referred to [1,2]. 

The paper is divided into five sections. After introducing the  main problem 
in Section 1, we discuss the various ways of choosing the  step size and step 
direction in Sections 2 and 3. A detailed description of an interactive stochas- 
tic optimization package (STO) currently available a t  IIASA is given in Section 4. 
This package represents one possible implementation of the  methods described 
in the  previous sections. Knally, Section 5 deals with the solution of some test 
problems using this package. These problems were brought to  our attention by 
other IIASA projects and collaborating institutions and include a facility loca- 
tion problem, a water resources management problem, and the  problem of 
choosing the parameters in a closed loop control law for a stochastic dynamical 
system with delay. 

We are  mainly concerned with the problem 

min f F ( z ) : z  EX]  , F(z )  = E, f (z,w) , (1) 

where z represents the variables to be chosen optirnally. X is  a set  of con- 
straints, and w is a random variable belonging t o  some probabilistic space 
(R.B,P).  Here B is a Bore1 field and P is  a probabilistic measure. 

There are currently two main approaches to  this problem. In the  first, we 
take the  mathematical expectation in (I), which leads to multidimensional 
integration and involves the  use of various approximation schemes. This 
reduces problem (1) to a special kind of nonlinear programming problem which 
allom the  application of deterministic optimization techniques. In this paper 
we concentrate on the second approach, in which we consider a very limited 
number of observations of random function f (z.o) a t  each iteration in order to 
determine the direction of the  next step. The resulting errors are smoothed 



out until the optimization process terminates (which happens when the s tep 
size becomes sufficiently small). 

We assume tha t  s e t  X is defined in such a way that  the projection operation 
z -r nx(z)  i s  comparatively inexpensive from a computational point of view, 
where nx(z)  = arg min llz - z 11. For instance, if X is defined by linear con- 

.EX 
straints,  then projection is reduced to a quadratic programming problem 
which, although challenging if large scale, can nevertheless be solved in  a finite 
number of iterations. In this  case i t  is  possible to implement a stochastic 
quasigradient algorithm of the following type: 

zJ+l  = nx(zB - psv8) . (2) 

Here z8 is the cu r r en t  approximation of the optimal solution. p, is  the  s tep  
size, and v8 is a random s tep  direction. This step direction may, for instance. 
be a statistical es t imate of the gradient (or subgradient in the  nondifferentiable 
case) of function F (z ) :  then us = r such tha t  

E ( r  1 z1,z2 ,..., zs) = Ft(zs) + as , (3)  

where as decreases a s  the number  of iterations increases, and the  vector vs  is 
called a stochastic umigradient of function F(r). Usually ps -r 0 as s -+ m and 
therefore llzs" - zsI -t 0 from (2). This suggests t ha t  r e  should take zs as the  
initial point for t he  solution of t he  projection problem a t  iteration number s +1, 
thus  reducing considerably the  computational effort needed to  solve the  qua- 
dratic programming problem a t  each s tep  s = 1,2, ... . Algorithm (2)-(3) can 
also cope with problems with more general constraints formulated in te rms  of 
mathematical expectations 

E , f i ( z , o ) r O  . i = =  

by making use of penalty functions or  the Lagrangian. 

The principal peculiarity of such methods is their  nonmonotonicity, which 
may sometimes show itself i n  highly oscillatory behavior. In this case i t  is 
difficult t o  judge whether the  algorithm has already approached a neighborhood 
of t he  optimal point o r  not, since exact values of t he  objective function a re  not 
available. The best way of dealing with such difficulties seems to be t o  use an 
interactive procedure to  choose the  s tep sizes and step directions, especially if 
i t  does not take much time to make one observation. More reasons for adopting 
a n  interactive approach and details of t he  implementation are  given in  the  fol- 
lowing sections. 

Another characteristic of t he  algorithms described here is their pat tern of 
convergence. Because of the  probabilistic nature of t h e  problem, the i r  asymp- 
totic rate  of convergence is extremely slow and may be represented by 

Here z* is the optimal point to  which sequence zP converges and k is the 
number of observations of random parameters w,  which in many cases is pro- 
portional to  the  number of iterations. In deterministic optimization a super- 
l inear asymptotic convergence ra te  is generally expected; a rate  such a s  (4) 
would be considered a s  nonconvergence. But no algorithm can do asyrnptoti- 
cally any better than  this  for stochastic problem (1) in the presence of nonde- 
generate random disturbances. and therefore the aim is to  reach some neigh- 
borhood of the solution ra ther  than t o  find the precise value of the solution 
itself. Algorithm (2)-(3) is quite good enough for this purpose. 
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LFGM User's Manual 

J. Edwards 

Introduction 
This program implements Rockafellar and Wets' Lagrangian Finite Genera- 

tion Method (LFGM) for stochastic quadratic programs with simple recourse. 
This technique is described in [I]. The program was developed a t  IIASA by Alan 
King. I t  is written in FORTRAN 77. A complete description of the  implementa- 
tion may be found in [Z]. The following description of the problem and the dis- 
cussion of the algorithm a r e  adapted from [Z], which contains fur ther  details 
and  a discussion of possible future developments. 

The Problem 
The standard formulation of the  stochastic quadratic program with simple 

recourse is to find z E Rn to muximize 

subject to 

where 

19 is a piecewise linear-quadratic function given by 

i f710 

the  hjs and  & s  a re  square surnmable random variables, the other  coefficients 
a re  fixed (nonstochastic) with d j  r 0, ei > 0, and qi r 0, and "E" denotes 
mathematical expectation. 

The Method 
The chief difficulty in  solving (SQP) is t he  computation of t he  expectation 

of the  recourse penalties. Achieving reasonable accuracy requires a large 
number of points a t  which to  evaluate t h e  integrals. Of course, this  vastly 
increases t h e  number  of dunensions in  the  problem. The mainstay of LF'GM is a 
special Lagrangian whose introduction yields a dual problem (DQP) involving 



minimization over a function space Z. This problem is less tractable than 
(SQP). but  via t h e  finite generation technique (DQP) may be reduced to a 
sequence of quadratic programs with few dimensions. Each problem in this  
sequence can be solved by MINOS [3]. A more detailed description of t he  algo- 
r i thm follows. 

For various reasons, i t  i s  advantageous to include a strongly quadratic 
t e rm in the  2s .  The algorithm generates a sequence of points 19' , /~=l, . . . j  t ha t  
converges a t  least linearly to the  optimal solution of (SQP). The k + l t h  point is 
obtained by solving a modification (SQP,) of the original problem wherein the  
"proximal" term !I$ s-'lz - 5q2 is added to the  objective (s is a constant). 

(Sapp) is solved by applying the  finite generation technique to its dual, 
(DQP,). This technique replaces minimization over Z with minimization over 
the convex hull of a certain collection of elements. = [ f .  . . . , kj. (It i s  this  
minimization which is solved by MINOS.) The algorithm uses the  information 
gained by solving (DQP,) over co to generate  a new collection r t '  and in this  
way obtains a sequence )jiY.v=l ....j [the dual variables to  (DQPJ] which con- 
verges a t  a linear ra te  to the  optimal solution of (SQP,). 

The finite generation technique may be summarized as  follows: 

1) Find &",gV), t he  saddlepoint of L"(2.z) over x x co Zv. 
2) Find g v  E argrnax L"w,z  1. 

r € 2  

3) Flnd Ft1 = [e. . . . ,cN"+lj 3 ( ~ v . g v j  and re turn  to  s tep  1) with 
v = v + 1 .  

L" is the Lagrangian associated with t h e  primal-dual pair ISQP,,DQP,]. 

The program itself is essentially two nested loops. The outer  loop uses the  
current  value of 9' to establish (SQP,,) and  i ts  dual. The inner  loop applies the 
LFGM to  obtain the  sequence IjiYj, which converges to 3'''. The inner  loop calls 
MINOS to solve the resulting quadratic programs. An outline of the  program €01- 
lows: 

0) Set /A = 0 and initialize 5'. 

1) (Begin outer loop) Set SQP, = SQP + )$ s-'112 - 5y2 and establish 
DQPp. 

2) (Inner loop) Use the  finite generation technique to generate IW{, 
which converges to  3"". 

3) (End outer  loop) Test for convergence of IZp]. If t he  sequence has  
not converged, s e t  p = k + 1 and go to s tep 1). 

Convergence 
Due to the limited precision of t h e  computer's internal representation of 

real numbers, it is not a simple mat te r  to decide when the sequences 
t?] and jjiYj have converged. The user therefore must  specify a number of 
tolerances which the  program uses to determine whether the inner or outer  
loop has completed its task. Furthermore. the ra te  of convergence of the  
sequence ITp] depends on the value of the constant s in problem (SQP,), and if 
s is not chosen with care  t h e  sequence may not converge in a reasonable 
amount of time. The program will ac t  to increase the rate of convergence if 
necessary but requires some guidance from the  user to  do so. 

Three conditions cause t h e  inner  loop to terminate.  They are 



1) the current  value of represents a "good" s tep in the sequence tZp{ 
(i-e., if the substitution 3"" = yields a linear rate  of convergence 
for the sequence jZp1). need not be precisely equal to  the primal 
half of the  saddlepoint of I.,? i t  is sufficient tha t  

- ~ ~ ( 2 9 1 ~  s b2P - 2 9  , 

where Mp(Zp) is the primal half of the t rue  saddlepoint of 1Y and d2 is 
a nonnegative constant supplied by the user. 

2) the values of successive r s  a re  changing very slowly or  not a t  all. 
The inner loop halts and processing resumes in the  outer  loop if 

r-r-'l/ M5xc . 
where X, is a nonnegative constant supplied by the  user. 

3) the sequence jr{ has not converged as desired within a specified 
number of iterations. In this case, the  cu r r en t  value of r is 
returned a s  Zp+' t o  the  outer loop and a warning message i s  printed. 

Similarly, three conditions cause the  outer loop to terminate.  They a re  

1) the current  value of Zp is sufficiently close to the  optimal solution of 
(SQP). This decision is made on the basis of the  "duality gap." If the 
normalized difference between the values of (SQP) and i ts  dual a t  9' 
is less than a constant supplied by the user. the program prints the 
solution and halts. 

2) the values of successive Zps a re  changing very slowly or not a t  all. 
The program prints the  solution and  halts if 

where g, is a nonnegative constant supplied by the  user. 

3) the sequence tSp{ has not  converged a s  desired within a specified 
number of iterations. In this case, the  value of s may be such tha t  
the  sequence is converging too slowly. The program therefore 
increases t he  value of s and at tempts  to solve t h e  problem once 
again. The user  supplies an  initial value for s ,  a constant,  a, used t o  
generate new values of s according to  t he  rule  s,,,=os,~~, and  a 
maximum permissible va!ue for s .  If t h e  program cannot solve the 
problem using a value of s tha t  is less than o r  equal to the  max- 
imum value, it writes a message to  that  effect and  halts. 

Distribution of the Random Variables 
The presentation of t he  LFGM in [I] requires tha t  t he  random variables 

&,- and  1, have finite, discrete supports. The program allows the  user  to  specify 
such a distribution in e i ther  of two ways. 

The user  may allow each component of h and of 1 t o  assume a value 
independently of the other  components. In this case, each A, and  & is a ran- 
dom variable, and the user  specifies the  number of points in t h e  variable's sup- 
port, t he  value the variable assumes a t  each point in i ts support, and  t h e  proba- 
bility t ha t  the variable assumes the value associated with each point in i t s  sup- 
port. This is called a n  "independent distribution." 

Alternatively, the use r  may supply a s e t  of two sample populations, one 
containing observations of the vector h and one containing observations of of 
the matrix 1. In this case, each  element of h and of 1 is assigned t h e  expected 
value of the corresponding element of the observations in  the  appropriate sam- 
ple. This is called a "Monte Carlo distribution." The user may obtain resul ts  for 



several sets of samples during a single invocation of the program. The user 
specifies the number of observations in each sample in the first set,  the 
number of observations to add to each sample in the nth set to obtain the 
(n+l)st set, and a maximum sample size. The program repeats its calculations 
for every set generated in the  manner described whose samples contain no 
more than the prescribed maximum number of observations. 

User Supplied Routines 
The user must write three subroutines, uinput, smp, and output. to per- 

form various chores. 

The program requires two distinct sets of input. The first set contains vital 
parameters and control information. This data appears in a single file, has a 
specific format (described in the section entitled "Control Information" below) 
and is read automatically by the program. The second set  contains the actual 
data for the problem. i.e., the contents of the various matrices and vectors. 
After the program reads its control information, i t  calls the subroutine uinput 
t o  read this second se t  of input. The calling sequence is 

call uinput(a.b.c.~e.ee.ff.qplus.qminus, 
1 x. 
2 pcexp.tcexp.pprob.tprob.nsuppp.nsuppt. 
9 nW1.m.n). 

The values of npart. 1, m, and n are passed to the subroutine. The subroutine 
nus t  return valid data in a, b, c, d, e, ee, ff, qplus, and qminus. The remaining 
variables need be assigned values only in certain cases. The parameters, their 
types, and their dimensions (where applicable) are listed below. 

a(m.n) (real*€!) upon return contains the values of the % s. 

b(m) (real*€!) upon return contains the values of the bis. 

c(n) (real*€!) upon return contains the values of the cjs. 

d(n) (real*3) upon return contains the values of the  djs. 

e(1)   real*^) upon return contains the values of the eis. 

ee(n) (rea188) upon return contains the values of the eejs. 

ff(n)   real*^) upon return contains the values of the  f f js. The program 
automatically adjusts the problem so that the bounds on z change from 
eej 1 2 ,  f f j  t o O s z j l r j .  

qplus(1) and qminus(1) (both  real*^) upon return contain the penalty 
coefficients for excess and shortage, respectively. The program automatically 
adjusts the problem to  the form required in (SQP) (i.e.. qminus = 0). 

x(n) (real*8) upon return contains the value of 3, which is used to construct 
the  first problem (SQPp). The contents of this array are used only if the "initial- 
ize x vector indicator" is set  accordingly (see the section on control informa- 
tion below). 

pcexp(l.npart) (real*€!) upon return contains the values that the rows of the 



vector & assume at each point in their respective supports. "pcexp(i,j)" con- 
tains the value of & a t  the jth point in its support. The contents of this array 
are used only if the "independent distribution flag" is set accordingly (see the 
section on control information below). 

tcexp(l,n,npart) (real'8) upon re turn  contains the values that  the elements of 
the matrix T assume at  each point in their respective supports. "tcexp(i,j,k)" 
contains the value of & a t  the  kth point in its support. The contents of this 
array are used only if the "independent distribution flag" is set accordingly (see 
the section on control information below). 

pprob(1,npart)   real*^) upon return contains the probabilities that  the rows of 
the vector h assume the values a t  each point in their respective supports. 
"pprob(i,j)" contains the  probability that  & assumes the value associated with 
the jth point in its support. The contents of this array are  used only if the  
"independent distribution flag" is set  accordingly (see the section on control 
information below). 

tprob(l,n,npart) (real*B) upon return contains the probabilities that the ele- 
ments  of the matrix T assume the values at  each point in their respective sup- 
ports. "tprob(i,j,k)" contains the probability that  & assumes the value associ- 
ated with the kth point in its support. The contents of this array are used only 
if the "independent distribution flag" is se t  accordingly (see the section on con- 
trol information below). 

nsuppp(1) (integer*2) upon re turn  contains the number of points in the support 
of each row of the  vector h .  "nsuppp(i)" contains the number of points in the 
support of &. The contents of this array are  used only if the "independent dis- 
tribution flag" is set  accordingly (see the  section on control information below). 

nsuppt(1.n) (integer82) upon return contains the number of points in the sup- 
port of each element of the matrix 1. "nsuppt(i.j)" contains the number of 
points in the support of hi. The contents of ths  array are used only if the 
"independent distribution flag" is s e t  accordingly (see the section on control 
information below). 

npart (integer) is the maximum number of points that  may appear in the  sup- 
port of a single row of the  vector h or of a single element of the matrix 1. 

1 (integer) is the number of random constraints. 

m (integer) is  the number of deterministic constraints. 

n (integer) is the number of decision variables. 

If the user has  specified that  a Monte Carlo distribution is to be used, the 
program calls the subroutine smp to obtain sample populations of the vector h_ 
and of the  matrix 1. The subroutine must generate a specified number of vec- 
tors  and matrices and must  place these new observations into the appropriate 
samples. The calling sequence is 

call smp(nevsmp.numsmp.max~mp.Ln,p,t.dseedl) 

All the  parameters contain values when passed to the subroutine. which must  



return valid data in p and t. The parameters, their types, and their dimensions 
(where applicable) are listed below. 

nersrnp (integer) is the  index into the arrays p and t where the first of the new 
observations should be placed. 

numsmp (integer) is the index into p and t where the last of the new observa- 
tions should be placed. The subroutine must therefore generate numsmp - 
newsrnp + 1 observations of the vector h and the  same number of observations 
of the matrix 1. 

maxsmp (integer) is the maximum number of observations tha t  may appear in 
a sample. 

I (integer) is the number of random constraints. 

n (integer) is the number of decision variables. 

p(l,maxsrqb) (real*€!) contains the  observations of the vector h_ generated by 
previous calls to  the  subroutine. Upon return, "p(i,newsmp)," "p(i,newsmp+l)," 
..., "p(i,numsmp)" contain the  values of & generated by the current call. 

t(l.n,rnaxsmp) (real*€!) contains the samples of the matrix T generated by previ- 
ous calls to  the subroutine. Upon return, "t(i,j,newsmp)." "t(i,j,newsmp+l)," ..., 
"t(i,j,numsmp)" contain the values of & generated by the  current  call. 

dseedl (real*€!) is provided for use as a random number generator seed. 

Once the solution has been found, the program calls the  subroutine output 
to  print the results in whatever format desired The calling sequence is 

call output(x. 
a.b.c.be.ee.r.q. 
I a n .  
discrt. 
pcexp.tcexp.pprob, tprob.nsuppp.nsuppt. 
p. t .numsmp). 

All values are passed to the  subroutine, although some do not contain valid 
data. Furthermore, several of the  values do not match those entered because 
the  program adjusts the problem as described in the  discussion of the  parame- 
ters  to the subroutine uinput, above. The parameters, their types, and their  
dimensions (where applicable) are  listed below. 

x(n) (real*€!) contains the optimal solution to the adjusted problem. 

a(mn) (real*8) contains the coefficients a,,-. 

b(m) (real*€!) contains the values of the bis as modified by the program. 

c(n) p real*^) contains the coefficients c, as modified by the program. 

d(n) (real*8) contains the coefficients d, as modified by the program. 



e(1) (real*8) contains the values of the eis. 

ee(n) (real*8) contains the values of the ee,s. 

r(n) (reale8) contains the values of the f f js a s  modified by the  program. 

q(1) (real*8) contains the values of qplus as modified by the program. 

I (integer) is the number of random constraints. 

rn (integer) is the number of deterministic constraints. 

n (integer) is the number of decision variables. 

discrt (logical) is a flag indicating how the distribution of the random variables 
has been specifled. If i t  is .TRUE., the distribution is an independent one. If it 
is  .FALSE., the distribution is a Monte Carlo one. 

pcexp(lnpart) (real*8) contains the values that  the rows of the  vector h assume 
a t  each point in their respective supports. This array contains valid data only if 
the discrt flag above is .TRUE.. 

tcexp(ln,npart) (real*8) contains the  values that  the elements of the matrix T 
assume a t  each point in their respective supports. This array contains valid 
data only if the discrt flag above is .TRUE.. 

pprob(1,npa.t) (real*8) contains the  probabilities that the rows of the vector h_ 
assume the values a t  each point in their respective supports. This array con- 
tains valid data only if the discrt flag above is .TRUE.. 

tprob(ln.npart) (real*8) contains the  probabilities tha t  the  elements of the 
matrix T assume the values a t  each point in their respective supports. This 
array contains valid data only if the discrt flag above is .TRUE.. 

nsuppp(1) (integer*2) contains the  number of points in the support of each row 
of the vector h.  This array contains valid data only i f  the  discrt flag above is 
.TRUE.. 

nsuppt(ln) (integere2) contains the  number of points in the support of each 
element of the matrix r. This array contains valid data only if the discrt flag 
above is .TRUE.. 

p(lnumsmp) (reale8) contains the observations of the vector h_ generated by 
the subroutine smp. This array contains valid data only if the discrt flag above 
is .FALSE.. 

t(1.n.numsm.p) (real*8) contains the samples of the matrix T generated by the 
subroutine smp. This array contains valid data only if the discrt flag above is 
.FALSE.. 

nurnsmp (integer) contains the  number of samples in the arrays p and t. 



F'ilenames and Unit Numbers 
The user must specify a filename for each of the  eight files used by the pro- 

gram and must specify unit numbers for most of them. The files and the vari- 
ables tha t  correspond to their unit numbers are described in the next few sec- 
tions. All files are  opened (and their unit numbers established) in the subrou- 
tine named "input." 

Unit number 8 is reserved and may not be assigned by the user. 

Control Information 
The user must supply the  program with several constants, tolerances, and 

limits. This control information resides in a "specs" file. The variable "inp" con- 
tains the unit number of this file. 

The specs file contains the  information shown below. Each value appears 
on a separate line and all values begin in column 31 (the first thirty columns 
may be used for comments). The information must appear in the order 
specified below: 

- name of the problem This is read using an A32 Format. 
- number of random constraints (1). This value must not exceed the 

constant "lmax" (see the section entitled "Common Blocks and 
User-Acessible Parameters" below). I t  is read using an I5 format. 

- number of deterministic constraints (m). This value must not exceed 
the constant "mmax" (see the  section entitled "Common Blocks and 
User-Acessible Parameters" below). I t  is read using an 15 format. 

- number of decision variables (n). This value must not exceed the  
constant "nmax" (see the section entitled "Common Blocks and 
User-Acessible Parameters" below). I t  is read using an 15 format. 

- independent distribution flag. This is read using an L10 format. If 
the independent distribution flag is true, the user must provide an 
independent distribution for the random variables (see the section 
entitled "Distribution of the Random Variables" above). In this case, 
the Monte Carlo distribution flag (see below) must be false and the 
control variables dealing with Monte Carlo simulation (starting sam- 
ple size, sample size increment, maximum sample size. and random 
number generator seed) are read but are not used. 

- independent distribution maaimurn number of partitions. This is the 
maximum number of values that an element of the vector 5 or of 
the matrix 1 may assume (i.e.. the maximum number of points in 
the support of an element). The constant "smpmax" places a limit 
on this value (see the section entitled "Common Blocks and User- 
Acessible Parameters" below). I t  is read using an 15 format. I t  is not 
used if the independent distribution flag is false. 

- Monte Carlo distribution fhg .  This is read using an L10 Format. If 
the Monte Carlo distribution flag is true, the user must provide a 
Monte Carlo distribution for the random variables (see the  section 
entitled "Distribution of the Random Variables" above). In this case, 
the independent distribution flag (see above) must be false and the 
control variable dealing with independent distributions (the max- 
imum number of partitions) is read but is not used. 



- Monte Carlo distribution starting sample size. This is t he  number of 
observations in each of the  two sample populations in the  first set. 
This value must  not exceed the  constant "smpmax" (see t h e  section 
entitled "Common Blocks and User-Acessible Parameters" below). It 
is read using an I5 format. It is not used if the  Monte Carlo distribu- 
tion flag is false. 

- Monte Carlo distribution sample size increment. This is the number 
of new observations to  add to  each sample in the nth se t  t o  obtain 
the (n+ l ) th  set. This value is read using an 15 format. It is not used 
if the Monte Carlo distribution flag is false. 

- Monte Carlo distribution maaimurn sample size. This is the  maximum 
number of observations tha t  may appear in a sample. This value 
must not exceed the constant "smpmax" (see the section entitled 
"Common Blocks and User-Acessible Parameters" below). It  is read 
using an 15 format. I t  is  not used if t he  Monte Carlo distribution flag 
is false. 

- Monte Carlo distribution random number generator seed. This is 
passed t o  the user subroutine smp. This value is read using an F10.4 
format. I t  i s  not used if the Monte Carlo distribution flag is false. 

- maximum number of outer loop iterations. This value is read using 
an I5 format. 

- maximum number of inner loop iterations. This value is read using 
an I5 format. 

- maaimum number of finite elements. This is t he  maximum number 
of elements 1 t ha t  may appear in  the  collection E. This value must  
not exceed the constant "nyrnax" (see the section entit led "Common 
Blocks and User-Acessible Parameters" below). I t  is read using an  15 
format. 

- proximal point algorithm control. This flag controls whether the 
proximal point algorithm is u s e d  I t  is read using a n  L10 format. If 
this flag is true. t h e  proximal point algorithm is used. If this flag is 
false, t h e  proximal point algorithm is not used and the  proximal 
t e rm does not  appear in (SQPfi) (i.e.. (SQP,,) is identical to  the  origi- 
nal problem). 

- proximalpointalgorithmstartings-value(s).Thisisthevalueofs 
used to obtain the  first problem (SQP,,). This value i s  read using a 
D10.4 format. 

- proximal point algorithm maximum s-value. This is t h e  maximum 
value of s for which t h e  program will attempt to solve the  problem. 
This value is read using a D10.4 format. 

- proximal point algorithm s-adjusting factor (0). This value must  be 
greater than 1 and is read using an F10.4 format. 

- proximal penalty factor (6'). This value is read using an F10.4 for- 
mat. 

- minimumchangeindualsfortheouterloop~c).Thisvalueisread 
using a D10.4 format. 

- minimum change in duals for the inner loop (XE). This value is read 
using a D10.4 format. 



- minimum duality gap. This value is used to determine whether the 
first stopping criterion for the outer loop is satisfied. It is read 
using a D 10.4 format. 

- initialize x vector  indicator. This value controls whether an initiali- 
zation subroutine is called to  establish the value of t he  first vector 
in the sequence tFpj. If it is 1, no initialization is performed and the 
value of z0 mus t  be provided by the user subroutine uinput. This 
value is read using an 15 format. 

- print option. This controls the amount of information printed by the 
program. This value i s  read using an 15 format. 

MNOS Flles 

Five files a re  used by MINOS. They a re  listed below along with the  variables 
which contain their  unit  numbers.  

MINOS File Unit Number in 

specifications specs 
input  data  mPs 
output  minpr 
scra tch  file (assigned to  unit 8 )  
dump file mindmp 

Output File 
This file contains the  resul ts  generated by the program. The variable "out" 

contains the unit number of this  file. 

Proximal Sequence Output File 
This file contains the  vectors in the sequence tZpj. The variable "eval" con- 

tains the unit  number of this  file. 

Data Structures  

This program uses n o  particularly complicated data s t ructures .  However, 
i t  does use one (very large) a r r ay  t o  hold the contents of every mat r ix  and  vec- 
tor used by the algorithm. Several pointers provide the  necessary bookkeeping 
information. The following list  shows which values appear where within the  
a r ray  "zz." 

Matrix or  Vector Starting Index Ending Index 

A 1 n 1 
b n l + l  n2 
c n2+ 1 n 3  
d n3+ 1 n 4  
e n4+ 1 n5  
e e n5+ 1 n6  
ff n6+ 1 n7  
qplus n7+ 1 n 8  
qm inu s n8+ 1 n9 
x n9+ 1 n10 
PcexP n 10+ 1 n l l  
tcexp n l l + l  n12 
P P I - O ~  n 12+ 1 n13 



tprob 
ns"PPP 
nsuppt 
nP 
P 
t 
pie xp 
tiexp 

(for INIT) 

(for LOOP) 

chi 
oldchi 
zeta 
dk 
ck 
lam 
QexP 
PexP 
texp 
w1 
wo 
w2 
Y 

Common Blocks and User-Accessible Parameters 
The program uses several common blocks, most of which are contained in 

three include files. The names of these blocks, the include files in which they 
appear, and a description of the  variables they contain follow. 

Common Block Include File Contents 

zzcore 
ziodev 
zdimen 
zmxdrns 
zparam 
z se ed 
zdistr 
zpn trs 

all global matrices and vectors 
1/0 unit numbers 
dimensions of matrices. current sample size 
various maxima 
s, u, d2, L, etc. 
random number generator seeds 
distribution description flags 
bookkeeping indices into the  array "zz" 

The program currently imposes several limits on the  size of the problem 
(e.g., no more than four decision variables). To obtain results for larger prob- 
lems, the  user must change the  constants in the include file "incl.core" as fol- 
lows: 

mnax must be set to the maximum number of decision variables (n). 



lmax must be set to the maximum number of random constraints (1). 

mmalr must be set to the maximum number of deterministic constraints (m). 

nymax must be set to the maximum number of elements < in any set r. 
smpmax must be set  to the maximum number of points in the space over which 
the integrals for the expected values of h and of T are calculated. For indepen- 
dent distributions, i t  is also used to allocate storage for a number of additional 
arrays. "smpmax" must be set to the maximum number of members in any 
sample if a Monte Carlo distribution of the  random variables is given and to  

max [Znpmax + 1 , npmaxnm"+'], 

where npmax is the maximum number of points in any random variable's sup- 
port, if an  independent distribution of the random variables is given. 

None of these values may be less than 1. 

Subprocedure Hierarchy 
See the attached figure. 

Library Routines 
The program uses version 3.9 of MINOS. The MINOS subroutine "go" has 

been slightly modified to  perform additional file assignments. 

Notes 
On occasion. MINOS will return an  error code and the program will halt. 

This is usually due to insufficient space or  iteration limits. The MINOS 
specifications file is written by the  subroutine Imps, which may need to  be 
changed in such cases. 
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1. Introduction 
The F'ORTRkhi code "SEMI STOCHASTIC APPROXIMATION" can be applied to 

solve stochastic optimization problems of the following type 

minimize F(x) s. t. XED, (1) 

where D is a closed convex subset of R" and F=F(x) is the convex mean value 
function defined by 

F(x) = Eu[A(o) - b(o)], xmn. (1.1) 

Here [A(o),b(o)] is an mx(n+l)  random matrix and u is a convex loss function 
on Rm such that the  mean value F(x) in (1.1) is real for every x € P .  We suppose 
that  the set D*  of optimal solutions x* of (1) is nonempty. 

Problems of the form (1) arise in many different connections, e.g. 
Stochastic linear programming with recourse [7],[22] 
Portfolio optimization [9],[23] 
Error minimization and optimal design [2],[20] 
Statistical prediction [I] 
Optimal decision functions [5],[10]. 

Since the gradient (or subgradient) aF of F exists under weak assumptions 
and is given then by the  formula 

6F(x) = E ~ ( o ) ~ a u [ ~ ( o ) x  - b(o)]. (2) 

where is the transpose of a matrix A and au denotes the subgradient of u, our 
basic problem (1) could be attacked in principle by a gradient (or quasigra- 
dient) procedure of the type 

xk+l = P D ( x ~  - pkgk), k=1,2,.. ., (3) 

where pk>O is a s tep size, gk€aF(xk) and PD denotes the projection of Rn onto D. 
However, in practice the computation of the  gradient (subgradient) aF(xk) 

is beset by one of the following difEculties: 

Formula (2) cannot be evaluated a t  all because only a stochastic estimate 
Yk of an element gk€aF(xk) i s  available [3],[21]. In this case we have only 

yk = gk + noise with some gkcaF(xk) (4.1) 



Although the integrand ATau(A.x-b) and the probability distribution PIA(.).b(.)~ 
of [A(w),b(w)] in (2) is known, the numerical evaluation of this formula - 
which involves a multiple integral - is computationally infeasible. In this 
case aF(x3 may be approximated by 

Yk E ~ ( D k ) ~ a u [ ~ ( U k ) ~ k  - b(Uk)l. (4.2) 

where [ A ( ~ k ) , b ( ~ ) ]  is a realization of the random matrix [.4(c;),b(w)] gen- 
erated independently of xk by means of a pseudo-random generator [ l l ] .  

Consequently, in both cases (4.1) and (4.2) the gradient procedure of (3) cannot 
be applied in practice. It is therefore often replaced by the stochastic quasigra- 
dient method [3].[6] 

= PD(Xk - pkYk), k=1,2, ..., (5) 

where t h e  random direction -Yk is defined by (4.1) or (4.2) as appropriate. 

Selecting apriori a sequence of step sizes p,,pz, ... such that  

&>o, z pk = +m. z pk2 < 
loo loo 

C 
e.g., pk = - for some constants c>O and ~ E N u ~ O ] ,  i t  is well known [19],[21] 

q+ k 
tha t  the sequence of random iterates X,,X ,.... generated by (5) converges with 
probability one to the  set Do of optimal solutions x *  of (I), provided that  the 
approximates Yk of aF(xk) fulfill a certain uniform second order integrability 
condition and that  D* is a bounded set. 

Unfortunately, due to their probabilistic nature, stochastic approximation 
procedures have a very slow asymptotic rate of convergence of the  type 

EIXk - x*I2 = O(k-A), 

where A is  a constant such that  O<A<l. Moreover, the main disadvantage of sto- 
chastic quasigradient procedures such as (5) is their nonmonotonicity which 
sometimes may manifest itself as a highly oscillatory behavior [4]. Hence, in 
many cases it is not known when the algorithm has reached a certain neighbor- 
hood of an optimal solution x*. To improve the convergence properties of (5), 
several methods have been suggested, including those based on the adaptive 
selection of the step sizes pk, see [El, and on the use of second order informa- 
tion about F. see [ lE] .  An additional method - which has a partial monotonicity 
property - is presented in the next section. 

2. Semi-Stochastic Approrimation 
As was shown in several papers [10:),[12],[14],[15],[17], for several classes U 

of convex loss functions u and several classes n of distribution PLA(.),b(.)~ of the 
random matrix [A(w),b(w)], our minimization problem (1) has the following 
important 

PROPERTY: ( 6 )  

A t  certain "nonefficient" or "nonstationary" points XED there exists a deter- 
ministic (feasible) descent direction h=h(x) of F which can be computed with 
less effort than can an element gk of aF(xk). Moreover, h(x) is stable with 
respect t o  variations of the  loss function UEU. 

Consequently, if a t  a certain iteration point Xk property (6) holds, then 
clearly one can replace the stochastic direction -Yk. which is a descent dire(:- 
tion only in the mean, by the descent direction hk=h(Xk) of F. 

We thus obtain the following, as already described in [11].[13]: 



Descent Stochastic Quasigradient Method 

I PD(Xk + pkhk) if (6) holds a t  Xk 
'k.1 = PD(& - pkYJ otherwise. 

In many important applications this hybrid procedure has the important 
feature that property (6) is frequently satisfied, for example a t  every other 
iteration point Xk. In this case, (7.1) has the more convenient form 

where N1,N2 is a known decomposition of the set of integers, N, e.g. 
N1=11,2.3 ,... j and N2=12.4,6 ,... 1. As was shown in [13], if the step sizes p1.p2 ,... 
are chosen such that  

then the semi-stochastic approximation procedure (7) converges with probabil- 
ity one to the set D' of optimal solutions x* of (1). As expected, several numeri- 
cal examples [ l l ]  show that  the descent stochastic quasigradient method (7) 
has a much better ra te  of convergence than the pure stochastic quasigradient 
method. In particular, the highly oscillatory behavior of the random iterates 
Xl,X 2 , . . .  observed in (5) is greatly damped by the use of the deterministic des- 
cent  directions hk in (7); moreover, the approximation to the set  D* is more 
exact. In a recent  paper [16], the  rate of convergence of ( 7 )  was estimated 
using the following 

THEOREMZ. 1 

Denote by bk = EIXk - x*U2 and = qp(g - xqz the mean square error  of the des- 
cent  stochastic quasigradient and pure stochastic quasigradient, respectively. 

a) If the ratio of stochastic to deterministic steps taken in (7) is fixed, then 
there exist constants Q1.Qz with O<Qlcl and Q1<Qz such that  

Ql.bi s bk s Q2-% as k approaches infinity. (8.1) 

Furthermore, Ql and Q2 are given by known formulas and Q2<l if N/M<Y. 
where N and M are  the number of stochastic and deterministic steps, 
respectively, in one complete turn of iterations and 7 is a constant that  
depends on the  parameters of problem (1). 

b) If the stochastic steps in (7) are made a t  a decreasing rate, the rate of con- 
vergence is increased from O(l/k) in the pure stochastic case to O(k-A), 
where 1<X<2, in the semi-stochastic case. 

3. Construction of Deterministic Descent Directions 
Currently deterministic feasible descent directions may be constructed if 

the distribution PLA(.),b(.)l is 

stable [12] 
invariant [15] 
discrete [14]. 

Our implementation is based on the assumption tha t  

[A(w),b(o)] has an mx(n+ 1) normal distribution 

with mean (kg) 



and covariance matrix 

where the  (n+ l )x(n+l )  matrix Qi. denotes the  covariance matrix of the i th  and 
jth rows of the random matrix [~(o).b(o)].  

In addition to (9) we suppose 

The objective function F of (1) is not constant on arbitrary line segments 

From (9) is follows tha t  the random m-vector A(o)x - b(w) has a normal dis- 
tribution with mean - b and covariance matrix 

I .1 
where i = 

The key to the construction of descent directions is now 

THEOREM 3.1 

Suppose tha t  assumptions (9) and  (10) are  justified. If the n-vectors x and y f x  
a re  related according to 

LC = 7iy (11.1) 

and  

Q, - Q, is positive semidefinite. (1 1.2) 

then F(y) I. F(x) and h=y-x is a descent direction of F a t  x. Moreover, if XED and 
in addition -to (1 1.1) and (11.2) we have 

 ED. (11.3) 

then  h=y-x is a feasible descent direction of F a t  x. 

NOTE 

For a given x, (11.1) is a system of m linear equations for y. Relation (11.2) 
means tha t  the smallest eigenvalue of Qx - Qy is nonnegative. In the  important 
special case m = l .  (11.2) i s  reduced to  t h e  single quadratic constraint 

If [~(o) ,b(o) ]  has stochastically independent rows, then (1 1.2) is equivalent t o  

jiTQii ji r fTQiif for all i= 1,2.. .. ,m. (1 1.2b) 

In this case, solutions y of (11) may be obtained by solving for a given vector x 
the  convex program 

rninimze 9T~Q$ (12) 

subject t o  



where lsio<m is a fixed integer. 

In the general case one must consider the program 

maximize h(Q, - Qy) 

subject to  

Ay = A x  
y ED,  

where h(Q, - Qy) denotes the  smallest eigenvalue of Q, - Qy 

4. Implementation 

4.1. Representation of the random matrix [A(w).b(w)] 

[A(w),b(w)] is defined by 

[A(w),b(w)] = [ A O . ~ O ]  + z d[Aj,bj], 
j=1,r 

(14) 

where [Aj,bj], j=O,l. ..., r. are mx(n+l)  matrices to be selected by the user and 
01,w2, . . . , wr a re  independent normal random variables with mean zero and 
variance one. A realization [ ~ ( w ~ ) , b ( ~ ) ]  of [~(w),b(w)] is then given by 

[A(wk),b(wk)] = [AO,~'] + z d[~j,b'] ,  
j=l.r 

where wk = (o:,~:, . . . , wi), k=0,1, ..., is a sequence of stochastically indepen- 
dent realizations of the random r-vector w=(w1u2, . . . , wr) generated by means 
of a pseudo-random generator that converts uniformly distributed pseudo- 
random numbers into normally distributed ones based on the  central limit 
theorem. 

4.2. Computation of the search directions 
- 

We suppose that  rank = rank A0 = m < n. The matrix A = [Z,,Zz, . . . , &I, 
where < is a column vector, must be partitioned by the  user into a regular 
mxm matrix 

- 
B=[Zkl.Zkp, . . . , ak,] 

and an mx(n-m) remainder matrix 
- 

E=[&l.i&..,as+,]. 

The user must then define the index se t  

Given the  last iteration point xk, subroutine FUNCT computes a solution yk of 
the  relations (11.1)-(11.3). A t  present only the case of D=Rn is implemented. 
For the sake of generality the  system of relations (11) is solved by means of the 
program (13). If the situation demands it, the  user need only replace this sub- 
routine with a custom procedure for solving (1 1). 

If yk#xk. then hk=yk-xk is a feasible descent direction (see theorem 3.1) 
and the next iteration point x ~ + ~  is given by 



~ k + ~  = xk + pk(~k - xk)* 
where pk>O is a s tep  size. 

If yk=xk, then FUNCT fails to find a descent direction. The next iteration 
point is then given by 

Xk+ 1 = Xk - ~ k y k ,  

where 

Yk~~(ok>~au[~(o, '>xk - b(0k) 1. 

4.3. Step size 
At present, the step sizes pk, k=0,1, ..., are  defined by 

For a deterministic step the user may also take p k = l  or pk=0.5. 

4.4. Loss function u 
The following classes of loss function are supported: 

a) Quadratic loss function 

U(Z) = c + q T ~  + ZWZ, zcRm, 

where c is a fixed number, q is an m-vector, and W is a positive semidefinite 
mxm matrix. 

b) Pclynomial loss function 

where s is a fixed integer. 

c) Sublinear loss function 

where fl.fi, . . . , fp a re  fixed m-vectors. 

4.5. Stopping criteria 
The user must  select a (small) positive number EPS>O, an integer ITMAX, 

and a number TMAX. The program executes until one of the  following condi- 
tions is fulfilled: 

bk+1 - XJ g EPS. 

k>ITMAX (= maximum number of iterations), 

T>TMAX (= maximum computing time)f, 

where 1.1 denotes the  Euclidean norm. 

f Since system cdls t o  determine the time and date vary from machne to machne, the 
code has been changed so that t h s  test is no longer performed - Ed. 
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SPORT User's Manual 

J. Edwards 

Introduction 
This program, Stochastic Programming Optimizer with Recourse and 

Tenders (SPORT), implements Nazareth and  Wets' inner linearization method 
for stochastic programs with recourse. It  also includes an  implementation of a 
method for solving simple recourse problems tha t  relies on the introduction of 
bounded variables. The two methods a re  called ILSRDD (Inner Linearization, 
Simple Recourse, Discrete Distribution) and BVSRDD (Bounded Variables, Simple 
Recourse, Discrete Distribution), respectively, and are  described in [I], [2], and 
[3]. The program was developed a t  the University of California a t  Berkeley and 
a t  IIASA by Larry Nazareth. It  is written in FORTRAN IV. A description of the 
implementation may be found in  [I]. The contents of this manual a r e  largely 
taken from [I], [2], and [3]. 

The cu r ren t  version of SPORT (Version 1.q) addresses problems with simple 
recourse and  stochastic right hand side elements  with a given discrete proba- 
bility distribution. 

The Problem 
SPORT is designed to  solve two-stage stochastic linear programs with 

recourse, whose general form is to  find z E R ~ '  to  minimize 

subject to  

where 

Q(z,w) = inf[qy I Wy = h ( w )  - Tz] , 
UM 

h (ur ) i s  a random vector with m2 elements  defined on a probability space whose 
events a re  denoted by w ;  z is the decision vector and contains nl elements;  y 
is  the optimal recourse vector given some ( z , w )  and contains n2 elements;  A, T, 
and  W are  fixed matrices with dimensions mlxnl,  m2xn,, and m2xn2. respec- 
tively; b ,  c . and q a re  fixed vectors containing m l ,  n l ,  and n2 elements, respec- 
tively; and 'E,' denotes mathematical expectation with respect to w .  Note tha t  
only the  right-hand-side, h (w) ,  is random. 

As noted above, the  cur ren t  version of SPORT solves the above problem 
only for simple recourse (i.e., W = [I,-I]), stochastic right-hand-side elements 
with a given discrete probability distribution, a n d  penalty vectors q +  and  q-  
associated with shortage and surplus, respectively, in the recourse stage (1.1). 



Thus, ( 1 . 1 )  may be written 

Q ( Z , W )  = min [q+y+ + q-y- ( ly+  - Iy- = h ( w )  - T z ]  ( 1 . 1 ' )  
u+.u- 

where 

and the ith row of h ( w )  may assume one of the values A,l, . . . ,b4, where 

A,.j < h,j+l, with probabilities pil, . . . ,p*,. SPORT also allows the user to 
specify a weight for the  recourse value [effectively adding a factor p to Q ( z , w )  
in ( I ) ] .  

The Methods 
Both ILSRDD and BVSRDD require that  the problem be cast into a more 

tractable form before i t  is solved. Since the technology matrix is fixed, the sub- 
stitution x = Tz may be made, thereby introducing the  variables X,  called 
'tenders,' into ( 1 ) .  This transformation is useful because i t  generates a non- 
linear program in which the number of variables occurring nonlinearly is m 2  
rather than n l ,  and usually m2<<nl. The problem then becomes 

minimize cz + + ( x )  ( 2 )  

subject t o  

where 

and the vector q and t h e  matrix W are reintroduced for notational convenience. 

A further transformation involves introducing second stage activities into 
the first stage. I t  is shown in [ 2 ]  that ( 2 )  is equivalent to  

minimize cz + qy + + ( x )  (3) 

subject to  

where + and $ are  defined as in (2). This form has significant advantages from 
a computational standpoint. 

Both ILSRDD and BVSRDD exploit the separability of +, which is due to  the 
presence of simple recourse and to the separability of the cost vector. Thus, 
+h) may be written 

Furthermore, since each component of h ( w )  is discretely distributed and since 
the cost vector is two-piece linear, each +,hi) is piecewise linear, viz. 



+,hi) = max (sUxi + e,) 
1=o ....*, 

where 

is the expected value of the  ith row of h ( w ) ,  and by convention C = 0.7 
1 =1.0 

ILSRDD is based on Wolfe's Generalized Linear Programming method (GLP). 
which solves a sequence of problems obtained by inner (or grid) linearization of 
(3) over the  convex hull of the set of tenders Ix', . , . ,pj. (Actually, because the 
amount of memory in the computer is finite, SPORT uses a smaller set with a 
fixed number of tenders, [XKn+', . . . ,a.) The problems are of the form 

minimize c z  + q+yf + q-y- + C &\k(,$) 
k =1.K 

(5) 

subject to  

The tenders x', . . . ,f  are  assumed to  have been generated previously. x1 is set 
to  the expected value of h ( w )  prior to the first iteration. A new tender is 
obtained in each cycle by solving the Lagrangian subproblem 

minimize +&) + GX 
x 

( 6 )  

where nK is formed by the dual multipliers associated with the constraints (5.1) 
in the optimal solution of (5).* The optimal solution of (6). represents an 
improvement provided 

where dK is formed by the dual multipliers associated with the constraints (5.2) 
in the  optimal solution of (5). If no such x can be found, the  current solution is 
optimal. Generally speaking, problem (5) lends itself to solution because only a 
few tenders will have nonzero coefficients in the optimal solution and because a 
good set of initial tenders can be provided given the underlying recourse pro- 
gram. 

The properties of +(x), particularly the convexity and piecewise linearity of 
+,(xi). permit the  use of a simpler iterative technique. BVSRDD introduces new 
variables zU for each interval over which +,hi) is linear. It follows tha t  

where xp is the ith component of f, the base tender, and zil is bounded below 

t Because +, is convex, the sils form an increasing sequence (in fact, -gi+ I sir I qi-, 
0 I 1 S ki . It also happens thzt the eir s form a nonincreasing sequence. 
* Since +(x 1 is separable, (6) is easily solved. See [2] for more details. 



by zero and above by the  length of the  I th  interval. With this substitution for 
+,k,). (2) becomes 

minimize c z  + C C silzil 
(=l.mz 1=0.k, 

(7) 

subject to  

where T, is the ith row of the  matrix T. The zils are constrained to  the length of 
the  I th interval as before. This is a straightforward linear program. 

Because of its dependence on the properties of +, BVSRDD is fairly limited 
in its range of passible application. The algorithm has been implemented pri- 
marily to provide some assurance that  ILSRDD is working properly. 

The program itself is essentially a front end to a customized version of 
MlNOS [4]. The program reads the data and establishes the appropriate form of 
the  problem [(5) or (7)], then calls MINOS routines to solve the resulting Linear 
prograrn(s). Because there are two methods implemented, one of which 
requires the solution of several linear programs, some of the MINOS procedures 
have been modified. 

Input Overview 
SPORT requires three logically distinct sets of data. The first set is control 

information. The second set  contains most of the nonstochastic data for the 
problem. The h a 1  set provides information about the tenders and the distribu- 
tion of the random vector h(w) .  I t  is anticipated that  in normal practice the 
three sets of data will reside in three separate files. 

Standard Input. Output. and Error Files 
The program reads i ts  control information from the standard input file 

(usually connected to unit 5) and writes its results and error  messages to the 
standard output file (usually connected to unit 6). These files are  assumed to  
be standard from system to  system and consequently they a re  not opened by 
the program. The user may alter the  standard input, standard output, and 
standard error unit numbers as  described in the section entitled 'User- 
Accessible Parameters' below. The user is responsible for opening these files if 
necessary. 

Control Information 
The user must  supply the program with various limits, file names and unit 

numbers. and other options. This control information resides in a 'specs' file. 
The user must connect this file to the standard input unit before the program is 
invoked. 

The specs file contains a number of sections, some of which may be empty. 
Each section is identified by a keyword which begins in column 1. In general, 
entries within a section are  identified by a keyword which begins in column 5 
and the actual values begin in column 23. The keywords that  identify each sec- 
tion must  appear even if default values are selected, although in this case the 
section need not contain any entries. Unless otherwise specified, all character 
values are read using a 2A4 format and all numeric values are read using an I8 



format. Keywords must  be capitalized and only the first four characters of a 
keyword (including trailing blanks) are significant. The sections are listed 
below with their keywords in parentheses. The sections must appear in the 
order specified. 

- name of the method ('ISLRDD' or 'BYSRDD'). This section selects 
which algorithm shall be used. 

- etart of control information ('BEGIN'). This identifies the beginning 
of the control file. 

- file names and unit numbers ('UNIT'). SPORT uses nine files, three of 
which are  assumed to be standard on all systems. This section 
specifies the  unit numbers and file names for the  remaining files 
used by the program. There may be as many as six entries in this 
section and they may appear in any order. Each entry consists of 
two cards. The first card contains a keyword beginning in column 5 
and an integer beginning in column 23. The second card contains a 
character string in  columns 1 through 20. The keyword identifies 
one of the  files used by the program. The integer specifies a unit 
number for the file and the string is the file name for the file. 
Unless otherwise specified, unit numbers and file names must be 
unique. Although zero is a legal unit number on some systems, the 
program will generate an error if the user attempts to assign this 
unit to  the core file, to  the stochastics file, or to  either of the MINOS 
files. Valid entries and their keywords are  
- core file ('CORE') This entry specifies the  unit number and file 

name for the  'core' file (see the section entitled 'Core File' 
below). If the  unit number is the same as  the  standard input 
unit number the file name is read but is not used (i-e., the core 
data is  assumed to follow the control information in the specs 
file). The unit number may not be the  same as the  standard 
output unit number or the standard error  unit number. 

- stochastics file ('STOCHAS17CSg) This entry specifies the unit 
number and file name for the 'stochastics' file (see the  section 
entitled 'Stochastics File' below). If the  unit number is the 
same as the standard input unit number or the  core file unit 
number, the file name is read but is not used (i.e., the stochas- 
tics data is assumed to follow the control information or the 
core data in the appropriate file). The unit number may not be 
the  same as the standard output unit number or  the  standard 
error  unit number. 

- YWOSspecificationsfile('SPECS')Thisentryspecifiestheunit 
number and file name for the MINOS control file (see the sec- 
tion entitled 'MINOS Files' below). The unit number may not be 
the same as  that  of any of the standard files. 

- MINOS data file ('KPS) This entry specifies the unit number and 
file name for the MINOS data file (see the section entitled 
'MINOS Files' below). The unit number may not be the same as 
that  of any of the standard files. 

- debug 6le ('DEBUG') (optional) This entry specifies the unit 
number and file name for the debug file, which contains the 
values of Si t ,  eil ,g ,x, and some variables internal to t,he program 
at various points of execution. If ths  entry is omitted, no debug 
file is produced. A unit number of 0 also inhibits production of 



the  debug ale.  If t he  unit  number  is t he  same the standard 
output unit  number or the s tandard e r ror  uni t  number, the file 
name is read but is not used (i.e., the debug information is writ- 
ten to  t he  appropriate s tandard file). The uni t  number may not 
be t h e  same a s  the standard input uni t  number.  

- log He ('LOG') (optional) This entry specifies the unit  number 
and file name for the  log file, which contains a t race of the 
program's execution and the  contents  of t he  stochastics file 
and part  of t h e  core file as  read by the  program. If this entry is 
omitted, no log file is produced. A unit  number of 0 also inhi- 
bits production of the  log file. If the  uni t  number is the same 
the standard output unit  number  or t he  standard error  unit  
number,  the  file name is read but  is no t  used (i.e., the log infor- 
mation is written to  the  appropriate s tandard file). The unit  
number  may not be the  same a s  t h e  standard input unit  
number.  

- maximum memory requirements ('DIMJ3NSIONS) This section pro- 
vides t h e  program with the  information necessary t o  set  up  a 
number of arrays. The entr ies  in this  section may  appear in any 
order and  all a r e  optional. Each en t ry  contains a keyword beginning 
in column 5 and a value beginning in column 23 (an exception is the 
'TENDERS' entry; see below). If an  entry i s  omitted, t h e  correspond- 
ing variable assumes the  default value indicated. These defaults 
may be changed a s  described in t h e  section entitled 'User-Accessible 
Parameters. '  Valid entries and the i r  keywords a re  

- maaimurn number of right-hana-side elements ('-') 
This is the  maximum number of nonzero elements  in the  aug- 
mented  matrix, i.e.. in [A1 after t h e  transformations in (2) 
and (3) have been applied. This value mus t  provide enough 
space for generated tenders  a s  well a s  those t h a t  a r e  entered in 
the  input data. The default value is 5 t imes  t h e  maximum 
number  of matrix columns (see below). 

- maximum number of matrix rows ('ROWS') This is t he  maximum 
A number of rows tha t  may appear in t h e  combined matrix 

The default value is 100. 
- maximum number of technology rows ('TECHNOL€)GY') This is 

the maximum number of rows tha t  may appear in the  technol- 
ogy matrix,  T. This value may not  exceed the  maximum 
number  of matr ix rows a s  specified in t h e  'ROWS' entry. The 
default value is 20. 

- maaimurn number of matrix columns ('COLUMNS') This is the 
maximum number of columns tha t  may appear in the  combined 
matr ix [ A  1x1, where x i s  t he  matr ix formed by the se t  of 
tenders (each of which is a column vector with m l  rows) used in 
problems (5). The default value is 3 t imes the  maximum 
number  of matrix rows (see above). 

- maaimurn number of values for hi(w) (('PROBABILTIES') This is 
the maximum number of points in the support of any row of 
h ( w )  [i.e., the maximum permissible ki in (4.1)]. The default 
value is 30. 



- tender  information h s )  ('TENDERS') This entry contains three 
subentries. Each subentry contains a keyword beginning in 
column 9 and a value beginning in column 23. The subentries 
may appear in any order and  all a r e  optional. Valid subentries 
and their  keywords a re  

maximum number of u se r  supplied tenders  ('INPUT) This is 
t h e  maximum number  of tenders  tha t  may be entered in 
t he  stochastics file (see below). For BVSRDD, this value 
must  be 1. For ILSRDD, this value may not exceed the max- 
imum number of tenders  saved as specified in the  'GEN- 
ERATED' entry. The default value is 1. 

maximum number of tenders  saved ('GENERATED') This is 
t he  maximum number  of tenders  tha t  will appear in the  
s e t  used to  generate  each problem (5) in ILSRDD (i.e., n). 
The default value is 20. 

- maximum number of tender elements ('ELEMENTS') This is 
t h e  maximum number  of nonzero elements that  may 
appear in the tenders  in the se t  used t o  generate each 
problem (5) in ILSRDD or  tha t  may appear in the base 
tender  in BVSRDD. The default value is 2000. 

- row and  vector names ('SELECTORS) This section identifies which 
row is the objective row and  which vectors in the 'RHS,' 'BOUNDS,' 
and/or 'RANGES' sections of t he  core file a r e  to  be used. The entr ies  
in this section may appear in any  order. Each entry contains a key- 
word beginning in column 5 and  a value beginning in column 23. If 
an  optional en t ry  i s  omitted, t h e  first applicable row or  vector found 
in the  core file is taken t o  be the  desired entry. Valid entries and 
their  keywords a r e  
- name of the objective row ('OB6ECXIVE') The type 'N' row with 

this name  in the 'ROWS' section of t h e  core file is taken to  be 
the objective row. 

- name of the right-hand-side vector ('RHS') The entries in the 
'RHS' section of t he  core file t ha t  contain this name in t he  first 
name field (columns 5 through 12) form the  vector b .  

- name of the bounds vector ('BOUNDS') (optional) The entries in 
the 'BOUNDS' section of t h e  core file t ha t  contain this name in 
the first name  field (columns 5 through 12) provide bounds on 
the decision variables. 

- nameoftherangesvector('RANGES) (0pt iona l )Theent r ies in  
the 'RANGES' section of t h e  core file tha t  contain this name in 
the first name  field (columns 5 through 12) provide ranges for 
the decision variables. 

- miscellaneous control information ('CONTROL') This section contains 
a number of miscellaneous control parameters.  The entries in this 
section may appear in any order and  all a r e  optional. Each entry 
contains a keyword beginning in column 5 and a value beginning in 
column 23. If an  entry i s  omitted, the  corresponding variable 
assumes the  default value indicated. These defaults may be 
changed a s  described in t he  section entitled 'User-Accessible 
Parameters. '  Valid entries and  the i r  keywords a re  



- pr in t  control ('OUTPUT') This entry specifies how much infor- 
mation is written to  the log file and to t he  standard output file. 
The default value is 2 and causes the program to place a certain 
amount of information in the  output files. A value less than  2 
causes less information to be written t o  the  log file and a value 
greater  than 2 causes additional information to  be written t o  
the  output file. See the sections describing the output and log 
files below for more details. 

- maximum number of cycles ('CYCLE') This is the maximum 
number of linear programs (5) to  solve when applying ILSRDD 
(i.e.. the  maximum number of tenders generated or the max- 
imum permissible value for K). It is not used by BVSRDD. The 
default value is 1. 

- scale  factor (px100) ('SCALE') This is t he  factor by which the  
recourse value is multiplied. It is expressed as  a percentage 
(i.e., a value of 100 results in a factor of 1.00). The default 
value is 100. 

- MINOS specibcations ('MINOS') This section contains any additional 
MINOS options desired. Any cards whose first four columns are  blank 
will be echoed in t he  MINOS specifications file after the cards t h a t  
specify the objective row, rh s  vector, bounds vector, and/or ranges 
vector and  before the  card that  gives the cycle limit. 

This section need not contain any entries. 
- END card ('END*) This card marks the end  of t h e  control informa- 

tion. 

Core me 
The core file contains the data for the decision variables. It specifies 

- t he  name  and type of each row in the  problem, 

- t he  objective. c , 
- the  nonzero elements of A and T, 
- t he  deterministic right-hand-side, b ,  and 
- t h e  bounds on the  decision variables. 

The core file is specified in standard MPS format [5]. The 'ROWS' section 
contains an  entry for the objective and for each row of A and of T. The rows of A 
and of T may be interleaved. The rows of T are  normally equality rows, but  the 
program performs the  necessary conversions if this is no t  the  case (e.g., if 
there  is no penalty on surplus). The 'COLUMNS' section contains the elements of 
c and t h e  nonzero elements of A and of T. The 'RHS' section contains t he  
nonzero elements  of b .  Nonzero elements of b t ha t  correspond to rows of the  
technology matr ix a r e  ignored. The 'BOUNDS' and 'RANGES' sections may be 
used to  impose limits on the solution as  in normal practice. 

Stochastics Flle 
The stochastics file specifies the information pertaining to the recourse 

problem. It specifies 
- the  names of the rows that  constitute the  technology matrix, 



- the distribution of each row of the stochastic rhs vector, h(w) ,  
- the penalties on shortage and surplus, q +  and q- ,  and 
- the set  of initial tenders for ILSRDD or the  base tender for BVSRDD. 

The stochastics file is specified in a subset of an extended MPS format 
developed for stochastic linear programs with recourse [6]. Like the  core file, 
the stochastics file consists of a number of sections. Field conventions similar 
t o  those in standard MPS are employed. That is, section names begin in column 
1; options on the same line as a section name begin in column 15. Data lines 
have six fields (some of which may be blank): a code field (columns 2 and 3), 
three name fields (columns 5 through 12, 15 through 22, and 40 through 47), 
and two numeric fields (columns 25 through 36 and 50 through 61). The con- 
tents  of the  code and name  fields a re  interpreted as  character strings. The sec- 
tions are 

NAb¶E- This is an  informative header card. The user may en te r  any charac- 
ters  desired in columns 15 through 72. 

TM=HNOLOGY - This section of t he  stochastics file specifies which of the 
rows listed in t h e  'ROWS' section of the  core file constitute the technology 
matrix, T. The data consists of a list of names corresponding to a subset of 
the list of row names specified in  the  'ROWS' section of t h e  core file. The 
contents of these rows (as specified in the COLUMNS section of the  core 
file) constitute t h e  technology matrix. One name appears per line, in the 
first name field (columns 5 through 12). 

DISBUBUTIONS - This section of t h e  stochastics file specifies the  probability 
distribution of the  r.h.s., h(w) .  The data consists of sets of entries of the  
form "rowname value probability." There is one such set  for each of the 
rows named in the  TECHNOLOGY section. "Rowname" specifies the  row 
associated with t h e  entry; i t  occupies the first name field on a line 
(columns 5 through 12). "Value" and "probability" give a value for the row 
arid its likelihood, respectively. They occupy the first and second numeric 
fields (columns 25 through 36 and 50 through 61), respectively. 

The sum of the  probabilities for a given row must  be unity. Entries for 
different rows must  not  be mixed together. 

RECOURSE - This section of the stochastics file is included to provide com- 
patability with files specified strictly according to the format described in 
[6]. It contains no data. 

OBJECTIVES - This section of t h e  "stochastics" file specifies t h e  recourse 
objectives, q . The data  consists of entries of t h e  form "name value value", 
where "name" gives t h e  name of a row of T. t he  first value gives the 
corresponding value of q+ ,  and the  second value gives t h e  corresponding 
value of q-. The name  occupies the first name field on a line (columns 5 
through 12) and  t h e  values occupy the  first and second numeric fields 
(columns 25 through 36 and 50 through 61), respectively. 



TENDERS - This section specifies the  value(s) for the initial tender(s) used 
by the  algorithms. The data consists of entries of t he  form "name 
rowname value," where "name" is a name provided for the  tender,  
"rowname" specifies the  row of T associated with the entry, and "value" is 
the value of the  corresponding row in the tender vector. "name" is 
repeated for each row in the  tender and there is one such name for each 
tender specified. "name" and "rowname" occupy the first two name fields 
(columns 5 through 12 and 15 through 22, respectively) and "value" occu- 
pies the  first numeric field (columns 25 throgh 36). If a se t  of tenders is 
provided for ILSRDD, the  first is used by BVSRDD (although all a re  read). 

ENDATA- Indicates the  end of the  "stochastics" file. 

MNOS Flles 
The program generates the  MINOS specifications file and the  MINOS data  

file from the  specs file and from the core and stochastics files, respectively. 
The user may pass options to MINOS as described in the paragraph on MINOS 
specifications in the  section entitled 

Output File 
This file contains the results generated by the program. If the print control 

variable i s  2 or  less, the program writes certain error messages and the  follow- 
ing data to  the  output me: 
- the  contents of the specs file, 

- the  proposed tender, cur rent  objective value, and lower bound for t h e  
optimal objective value after each cycle, 

- t he  standard MINOS output for the last linear program solved, and 
- the  first and second stage costs, the optimal tender, t he  dual multipliers 

(prices) associated with t h e  technology rows in the optimal solution, and  
the  probabilities of the  equivalent change constrained programs. 

If the  print control variable i s  greater  than 2, the output includes the  s tan-  
dard MINOS output for each linear program solved. 

Log File 
This file contains a t race  of t h e  program's execution. If the print control 

variable is 2 or more, the program writes the  following data to  the output file: 
- various messages concerning the  program's activity, e.g., reading stochas- 

tics file, finished writing MINOS specs file, 
- the  contents of the stochastics file, and 
- the 'NAME,' 'ROWS,' and 'RHS' sections of the  core file. 

If the  print control variable is less than  2, the 'ROWS' and 'RHS' sections of 
t he  core file are not printed. 

Data Structures 
The matrices in problem (1) tend to be rather  sparse, and the  program 

represents  them in a compact fashion to save space. To represent a large, 
sparse, two-dimensional array, t he  program uses three smaller one-dimensional 
arrays. The first array contains the  nonzero elements of the matrix. These ele- 
ments  a re  ordered by column. Each element of the second array contains the  
row index within the  sparse matrix of the  corresponding element in the  first 



array. The third array contains the indices within the first two arrays where 
the entries for each column of the sparse matrix begin. The ith entry in the 
third array is a pointer to the beginning of the ith column. 

The program uses one (very large) array to hold the contents of most of 
the matrices and vectors used by the algorithm. A similar scheme is used by 
M I N O S ,  and this array is passed to  the M I N O S  routines. 

User-Accessible Parameters 
The default values for the  standard unit numbers and for the variables in 

the specs file may be changed by changing the  values of the appropriate vari- 
ables when they are initialized a t  the beginning of the appropriate routines. 
Items with default values are listed in the table below together with the variable 
that contains the value of the item and the subroutine in which the default 
value is established. 

Value Variable Subroutine 

standard input unit number 
standard output unit number 
standard error output unit number 
debug file unit number 
log file unit number 
maximum number of rhs elements 
maximum number of matrix rows 
maximum number of technology rows 
maximum number of matrix columns 
maximum number of values for & ( w )  
maximum number of user supplied tenders 
maximum number of tenders in set 
maximum number of nonzero tender elements 
objective row name 
rhs  vector name 
bounds vector name 
ranges vector name 
print control 
maximum number of cycles 
scale factor (p) 

in 
iprint 
ierprt 
idebug 
iout 
maxele 
maxrow 
maxtrw 
maxcol 
maxpro 
maxten 
maxgtn 
maxtel 
mobj 
mrhs 
mbou 
mran 
lvou t 
ncycle 
scale 

sport 
sport 
sport 
readsp 
readsp 
readsp 
re adsp 
readsp 
readsp 
readsp 
readsp 
readsp 
readsp 
readsp 
readsp 
re  adsp 
readsp 
readsp 
re  adsp 
readsp* 

The vzlue specified in the program for the scale factor is not a percentage. 
That is. if p is one half, the variable 'scale' should be set t o  0.5, not to 50. 

The variable 'ctol,' set in subroutine sport, is used as a tolerance to deter- 
mine convergence. If 

(k(ptl) + nKXK+l -gK2 ctol 

the  optimal solution is taken to have been found. 'ctol,' which must  be nega- 
tive, is currently -l.lo-?. 

There are a number of machine dependent parameters. They are 

Parameter Variable Subroutine Current Value 

positive i n h i  ty plinfy sport lpO 
double precision tolerance ePs mlinit 2 -55 

number of integers per real*8 variable nwordi sport & mlini t  2 
number of reals " nwordr m lini t 2 
number of integer*2 variables " nwordh rn linit 4 



Subprocedure Hierarchy 
See the  attached figure. The MINOS routines shown have been modified. 

Library Routines 
The program uses version 4.9 of MINOS. Several routines have been 

modified to  reflect the  special requirements of the program. 
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