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I. INTRODUCTION

In the present paper, I will attempt to discuss some
recent developments in the epistemology of organisms, and to
see what these might mean for the study of social systems.

I believe that biology and the human sciences are closely
related in a number of important ways, and that through these
relations they have much to learn from each other.

The simplest relation between organisms and social systems
is the reductionistic one, that social systems are, at least in
part, built of organisms. Thus, the properties of the former
cannot help but be influenced by those of the latter. This
is merely a further extrapolation of the fact that, since
organisms themselves are composed of matter, the properties
of matter influence the behaviors of organisms. Indeed, even
so microscopic an event as a single electron out of place at
the physical level can ramify upward through organism and
society to end up in the most dramatic social consequences; a
familiar example is the mutation to hemophilia in the Imperial
Russian royal line in the late 19th century. Howev?r, as we
shall see, this reductionistic relation between biology and
the human sciences is in many ways the least interesting.

A more profound relation between biology and social
systems is the analogy which exists between them. We will
define the concept of analogy more precisely in Section II

below. It suffices to mention here that this analogic relation



was already perceived by Plato, and by political philosophers
like Hobbes, as well as by biologists in our own time, and has

led to the concept of society as superorganism. The theoretical

importance of this kind of analogy, if it can be made precise,
lies in the fact that our experiences with organisms and
societies are of entirely different kinds. A biologist is
always in the position of an external observer, condemned to
study only effects of remote causes, at which in most cases he
can merely speculate. On the other hand, we are ourselves all
part of social organizations; we feel their causal structures
acting upon us at every instant; but we cannot for that reason
even imagine what an external observer of a social system
would be like. Thus, our biological and social experience are
almost orthogonal; if we could combine them, through some
precise concept of analogy between the biological and the
social, both fields would be enormously enriched.

Still another relation between the biological and social
sciences arises from the fact that both have so far proved
refractory to the kinds of scientific analyses that have been
so fecund in the study of inanimate matter. This refractori-
ness may, as reductionists believe, arise entirely from
technical considerations; from the fact that organisms and
societies are simply more complicated than inanimate systems.
But they do not doubt that the same principles and laws govern
all these situations, and that it is only a matter of time

until the physical basis of all organic behavior is made




explicitly manifest. The other possibility, which we will
explore here, is that the conceptual basis of contemporary
physics is simply too narrow; its language too empoverished,
to allow us to approach organic phenomena effectively from
this direction.

Those who have been unhappy with reduction, either of
biology to physics, or of social science to bioiogy, usually
are so because of the perceived telic characteristics arising
at the level in which they are interested, and which they feel
are decisive for the behaviors manifested at that level, but
which are entirely absent at lower levels. Whether dealing
with the free will of humans in social systems, or the tropisms
of even the simplest organisms, there seems to be some essential
arbitrary, volitional aspect which, by its very nature, must
elude the mathematical equations which describe the iﬁorganic
world. Thus, both biology and the human sciences are permeated
by a common sense that traditional theoretical methods do not
in principle capture some essential element of finality or
final causation, which is at the heart bf their subject matter.
‘On the other hand, it is generally believed that the "hard"
sciences (e.g. physics and chemistry) owe their own develop-
ment precisely to the rigorous exclusion of finality, and
therefore that telic considerations must be excluded from
science entirely. Thus, both the biologist and the social
scientist face a common dilemma: to be scientific, they must

eschew finality, but to be biological or social, they cannot.



What I will suggest in the developments to follow is that
to be concerned with finality; and to be scientific, are by no
means incompatible in biology. The apparent contradiction
between them arises from too narrow a view of what constitutes
rigorous science; and more precisely, from a few tacit assump-
tions characteristic of Newtonian mechanics, which have come
to permeate all forms of system theory known tovme. It is the
identification of these with science which has led to the dif-
ficulties mentioned above. When these tacit epistemological
hypotheses are made explicit, alternative modes of system
description become visible, in which categories of final
causation can be manifested in an entirely rigorous, non-
mystical way.

Before embarking on this, it is instructive to consider
briefly the history of the conflict between finality and
mechanism in biology; I presume there is a parallel literature
in the human sciences. This is essentially a conflict between
the Aristotelian view that volition, and hence finality, is at
the heart of the distinction between animate and inanimate, and
the Cartesian view that there is no Such distinction; that the
organism, like everything else, is a mechanical device; a
machine or gadget. Kant, for example, embraced the Aristotelian
position, and clearly perceiving that finality ahd mechanism (at
least in the Cartesian sense) are mutually exclusive, argued
that organisms are in principle incapable of being studied by

mechanical means. For this reason, Kant argued that there could




never be a "Newton of the leaf", who could do for a blade of
grass what Newton did for inanimate nature. Among biologists,
the most famous finalist was the embryologist Driesch, who on
the basis of his experiments on embryonic regulation concluded
that no mechanical explanation of his results was possible in
principle.

On the other hand, the Cartesian Yiew of the organism as
mechanism provided from the outset a powerful unifying hypothe-
sis, as well as a specific clue on how to make biology
"scientific"., The growing development of physical technology
has produced instruments which could be applied to organisms
as well as to inanimate matter, and culminated in the present-
day field of molecular biology. One of the most articulate
modern exponents of the Cartesian viewpoint, Jacques Monod,
makes it a postulate (the "Principle of Objectivity")'that
finalism be excluded from biology as a matter of course (while
at the same time, ironically, denying that the main features
of biology could ever be deduced from first principles).

On the theoretical side, much attention has been given to
the simulation of telic behavior by mechanisms. One example
of this was the "open system" metaphor, proposed by von
Bertalanffy and others in the mid-~thirties. These investigators
pointed out that the behavior of open dynamical systems around
stable attractors (as we would now say) manifests, of itself,
many of the apparently telic features exhibited by organisms,

such as adaptability and equifinality. 1In the process, by the




way, they exposed gaping holes in physical theory (especially
thermodynamics); holes which have not yet, after half a century,
by any means been successfully filled.

An apparently separate development, though formally
identical with the open system ideas, arose from the concepts
of cybernetics. The capabilities of feedback loops in a
physical system to simulate telic behavior was early emphasized
by Norbert Wiener. These ideas, and cognate developments in
computation, have given rise to the idea of an organism as
"programmed complexity" (whatever that means), and this too is
incorporated into the current ideas of molecular biology.

The point of all of these developments is thus to argue
indirectly that all forms of finality can be manifested by true
machines, and hence that finality is a superfluous concept.

The difficulty with such an approach is that cybérnetic
systems, in the broadest sense, constitute a universal class
of simulators, much as the epicycles of Ptolemy were for
planetary orbits. And of course, there is a vast difference
between mere simulation and scientific understanding. Thus,
the simulation of fragments of telic behayior in non-telfc
mechanisms is no argument in itself, either for or against
finality in biology. To investigate the question more deeply,
we must see exactly what is incorporated into the very idea of
a mechanism; more particularly, we will try to see whether
there are real physical systems which are not mechanisms. Thus

we will, in a sense, turn the "cybernetic" arguments against



finality back on themselves, and argue in effect that the telic
systems can simulate machines; but that does not at all mean

that they are machines.



II. THE MODELLING RELATION

our attention will be focused primarily on the class of
formal or mathematical systems which may be images of real-
world systems, be they atoms or organisms or societies or

automobiles; henceforth these will be called natural systems.

The nature of this class of presumptive mathematical images

of natural systems is of crucial importance, for it determines
the entire character of our science. The kinds of mathematical
systems in it, and the relations between them, are the arena
for confronting most of the deepest scientific problems; the
problem of reductionism, for example; involves nothing else.
The main thrust of the Newtonian revolution, for example, lay
in the fact that it specified such a class (the class of
general dynamical systems, or "state-determined" systems),
while developments in thermodynamics, and even relativity,
served to circumscribe. that class.

Since this class of mathematical images of natural systems
is so important, we shall briefly describe how it arises, and
why it plays such a central role.

Our belief in natural law, without which science would be
futile, andbour daily lives unlivable, has two complementary
facets. On the one hand, we must believe that the successions
of events which we perceive in the external world are not
entirely whimsical, arbitrary or chaotic, but manifest some

definite relations. Relations between events in the external



world collectively constitute what we call causality. Thus, a
belief in causal relations befween events constitutes one
essential aspect of our belief in naturél law.

The other facet, different but equally important, is that
we believe the causal order can be, at least in part, grasped
and articulated by the human mind. This means that the causal
order relating events can be translate@ into a éorresponding
order between propositions describing events. But such
propositions belong to a ‘different world than the events
themselves; a symbolic, linguistic world. There is thus no
question of a "causal" order between such propositions. But
there is another kind of order in this symbolic, formal world;
a logical or implicative order, which allows us to generate
new propositions (inferences or theorems) from given ones
(hypotheses or premises).

Thus,. our belief in natural law ultimately boils down to
this: that the causal order relating events can be brought
into congruence with some kind of implicative order in an
appropriate formal or symbolic system describing these events.
Once the congruence has been established, fheorems in the
formal system translate into predictions about the causal
order in the real world.

A relation of congruence between the causal order in a
natural system, and the implicative or logical order in an

appropriate formal system, will be called a modelling relation.
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We can sum up this discussion concisely in a diagram as

follows:

DECODING I
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Figure 1

The Modelling Relation

In this diagram, a natural system in the external world, and

a formal system are to be brought into congruence. The crucial
features in establishing the congruence are the arrows (2) and
(4) in the diagram, which we have labelled "encoding" and
"decoding" respectively. These arrows represent a kind of
dictionary, whereby events in the natural system are repre-
ssented by appropriate elements of the associated formal system,
and whereby such elements can be decoded back into events. The

modelling relation obtains when the diagram commutes; i.e. when

(1) = (2) + (3) + (4)

In this case, one always obtains the same answer, whether one

simply looks at or observes the causal order in the natural
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system (i.e. the arrow (1)) or whether one encodes into the
formal system (the arrow (2)), employs the inferential struc-
ture of that system to generate new propositions (the arrow (3))
and decodes these to generate predictions about the natural
system (the arrow (4)).

There are many important ramifications of this basic
diagram, which we have described in great detaii elsewhere.
We will briefly describe one of them, for it underlies the
concept of analogy befween structurally diverse systems.
Imagine that two such systems have been put into a modelling
relation with a common mathematical image or model. Then we

have a diagram of the form

NATURAL
SYSTEM
1l

FORMAL
SYSTEM

(|
P
Iy
[
R

NATURAL
SYSTEM
2

N/

Figure 2
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We can use the fact that dictionaries exist to convert the
causal structures of both natural systems into the inferential
structure of a common formal system. This allows us to
establish a new dictionary, relating the causal structures of
our natural systems. Indeed, if we just look at the left-
hand side of the diagram of Figure 2, we see that it looks

essentially like Figure 1, except that it relates two natural . 1

systems, instead of a natural system and a formal one. It
thus establishes something like a modelling relation, but
between two natural systems. This relation is what I call
analogy. 1In other words, two natural systems, whatever their

physical structure may be, are analogous to the extent that

they share a common model, or realize a common model. The
word "analogy" is used here as a generalization of "analog
computation”, which is precisely of this character. So too are
the familiar ideas of similarity and scaling, which dominate
many areas of physics, engineering, and increasingly, biology.
For present purposes, we are concerned only with the class
of formal systems which can sit on the right-hand side of this
kind of diagram; i.e. thdse which can be models of natural
systems, or, in another language, which can be realized by
natural systems. We shall now turn to the description of such
a class, originally postulated implicitly by Newtonian mechanics,
but nowadays taken as the universal class for natural system

description. We shall call this the class of simple systems,

or mechanisms. As we shall see, the mandating of this class
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involves some extremely strong hypotheses about the natural
world, which have never been stated explicitly, and which need
not be true. Then we shall see what happens when we modify

these hypotheses; i.e. enlarge the class of mathematical

images.
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III. MECHANISMS: THE NEWTONIAN PARADIGM

As noted above, Newtonian mechanics posited above all a
universal mode of natural system description. That is, it
stipulated a canonical means of encoding any natural system
into a definite sort of formal, mathematical model, and decoding
the theorems of that modei into predictions about the natural
system. Thus, Newton posited not only a class of presumptive
mathematical models, but equally important, the encoding and
decoding which turns a formal system into a model.

The influence of Newtonian mechanics has since radiated in
two distinct directions: a reductionistic direction and a
paradigmatic direction. Mechanics itself was initially con-
cerned only with the dynamics of systems of material particles.
Such particles idealized the concepts of the pre-Socratic
atomistic philosophers, who argued that reality consists of
multitudes of indivisible (hence étructﬁreless);particles or
atoms. Insofar, then, as any natural system could be analyzed
into its ultimate atoms, and insofar as these ultimate atoms
could be described in Newtonian terms, then any scientific
problem becomes a mechanical one; this is a strong form of
reductionism. On the other hand, it came to be recognized that
the language of dynamical systems could encode properties of
natural systems (e.g. ecosystems) directly, without waiting for
a true reduction into the ultimate particulate language; this

is the paradigmatic aspect of mechanics.



15

The essence of the mathematical language, first developed
by Newton to deal with systems of mass points, and later
extended to a universal mode of system description, is the

dualism between states and dynamical laws. In mechanics

itself, this takes the form of a dualism between phases and
forces. Roughly speaking, the phases or states pertain to
what is intrinsic to the system, while.the dynaﬁical laws
describe the effect of the environment on the system.

Any natural system may have a multiplicity of descriptions,
or models, of this type. But, insofar as any natural system is
reducible to a system of structureless particles, among these
descriptions there will be a biggest one, from which all others
can be obtained (i.e. which maps effectively onto all the
others). This is the strongest form of reductionism, which as
noted earlier, is a postulated mathematical relation étipulated
to hold among a class of models or mathematical images of any
natural system. This ultimate mathematical descr;ption is thus
not an abstraction; it contains in itself all the information
manifested in every other description, and incorporates explic-
itly every aspect of reality of the natural system with which
it is associated. 1In this picture, then, the solution of
every scientific problem is reduced to the technical ones of
constructing the ultimate description, and extracting from it
the appropriate information.

We shall call a natural system admitting such an ultimate

description as a model, and all of whose partial or
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phenomenological descriptions are also of this type (i.e. mani-
festing the characteristic dualism between states and dynamical

laws superimposed on them) a simple system or mechanism. The

motivation for this terminology will become clear as we proceed.

The upshot of the Newtonian picture, then, is that every natural

system is a mechanism in this sense.

As we have noted, it has since beqome "self-evident“ that
this language is the universal vehicle for system description.
However, we shall now view the entire situation from another
angle; from this it will become clear that this "self-evident”
language actually involves a number of tacit hypotheses which
may not be true. |

What we will do is to compare the Newtonian pictufe with
the o0ld Aristotelian categories of causality. The Newtonian
picture, as we said, always involves the postulation of a state
set, once and for all, and the superimposition on this manifold
of states of a set of dynamical laws; the mathematical image of _
a natural system is thus some technical variant of a dynamical

system:
agsat = (X, &, B(e)) (1)

> .
Here the vector X is a state vector; the vector a is a vector
of structural or constitutive parameters, and the vector E(t)
allows a time-dependent set of "forcings" or "inputs" or

"controls" to be incorporated.
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Mathematically, the dynamical law is a local relation
between a velocity vector dgyat, the rate of change of state,
and the state itself, modulated by what we have called param-
eters and controls. However, its significance is that it can be
converted to a mathematically equivalent but epistemologically
completely different kind of statement, by a process of

integration:

t
(t) = f%’(:?m), s, B(1))dr (2)
0

More specifically, the dynamical laws pertain to the values
assumed by magnitudes at single.instants; the integrated form
of these laws pertain to values assumed at different instants.
The integration process can be viewed as a continuum of theorems
all inferable from initial conditions as hypotheses, and each

of these theorems is a prediction about the associated natural

system.

If we now think of x(t) as effect, then in the Aristotelian

parlance, we can put: *

->
l. x(0) is material cause;

->
2. o is formal cause;

t

3. The operator./ﬁf(..., %, B(1))dt is efficient cause.
0 _
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Thus three of the four Aristotelian categories of causation
are imaged in the Newtonian scheme. We now make three crucial

observations about this situation:

a. There is no category of final causation visible.
Indeed, the Newtonian picture has no room for this causal
category; it cannot accommodate finality without complete
collapse. In modern language, final causation amounts to

anticipation; the dependence of present change of state upon

future state or future input. It is precisely because of the
presumed universality of the Newtonian language, and its iden-
tification with science generally, that final causes are
excluded from scientific discourse, on the ironic grounds that

they "violate causality".

b. The categories of causation, as manifested in the

Newtonian scheme, are in general inequivalent. By this we

mean the following: in (2) above, we could imagine replacing

a given initial state x(0) by a perturbed one, §%(0) ; or an
initial vector a of constitutive parameters by a perturbed one,
6;; or a vector E(t) of controls by a perturbed one, Gg(t).
Each of these would lead to some change 6;(t) in the effect
;(t), which we can say would follow from a perturbation of
material, or formal, or efficient cause respectively. The
causal categories would be equivalent if each §x(t) could be
produced by some 6;(0) alone (i.e. by some variation in material

->
cause), and by some 6a alone (i.e. by some variation in formal
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cause), and by some sB(t) alone (i.e. by some variation in
efficient cause). Or what is the same thing, any variation in
any category of causation could be annihilated or offset by
corresponding variations in the other categories. Mathematically,
the question of the equivalence of the categories of causation
in the Newtonian context is basically one of structural
stability.

| The inequivalence of the causal categories has, by itself,
numerous interesting ramifications, some of which we have
explored in some detail elsewhere. It is, of course, perfectly
consistent with the Newtonian picture, but it is obscured in
that picture by the standard practice of treating all observ-
ables or variables, including parameters, as simply arguments
of mathematical functions, from which the basic operational
distinctions between them have been abstracted away. It is

for this reason that many positivistic philosophers of science
(notably Bertrand Russell) could argue plausibly that causality
was an obsolete and unscientific concept, which was never used
in an "advanced science" like "gravitational astronomy". More
precisely, these individuals tacitly accepted that the encoding
and decoding arrows in Figure 1 above were complete1y~specified
by the Newtonian scheme and thus need not be considered further;
they thus éoncentrated their attention exclusively on the

mathematical images resulting from these encodings.
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c. 1In thg Newtonian picture, the categories of causation
are isolated into discrete, disjoint mathematical structures.
For instance, the very concept of a state space splits off the
notion of material cause from the other causal categories.
Likewise, the notion of formal cause is split off into some
kind of "parameter space", and the notion of efficient cause
is segregated into a parameterized family of opérators. It is
_thus possible to modify any one of these causal categories
without affecting the others. 1Indeed, there are no "laws of
nature" known to me which place any limitation whatsoever on
the independence of the causal categories as manifested in the

Newtonian scheme.

It is this last feature which is decisive. 1In fact, I will
argue that the Newtonian picture entails the independence of the
causal categories, and is essentially equivalent to it. When
we put it this way, however;-it is obvious—that-the Newtonian—
paradigm completely loses its "self-evident" and universal
character, and the special nature of the simplé/;ystems, or
mechanisms, which it describes is made clearly manifest.

To leave the Newtonian paradigm, then, is to allow system
properties to simultaneously manifest themselves in several

categories of causation. We will now briefly describe one way

in which this can be done.
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IV. TOWARDS A CATEGORY OF COMPLEX SYSTEMS

As we have seen, if we wish to leave the category of
simple systems, or mechanisms, which are characterized by the
Newtonian paradigm, it suffices to render the causal categories
interdependent. In this section, we shall sketch one way this
can be done (perhaps not the only way), and explore some of
the consequences of this process for the problems at hand.

My own first excursion out of the Newtonian universe came
about as follows. Given a traditional set of dynamical
equations, of the form (1) above, we can think of forming the

new observable quantities

uij(x, a, B(E)) = 3/8xj(dxi/dt) (3)

where Xs X, are arbitrary components of the state vector x.
These quantities play an important role in the stability analysis
of (1), not-so much—3in their'numericai—valueSf"but_i; thetir—
signs. If uij is positive in a state, it means by definition
that an increase in xj will increase the rate at which X, grows
(or equivalently, a decrease in xj will decrease the rate at
which Xy is growing). Thus it is natural to say that xj is an
activator of X, in that state. Likewise, if uij is negative, we
can call xj an inhibitor of Xs in that state. The main interest

of this terminology is that "activation" and "inhibition" are

informational terms, and it seemed possible in this way to

begin to build a dictionary between physical systems, described
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in terms of potentials, forces and energies, and informational
systems of the type which occur in biology and the human
sciences. 1Indeed, using the functions uij’ I could construct
a network, quite analogous to neural networks, whose dynamical
structure was precisely that of the rate equations (1).

We can iterate the process leading from (1) to (3). Thus,
we can form the guantities

> @+ o+
uijk(x’ a, B(t)) = 8/8xk(8/8xj(dxi/dt))

Intuitively, if such a quantity is positive, it means that an
increase in lepotentiates the effect of xj on xi; i.e. that

X, 1is an agonist of xj in that state. 1If uijk is negative,

k
then X, is an antagonist of xj. And so on.

In the Newtonian paradigm, all these quantities are
determined completely by the original rate equaéions (1) . Thus
it was of interest to see whether the "informational" structure
could give us back a system of rate equations; in particular,
could we infer a system of rate equations (1) from the {uij}
so that (3) is satisfied? °

The way back is clear: form the differential guantities

wi = z: uijdxj.
j=1
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If these differential forms are exact, or integrable, then

there must be global functions fi such that

w, = df,.
1 1

Put fi = dxi/dt and we are done. But the condition of exact-
ness is extremely strong; in fact nongeneric if the state space
is of dimension > 2. The familiar necessary conditions for

exactness are precisely

for all indices i, j, k. But this says that, e.g. the agonism
of an activator 1is identical with the activation of an agonist.
In other words, the "informational" interactions of our system
are entirely symmetrical, again a most nongeneric condition.

If these conditions are not satisfied, then there is no
system of rate equations from which the "informational" struc-

tures {uij}, fu,..}, ... follow. 1In fact, all these layers

ijk
become independent of each other, and must be postulated

separately. Extending these considerations to the parameters

; (formal cause) and controls E (efficient cause), it is not
hard to show that in an informational structure of this kind,
thg causal categories are indeed no longer segregated into
independent mathematical elements of structure (and indeed,

the nature of the causal categories themselves become much more

complicated than Aristotle thought).
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It turns out that the class of all these "informational
structures" forms a category, as indeed do the Newtonian
dynamical or "state-determined" systems. Further, the Newtonian
category sits as a very small subcategory in the new, larger one,
just as the rational numbers sits as a subset of measure zero
in the set of all real numbers. And just as in this latter
case, there is a sense in which every glement in the larger
category can be thought of as the limit of a sequence of
elements in the smaller category. In words, this means that

what we have called a complex system can be approximated,

though only locally and temporarily, by a simple system or
mechanism. These facts make clear at once why we have been
able to go as far as we have within the Newtonian paradigm, but
have been unable to progress further.

The situation thus is guite analogous to those in which
the eérly cartographers, trying to map. the surface of a sphere
with pieces of planes, found themselvgs. locally, and tempor-
arily, their maps were guite accurate, but they became increas-
ingly wronger as larger regions of the sphere were mapped. The
only recourse was to keep shifting from one plane to another as
the curvature of the sphere became progressively important. In
some sense, the sphere is a limit of envelopes of approximating
planar pieces, but this involves a global aspect (the topology
of the sphere) which cannot be determined by local considera-
tions alone. If we analogize the Newtonian mechanisms with

the planar pieces, and a true complex system with the surface
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of a sphere, we see exactly the same situation. As the complex
system changes in time, any simple approximation will get less
and less accurate, until it must finally be replaced by another.
Depending on our point of view, we will call the growing dis-
crepancy between what the complex system is really doing, and
what our simple model predicts it will do, as error, or as
emergence. |

The consequences of such a radical epistemological shift
are profound indeed. For our purpose, it suffices to mention
one of them. Namely, since the categories of causation are
no longer segregated into independent mathematical structures,
and in particular, since there is no longer a "state space”
which can be fixed once and for all, there is now room for a

category of final causation in the world of (complex) systems.

In particular, such a complex system may be eguipped with an

array of predictive models of itself and its environment,

whose predictions can be used to modify or modulate the system's
present behavior. Such systems (which I have called guasi-

anticipatory, or just simply anticipatory) seem to be ubiquitous

in biology at all levels, and of course play an essential role
in social systems.

To understand such "model-driven" anticipatory systems,
and even more, to understand how they will interact, it is of
course necessary to know the models which drive them. From
introspection, we know that most of what we call "conflict"

arises not so much in an objective situation, but in the fact
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that widely different predictive models of that situation are
harbored by the parties to the conflict.

In any case, it appears that the widening of our class of
mathematical images of real, natural systems beyond the class
of mechanisms involves some massive epistemological and
methodological shifts. However, in return for giving up the
concept of the world as mechanism, we qbtain many valuable
things in return; not least, perhaps, is the capability of
dealing with telic, epistemic matters in a perfectly rigorous,
scientific, non-mystical way. The admissibility of final cause
in dealing with complex systems, which as stated at the outset
is a cémmon feature of our perception of both organiéms and
social systems, may bring closer the establishment of fruitful

analogies between the two realms.



