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FOREWORD

Within the framework of the Economic Structural Change
Program, a cooperative research activity of ITASA and the
University of Bonn, FRG, a project is carried out on "Statis-
tical and Econometric Identification of Structural Change";
the project involves studies on the formal aspects of the
analysis of structural changes. On the one hand, they include
statistical methods to detect non-constancies, such as sta-
bility tests, detection criteria, etc., and on the other hand,
methods which are suitable for models which incorporate non-
constancy of the parameters, such as estimation techniques
for time-varying parameters, adaptive methods, etc.

The present paper discusses a decision procedure for the
determination of the degree of a polynomial which 1s based on
stage-wise rejective hypotheses testing. It can be applied to
the problem mentioned, but also to similar regressor or
parameter selection situations, such as the determination of
a trend surface, a distributed lag structure, or the order of
an autoregressive process.

Anatoli Smyshlyaev
Acting Leader
Economic Structural Change Program
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ON THE DETERMINATION OF THE DEGREE OF A POLYNOMIAL

Abstract:

Starting from a method suggested by T.W.Anderson (1971) stagewise
rejective test procedures for determining the degree of a
polynomial are proposed. Accounting for the special structure of
the problem, Holm's (1979) individual significance levels can be
improved. If the critical limits for the individual tests of the
simultaneous test procedure are chosen in an appropriate
dependence on the sample size, the test procedure provides a
weakly consistent estimate of the correct order of polynomial.
The corresponding theorem is proved for a general procedure for
determining the correct subset of a finite number of model
parameters.
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1. Introduction

In some situations of regression analysis, the regressor subset
selection problem has the structure of deciding within a sequence
of nested hypotheses. Typical situations of this type are the
case where a polynomial, a trend surface, or a distributed lag
structure of unknown order are to be estimated. A related
situation arises when the order of an autoregressive process is
to be estimated.

Corresponding statistical selection procedures should keep the
order of the model so large as necessary and S0 small as
possible: Given the true order to be r, a choice less than r
leads to biased estimates of the model parameters whereas the
choice of an order larger than r results in a loss of efficiency
and could lead, e.g., to an erroneous interpretation of
explanatory variables which in fact are irrelevant for the
dependent variable. One requirement to be met is that,
asymptotically for an increasing number of observations, the true
order'should be obtained.

In recent years it has become common practice to use 'model
fitting criteria' for the selection of the appropriate model
(Akaike, 1974; Amemiya, 1980; Mallows, 1973; Parzen, 1974;
Schwarz, 1978). For the linear model situation Geweke & Meese
(1981) have investigated different criteria for estimating the
true order: They have established that only Schwarz's (1978) SBIC
criterium provides a weakly consistent estimation procedure. For
AR models, Hannan & Quinn (1979) suggest a strongly consistent
order estimation procedure. P&tscher (1983) used simultaneous

* Lagrange multiplier statistics in order to test the parameters of
ARMA models; he proved the strong consistency of his procedure
for determining the correct order if the significance levels for
the individual tests tend to zero in an appropriate way. It
should be noted that the use of model fitting criteria, e.g.,
Akaike's AIC, is equivalent to simultaneousely looking on the
likelihood ratio statistics when testing all possible pairs of
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models, the critical limits depending on the difference of the
number of model parameters and the number of observations.

In the following the multiple test approach for the individual
regression coefficients is used for determining the order of a
polynomial regression. The formulation of the hypotheses is in
accordance with the procedure introduced by Anderson (1971). The
multiple test procedure controls the probability of erroneously
including a term of higher than the true order of the polynomial.
It is an improved version of a stagewise rejective test (Marcus
et al., 1976; Holm, 1979) taking into account the nested
structure of the hypotheses to be tested simultaneously. 1In the
asymptotic case of an ihcreasing number of observations the
procedure can easily be adapted to serve as a weakly consistent
estimation procedure for the order of the polynomial. This
property of weak convergence to the true model, moreover, is -
under fairly general assumptions on the model with a finite
number of parameters - valid for any parameter selection problem
and doés not depend on the nested structure discussed in the
paper..

2. A Stagewise Rejective Test Procedure

Let
f(xve) =Bo+81x+... +quq (1)

be a regression function in form of a polynomial of degree q. If
such a polynomial is to be used as a descriptive device for a
data set, it often should summarize the overall characteristics
of the data. For this purpose the polynomial should be of fairly
low degree. The degree of the polynomial with a satisfactory fit
is rarely knowb to the investigator in advance. It general the
investigator might be able to give the possible lowest degree m
and the highest degree q; he then is left with the multiple
decision problem of deciding whether the degree is m,m+1,...,q.



Anderson (1971) formalizes the problem as a decision problem
between gq-m+1 mutually exclusive parameter sets

Hq_1: eq=0, eq_]#O
: (2)

An alternative formulation is a decision problem between the
hypotheses

*

Hq_1: 9q=9q_1=0

: (3)
*

Hm+1: eq=...=em+‘|=0

where, for i=m+1,...,q,

B s U Hy . (4)

Anderson supposes that the investigator wants to control directly
the probability of errors of saying that coefficients are not
zero when they are zero or correspondingly of choosing a higher
degree than suitable, and that, given these probabilities, he
wants to minimize the probabilities of saying coefficient are
zero when they are not, or correspondingly of choosing a lower
degree than suitable.

To the set of q-m null hypotheses HZ,...,H;+1 a stagewise

re jective test procedure (Holm, 1979) can be applied. Such a
procedure keeps a multiple level of significance ; this means
that, whichever of the null hypotheses HS,...,H;+1 are true, the
probability of an erroneous rejection of a true null hypothesis
is always bounded by o (see, e.g., Sonnemann, 1982).

Let Yp41,...,¥q be the respective statistics for testing the null
hypotheses

Hom+1: Om+1=0



Hom+2: Om+2=0

: (5)
Hoq H eq:O

which refer to the q-m real-valued scalar parameters 6p,.1,..
To cope with the two-sided test situation, the set of null

hypotheses (5) is replaced by the set of q-m pairs of one-sided
null hypotheses of the form

c’eq-

~< ~2 )
Hoj: 6i<0 , Hgi: 0120, i=m+1,...,q, (6)
where
~ ~< ~2 '
Hoi = Hoi n Hoi - (7)

The i-th pair of (6) is tested by means of the test statistiecs

P(Tj2yj)

pi
1 = P(Tisyi) - (8)

Here, the random variable Tj. has the distribution of the test
statistic Yj, given“éfz...:ea:o. The quantity yj{ is the observed
value of the test statistic Yj. Usually, pf and pf are denoted
as the observed error probabilities. It is assumed that,
independently of the itrue values of the parameters CRE j<i, and
independently of the values of any nuisance parameters, the
following inequalities hold for all i and O=<a<1:

P {pi < % } s 3

2
P{p;s5} =3 if o,=...=8,=0 - (9)
Then the two-sided test statistic is defined by
pi ="min{pf,pi’ (109
and obeys
P{pis%} <a, i£6; =...=0,=0 (11)

The condition «u<1 assures that never both hypotheses Héi and Hgi
can be rejected at the same time (Holm, 1979).
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The stagewise rejective test procedure is based on the set (3) of
null hypotheses which fulfills

T - «
H = | Hoj - (12)
=i

Then a level a-test for any such null hypothesis H; is given by

the critical region
8]

< —
j eli,...,q} 2(g-1+1) . (13)

min pj

This follows since under Hj
* q a
P { reject H, } =P {U {p, $s ——} <«
* 3=t ) 2(g-it1)
q a a
< T P{p, s — } < (g-i+1). o= a
j=1 J 2(g-i+1) g-i+1
by use of the Bonferroni's inequality and equations (9) and (11).

The stagewise rejective procedure is defined as follows:

Procedure: Reject the hypothesis Hf, if

p,= min p, s .2 =

j -
cJelm+1,. .04k 2{grm)
if pk>o(m+1) accept Hpe+1 and stop testing. At the second stage
re ject H;, if

a(m+1) H (14)

P,= min p. < o = qa :
je{k+1,...,q} 7 2(q-k) (k+1) (15)

if P> (k+1) accept H;+1 and stop further testing. At the third
stage the procedure is performed as at stage 2, replacing k by %;
and so on.

Theorem 1: The above defined multiple test procedure for the set
of gq-m null hypotheses Ha,...,H;+1 provides the multiple level of
significance @,

Proof: Marcus et al.(1976) have introduced so-called closed
testing procedures, which keep the multiple level of significance
a. For these test procedures it is required, that the finite set
of null hypotheses to be tested is closed under intersection.
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Any null hypothesis then is rejected if not only this hypothesis
but also all other null hypotheses restricting the parameters to
a subset of its parameter space are rejected in a level g-test.

Obviously the set of null hypotheses given by the H;,
i=m+1,...,q, is closed under intersection, since for any subset
Je{m+1,...,q} of indices it holds that

* * .
ngHj =Hp , r = mig Jj . (16)

The construction implies that if Hﬁ is rejected at the first
stage all null hypotheses H3 with HEcH; (viz. H;+1,...,Hﬁ_1) are
rejected in a level o-test based on (10), too. The same argument
applies at the further stages of the procedure. )

Anderson (1971) in addition discusses the case where the interest
in the different degrees of the polynomial is not the same: He
gives a few hints how to choose indivigual significance levels
for testing the individual hypotheses Hgyj. Basically his advice
tends to make q fairly large and the individual significance
levels small for large degrees i ('if high degrees are not
needed, the probabiliﬁy is small that a high degree is decided
on').

To cope with this situation in the stagewise rejective procedure,
positive weights Wm41s--.,Wq Can be defined, expressing the
relative importance of the parameters fm+1s---40q for the
multiple decision problem (cf. Holm, 1979): if wi>wj, 8i is of
more importance for the decision problem than 63 is.

Modified Procedure: This procedure is performed in analogy to the
original one, replacing the pj by

pi = pi/wi y i=m+1,...,q , (17)

and the level g-test for testing the null hypothesis H; by
Q
min ''< = o', .
®3 = () (18)
je{i,i+1,...,q} 3=1i
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At the first stage reject Hg, if
P = min p! < o ,
k je{m+1,...,q} 3 (m+1) ’
if p&>a&m+1) accept H;+1 and stop. At the second stage reject
H;, if
py = min p'! < a :
. je{k+1,...,q} ? (k+1)

if p;>a(k+1) accept H;+1 and stop; and so on.

Lemma 1: The modified test procedure for the set of q-m null
hypotheses HE,...,H;+1 also provides the multiple level of
significance a.

The proof is equivalent to that of Theorem 1.

The advantage of the procedures is obvious. If q=5, m=0, and,
say, H§ is rejected at the first stage, in case of equally
weighting the remaining two parameters 64y and 85 are individually
tested at the two-sided level a/2 only. This possible use of
larger individual significance levels as compared to the
classical Bonferroni. type procedure increases the probability of
correctly including non-zero polynomial terms.

It should be reminded that for the proposed procedures of
simultaneously testing the set of null hypotheses HE,
i=m+1,...,q, it is required only that - under HE - a level a-test
exists for the respective coefficient of degree i independently
of the coefficients corresponding to degrees j<i. A test of the
degree of a polynomial can either be based on the coefficients of
orthogonal polynomials or on those of the simple powers of the
regressor variable.

Particularly in cases of small degrees of the polynomial one
might be interested in directed decisions, i.e., 84<0 or 8;>0.

In such cases one would require a probability of at least 1-a
that the joint conclusion does neither contain false rejections
of true null hypotheses nor false directional decisions. Closed
test procedures do in general not fulfill this requirement; there



are counter-examples even for independent test statistics as
shown by Popper Shaffer (1980). This author, however, gives
necessary conditions for the distribution functions in the case
of independent test statistics. Bauer et al. (1985) give a
general procedure of the Bonferroni-Holm type which meets this
requirement: this procedure which cannot be further improved for
the general situation is only slightly superior to Holm's
procedure applied to 2k one-sided hypotheses.

3. Weak Consistency of a General Multiple Test Procedure for
Determining the Correct Subset of Model Parameters

In this Section a general procedure will be proposed for
selecting the model parameters by multiple testing, the method
being valid also under the special structure of hypotheses given
in the previous Section. It will be shown that this method is
weakly consistent for estimating the correct subset of non-zero
parameters.

Let us assume that one has to decide, which of the finite number
of q parameters 81,...,94 are non-zero and therefore have to be
included into the model. Without loss of generality the set Iy =
{r+1,...,q} denotes the indices of the parameters 6p,9=...204=0,
whereas Iq = {1,...,r} denotes the indices of the non-zero
parameters 0 420,...,0*0.

Let 8ipn, i=1,...,q, be estimates of 6; and 0}, estimates of the
variances oip (>0) of the 8i, obtained from a sample of size n.

General Multiple Test Procedure: Estimate the index sets I, and
I4 by I, and Iq, respectively, with I,nI1=0 and IOUI1:{1,...,q},
so that

(o}
"

fje{1,...,a}:Iéjnl(afn)-1/2scj(n)}
{(1,...,q}t=1q,

-
-
n

where cj(n), j=1,...,q, arelincreasing) functions with cj(n)+°.
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Theorem 2: Assume
o 2 -2
(a) b[(@in - Gi) ] Oin is bounded

A
g,

(b)

in

(C) oin hd Cl(n) > 0

A
Then P(Io # Ig)+O.

Before proving this result it should be noted that from cj(n)»
and condition (¢) it follows

5 A A 2
o, =vVEL(8, = E(8, ))%]1 » 0

This fact together with (a) implies convergence in the quadratic
mean for the éins i=1,...,q:

A 2
Ee, -06.)"1=+0
in i

Proof: In part A it is shown that the probability for %o not
including all the indices r+i1,...,q of the zero parameters tends
to zero. 1In part B it will pe proved that the probability for Io
to contéin at least one of the indices 1,...,r tends to zero,
too.

(A) Let, for i=r+1,...,q, cig(n) be a function, so that cjp(n)>
and cjg(n)(cij(n))=1+0. Given any cj(n) with cj(n)*> = such a
cjo(n) can always be found.

A
For any particular 6jp, i=r+it,...,q, Chebychev's inequality leads

to

A -
\ _ B8, *10, ~* M
P{I8; l0,n 2oy (n)}s 2 E '
c. (n) c., (n)
10 10

due to assumption (a) such a finite M>0 can always be found.
Clearly, this probability tends to zero because of cjg(n)-=.
From the above inequality follows that

A
18400 e, ™t R o,

if e¢jg(n)(ei(n))=1+0, as has been assumed. Hence also

D >

6. (0. c.m) o (B )PP o
in 1

in in in
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-1 P
since eincin+1 as stated in (b). That means that for any £»0

( A A -1
P |Gin|(cinci(ny) > e}l + O

and

A A >0
P{‘ein‘cin > eci(n)}

this statement also being valid for e=1. This completes the
first part of the proof.

(B) Let C<é<1 be a fixed number. Then for i=1,...,r

. o
A A~ vl ~ -1 "in -_
P{|u_in|cin s c;(m}=r{|6,  |o, 3 s c (n)} <
in
< P'|6 |o -1 Jin < ¢, (n) 1oin -1] < &8} + P{|0in -1 =2 8§} <
= FUI9nl% ., T 2 SR A 2 :
o, g, g,
in in in
A -1 Gin
< p{|8, |o, (1-8) < c. (n)} + P{|—= =-1| = 8} .
in in 1 /O\_
in

The second summand tends to zero because of (b). The first
summand can be transformed as follows:

p{|8. o, "} s c (n)(1-8) 1=
in il 1

-1

A

=p{ta,[-18 Do, "' = o]0, “t-c (m)(1-8)7"}

IA

pele -6, |o. "V s |8 ]o,. tec.(n)(1-6)"1} s
4 in = 411 in i

in

_2=

IA

A 21 -2 -1_ _ -1
EC(6, -8,)" 0, .(Ieilcin c,(n) (1=-8)"")

1, -2

)

a2 -8) "
EL(6, =8 ) “1(|8,}o, c, (n) (1-6)

The application of Chebychev's inequality depends on

-1
|8i|oip=-ci(n)(1-5)=1
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probability of fitting a polynomial of higher order than the true
one is bounded by &, independently of n. To get weak consistency
of the multiple test procedure for determining the correct order,
the critical limits must in a particular way depend on the sample
size. Testing in a linear model setting, this means that for
increasing numbers of observations the significance levels for
the individual tests of regression parameters should decrease:
The corresponding critical limits must tend to infinity slower
than the inverse of the standard deviation of the respective
parameter estimators.

The result in Theorem 2 is not confined to the special structure
of nested hypotheses. It is generally applicablevto subset
selection in statistical models with a finite number of
parameters.

Acknowledgement: We are indepted to B.M.Pdtscher, who
substantially contributed to the presented dense version of
Theorem 2.
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being positiv. This will always be the case for sufficiently
large values of n due to condition (c) and|6;| > 0. The
convergence in the quadratic mean of éin assures that also the

O

first summand tends to zero. This completes the proof.

Remark: The assumption (a) is, together with (c¢), more stringent
than the assumption of convergence in the quadratic mean for the
éin- Assumption (c¢) and convergence in probability of éin to 95
would induce convergence in the quadratic mean but not suffice
for the proof of the first part of the Theorem. If the
estimators for the parameters are unbiased as in the 'linear
model'! situation, condition (a) is trivially fulfilled. If only
asymptotic unbiasedness is assured some restriction on the bias
is needed: The quadratic bias must tend to zero at least as fast
as the variance.

In the linear model situation, i.e., Y = Xe+e with e~N(0,07Tp),
the general test procedure simply consists of simultaneous
t-tests for the individual parameters. If it is assumed that
(X'X)h’!+Q, Q being a_positfve definite matrix, conditions (a)
and (b) hold when the usual variance estimate based on the
complete model is applied. Condition (c¢) then requires that
ci(n)n‘1/2+0, e.g., ci(n)=cinYi with 0<Yi<1/2 and O<cj<=.

In the multiple test situation of Section 2 the smallest
individual significance level to be used is a(p,1)=¢/(q-m). If
the simultaneous significance level o depending on n is chosen
according to (q-m).(2Tr)'1/2exp(-<:2n2Y/2).(cnY)‘1 with O<e<® and
0<y<1/2, then the smallest o(;), and hence all others, will
fulfill the requirement of Theorem 2.

4. Concluding Remarks

Corresponding to the fixed simultaneous significance level o for
the multiple test procedure discussed in Section 2, the
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