Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II

Kauppi, P., Kaemaeri, J., Posch, M. ORCID:, Kauppi, L., & Matzner, E. (1985). Acidification of Forest Soils: A Model for Analyzing Impacts of Acidic Deposition in Europe - Version II. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-85-027

[thumbnail of CP-85-027.pdf]

Download (938kB) | Preview


Acidification is an unfavorable process in forest soils. Timber logging, natural accumulation of biomass in the ecosystem, and acidic deposition are sources of acidification. Acidification causes a risk of damage to plant roots and a subsequent risk of a decline in ecosystem productivity.

A dynamic model is introduced for describing the acidification of forest soils. In one-year time steps the model calculates the soil pH as function of acid stress and the buffer mechanisms of the soil. Acid stress is defined as the hydrogen ion input into the top soil. The buffer mechanisms counteract acidification by providing a sink for hydrogen ions. The concepts buffer rate and buffer capacity are used to quantify the buffer mechanisms. The model compares (i) the rate of the acid stress (annual amount) to the buffer rate, and (ii) the accumulated acid stress (over several years) to the buffer capacity. The comparisons produce an estimate of the soil acidity as the output.

Since the first version in May 1984 several changes have been implemented following the advice of the experts. For aluminum and iron buffer ranges an equilibrium approach has been introduced. The pH of the silicate, cation exchange and upper aluminum buffer ranges is now a function of base saturation. In the current version of the model forests are assumed to absorb sulfur compounds more effectively than agricultural lands and, moreover, forests are assumed to grow on poor soil types rather than on the average soil type of a grid.

The model system as a whole is now available for analyzing the impact of different emission scenarios. The soil acidification model assumes sulfur deposition estimates from the other submodels as input, and as output it computes the total area of forests in Europe with the estimated soil pH lower than any selected threshold value. Additionally it produces estimates of the acidity of European forest soils in a map format.

Item Type: Monograph (IIASA Collaborative Paper)
Research Programs: Acid Rain Program (ACI)
Depositing User: IIASA Import
Date Deposited: 15 Jan 2016 01:56
Last Modified: 27 Aug 2021 17:12

Actions (login required)

View Item View Item